
Chapter 2
Static Case of the Golden Rule

Celui qui croit pouvoir trouver en soi-même
de quoi se passer de tout le monde se trompe
fort; mais celui qui croit qu’on ne peut se
passer de lui se trompe encore davantage.

—La Rochefoucauld1

In this chapter, the concept of Berge equilibrium is introduced as a mathematical
model of the Golden Rule. This concept was suggested by the Russian mathe-
matician K. Vaisman in 1994. The Berge–Pareto equilibrium is formalized and
sufficient conditions for the existence of such an equilibrium are established. As
an application, the existence in the class of mixed strategies is proved.

2.1 What is the Content of the Golden Rule?

Virtue is its own reward.
—English proverb

In the religious-ethical foundations, most nations are guided by the same strategy
of behavior, embodied in the demands of the so-called Golden Rule (see Chap. 1). It
will hopefully become an established ethical rule for the behavior of the mankind.
The well-known statement of the Golden Rule declares, “Behave to others as you
would like them to behave to you” (from a lecture delivered by Academician A.
Guseinov, Director of RAS Institute of Philosophy, during The IX Moscow Science
Festival on October 10, 2014 at Moscow State University). It originates from the

1French “He who thinks he has the power to content the world greatly deceives himself, but he
who thinks that the world cannot be content with him deceives himself yet more.” François de La
Rochefoucauld (1613–1680) was a French classical writer; a quote from Réflexions ou Sentences
et Maximes morales (1665).
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New Testament, see the Gospel of Luke, Chapter 6:31, precepting that “And as ye
would that men should do to you, do ye also to them likewise.”

Prior to formalizing the concept of Berge equilibrium that matches the Golden
Rule, we will present the concept of Nash equilibrium as a standard approach to
resolve conflicts. In fact, a critical discussion of the latter has led to the Berge
equilibrium, the new solution of noncooperative games that is cultivated in this
book.

2.2 Main Notions

Suum cuique.2

Nowadays, when the world shudders at the possibility of escalating military
conflicts, the Golden Rule becomes more relevant than ever. Indeed, the Golden
Rule is a possible way to avoid wars and blood-letting. The modern science of
warfare relies mostly on the concept of Nash equilibrium. In this section, the
definition of a Nash equilibrium is given, preceded by background material from
mathematical theory of noncooperative games.

2.2.1 Preliminaries

Non multa sed multum.3

Some general notions from the mathematical theory of noncooperative
games that will be needed in the text are presented.

Which mythical means were used by Pygmalion to revivify Galatea? We do
not know the true answer, but Pygmalion surely was an operations researcher by
vocation: at some moment of time his creation became alive. This idea underlines
creative activities in any field, including mathematical modeling. To build an integral
entity from a set of odd parts means “to revivify” it in an appropriate sense:

“She has not yet been born:
she is music and word,
and therefore the un-torn,
fabric of what is stirred.” (Mandelshtam4)

2Latin “To each according to its own merits; to each his/her own.” This phrase appeared in
philosophical dialogs and treatises On Duties 1, 5, 14, and Tusculan Disputations, Vol. 22, by
Marcus Tullius Cicero (102–43 BC), a Roman statesman, lawyer, scholar, and writer.
3Latin “Not many, but much,” meaning not quantity but quality. This phrase belongs to Plinius the
Younger (62–114 A.D.); see Letters, VII, 9.
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This section is devoted to the revivification of a conflict.
What is a conflict? Looking beyond the common (somewhat criminal) meaning

of this word, we will use the following notion from [189, p. 333]: “conceptually
a conflict is any phenomenon that can be considered in terms of its participants,
their actions, the outcomes yielded by these actions as well as in terms of parties
interested in one way or another in these outcomes, including the nature of these
interests.” As a matter of fact, game theory suggests mathematical models of
optimal decision-making under conflict. The logical foundation of game theory is
a formalization of three fundamental ingredients, namely, the features of a conflict,
decision-making rules and the optimality of solutions. In this book, we study “rigid”
conflicts only, in which each party is guided by his own reasons according to his
perception and hence pursues individual goals, l’esprit les intérêst du clocher.5

The branch of game theory dealing with such rigid conflicts is known as the
theory of noncooperative games. The noncooperative games described in Chap. 2
possess a series of peculiarities. Let us illustrate them using two simple examples.

Example 2.1.1 Imagine several competing companies (firms) that supply the same
product in the market. Product price (hence, the profit of each firm) depends on
the total quantity of products supplied in the market. The goal of each firm is to
maximize its profit by choosing an appropriate quantity of supply.

Example 2.1.2 The economic potential of an individual country can be assessed
by a special indicator—a function that depends on controllable factors (taxation,
financial and economic policy, industrial and agricultural development, foreign
supplies, investments, credits, etc.) and also on uncontrollable factors (climate
changes and environmental disasters, anthropogenic accidents, suddenly sparked
wars, etc.). Each country seeks to achieve a maximal economic potential through
a reasonable choice of the controllable factors with a proper consideration of the
existing economic relations with other countries.

These examples elucidate well the character of noncooperative games.
The differentia specifica6 of such games are the following.
First, the decision-making process involves several parties (decision makers, e.g.,

sellers or governments), which are often called players in game theory. Note that a
priori they are competitors: quilibet (quisque) fortunae suae faber.7

Second, each player has an individual goal (profit or economic potential maxi-
mization) and the goals are bound to each other: tout s’enchaine, tout se lie dans ce

4Osip E. Mandelshtam, (1891–1938), was a major Russian poet, prose writer, and literary essayist.
5French, meaning narrow-mindedness and a lack of understanding or even interest in the world
beyond one’s own town’s boundaries.
6Latin, meaning a feature by which two subclasses of the same class of named objects can be
distinguished.
7Latin “Every man is the artisan of his own fortune.” This phrase goes back to Appius Claudius
Caecus (4–3 centuries BC), an outstanding statesman, legal expert and author of early Rome who
was one of the first notable personalities in Roman history.
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monde.8 A dazzling success of one party may turn out to be a disaster for another
party.

Third, each player uses his own tools for achieving his goal (for sellers, the quan-
tity of products supplied; for a country, the controllable factors in Example 2.1.2); in
game theory, the controllable factors of each player are called his strategies, while
a specific strategy chosen by a player is his decision or action in a noncooperative
game.

Let us list three important circumstances.
First, quantitative analysis in any field requires an appropriate mathematical

model; this fully applies to noncooperative games. In the course of mathematical
modeling, a researcher inevitably faces the risks of going too deep into details (“not
see the wood for the trees”) and presenting the phenomenon under study in a rough
outline (“throwing out the baby with the bathwater”). The mathematical model of a
noncooperative game often includes the following elements:

– the set of players;
– for each player, the set of his strategies;
– for each player, a scalar functional defined on the set of players’ strategies.

The value of this functional is the degree to which a given player achieves his
goal under given strategies. In game theory, the functional is called the payoff
function (or utility function) of a given player.

Second, “many intricate phenomena become clear naturally if treated in terms
of game theory.” [21, p. 97]. Following these ex cathedra9 pronouncements by
Russian game theory maître N. Vorobiev, we are employing the framework of
noncooperative games in this book.

A series of conventional requirements have been established for a game-
theoretic model (of course, including a sufficient adequacy to the conflict under
consideration) as follows.

First, the model must incorporate all interested parties of the conflict (players).
Second, the model must specify possible actions of all parties (the strategies of

players).
Third, the model must describe the interests of all parties (for each player and

each admissible collection of actions chosen by all players, the model must assign a
value called the payoff of that player).

The main challenges of game theory [24] are

(1◦) the design of optimality principles;
(2◦) the proof of existence of optimal actions for players;
(3◦) the calculation of optimal actions.

Different game-theoretic concepts of optimality often reflect intuitive ideas
of profitability, stability and equitability, rarely with an appropriate axiomatic

8French, meaning that all things in the worlds are interconnected.
9Latin “From the chair,” used with regard to statements made by people in positions of authority.
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characterization. Therefore, in most cases the notion of optimality in game theory
(an optimal solution of a game) is not unique, prior or absolute.

We will make the normative10 approach to noncooperative games the cornerstone
of this book: it will be established which behavior of the players should be
considered optimal (rational or reasonable) [47, 48].

Depending on the feasibility of joint actions among the players (coordination of
their individual actions), the games are classified as noncooperative, cooperative,
and coalitional [50].

In the noncooperative setup of a game (simply called a noncooperative game,
see above), each player chooses his action (strategy) in order to achieve the best
individual result for himself without any coordination with other players: chacun
pour soi, chacun chez soi.11

The cooperative setup of a game (cooperative game) is opposite to the noncoop-
erative one. Here all players jointly choose their strategies in a coordinate way and,
in some cases, even share the results (their payoffs). Alle für einen, einer für alle.12

Finally, in the coalitional setup of a game (coalitional game), all players are
partitioned into pairwise disjoint groups (coalitions) so that the members of each
coalition act cooperatively while all coalitions play a noncooperative game with
each other.

2.2.2 Elements of the Mathematical Model

Ad Disputandum13 Consider several subsystems that are interconnected with
each other. In economics, these can be industrial enterprises or sectors, countries,
sellers in a market, producers of every sort and kind with the same type of
products, and other economic systems (called firms in [124, p. 28]). In ecology,
industrial enterprises with the same purification and treatment facilities, competing
populations of different species (e.g., predators and preys), epidemics propagation
and control. In the mechanics of controlled systems, a group of controlled objects
(aircrafts, missiles) that attempt to approach each other or to capture an evader.

Each subsystem is controlled by a supervisor (henceforth called a player), who
undertakes certain actions for achieving his goal based on available information.
In social and economic systems, the role of players is assigned to the general
managers of industrial enterprises and business companies, the heads of states,

10There also exist other approaches to conflict analysis: descriptive, which is to find the resulting
collections of players’ actions (the so-called strategy profiles) in a given conflict; constructive,
which is to implement the desired (e.g., optimal) strategies in a given conflict; predictive, which is
to forecast the actual result (outcome) of a given conflict.
11French “Every man for himself, every man to himself.”
12German “One for all and all for one.”
13Latin “For discussion.”
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sellers (suppliers) and buyers (customers). In mechanical control systems, this role
is played by the captains of ships or aircrafts and the chiefs of control centers.

Assume that, due to a priori conditions, the players have to follow the “Help
yourself” slogan. This leads to the noncooperative setup of their interaction.

As an example, consider a simplified mathematical model of competition among
N firms in a market.

Example 2.2.3 There are N � 2 competing firms (players) that supply an infinitely
divisible good of the same type (flour, sugar, etc.) in a market. The cost of one unit
of good for firm i is ci > 0, i ∈ N = {1, . . . , N}. Suppose the number of market
participants is sufficiently small so that the prices for goods depend directly on the
quantity supplied by each firm. More specifically, denote by K the total supply
of goods in the market; then the price p of one good can be calculated as p =
max{a − Kb, 0}, where a > 0 gives the constant price of one good without any
supply in the market, while b > 0 is the elasticity coefficient that characterizes the
price drop in response to the supply of one unit of good. Here a natural assumption
is that ci < a, i ∈ N, since otherwise the activity of firms makes no economic
sense. In addition, the production capacities of the players are unlimited and they
sell the goods at the price p.

