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Mindia E. Salukvadze (May 3, 1933–December 27, 2018)



Dedicated to the memory of Mindia E.
Salukvadze.



Biography of Mindia E. Salukvadze

A man is measured by his deeds and contribution to the global pool of values. This
is an axiom. Just listing all the academic degrees, posts and titles of Mindia E.
Salukvadze forms the picture of an extraordinary personality.

Mindia E. Salukvadze was born in 1933 in Tbilisi, and grew up as an orphan.
His parents were subjected to repression in 1937 (subsequently both were fully
exonerated). In 1955, he received Diploma with honors from the Physics Faculty
of Tbilisi State University. His postgraduate studies were continued at the Institute
of Electronics, Automation and Remote Control of the USSR Academy of Sciences
(presently, Trapeznikov Institute of Control Sciences of the Russian Academy of
Sciences), where he defended first the Candidate’s Dissertation (1963) and then the
Doctor’s Dissertation (1974) in Engineering.

In 1983, Mindia E. Salukvadze was elected a Corresponding Member of the
Academy of Sciences of the Georgian SSR; in 1993, a Full Member of the Georgian
National Academy of Sciences. Later on, he became the Academician-secretary
of the Department for Applied Mechanics, Machine Building, Energy and Control
Processes of the Academy and also a Member of the Academy’s Presidium. In 1996,
he was awarded the Nikoladze Prize of the Academy, which was established as back
as 1973 for the best scientific works in engineering. In 1996 and again in 2004,
he was awarded the State Prize of Georgia in the field of science and technology.
In 2014, he and Vladislav I. Zhukovskiy became the winners of the International
Contest for the Best Scientific Book, held in Russia.

For many years, Mindia E. Salukvadze was the Head of the Georgian Section
of the International Federation of Automatic Control (IFAC) as well as a member
of the editorial boards of several scientific journals such as Moambe (Bulletin
of the Georgian National Academy of Sciences), International Journal of Infor-
mation Technology and Decision Making, and Automation and Remote Control
(Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences). In
addition, he was a member of several scientific councils and organizations. Mindia
E. Salukvadze had close cooperation with a series of research centers all over the
world and participated in leading international conferences and symposia. He was
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a member of different international academies of sciences, including the New York
Academy of Sciences (since 1994).

For 25 years, Academician Mindia E. Salukvadze was Director of the Eliashvili
Institute of Control Systems (1981–2006), and then Chairman of the Institute’s
Scientific Council.

The research interests of Mindia E. Salukvadze covered the stability of control
systems and the theory of optimal control. He authored over 140 scientific papers,
13 monographs and 6 textbooks, known in Georgia and also abroad. Salukvadze’s
method, Salukvadze’s solution, Salukvadze’s principle—these terms were intro-
duced by American and Russian researchers.

In 1975, Metsniereba Press (Tbilisi) published Mindia E. Salukvadze’s well
known monograph Zadachi vektornoi optimizatsii v teorii upravleniya, which was
translated into English under the title Vector-Valued Optimization Problems in
Control Theory and published by Academic Press in 1979. Another prominent
monograph by Mindia E. Salukvadze, Vector-Valued Maximin (in co-authorship
with Vladislav I. Zhukovskiy), was published by Academic Press in 1994.

Mindia E. Salukvadze was a fruitful educator, holding the position of Professor
at Tbilisi State University. He supervised a series of Doctor’s and Candidate’s
Dissertations.

The major books by Mindia E. Salukvadze are as follows.

6 Textbooks
1. Gugushvili, A., Salukvadze, M., and Chichinadze, V., Optimal and Adaptive

Systems. Book I. Static Optimization, Tbilisi: Teknikuri Universiteti, 1997, 290
p. (in Georgian).

2. Gugushvili, A., Salukvadze, M., Chichinadze, V., Optimal and Adaptive Systems.
Book II. Optimal Control of Dynamic Systems, Tbilisi: Teknikuri Universiteti,
1997, 437 p. (in Georgian).

3. Gugushvili, A., Salukvadze, M., Chichinadze, V., Optimal and Adaptive Systems.
Book III. Optimal Control of Stochastic Systems. Adaptive Control of Systems,
Tbilisi: Teknikuri Universiteti, 1997, 325 p. (in Georgian).

4. Gugushvili, A., Topchishvili, A., Salukvadze, M., Chichinadze, V., and Jabladze,
N., Optimization Methods, Tbilisi: Teknikuri Universiteti, 2002, 634 p. (in
Georgian).

5. Zhukovskiy, V.I. and Salukvadze, M.E., Otsenka riskov i garantii v konfliktakh
(Estimation of Risks and Guarantees in Conflicts), Moscow: Yurait, 2018, 302 p.
(in Russian).

