
Chapter 3
The Golden Rule Under Uncertainty

Dubia plus torquent mala.1

As an English proverb goes, “Between the cup and lip a morsel may slip.” This
chapter is devoted to the Golden Rule under uncertainty, which accompanies every
concept of equilibrium (in particular, Berge equilibrium).

3.1 Uncertainty and Types of Uncertainty

L’homme propose et dieu dispose.2

The harm and good of action are conditioned by
a totality of the circumstances.

—Kozma Prutkov3

What is uncertainty? How does uncertainty appear in economic and mechan-
ical systems, sociology and decision-making? These questions are discussed
below.

1Latin “Doubtful ills plague us worst.” A quote from Agamemnon 480, by Seneca the Younger. In
full Lucius Annaeus Seneca, (c. 4 B.C.–65 A.D.), was a Roman philosopher, statesman, orator, and
tragedian.
2French “Man proposes but God disposes.” This proverb emphasizes an influence of various
contingencies on one’s own plans, intentions, or even life.
3An English translation of a quote from [168, p. 230].
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62 3 The Golden Rule Under Uncertainty

3.1.1 Conceptual Meaning of Uncertainty

The following situation seems common for almost everybody: one needs to reach a
place of employment from home. First of all, a person in this situation (henceforth
called passenger) has to decide which means of transportation to use (subway, bus,
tramcar, suburban electric train, etc.). Choosing a means of transportation (strategy),
the passenger inevitably encounters incomplete and/or inaccurate information:
delays or breakdowns of vehicles, sudden changes of schedule, strikes of drivers,
weather fluctuations, crashes on routes, and so on. As noted by O. Holmes, “The
longing for certainty. . . is in every human mind. But certainty is generally illusion.”4

At best the passenger knows the ranges of variation of these factors, without any
probabilistic appraisals. Nevertheless, he/she has to make a decision! As a matter of
fact, the incomplete and/or inaccurate information about the conditions under
which his/her strategy will be implemented results in its inherent uncertainty.
The uncertainty is caused by the embarrassment of choice.5 We end this section
by quoting Napoleon Bonaparte: “If the art of war were nothing but the art of
avoiding risks, glory would become the prey of mediocre minds. . . I have made all
the calculations; fate will do the rest.”6

3.1.2 Uncertainty in Economic Systems

The following types of uncertainty are common in economic systems [25, 117, 118,
123, 125, 126, 129, 130, 175]:

1. uncertainty in economic indicators;
2. uncertainty about future disturbances, endogenous and exogenous;
3. uncertainty induced by mathematical modeling.

Pliny the Elder was used to say, “In these matters the only certainty is that there is
nothing certain.”7 Among the sources and causes of uncertainty, we are identifying

4Oliver Wendell Holmes, Jr., by name The Great Dissenter, (1841–1935), was a justice of the
United States Supreme Court, U.S. legal historian and philosopher who advocated judicial restraint.
5A house owner (H) asked a heating engineer (E) how much firewood will be required for a winter
season. The latter requested information about the area of the house, the number of rooms, the
location of windows, the number of fireplaces and also a mass of other technical details.

E: You will need from three to nineteen cubic meters of firewood.
H: Why is the answer so inaccurate?
E: Everything depends on how severe the coming winter will be. See [98, p. 41].

6Napoleon I, French in full Napoléon Bonaparte, (1769–1821), was a French general, first consul
(1799–1804), and emperor of the French (1804–1814/1815).
7Gaius Plinius Secundus, (23–79 A.D.), well-known as Pliny the Elder, was a Roman writer, natural
philosopher and scientist.
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pure economic and also political factors. The latter include such unforeseen events
as

• military conflicts and bans on exports and imports dictated by wartime (closure
of borders, military operations in a country, migration, etc.);

• disposition of immovable and movable property (in particular, financial assets)
on political grounds;

• inefficient economic policy and related ethnical and regional problems, polariza-
tion of different social groups.

An economic system, e.g., a firm, is often subject to sudden influence that is
difficult to predict, namely, exogenous disturbances in the form of

• forces of nature (earthquakes, floods, storms, hurricanes, and other natural
phenomena such as cold, ice, hail, thunder, drought, etc.);

• various accidents (fires, blasts, emissions of atomic and heat power plants, etc.);
• product price fluctuations caused by demand-supply dynamics, the varying

number and range of supplies, purchase price fluctuations, the disruption of
supplies;

• bad faith, low qualification or incompetence of economic partners, counteractions
of rivals, acts of terrorism or racketeering;

• emergence or implementation of new technologies (investments made in techno-
logical progress and the resulting economic effects are often separated in time
and therefore can be predicted on a long-term basis only);

as well as endogenous disturbances in the form of

• breakdown and failure of industrial equipment;
• unplanned additional cost and the losses of materials or energy during product

storage and transportation;
• industrial accidents and employee illness;
• mistakes in personnel management;
• incorrect marketing or pricing policies (no sales, old stocks);
• mistakes in planning and product design;
• innovations suggested by employees.

New technologies and also anthropogenic and weather changes may cause
uncertainty in ecological systems. In this context, we also mention epidemics among
biological species and sudden pollution of their habitats [32, 147, 183].

3.1.3 Uncertainty in Mechanical Control Systems

In mechanical control systems, le vague8 can be induced by exogenous disturbances,
which lead to uncertainty in the forces affecting these systems [1, 107, 108,
153, 154, 169, 170, 174]. Atmospheric phenomena such as puff and varying air

8French “Uncertainty.”
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density can be sources of exogeneous disturbance. Incomplete information can be
also a consequence of control program errors. Other disturbing factors include
inaccurate initial data, the spread of characteristics and design parameters of a
moving body, as well as gravitational and other perturbations. A primary cause
of incomplete information in mechanical control systems consists in the inherent
noises of measurement channels, which yield inaccurate motion parameters of the
systems.

Information delays associated with finite periods of time needed to acquire and
process measurement data also cause uncertainty in mechanical control systems.

3.1.4 Uncertainty in Decision-Making

As a matter of fact, uncertainty occurs in decision-making too.
First, in the course of mathematical modeling, since it often seems impossible

to consider the whole variety of constraints on the uncontrolled and controlled
parameters of the process under study within the current level and methods of
science [6, 15–17, 132, 133, 135, 177, 178].

Second, in the understanding of all goals to be achieved by a controlled process:
in many cases these goals are unclear or ambiguous, and their formalization has a
subjective character defined by a player [7, 17, 139–142, 151].

Third, relationships between the process variables in the form of differential
and/or algebraic equations may be inadequate for the process itself [9, 10, 143–146].

3.1.5 Classification of Uncontrolled Factors

In accordance with operations research [28], the strategies are the factors controlled
by a player, i.e., chosen at his own discretion. Also, there exist uncontrolled factors
[295, 296] affecting the outcome, which are not at the player’s disposal (e.g.,
environmental conditions). Obviously, players should have some information about
the values of uncontrolled factors.

Based on the awareness of players, operations research [28] divides the uncon-
trolled factors into three groups: fixed, random, and uncertain.

The fixed uncontrolled factors are the ones that have precisely known (given)
values; e.g., a share sale is transacted if the buyers are informed about the exact
price quotations. In this example the price quotations act as an uncontrolled factor.

The random uncontrolled factors are represented by random variables obeying
given probability distributions.

Finally, the uncertain uncontrolled factors (hereinafter referred to as uncertainty)
are deterministic or random variables with given value ranges or given classes of
admissible probability distributions.
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Among the above-mentioned groups, of crucial importance are the random and
uncertain uncontrolled factors. In fact, the fixed uncontrolled factors do not differ
from the other parameters of a mathematical model: their values are given and
not varied at the wish of players. The random factors and uncertainty are also not
affected by the players, but they take unknown values. As a rule, the random factors
have a given probability distribution. In other words, if a random factor takes a
finite set of values y1, . . . , yk , then the players know the probabilities p1, . . . , pk

associated with these values. For a random factor described by a continuous random
variable, one deals with a given probability density function p(x). In both cases, the
optimization criteria (payoffs functions) are defined in terms of expectation.

Even less information is available about uncertainty. Whenever it represents
a deterministic variable, we will assume that there is a given domain Y of its
admissible values and consider the values y ∈ Y only. If uncertainty is a random
variable, then by assumption it belongs to a given class of admissible probability
distributions.

Modern publications on economics distinguish three types of uncertainty as
follows:

– interval uncertainty, for which the only available information consists of the
ranges of admissible values (any probabilistic characteristics are absent for some
reason). This type of uncertainty will be studied in our book;

– random uncertainty, as discussed above;
– fuzzy uncertainty, which is ruled by fuzzy mathematics, an intensively devel-

oping branch [99] founded by L. A. Zadeh.

3.1.6 Classification of Uncertainty

Using different sources of uncertainty, it is possible to suggest four groups of
uncertainty [297–300], namely,

10. uncertainty caused by the purposeful actions of other persons who are not
players;

20. uncertainty reflecting the fuzzy knowledge of all players about their goals;
30. uncertainty occurring due to an insufficient exploration of processes or charac-

teristics;
40. uncertainty arising in the course of data acquisition, processing and transfer.

Let us discuss each group in detail.
10. Real control systems (especially economic, ecological, and social ones) often

operate under conflict. In such systems, uncertainty is connected with the actions of
conflicting parties, which are pursuing individual goals. Uncertainties of this type
are called strategic [28] and cover any uncertainty caused by the actions of such
goal-oriented parties actually not representing players. For example, the operation
of an economic object can be influenced by other enterprises and firms, regardless
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of their economic relations with this object (say, an import product put in a market).
These relations are incorporated into a mathematical model using several parameters
with given ranges of variation (as the only information available to the players),
e.g., the minimal and maximal quantity of products released in the market by an
importer. The specific values of these parameters depend on the specific actions of
other enterprises, i.e., the importer.

In this case, the parameters themselves constitute the uncertainty. Besides, this
type of uncertainty also covers some exogenous disturbances such as the disruption
and variation of the quantity (range) of supply, demand fluctuations for the products
supplied by a given enterprise, the emergence of new technologies, etc.

20. A special status is assigned to the uncertainty that reflects the player’s
understanding of his goals. Roughly speaking, this uncertainty is not a controlled
factor because each player chooses goals at his wish. However, if a player is unable
to make choices or has some doubts, the resulting situation resembles the case
of uncontrolled factors. For further analysis, we will assume that such a situation
can be described by a set of criteria f1(x),. . . , fN (x), each maximized by a given
player without a clear view of a single criterion. As demonstrated below, this player
operates under the same conditions as uncontrolled factors. A similar state of affairs
occurs if the player’s criterion depends on the uncertainty taking a finite set of
values: substituting these values into the criterion, we obtain a vector criterion with
the same number of components as the number of uncertainty values.

Of course, an immediate issue is to design a uniform scalar criterion that
would reflect the “desires” associated with all the elements of the vector criterion
(the criteria convolution problem). The most widespread methods to convolute
the criteria f1(x),. . . , fN(x) are (a) the weighted sum

∑N
i=1 αifi(x) and (b) the

weighted minimum min
1�i�N

αifi(x). In both cases, the weight coefficients must often

satisfy the normalization conditions
∑N

i=1 αi = 1, where αi > 0 (i = 1, . . . , N).
These coefficients can be used to transform the results into a universal measuring
scale. Inaccurate knowledge about the player’s goal is encoded by the uncertain
values of αi (i = 1, . . . , N).

However, such an approach, first, does not eliminate the existing uncertainty
(yielding the uncertain parameters αi ) and, second, can be used if the uncertainty
takes a finite set of values. If this set is infinite or even has the cardinality of the
continuum, then the approach is called into question.

Finally, the relationship between the criterion values and uncertainty can be
determined by different factors such as weather conditions, anthropogenic changes,
a sudden appearance of competitors, price fluctuations in the market, and other
exogenous disturbances [301–305].

30. An increasing amount of information, and consequently a rising number of
studied objects (in particular, their gradual complication), is also increasing the
existing uncertainty due to an insufficient exploration of processes and character-
istics, compelling us emere catullum in sacco.9

9Latin “To buy a cat in the sack.” Meaning to buy something sight unseen or without knowing
anything about the object.
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The growing uncertainty describes well the fact that, in the course of develop-
ment, any fundamental or applied science10 is posing many more problems than it
actually solves. Decision-making based on incomplete data can be interpreted as
conflict with nature. Note that this source of uncertainty has a subjective character
in some sense. Indeed, such uncertainty depends on accumulated experience, the
completeness of modern scientific knowledge, and access to new information. For
example, flight missions to Mars are intended to eliminate blanks in what is known
about this planet and will surely lead to new unexpected problems. The same applies
to the appearance of new technologies.

40. Data acquisition, processing and transfer directly involve computers for
different calculations. In practice, we have to be content with approximate solutions,
reconciling ourselves with the element of uncertainty in the solutions. Rough
information occurs as the result of many factors—computational errors, inaccurate
data transfer as well as the limited precision of numerical representations and
measurements, to name a few.

Solutions obtained by a numerical method are always approximate. There exist
several sources of errors for numerical solutions, such as disagreement between
a mathematical model and the real phenomenon,11 inaccurate initial data, and
imprecision of numerical methods (e.g., roundoff errors for arithmetical and other
operations).

Even hand calculation [179] involves the roundoff effect, which is associated
with a finite number of decimals used for different operations. This problem is
equally important for computer systems and people.

There are several reasons explaining this situation.
First, the amount of computational job that can be performed manually is

considerably smaller compared with that of modern computer systems.
Second, hand calculation allows us to observe roundoff effects and undertake

necessary measures for avoiding mistakes.
Third, hand calculation often employs variable-length numbers, which are

adjusted to eliminate rough errors; by contrast, computer calculation deals with
floating-point numbers of fixed length.

Fourth, hand calculation allows us to estimate the maximal error induced by
rounding. Such estimation is very costly for computer calculation, requiring the use
of statistical estimates.

Practical calculations have led to several popular methods to use computer
systems for error detection and estimation. The latter is vital: prior to writing
programs for a computer system, one needs to assess the expected accuracy.

10In jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könne,
als darin Mathematik anzutreffen ist. (German “In every department of physical science there
is only so much science, properly so-called, as there is mathematics.”) A quote from Metaph-
ysische Anfangsgründe der Naturwissenschaft (Metaphysical Foundations of Natural Science) by
Immanuel Kant (1724–1804), an outstanding German philosopher.
11“If my husband would ever meet a woman on the street who looked the women in his paintings,
he would fall over in a dead faint.” —Mrs. Picasso.
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Perhaps, the simplest and most successful approach to the roundoff problem
is to define the range of admissible values. Then each quantity can be described
by two values, i.e., the maximal and minimal ones. In a certain sense, each
quantity is replaced by a range that covers its exact value. Different operations
on quantities correspond to new ranges defined from the original ranges using
appropriate rounding. Therefore, each stage of calculations has reliable limits for
the correct value of a given quantity. These issues form the content of interval
analysis [187, 256].

A direct application of interval methods in calculation processes allows us to
impose limits on the solutions of problems with initial data belonging to given
ranges. The resulting intervals also incorporate the roundoff errors caused by
calculations. For precise initial data, these intervals contain the exact solution of an
original problem and hence interval analysis gives the approximation and roundoff
errors.