Suppose the firms operate in stable (not extreme) conditions and hence their
behavior is aimed at increasing profits. Denote by xi the quantity of goods supplied
by firm i (i ∈ N). Then the total supply of goods in the market is given by

K =
N∑

i=1

xi,

while the profit of firm i is described by the function

fi(x) = pxi − cixi (i ∈ N),

where (as before) p is the unit price.
Another reasonable hypothesis is that a − Kb > 0, since otherwise p = 0 and

production yields no benefit for all firms (the profits become negative, fi(x) =
−cixi < 0, i ∈ N). In this case, the function

fi(x) =
[
a − b

N∑

k=1

xk

]
xi − cixi (i ∈ N)

is the profit of firm i.
Therefore, in Example 2.2.3 the players are the competing firms and the action

(strategy) of each player i ∈ N consists in choosing the quantity xi ∈ Xi = [0,+∞)

of its goods supplied in the market. Making its choice, each player i seeks to
maximize its profit fi(x) (payoff) given the supplied quantities x = (x1, . . . , xN)

of all players.
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Idée Générale Now, let us clarify the framework of the noncooperative games
studied in this chapter.

For this purpose, we will answer Quintilian’s questions “Quis? Quid? Ubi?
Quibus auxiliis? Cur? Quomodo? Quando?”14

Quis? (Who?) In fact, a leading part in noncooperative games is assigned to
the players. As mentioned earlier, players can be general managers of industrial
enterprises and business companies, heads of states, sellers (suppliers) and buyers
(customers), captains of ships or aircrafts and so on, i.e., those who have the right
or authority to make decisions, give instructions and control their implementation
(interestingly, some people considering themselves to be (fairly!) serious strongly
object to such a game-theoretic interpretation of their activity). Each player has a
corresponding serial number: 1, 2, . . . , i, . . . , N . Denote by N = {1, 2, . . . , N} the
set of all players and let the set N be finite. Note that games with an infinite number
of players (called non-atomic games) are also studied in game theory [160, 171].
Players may form groups, i.e., coalitions K ⊆ N. A coalition is any subset K =
{i1, . . . , ik} of the player set N. In particular, possible coalitions are singletons (the
noncoalitional setup of the game) and the whole set N (the cooperative setup of the
game). A partition of the set N into pairwise disjoint subsets forming N in union is
a coalitional structure of the game:

P = {K1,K2, . . . ,Kl | Ki ∩ Kj = ∅ (i, j = 1, . . . , l; i �= j),

l⋃

i=1

Ki = N}.

For example, in the noncooperative three-player game (N = {1, 2, 3}), there exist
five possible coalitional structures, given by P1 = {{1}, {2}, {3}},P2 = {{1, 2}, {3}},
P3 = {{1}, {2, 3}}, P4 = {{1, 3}, {2}}, P5 = {{1, 2, 3}}.

For a compact notation, we will sometimes consider only two-player games,
letting N = {1, 2}.

In Example 2.2.3, the players are the general managers of competing firms.

Quid? (What?) Each player chooses and then uses his strategy. A strategy is
understood as a rule that associates each state of the player’s awareness with a
certain action (behavior) from a set of admissible actions (behaviors) given this
awareness. For the head of a state, this is a direction of strategic development.
In a sector composed of several industrial enterprises, a strategy of a general
manager is the output of his enterprise, the price of products, the amount of raw
materials and equipment purchased, supply contracts, investments, innovations and
implementation of new technologies, payroll redistribution, penalties, bonuses and
other incentive and punishment mechanisms. For a seller, a strategy is the price of

14Latin “Who? What? Where? Who helped? Why? How? When?”; a well-known system of seven
questions for crime investigation suggested by Roman rhetorician Quintilian, Latin in full Marcus
Fabius Quintilianus, (appr. 35–100 A.D.).
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one good; for the captain of a ship, own course (rudder angle, the direction and
magnitude of reactive force).

Thus, the action of each player consists in choosing and using his individual
strategy, which gives an answer to the question Quid? Speaking formally, the
strategy of player i in the game �3 is xi while the strategy set of this player is
denoted by Xi .

Ubi? (Where?) Here the answer is short: in the conflict, more precisely put, in its
mathematical model described by the noncooperative game. In Example 2.2.3, this
is the market of goods.

Quibus Auxiliis? Quomodo? (Who helped? How?) Actually the players affect the
conflict using their strategies, which is the answer to both questions.

In Example 2.2.3, the firms choose the quantities of their goods supplied in the
market as their strategies. The resulting situation in the market is the strategy profile
in the corresponding noncooperative game.

Cur? (Why?) The answer is: in order to assess the performance of each player. The
noncooperative game (the mathematical model of a conflict adopted in our book)
incorporates the payoff function of player i (i ∈ N). The value of this function
(called payoff or outcome in game theory) is a numerical assessment of the desired
performance. In Example 2.2.3, the payoff function of player i has the form

fi(x, y) =
[
a − b

∑

k∈N
xk

]
xi − cixi.

It measures the profit of firm i in the single-stage game. The following circum-
stances should be taken into account while assessing the performance of each player
in a noncooperative game.

First, the design of payoff functions (performance assessment criteria) is a rather
difficult and at times subjective task: “Nous ne désirerions guére de choses avec
ardeur, si nous connaissions parfaitement ce que nous dèsirons.”15 [119, p. 55].

Sometimes, the goal consists in higher profit or lower cost; in other cases, in
smaller environmental impact. Other goals are possible as well. As a rule, in a
noncooperative game these criteria represent scalar functions defined on the set of
all admissible strategy profiles. For the sake of definiteness, assume each player
seeks to increase his payoff function as much as possible.

Second, in accordance with the noncoalitional setup of the game, the players act
in an isolated way and do not form coalitions. Being guided by the Suum cuique
slogan,16 each player chooses his strategy by maximizing his own payoff.

15French “We would yearn for very few things if we clearly understood what we wanted.” A quote
from Réflexions ou Sentences et Maximes Morales by F. de La Rochefoucauld.
16Latin “To each his own,” or “May all get their due”; also, see the epigraph to Sect. 2.2.1.
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As a result, each player endeavors to implement his cherished goal: “Chacun
produit selon ses facultés et recoit selon ses besoins.”17

Third, the decision-making process in the noncooperative game is organized as
follows. Each player chooses and then uses his strategy, which yields a strategy
profile of the game. The payoff function of each player is defined on the set of
all admissible strategy profiles. The value of this function (payoff) is a numerical
assessment of the player’s performance.

In game theory, both terms are equivalent and widespread! Person = player.
At a conceptual level, during the decision-making process in the noncoalitional

game player i chooses his strategy xi ∈ Xi so that

first, this choice occurs simultaneously for all N players;
second, no agreements or coalitions among the players and no information
exchange are allowed during the game [178, p. 1].

Quando? (When?) The answer to the last question of Quantilian’s system is the
shortest: at the time of decision-making in the conflict (within its mathematical
model—the noncoalitional game) through an appropriate choice of strategies by
the players.

In principle, a conflict can be treated as a certain controlled system, a “black box”
in which the players input their strategies and receive their payoffs at the output.
This is a standard approach to “instantaneous, single-period, static” noncooperative
games in general game theory [23]. However, in most applications (particularly, in
economics and the mechanics of controlled systems), the controlled system itself
undergoes some changes with time, and the players are able to vary their strategies
during the whole conflict. The games whose state evolves in time are called dynamic.
Hopefully, our next book will be focused on the analysis of dynamic games.

2.2.3 Nash Equilibrium

Politica del campanile.18

A generally accepted solution concept for noncooperative games is the so-
called Nash equilibrium.19 Nash equilibrium is widely used in economics, military

17French “From each according to his ability, to each according to his needs.”
18Italian, “The policy of his/her own bell tower.” Used to describe narrow-mindness and commit-
ment to local interests.
19John Forbes Nash, Jr. Born June 13, 1928, in Bluefield, West Virginia. Successfully graduated
from the Carnegie Institute of Technology (now, Carnegie Mellon University) with bachelor’s and
master’s degrees in mathematics. Richard Duffin, Nash’s undergraduate advisor at the Carnegie
Institute of Technology, gave him a brief characterization, “He is a mathematical genius.” In 1948
Nash started his postgraduate study at Princeton University, where he was particularly influenced
by International Economy, the faculty course of J. von Neumann, and by the famous book Theory
of Games and Economic Behavior (1944), written by von Neumann together with O. Morgenstern.
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science, policy and sociology. Almost each issue of modern journals on operations
research, systems analysis or game theory contains papers involving the concept of
Nash equilibrium.

Thus, let us consider a noncooperative three-player game described by

�3 = 〈 {1, 2, 3}, {Xi}i=1,2,3, {fi(x)}i=1,2,3
〉
,

where each player i ={1, 2, 3} chooses an individual strategy xi ∈Xi ⊆ R
ni in order

to increase his performance fi(x = (x1,x2,x3)), i.e., his payoff fi(x) in a current
strategy profile x = (x1, x2, x3) ∈ ∈ X1 × X2 × X3 = X.

A Nash equilibrium is a pair (xe, f e = (f1(x
e), f2(x

e), f3(x
e)) ∈ X × R

3

defined by the three equalities

f1(x
e) = max

x1∈X1
f1
(
x1, x

e
2, x

e
3

)
,

f2(x
e) = max

x2∈X2
f2
(
xe

1, x2, x
e
3

)
,

f3(x
e) = max

x3∈X3
f3
(
xe

1, x
e
2, x3

)
.

(2.2.1)

Each player therefore acts selfishly, seeking to satisfy his individual ambitions
regardless of the interests of the other players. As repeatedly mentioned earlier, this
concept of equilibrium was suggested in 1949 by J. Nash, a Princeton University
graduate at that time and a famous American mathematician and economist as
we know him today. Moreover, 45 years later J. Nash, J. Harsanyi and R. Selten
were awarded the Nobel Prize in Economic Sciences “for the pioneering analysis
of equilibria in the theory of non-cooperative games.” Let us note two important
aspects. First, owing to his research in the field of game theory, by the end of the
twentieth century J. Nash became a leading American apologist of the Cold War.
Second, the Nash equilibrium had been so widely used in economics, sociology, and
military science that during the period 1994–2012 the Nobel Committee awarded
seven Nobel Prizes for different investigations that to a large degree stemmed from
the concept of Nash equilibrium. However, the selfish character of NE prevents it
from “paving the way” towards a peaceful resolution of conflicts.

In 1949 Nash presented his thesis on equilibrium solutions of noncooperative games; after 45
years—in 1994—he was awarded the Noble Prize in Economic Sciences for that research. From
1951 to 1959 worked at the Cambridge at Massachusetts Institute of Technology (MIT). In 1958
Fortune called Nash “America’s brilliant young star of the ‘new mathematics.”’ In 1959 moved
to California to work for the RAND Corporation and became a leading expert in the Cold War.
Since 1959 suffered from a mental disorder (completely overcame the disease by 1980, to the
great astonishment of doctors). Since 1980 again worked at Princeton University as a consulting
professor. Was killed in a car crash on May, 24, 2015, at the age of 86. Throughout the world, Nash
is well-known through R. Howard’s movie A Beautiful Mind (2001, featuring R. Crowe) based on
S. Nasar’s book Beautiful Mind: The Life of Mathematical Genius and Nobel Laureate John Nash.
The movie received four Oscars and the Golden Globe.
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2.2.4 Berge Equilibrium

Que jamais le mérite avec lui ne
perd rien, Et que, mieux que du
mal, il se souvient du bien.20

Almost all notions in the modern theory of measure
and integral go back to Lebesgue’s works,

and introduction of these notions was in some sense
a turning point of transition from the mathematics of

the 19th century to the science of the 20th century.
—Vilenkin21

A peaceful resolution of conflicts can be achieved using Berge equilibrium (BE).
This concept appeared in 1994 in Russia, following a critical analysis of C. Berge’s
book [202]. Interestingly, Berge wrote his book as a visiting professor at Princeton
University, simultaneously with Nash, who also worked there under support of the
Alfred P. Sloan Foundation.

A Berge equilibrium is a pair (xB, f B = (f1(x
B), f2(x

B), f3(x
B))) defined by

the equalities

f1
(
xB
) = max

(x2,x3)∈X2×X3
f1
(
xB

1 , x2, x3
)
,

f2
(
xB
) = max

(x1,x3)∈X1×X3
f2
(
x1, x

B
2 , x3

)
,

f3
(
xB
) = max

(x1,x2)∈X1×X2
f1
(
x1, x2, x

B
3

)
.