6. Zhukovskiy, V.I. and Salukvadze, M.E., Otsenka riskov i mnogoshagovye poz-
itsionnye konflikty (Estimation of Risks and Multistage Positional Conflicts),
Moscow: Yurait, 2018, 306 p. (in Russian).

13 Monographs
1. Salukvadze, M.E., Zadachi vektornoi optimizatsii v teorii upravleniya (Vector-

Valued Optimization Problems in Control Theory), Tbilisi: Metsniereba, 1975,
201 p. (in Russian).
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2. Salukvadze, M.E., Vector-Valued Optimization Problems in Control Theory,
New York: Academic Press, 1979, 219 p.

3. Ioseliani, A.N., Mikhalevich, A.A., Nesterenko V.V., and Salukvadze, M.E.,
Metody optimizatsii parametrov teploobmennykh apparatov AES (Parameter
Optimization Methods for the Heat-Exchange Systems of Nuclear Power
Plants), Minsk: Nauka i Tekhnika, 1981, 144 p. (in Russian).

4. Salukvadze, M.E., Zadacha A.M. Letova o sinteze optimal’nykh sistem
avtomaticheskogo upravleniya (A.M. Letov’s Problem on Optimal Automatic
Control Systems Design), Tbilisi: Metsniereba, 1988. 381 p. (in Russian).

5. Zhukovskiy, V.I. and Salukvadze, M.E., Mnogokriterial’nye zadachi
upravleniya v usloviyakh neopredelennosti (Multicriteria Control Problems
under Uncertainty), Tbilisi: Metsniereba, 1991. 128 p. (in Russian).

6. Zhukovskiy, V.I. and Salukvadze, M.E., The Vector-Valued Maximin, New
York: Academic Press, 1994, 404 p.

7. Zhukovskiy, V.I. and Salukvadze, M.E., Optimizatsiya garantii v mnogokrite-
rial’nykh zadachakh upravleniya (Optimization of Guarantees in Multicriteria
Control Problems), Tbilisi: Metsniereba, 1996. 475 p. (in Russian).

8. Zhukovskiy, V.I. and Salukvadze, M.E., Nekotorye igrovye zadachi upravleniya
i ikh prilozheniya (Some Game-Theoretic Control Problems and Their Appli-
cations), Tbilisi: Metsniereba, 1998. 462 p. (in Russian).

9. Salukvadze, M., Topchishvili, A., and Maisuradze, V., Duality in Nonscalar
Optimization Problems, Tbilisi: Modesta, 2000, 168 p. (in Georgian).

10. Zhukovskiy, V.I. and Salukvadze, M.E., Riski i iskhody v mnogokriterial’nykh
zadachakh upravleniya (Risks and Outcomes in Multicriteria Control Prob-
lems), Tbilisi: Intelekti, 2004, 356 p. (in Russian).

11. Zhukovskiy, V.I. and Salukvadze, M.E., Riski v konfliktnykh sistemakh
upravleniya (Risks in Conflict Control Systems), Tbilisi: Intelekti, 2008, 456
p. (in Russian)

12. Zhukovskiy, V.I., Salukvadze, M.E., and Beltadze, G.N., Matematicheskie
osnovy Zolotogo pravila nravstvennosti (Mathematical Foundations of the
Golden Rule of Ethics), Tbilisi: the Georgian National Academy of Sciences,
2017, 343 p. (in Russian).

13. Zhukovskiy, V.I., and Salukvadze, M.E., Dinamika Zolotogo pravila nravstven-
nosti (Dynamics of the Golden Rule of Ethics), Tbilisi: the Georgian National
Academy of Sciences, 2018, 400 p. (in Russian).

Mindia E. Salukvadze organized a series of international scientific conferences
and meetings.

Mindia E. Salukvadze was a well-known public figure. At different times, he
was elected a Deputy to the Supreme Soviet of the Georgian SSR, Tbilisi Soviet,
and district Soviets.

The aforesaid characterizes Mindia E. Salukvadze as a talented researcher,
manager, and public figure. His true portrait includes greatheartedness, rarely
encountered honesty, and unselfishness. For all of us—his relatives, friends, and
colleagues—his decease will always be an irreparable loss.



Preface

Imagine that there are three sellers in a market, namely, a man (husband), his wife,
and their son. At their disposal they have resources Xh, Xw, and Xs, respectively,
and to gain some profit they allocate parts of their resources xi ∈ Xi (i = h, w, s) to
each family member. Which of these values will yield the greatest (possible) profit
for each member? Really, the profit (revenues) Pi(xh, xw, xs) (i = h, w, s) directly
depends on the chosen values xh, xw and xs.