To pursue the path of two-sided estimation is a very promising approach, as it
solves the issue of resulting errors. Two-sided estimation is proceeding with the so-
called interval arithmetics [187], which operates with intervals instead of values.
More specifically, it is assumed that initial data, intermediate calculations and final
results belong to some intervals. Thus, a main element of interval calculus is an
interval [a, b] (also termed range) defined as a set of real values x such that {x ∈
R|a � x � b}.

Generally, when a value x is specified for computer systems, it is assumed that
x incorporates an error. In terms of interval analysis, this means that in a computer
system a value x belongs to an interval.

With an interval algorithm used for solving a posed problem, we may construct
an interval function that contains the exact solution. In this case, the accuracy of
the resulting solution is taken into account and it is also possible to perform a prior
analysis of roundoff errors.

Thus, we have presented a list of factors causing uncertainty in different systems,
which does not claim to be exhaustive. But this brief discussion demonstrates
that uncertainty should be considered for the elementary and difficult problems,
particularly, for conflicts, in which the interests of many parties are clashing with
one another and undergoing the influence of uncertain disturbances. Even in simple
market problems these disturbances might not be neglectable. How can one account
for them in noncooperative games under uncertainty (NGU), especially in dynamic
(time-varying) controlled systems? A possible approach based on an appropriate
modification of the principle of guaranteed result [28, 29] was developed for
multicriteria choice problems in [295] and for conflicts in [51, 289]. An alternative
framework using the principle of minimax regret [267, 268] is presented in the
book [66] (though for the noncooperative setup only).

In the mathematical models of CGUs, the influence of several uncertain factors
is assessed by the specific values y1, . . . , ym of corresponding scalar parameters.
These values yj (j = 1, ...,m) describe for instance the quantity of imported
products (put in the market), their unit price, the number of people suffered from
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an accident or fire, the delays of negotiated supplies, and so on. We will also adopt
a column vector y = (y1, . . . , ym), with a set of values denoted by Y ⊂ R

m.
Our book addresses uncertainties that cannot be described by statistical methods.

This situation occurs at least in two cases as follows:

– the probabilistic characteristics of uncertainty exist in principle, but statistical
data are not available (e.g., sudden anthropogenic accidents like the Chernobyl
and Fukushima Daiichi nuclear disasters) or are very expensive to acquire;

– the uncertainty y does not have any probability distribution.

The uncertainty of the second type is well illustrated by the following example;
for details see [18, p. 21]. For a clothing factory, production planning for a next
year heavily affects future profits, which in turn depends on the length y of
women’s skirts. However, taking into account the vagaries of fashion and female
logic dictating fashion trends, any probabilistic characteristics for the parameter y

would be hardly expected. All one can do is to establish some obvious limits of
length variations. In [18, p. 21], E. Ventsel’ called such uncontrollable factors ill
uncertainty due to an unpredictable character of their specific realization. This type
of uncertainty will be considered below.

Once again, we emphasize that recent publications on competitive economics
have identified three types of uncertainty, namely, interval uncertainty (studied in
this book), random uncertainty (based on some probabilistic characteristics of a
variable y distributed on a set Y), and fuzzy uncertainty (based on the concept of a
fuzzy set introduced by Zadeh in [99]).

Thus, throughout this chapter it will be assumed that the players make their
decisions using a value set Y of uncertain parameters y only, i.e., there exist no
probability characteristics for y. Therefore, choosing their strategies, the players are
expecting any realization of y from the set Y.

3.2 General Notions and Obtained Results

3.2.1 Saddle Point and Maximin

Maximin is the problem of finding the minimum amount of

fabric required for sewing a maxi skirt.12

A single-criterion choice problem under uncertainty (SCPU) is described by a
triplet

〈 X1, Y, f1(x1, y) 〉, (3.2.1)

12A Russian translation from a humorous mathematical glossary in [34, p. 204].
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where X1 ⊆ R
n denotes the set of alternatives x1 selected by a decision maker

(DM); Y ⊆ R
m is the set of uncertain factors y; finally, f1(x1, y) is an objective

function defined on X1 × Y that is maximized by the DM under any realization of
y ∈ Y.

For problem (3.2.1), game theory considers at least two types of solutions:

– first, the saddle point (x0
1 , y0) ∈ X1 × Y, which is defined by the equalities

max
x1∈X1

f1

(
x1, y

0
)

= f1

(
x0

1 , y0
)

= min
y∈Y

f1

(
x0

1 , y
)

; (3.2.2)

– second, the maximin f
g
1 and the maximin alternatives x

g
1 ∈ X1 suggested by A.

Wald [282] in 1939, which are given by

f
g
1 = min

y∈Y
f1

(
x

g
1 , y

) = max
x1∈X1

min
y∈Y

f1(x1, y). (3.2.3)

Remark 3.2.1 The chain of equalities (3.2.2) will be used below to formalize the
guaranteed balanced equilibrium as a solution concept for the noncooperative N-
player game under uncertainty (NGU), the first type of the guaranteed equilibria
developed in this book.

3.2.2 Auxiliary Results from Operations Research, Theory
of Multicriteria Choice and Game Theory

Some background material from operations research, theory of multicriteria
choice and game theory (Nash and Berge equilibria) is provided.

Operations Research
Whilst we deliberate how to begin a thing,

it grows too late to begin it.

—Quintilian

Here we present some auxiliary results from operations research, multicriteria
choice problems and noncooperative games. The following fact was established
in [14, p. 160].

Proposition 3.2.1 Assume that

10. the scalar function F(x, y) is continuous on the product of compact sets X ⊂
R

n and Y ⊂ R
m, where Y is also convex;

20. for each x ∈ X, the function F(x, y) is strictly convex in y on the set Y, i.e., for
each x ∈ X and any y(1), y(2) ∈ Y,

F
(
x, αy(1) + (1 − α)y(2)

)
< αF

(
x, y(1)

)
+ (1 − α)F

(
x, y(2)

)

for any α ∈ (0, 1).



3.2 General Notions and Obtained Results 71

Then the m-dimensional vector function y(x) : X → Y defined by

min
y∈Y

F(x, y) = F(x, y(x)) ∀x ∈ X (3.2.4)

is also continuous.

Theory of Multicriteria Choice
Vom Himmel fordert er
Die schönsten Sterne –
Und von der Erde

—Jede höchste Lust.13

We provide some background material from the theory of multicriteria choice
that will be needed below. For two vectors f (k) = (f

(k)
1 , . . . , f

(k)
N ) (k = 1, 2),

introduce the notations:

[
f (1) = f (2)

] ⇐⇒
[
f

(1)
i = f

(2)
i (i ∈ N)

]
;

[
f (1) �= f (2)

] ⇐⇒ (
f (1) = f (2)

) ;
[
f (1) � f (2)

] ⇐⇒
[
f

(1)
i � f

(2)
i (i ∈ N)

]
;

[
f (1) ≥ f (2)

] ⇐⇒ (
f (1) � f (2)

) ∧ (
f (1) �= f (2)

) ;
[
f (1) �≥ f (2)

] ⇐⇒ (
f (1) ≥ f (2)

) ;
[
f (1) > f (2)

] ⇐⇒
[
f

(1)
i > f

(2)
i (i ∈ N)

]
;

[
f (1) �> f (2)

] ⇐⇒ (
f (1) > f (2)

)
.

(3.2.5)

In the sequel, an n-dimensional vector x ∈ X will be called an alternative, while
an m-dimensional vector y ∈ Y will be called an uncertain factor, more specifically,
a pure uncertainty if y ∈ Y and a counter-situation if y(·) ∈ YX, where YX denotes
the set of all m-dimensional vector functions y(x) defined on the set X and taking
values in the set Y. Further analysis will be confined to the counter-situations y(·) :
Y → X that are continuous on X, i.e., y(·) ∈ C(X, Y).

Definition 3.2.1 For an N-criteria choice problem � = 〈 Y, f (x, y) 〉 with a fixed
alternative x∗ ∈ X,

(a) a pure uncertainty yS ∈ Y is Slater minimal in � if

f (x∗, y) �< f (x∗, yS) ∀ y ∈ Y;

13German “The fairest stars from Heaven he requireth,
From Earth the highest raptures and the best.”
A quote from Faust, Prologue in Heaven (Mephistopheles), by J. von Goethe. Johann Wolfgang
von Goethe, (1749–1832), was a German poet, playwright, novelist, scientist, statesman, theatre
director, critic, and amateur artist. Considered the greatest German literary figure of the modern
era.
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(b) a pure uncertainty yP ∈ Y is Pareto minimal in � if

f (x∗, y) �≤ f (x∗, yP) ∀ y ∈ Y.

For an N-criteria choice problem �(x) = 〈 YX, f (x, y) 〉 that is defined for
all x ∈ X,

(c) a counter-situation yS(x) ∈ YX is Slater minimal if, for each x ∈ X,

f (x, y) �< f (x, yS(x)) ∀ y ∈ Y;

(d) a counter-situation yP(x) ∈ YX is Pareto minimal if, for each x ∈ X,

f (x, y) �≤ f (x, yP(x)) ∀y ∈ Y.

Proposition 3.2.2

(a) If in the problem �(x∗) = 〈 Y, f (x∗, y) 〉 the set Y is compact and the
function f (x∗, y) is continuous on Y, then the set YS of Slater-minimal pure
uncertainties yS is nonempty and compact [152, p. 137].

(b) The pure uncertainty yS ∈ Y that satisfies the condition

min
y∈Y

∑

i∈N
αifi(x

∗, y) =
∑

i∈N

αifi(x
∗, yS) (3.2.6)

for some αi = const � 0 and
∑

i∈N
αi > 0 is Slater minimal in the problem �(x∗)

[152, p. 68–69].
(c) The pure strategy yP ∈ Y that satisfies

min
y∈Y

∑

i∈N
αifi(x

∗, y) =
∑

i∈N
αifi(x

∗, yP) (3.2.7)

for some αi = const > 0 (i ∈N) is Pareto minimal in the problem �(x∗) [152,
p. 71].

(d) In addition, it follows from (3.2.5) that the set YS ⊇ YP of Slater-minimal
uncertainties is the set of the Pareto-minimal pure uncertainties yP in the
problem �(x∗).

Nash Equilibrium
On ne peut pas savoir
tout, il faut se conten-
ter de comprendre.14

14French “To know everything is impossible, so one should be content with his/her own
comprehension.” An English translation of a quote from Notes on the Personality of Belinskii by
Ivan A. Goncharov, (1812–1891), a Russian novelist.
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Now, consider a noncooperative N-player game of the form

〈 N, {Xi}i∈N, {fi [x]}i∈N 〉, (3.2.8)

where N = {1, . . . , N} denotes the set of players and Xi ⊆ R
ni is the set of pure

strategies xi of player i (i ∈N).
In game (3.2.8), the players do not build any coalitions and each player i chooses

his strategy xi ∈ Xi simultaneously with the other players, which yields a strategy
profile x = (x1, . . . , xN) ∈ X = ∏

i∈N
Xi . A scalar payoff function fi[x] of player

i is a priori defined on the set X ⊆ R
n (n = ∑

i∈N ni); its value in a specific
strategy profile gives the payoff of player i. At a conceptual level, each player i in
game (3.2.8) seeks for choosing a strategy xi ∈ Xi that would maximize his payoff
in a specific strategy profile x.

In 1949, J. Nash formalized a solution of game (3.2.8), suggesting a strategy
profile known today as Nash equilibrium; see [257].

Definition 3.2.2 A strategy profile xe = (xe
1, . . . , x

e
N) ∈ X is called a Nash

equilibrium in game (3.2.8) if

max
xi∈Xi

fi [xe||xi] = fi [xe] (i ∈ N);

as before, [xe||xi] = [xe
1, . . . , x

e
i−1, xi, x

e
i+1, . . . , x

e
N ].

Remark 3.2.2 In accordance with Definition 3.2.2, for compact sets Xi and contin-
uous payoff functions fi [x] on X, the set Xe of all Nash equilibria in game (3.2.8)
is a compact (possibly empty) subset of X [51, p. 174].

The next result was proved in [22, p. 93] using Brouwer’s fixed-point theorem.

Theorem 3.2.1 Consider game (3.2.8) under the assumptions that

(1◦) the sets Xi are convex and compact;
(2◦) each payoff function fi [x] is continuous on X and concave in the variable xi

for any fixed values of the other variables (i ∈ N).

Then there exists a Nash equilibrium in this game.

Now, consider a game (3.2.8) in which the sets Xi are compact and the payoff
functions fi [x] are continuous on X. Associate with this game (3.2.8) its mixed
extension

〈 N, {νi}i∈N, {fi[ν]}i∈N 〉, (3.2.9)

where N is the same as in (3.2.8); {νi} denotes the set of mixed strategies of player
i, i.e., each νi(·) represents a probability measure—a nonnegative scalar countably-
additive function defined on the Borel σ -algebra of all subsets of the compact set Xi

that is normalized by unity; ν(dx) = ν1(dx1) . . . νN (dxN) is the product measure;
{ν} designates the set of all mixed strategy profiles ν(·); finally, the payoff function
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of player i in game (3.2.9),

fi [ν] =
∫

X

fi [x]ν(dx) =
∫

X1

· · ·
∫

XN

fi[x]νN(dxN) · · · ν1(dx1),

is defined as the expectation fi [x] for the payoff function of game (3.2.8) (using
Fubini’s theorem on switching the order of integration).

Definition 3.2.3 A mixed strategy profile νe(·)∈{ν} is called a Nash equilibrium in
game (3.2.9) if

max
νi (·)∈{νi}

fi [νe||νi] = fi [νe] (i ∈ N),

where νe||νi = νe
1(dx1) . . . νe

i−1(dxi−1)νi(dxi)ν
e
i+1(dxi+1) · · · νe

N(dxN) and
νe(dx) = νe

1(dx1) · · · νe
N(dxN).

The following result was obtained in [22, p. 117–119] using Gliksberg’s fixed-
point theorem.

Theorem 3.2.2 Consider game (3.2.8) under the assumptions that the sets Xi are
convex and compact and the payoff functions fi [x] are continuous on X = ∏

i∈N
Xi .

Then in this game there exists a mixed strategy Nash equilibrium.

We conclude this section with an English translation of a remarkable quote
from the book [10, p. 170]: “Intuition is not adapted to comprehend gaming
opposition. . . Mixed strategies and Nash equilibrium are two revolutionary concepts
that are described in each textbook, yet remain in the shadow of world view.”

The next section introduces one possible concept of guaranteed equilibrium in
a noncooperative game under uncertainty and establishes its existence in mixed
strategies under standard assumptions of mathematical game theory.

Berge Equilibrium
As the call, so the echo.

—Russian proverb [127]

In 1994, V. Zhukovskiy and his postgraduate K. Vaisman formalized the Berge
equilibrium as a solution concept for game (3.2.8); see the publications [11, 12, 302].

Definition 3.2.4 A strategy profile xB = (xB
1 , . . . , xB

N) ∈ X is called a Berge
equilibrium in game (3.2.8) if

max
x∈X

fi

[
x||xB

i

]
= fi

[
xB

]
(i ∈ N),

where [x||xB
i ] = [x1, . . . , xi−1, x

B
i , xi+1, . . . , xN ].
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Theorem 3.2.1 and Property 2.6.1 directly imply

Proposition 3.2.3 Consider game (3.2.8) with N = {1, 2} under the assumptions
that, for each i = 1, 2,

(1◦) the sets Xi are convex and compact;
(2◦) the payoff functions fi [x] (i = 1, 2) are continuous on X, f1[x] is concave in

x2 and f2[x] concave in x1 for each fixed strategy of the other player.