(2.2.2)

Equilibria (2.2.2) and (2.2.1) exhibit the following fundamental difference.
In (2.2.1), each player directs all efforts to increase his individual payoff (the
value of his payoff function) as much as possible. The antipode of (2.2.1) is (2.2.2),
where each player strives to maximize the payoffs of the other players, ignoring
his individual interests. Such an altruistic approach is intrinsic to kindred relations
and occurs in religious communities. The elements of such altruism can be found
in charity, sponsorship, and so on. The concept of Berge equilibrium also provides
a solution to the Tucker problem in the well-known Prisoner’s Dilemma (see
Example 2.6.1 below). Due to (2.2.2), an application of this equilibrium concept
eliminates armed clashes and murderous wars. This is an absolute advantage of
Berge equilibrium.

As a matter of fact, the Berge equilibrium had an unenviable fate. The publication
of the book [202] in 1957 initiated a sharp response of Shubik [269, p. 821]
(“. . . no attention has been paid to applications to economics. . . the book will be
of a little direct interest to economists. . . ”). Most likely, such a negative review

20“And will not let true merit miss its due, Remembering always rather good than evil.” A quote
from Tartuffe, Scene VII, a famous theatrical comedy by Molière (1622–1873).
21Naum Ya. Vilenkin, (1920–1991), was a Soviet mathematician and student of A. G. Kurosh, who
contributed to general algebra, topology, real-variable theory and functional analysis. A quote from
Kvant, 1975, no. 8, p. 2.
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in combination with Shubik’s authority in scientific community pushed away the
Western experts in game theory and economics from the book [202]. In Russia,
after its translation in 1961, the book was analyzed in depth (Russian researchers
were not acquainted with Shubik’s review!) and the concept of Berge equilibrium
was suggested on the basis of an appropriate modification of the notion of Nash
equilibrium. The difference between Berge equilibrium and Nash equilibrium is
that the former postulates stable payoffs against the deviations of all players
and also reassigns the “ownership” of the payoff function (in the definition of
a Nash equilibrium, the strategies of a separate player and all other players are
interchanged). Note that the book [202] did not actually introduce the definition
of Berge equilibrium, but it inevitably comes to mind while studying the results of
Chaps. 1 and 5 of [202].

Subsequently, the Berge equilibrium was rigorously defined in 1994–1995 by
K. Vaisman in his papers and dissertation [11, 13, 302], under the scientific super-
vision of V. Zhukovskiy. This concept was immediately applied in [280, 281] for
noncooperative linear-quadratic positional games under uncertainty. Unfortunately,
Vaisman’s sudden death at the age of 35 suspended further research on Berge
equilibrium in Russia. At that time, however, the concept of Berge equilibrium was
“exported from Russia” by Algerian postgraduates of V. Zhukovskiy Radjef [266]
and Larbani [248]. Later on, it was actively used by Western researchers (e.g., see
the survey [255] with over 50 references and also the recent review [131, pp. 53–
56] published in Ukraine). As shown by these and more than 100 subsequent
publications, most of research works are dedicated to the properties of Berge
equilibrium, the specific features and modifications of this concept, and relations to
Nash equilibrium. It seems that an incipient theory of Berge equilibrium will soon
emerge as a rigorous mathematical theory. Hopefully, an intensive accumulation of
facts will be replaced by the stage of evolutionary internal development.

This chapter reveals the internal instability of the set of Berge equilibria.
To eliminate this negative feature, we suggest a method to construct a Berge
equilibrium that is Pareto-maximal with respect to all other Berge equilibria. The
method reduces to a saddle point calculation for an auxiliary zero-sum two-player
game that is effectively designed using the original noncooperative game. As a
supplement, we prove the existence of such a (Pareto refined) Berge equilibrium
in mixed strategies under standard assumptions of mathematical game theory, i.e.,
compact strategy sets and continuous payoff functions of the players.

2.3 Compactness of the Set XB

The notion of infinity is our greatest friend;
it is also the greatest enemy of our peace in mind.

—Pierpont22

22James P. Pierpont, (1866–1938), was an American mathematician. Known for research in the
field of real and complex variable functions.
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It is shown that the set of Berge equilibria is closed and bounded.

Thus, we consider the mathematical model of a conflict in the form of a
noncooperative N-player game, N � 2, described by an ordered triplet

� = 〈{N}, {Xi}i∈N, {fi(x)}i∈N〉. (2.3.1)

Here N = {1, 2, . . . , N} denotes the set of players; each of the N players, forming
no coalitions with other players, chooses his strategy (action) xi ∈ Xi ⊆ R

ni

(throughout the book, the symbol R
k, k � 1, stands for the k-dimensional

Euclidean space whose elements are ordered sets of k real numbers in the form
of columns, with the standard scalar product and the Euclidean norm); such a
choice yields a strategy profile x = (x1, . . . , xN) ∈ X = ∏

i∈NXi ⊆ R
n (n =∑

i∈Nni); a payoff function fi(x) defined on the set X numerically assesses the
performance of player i (i ∈ N); let (x‖zi) = (x1, . . . , xi−1, zi , xi+1, . . . , xN) and
f = (f1, . . . , fN).

A pair (xB, f B) = ((xB
1 , . . . , xB

N), (f1(x
B), . . . , fN (xB))) ∈ X ×R

N is called a
Berge equilibrium in game (2.3.1) if

max
x∈X

fi

(
x‖xB

i

)
= fi

(
xB
)

(i ∈ N). (2.3.2)

In the sequel, we will consider mostly the strategy profiles xB from such pairs, also
calling them Berge equilibria in game (2.3.1).

Property 2.3.1 If in the game � the sets Xi are closed and bounded, i.e., Xi ∈
comp R

ni , and the payoff functions fi(·) are continuous, fi(·) ∈ ∈ C(X) (i ∈ N),
then the set XB of all Berge equilibria in the game � is compact in X (possibly,
empty) and f (XB) ∈ comp R

N .

Proof Since XB ⊆ X and X ∈ comp R
n, then XB is bounded. Thus, if we can

show that XB is closed, then XB ∈ comp R
n. Let us prove the closedness of

XB by contradiction. Assume that, for a infinite sequence {x(k)}∞k=0, x(k) ∈ XB ,
there exist a subsequence {x(kr)}∞r=0 and a strategy profile x∗ ∈ X such that, first,
limr→∞ x(kr ) = x∗ and, second, x∗ �∈ XB .

Since x∗ �∈ XB , there exist a strategy profile x̄ ∈ X and a number j ∈ N such
that fj (x̄‖x∗

j )>fj (x
∗), where x∗ = (x∗

1 , . . . , x∗
j , . . . , x∗

N) and, as before, (x̄‖x∗
j ) =

(x̄1, . . . , x̄j−1, x
∗
j , x̄j+1, . . . , x̄N ).

Owing to the continuity of fj (x̄‖xj ) and fj (x) in x ∈ X and the convergence
limr→∞ x(kr ) = x∗, there exists an integer M > 0 such that, for r � M ,
fj (x̄‖x(kr )

j ) > fi(x
(kr )). This strict inequality contradicts fj (x‖xB

j ) � fj (x
B)

∀x ∈ X, and the conclusion follows. �
Corollary 2.3.1 Let the hypotheses of Property 2.3.1 be valid and the set XB �= ∅
in the game �. Then there exists a Berge equilibrium that is Pareto-maximal with
respect to all other equilibria xB ∈ XB in this game.
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Indeed, since the set XB is compact, fi(·) ∈ C(X) (i ∈ N) and the hypotheses of
Property 2.3.1 hold, the N-criteria choice problem

〈
XB, {fi(x)}i∈N

〉

has a Pareto-maximal alternative xB ∈ XB [152, p. 149]. In other words, for every
x ∈ XB, the system of N inequalities

fi(x) � fi(x
B) (i ∈ N),

with at least one strict inequality, is inconsistent.

2.4 Internal Instability of the Set XB

It is easier to stop the Sun and move the Earth
than to decrease the sum of angles in a triangle,

to make parallels converge, and to drop perpendiculars
to the same line from a far distance.

—Kagan23

It is found that there may exist two Berge equilibria, in one of which each
player has a strictly greater payoff than in the other.

Property 2.4.1 The set XB of all Berge equilibria can be internally unstable, i.e.,
in the game � there may exist two Berge equilibria x(1) and x(2) such that, for all
i ∈ N,

fi

(
x(1)

)
> fi

(
x(2)

)
.

Example 2.4.1 Consider a noncooperative two-player game (N = 2) of the form

�2=
〈
{1, 2}, {Xi =[−1,+1]}i=1,2,

{
f1(x)=−x2

2 + 2x1x2, f2(x)=−x2
1 + 2x1x2

}〉
.

In this game, the strategy profiles are x = (x1, x2) ∈ [−1,+1]2, the strategy sets
of both players coincide, Xi = [−1,+1] (i = 1, 2), while the Berge equilibrium
xB = (xB

1 , xB
2 ) is defined by the inequalities

−x2
2 + 2xB

1 x2 � − (
xB

2

)2 + 2xB
1 xB

2 ,

−x2
1 + 2x1x

B
2 � − (

xB
1

)2 + 2xB
1 xB

2 ∀ xi ∈[−1,+1] (i = 1, 2),

23Veniamin F. Kagan, (1860–1953), was a Russian and Soviet mathematician. A quote translated
into English from Kvant, 1975, no. 6, p. 16.
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Fig. 2.1 (a) Set of Berge equilibria. (b) Payoffs in Berge equilibria

or

−
(
x2 − xB

1

)2
�−

(
xB

2 − xB
1

)2
, −

(
x1 − xB

2

)2
�−(xB

1 −xB
2 )2 ∀x1, x2 ∈[−1,+1]

(these inequalities follow from (2.3.2)). Hence, xB
1 = xB

2 = α for all α = const ∈
[−1,+1] (see Fig. 2.1a), and then f B

i = fi(x
B) = α2 for all α = const ∈ [−1,+1]

(see Fig. 2.1b).
Thus, we have established that, first, there may exist a continuum of Berge

equilibria (in Example 2.4.1, the set XB = AB as illustrated by Fig. 2.1a) and,
second, the set XB is internally unstable, since fi(0, 0) = 0 < fi(1, 1) = 1
(i = 1, 2) (see Fig. 2.1b).

Hence, in the game � the players should use the Berge equilibrium that is Pareto-
maximal with respect to all other Berge equilibria. We introduce the following
definition for further exposition.

Definition 2.4.1 A strategy profile x∗ ∈ X is called a Berge–Pareto equilibrium
(BPE) in the game � if

(1) x∗ is a Berge equilibrium in � (x∗ satisfies conditions (2.3.2));
(2) x∗ is a Pareto-maximal alternative in the N-criteria choice problem

�c =
〈
XB, {fi(x)}i∈N

〉
,

i.e., for any alternatives x ∈ XB, the system of inequalities

fi(x) � fi(x
∗) (i ∈ N),

with at least one strict inequality, is inconsistent.

In Example 2.4.1, we have two BPE, x(1) = (−1; −1) and x(2) = (+1; +1),
with the same payoffs fi(x

(1)) = fi(x
(2)) = 1 (i = 1, 2).
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Remark 2.4.1 If XB �= ∅, Xi ∈ comp R
ni , and fi(·) ∈ C(X) (i ∈ N), then

Definition 2.4.1 relies on Corollary 2.3.1, stating that the set of BPE is nonempty
under the two requirements above.

Interestingly, the set of Nash equilibria in the game � is also internally unstable
(this is demonstrated by Example 2.4.1 with the change x1 ↔ x2).