The concept of Nash equilibrium has been “reigning” in such decision problems
or game situations so far. A Nash equilibrium is a strategy profile xe = (xe

h, x
e
w, xe

s )

that satisfies the three equalities

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
xh

Ph(xh, x
e
w, xe

s ) = Ph(x
e
h, x

e
w, xe

s ),

max
xw

Pw(xe
h, xw, xe

s ) = Pw(xe
h, x

e
w, xe

s ),

max
xs

Ps(x
e
h, x

e
w, xs) = Ps(x

e
h, x

e
w, xe

s ).

Here, a selfish nature clearly appears because everyone seeks to increase (maximize)
his/her own profit only, ignoring the interests of the others.

The concept of Berge equilibrium put forward in this book is the exact opposite
of Nash equilibrium. A Berge equilibrium is a strategy profile xB = (xB

h , xB
w, xB

s )

defined by the three equalities

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
xw,xs

Ph(x
B
h , xw, xs) = Ph(x

B
h , xB

w, xB
s ),

max
xh,xs

Pw(xh, x
B
w, xs) = Pw(xB

h , xB
w, xB

s ),

max
xh,xw

Ps(xh, xw, xB
s ) = Ps(x

B
h , xB

w, xB
s ).

It is precisely these conditions that implement the Golden Rule of ethics, which
states, “do to others as you would like them to do to you.” According to these
conditions, each family member has to maximize the profit of the other members
so that they act in the same way, maximizing his/her profit. Thus, choosing xh = xB

h
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the husband does his best to maximize the profit of his wife and son, as dictated by
the equalities

max
xh,xs

Pw(xh, x
B
w, xs) = Pw(xB), max

xh,xw
Ps(xh, xw, xB

s ) = Ps(x
B).

The wife and son reciprocate with xw = xB
w and xs = xB

s , respectively, maximizing
the husband’s profit, that is,

max
xw,xs

Ph(x
B
h , xw, xs) = Ph(x

B).

The wife has the same behavior: choosing xw = xB
w, she maximizes the profits of

her husband and son. Following the ethical lead of the parents who maximize his
payoff

max
xh,xw

Ps(xh, xw, xB
s ) = Ps(x

B),

the son also strives to maximize their profits using xs = xB
s , i.e.,

max
xw,xs

Ph(x
B
h , xw, xs) = Ph(x

B), max
xh,xs

Pw(xh, x
B
w, xs) = Ps(x

B).

Thus, in a Berge equilibrium each of the members maximizes the profit of the other
two members and receives the same response from them. In other words, the concept
of Berge equilibrium matches well the Golden Rule.

As it will be evident from Sects. 1.1–1.5 of the book, the Golden Rule features in
many fields of human activity. Moreover, in a series of cases the decision-making
procedures based on the Golden Rule yield more profitable solutions in competitive
economic models than the generally accepted Nash equilibrium; see Chap. 4. In
this respect we fully agree with B. Russell,1 who admitted that “in all affairs it’s a
healthy thing now and then to hang a question mark on the things you have long
taken for granted.”

Tbilisi, Georgia Mindia E. Salukvadze
Moscow, Russia Vladislav I. Zhukovskiy

1Bertrand Arthur William Russell, (1872–1970), was a British philosopher, logician, social
reformer, and Nobel laureate in Literature.



Basic Notations

R
l—the l-dimensional Euclidean space with the Euclidean norm | · |;

N = {1, . . . , N}—the set of players;
N\{i} = {1, . . . , i − 1, i + 1, . . . , N};
K = {i1, . . . , iK | il ∈ N (l = 1, ...,K)}—a coalition of players from N;
K(i)—a coalition that includes player i;

P = {K1, . . . ,Kr | Ki

⋂
Kj = ∅ (i, j = 1, . . . , r; i �= j) ∧

r⋃

i=1
Ki = N};

—a coalitional structure;
Xi—the set of strategies xi of player i;
Y—the set of uncertain factors y;
Xe—the set of Nash equilibria xe;

A={γ =(γ1, . . . , γN) ∈ R
N | γj =const � 0 (j ∈1, . . . , N) ∧

N∑

j=1
γj > 0};

R
N
� = {f = (f1, . . . , fN ) ∈ R

N | fj � 0 (j = 1, . . . , N)};
R

N
� = −RN

�;
L = Slater, Pareto;
YL—the set of L-minimal uncertainties yL;
fi(x, y)—the payoff function of player i;
f (x, y) = (f1(x, y), . . . , fN (x, y))—the column vector whose components are the
payoff functions of players 1, . . . , N ;
f L = f (xe, yL), ΦL = Φ(xe, yL);
X = ∏

i∈N
Xi—the set of strategy profiles x = (x1, . . . , xN);

2X—the set of all subsets of the set X;
YX—the set of functions y(x) with a domain of definition X and a codomain Y;
(x||zi) = (x1, . . . , xi−1, zi , xi+1, . . . , xN);
∅—empty set;
comp R

k—the set of compact sets in R
k;