Then there exists a Berge equilibrium in this game.

Denote by XB the set of all Berge equilibria in game (3.2.8). By Property 2.3.1,
XB is a (possibly, empty) compact set if the payoff functions fi [x] are continuous
and the sets Xi (i ∈ N) are compact.

Definition 3.2.5 A strategy profile x∗ ∈ X is called a Berge–Pareto equilibrium in
game (3.2.8) if

first, x∗ is a Berge equilibrium in (3.2.8), i.e.,

max
xi∈Xi

fi [x∗||xi] = fi [x∗] (i ∈ N),

and second, x∗ is a Pareto-maximal alternative in the N-criteria choice problem

〈 XB, {fi[x]}i∈N 〉,

i.e., for all x ∈ XB, the system of inequalities

fi [x] � fi [x∗] (i ∈ N),

with at least one strict inequality, is inconsistent.

Now, let us pass to the mixed extension (2.9.1) of game (3.2.8) (see Sect. 2.9.1).

Definition 3.2.6 A mixed strategy profile ν∗(·) ∈ {ν} is called a Berge–Pareto
equilibrium in mixed strategies in game (3.2.9) (equivalently, a Berge–Pareto
equilibrium in the mixed extension of game (3.2.8)) if

first, ν∗(·) is a Berge equilibrium in game (2.9.1), i.e., conditions (2.9.2) are
satisfied,

and second, ν∗(·) is a Pareto-maximal alternative in the N-criteria choice problem

〈{νB}, {fi[ν]}i∈N〉,

i.e., for all ν(·) ∈ {νB} the system of inequalities

fi [ν] � fi [ν∗] (i ∈ N),

with at least one strict inequality, is inconsistent.
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The following result is a stronger analog of Theorem 3.2.2, which was proved in
Sect. 2.9.3.

Theorem 3.2.3 If in game (3.2.8) the sets Xi ∈ comp R
ni and the functions

fi [·] ∈ C(X) (i ∈ N), then this game possesses a Berge–Pareto equilibrium in
mixed strategies.

3.3 Balanced Equilibrium as an Analog of Saddle Point

Faber est suae quisque fortunae.15

3.3.1 Analogs of Saddle Point: The Idea and Formalization

Nothing obstructs seeing as much as a viewpoint.
—Don-Aminado16

The concept of a Slater-guaranteed balanced Berge equilibrium is formalized
for the noncooperative N-player game under uncertainty.

As a matter of fact, the first type of equilibrium discussed below was suggested
by V. Zhukovskiy in 1994 in the book [93, p. 233] for noncooperative games under
uncertainty and later used by him for different types of equilibria [56] and also
for cooperative games [52]. The whole idea is very simple: replace minimization
in (3.2.2) by a vector minimum (in the sense of Slater, Pareto, Borwein, Geoffrion,
or the A-minimum [295]) and replace maximization by an equilibrium design (in
the sense of Nash, Berge, threats and counter-threats, or active equilibrium [54]).
This approach was employed by K. Vaisman in a series of publications [280, 281].
One of his concepts will be presented below in Definition 3.3.1.

Consider a noncooperative N-player game with pure strategies and pure uncer-
tainties, defined by

〈 N, {Xi}i∈N, Y, {fi(x, y)}i∈N 〉. (3.3.1)

In (3.3.1), N = {1, . . . , N} denotes the set of players; Xi ⊆ R
ni is the set of pure

strategies xi of player i; Y ⊆ R
m gives the set of pure uncertainties y.

15Latin “Each man is the maker of his own fortune.” This phrase appeared in Letters to Ceasar I
by Gaius Sallustius Crispus, (86–35 B.C.), a Roman historian and politician. Considered as one of
the great Latin literary stylists.
16Aminad P. Shpolyanskii, well-known in the Western world as Don–Aminado, (1888–1957), was
a Russian émigré poet and satirist.
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In this game, no coalitions are allowed and each player i chooses his strategy
xi simultaneously with the other players, which yields a strategy profile x =
(x1, . . . , xN) ∈ X = ∏

i∈N Xi . Regardless of their choice, some pure uncertainty
y ∈ Y arises in game (3.3.1). For each player i (i ∈ N), a payoff function fi(x, y)

is defined on all such pairs (x, y) ∈ X × Y.
At a conceptual level, each player i in game (3.3.1) chooses a pure strategy xi ∈

Xi in order to maximize his payoff fi(x, y) under any unpredictable realization of
the pure uncertainty y ∈ Y.

Definition 3.3.1 A pair (x̄B, f̄ S) ∈ X × R
N is called a Slater-guaranteed balanced

Berge equilibrium in game (3.3.1) if there exists an uncertain factor yS ∈ Y such
that

(1◦) the pure strategy profile xB is a Berge equilibrium in the game

〈 N, {Xi}i∈N, {fi(x, yS)}i∈N 〉 (3.3.2)

(which is obtained from (3.3.1) by setting y = yS), i.e., by Definition 3.2.4,

max
x∈X

fi

(
x||xB

i , yS

)
= fi

(
xB, yS

)
(i ∈ N); (3.3.3)

(2◦) the uncertain factor yS is Slater minimal in the N-criteria choice problem

〈 Y, {fi

(
xB, y

)
}i∈N 〉 (3.3.4)

(which is obtained from (3.3.1) by setting x = xB), i.e., by Definition 3.2.1,

f
(
xB, y

)
�< f

(
xB, yS

)
∀y ∈ Y; (3.3.5)

(3◦) the pair (x̄B, ȳS) is Slater-maximal in the N-criteria choice problem

〈 {
xB, yS

}
, {fi(x, y)}i∈N

〉
(3.3.6)

(in which each element (xB, yS) of the set {xB, yS} satisfies (3.3.3)
and (3.3.5)), i.e., the vector

f̄ S = f
(
x̄B, ȳS

)
�< f (x, y) ∀(x, y) ∈

{
xB, yS

}
. (3.3.7)

In this case, xB is called a Slater-guaranteeing profile in game (3.3.1) and f̄ S is
called a guaranteed vector payoff.
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3.3.2 Pro et contra of Balanced Equilibrium17

Many intricate phenomena
are naturally clarified within

the framework of game theory.
—Vorobiev [24, p. 97].

The advantages of Slater-guaranteed balanced Berge equilibria are discussed.

Let us outline the benefits of this solution concept for the NGUs.
First, using their strategies from a profile x̄B, the players are assured to obtain a

guaranteed vector payoff f̄ S. In accordance with (3.3.5), for xB = x̄B the elements
fi(x̄

B, y) (i ∈ N) cannot be all simultaneously smaller than the corresponding
elements fi(x̄

B, ȳS) (i ∈ N), and by (3.3.7) this is the highest (Slater-maximal)
guarantee among all the possible guarantees f (xB, yS) achieved on any pairs
(xB, yS) that satisfy conditions 1◦ and 2◦ of Definition 3.3.1.

Second, the equilibrium (x̄B, f̄ S) aims at “the maximum opposition to uncer-
tainty,” i.e., it is based on the principle of guaranteed result (which explains its
“guaranteed” character).

Third, this solution concept is wide enough, since it contains main solution
concepts from game theory (saddle point, Berge equilibrium) and theory of multi-
criteria choice (Slater optimum) as special cases. Note that we may also adopt other
optimality principles (Pareto, Geoffrion, Borwein, cone optimality). Connections
between such approaches were considered in [295].

Fourth, the notion of Slater-guaranteed equilibrium is well fitted for practical
design and theoretical analysis (in particular, existence proofs). Indeed, introduce a
dummy player with the set of strategies y ∈ XN+1 = Y and the payoff function

ϕ3(x, y) = −
∑

i∈N
αifi(x, y),

with some

αi = const � 0 (i ∈ N) ∧
∑

i∈N
αi > 0.

Add two other dummy players with the payoff functions

ϕ1(x, z, y) = max{fi(x‖zi, y) − fi(z, y) (i ∈ N),
∑

j∈N
fj (x, y) −

∑

j∈N
fj (z, y)}

17Latin “For and against.”
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and

ϕ2(x, z, y) = −ϕ1(x, z, y) = ϕ(x, z, y).

Let the strategies of player I be the profiles x ∈ X of game (3.3.1) while the
strategies of player II be the profiles z ∈ Z = X (of the same game (3.3.1)). As his
strategy, player III chooses y ∈ Y. Now consider the auxiliary three-player game

〈 {I, II, III}, {X, Z, Y}, {ϕi(x, z, y)}i=1,2,3 〉. (3.3.8)

A Nash equilibrium (xe, ze, ye) in game (3.3.8) is given by the three conditions

max
x∈X

ϕ1(x, ze, ye) = ϕ1(x
e, ze, ye),

max
z∈X

ϕ2(x
e, z, ye) = ϕ2(x

e, ze, ye),

max
y∈Y

ϕ3(x
e, ze, y) = ϕ3(x

e, ze, ye).

(3.3.9)

Using the form of the functions ϕi(x, z, y) (i = 1, 2, 3), from the third equality one
can see that ye = yS and the pair (xe, ze) yields a saddle point of the zero-sum game

〈 X, Z = X, ϕ(x, z, yS) = ϕ1(x, z, yS) 〉.

In combination with Theorem 2.8.1, this result implies the following. If there exists
a Nash equilibrium in game (3.3.8), then (ze, f S = f (xe, ze, ye)) is a Slater-
guaranteed balanced Berge equilibrium (condition 3◦ of Definition 3.3.1 becomes
non-binding).

3.3.3 Games with Separated Payoff Functions

The simplest example is more convincing
than the most eloquent sermons.

—Seneca

The existence of a Slater-guaranteed balanced Berge equilibrium is established
for the noncooperative two-player game under uncertainty with separated payoff
functions that have a special concavity property.

Consider a particular case of game (3.3.1), described by

〈 N, {Xi}i∈N, Y, {fi (x, y) = ϕi(x) + ψi(y)}i∈N 〉, (3.3.10)
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which differs from (3.3.1) only in the payoff functions fi(x, y) = ϕi(x)+ψi(y) (i ∈
N). In other words, the payoff functions are split into two components associated
with the strategy profiles x ∈ X and uncertain factors y ∈ Y, respectively.

This separation of the functions fi(x, y) allows us to propose a constructive
design method for a Slater-guaranteed balanced Berge equilibrium (see Defini-
tion 3.3.1), which proceeds from an independent analysis of the noncooperative
N-player game

�x = 〈 N, {Xi}i∈N, {ϕi(x)}i∈N 〉 (3.3.11)

and the N-criteria choice problem

�y = 〈 Y, {ψi(y)}i∈N 〉. (3.3.12)

The ensuing exposition will use two N-dimensional vectors, ϕ = (ϕ1, . . . , ϕN) and
ψ = (ψ1, . . . , ψN ), as well as the following auxiliary and obvious statement.

Lemma 3.3.1 For any constant N-dimensional vector a = (a1, . . . , aN),
(a) the system of inequalities

ψ
(1)
i < ψ

(2)
i (i ∈ N)

is inconsistent if and only if this is the case for the system of inequalities

ψ
(1)
i + ai < ψ

(2)
i + ai (i ∈ N);

(b) the following two systems of inequalities are equivalent:

[
ϕ

(1)
i � ϕ

(2)
i (i ∈ N)

]
⇔

[
ϕ

(1)
i + ai � ϕ

(2)
i + ai (i ∈ N)

]
.

With Lemma 3.3.1, a Slater-guaranteed balanced Berge equilibrium in
game (3.3.10) can be obtained by the following algorithm.

Step 1. For the N-criteria choice problem (3.3.12), construct the set YS ⊆ Y of
the Slater-minimal alternatives yS and also the set of outcomes ψ(YS) =⋃

y∈YS
ψ(y), i.e., the system of inequalities

ψi(y) < ψi(yS) (i ∈ N)

must be inconsistent for any y ∈ Y and each yS ∈ YS (then by
Lemma 3.3.1a the system of inequalities

ϕi(x) + ψi(y) < ϕi(x) + ψi(yS) ∀x ∈ X, y ∈ Y (i ∈ N)

is also inconsistent, which gives condition 2◦ of Definition 3.3.1).
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Step 2. For game (3.3.11), find the set XB ⊆ X of all Berge equilibria xB ∈ X
using the inequalities

ϕi(x||xB
i ) � ϕi(x

B) ∀x ∈ X (i ∈ N),

and then construct the set ϕ(XB) = ⋃
x∈XB ϕ(x) (then by Lemma 3.3.1b

the system of inequalities

ϕi(x||xB
i ) + ψi(yS) � ϕi(x

B) + ψi(yS) ∀yS ∈ Y, x ∈ X (i ∈ N),

holds, which matches condition 1◦ of Definition 3.3.1).
Step 3. Construct the sum of sets

ϕ(XB) + ψ(YS) =
(
ϕ(XB) + ψ(yS) | yS ∈ YS

)

=
(
ϕ(xB) + ψ(YS) | xB ∈ XB

)

=
(
ϕ(xB) + ψ(yS) | xB ∈ XB, yS ∈ YS

)
.

Step 4. Find the Slater-maximal alternative (x̄B, ȳS) in the N-criteria choice
problem

〈 XB × YS, {ϕi(x) + ψi(y)}i∈N 〉,

i.e., calculate (x̄B, ȳS) as follows: for all xB ∈ XB and all yS ∈ YS, the
system of inequalities

ϕi(x̄
B) + ψi(ȳS) < ϕi(x

B) + ψi(yS) (i ∈ N)

is inconsistent, which satisfies condition 3◦ of Definition 3.3.1.

The resulting strategy profile (x̄B, ϕ(x̄B) + ψ(ȳS)) is a Slater-guaranteed bal-
anced Berge equilibrium in game (3.3.10).

The suggested algorithm leads to the following existence theorem of a Slater-
guaranteed balanced Berge equilibrium in game (3.3.10).

Theorem 3.3.1 Consider game (3.3.10) with N = {1, 2} under the assumptions
that

(1) the sets Xi and Y are compact and Xi are also convex;
(2) the scalar functions ϕi(x) and ψi(y) are continuous on X = ∏

i∈{1,2} Xi and
Y, respectively;

(3) the functions ϕi(x) are concave in xj (i, j = 1, 2; j �= i) for any fixed values
of the other variables (i ∈ {1, 2}).

Then there exists a Slater-guaranteed balanced Berge equilibrium.
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Proof For proving this result, we follow the four steps of the above-mentioned
algorithm.

Step 1. In problem (3.3.12), the set YS is a nonempty and compact (see Theo-
rem 3.3.1) and hence (by the continuity of ψi(y) on Y) ψ(YS) is also a
compact subset of RN (N = 2).

Step 2. In game (3.3.11), the set XB of all Berge equilibria is a nonempty
and compact (see Theorem 3.2.1 and Property 2.3.1). Then the set
ϕ(XB) = ⋃

x∈XB ϕ(x) is also compact because the components of the
N-dimensional vector function ϕ(x) are continuous on X.

Step 3. From Steps 1 and 2 of this proof it follows that the product XB × YS and
the sum ϕ(XB) + ψ(YS) are also compact sets.

Step 4. Consider the bicriteria choice problem

〈 XB × YS, {ϕi(x) + ψi(y)}i∈N 〉. (3.3.13)

The set XB × YS is compact and the components of the N-dimensional
vector function ϕ(x) + ψ(y) are continuous on XB × YS. Therefore,
there exists a Slater-maximal alternative (x̄B, ȳS) ∈ XB × YS in prob-
lem (3.3.13), i.e., for any (xB, yS) ∈ XB × YS the system of inequalities

ϕi(x
B) + ψi(yS) > ϕi(x̄

B) + ψi(ȳS) (i ∈ N)

is inconsistent.