In the forthcoming sections, we will establish sufficient conditions for the
existence of a BPE, which are reduced to a saddle point calculation for an
auxiliary zero-sum two-player game that is effectively designed using the original
noncooperative game.

2.5 No Guaranteed Individual Rationality of the Set XB

Among the splendid generalizations effected by modern mathematics,
there is none more brilliant or more inspiring or more fruitful,

and none more commensurate with the limitless immensity of being itself,
than that which produced the great concept designated . . .

hyperspace or multidimensional space.
—Keyser24

A Nash equilibrium has the property of individual rationality, whereas a
Berge equilibrium generally does not, as illustrated by an example in this section.
It is also established that there may exist a Berge equilibrium in which at least
one player obtains a smaller payoff than the maximin.

Another negative property of a Berge equilibrium is the following.

Property 2.5.1 A Berge equilibrium may not satisfy the individual rationality
conditions, as opposed to the Nash equilibrium xe in the game �2 (under the
assumptions Xi ∈ comp R

ni and fi(·) ∈ C(X) (i ∈ N), the game �2 (the game
� with N = {1, 2}) satisfies the inequalities

f1(x
e) � max

x1∈X1
min

x2∈X2
f1(x1, x2), f2(x

e) � max
x2∈X2

min
x1∈X1

f2(x1, x2),

known as the individual rationality conditions).

Example 2.5.1 Consider a noncooperative two-player game of the form

�′
2 = 〈{1, 2}, {X1 = (−∞,+∞), X2 = [−1,+1]}, {f1(x) =

= −4x2
1 + 2x1x2 + x2

2 , f2(x) = −(x1 − 1)2 + 5}〉,

24Cassius Jackson Keyser, (1862–1947), was an American mathematician of pronounced philo-
sophical inclinations. A quote from On Mathematics and Mathematicians, R.E. Moritz, Ed., New
York: Dover, 1958, pp. 360–361.
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where x = (x1, x2). A Berge equilibrium xB = (xB
1 , xB

2 ) in the game �′
2 is defined

by the two equalities

max
x2∈X2

f1

(
xB

1 , x2

)
= f1

(
xB
)

, max
x1∈X1

f2

(
x1, x

B
2

)
= f2

(
xB
)

.

The second equality holds only for the strategy xB
1 = 1. Due to the strong convexity

of f1(x) in x2 (which follows from the fact that
∂2f1(x

B
1 ,x2)

∂x2
2

∣∣∣∣
x2

= 2 > 0), the

maximum of the function

f1

(
xB

1 , x2

)
= −4 + 2x2 + x2

2

is achieved on the boundary of X2, more specifically, at the point xB
2 = 1. Thus, the

game �′
2 has the Berge equilibrium xB = (1, 1), and the corresponding payoff is

f1(x
B) = f1(1, 1) = −1.

Now, find max
x1∈X1

min
x2∈X2

f1(x1, x2) in two steps as follows. In the first step, construct

a scalar function x2(x1) that implements the inner minimum:

min
x2∈X2

f1(x1, x2) = f1(x1, x2(x1)) ∀x1 ∈ X1.

By the strong convexity of f1(x1, x2) in x2,

∂f1(x1, x2)

∂x2

∣∣∣∣
x2(x1)

= 2x1 + 2x2(x1) = 0,

yielding the unique solution x2(x1) = −x1 and f1[x1] = f1(x1, x2(x1)) = −5x2
1 .

In the second step, construct the outer maximum, i.e., find

max
x1∈X1

f1[x1] = max
x1∈R

f1(x1, x2(x1)) = max
x1∈R

[
−5x2

1

]
= 0.

Consequently,

f1(x
B) = −1 < 0 = max

x1∈R
f1(x1, x2(x1)) = max

x1∈R
min

x2∈[−1,+1] f1(x1, x2),

which shows that the individual rationality property may fail for a Berge equilib-
rium.

Remark 2.5.1 Individual rationality is a requirement for a “good” solution in both
noncooperative and cooperative games: each player can guarantee the maximin
individually, i.e., by his own maximin strategy, regardless of the behavior of the
other players [173]. However, in a series of applications (especially for the linear-
quadratic setups of the game), the maximin often does not exist. Such games were
studied in the books [52, pp. 95–97, 110–116, 120] and [93, pp. 124–131].
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In the case where game (2.3.1) has maximins, Vaisman suggested to incorporate
the individual rationality property into the definition of a Berge equilibrium. Such
equilibria are called Berge–Vaisman equilibria.

2.6 Two-Player Game

You don’t have to be a mathematician
to have a feel for numbers.

—Nash25

The specific features of Berge equilibria in two-player games are identified.

Non-antagonistic Case Consider a special case of game (2.3.1) with two players,
i.e., the game � in which N = {1, 2}. Then a Berge equilibrium xB = (xB

1 , xB
2 ) is

defined by the equalities

f1

(
xB
)

= max
x2∈X2

f1

(
xB

1 , x2

)
, f2

(
xB
)

= max
x1∈X1

f2

(
x1, x

B
2

)
.

Recall that a Nash equilibrium xe in this two-player game is given by the conditions

f1
(
xe) = max

x1∈X1
f1
(
x1, x

e
2

)
, f2

(
xe) = max

x2∈X2
f2
(
xe

1, x2
)
.

A direct comparison of these independent formulas leads to the following result.

Property 2.6.1 A Berge equilibrium in game (2.3.1) with N = {1, 2} coincides
with a Nash equilibrium if both players interchange their payoff functions and then
apply the concept of Nash equilibrium to solve the modified game.

Remark 2.6.1 In view of Property 2.6.1, a special theoretical study of Berge
equilibrium in game (2.3.1) with N = {1, 2} seems unreasonable, despite careful
attempts by a number of researchers. In fact, all results concerning Nash equilibrium
in a two-player game are automatically transferred to the Berge equilibrium setting
(of course, with an appropriate “interchange” of the payoff functions, as described
by Property 2.6.1).

Let us proceed with an example of a two-player matrix game in which the players
have higher payoffs in a Berge equilibrium than in a Nash equilibrium (in the setting
of game, this is an analog of the Prisoner’s Dilemma).

Also note the following interesting fact for game (2.3.1) with N = {1, 2}, fi(x) =
xT

1 Aix1 + xT
2 Bix2, the strategies x1 ∈ R

n1 and x2 ∈ R
n2 , where the matrices Ai

and Bi of compatible dimensions are square, constant and symmetric, A1 > 0,
B1 < 0, A2 < 0, and B2 > 0 (the notation A > 0 (<) stands for the positive
(negative) definiteness of the quadratic form xT Ax): in this game, there exist no

25From a PBS interview with John F. Nash.
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Nash equilibria, while the strategy profile (0n1, 0n2) forms a Berge equilibrium (as
before, 0k denotes the zero vector of dimension k).

Example 2.6.1 Consider the bimatrix game in which player 1 has two strategies,
i.e., chooses between rows 1 and 2. Accordingly, the strategies of player 2 are
represented by columns 1 and 2. For example, the choice of the strategy profile
(1, 2) means that the payoffs of players 1 and 2 are 4 and 7, respectively.

According to the above definitions, in this bimatrix game the strategy profiles
(2, 2) and (1, 1) are a Nash and Berge equilibrium, respectively. As 6 > 5, the
payoffs of both players in the Berge equilibrium are strictly greater than their
counterparts in the Nash equilibrium. The same result occurs in the Prisoner’s
Dilemma, a well-known bimatrix game. Note that the paper [255] gave some
examples of 2 × 2 bimatrix games in which the payoffs in a Nash equilibrium are
greater than or equal to those in a Berge equilibrium.

Antagonistic Case To conclude this section, consider the antagonistic case of
game (2.3.1), which arises for � with N = {1, 2} and f2(x) = −f1(x) = f (x).
In other words, consider an ordered triplet

�a = 〈{1, 2}, {Xi}i=1,2, f (x)
〉
.

A conventional solution of the game �a is the saddle point x0 = (x0
1 , x0

2) ∈ X1×X2,
which is formalized here by the chain of inequalities

f
(
x0

1 , x2

)
� f

(
x0
)
� f

(
x1, x

0
2

)
∀ xi ∈ Xi (i = 1, 2). (2.6.1)

Property 2.6.2 For the antagonistic case �a of the game �, the Berge equilibrium
(xB

1 , xB
2 ) matches the saddle point (x0

1 , x0
2) defined by (2.6.1).

The proof of this property follows immediately from the inequalities

f1

(
xB

1 , x2

)
� f1

(
xB
)

, f2

(
x1, x

B
2

)
� f2

(
xB
)

∀ xi ∈ Xi (i = 1, 2)

and the identity f (x) = f2(x) = −f1(x) ∀ x ∈ X. �
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2.7 Comparison of Nash and Berge Equilibria

There are only two kinds of certain knowledge:
Awareness of our own existence and the truths of mathematics.

—d’Alembert26

A detailed comparison of Berge and Nash equilibria is made.

NE BE

Stability

against a unilateral deviation of a single
player, since the inequality

fi(x
e
1, . . . , xe

i−1, xi , x
e
i+1, . . . , x

e
N)�fi(x

e)

holding ∀xi ∈Xi (i ∈N) implies that the
payoff of the deviating player i is not greater
than in the NE.

against the deviations of the coalition of all
players except player i, since the inequality

fi(x1, . . . , xi−1,x
B
i, xi+1, . . . ,xN)�fi(x

B)

holding ∀xj ∈Xj (j ∈N\{i}, i ∈N) implies
that the payoff of each player i under such a
deviation of the coalition of the other N − 1
players from the BE is not greater than in the
BE.

Individual rationality (IR)

Here and in the sequel, xN\{i}=(x1, . . . , xi−1,

xi+1, . . . , xN ) ∈ XN\{i} = ∏
j∈N\{i}

Xj . If xe

exists and

Generally speaking, fails (see Property 2.5.1,
Example 2.5.1, and Remark 2.5.1).

f
g
i = max

xi∈Xi

min
xN\{i}∈XN\{i}

f (x‖xi ) =
= min

xN\{i}∈XN\{i}
fi(x‖xg

i ) (i ∈ N), then

fi(x
e)�f

g
i (i∈N), i.e., NE satisfies the IR

condition.

Internal instability

The set of NE is internally unstable (see proof
in [54]).

The set of BE is internally unstable (see
Property 2.4.1 and Example 2.4.1).

To eliminate this drawback both for the NE and BE,

Pareto maximality with respect to

the other equilibria of a given type is required.

Saddle point (SP) in the game

�a = 〈{1, 2}, {Xi}i=1,2, {f1(x1, x2), f2(x1, x2) = −f1(x1, x2)}
〉

is a special case of NE and BE.

NE coincides with the SP (xe
1, xe

2) of the form
max
x1∈X1

f1(x1, x
e
2)=

= f1(x
e
1, x

e
2) = min

x2∈X2
f1(x

e
1, x2).

The BE coincides with the SP (xB
1 , xB

2 ) of the
form max

x2∈X2
f1(x

B
1 , x2) =

= f1(x
B
1 , xB

2 ) = min
x1∈X1

f1(x1, x
B
2 ).

26Jean Le Rond d’Alembert, (1717–1783), was a French mathematician, philosopher, and writer.
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Conclusions

The main difficulty in many modern developments of mathematics
is not to learn new ideas but to forget old ones.

—Sawyer27

Nash equilibria have three undisputable advantages, namely, they are stable,
coincide with the saddle point (containing this generally accepted concept as a
special case), and satisfy the individual rationality condition. The first and second
advantages are shared also by the Berge equilibria.

At the same time, Nash equilibria suffer from several drawbacks, namely, the
internal instability of the set of NE and selfishness (each player seeks to increase his
individual payoff, as by definition ∀i ∈ N: fi(x

e) = max
xi∈Xi

fi (x
e‖xi)).