{f ∈ F | π(f )}—the collection of elements f from a set F that satisfy a condition
π(f );

xv
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⇔—logical equivalence (“if and only if”);
⇒—logical implication (“implies”);
∧—logical conjunction (“and”);
∨—logical disjunction (“or”);

—logical negation (“not”);
∀—universal quantifier (“all”);
∃—existential quantifier (“exist(s)”);
∈—inclusion relation (“belong(s) to”);
/∈—non-inclusion relation (“do(es) not belong to”);
⋃

—union;
⋂

—intersection;
For two N-dimensional vectors f (k) = (f

(k)
1 , . . . , f

(k)
N ) (k = 1, 2),

f (1) = f (2) ⇐⇒ [f (1)
i = f

(2)
i (i ∈ N)];

f (1) �= f (2) ⇐⇒ (f (1) = f (2));
f (1) � f (2) ⇐⇒ [f (1)

i � f
(2)
i (i ∈ N)];

f (1) ≥ f (2) ⇐⇒ (f (1) � f (2)) ∧ (f (1) �= f (2));
f (1) �≥ f (2) ⇐⇒ (f (1) ≥ f (2));
f (1) > f (2) ⇐⇒ [f (1)

i > f
(2)
i (i ∈ N)];

f (1) �> f (2) ⇐⇒ (f (1) > f (2));
Aij , Bij , Ci—constant matrices;
ai, bi, ci—constant vectors;
′—transposition;
A > 0 (<, �, �)—a quadratic form z′Az that is positive definite (negative
definite, positive semidefinite, negative semidefinite, respectively);
det A—the determinant of a matrix A;
∂ϕ(x, y)

∂x
—the gradient of a scalar function ϕ with respect to the elements of a

vector x;
∂2ϕ(x, y)

∂x2
—the Hessian matrix (matrix of all second-order partial derivatives of a

scalar function ϕ with respect to the components of a vector x);
0n—a zero column vector of dimension n;
0l×k—a zero matrix of dimensions l × k;
En—an identity matrix of dimensions n× n;
f o

i = max
xi∈Xi

min
xN\{i}∈XN\{i}

fi(x);

Idem{y → y∗}—the result of replacing y with y∗ in a bracketed expression;
R

n×m—the set of constant matrices of dimensions n×m;
λ� f —the vector (λ1f1, λ2f2, . . . , λNfN );
For sets A and B from the space RN ,

A ∪ B—the union of A and B;
A ∩ B—the intersection of A and B;
A+ B = {z ∈ R

N | z = a + b, a ∈ A, b ∈ B
}
;

A− B = {z ∈ R
N | z = a − b, a ∈ A, b ∈ B

}
;

A× B—the Cartesian (direct) product of A and B;
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min
y∈Y

(L)f (x, y) = f (x, y(x))—the value of a vector criterion f (x, y) for a given x

and some uncertainty y(x) ∈ Y that is L-minimal in a multicriteria choice problem

〈 x, Y, f (x, y) 〉 ; (∗)
Argmin

y∈Y

(L)f (x, y) = y(x)—an uncertainty y ∈ Y that is L-minimal in problem (∗);
NE—Nash equilibrium;
BE—Berge equilibrium;
NGU—a noncooperative game under uncertainty;
MCPU—a multicriteria choice problem under uncertainty;
DM—a decision maker;
�—end of proof;
∗—reference to the short biographies at the end of this book.



Introduction

This book is written at the junction of two sciences that have little in common
with each other (at least, at first glance), namely, philosophy (the Golden Rule of
ethics) and cybernetics (mathematical theory of noncooperative games). The authors
were motivated by the IX Moscow Festival of Science held on October 10, 2014,
at Moscow State University. The program of that event in the fundamental library
of MSU included lectures by Nobel laureates chemists Kurt Wüthrich (USA) and
Jean-Marie Lehn (France) and biochemist Sir Richard Roberts (USA) as well as
by RAS Academicians Mikhail Ya. Marov (“The Chelyabinsk meteor”) and Lev
M. Zelenyi (“Exoplanets: Searching for a second Earth”), Doctors of Sciences
Alexander V. Markov (“Why does a human need such a big brain”) and Yury I.
Aleksandrov (“Neurons, humans, and cultures”). Among the other lecturers, RAS
Academician Abdusalam A. Guseinov, Director of the RAS Institute of Philosophy,
delivered his talk “The Golden Rule of ethics.” Being inspired by the perfectly
organized and delivered lecture, one of the authors of this book addressed to the
speaker the following somewhat “impudent” question, “Are You interested in a
mathematical theory of the Golden Rule?” The answer was affirmative. The fact
is that the asker carried in his pocket the Candidate of Sciences Dissertation of
Konstantin S. Vaisman, his former postgraduate, who defended it back in 1995.
The dissertation was devoted to our early attempts to study a new solution concept
for noncooperative games, called Berge equilibrium. The term “Berge equilibrium”
arose as the result of reviewing Claude Berge’s book Théorie générale des jeux á n