The resulting pair

(
x̄B, f̄ S = f

(
x̄B, ȳS

)
= ϕi

(
x̄B

)
+ ψi (ȳS)

)

is a Slater-guaranteed balanced Berge equilibrium in game (3.3.10). �
Example 3.3.1 Consider a noncooperative two-player game under uncertainty with
separated payoff functions given by

〈 {1, 2}, {Xi = [−1, 1]}i=1,2, Y, {fi(x, y) = −x2
j + 2x1x2 + yi}i,j=1,2;i �=j 〉,

(3.3.14)

in which x = (x1, x2), y = (y1, y2), and Y = {y = (y1, y2) | y2
1 + y2

2 � 1}. We
will construct a Slater-guaranteed balanced Berge equilibrium in this game using
the suggested algorithm. In accordance with the latter, extract from (3.3.14) the
noncooperative two-player game

�x = 〈{1, 2}, {Xi = [−1, 1]}i=1,2, {ϕi(x) = −x2
j +2x1x2}i,j=1,2;i �=j 〉 (3.3.15)
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and also the bicriteria choice problem

�y = 〈 Y, {ψi(y) = yi}i=1,2 〉, (3.3.16)

where Y = {y = (y1, y2) | y2
1 + y2

2 � 1}.

Step 1. The set Y represents a disc with center (0, 0) and radius R = 1 in
the space R

2, and it coincides with the shaded set ψ(Y) in Fig. 3.1.
Then the Slater minima in problem (3.3.16) are the points lying on the
circumference in the third quadrant; see the solid arc in Fig. 3.2. This set
can be described as

ψ(YS) =
{
yS =

(
y

(S)
1 , y

(S)
2

)
| y

(S)
1

= −R cos β, y
(S)
2 = −R sin β ∀β ∈ [0, π/2]

}
.

Step 2. Game (3.3.15) was studied in [68, pp. 177–178]. The set of all Berge
equilibria (Fig. 3.3) is

XB = {(α, α) | ∀α = const ∈ [−1, 1]} ,

and the corresponding payoffs (Fig. 3.4) are

ϕ(XB) =
{
(α2, α2) | ∀α = const ∈ [−1, 1]

}
= OC.

Fig. 3.1 Set Y

y1( 1)

y2( 2)

0

(Y)

Fig. 3.2 Slater minima

1

0

2

R

YS (YS)
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Fig. 3.3 Berge equilibria
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Q
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Thus, every point (α, α) of the bisecting segment AB is a Berge equi-
librium in game (3.3.15). The corresponding payoffs ϕ(XB) form the
segment OC, as illustrated in Fig. 3.4.

Step 3. Then

ϕ(XB)+ ψ(YS) = {OC + ψ(YS)} = OC + {yS | ∀β ∈ [0, π/2]} = KPQL

(see the shaded domain in Fig. 3.5).
Step 4. The Slater minima of the set KPQL make up a quarter of the circumfer-

ence (the bold arc PQ in Fig. 3.5), i.e.,

PQ = {1 − cos β, 1 − sin β | β ∈ [0, π/2]} .
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Each pair ((1, 1), (1 − cos β, 1 − sin β)) with any β ∈ [0, π/2] is a
Slater-guaranteed balanced Berge equilibrium in game (3.3.14).

Thus, the suggested algorithm dictates both players to choose xB
1 = xB

2 = 1 (the
Slater-maximal Berge equilibrium B = (1, 1) in game (3.3.14), see Fig. 3.4). In this
case, the players obtain the guaranteed vector payoff (1 − cos β, 1 − sin β) = f̄ B ,
i.e., for any y ∈ Y the payoffs fi((1, 1), y) cannot be simultaneously smaller than
the corresponding payoffs f̄ B

i (i = 1, 2). And this is the highest guarantee (in the
sense of Slater) among all the guarantees f (xB, yS) = (xB

1 − cos β, xB
2 − sin β) for

all β ∈ [0, π/2] and any other Berge equilibria xB in game (3.3.15).

3.3.4 Existence in Mixed Strategies and One Remark

Not the existence theorem is the valuable thing,
but the construction carried out in the proof.

Mathematics is, as Brouwer sometimes says,
more action than theory.

—Weyl18

The existence of a Slater-guaranteed balanced Berge equilibrium in mixed
strategies is established for the noncooperative N-player game under uncertainty.

Remark 3.3.1 The auxiliary noncooperative game without uncertainty (3.3.9),
(3.3.8) allows us to establish the existence of a Slater-guaranteed balanced Berge
equilibrium in mixed strategies in game (3.3.1) under uncertainty. Let us associate
with game (3.3.1) its mixed extension

�̃ = 〈 N, {νi}i∈N, {μ}, {fi(ν, μ)}i∈N 〉, (3.3.17)

where, like in (3.3.1), N = {1, . . . , N} denotes the set of players. Assuming that the
sets Xi (i ∈ N) and Y are compact and the payoff functions fi(x, y) are continuous
on X × Y, we will construct the sets {νi} of mixed strategies νi(·) of player i.
Specifically, νi(·) is a probability measure on the Borel σ -algebra of all subsets
of the compact set Xi .

The mixed uncertainties μ(·) represent probability measures on the compact set
Y. Let {μ} denote the set of such uncertainties. The mixed strategy profiles ν(·) are
the product measures ν(dx) = ν1(dx1) · · · νN(dxN). Denote by {ν} the set of such
mixed strategy profiles. In a similar fashion, define the product measures η(dxdy) =
ν(dx)μ(dy); then the payoff function of player i in game (3.3.17) is the expectation

18Hermann Weyl, (1885–1955), was a German American mathematician with widely varied
contributions in pure mathematics and theoretical physics.
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fi(ν, μ) =
∫

X

∫

Y

fi(x, y)μ(dy)ν(dx) =
∫

Y

∫

X

fi(x, y)ν(dx)μ(dy).

Recall that f = (f1, . . . , fN ). The following concept is an analog of Defini-
tion 3.3.1 for game (3.3.17).

Definition 3.3.2 A pair (̃νB(·), f̃ S) ∈ {ν} × R
N is called a Slater-guaranteed

balanced Berge equilibrium (SGBBE) in the mixed extension (3.3.17) (or an SGBBE
in mixed strategies in game (3.3.1) under uncertainty) if there exists a mixed
uncertainty μS(·) ∈ {μ} such that

(1◦) the mixed strategy profile νB(·) ∈ {ν} of game (3.3.17) is a Berge equilibrium
in game

〈 N, {νi}i∈N, {fi(ν, μS)}i∈N 〉

(which is obtained from (3.3.17) by setting μ(·) = μS(·)), i.e.,

max
ν(·)∈{ν}

fi(ν||νB
i , μS) = fi(ν

B, μS) (i ∈ N); (3.3.18)

(2◦) the mixed uncertainty μS(·) ∈ {μ} is a Slater-minimal alternative in the N-
criteria choice problem

〈 {μ}, {fi(ν
B, μ)}i∈N 〉

(which is obtained from (3.3.17) by setting ν(·) = νB(·)), i.e.,

f (νB, μ) �< f (νB, μS) ∀μ(·) ∈ {μ}; (3.3.19)

denote by {νB, μS} the set of all product measures that satisfy (3.3.18)
and (3.3.19) simultaneously;

(3◦) the pair (̃νB(·), μ̃S(·)) is a Slater-maximal alternative in the N-criteria choice
problem

〈 {
νB, μS

}
, {fi

(
νB, μS

)
}i∈N

〉
,

i.e.,

f̃ S = f (̃νB, μ̃S) �< f (ν,μ) ∀(ν, μ) ∈
{
νB, μS

}
.
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Theorem 3.3.2 Consider game (3.3.1) under the assumptions that the sets Xi

and Y are compact and the payoff functions fi(x, y) are continuous on X × Y
(i ∈ N). Then there exists a Slater-guaranteed balanced Berge equilibrium in mixed
strategies in this game.

The Advantages of Balanced Berge Equilibrium: Further Clarification
The Slater-guaranteed balanced Berge equilibrium (x̄B, f̄ S) introduced by
Definition 3.3.1 has the following obvious pleasant features.

First, using their strategies xB
i from a profile xB, the players surely obtain a

guaranteed vector payoff f B
i , which is often larger (not smaller) than the vector

payoff yielded by the strongly-guaranteed equilibrium; see the next section. Our
aim is to increase guarantees as much as possible!

Second, this equilibrium is based on the hypothesis of “the worst-case uncer-
tainty” for the players, i.e., on the generally accepted principle of guaranteed result
under “strong uncertainty.”

Third, for calculating a Slater-guaranteed balanced Berge equilibrium, it is
necessary to construct a Berge equilibrium in an auxiliary game obtained from the
original game. This feature has allowed us to prove existence (see Theorem 3.3.2)
under the standard assumptions of game theory.

Fourth, condition 3◦ of Definition 3.3.1 eliminates the internal instability of the
set of all Berge equilibria, since by Slater maximality it is impossible to find two
balanced equilibria (x̄(1), f̄ (1)) and (x̄(2), f̄ (2)) such that f̄

(1)
i > f̄

(2)
i (i ∈ N),

where f̄
(j)
i = fi(x̄

(j), ȳ(j)) (j = 1, 2).
Fifth, in the special case (3.3.10) of noncooperative games, such guaranteed

equilibria are interchangeable, in the sense that a pair (x̄, ȳ) satisfies conditions 1◦
and 2◦ of Definition 3.3.1 if and only if x̄ ∈ XB and ȳ ∈ YS (see Steps 1 and 2 in
Sect. 3.3.3).

In conclusion, yet note that the concept of balanced equilibrium suffers from
several drawbacks: no garden without its weeds. Their detailed description as well
as some “recipes” will be given in Sects. 3.4 and 3.5.

3.4 Strongly-Guaranteed Berge Equilibrium

In the final analysis, people are equal but not always,
not everywhere and not in all respects.

—Grzegorczyk19

19Wladislaw Grzegorczyk, a Polish aphorist.
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3.4.1 Introduction

The last thing we decide in writing a book
is what to put first.

—Pascal20

In the previous section, we have considered a solution concept for noncooperative
games under uncertainty (NGUs) known as balanced Berge equilibrium, which
was suggested by Zhukovskiy in [93, p. 233] back in 1994, using an appropriate
modification of the concept of saddle point. The saddle point-based approach was
also used for different types of equilibria in his later publications [51] and [52], the
latter devoted to cooperative games. Section 3.4 presents a novel formalization for
the guaranteed solutions of NGUs that relies on maximin.

3.4.2 Maximin and Its Interpretation Using Two-Level Game

Some man married a very skinny woman.
Being asked why, he said,

“I have chosen the least evil.”
—Bar Hebraeus21

A hierarchical interpretation of the maximin as a two-level game is suggested.

As mentioned earlier, a single-criterion choice problem under uncertainty
(SCCPU) is described by a triplet

〈 X1, Y, f1(x1, y) 〉, (3.4.1)

where X1 ⊆R
n1 denotes the set of admissible alternatives of a decision maker (DM);

Y ⊆ R
m is the set of uncertain factors y; f1(x1, y) is a DM’s objective function

defined on the set X1 × Y. He seeks to maximize this function by choosing an
appropriate alternative x1 ∈ X1, under any realization of the uncertain factor y ∈ Y.

In operations research, a solution of problem (3.4.1) is a pair (x
g
1 , f

g
1 ) ∈ X1 × R

such that

f
g
1 = max

x1∈X1
min
y∈Y

f1(x1, y) = min
y∈Y

f1(x
g
1 , y). (3.4.2)

20Blaise Pascal, (1623–1662), was a French mathematician, physicist, religious philosopher, and
master of prose.
21Bar Hebraeus, Arabic Ibn Al-’Ibri (“Son of the Hebrew”), or Abu al-Faraj, Latin name Gregorius,
(1226–1286), was a medieval Syrian scholar noted for his encyclopaedic learning in science and
philosophy. An English translation of a quote from [119, p. 21].
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It was introduced by Wald [282] in 1939. More specifically, using the alternative
x

g
1 the DM achieves the highest guarantee f

g
1 � f1(x

g
1 , y) for all y ∈ Y (also see

Remark 3.4.1).
Let us again consider problem (3.4.1), this time as the following hierarchical

two-player game. Player 1 (the DM) chooses x1 ∈ X1, while player 2 chooses
y ∈Y. Assume this game has a fixed sequence of moves [134, p. 79], i.e., player 1 is
given priority in actions over player 2. Such a setup with the first move of player 1
describes well, e.g., an interaction of conflicting parties in a two-level hierarchical
system with a single player at each level. We will also accept the hypothesis that,
whenever the outcome depends on the choice of player 2 only, he always minimizes
the function f1(x1, y). Player 1 is informed about this behavior.

Then player 1 takes advantage of the first move, reporting his strategy x1 ∈ X1
to player 2. Making the second move in this game, player 2 responds with a counter
strategy y(x1) : X1 → Y that minimizes the function f1(x1, y) in y for each x1 ∈
X1. If for each x1 this minimum is achieved at a unique point y(x1), then the best
(guaranteed) result of player 1 gives

f
g
1 = max

x1∈X1
min
y∈Y

f1(x1, y) = max
x1∈X1

f1(x1, y(x1))

= f1
(
x

g
1 , y

(
x

g
1

)) = min
y∈Y

f1
(
x

g
1 , y

)
.

The sequence of moves of the DM and of player 2 is illustrated in Fig. 3.6.

Fig. 3.6 Hierarchy in maximin setup
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As a result, the DM prefers the maximin strategy x
g
1 , which yields the best

guaranteed payoff

f
g
1 � f (x

g
1 , y) ∀y ∈ Y.

Note that, for all x1 ∈ X1, this payoff exceeds all other guaranteed payoffs

f1(x1, y(x1)) = min
y∈Y

f1(x1, y) � f1(x1, y) ∀ x1 ∈ X1.

Remark 3.4.1 The design operation y(x1) : X1 → Y corresponds to the calculation
of the inner minimum

f1(x1, y(x1)) = min
y∈Y

f1(x1, y) ∀x1 ∈ X1

in the maximin formula (3.4.2). On the other hand, the definition of x
g
1 using

f1(x
g, y

(
x

g
1

) = max
x1∈X1

f1(x1, y(x1))

matches the outer maximum in (3.4.2). Actually, the application of these operations
(inner minimum and outer maximum) to the NGUs underlies the concepts of
guaranteed equilibria formalized below.

3.4.3 Drawback of Balanced Equilibrium as Solution
of Noncooperative Game Under Uncertainty

Nobody can be perfect unless he admits his faults,
but if he has faults how can he be perfect?

—Peter22

A major drawback of the balanced equilibrium is identified and two alternative
types of guaranteed equilibria for the NGU are suggested.

In Sect. 3.3, we have considered the NGU

〈 N, {Xi}i∈N, Y, {fi(x, y)}i∈N 〉, (3.4.3)

where N = {1, . . . , N} is the set of players; Xi ⊆ R
ni is the set of pure strategies

xi of player i; X = ∏

i∈N
Xi is the set of all pure strategy profiles x = (x1, . . . , xN);

22Laurence Johnston Peter, (1919–1990), was a Canadian educator and hierarchiologist, author of
the Peter principle.
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Y ⊆ R
m is the set of pure uncertainties y; finally, fi(x, y) is the payoff function of

player i, defined on X × Y. Using an appropriate modification of the saddle point,
balanced equilibrium has been formalized by Definition 3.3.1 as a first concept of
guaranteed solution of game (3.4.3).