Internal instability is intrinsic to the set of BE too. This negative feature can be
eliminated by requiring Pareto maximality for the NE and BE. The selfish nature of
NE is eliminated using the altruistic orientation of BE (“help the others if you seek
for their help”). This constitutes a clear merit of BE as a way of benevolent conflict
resolution.

2.8 Sufficient Conditions

Mathematics as an expression of the human mind reflects the active will,
the contemplative reason, and the desire for aesthetic perfection.

Its basic elements are logic and intuition, analysis and construction,
generality and individuality. Though different traditions may emphasize

different aspects, it is only the interplay of these antithetic forces
and the struggle for their synthesis that constitute the life, usefulness,

and supreme value of mathematical science.
—Courant28

2.8.1 Continuity of the Maximum Function of a Finite
Number of Continuous Functions

I turn with terror and horror from this lamentable scourge
of continuous functions with no derivatives.29

27Walter Warwick Sawyer, (1911–2008), was a British mathematician, mathematics educator and
author, who popularized mathematics on several continents.
28Richard Courant, (1888–1972), was a German-born American mathematician, educator and
scientific organizer who made significant advances in the calculus of variations. A quote from The
Australian Mathematics Teacher, vols. 39–40, Australian Association of Mathematics Teachers,
1983, p. 3.
29From a letter of French mathematician Charles Hermite, (1822–1901), to Dutch mathematician
Thomas Joannes Stieltjes, (1856–1894), written in 1893.
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An auxiliary result from operations research is described, which will prove
fruitful for the ensuing theoretical developments.

Consider N + 1 scalar functions ϕi(x, z) = fi(x‖zi) − fi(z) (i ∈ N) and
ϕN+1(x, z) = ∑

i∈N
[fi(x) − fi(z)] that are defined on the Cartesian product X × Z;

from this point on, all strategy profiles x = (x1, . . . , xN) ∈ X = ∏
i∈N Xi ⊂ R

n

(n = ∑
i∈N ni), and also xi, zi ∈ Xi (i ∈ N), z = (z1, . . . , zN ) ∈ Z = X ⊂ R

n

(recall that (x‖zi) = (x1, . . . , xi−1, zi , xi+1, . . . , xN)).

Lemma 2.8.1 If the N + 1 scalar functions ϕj (x, z) (j = 1, . . . , N,N + 1) are
continuous on X × Z while the sets X and Z are compact (X, Z ∈ comp R

n), then
the function

ϕ(x, z) = max
j=1,...,N+1

ϕj (z, z) (2.8.1)

is also continuous on X × Z.

The proof of a more general result can be found in many textbooks on operations
research, e.g., [136, p. 54]; it was included even in textbooks on convex analysis [46,
p. 146]. Note that function (2.8.1) is called the Germeier convolution of the
functions ϕj(x, z) (j =1, . . . , N+1).

Finally, note that our choice of Hermite’s quote on “terror and horror” refers to
the fact that although each of the functions ϕj (x, z) can be differentiable, in general
this is not necessarily true for the function ϕ(x, z) defined by (2.8.1).

2.8.2 Reduction to Saddle Point Design

The result presented in this section is the pinnacle of our book.

Thus, using the payoff functions fi(x) of game (2.3.1), construct the Germeier
convolution

ϕ(x, z)= max

⎧
⎨

⎩[fi(x‖zi)−fi(z) (i ∈ N)],
⎛

⎝
∑

j∈N
fj (x)−

∑

j∈N
fj (z)

⎞

⎠

⎫
⎬

⎭ , (2.8.2)

with the domain of definition X × (Z = X).
A saddle point (x0, zB) ∈ X × Z of the scalar function ϕ(x, z) in the zero-sum

two-player game

�a = 〈X, Z = X, ϕ(x, z)〉
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is defined by the chain of inequalities

ϕ
(
x, zB

)
� ϕ

(
x0, zB

)
� ϕ

(
x0, z

)
∀ x, z ∈ X. (2.8.3)

Theorem 2.8.1 If in the zero-sum two-player game �a, there exists a saddle
point (x0, zB), then the minimax strategy zB is a Berge–Pareto equilibrium in
noncooperative game (2.3.1).

Proof In view of (2.8.2), the first inequality in (2.8.3) with z = x0 shows that
ϕ(x0, x0) = 0. By (2.8.3) and transitivity, for all x ∈ X,

ϕ
(
x, zB

)
=max

⎧
⎨

⎩
(
fi

(
x‖zB

i

)
−fi

(
zB
))

(i ∈ N),

⎛

⎝
∑

j∈N
fj (x)−

∑

j∈N
fj

(
zB
)
⎞

⎠

⎫
⎬

⎭�0.

Hence, for each i ∈ N and all x ∈ X,

fi

(
x‖zB

i

)
− fi

(
zB
)
� 0,

∑

j∈N
fj (x) �

∑

j∈N
fj

(
zB
)

.

Hence, for all x ∈ X we have

fi

(
x‖zB

i

)
� fi

(
zB
)

(i ∈ N), max
x∈XB

∑

j∈N
fj (x) =

∑

j∈N
fj

(
zB
)

. (2.8.4)

Since the first N inequalities in (2.8.4) hold for all x ∈ X, the strategy profile
xB = zB satisfies the Berge equilibrium requirements (2.3.2) in the game �. The
last equality in (2.8.4) where x ∈ XB (the set of Berge equilibria) is a sufficient
condition [152, p. 71] for xB = zB to be a Pareto-maximal alternative in the N-
criteria choice problem 〈XB, {fi(x)}i∈N〉. Thus, by Definition 2.4.1, the resulting
strategy profile zB ∈ X is a Berge–Pareto equilibrium in game (2.3.1). �
Remark 2.8.1 Theorem 2.8.1 suggests the following design method of a Berge–
Pareto equilibrium in the noncooperative game (2.3.1):
first, construct the function ϕ(x, z) using formula (2.8.2);
second, find the saddle point (x0, zB) of the function ϕ(x, z) from the chain of
inequalities (2.8.3).

Then the resulting strategy profile zB ∈ X is a Berge–Pareto equilibrium in
game (2.3.1).
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2.8.3 Germeier Convolution

The world of curves has a richer texture than the world of points.
It has been left for the twentieth century to penetrate into this full richness.

—Wiener30

Let us associate with game (2.3.1) the N-criteria choice problem

�ν = 〈X, {fi(x)}i∈N〉,

where X = ∏
i∈N Xi is the set of all admissible alternatives and f (x) =

(f1(x), . . . , fN(x)) is the N-dimensional vector criterion. In the problem �ν , a
decision maker (DM) seeks to choose an alternative x ∈ X in order to maximize
the values of all N criteria (objective functions) f1(x), . . . , fN(x).

2.8.3.1 Necessary and Sufficient Conditions

In Definition 2.4.1 we have used the following notion of a vector optimum for the
problem �ν .

Definition 2.8.1 An alternative xP ∈ X is called Pareto-maximal in the problem �ν

if, for any x ∈ X, the combined inequalities

fi(x) � fi(x
P) (i ∈ N),

with at least one strict inequality, are inconsistent. An alternative xS ∈ X is called
Slater-maximal in the problem �ν if, for any x ∈ X, the combined strict inequalities

fi(x) > fi(x
S) (i ∈ N)

are inconsistent.

In this section, we are dealing with the Germeier convolution

max
i∈N

μifi(x) = ϕ(x), (2.8.5)

where the constants μi belong to the set M of positive vectors from R
N (sometimes,

with the unit sum of their components).

30Norbert Wiener, (1894–1964), was an outstanding American mathematician and philosopher, the
father of cybernetics. A quote from his book I Am a Mathematician: the Later Life of a Prodigy,
MIT Press, 1964.
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Note that if fi(x) = −ψi(x), then formula (2.8.5) yields the standard Germeier
convolution (with ϕ(x) = −ψ(x)) given by

ψ(x) = min
i∈N μiψi(x), (2.8.6)

since

max
i∈N

μifi(x) = − min
i∈N μiψi(x).

Most applications employ Germeier convolutions of two types:

ψ(x) = min
i∈N

ψi(x)

ai

,

where ai = const > 0 are convolution parameters, i = 1, . . . , N , and

ψ(x) = min
i∈N μiψi(x),

where μi = const > 0 are convolution parameters, i = 1, . . . , N . Clearly, the
transition from the first form to the second can be performed by the change of
variables μi = 1

ai
.

The following results were obtained in multicriteria choice theory.

Germeier’s theorem ([152, p. 66]) . Consider the N-criteria choice problem

�ν = 〈X, {fi(x)}i∈N〉,

and assume that the objective functions fi(x) are positive for all x ∈ X and i ∈ N.
An alternative xS ∈ X is Slater-maximal in �ν if and only if there exists a vector

μ = (μ1, . . . , μN) ∈ M such that

max
x∈X

min
i∈N

μifi(x) = min
i∈N

μifi(x
S). (2.8.7)

For the Slater-maximal alternatives xS ∈ X, let μ = μS = (μS
1, . . . , μS

N), where

μS
i = λ0

fi(xS)
(i ∈ N), λ0 = 1

∑
i∈N

1
fi(xS)

,

which leads to

max
x∈X

min
i∈N μS

i fi (x
S) = λ0.
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Recall that M is the set of positive vectors μ = (μ1, . . . , μN) ∈ R
N (possibly

with the unit sum of components). The next result is a useful generalization of
Germeier’s theorem.

Corollary 2.8.1 ([152, p. 67]) . Suppose xS ∈ X and ζi(y) (i ∈ N) are increasing
functions of the variable y ∈ R that satisfy

ζ1(f1(x
S)) = ζ2(f2(x

S)) = · · · = ζN(fN(xS)).

An alternative xS is Slater-maximal in the multicriteria choice problem �ν if and
only if

ζ1(f1(x
S)) = max

x∈X
min
i∈N

ζi(fi(x)).

Corollary 2.8.2 ([152, p. 68]) . An alternative xS is Slater-maximal in the multicri-
teria choice problem �ν if and only if

max
x∈X

min
i∈N

[
fi(x) − fi(x

S)
]

= 0.

Finally, a Pareto-maximal alternative xP in the problem �ν has the following
property.

Proposition 2.8.1 ([152, p. 72]) . Let xP ∈X and fi(x
P) > 0 (i ∈ N). An alternative

xP is Pareto-maximal in the multicriteria choice problem �ν if and only if there
exists a vector

μ = (μ1, . . . , μN) ∈ M = {μ | μi = const > 0 (i ∈ N),
∑

i∈N
μi = 1}

such that f (xP) yields the maximum point of the function
∑

i∈N fi(x) on the set

{
f (X) =

⋃

x∈X

f (x) | min
i∈N μifi(x

P) � max
x∈X

min
i∈N μifi(x)

}
.

2.8.3.2 Geometrical Interpretation

Consider the Germeier convolution in the case of two criteria in the choice problem
�ν , i.e., f (x) = (f1(x), f2(x)). Assume that at some point A = (f1(x

A), f2(x
A))

one has

μ1f1(x
A) = μ2f2(x

A) = 1
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Fig. 2.2 Contour lines of the
function min
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for some parameter values, i.e., f1(x
A) = 1

μ1
and f2(x

A) = 1
μ2

(see Fig. 2.2). Then
the Germeier convolution takes the form

min
i=1,2

fi(x
A) = 1.

Then the following relations hold on the rays originating from the point A parallel
to the coordinate axes:

1. μ1f1(x) � 1 and μ1f2(x) = 1 on the horizontal ray, or
2. μ1f1(x) = 1 and μ1f2(x) � 1 on the vertical ray.