personnes [202], which was originally published in 1957 and translated into Russian
in 1961. We are deeply convinced that the notion of Berge equilibrium matches well
the main requirements of the Golden Rule. Unfortunately, Vaisman’s sudden death
at the age of 35 suspended further development of Berge equilibrium in Russia. At
that time, however, the concept of Berge equilibrium was “exported from Russia” by
two Algerian postgraduates of V. Zhukovskiy, M. Radjef and M. Larbani. Later on,
it was actively used by Western researchers. As shown by their publications, most of
investigations are focused on the properties of Berge equilibria, the specific features
and modifications of this concept, and relations with Nash equilibria. It seems that
the nascent theory of Berge equilibrium is getting close to becoming a consistent

xix
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and rigorous mathematical theory. Probably, an intensive accumulation of facts will
lead to an evolutionary inner development. At this stage, tradition requires us to
answer two fundamental questions:

1◦. Does a Berge equilibrium exist?
2◦. How can it be calculated?

As a matter of fact, precisely these questions are treated in the book. Note that
the book was awarded the first prize in the control and economics section at the
2016 All-Russia Best Scientific Book Contest organized by the Foundation for
National Education Development. This book reveals the internal instability of the
set of Berge equilibria. To eliminate this negative feature, we suggest a method
to construct a Berge equilibrium that is Pareto-maximal with respect to all other
Berge equilibria. The method reduces to the computation of a saddle point for an
auxiliary zero-sum two-player game that is effectively designed using the original
noncooperative game. We establish the existence of such a (Pareto-refined) Berge
equilibrium in mixed strategies under standard assumptions of mathematical game
theory, i.e., compact strategy sets and continuous payoff functions of players. This
provides the answer to both questions!

Much attention in the book is also paid to Berge equilibria in the games under
uncertainty as a brand-new research direction.

Finally, at the end of this book we consider applications to competitive economy
models (the Cournot and Bertrand oligopolies) as well as three new approaches to
important problems of mathematical game theory and multicriteria choice, namely,
payoff increase with simultaneous risk reduction, stability of coalitional structures
in cooperative games without side payments under uncertainty, and integration of
the “selfish” Nash equilibrium with the “altruistic” Berge equilibrium.

Thus, the readers are offered five independent parts of the book as follows.
Chapter 1 discusses general philosophical issues related to the Golden Rule of

ethics.
Next, Chap. 2 introduces a practical design method for the Berge–Pareto equilib-

rium and proves its existence in mixed strategies.
Then Chap. 3 presents results of a pioneering research of guaranteed Berge

equilibria in conflicts under interval uncertainty.
Chapter 4 studies the explicit forms of Berge equilibria in the mathematical mod-

els of Cournot and Bertrand oligopolies, including their setups under uncertainty.
Chapter 5 considers three new approaches to important problems of mathemat-

ical game theory and multicriteria choice, which are described in four sections
(Sects. 5.1–5.4). The first approach ensures payoff increase with simultaneous risk
reduction in the Savage–Niehans sense in multicriteria choice problems (Sect. 5.1)
and noncooperative games (Sect. 5.2). The second approach allows us to stabilize
coalitional structures in cooperative games without side payments under uncertainty
(Sect. 5.3). The third approach serves to combine the “selfish” Nash equilibrium
with the “altruistic” Berge equilibrium. Note that the investigations in Sects. 5.2–
5.4 involve a special Germeier convolution of payoff functions and calculation of its
saddle point in mixed strategies.
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However, we are still far from exclaiming “Acta est fabula!”1 Our research
efforts were based on the Non multa sed multum principle2 and the Nune aut
nonquam slogan.3 The results presented in this book form a part of the mathematical
theory of the Golden Rule that describes the static case. Some relevant issues
remain untouched, such as risk consideration, the dynamic case of the Golden Rule
(particularly, for the multistage games) and a gamut of other problems arising in
the modern theory of differential positional games. Our intention is to cover these
issues in a separate book.

We are grateful to Alexander Yu. Mazurov, Candidate of Sciences (Physics and
Mathematics) for his careful translation of the Russian text, editorial changes and
valuable contribution to the English version of the book.

At the end of the Introduction, let us quote Sir Richard Stone, who believed that
with a mathematical description of processes “our decisions may eventually come
to rest a little more on knowledge and a little less on guesswork than they do at
present.”4

1Latin “The play is over!”.
2Latin “Not many, but much,” meaning not quantity, but quality.
3Latin “Now or never.”
4Sir John Richard Nicholas Stone, (1913–1991), was a British economist and the father of national
income accounting, who in 1984 received the Nobel Prize in Economic Sciences. A quote from
Scientific American, 1964, vol. 211, no. 3, pp. 168–182.
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Chapter 1
What Is the Golden Rule of Ethics?