At the end of Sect. 3.3.3, we have also pointed to a negative feature of
this concept, which stems from the following circumstance. In accordance with
condition 1◦ of Definition 3.3.1, a strategy profile x̄B ∈ X is a Berge equilibrium if

max
x∈X

fi

(
x̄||xB

i , yS

)
= fi

(
x̄B, yS

)
, (3.4.4)

where the uncertain factor yS has a frozen value. However, even the problem
statement postulates that the uncertain factor y may take arbitrary values from
Y, and orientation towards a specific value yS is quite delusive (note that equal-
ities (3.4.4) do not necessarily hold for other y �= yS). If some value y ∈ Y,
y �= yS, is realized in game (3.4.3), then generally the strategy profile xB fails to be
a Berge equilibrium; moreover, xB yields the vector guarantee f̄ S = f (x̄B, ȳS)

only if all players adhere to their strategies from the profile xB (without any
deviations from xB allowed). Nevertheless, a series of considerable advantages
in favor of Slater-guaranteed balanced Berge equilibrium have been outlined in
Sect. 3.3; in some cases (e.g., for payoff functions with separate components in x

and y), this equilibrium becomes rather useful in applications. The negative feature
can be eliminated using a strongly-guaranteed equilibrium or Slater-guaranteed
equilibrium as the solution concepts of the NGUs; see Sects. 3.4.4 and 3.4.5 for
a detailed description.

3.4.4 Formalization

. . . nothing whatsoever takes place in the universe in which
some relation of maximum and minimum does not appear.

—L. Euler23

A guaranteed solution of a noncooperative game under uncertainty is pro-
posed, which (in our view) is the most obvious concept among the ones analyzed
in Sect. 3.3 and below.

Consider the noncooperative game under uncertainty with a possible information
discrimination of players:

� = 〈N, {Xi}i∈N, YX, {fi(x, y)}i∈N〉. (3.4.5)

23Leonhard Euler, (1707–1783), was a Swiss mathematician and physicist. Recognized as one of
the greatest mathematicians of all time. A quote from Leonhard Euler’s Elastic Curves, by W.A.
Oldfather, C.A. Ellis and D.M. Brown, Isis, vol. 20, no. 1 (Nov., 1933), pp. 72–160.
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In this game, N = {1, 2, . . . , N} denotes the set of players; Xi ⊆ R
ni is the set

of pure strategies xi of player i, and a vector x = (x1, . . . , xN) ∈ X = ∏
Xi

forms a pure strategy profile in the game �; Y ⊆ R
m is the set of uncertain

factors y; YX is the set of functions y(x) defined on X and taking values from
Y; these m-dimensional vector functions y(x) will be called “aware” uncertainties
in game (3.4.5); finally, fi(x, y) = fi(x, y(x)) gives the payoff function of player
i (i ∈ N).

This game runs as follows. The players simultaneously choose their individual
strategies xi ∈ Xi (i ∈ N) without building any coalitions. As a result, we
have a strategy profile in the game �, i.e., an ordered collection of strategies
x = (x1, . . . , xN) ∈ X = X1 × · · · × XN . Let us accept the hypotheses about the
information discrimination of players and the additional awareness of uncertainty.
That is, by analogy with the hierarchical games considered in Sect. 3.4.2, the first
move belongs to the players: they choose and then report their strategies xi ∈ Xi to
a DM, who is “in charge of” uncertainty design. The second move is given to the
DM—he generates N uncertain factors in the form of continuous m-dimensional
vector functions y(i)(x) (i ∈ N) defined on the set X and then reports them to all
N players. Assume the worst-case uncertainties, which spoil the individual payoff
of each player as much as possible. Using this information, the players choose
a strategy profile xB ∈ X yielding a “good” payoff fi(x

B, y(xB)) (e.g., a Berge
equilibrium) for each player i (i ∈ N). The Slater-maximal profile x̄B is selected
from the set of all good profiles. The point is that the set of Berge equilibria {xB} has
internal instability (see Example 3.3.1), i.e., there may exist two profiles x(j) ∈ {xB}
(j = 1, 2) such that fi [x(1)] > fi [x(2)] (i ∈ N). This drawback is eliminated by
using the Slater maximality of x̄B . The hierarchical decision-making procedure of
NGU (3.4.5) is illustrated in Fig. 3.7.

Note that sometimes it is necessary to adopt mixed strategies instead of the pure
ones in order to prove the existence of these good solutions—the strategy profiles
in game (3.4.5). In fact, this approach will be used in the current and forthcoming
sections.

Recall that the guaranteed solution (x
g
1 , f

g
1 ) of a single-criterion choice problem

〈X1, Y, f1(x1, y)〉

is described by the chain of equalities

f
g
1 = max

x1∈X1
min
y∈Y

f1(x1, y) = min
y∈Y

f1
(
x

g
1 , y

)
.

First, we have to calculate the inner minimum

y(x1) = arg min
y∈Y

f1(x1, y),
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Fig. 3.7 Decision-making in the NGU (3.4.5)

and then outer maximum

x
g
1 = arg max

x1∈X1
f1(x1, y(x1)), f

g
1 = f1

(
x

g
1 , y

(
x

g
1

))
.

Let us clarify the optimal meaning of these concepts.
First, it follows from f

g
1 = min

y∈Y
f1(x

g
1 , y) that

f
g
1 � f1

(
x

g
1 , y

) ∀y ∈ Y,

i.e., with the strategy x
g
1 the DM obtains the guaranteed outcome f

g
1 under any

realization of the uncertain factor y ∈ Y.
Second, since f1[x1] = min

y∈Y
f1(x1, y) = f1(x1, y(x1)), with any strategy x1 ∈

X1 the DM obtains a guaranteed outcome

f1[x1] � f1(x1, y) ∀y ∈ Y,
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and the guarantee f
g
1 is highest because

f
g
1 = f1

(
x

g
1 , y

(
x

g
1

))
� f1[x1] = f1(x1, y(x1)) ∀x1 ∈ X1.

The concept of strongly-guaranteed solution of game (3.4.5) that is introduced
below relies on a modification of these two properties of maximin. The modification
itself consists in replacing the inner minimum by N scalar minima, i.e.,

min
y∈Y

fi(x, y) = fi(x, y(i)(x)) = fi [x] ∀x ∈ X (i ∈ N),

and also in replacing the outer maximum by the concept of Berge equilibrium, i.e.,

max
x∈X

fi

[
x||xB

i

]
= fi

[
xB

]
(i ∈ N),

where [x||xB
i ] = [x1, . . . , xi−1, x

B
i , xi+1, . . . , xN ].

We will formalize the concept of Slater-strongly-guaranteed Berge equilibrium
in three steps as follows.

Step 1. Associate with each strategy profile x ∈X and each player i ∈N a unique
continuous vector function y(i)(x) on X such that

fi

(
x, y(i)(x)

)
= min

y∈Y
fi(x, y) = fi [x] (i ∈ N). (3.4.6)

Step 2. Associate with game (3.4.5) the noncooperative N-player game (without
uncertainty)

〈N, {Xi}i∈N, {fi[x]}i∈N〉, (3.4.7)

further referred to as the game of guarantees. For this game, find a Berge
equilibrium xB ∈ X from the equalities

max
x∈X

fi

[
x|| xB

i

]
= fi

[
xB

]
(i ∈ N). (3.4.8)

Step 3. From the set of all Berge equilibria {xB}, choose the maximal one x̄B

in the vector sense, e.g., find a Slater-maximal alternative x̄B in the N-
criteria choice problem

〈 {
xB

}
, {fi [x]}i∈N

〉
.
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In the case of Slater maximum, it suffices to calculate x̄B using the
condition

max
x∈{xB}

∑

i∈N
αifi[x] =

∑

i∈N
αi f̄i

[
x̄B

]
,

where all the constants αi � 0(i ∈ N) ∧ ∑

i∈N
αi > 0, see [152, pp. 68–69].

Finally, construct the N-dimensional vector

f̄
[
x̄B

]
=

(
f̄1

[
x̄B

]
, . . . , f̄N

[
x̄B

])
.

The resulting pair (x̄B, f̄ [x̄B]) ∈ X × R
N , where f = (f1, . . . , fN ), will be called

the Slater-strongly-guaranteed Berge equilibrium in game (3.4.5); in addition, x̄B

is the strongly-guaranteeing strategy profile in game (3.4.5) while f̄i [x̄B] is the
strongly-guaranteed payoff of player i ∈ N.

The game-theoretic meaning of the suggested solution consists in the following.
If the players have chosen the strategies xi ∈ Xi (i ∈ N), thereby forming the profile
x = (x1, . . . , xN), then each player i obtains a payoff fi(x, y) not smaller than
fi [x] (3.4.6) under any realization of the uncertain factor y ∈ Y. (This fact follows
from the last equality of (3.4.6), written in the form fi [x] � fi(x, y) ∀y ∈ Y). In
other words, the value fi [x] is the guarantee for player i under the players’ strategies
from the profile x ∈ X and any realization of the uncertain factor y ∈ Y, regardless
of their choice.

Next, in accordance with Step 2 (see the definition), instead of the non-
cooperative game under uncertainty (3.4.5) one has to consider the game of
guarantees (3.4.7), (3.4.6) without uncertainty. In this game, the payoff functions of
the players are their guarantees fi [x] (i ∈ N), while the Berge equilibrium is defined
by the same principle, now applied to the new payoff functions—the guarantees
fi [x] (i ∈ N) of the original payoff functions fi(x, y).

The strongly-guaranteed equilibrium is stable in the sense that, if the players
choose their strategies from the profile xB = (xB

1 , . . . , xB
N), then

First, under any realization of the uncertain factor y ∈ Y the conflicting parties
obtain guaranteed payoffs fi(x

B, y) � fi [xB] = f B
i (i ∈ N) that are not smaller

than their guarantees;
Second, any deviation, e.g., of player 1 from the strategy xB

1 (i.e., the choice
of another strategy x̃1 ∈ X such that x̃1 �= xB

1 ) gives, e.g., to player 2 a payoff
f2(x

B||x̃1, y) with a guarantee f2[xB||x̃1] not higher than the guarantee f2[xB] in
the equilibrium xB (the noncooperative game under uncertainty (3.4.5) is assessed
using the game of guarantees (3.4.7)).
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3.4.5 Existence in Mixed Strategies

The existence of a strongly-guaranteed Berge equilibrium in mixed strategies
is established for the noncooperative two-player game under uncertainty with
continuous payoff functions that are strictly convex in the uncertain factors, and
also with compact sets of strategies and uncertain factors.

To simplify notation, our analysis below will be confined to game (3.4.5) with two
players, i.e., N = {1, 2}.

Let the sets Xi (i =1, 2) be convex and compact and consider the Borel σ -algebra
of all subsets of the set Xi (the details can be found in Remark 3.3.1); as an extension
of the set of (pure) strategies xi ∈ Xi of player i, consider his mixed strategies
μi(·)—probability measures on the compact set Xi , i.e., on the Borel σ -algebra of
the set Xi . Denote by {μi} (i = 1, 2) the set of mixed strategies of player i. Note
that a measure of the form δ(xi − x∗

i )(dxi), where δ(·) is the Dirac function, is also
a mixed strategy of player i. The product measures μ(dx1, dx2) introduced by the
definitions in [122, p. 271] with the notations [108, p. 284],

μ(dx1, dx2) = μ1(dx1)μ2(dx2),

are probability measures on the product X = X1 × X2 of the compact sets X1 and
X2. To construct the product measure μ(dx1, dx2), as the σ -algebra of all subsets
X1×X2 one takes the smallest Borel σ -algebra containing all the products Q1×Q2,
where Qi is an element of the Borel σ -algebra of the compact set Xi (i = 1, 2).

If the payoff functions fi [x1, x2] are continuous on X1 × X2, we define the
following integrals in terms of expectation:

fi [μ1, x2] =
∫

X1

fi [x1, x2]μ1(dx1), fi [x1, μ2] =
∫

X2

fi [x1, x2]μ2(dx2).

Since the functions fi [x1, x2] are continuous on X1 ×X2, the integrals fi [μ1, x2]
and fi [x1, μ2] are continuous functionals on X2 and X1, respectively; see [24,
p. 113]. Then there exist the double integrals

fi [μ1, μ2] =
∫

X2

fi [μ1, x2]μ2(dx2) =
∫

X2

∫

X1

fi [x1, x2]μ1(dx1)μ2(dx2),

∫

X1

fi [x1, μ2]μ1(dx1) =
∫

X1

∫

X2

fi [x1, x2]μ2(dx2)μ1(dx1),

which take the same value by Fubini’s theorem.
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Now let us pass to the mixed extension of game (3.4.7) with N = {1, 2}, i.e., to
the noncooperative game

�̃2 = 〈{1, 2}, {μi}i=1,2, {fi [μ1, μ2]}i=1,2〉,

where {μi} is the set of mixed strategies μi(·) of player i, which are probability
measures on the compact set Xi ; the expectation

fi[μ1, μ2] =
∫

X1×X2

fi [x1, x2]μ1(dx1)μ2(dx2)

gives the mixed extension of the payoff function fi [x1, x2] (i = 1, 2).
A pair of mixed strategies (μB

1 (·), μB
2 (·)) ∈ {μ1} × {μ2} is called a Berge

equilibrium in game �̃2 if

f1[μB
1 , μ2] � f1[μB

1 , μB
2 ] ∀μ2(·) ∈ {μ2},

f2[μ1, μ
B
2 ] � f2[μB

1 , μB
2 ] ∀μ1(·) ∈ {μ1}. (3.4.9)

Interestingly, the set of all payoffs f [μB] = (f1[μB], f2[μB]) on the set of
all Berge equilibria {μB(·) = μB

1 (·)μB
2 (·)} is compact in R

2 (this follows from
Proposition 3.4.1 below).

In accordance with [22, pp. 117–119], if in the game �̃2 the payoff functions
fi [x1, x2] are continuous on X1 × X2 and the sets Xi are compact (i = 1, 2), then
the game �̃2 possesses a Berge equilibrium

μB(·) =
(
μB

1 (·), μB
2 (·)

)
∈ {μ1} × {μ2}.

Sometimes, this profile is called a mixed strategy Berge equilibrium in
game (3.4.7) with N = {1, 2}.
Proposition 3.4.1 Assume that in game (3.4.7) with N = {1, 2} the sets Xi (i =
1, 2) are convex and compact and the payoff functions fi [x1, x2] are continuous on
X1 × X2. Then the set FB = {f1[μB], f2[μB]} of all Berge equilibrium payoffs in
the game �̃2 is a non-empty and compact set, i.e., a closed bounded subset of R2.

Proof In view of the well-known properties of probability measures [41,
p. 288]; [122, p. 254], the set of all possible product measures μ(dx1, dx2) =
μ1(dx1)μ2(dx2) is weakly closed and weakly compact [122, pp. 212, 254]; [180,
pp. 48, 49]. Hence, from each sequence

{
μ(k)(dx)=μ

(k)
1 (dx1)μ

(k)
2 (dx2)

}
(k = 1, 2, . . .)
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one can extract a subsequence

{
μ(kj )(dx) = μ

(kj )

1 (dx1)μ
(kj )

2 (dx2)
}

(j = 1, 2, . . .)

that weakly converges [122, p. 212, 254]; [105, p. 199] to a function μ(·) ∈ ∈{μ},
i.e., for any choice of a continuous scalar function ϕ[x1, x2] defined on X, it holds
that

lim
j→∞

∫

X

ϕ[x1, x2]μ(kj )(dx) =
∫

X

ϕ[x1, x2]μ(dx).