Hence, mini∈N μifi(x) = 1 on these rays. Consequently, the contour lines of
the Germeier convolution coincide with the boundaries of the cone {f (xA) + R

2+},
where R

2+ = {f = (f1, f2) | fi � 0 (i = 1, 2)}. In the same way, the contour lines
of mini∈{1;2} μifi(x) = γ are defined by the vertical and horizontal rays originating
from the point f (̃x) = (f1(̃x), f2 (̃x)), where μ1f1 (̃x) = μ2f2(̃x) = γ . In other
words, the contour lines of the Germeier convolution mini∈{1;2} μifi(x) = γ form
the boundaries of the cone {f (̃x) + R

2+}, where f (̃x) = γf (xA).
In the general case of N criteria, the level surfaces form the boundaries of the

cone {f (̃x)+R
N+}, where f (̃x) is any point satisfying the relation mini∈N μifi(x) =

γ = const > 0 (i ∈ N). Therefore, the level surfaces of the Germeier convolution
are the boundaries of the cone of points that dominate its vertex.

It is geometrically obvious that xS is a Slater-maximal alternative in the bi-
criteria choice problem �ν (N = 2) if and only if the interior of the orthant RN+
shifted to the point f (xS) does not intersect f (X) (see Fig. 2.3).
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2.9 Mixed Extension of a Noncooperative Game

The value of pure existence proofs consists precisely in that
the individual construction is eliminated by them and that

many different constructions are subsumed under one fundamental idea,
so that only what is essential to the proof stands out clearly;

brevity and economy of thought are the raison d’être
of existence proofs. . . To prohibit existence proofs. . .

is tantamount to relinquishing the science of mathematics altogether.

—Hilbert31

2.9.1 Mixed Strategies and Mixed Extension of a Game

The theory of probabilities is at bottom nothing but common sense
reduced to calculus; it enables us to appreciate with exactness that

which accurate minds feel with a sort of instinct for which ofttimes
they are unable to account. . . It teaches us to avoid the illusions
which often mislead us; . . . there is no science more worthy of

our contemplations nor a more useful one for admission to our system of
public education.

—Laplace32

The mixed extension of a game that includes mixed strategies and profiles
as well as expected payoffs is formalized.

Let us, consider the noncooperative N-player game (2.3.1). For each compact
set Xi ⊂ R

ni (i ∈ N), consider the Borel σ -algebra B(Xi), i.e., the minimal σ -
algebra that contains all closed subsets of the compact set Xi (recall that a σ -algebra
is closed under taking complements and unions of countable collections of sets).

Assuming that there exist no Berge–Pareto equilibria xB (see Definition 2.4.1)
in the class of pure strategies xi ∈ Xi (i ∈ N), we will extend the set Xi

of pure strategies xi to the mixed ones, using the approach of Borel [204], von
Neumann [261], and Nash [257] and their followers [192, 194, 195, 197, 198].
Next, the idea is to establish the existence of (properly formalized) mixed strategy
profiles in game (2.3.1) that satisfy the requirements of a Berge–Pareto equilibrium
(an analog of Definition 2.4.1).

Thus, we use the Borel σ -algebras B(Xi) for the compact sets Xi (i ∈ N) and
the Borel σ -algebra B(X) for the set of strategy profiles X = ∏

i∈N Xi , so that B(X)

31David Hilbert, (1862–1943), was a German mathematician who axiomatized geometry and
contributed substantially to the establishment of the formalistic foundations of mathematics.
Recognized as one of the most influential and universal mathematicians of the 19th and early
20th centuries. A quote from the book Hilbert by C.B. Reid, Springer, 1996.
32Pierre-Simon, marquis de Laplace, (1749–1827), was a French scholar who made important
contributions to the development of mathematics, statistics, physics and astronomy. An English
translation of a quote from his book Théorie Analytique des Probabilités, 1795.
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contains all Cartesian products of arbitrary elements of the Borel σ -algebras B(Xi )

(i ∈ N).
In accordance with mathematical game theory, a mixed strategy νi(·) of player i

will be identified with a probability measure on the compact set Xi . By the definition
in [122, p. 271] and notations in [108, p. 284], a probability measure is a nonnegative
scalar function νi(·) defined on the Borel σ -algebra B(Xi ) of all subsets of the
compact set Xi ⊂ R

ni that satisfies the following conditions:

1. νi(
⋃

k Q
(i)
k ) = ⋃

k νi(Q
(i)
k ) for any sequence {Q(i)

k }∞k=1 of pairwise disjoint
elements from B(Xi ) (countable additivity);

2. νi(Xi ) = 1 (normalization), which yields νi(Q
(i)) � 1 for all Q(i) ∈ B(Xi).

Let {νi} denote the set of all mixed strategies of player i (i ∈ N).
Also note that the product measures ν(dx) = ν1(dx1)· · ·νN(dxN), see the

definitions in [122, p. 370] (and the notations in [108, p. 123]), are probability
measures on the strategy profile set X. Let {ν} be the set of such probability
measures (strategy profiles). Once again, we emphasize that in the design of the
product measure ν(dx) the role of a σ -algebra of subsets of the set X1 ×· · ·×XN =
X is played by the smallest σ -algebra B(X) that contains all Cartesian products
Q(1) × · · · × Q(N), where Q(i) ∈ B(Xi) (i ∈ N). The well-known properties of
probability measures [41, p. 288], [122, p. 254] imply that the sets of all possible
measures νi(dxi) (i ∈ N) and ν(dx) are weakly closed and weakly compact ([122,
pp. 212, 254], [180, pp. 48, 49]). As applied, e.g., to {ν}, this means that from
any infinite sequence {ν(k)} (k = 1, 2, . . .) one can extract a subsequence {ν(kj )}
(j = 1, 2, . . .) that weakly converges to a measure ν(0)(·) ∈ {ν}. In other words, for
any continuous scalar function ϕ(x) on X, we have

lim
j→∞

∫

X

ϕ(x)ν(kj )(dx) =
∫

X

ϕ(x)ν(0)(dx)

and ν(0)(·) ∈ {ν}. Owing to the continuity of ϕ(x), the integrals
∫

X
ϕ(x)ν(dx) (the

expectations) are well-defined; by Fubini’s theorem,

∫

X

ϕ(x)ν(dx) =
∫

X1

· · ·
∫

XN

ϕ(x)νN(dxN) · · · ν1(dx1),

and the order of integration can be interchanged.
Let us associate with game (2.3.1) in pure strategies its mixed extension

〈N, {νi}i∈N, {fi [ν] =
∫

X

fi [x]ν(dx)}i∈N〉, (2.9.1)
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where, like in (2.3.1), N is the set of players while {νi} is the set of mixed strategies
νi(·) of player i. In game (2.9.1), each conflicting party i ∈ N chooses its mixed
strategy νi(·) ∈ {νi}, thereby forming a mixed strategy profile ν(·) ∈ {ν}; the payoff
function of each player i, i.e., the expectation

fi [ν] =
∫

X

fi [x]ν(dx),

is defined on the set {ν}.
For game (2.9.1), the notion of a Berge–Pareto equilibrium x∗ (see Defini-

tion 2.4.1) has the following analog.

Definition 2.9.1 A mixed strategy profile ν∗(·) ∈ {ν} is called a Berge–Pareto equi-
librium in the mixed extension (2.9.1) (equivalently, a Berge–Pareto equilibrium in
mixed strategies in game (2.3.1)) if

first, the profile ν∗(·) is a Berge equilibrium in game (2.9.1), i.e.,

max
νN\{i}(·)∈{νN\{i}}

fi

(
ν‖ν∗

i

) = fi(ν
∗) (i ∈ N), (2.9.2)

and second, ν∗(·) is a Pareto-maximal alternative in the N-criteria choice
problem

〈{νB}, {fi(ν)}i∈N〉,

i.e., for all ν(·) ∈ {νB}, the system of inequalities

fi(ν) � fi(ν
∗) (i ∈ N),

with at least one strict inequality, is inconsistent.
Here and in the sequel,

νN\{i}(dxN\{i}) = ν1(dx1) · · · νi−1(dxi−1)νi+1(dxi+1) · · · νN(dxN),
(ν‖ν∗

i ) = (ν1(dx1) · · · νi−1(dxi−1)ν
∗
i (dxi)νi+1(dxi+1) · · · νN(dxN)),

ν∗(dx) = ν∗
1 (dx1) · · · ν∗

N(dxN), {νN\{i}} = {νN\{i}(·)}; in addition, {νB(·)} denotes
the set of Berge equilibria νB(·), i.e., the strategy profiles that satisfy (2.9.2) with ν∗
replaced by νB. Let {ν∗} be the set of mixed strategy profiles in game (2.9.1) that
are given by the two requirements of Definition 2.9.1.

The following sufficient condition for Pareto maximality is obvious, see the
statement below.

Remark 2.9.1 A mixed strategy profile ν∗(·) ∈ {ν} is Pareto-maximal in the game
�̃ν = 〈{νB}, {fi(ν)}i∈N〉 if

max
ν(·)∈{νB}

∑

i∈N
fi(ν) =

∑

i∈N
fi(ν

∗).
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2.9.2 Préambule

Proposition 2.9.1 In game (2.3.1), suppose the sets Xi are compact, the payoff
functions fi(x) are continuous on X = X1 ×· · ·×XN , and the set of mixed strategy
Berge equilibria {νB} that satisfy (2.9.2) with ν∗ replaced by νB is nonempty.

Then {νB} is a weakly compact subset of the set of mixed strategy profiles {ν} in
game (2.9.1).

Proof To establish the weak compactness of the set {νB}, take an arbitrary scalar
function ψ(x) that is continuous on the compact set X and an infinite sequence of
mixed strategy profiles

ν(k)(·) ∈ {νB} (k = 1, 2, . . .) (2.9.3)

in game (2.9.1). Inclusion (2.9.3) (hence, {νB} ⊂ {ν}) implies {ν(k)(·)} ⊂ {ν}. As
mentioned earlier, the set {ν} is weakly compact; hence, there exist a subsequence
{ν(kj )(·)} and a measure ν(0)(·) ∈ {ν} such that

lim
j→∞

∫

X

ψ(x)ν(kj )(dx) =
∫

X

ψ(x)ν(0)(dx).

We will show that ν(0)(·) ∈ {νB(·)} by contradiction. Assume that ν(0)(·) does not
belong to {νB}. Then for sufficiently large j , one can find a number i ∈ N and a
strategy profile ν̄(·) ∈ {ν} such that

fi

[
ν̄‖ν(kj )

i

]
> fi

[
ν(kj )

]
,

which clearly contradicts the inclusion {ν(kj )(·)} ∈ {νB}.
Thus, we have proved the requisite weak compactness. �

Corollary 2.9.1 In a similar fashion, one can prove the compactness (closedness
and boundedness) of the set

f
[{

νB
}]

=
⋃

ν(·)∈{νB}
f [ν], where f = (f1, . . . , fN ),

in the criteria space RN .

Proposition 2.9.2 If in game (2.9.1) the sets Xi ∈ comp R
ni and fi(·) ∈ C(X)

(i ∈ N), then the function

ϕ(x, z) = max
r=1,...,N+1

ϕr(x, z) (2.9.4)
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satisfies the inequality

max
r=1,...,N+1

∫

X×X

ϕr(x, z)μ(dx)ν(dz) �
∫

X×X

max
r=1,...,N+1

ϕr(x, z)μ(dx)ν(dz)

(2.9.5)

for any μ(·) ∈ {ν}, ν(·) ∈ {ν}; recall that

ϕi(x, z) = fi(x‖zi) − fi(z) (i ∈ N),

ϕN+1(x, z) =
∑

i∈N
[fi(x) − fi(z)] . (2.9.6)

Proof Indeed, from (2.9.4) we have N+1 inequalities of the form

ϕr(x, z) � max
j=1,...,N+1

ϕj (x, z) (r = 1, . . . , N + 1)

for each x, z ∈ X. Integrating both sides of these inequalities with respect to an
arbitrary product measure μ(dx)ν(dz) yields

ϕr(μ, ν) =
∫

X×X

ϕr(x, z)μ(dx)ν(dz) �
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ(dx)ν(dz)

for all μ(·)∈{ν}, ν(·)∈{ν} and each r = 1, . . . , N+1. Consequently,

max
r=1,...,N+1

ϕr(μ, ν) = max
r=1,...,N+1

∫

X×X

ϕr(x, z)μ(dx)ν(dz) �

�
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ(dx)ν(dz) ∀ μ(·) ∈ {ν}, ν(·) ∈ {ν},

which proves (2.9.5). �
Remark 2.9.2 In fact, formula (2.9.5) generalizes the well-known property of
maximization: the maximum of a sum does not exceed the sum of the maxima.