Mais comme tout est compencé dans
le meilleur des mondes possibles.1

Quod tibi fieri non vis, alteri ne feceris.2

First of all, the essence of the Golden Rule is elucidated. Then its connections
with philosophy, morality, duty, ethics, and politics are considered.

1.1 Scribitur ad narrandum, non ad probandum3

Do as you would be done by.

—English proverb4

The negative and positive statements of the Golden Rule are identified and
its history is traced back [36–40].

1French “There are doubts whether everything is really compensated in the best of all possible
worlds”; from A.I. Herzen’s letter to N.A. Herzen, June 7, 1851. An ironic combination of
two famous quotes from Des compensations dans les destinées humaines by French philosopher
P.H. Azaïs (1766–1845) and Candide by French Enlightenment writer, historian, and philosopher
Voltaire (1694–1778).
2Latin “Do not do unto others what you don’t want others to do unto you.” A favourite phrase of
Roman emperor Marcus Aurelius Severus Alexandrus (222–235 A.D.).
3Latin “Is written to narrate, not to prove.” A quote from Institute of Oratory X: 1, 13, by Roman
rhetorian Marcus Fabius Quintilianus (appr. 35–95). He used this phrase to discriminate between
the tasks of history and eloquence.
4Considered by many ethicists and moralists, not only Christians, as a foundation of proper
behavior. The world would be almost ideal if everybody obeyed this proverb.
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2 1 What Is the Golden Rule of Ethics?

In fact, the idea of this book occurred spontaneously, like those of many books
dedicated to cybernetics. Our motivation emanated from the plenary lecture “The
Golden Rule of ethics,” delivered by RAS Academician A. Guseinov5 on October
10, 2014, during the opening session of the IX Moscow Festival of Science in
the fundamental library of Moscow State University. In the early 1970s, Guseinov
was the first Russian philosopher to pioneer research on the Golden Rule [34, 35].
Epigraph no. 2 represents the quintessence of this rule in its negative statement.
However, there exists a positive statement, “Behave unto others as you would like
them to behave unto you.”

The Golden Rule of ethics is not only a topic of academic studies, but also a
subject of contemplation for any thinking person (even if he forgets this rule or
simply does not realize its role in everyday life). The Golden Rule was suggested by
prominent sages in ancient times. It still remains topical in our days. This rule dates
back to the middle of the first millennium B.C., a period of humanistic revolution.
The Golden status was assigned to it in the eighteenth century.

As is well known, in tribal communities people followed the custom of blood
vengeance called talion (the law of retribution in kind). This severe law restricted
the wars of tribes through an equivalent punishment for any crime. When tribal
relations started to disappear, it became difficult to discriminate between “friends”
and “foes.” The economic relations beyond a community had gradually become
more significant than family ties. As a result, communities strived to bear no
responsibility for the actions of individual members. That processes made the use
of talion inefficient, and communities needed a fundamentally new principle to
regulate interpersonal relations regardless of tribal membership. The solution was
provided by the Golden Rule.

1.2 World Religions About the Golden Rule

Those who cannot remember the
past are condemned to repeat it.

—Santayana6

5Abdusalam A. Guseinov, RAS Academician and Director of RAS Institute of Philosophy.
Formulated the hypothesis about the phased origin of ethics based on the isolation of an individual
from a tribal community as an active person. Has been developing the concept of non-violence
ethics since the late 1980s. Associated with a series of original ideas, namely, an interpretation of
the classical European ethics as different experiences in the spiritual overcoming of contradictions
between happiness (bliss) and goodness (virtue); a justified consideration of ethics and moral
reasoning as a single spiritual complex that lies outside the framework of science and its subject; a
description of moralizing as a fetishistic form of cognition. In the recent years, has been working
on an ethical concept that substantiates a particular role of bans and negative actions in morality.
6Jorge Agustín Nicolás Ruiz de Santayana y Borrás, well-known in the English speaking world as
George Santayana, (1863–1952), was a Spanish-American philosopher, poet, and humanist who
made important contributions to aesthetics, speculative philosophy, and literary criticism.



1.2 World Religions About the Golden Rule 3

The original statements of the Golden Rule from leading world religions
are presented.

Let us discuss the statements of the Golden Rule that can be found in ancient
religions.

The New Testament, see the Gospel of Matthew, Chapter 7:12: “Therefore all
things whatsoever ye would that men should do to you, do ye even so to them:
for this is the law and the prophets.”

The New Testament, see the Gospel of Luke, Chapter 6:31: “And as ye would
that men should do to you, do ye also to them likewise.”