Denote by MB the set of all Berge equilibria μB(dx) = μB
1 (dx1)μ

B
2 (dx2) described

by formulas (3.4.9). Then MB �= ∅, as shown in [22, pp. 117–119]. Now, take an
arbitrary infinite sequence of such equilibria μ(k)(·) ∈ MB (k = 1, 2, . . .). Owing to
the weak compactness of the set of probability measures, there exist a subsequence
of measures μ(kj )(·) ∈ MB (j = 1, 2, . . .) and a probability measure μ(o)(·) ∈ {μ}
such that, for a continuous function fi[x] = fi [x1, x2] on X,

lim
j→∞ fi

[
μ(kj )

]
= lim

j→∞

∫

X

fi [x]μ(kj )(dx) =
∫

X

fi [x]μ(o)(dx) = fi

[
μ(o)

]
.

Let us show that the limiting measure μ(o)(·) = μ
(o)
1 (·)μ(o)

2 (·) is also a Berge
equilibrium, i.e.,

f1[μ(o)
1 , μ2] � f1[μ(o)] ∀μ2(·) ∈ {μ2},

f2[μ1, μ
(o)
2 ] � f2[μ(o)] ∀μ1(·) ∈ {μ1}.

Assume on the contrary that there exists a measure μ̄1(·) ∈ {μ1} or a measure
μ̄2(·) ∈ {μ2} such that

f1

[
μ

(o)
1 , μ̄2

]
> f1

[
μ(o)

]
∨ f2[μ̄1, μ

(o)
2 ] > f2

[
μ(o)

]
.

For example, let

f1

[
μ

(o)
1 , μ̄2

]
> f1

[
μ(o)

]
,

which is equivalently written as

∫

X

f1[x]μ(o)
1 (dx1)μ̄2(dx2) >

∫

X

f1[x]μ(o)(dx).
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Then, for sufficiently large j ,

∫

X

f1[x]μ(kj )

1 (dx1)μ̄2(dx2) >

∫

X

f1[x]μ(kj )(dx),

which contradicts the inclusion μ(kj )(·) ∈ MB , i.e., the Berge equilibrium condition
of each mixed strategy profile μ(kj )(·) ∈ MB in the game �̃2. Hence, the set FB =
= {f1[μB], f2[μB] | ∀μB(·) ∈ MB} is compact in R

2. �
Our next task is to construct a strongly-guaranteed Berge equilibrium in mixed

strategies for this game using Steps 1–3 above.
Consider game (3.4.5) with N = 2 in which the sets Xi (i = 1, 2) and Y are

compact and the payoff functions fi(x1, x2, y) (i = 1, 2) are continuous on X1 ×
X2 × Y.

A quadruple (μ̄B
1 (·), μ̄B

2 (·), f̄ B
1 , f̄ B

2 ) ∈ {μ1} × {μ2} × R
2 is called a strongly-

guaranteed Berge equilibrium in mixed strategies in game (3.4.5) with N = 2
if for each i there exists a unique continuous m-dimensional vector functions
y(i)(x) : X1 × X2 → Y (i = 1, 2) such that inequalities (3.4.9) hold for the
function fi [μ1, μ2] (i = 1, 2) and the product measure μ̄B(·) = μ̄B

1 (·)μ̄B
2 (·) yields

a Slater-maximal alternative in the bicriteria choice problem

〈{μB}, {fi [μ]}i=1,2〉.

Here fi [μ] = fi [μ1, μ2] = ∫

X
fi [x]μ1(dx1)μ2(dx2), fi [x] = fi(x, y(i)(x)) =

miny∈Y fi(x, y), μ̄B
i (·) ∈ {μi} indicates the mixed strategy of player i, and f̄ B

i =
f̄i [μB

1 , μB
2 ] (i = 1, 2) is his guaranteed payoff.

Theorem 3.4.1 Consider the noncooperative two-player game under uncertainty

�2 = 〈{1, 2}, {Xi}i=1,2, YX, {fi(x1, x2, y)}i=1,2〉

under the assumptions that
(
10

)
the set Xi ⊂ R

ni of all pure strategies xi of player i is convex and compact
(i = 1, 2) and the set Y ⊂ R

m of uncertain factors y is convex and compact;(
20

)
the payoff function fi(x, y) of player i (i = 1, 2) is continuous on X1×X2×Y
and strictly convex in y ∈ Y for each (x1, x2) ∈ X1 × X2.

Then there exists a strongly-guaranteed Berge equilibrium in mixed strategies in
this game.

Proof Using the compactness of the sets Xi (i = 1, 2) and Y, the concavity of Y
and also the continuity of the payoff functions fi(x1, x2, y) on X1×X2×Y and their
strict convexity in y ∈ Y for each x = (x1, x2) ∈ X1 ×X2, we conclude (see [14,
p. 54]) that there exist two continuous m-dimensional vector functions y(i)(x1, x2)
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defined on X1×X2 such that

min
y∈Y

fi(x1, x2, y) = fi

(
x1, x2, y

(i)(x1, x2)
)

= fi [x1, x2] (i = 1, 2)

for any (x1, x2) ∈ X1 × X2. The functions

fi

(
x1, x2, y

(i)(x1, x2)
)

= fi [x1, x2] (i = 1, 2)

are continuous on X1 × X2 as superpositions of the continuous functions
fi(x1, x2, y) and y = y(i)(x1, x2).

Now, design a noncooperative two-player game—the game of guarantees

〈{1, 2}, {Xi}i=1,2, {fi [x1, x2]}i=1,2〉. (3.4.10)

As established earlier, in this game the payoff function fi [x1, x2] of player i (i =
1, 2) is continuous on the product X1 × X2 of compact sets. Consequently, by [22,
pp. 117–119], there exists a mixed strategy Berge equilibrium (μB

1 (·), μB
2 (·)) ∈

{μ1} × {μ2}, which satisfies inequalities (3.4.9). Then construct the pair

fi

[
μB

]
= fi

[
μB

1 , μB
2

]
=

∫

X1×X2

fi [x1, x2]μB
1 (dx1)μ

B
2 (dx2) (i = 1, 2),

in which the set {fi [μB]=fi[μB
1 , μB

2 ]} is compact in R
2 (see Proposition 3.4.1);

MB forms the set of all Berge equilibria μB(·)=μB
1 (·)μB

2 (·) (each of them satisfies
inequalities (3.4.9)). This compact set is nonempty [22, pp. 117–119]; denote it
by FB . Consider a continuous function

∑2
i=1 αifi , where αi = const > 0 and

i ∈ N = {1, 2}, on the compact set FB . By the Weierstrass theorem, there exists a
vector f̄ B =(f̄ B

1 , f̄ B
2 )∈FB such that

max
f ∈FB

2∑

i=1

αifi =
2∑

i=1

αi f̄
B
i .

Finally, find the product measure μ̄B(·) = μ̄B
1 (·)μ̄B

2 (·) from the equalities f̄ B
i =

fi [μ̄B] (i = 1, 2).
By definition, the resulting triplet (μ̄B(·), f̄ B

1 , f̄ B
2 ) is a strongly-guaranteed Berge

equilibrium in mixed strategies in game (3.4.5) with N = {1, 2}. �
Remark 3.4.2 First, the assumptions of Theorem 3.4.1 can be relaxed by requiring
only the compactness of the sets Xi (i=1, 2) and Y and the continuity of the payoff
functions fi(x, y) on the set X1×X2×Y (see Theorem 3.5.1 below). Theorem 3.4.1
itself is placed here to illustrate an original method for establishing the existence of
guaranteed equilibria.
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Second, Theorem 3.4.1 generalizes directly to the games with N > 2 players.
In this case, the definition of a strongly-guaranteed equilibrium involves a vector
guarantee f [x] = (f1[x], . . . , fN [x]), since for each x ∈ X and for all y ∈ Y
the value fi(x, y) cannot be smaller than fi [x] (i ∈ N) (see (3.4.6)). This vector
guarantee is lowest among all other vector guarantees f S[x] (Slater guarantees,
see Sect. 3.5) because f S

i [x] � fi [x] ∀x ∈ X, i ∈ N (here f S[x] = f (x, yS(x))

and yS(x) yields the Slater-minimal alternative in the N-criteria choice problem
〈Y, f (x, y)〉 for each frozen x∈X). This fact explains the term “strongly-guaranteed
equilibrium.” However, keep in mind that the players seek for as high guarantees as
possible.

Remark 3.4.3 Once again we will stress the game-theoretic meaning and advan-
tages of strongly-guaranteed equilibrium.

First, in accordance with (3.4.6), each strategy profile x ∈ X is associated with
a vector guarantee f [x] = (f1[x], . . . , fN [x]): by the inequality fi(x, y) � fi [x]
∀y ∈ Y (i ∈ N), the payoffs fi(x, y) cannot be smaller than fi[x] (i ∈ N) for all
y ∈ Y. Indeed, with his strategy xi ∈ Xi player i obtains a payoff fi(x, y) that
is surely not less than fi [x] under any realization of the uncertain factors y ∈ Y.
Therefore, transition to the same game of guarantees (3.4.7) for all y ∈ Y allows
the players to forget about the existing uncertainty and to be guided by an increase
of their guarantees only (which depend on the strategy profile x formed by their
choice).

Second, the aspiration of player i ∈ N to increase his guarantee fi [x] also results
in a Berge equilibrium (an analog of the outer maximum in the noncooperative
game of guarantees (3.4.7)). Being a Berge equilibrium, the strategy profile xB =
(xB

1 , . . . , xB
N) is stable against the deviation of any coalition of N − 1 players. For

example, if player 1 is deviating from xB
1 with a choice x1 �= xB

1 , then say the
guarantee f2[xB||x1] of player 2 in the strategy profile [xB||x1] = [x1, x

B
2 , . . . , xB

N ]
cannot exceed f2[xB] (which follows from (3.4.8)), yet may decrease. (Each player
seeks to maximize his guarantee!) Therefore, in contrast to the balanced equilibria
considered in Sect. 3.3, the strategy profile xB still satisfies the Berge equilibrium
conditions for all uncertain factors y ∈ Y (we again emphasize that the guarantees
fi [x] are independent of y).

Third, the set of all Berge equilibria {xB} = XB in the game (3.4.7) is
internally unstable (see Example 3.3.1). This nuisance is eliminated using the Slater
maximality of the suggested solution x̄B.

Then a strongly-guaranteed Berge equilibrium (x̄B, f̄ B) in the NGU (3.4.5) is a
pair (x̄B, f [x̄B]) composed of a Berge equilibrium x̄B in the game of guarantees to
be used by the players and a vector guarantee f [x̄B] = f̄ B yielded by them in this
equilibrium.

Remark 3.4.4 As follows from Remark 3.4.3, an analog of the inner minimum (in
the maximin definition) is Step 1 of strongly-guaranteed equilibrium design. In turn,
Steps 2 and 3 correspond to the outer maximum in the maximin definition. Let us
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show that each vector guarantee in pure strategies

f [x] =
(
f1(x, y(1)(x)

)
= f1[x], . . . , fN

(
x, y(N)(x)

)
= fN [x])

induces a vector guarantee in mixed strategies

f [μ] = (f1[μ], . . . , fN [μ]),

where

fi [μ] =
∫

X

fi

(
x, y(i)(x)

)
μ(dx), i ∈ N.

Indeed, from (3.4.6) for each x ∈ X we have N inequalities of the form

fi [x] � fi(x, y) ∀y ∈ Y.

Integrating both sides of these inequalities with an arbitrary mixed strategy profile
μ(·) as the integration measure gives

fi[μ]=
∫

X

fi

(
x, y(i)(x)

)
μ(dx)�

∫

X

fi(x, y)μ(dx)=fi[μ, y] ∀y ∈ Y (i ∈ N).

Equivalently, every mixed strategy profile μ(·) ∈ {μ} in the game

〈 N, {μi}i∈N, Y, {fi [μ, y]}i∈N 〉

induces a vector guarantee f [μ] = (f1[μ], . . . , fN [μ]): for any y ∈ Y, the payoffs
fi [μ, y] cannot be smaller than fi [μ].

Then, in accordance with Steps 2 and 3 of strongly-guaranteed Berge equilibrium
design in game (3.4.5) with mixed strategies, it is necessary to build the vector
guarantees f [μB] achieved on all mixed strategy Berge equilibria μB(·) ∈ {μ}.
Finally, among them we have to choose the Slater-maximal strategy profile μ̄B(·).

3.4.6 Linear-Quadratic Setup of Game

A good example is the best sermon.
—English proverb

An explicit form of a strongly-guaranteed Berge equilibrium in mixed strate-
gies is obtained for the noncooperative linear-quadratic two-player game under
uncertainty.
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This section considers game (3.4.5) with N = {1, 2}, the sets Xi =R
n and Y =

R
m (no constraints), and the linear-quadratic payoff functions in xi and y given by

f1(x, y)=x ′
2A1x2+2x ′

1x2+2x ′
2C1y+y ′D1y+2a′

1x2+ϕ1(x1),

f2(x, y)=x ′
1A2x1−2x ′

2x1+2x ′
1C2y+y ′D2y+2a′

2x1+ϕ2(x2).
(3.4.11)

In this game, x1 and x2 are n-dimensional column vectors, y is an m-dimensional
column vector, prime denotes transposition, constant vectors ai and matrices
Ai,Ci,Di have compatible dimensions, and the matrices Ai and Di are symmetric
(i = 1, 2). Recall that the notation Ai < 0 (Di > 0) means the negative
(positive) definiteness of the quadratic form x ′Aix for all x ∈ R

n (y ′Diy for all
y ∈ R

m, respectively), while the notation K � 0 the negative semidefiniteness of
the quadratic form x ′Kx for all x ∈ R

n. Also, 0n stands for an n-dimensional zero
vector, ϕi(xi) (i = 1, 2) are scalar continuous functions.

Thus, we are studying the noncooperative two-player game under uncertainty

〈{1, 2}, {Xi = R
n}i=1,2, Y = R

m, {fi(x1, x2, y)}i=1,2〉, (3.4.12)

in which the payoff functions fi(x1, x2, y) are defined by (3.4.11), player i chooses
the n-dimensional column vector xi ∈ R

n as his strategy, and the uncertain factors
are y ∈ R

m. The special form (3.4.11) of the payoff functions fi(x1, x2, y) covers
all linear and quadratic terms in xj (i, j = 1, 2; i �= j). An attempt to consider other
possible terms would run into cumbersome calculations, still remaining the same in
principle.