2.9.3 Existence Theorem

Good mathematicians see analogies.
Great mathematicians see analogies between analogies.

—Banach33

33Stefan Banach, (1892–1945), was a Polish mathematician who founded modern functional
analysis and helped contributed to the development of the theory of topological vector spaces.
Generally considered one of the most important and influential mathematicians of the twentieth
century.
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The central result of Chap. 2—the existence of a Berge–Pareto equilibrium
in mixed strategies—is established.

Theorem 2.9.1 If in game (2.3.1) the sets Xi ∈ cocomp R
ni and fi(·) ∈ C(X)

(i ∈ N), then there exists a Berge–Pareto equilibrium in mixed strategies.

Proof Consider the auxiliary zero-sum two-player game

�a = 〈 {1, 2}, {X, Z = X}, ϕ(x, z) 〉.

In the game �a, the set X of strategies x chosen by player 1 (which seeks to
maximize ϕ(x, z)) coincides with the set of strategy profiles of game (2.3.1); the
set Z of strategies z chosen by player 2 (which seeks to minimize ϕ(x, z)) coincides
with the same set X. A solution of the game �a is a saddle point (x0, zB) ∈ X × X;
for all x ∈ X and each z ∈ X, it satisfies the chain of inequalities

ϕ
(
x, zB

)
� ϕ

(
x0, zB

)
� ϕ

(
x0, z

)
.

Now, associate with the game �a its mixed extension

�̃a = 〈 {1, 2}, {μ}, {ν}, ϕ(μ, ν) 〉,

where {ν} and {μ} = {ν} denote the sets of mixed strategies ν(·) and μ(·) of
players 1 and 2, respectively. The payoff function of player 1 is the expectation

ϕ(μ, ν) =
∫

X×X

ϕ(x, y)μ(dx)ν(dz).

The solution of the game �̃a (the mixed extension of the game �a) is also a saddle
point (μ0, ν∗) defined by the two inequalities

ϕ
(
μ, ν∗) � ϕ

(
μ0, ν∗) � ϕ

(
μ0, ν

)
(2.9.7)

for any ν(·) ∈ {ν} and μ(·) ∈ {ν}.
Sometimes, this pair (μ0, ν∗) is called the solution of the game �a in mixed

strategies.
In 1952, Gliksberg [30] established the existence of a mixed strategy Nash

equilibrium for a noncooperative game of N � 2 players. Applying this existence
result to the zero-sum two-player game �a as a special case, we obtain the following
statement. In the game �a, let the set X⊂R

n be nonempty and compact and let the
payoff function ϕ(x, z) of player 1 be continuous on X×X (note that the continuity
of ϕ(x, z) is assumed in Lemma 2.8.1). Then the game �a has a solution (μ0, ν∗)
defined by (2.9.7), i.e., there exists a saddle point in mixed strategies.



50 2 Static Case of the Golden Rule

In view of (2.9.4), inequalities (2.9.7) can be written as

∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ(dx)ν∗(dz)

�
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ0(dx)ν∗(dz)

�
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ0(dx)ν(dz)

(2.9.8)

for all ν(·) ∈ {ν} and μ(·) ∈ {ν}. Using the measure νi(dzi) = μ0
i (dxi) (i ∈N) (so

that ν(dz) = μ0(dx)) in the expression

ϕ(μ0, ν) =
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ0(dx)ν(dz),

we obtain ϕ(μ0, μ0) = 0 due to (2.9.6). Similarly, ϕ(ν∗, ν∗) = 0, and it follows
from (2.9.7) that

ϕ(μ0, ν∗) = 0. (2.9.9)

The condition ϕ(μ0, μ0) = 0 and the chain of inequalities (2.9.7) give, by
transitivity,

ϕ(μ, ν∗) =
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ(dx)ν∗(dz) � 0 ∀ μ(·) ∈ {ν}.

In accordance with Proposition 2.9.2, then we have

0 �
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ(dx)ν∗(dz) � max
j=1,...,N+1

∫

X×X

ϕj (x, z)μ(dx)ν∗(dz).

Therefore, for all j = 1, . . . , N+1,

∫

X×X

ϕj (x, z)μ(dx)ν∗(dz) � 0 ∀ μ(·)∈{ν}. (2.9.10)

Consider two cases as follows.
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Case I (j = 1, . . . , N). Here, by (2.9.10), (2.9.6) and the normalization of ν(·), we
arrive at

0 �
∫

X×X

ϕi(x, z)μ(dx)ν∗(dz) =
∫

X×X

[fi(x‖zi) − fi(z)]μ(dx)ν∗(dz)

=
∫

X×Xi

fi (x‖zi)μ(dx)ν∗
i (dz) −

∫

X

fi(z)μ(dz) ·
∫

X

ν∗(dz)

= fi(μ‖ν∗
i ) − fi(ν

∗) ∀ μ(·)∈{ν}, i ∈ N.

By Definition 2.9.1, ν∗(·) is a Berge equilibrium in mixed strategies in game (2.3.1).

Case II (j = N + 1). Again, using (2.9.10), (2.9.6) and the normalization of ν(·)
and μ(·), we have

0 �
∫

X×X

[
∑

r∈N
fr(x) −

∑

r∈N
fr(z)

]
μ(dx)ν∗(dz)=

∫

X

∑

r∈N
fr(x)μ(dx)·

∫

X

ν∗(dz)

−
∫

X

μ(dx)

∫

X

∑

r∈N
fr (z)ν

∗(dz) =
∑

r∈N
fr(μ) −

∑

r∈N
fr(ν

∗) ∀ μ(·)∈{νB}.

In accordance with Remark 2.9.1, the mixed strategy profile ν∗(·) ∈ {ν} of
game (2.3.1) is a Pareto-maximal alternative in the multicriteria choice problem

�̃ν =
〈{

νB
}

, {fi(ν)}i∈N
〉
.

Thus, we have proved that the mixed strategy profile ν∗(·) in game (2.3.1) is a
Berge equilibrium that satisfies Pareto maximality. Hence, by Definition 2.9.1, the
mixed strategy profile ν∗(·) is a Berge–Pareto equilibrium in game (2.3.1). �

2.10 Linear-Quadratic Two-Player Game

Verba docent, exempla trahunt.34

Readers who studied Lyapunov’s stability theory surely remember algebraic
coefficient criteria. The whole idea of such criteria is to establish the stability of
unperturbed motion without solving a system of differential equations, by using the
signs of coefficients and/or their relationships. In this section of the book, we are
endeavoring to propose a similar approach to equilibrium choice in noncooperative

34Latin “Words instruct, illustrations lead.”
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linear-quadratic two-player games. More specifically, our approach allows one to
decide about the existence of a Nash equilibrium and/or a Berge equilibrium in
these games based on the sign of quadratic forms in the payoff functions of players.

2.10.1 Preliminaries

Consider a noncooperative linear-quadratic two-player game described by

�2 = 〈{1, 2}, {Xi = R
ni }i=1,2, {fi(x1, x2)}i=1,2〉.

A distinctive feature of �2 is the absence of constraints on the strategy sets Xi : the
strategies of player i can be any column vectors of dimension ni , i.e., elements of
the ni-dimensional Euclidean space R

ni with the standard Euclidean norm ‖ · ‖ and
the scalar product. Let the payoff function of player i (i = 1, 2) have the form

fi(x1, x2) = x ′
1Aix1 + 2x ′

1Bix2 + x ′
2Cix2 + 2a′

ix1 + 2c′
ix2, (2.10.1)

where Ai and Ci are constant symmetric matrices, Bi is a constant rectangular
matrix, and ai and ci are constant vectors, all of compatible dimensions; ′ denotes
transposition; det A denotes, the determinant of a matrix A. Henceforth, A < 0
(>, �) means that the quadratic form z′Az is negative definite (positive definite,
positive semidefinite, respectively). We will adopt the following rules of differenti-
ation of bilinear quadratic forms with respect to the vector argument [19, 27]:

[
∂

∂x1

[
x ′

1Bix2
] = Bix2

]
⇒
[

∂

∂x2

[
x ′

1Bix2
] = B ′

ix1 ∧ ∂

∂x1

[
x ′

1Aix1
]

= 2Aix1 ∧ ∂

∂x1

[
a′

1x1
] = a1

]
,

∂2

∂x2
i

[
x ′

1Aix1
] = 2Ai. (2.10.2)

For a scalar function �(x) of a k-dimensional vector argument x, sufficient
conditions for

max
x∈Rk

�(x) = �(x∗)
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are

(1)
∂�(x)

∂x

∣∣∣∣
x=x∗

= grad �(x)|x=x∗ = 0k,

(2)
∂2�(x)

∂x2

∣∣∣∣
x=x∗

< 0,

(2.10.3)

where 0k denotes a zero column vector of dimension k.

2.10.2 Berge Equilibrium

For the payoff functions (2.10.1), relations (2.10.3) yield the following sufficient
condition for the existence of a Berge equilibrium in the game �2.

Proposition 2.10.1 Assume that in the game �2

A2 < 0, C1 < 0, (2.10.4)

and

det
[
C1 − B ′

1A
−1
2 B2

]
�= 0. (2.10.5)

Then the Berge equilibrium xB = (xB
1 , xB

2 ) is given by

xB
1 = −A−1

2 B2

[
C1 − B ′

1A
−1
2 B2

]−1 (
B ′

1A
−1
2 a2 − c1

)
− A−1

2 a2,

xB
2 =

[
C1 − B ′

1A
−1
2 B2

]−1 (
B ′

1A
−1
2 a2 − c1

)
.

(2.10.6)

Proof By definition, a strategy profile (xB
1 , xB

2 ) = xB is a Berge equilibrium in the
game �2 if and only if

max
x2∈Rn2

f1
(
xB

1 , x2
) = f1

(
xB
)
,

max
x1∈Rn1

f2
(
x1, x

B
2

) = f2
(
xB
)
.

(2.10.7)
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In view of (2.10.3) and(2.10.1), sufficient conditions for the first equality in (2.10.7)
to hold can be written as

∂f1
(
xB

1 , x2
)

∂x2

∣∣∣∣∣
x2=xB

2

= 2B ′
1x

B
1 + 2C1x

B
2 + 2c1 = 0n2,

∂2f1
(
xB

1 , x2
)

∂x2
2

∣∣∣∣∣
x2=xB

2

= 2C1.

Similarly, for the second equality in (2.10.7) we obtain

∂f2
(
x1, x

B
2

)

∂x1

∣∣∣∣∣
x1=xB

1

= 2A2x
B
1 + 2B2x

B
2 + 2a1 = 0n1,

∂2f2
(
x1, x

B
2

)

∂x2
1

∣∣∣∣∣
x1=xB

1

= 2A2.

In accordance with (2.10.4), the matrices C1 and A2 are negative definite and hence
the Berge equilibrium (xB

1 , xB
2 ) in the game �2 satisfies the linear nonhomogeneous

system of matrix equations

{
A2x

B
1 + B2x

B
2 = −a2,

B ′
1x

B
1 + C1x

B
2 = −c1.