The Babylonian Talmud, Shabbat 31a: “Once there was a gentile who came
before Shammai, and said to him: “Convert me on the condition that you teach
me the whole Torah while I stand on one foot.” Shammai pushed him aside with
the measuring stick he was holding. The same fellow came before Hillel, and Hillel
converted him, saying: “That which is despicable to you, do not do to your fellow,
this is the whole Torah, and the rest is commentary, go and learn it.”

An earliest mention of the Golden Rule can be found in the Old Testament, see
The Book of Tobit, Chapter 4:14–15. Tobit exhorts his son Tobias, “Be careful, my
child, in all you do, well-disciplined in all your behaviour. Do to no one what you
would not want done to you.” Most of modern biblical scholars date The Book of
Tobit to a period between the fifth and third centuries B.C.

The same (or even earlier) period is assigned to the teachings of Confucius, see
The Analects (Lun Yu), Chapter XV, 24: “Zi Gong [a disciple] asked: “Is there any
one word that could guide a person throughout life?” The Master replied: “How
about ‘reciprocity’! Never impose on others what you would not choose for
yourself.”

Similar statements also appeared in old Indian and Muslim texts. A saying
of the Buddha reads, “As one teaches others so should one do oneself” (see
Dhammapada XII: 159). A hadith of the Prophet Muhammad states, “None of you
has faith until he loves for his brother what he loves for himself” (see Hadith 13
in Forty Hadith An-Nawawi).

Of course, we should also mention numerous modern statements, from “you
scratch my back and I’ll scratch yours” to “reciprocal altruism.” Modern ethologists
believe that reciprocal altruism is the result of human evolution from natural egoism.

Without going deep into the history of the Golden Rule (time, place and origin),
let us emphasize the fundamental difference between the statements in the
New and Old Testaments. Many regard these statements as identical and even
think that the Golden Rule appeared in the New Testament from the Old. Despite
superficial resemblance, they have different, one might say, opposite sense. In the
New Testament, the statement of the Golden Rule is positive: do to others what is
good for you. But good for us does not always mean good for others. On the other
hand, the Old Testament suggests the negative statement: do not do to others what
is bad for you. Following this principle, one never does evil to anybody, even to an
unknown person. This principle is more universal and well-grounded in relations
with akins and friends as well as with strangers.



4 1 What Is the Golden Rule of Ethics?

1.3 The Golden Rule and Philosophy

Philosophy is the science
which considers truth.

—Aristotle7

The connection between the Golden Rule and philosophy is considered.

Interestingly, the Golden Rule of ethics can be also found in philosophy. Thales
of Miletus, the first among the seven famous Greek sages and philosophers,
answered the question “What method must we take to lead a good life?” in the
following way: “To do nothing we would condemn in others.” Aurelius Augustinus
(St. Augustine), a philosopher and theologian of the fourth to fifth centuries A.D.,
wrote, “The rule of love is that one should wish his friend to have all the good things
he wants to have himself, and should not wish the evils to befall his friend which he
wishes to avoid himself” (see Of True Religions, Chapter XLVI).

Thomas Hobbes, an outstanding philosopher of the New Time, noted, “. . . yet to
leave all men unexcusable, they [natural laws] have been contracted into one easie
sum, intelligible even to the meanest capacity; and that is, “Do not that to another,
which thou wouldest not have done to thy selfe” (see Leviathan, Chapter XV).

Finally, Lev Tolstoy quoted the Golden Rule in his What Is Religion, of What is
Its Essence? in the following way: “The truths of the religion common to everyone
today are so very simple, intelligible and close to the hearts of all men; the practical
law of which is that man must behave towards others as he would wish others to
behave towards him.”

Many other thinkers also mentioned the Golden Rule in certain form. The
greatest sages on the Earth that are generally recognized as the teachers of mankind
underlined the crucial role of this rule in human life. Possibly, to a large extent this
was the core of their wisdom.

Let us summarize the Golden Rule in its conventional statements. These state-
ments reflect the common basis of the rule as well as its nuances.

1. Sympathy rule: “Never impose on others what you would not choose for
yourself” (this statement goes back to Confucius).

2. Autonomy rule: “Do nothing you would condemn in others” (this statement goes
back to Thales of Miletus).

3. Reciprocity rule: “As you would that men should do to you, do also to them
likewise” (this statement goes back to the Gospels).

Essentially, all these rules are suggesting the same. A common feature is that,
while making a decision in complicated or ambiguous situations, a man should be
guided by his beliefs, assessments and desires regarding the best relations among
the people.

7Aristotle, Greek Aristoteles, (384–322 B.C.), was an ancient Greek philosopher and scientist. One
of the greatest intellectual figures of Western history.
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Summarizing this historical review, we also note that the Rule figured as an
aphorism, fundamental principle, commandment, etc. In the seventeenth century it
was called Golden in the European culture and still exists under this name. True, the
Golden Rule of ethics is also associated with other statements. Some philosophers
tried to suggest a “metallic family” of ethical rules. For instance, American
theologian and church historian Leonard I. Sweet introduced the following system
of rules.