Proposition 3.4.2 Consider game (3.4.12) with

Ai < 0, Di > 0 (i = 1, 2). (3.4.13)

For any continuous scalar functions ϕi(xi) (i = 1, 2), the strongly-guaranteed
Berge equilibrium (xB

1 , xB
2 , f B

1 , f B
2 ) has the form

xB
1 = −

[(
A1 − C1D

−1
1 C′

1

)−1 +
(
A2 − C2D

−1
2 C′

2

)]−1

×

×
[(

A1 − C1D
−1
1 C′

1

)−1
a1 + a2

]

,

xB
2 =

[(
A2 − C2D

−1
2 C′

2

)−1 +
(
A1 − C1D

−1
1 C′

1

)]−1

× (3.4.14)

×
[(

A2 − C2D
−1
2 C′

2

)−1
a2 − a1

]

,

f B
1 = −

[
xB

2

]′ [
A1 − C1D

−1
1 C′

1

]
xB

2 + ϕ1

(
xB

1

)
,

f B
2 = −

[
xB

1

]′ [
A2 − C2D

−1
2 C′

2

]
xB

1 + ϕ2

(
xB

2

)
.
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Proof The following chain of implications is immediate from (3.4.13) and [93]:

[Di > 0] ⇒ [detDi �= 0] ⇒
[
∃D−1

i

]
,

[Di >0] ⇒
[
D−1

i >0
]

⇒
[
CiD

−1
i C′

i �0
]

⇒
[
−CiD

−1
i C′

i �0
]
,

[
Ai < 0 ∧ −CiD

−1
i C′

i � 0
]

⇒
[
Ai − CiD

−1
i C′

i < 0
]
.

(3.4.15)

Next, the proof will proceed along Steps 1 and 2 of strongly-guaranteed Berge
equilibrium design for game (3.4.5) with N = {1, 2}.
Step 1. Find y(i)(x1, x2) from the condition

fi(x1, x2, y
(i)(x1, x2)) = min

y
fi(x1, x2, y). (3.4.16)

Without any constraints imposed on the strategy profiles x = (x1, x2) ∈
R

2n (xi ∈R
n and y ∈R

m), in expression (3.4.16) the sufficient conditions
of minimum over all m-dimensional vector functions y(i)(x) reduce to

gradyfi(x, y(i)(x)) = ∂fi(x, y)

∂y

∣
∣
∣
∣
y(i)(x)

= 2Diy
(i)(x) + 2C′

ixj = 0m,

(i, j = 1, 2; i �= j)

(3.4.17)

∂2fi(x, y)

∂y2

∣
∣
∣
∣
y(i)(x)

= 2Di > 0 (i = 1, 2),

where ∂2fi

∂y2 denotes the Hessian of fi(x, y) with respect to the compo-
nents of the m-dimensional vector y; here we have used the inequalities
Di > 0 from (3.4.13) and also the gradient calculation formulas

∂
∂y

(y ′Lx) = Lx, ∂
∂y

(x ′Ky) = K ′x, ∂
∂y

(y ′Dy) = 2Dy

from [93, pp. 13–16]. In accordance with (3.4.17),

y(i)(x) = −D−1
i C′

ixj (i, j = 1, 2; i �= j). (3.4.18)

For all x ∈ R
2n (i, j = 1, 2; i �= j ), from (3.4.18) we also have the

identity

[y(i)(x)]′Diy
(i)(x) + 2x ′

jCiy
(i)(x)=−[y(i)(x)]′Diy

(i)(x). (3.4.19)
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Using (3.4.18) and (3.4.19), find

f1[x1, x2] = f1

(
x1, x2, y

(1)(x)
)

= x ′
2A1x2 + 2x ′

1x2

−
[
y(1)(x)

]′
D1y

(1)(x) + 2a′
1x2 + ϕ1(x1)

= x ′
2

[
A1 − C1D

−1
1 C′

1

]
x2 + 2x ′

1x2

+ 2a′
1x2 + ϕ1(x1), f2[x1, x2] = f2

(
x1, x2, y

(2)(x)
)

= x ′
1

[
A2 − C2D

−1
2 C′

2

]
x1 − 2x ′

2x1 + 2a′
2x1 + ϕ2(x2),

(3.4.20)

where, by (3.4.15),

Ai − CiD
−1
i C′

i < 0 (i = 1, 2). (3.4.21)

Step 2. To construct the strategy profile (xB
1 , xB

2 ) that yields maximum in (3.4.8),
one again employs the sufficient conditions

∂f1
[
xB

1 , x2
]

∂x2

∣
∣
∣
∣
∣
xB

2

= 2
[
A1 − C1D

−1
1 C′

1

]
xB

2 + 2xB
1 + 2a1 = 0n,

∂f2
[
x1, x

B
2

]

∂x1

∣
∣
∣
∣
∣
xB

1

= −2xB
2 + 2

[
A2 − C2D

−1
2 C′

2

]
xB

1 + 2a2 = 0n,

∂2f1
[
xB

1 , x2
]

∂x2
2

∣
∣
∣
∣
∣
xB

2

= 2
[
A1 − C1D

−1
1 C′

1

]
< 0,

∂2f2
[
x1, x

B
2

]

∂x2
1

∣
∣
∣
∣
∣
xB

1

= 2
[
A2 − C2D

−1
2 C′

2

]
< 0.

(3.4.22)

A special remark is in order. When Ai < 0 and Di > 0, the first two
equalities in (3.4.22) are necessary conditions for the existence of a Berge
equilibrium (xB

1 , xB
2 ); this system of equations has a unique solution and

hence the resulting equilibrium is also unique.
The last two inequalities in (3.4.22) follow directly from (3.4.21). Using
the first two equalities, we arrive at the following system of two linear
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algebraic equations in the two unknown vectors xB
1 and xB

2 :

{
(A1 − C1D

−1
1 C′

1)x
B
2 + xB

1 = −a1,

−xB
2 + (A2 − C2D

−1
2 C′

2)x
B
1 = −a2.

(3.4.23)

Multiplication of the first equation on the right by the inverse of the
nondegenerate matrix A1 − C1D

−1
1 C′

1 (see (3.4.21)) and summation by
columns yields

[
(A1 − C1D

−1
1 C′

1)
−1 + (A2 − C2D

−1
2 C′

2)
]
xB

1

= −
[
(A1 − C1D

−1
1 C′

1)
−1a1 + a2

]
. (3.4.24)

In the same way, multiplication of the second equation on the right by the
inverse of the nondegenerate matrix A2 − C2D

−1
2 C′

2 with minus sign and
summation by columns yields

[
(A2 − C2D

−1
2 C′

2)
−1 + (A1 − C1D

−1
1 C′

1)
]
xB

2 =
= (A2 − C2D

−1
2 C′

2)
−1a2 − a1.

(3.4.25)

From (3.4.21) we have

(Ai − CiD
−1
i C′

i )
−1 < 0 (i = 1, 2),

and, by (3.4.21),

(A1 − C1D
−1
1 C′

1)
−1 + (A2 − C2D

−1
2 C′

2) < 0,

(A2 − C2D
−1
2 C′

2)
−1 + (A1 − C1D

−1
1 C′

1) < 0.

Hence, these matrices are invertible.
Then the first two formulas of (3.4.14) follow from (3.4.24) and (3.4.25).
To construct f B

i = fi [xB
1 , xB

2 ] (i = 1, 2), we will again utilize the first
two equalities in (3.4.22). In particular,

f B
1 = f1

[
xB

1 , xB
2

]
=

[
xB

2

]′ [
A1 − C1D

−1
1 C′

1

]
xB

2 + 2
[
xB

1

]′
xB

2

+ 2a′
1x

B
2 + ϕ1

(
xB

1

)
= −

[
xB

2

]′ [
A1 − C1D

−1
1 C′

1

]
xB

2 + ϕ1

(
xB

1

)
,

and similarly

f B
2 = −

[
xB

1

]′ [
A2 − C2D

−1
2 C′

2

]
xB

1 + ϕ2

(
xB

2

)
.
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Step 3. The quadruple (xB
1 , xB

2 , f B
1 , f B

2 ) is unique due to the strict convexity of
fi(x, y) (3.4.21) in y for each x ∈ R

2n, conditions (3.4.13), and the
special remark for Step 2. �

Example 3.4.1 To apply Proposition 3.4.2, we first have to verify require-
ments (3.4.13) and then construct the strongly-guaranteed Berge equilibrium
(xB

1 , xB
2 , f B

1 , f B
2 ) by formulas (3.4.14). Let the variables x1, x2, and y in (3.4.14)

as well as the constants ai (i = 1, 2) be scalar and choose the matrices Ai = − 1
2 ,

Ci = 1, and Di = 2. In this case, Ai − CiD
−1
i C′

i = − 1
2 − 1

2 = −1 (i = 1, 2), and
formulas (3.4.14) yield

xB
1 = [−1 − 1]−1[−1a2 − a1] = 1

2
(a1 + a2), x

B
2 = −[−1 − 1]−1[−1a1 + a2]

= 1

2
(a1 − a2), f

B
1 = −1

4
(a1 + a2)

2, f B
2 = −1

4
(a1 − a2)

2.

The dependence of the strong guarantees f B
i on a1 and a2 is illustrated in

Figs. 3.8 and 3.9 by the parabolic cylinders f B
1 = − 1

4 (a1 + a2)
2 and f B

2 =
− 1

4 (a1 − a2)
2.

The vertex of the parabola f B
1 = − 1

4υ2 in Fig. 3.8 is “sliding” along the line
a1 = a2. By analogy, the vertex of the parabola f B

2 = − 1
4u2 in Fig. 3.9 is “sliding”

along the line a1 = −a2, also forming a parabolic cylinder. Here a1 + a2 = υ and
a1 − a2 = u.

Fig. 3.8 Strong guarantee
f B

1 as function of a1 and a2



108 3 The Golden Rule Under Uncertainty

Fig. 3.9 Strong guarantee
f B

2 as function of a1 and a2

3.5 Slater-Guaranteed Equilibria

The mathematicians and physics men
Have their mythology; they work alongside the truth,
Never touching it; their equations are false
But the things work. Or, when gross error appears,
They invent new ones; they drop the theory of waves
In universal ether and imagine curved space.
Nevertheless their equations bombed Hiroshima.
The terrible things worked.

—Jeffers24

In this section, the third type of guaranteed solutions of a conflict (noncooperative
N-player game under uncertainty) is suggested, the central concept for Chap. 3,
based on an appropriate modification of maximin. The properties of this solution as
well as its existence in the class of mixed strategies are established.

3.5.1 Definition and Properties

Hier liegt der Hund begraben.

—German proverb25

To formalize another guaranteed solution of the game

〈 N, {Xi}i∈N, YX, {fi(x, y)}i∈N 〉 (3.5.1)

24John Robinson Jeffers, (1887–1962), was an American poet. A fragment from his poem The
Great Wound.
25German “That’s where the dog lies buried.” Close to the English proverb “That’s where the shoe
pinches!” Used to emphasize the essence of something.
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using the maximin-type approach, we will again consider the following zero-sum
game with a scalar payoff function f (x, y):

〈 {1, 2}, X, YX, f (x, y) 〉, (3.5.2)

where X⊆R
n denotes the set of all strategies x of player 1 and YX = {y(x)|X →Y}

is the set of counter-strategies y(x) of player 2. In game (3.5.2), player 1 seeks
to maximize the scalar payoff function f (x, y) with an appropriate choice of his
strategy x ∈ X under information discrimination, as follows. Making the first move
in game (3.5.2), player 1 informs the opponent about his intended strategies x ∈ X.
Using this information, player 2 forms a counter-strategy y(x) : X → Y in order to
minimize f (x, y) with y = y(x). Next, player 2 makes the second move, reporting
the chosen strategy y(·) ∈ YX to player 1. The final decision is left to player 1: he
designs a strategy xg ∈ X with maximization of f (x, y(x)), i.e., calculates

xg = arg max
x∈X

f (x, y(x)).

As a result, player 1 obtains the guaranteed payoff f g = f (xg, y(xg)) because

f (xg, y(xg)) � f (xg, y) ∀y ∈ Y, (3.5.3)

which follows from the design rule of the counter-strategy y(xg) = arg miny∈Y
f (xg, y).

Recall that the formalization procedure of the maximin f g and maximin strategy
xg consists of two sequential operations:

– first, the inner minimum, i.e., for all x ∈ X it is necessary to find a counter-
strategy y(x) : X → Y such that

min
y∈Y

f (x, y) = f (x, y(x)) ∀x ∈ X; (3.5.4)

– second, the outer maximum

max
x∈X

f (x, y(x)) = f (xg, y(xg)) = f g. (3.5.5)

In accordance with (3.5.4), for x = xg we have inequality (3.5.3), i.e., the
strategy x = xg gives player 1 the guaranteed payoff f g � f (xg, y) ∀y ∈
Y. Moreover, by (3.5.5) this guarantee f g is highest among all guarantees
f (x, y(x)) (for any strategies x ∈ X of player 1), since

f (x, y(x)) � f (xg, y(xg)) = f g ∀x ∈ X.

Now, introduce the concept of Slater-guaranteed Berge equilibrium (SGBE) for
the noncooperative game (3.5.1) using an appropriate modification of maximin, i.e.,
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first, replacing the scalar inner minimum with a vector minimum (here the Slater
minimum)

and second, replacing the outer maximum initially with Berge equilibria design
and then with the vector maximum on the set of all Berge equilibria (here the Slater
maximum on the set of all Berge equilibria).

Definition 3.5.1 A pair (x̄B, f̄ S) ∈ X × R
N is called a Slater-guaranteed Berge

equilibrium in game (3.5.1) if there exists an uncertain factor yS(x) : X → Y such
that

(1) f̄ S = (
f̄ S

1 , . . . , f̄ S
N

) = f
(
x̄B, yS

(
x̄B

))
, i.e.,

f̄ S
i = fi

(
x̄B, yS

(
x̄B

))
(i ∈ N);

(2) for each x ∈ X, the uncertain factor yS(x) is a Slater-minimal alternative
in the N-criteria choice problem 〈Y, f (x, y)〉, i.e., for any alternative x =
(x1, . . . , xN) ∈ X1× · · · ×XN = X the system of N strict inequalities

fi[x] = fi(x, yS(x)) > fi(x, y) ∀y ∈ Y (i ∈ N) (3.5.6)

is inconsistent;
(3) the strategy profiles xB ∈ X are Berge equilibria in the noncooperative game

〈 N, {Xi}i∈N, {fi(x, yS(x))}i∈N 〉, (3.5.7)

i.e.,

max
x∈X

fi

(
x||xB

i , yS

(
x||xB

i

))
= fi

[
xB

]
, i ∈ N, (3.5.8)

where (x||xB
i ) = (x1, . . . , xi−1, x

B
i , xi+1, . . . , xN); denote by XB the set of all

Berge equilibria;
4. the strategy profile x̄B ∈ XB is a Slater-maximal alternative [81] in the N-

criteria choice problem

〈
XB, {fi(x, yS(x))}i∈N

〉
,

i.e., for all x ∈ XB the system of strict inequalities

f̄ S
i = fi

(
x̄B, yS

(
x̄B

))
< fi(x, yS(x)), i ∈ N, (3.5.9)

is inconsistent.
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Remark 3.5.1

(a) As inequalities (3.5.6) are inconsistent for x = x̄B, the N-dimensional vector
f̄ S forms the Slater guarantee: if the players choose their strategies from the
profile x̄B, then it is impossible to reduce all payoffs f̄ S

i (i ∈ N) simultaneously
with any choice y ∈ Y, because for all y ∈ Y the inequalities fi(x̄

B, y) <

fi(x̄
B, yS(x̄B)) = f̄ S

i , i ∈ N, fail.
(b) Condition (3.5.8) implies that each strategy profile xB ∈ XB is a Berge

equilibrium in the noncooperative game (3.5.7) and hence is stable against the
deviations of any coalitions of size N − 1.

(c) Due to the inconsistency of inequalities (3.5.9), the vector guarantee f̄ S =
(f̄ S

1 , . . . , f̄ S
N) is highest in the vector sense among all guarantees f (xB, yS(xB))

∀xB ∈ XB.