(2.10.8)

Using the chain of implications [A2 < 0] ⇒ [detA2 �= 0] ⇒
[
∃A−1

2

]
, we

multiply the first equation in (2.10.8) on the left by A−1
2 to get

xB
1 = −A−1

2 B2x
B
2 − A−1

2 a2. (2.10.9)

Substituting this expression into the second equation of system (2.10.8), one obtains

[
C1 − B ′

1A
−1
2 B2

]
xB

2 = −c1 + B ′
1A

−1
2 a2, (2.10.10)

or

xB
2 =

[
C1 − B ′

1A
−1
2 B2

]−1 (
B ′

1A
−1
2 a2 − c1

)
. (2.10.11)

Here we used the fact that

[
det

[
C1 − B ′

1A
−1
2 B2

]
�= 0

]
⇒

[
∃
(
C1 − B ′

1A
−1
2 B2

)−1
]

;
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formula (2.10.11) is easily derived upon multiplying both sides of (2.10.10) on the

left by the matrix
[
C1 − B ′

1A
−1
2 B2

]−1
. Finally, using the resulting expression for

xB
2 in (2.10.9), we arrive at the first equality of system (2.10.6).

In the same fashion, it is possible to solve system (2.10.8) by multiplying the
second equation by C−1

1 . This leads to

Proposition 2.10.2 Assume inequalities (2.10.4) and

det
[
A2 − B2C

−1
1 B ′

1

]
�= 0 (2.10.12)

hold in the game �2. Then the Berge equilibrium xB = (xB
1 , xB

2 ) has the form

xB
1 =

[
A2 − B2C

−1
1 B ′

1

]−1
(B2C

−1
1 c1 − a2),

xB
2 = −C−1

1 B ′
1

[
A2 − B2C

−1
1 B ′

1

]−1 (
B2C

−1
1 c1 − a2

)
− C−1

1 c1.

Remark 2.10.1 System (2.10.8) has a unique solution for A2 < 0 and C1 < 0.
The two explicit forms of this solution presented above are equivalent and can be
reduced to each other.

2.10.3 Nash Equilibrium

In this section, we derive similar results for the Nash equilibrium in the game �2.
Instead of (2.10.7), we consider a Nash equilibrium xe = (xe

1, x
e
2) defined by the

two equalities

max
x1∈Rn1

f1
(
x1, x

e
2

) = f1
(
xe) , max

x2∈Rn2
f2
(
xe

1, x2
) = f2

(
xe) . (2.10.13)

The sufficient conditions for implementing (2.10.13) take the form

gradx1
f1
(
x1, x

e
2

)∣∣
x1=xe

1
= ∂f1

(
x1, x

e
2

)

∂x1

∣∣∣∣∣
x1=xe

1

= 2A1x
e
1 + 2B1x

e
2 + 2a1 = 0n1 ,

gradx2
f2
(
xe

1, x2
)∣∣

x2=xe
2

= ∂f2
(
xe

1, x2
)

∂x2

∣∣∣∣∣
x2=xe

2

= 2B ′
2x

e
1 + 2C2x

e
2 + 2c2 = 0n2 ,

∂2f1
(
x1, x

e
2

)

∂x2
1

∣∣∣∣∣
x1=xe

1

= 2A1 < 0,

∂2f2
(
xe

1, x2
)

∂x2
2

∣∣∣∣∣
x2=xe

2

= 2C2 < 0.
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The first two conditions give the linear nonhomogeneous system of matrix
equations

{
A1x

e
1 + B1x

e
2 = −a1,

B ′
2x

e
1 + C2x

eB2 = −c2.

As in Propositions 2.10.1 and 2.10.2, the conditions A1 < 0 and C2 < 0 allow us to
establish the following results. The onus probandi35 is left to the reader.

Proposition 2.10.3 Assume the inequalities

A1 < 0, C2 < 0, (2.10.14)

and

det
[
C2 − B ′

2A
−1
1 B1

]
�= 0 (2.10.15)

hold in the game �2. Then the Nash equilibrium xe = (xe
1, x

e
2) has the form

xe
1 = −A−1

1 B1

[
C2 − B ′

2A
−1
1 B1

]−1
(B ′

2A
−1
1 a1 − c2) − A−1

1 a1,

xe
2 =

[
C2 − B ′

2A
−1
1 B1

]−1
(B ′

2A
−1
1 a1 − c2).

Proposition 2.10.4 Assume inequalities (2.10.14) and

det
[
A1 − B1C

−1
2 B ′

2

]
�= 0 (2.10.16)

are satisfied in the game �2. Then the Nash equilibrium xe = (xe
1, x

e
2) has the form

xe
1 =

[
A1 − B1C

−1
2 B ′

2

]−1 (
B1C

−1
2 c2 − a1

)
,

xe
2 = −C−1

2 B ′
2

[
A1 − B1C

−1
2 B ′

2

]−1 (
B1C

−1
2 c2 − a1

)
− C−1

2 c2.

2.10.4 Auxiliary Lemma

Despite the negativa non probantur36 principle of Roman law, we will rigorously
obtain a result useful for discarding the games without any Berge and/or Nash
equilibria.

35Latin “The burden of proof.”
36Latin “Negative statements are not proved.”
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Lemma 2.10.1 In the game �2 with A1 > 0, there exists no x̄1 such that, for each
fixed x2,

max
x1∈Rn1

f1(x1, x2) = f1(x̄1, x2). (2.10.17)

In other words, the payoff function f1 of the first player is not maximized in this
game.

Proof Let us “freeze” a certain strategy x2 ∈ R
n2 of the second player. Then the

payoff function of the first player can be written in the form

f1(x1, x2) = x ′
1A1x1 + 2x ′

1ϕ(x2) + ψ(x2),

where the column vector ϕ(x2) of dimension n1 and the scalar function ψ(x2)

depend on the frozen value x2 only.
By the hypothesis of Lemma 2.10.1, the symmetric matrix A1 is positive definite.

In this case, the characteristic equation det[A1 − En1λ] = 0 (where En1 denotes an
identity matrix of dimensions n1 ×n1) has n1 positive real roots owing to symmetry
and, in addition,

x ′
1A1x1 � λ∗‖x1‖2 ∀x1 ∈ R

n1 , (2.10.18)

where λ∗ > 0 is the smallest root among them. Thus, maximum (2.10.17) is not
achieved if, for any large value m > 0, there exists a strategy x1(m, x2) ∈ R

n1 such
that

f1(x1(m, x2), x2) > m.

Under (2.10.18), this inequality holds if

λ∗‖x1(m, x2)‖2 + 2x ′
1(m, x2)ϕ(x2) + ψ(x2) > m. (2.10.19)

Let us construct a solution x1(m, x2) of inequality (2.10.19) in the form

x1(m, x2) = βen1, (2.10.20)

where the constant β > 0 will be specified below and e1’s the n1-dimensional vector
with all components equal to 1.

Substituting (2.10.20) into (2.10.19) yields the following inequality for β:

λ∗β2n1 + 2β
(
en1 , ϕ(x2)

)+ ψ(x2) − m > 0.

Hence, for any constant

β > β+ =
∣∣(en1, ϕ(x2)

)∣∣+
√(

en1, ϕ(x2)
)2 + λ∗n1|ψ(x2) − m|

λ∗n1
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and corresponding strategy x1(m, x2) = βen1 of the first player, we have

f1(x1(m, x2), x2) > m.

Thus, maximum (2.10.17) does not exist. �
Remark 2.10.2 In this case, the game �2 with a matrix A1 > 0 admits no Nash
equilibria. In combination with Proposition 2.10.1, this shows that

1. the game �2 with matrices A1 > 0 or (and) C2 > 0 and also A2 < 0, C1 < 0
that satisfies condition (2.10.5) has no Nash equilibria, but does have a Berge
equilibrium defined by (2.10.6).

In a similar way, it is easy to obtain the following.
2. If A2 < 0, C1 < 0, condition (2.10.5) or (2.10.12) holds and also A1 > 0 or (and)

C2 >0, then the game �2 has a Berge equilibrium only.
3. If A1 <0, C2 <0, condition (2.10.15) or (2.10.16) holds and also A2 >0 or (and)

C1 >0, then the game �2 has a Nash equilibrium only.
4. If A1 >0 or (and) C2 >0 and also A2 >0 or (and) C1 >0, then the game �2 has

none of these equilibria.
5. If A2 < 0, C1 < 0, A1 < 0, C2 < 0 and also conditions (2.10.5) or (2.10.12)

and (2.10.15) or (2.10.16) hold, then the game �2 has both types of equilibrium.

2.10.5 Concluding Remarks

Thus, we have considered the noncooperative linear-quadratic two-player game
without constraints (Xi = R

ni , i = 1, 2) and with the payoff functions

f1(x1, x2) = x ′
1A1x1 + 2x ′

1B1x2 + x ′
2C1x2 + 2a′

1x1 + 2c′
1x2,

f2(x1, x2) = x ′
1A2x1 + 2x ′

1B2x2 + x ′
2C2x2 + 2a′

2x1 + 2c′
2x2.

Here ′ denotes transposition; Ai and Ci are constant symmetric matrices of
dimensions n1 × n1 and n2 × n2, respectively; Bi is a constant rectangular matrix
of dimensions n1 × n2; finally, ai and ci are constant vectors of dimensions n1 and
n2, respectively (i = 1, 2).

Based on Propositions 2.10.1–2.10.4, we introduce the following coefficient
criteria for the existence of Nash and Berge equilibria in the game �2. Par acquit
de conscience,37 they are presented in form of Table 2.1.

How should one use Table 2.1? Just follow the three simple steps indicated
below.

37French “For our peace of mind.”
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Table 2.1 Coefficient criteria of equilibria

BE NE

Only one of the equilibria exists

A1 > 0 A2 < 0 C1 < 0 (2.10.5) ∃ � ∃ ∀ C2, Bi , ai , ci

A2 < 0 C1 < 0 C2 > 0 (2.10.12) ∃ � ∃ ∀ A1, Bi , ai , ci

A1 < 0 A2 > 0 C2 < 0 (2.10.15) � ∃ ∃ ∀ C1, Bi , ai , ci

A1 < 0 C1 > 0 C2 < 0 (2.10.16) � ∃ ∃ ∀ A2, Bi , ai , ci

None of the equilibria exists

A1 > 0 A2 > 0 � ∃ � ∃ ∀ Bi, Ci, ai , ci

A1 > 0 C1 > 0 � ∃ � ∃ ∀ A2, C2, Bi , ai , ci

A2 > 0 C2 > 0 � ∃ � ∃ ∀ A1, C1, Bi , ai , ci

C1 > 0 C2 > 0 � ∃ � ∃ ∀ A1, A2, Bi , ai , ci

Both equilibria exist

A1 < 0 A2 < 0 C1 < 0 C2 < 0 (2.10.5) and ∃ ∃ ∀ Bi, ai , ci

(2.10.15)

A1 < 0 A2 < 0 C1 < 0 C2 < 0 (2.10.12) ∃ ∃ ∀ Bi, ai , ci

(2.10.16)

Step 1. First, check the signs of the quadratic forms with the matrices A1, A2, C1,
and C2. For example, suppose A1 < 0, C2 < 0 (both matrices are negative
definite), while A2 > 0 (i.e., A2 is positive definite).

Step 2. Find the corresponding row in Table 2.1 (in our case, the conditions A1 < 0,
C2 < 0 and A2 > 0 are in row 3); then verify the nondegeneracy of the

matrix (2.10.15) in column 5, i.e., the condition det
[
C2 − B ′

2A
−1
1 B1

]
�= 0.

Step 3. As shown in columns 6 and 7 of Table 2.1, the game �2 with these matrices
has no Berge equilibria, but has a Nash equilibrium for any matrices C1, Bi

and any vectors ai , bi of compatible dimensions. The explicit form of this
Nash equilibrium is given in Proposition 2.10.3.
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