Therefore, following their strategies x̄B
i (i ∈ N) from the Berge equilibrium

x̄B = (x̄B
1 , . . . , x̄B

N), the players obtain the vector guarantee f̄ S for all y ∈ Y;
furthermore, this guarantee is highest (Slater-maximal, see (3.5.9)) among all
guarantees yielded by the strategies xB

i (i ∈ N) from the other Berge equilibria
xB ∈ XB. (Note that in Example 2.4.1 the set of Slater-guaranteed Berge equilibria
is (x̄B, f̄ B) = ((1; 1), (1 − cos β); (1 − sin β)|β ∈ [0, π

2 ])).

3.5.2 Existence of Guaranteed Equilibrium in Mixed Strategies

Grau, teurer Freund, ist alle Theorie,
Und grün des Lebens goldner Baum.26

The existence of a Slater-guaranteed Berge equilibrium is established in the
noncooperative game under uncertainty in the class of mixed strategies, under
standard assumptions of game theory.

Problem Statement and Auxiliary Results Consider the noncooperative N-player
game under uncertainty defined by an ordered quadruple

� = 〈 N, {Xi}i∈N, YX, {fi(x, y)}i∈N 〉. (3.5.10)

Recall that in the game �,
N = {1, . . . , N} denotes the set of players, with an integer N � 2;
Xi ⊆ R

ni is the set of pure strategies xi of player i (i ∈ N);
Y ⊆ R

m is the set of uncertain factors y.

26German “My worthy friend, gray are all theories,
And green alone Life’s golden tree.” A quote from Faust, The Study (Mephistopheles), by J.W.
von Goethe.
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In this game, the players do not build any coalitions and each player i (i ∈ N)

chooses his pure strategy xi , which yields a pure strategy profile x = (x1, . . . , xN)

of the game �, and x ∈ X = ∏

i∈N
Xi .

By analogy with the inner minimum in maximin, we will assume the information
discrimination of the players: they report their chosen strategies xi (more precisely,
the strategy profile x = (x1, . . . , xN) ∈ X) to a DM, who is responsible for
uncertainty generation. This DM generates the uncertain factors in the form of a
counter-strategy profile y(x) : X → Y, y(·) ∈ YX. Thus, the uncertainty in the
game � will be identified with the m-dimensional vector function y(x) : X → Y.
Note that the DM chooses y(x) = yS(x) in order to achieve the Slater minimum of
f (x, yS(x)) in the N-criteria choice problem

�(x) = 〈 Y, {f (x, y) = (f1(x, y), . . . , fN(x, y)} 〉 (3.5.11)

for each x ∈ X. In other words, for each x ∈ X the system of strict inequalities

fi(x, y) < fi(x, yS(x)) ∀y ∈ Y, i ∈ N,

is inconsistent. Then the following result holds.

Proposition 3.5.1 Consider the game � under the assumptions that

(a) the sets Xi (i ∈ N) and Y are nonempty, convex and compact;
(b) the scalar functions fi(x, y) (i ∈ N) are continuous on X × Y and there exists

at least one j ∈ N such that for each x ∈ X the function fj (x, y) is strictly
convex in y ∈ Y, i.e. for any y(1), y(2) ∈ Y and any λ ∈ (0, 1),

fj

(
x, λy(1) + (1 − λ)y(2)

)
< λfj

(
x, y(1)

)
+ (1 − λ)fj

(
x, y(2)

)
.

Then there exists a unique Slater-minimal aware uncertainty yS(x) in this game
that is continuous in x ∈ X.

Proof If αi = const � 0 (i ∈ N) and
N∑

i=1
αi > 0, then for each x ∈ X the minimizer

yS(x) = arg min
y∈Y

N∑

i=1

αifi(x, y) (3.5.12)

is [152, pp. 68–69] a Slater-minimal uncertainty [79, 80] in (3.5.11). On the other
hand, under the assumptions of Proposition 3.5.1, using (3.5.12) with αj = const >

0 and αk = 0 (k �= j, k ∈ N) leads to the desired result, see [14, p. 54]. �
Thus, in the game � the first move belongs to the players: they choose and then

report their pure strategies xi ∈ Xi (i.e., the strategy profile x = (x1, . . . , xN) ∈
X) to a DM, who is “in charge of” uncertainty design. The second move is given
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to the DM—he generates the Slater minimal uncertainty y(x) = yS(x) and then
reports it to each player. The third move is made by the players—in the induced
noncooperative game without uncertainty

�b = 〈 N, {Xi}i∈N, {fi(x, yS(x))}i∈N 〉, (3.5.13)

they find a Berge equilibrium xB ∈X from the conditions

max
x∈X

fi

(
x||xB

i , yS

(
x||xB

i

))
= fi

(
xB, yS

(
xB

))
(i ∈ N). (3.5.14)

However, some difficulties may arise concerning the existence of pure-strategy
Berge equilibria xB = (xB

1 , . . . , xB
N) as game (3.5.13) evolves. (These equilibria

must satisfy the system of N equalities (3.5.14)). In fact, despite the continuity of
fi [x] = fi(x, yS(x)) (i ∈ N), there are numerous examples without an equilibrium
xB. Following the standard approach of mathematical game theory, we will consider
the mixed extension of game (3.5.13), i.e.,

�̃b = 〈 N, {μi}i∈N, {fi [μ]}i∈N 〉. (3.5.15)

By Theorem 2.9.1, game (3.5.15) possesses Berge equilibria μB(·) ∈ {μ} provided
the functions fi(x, yS(x)) are continuous in x ∈X (i ∈N). The Berge equilibria are
obtained from N equalities of the form

max
μ(·)∈{μ}

fi

[
μ||μB

i

]
= fi

[
μB

]
(i ∈ N). (3.5.16)

Next, for each compact set Xi , one considers the Borel σ -algebra of all subsets of
the set Xi and chooses as a mixed strategy μi(·) a nonnegative countably additive
scalar function μi(·) defined on this Borel σ -algebra that is normalized by unity
on Xi . Denote by {μi} the set of such mixed strategies. We introduce the product
measure μ(dx) =μ1(dx1) · · · μN(dxN) and the set {μ} in the same way as before.
Finally, in (3.5.15) and (3.5.16) the expectations are the payoff functions of players,
i.e.,

fi [μ] =
∫

X

fi(x, yS(x))μ(dx) (i ∈ N).

Theorem 2.9.1 ensures the existence of a product measure μB(·)∈{μ} that satisfies
conditions (3.5.16). Furthermore, the set of such Berge equilibrium measures {μB}
is weakly compact (see Proposition 2.9.1).

We will study game (3.5.1) and associate with it the quasi-mixed extension

〈 N, {μi}i∈N, YX, {fi[μ]}i∈N 〉, (3.5.17)

where N = {1, . . . , N};
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Fig. 3.10 Sequence of moves in game (3.5.1) based on SGBE

X = ∏
i∈N Xi is the set of pure strategy profiles x = (x1, . . . , xN) ∈ X in

game (3.5.1);
{μi} stands for the set of mixed strategies μi(·) of player i ∈ N; a mixed strategy

profile is the product measure μ(·) = μ1(·) · · ·μN(·);
YX is regarded as the set of uncertain factors, i.e., counter-strategies y(x) : X→

Y;
fi [μ] = ∫

X fi(x, y(x))μ(dx) is the payoff function of player i in game (3.5.17),
which represents the expectation of the payoff function fi(x, y) = fi(x, y(x)) in
game (3.5.1) under any realizations of the strategy profile x ∈ X and continuous
uncertainty y(·)∈C(X, Y) (Fig. 3.10).

Definition 3.5.2 A pair (μ̄B(·), f̃ S) ∈ {μ}×R
N is called a Slater-guaranteed Berge

equilibrium in mixed strategies in game (3.5.1) if there exists an uncertainty, i.e., a
counter-strategy yS(x) : X → Y, such that

(1◦) for each strategy profile x ∈ X the uncertainty yS(x) is a Slater-minimal
alternative in the N-criteria choice problem

�(x) = 〈 Y, {f (x, y)} 〉,
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that is, for each x ∈ X the system of inequalities

fi(x, y) < fi(x, yS(x)) ∀y ∈ Y, i ∈ N,

is inconsistent;
(2◦) the mixed strategy profile μB(·) ∈ {μ} is a Berge equilibrium in the mixed

extension

〈 N, {μi}i∈N, {fi [μ] =
∫

X

fi(x, yS(x))μ(dx)}i∈N 〉

of the noncooperative game without uncertainty

〈 N, {Xi}i∈N, {fi(x, yS(x)) = fi[x]}i∈N 〉,

i.e., for μB(·) all the N equalities of the form (3.5.16) hold; denote by {μB}
the set of all μB(·);

(3◦) the strategy profile μ̄B(·) ∈ {μB} is a Slater-maximal alternative in the N-
criteria choice problem

〈 {μB}, {fi[μ]}i∈N 〉, (3.5.18)

i.e., for any μ(·) ∈ {μB} the system of N strict inequalities

fi [μ] > fi

[
μ̄B

]
(i ∈ N)

is inconsistent;
(4◦) the components f̃ S

i (i ∈ N) of the vector f̃ S = (f̃ S
1 , . . . , f̃ S

N) satisfy f̃ S
i =

fi [μ̄B] (i ∈ N).

3.5.3 Existence Theorem

He that will not apply new re-
medies must expect new evils.

—Bacon27

The central result of this section—the existence of a Slater-guaranteed Berge
equilibrium in mixed strategies in game (3.5.1) under standard assumptions of
mathematical game theory—is established.

27Sir Francis Bacon, (1561–1626), was an English lawyer, statesman, and philosopher.
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Theorem 3.5.1 Consider game (3.5.1) under the assumptions that

(1◦) the sets Xi (i ∈N) and Y are convex and compact;
(2◦) the payoff functions fi(x, y) (i ∈N) are continuous on X × Y and there exists

at least one number j ∈ N such that for each x ∈ X the function fj (x, y) is
strictly convex in y ∈ Y.

Then there exists a Slater-guaranteed Berge equilibrium in mixed strategies in
this game.

Proof Assumptions (1◦) and (2◦) of Theorem 3.5.1 in combination with Propo-
sition 3.5.1 imply the existence of a continuous uncertainty yS(x) : X → Y
on X that is Slater minimal in the N-criteria choice problem �(x) (3.5.11) for
each x ∈ X. Next, construct the noncooperative N-player game (3.5.13) without
uncertainty. In this game, the payoff functions fi(x, yS(x)) are continuous on X
as superpositions of the continuous functions fi(x, y) and yS(x). Then the mixed
extension (3.5.15) of game (3.5.13) possesses a Berge equilibrium μB(·) ∈ {μ}.
Denote by {μB} the set of all Berge equilibria μB(·). This set is weakly compact,
which follows from the same weak properties of {μ} and inequalities (3.5.16). But
then the set FB = {

f [μB]|μB(·) ∈ {μB}} is also compact in R
N , and in addition

FB ⊂ F = {f [μ]| μ(·) ∈ {μ}}.
Consider the linear convolution

∑
i∈N αifi , where αi = const ≥ 0 (i ∈ N),

defined on the set FB . Due to the continuity on the compact set FB, there exists an
N-dimensional vector f̃ S = (f̃ S

1 , . . . , f̃ S
N) ∈ FB such that

max
f∈FB

∑

i∈N
αifi =

∑

i∈N
αi f̃

S
i .

Using f̃ S, find a mixed strategy profile μ̄B(·)∈ ∈{μB} for which

f̃ S
i = fi[μ̄B] (i ∈ N).

This profile μ̄B(·) is a Slater-maximal alternative in the N-criteria choice prob-
lem (3.5.18). Therefore, the resulting pair (μ̄B(·), f̃ S) ∈ {μ} × R

N is the
Slater-guaranteed Berge equilibrium in mixed strategies in game (3.5.1), as follows
directly from Definition 3.5.2. �
Remark 3.5.2 Let us discuss the game-theoretic meaning of Definition 3.5.2; recall
that f = (f1, . . . , fN ).

First, in accordance with condition (2◦) of this definition, every strategy profile
x ∈X generates a vector guarantee f (x, yS(x)) in pure strategies, since for all y ∈Y
all payoffs fi(x, y) cannot be simultaneously smaller than fi(x, yS(x)) (i ∈ N).
This expresses an analog of the inner minimum in maximin.

Second, inequalities (3.5.16) lead to

fi

[
x||μB

i

]
� fi

[
μB

]
∀x ∈ X (i ∈ N),
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because the Dirac δ-function δ(xi − x̄i)(dx̄i) is a probability measure from {μi} and
hence [22, p. 125]

f
[
x||μB

i

]
≮ f

[
μB

]
.

Hence, the mixed strategy Berge equilibrium μB(·) is stable against any pure
strategy deviations of the coalition of size N − 1.

Third, each vector guarantee f (x, yS(x)) in pure strategies (the Slater minimum
in �(x) = 〈Y, {f (x, y)}〉) yields a vector guarantee f [μ] in mixed strategies.
Really, the system of inequalities

f e
i [x] = fi(x, yS(x)) > fi(x, y) ∀ y = const ∈ Y, i ∈ N, (3.5.19)

is inconsistent for all x ∈ X if and only if, for each x ∈ X and each y ∈ Y, there
exists a corresponding number j (x, y) = j ∈ N such that

fj (x, yS(x)) � fj (x, y).

Integrating both sides with respect to x using an arbitrary mixed strategy profile
μ(·) ∈ {μ} as the integration measure gives

f S
j [μ]=

∫

X

fj (x, yS(x))μ(dx) �
∫

X

fj (x, y)μ(dx)=fj [μ, y] ∀ y = const∈Y,

which is equivalent to the following. Each mixed strategy profile μ(·) ∈ {μ}
yields the vector guarantee f S[μ] = (f S

1 [μ], . . . , f S
N [μ]), because for any y ∈ Y

all payoffs fi [μ, y] cannot be simultaneously smaller than f S
i [μ] (in terms of

component-wise comparison).
Fourth, by associating with the pure strategy game

〈 N, {Xi}i∈N, {fi(x, yS(x)) = f B
i [x]}i∈N 〉 (3.5.20)

its mixed extension

〈 N, {μi}i∈N, {f B
i [μ]}i∈N 〉, (3.5.21)

we have actually passed from the noncooperative game of vector guarantees (3.5.20)
in pure strategies to its mixed extension, i.e., the noncooperative game of vector
guarantees (3.5.21) in mixed strategies. Now, an analog of the outer maximum
in maximin is a sequential application of two operations, the calculation of all
Berge equilibria in game (3.5.15) and the construction of the Slater-maximal Berge
equilibrium μ̄B(·) among them. Consequently, by choosing their mixed strategies
and forming a mixed strategy profile μ(·) ∈ {μ}, the players obtain the payoffs
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fi [μ, y] = ∫
X fi(x, y)μ(dx) that cannot be simultaneously smaller than f S

i [μ] =∫
X fi(x, yS(x))μ(dx) (i ∈ N) under any pure uncertainties y ∈ Y. Among all the

Berge equilibria μB(·) ∈ {μ}, the solution recommends that the players use the
Slater-maximal measure, i.e., the strategy profile μ̄B(·) ∈ {μB} yielding the largest
(Slater-maximal) vector payoff f̄ [μ̄B]. As a matter of fact, this expresses an analog
of the outer maximum in maximin. �
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