1. “Do unto others before they do unto you.” (The Iron Rule).
2. “Do unto others as they do unto you.” (The Silver Rule).
3. “Do unto others as you would have them do unto you.” (The Golden Rule).

In addition, he formulated the Titanium Rule: “do unto others as Jesus has done
to us.” Here the key principles are selflessness and self-sacrifice.

1.4 What Does the Golden Rule Suggest?

We know the truth, not only by
the reason, but also by the heart.

—Pascal8

The essence of the Golden Rule is emphasized and its intended use is
described.

What does the Golden Rule suggest? From what comprehension of human nature
does it stem? This model relies on the following hypotheses.

1. Every man is the cause of all his deeds: before doing anything, every man makes a
corresponding decision. This, of course, does not imply the absence of exogenous
determinative factors, as they do exist; but the behavior of every man is conscious
and reasonable and all his deeds are the result of his own decisions.

2. Every man strives for good, that is, best deeds according to his beliefs (particu-
larly, best deeds for himself).

3. Best deeds are the deeds of intrinsic value, i.e., they will never turn into evil for
the man performing them. Best deeds yield internal rewards and no man will
regret them.

4. The deeds of intrinsic value remain such for any man striving for good. This
hypothesis is of crucial importance. In other words, whenever a man finds a
best decision within his reasoning-based ethical aspiration, this decision will be
acknowledged by every man who follows the principles of good and rational
argumentation.

8Blaise Pascal, (1623–1662), was a French mathematician, physician, religious figure, and writer.
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The Golden Rule is a mechanism that allows every man to answer the following
question in any ambiguous situations. Are seemingly valuable deeds of real value?
Am I mistaken?

What are the intended use and capabilities of the Golden Rule?
The Golden Rule cannot change an immoral man into moral one. In fact, this

task seems impossible for any rule. The intended use of the Golden Rule is to assist
every man who strives to act ethically in keeping self-respect, i.e., choosing a correct
decision. The Golden Rule is not a requirement applied to others. In the first place,
it is imposed on oneself. Not coincidentally the linguistic form of the Golden Rule
has two moods, namely,

1. imperative (“do”–“do not”)
and

2. subjunctive (“would”–“would not”).

Imperativeness concerns one’s own deeds while subjunctiveness the deeds of
others. That is, we should be judgemental about our own deeds. For the deeds of the
others, we may only hope and lead them by our own example.

In an ambiguous situation, the Golden Rule calls to mobilize imagination and
carry out a mental experiment, exchanging roles in order to assess the relative
significance (ergo, ethical purity) of a prospective deed. This approach allows one
to remove all doubts and make a responsible and judgemental decision.

The Golden Rule of ethics is not an abstract norm. On the contrary, it is very
specific and applicable to real situations, doubts, temptations, or enticements. People
do not need special training or skills to use this rule, as it is not a logical formula but
a working scheme of behavior. Everybody knows and recognizes this rule because
it is present in our experience.

We resort to the Golden Rule while trying to deter another man from a bad deed.
In short, the Golden Rule of ethics is a fundamental principle of our everyday life
based on morality.

In conclusion, we note that some researchers endeavor to overcome the Golden
Rule, belittling its importance as the quintessence of ethics, and suggest alternative
regulation rules for moral behavior. Here a widespread approach is the Platinum
Rule introduced by American culturologist Milton J. Bennett, which states, “Do
unto others as they would have you do unto them.” Russian culturologist Mikhail
N. Epstein proposed the Diamond Rule in the following form: “Act in such a way
that you yourself would like to become an object of your actions but no one else
could be their subject.” In other words, “Do what others need and no one else can
do in your place.” Both rules emphasize some autonomy for the ethical aspect of
any action, i.e., it is assumed that each man has to simulate ambiguous situations in
his mind, like a game played with himself. No doubt, these statements are important
and reflect crucial points of our moral life, but still do not overcome the Golden
Rule of ethics: the Platinum and Diamond Rules lose reciprocity. Indeed, according
to the Golden Rule, each man should behave taking into account the expected effect
on other people. Following the Platinum or Diamond rule, each man uses the others
just to form his own autonomous behavior, though they do not define the canon of
ethics; so this reciprocity is naturally lost.
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Thus, it is too early to write off the Golden Rule. Particularly for the reason that
the existence and application of this rule have no concern with academic studies:
the Golden Rule accompanies our real life, relations and everyday experience.

The remainder of Chap. 1 consists mostly of translated fragments from the book
The Golden Rule of Behavior written by Russian philosopher, Professor Lev E.
Balashov; see [2] for the original version in Russian.

1.5 The Golden Rule as the Key Principle of Social Life

What is not good to ye, do not make ye to a friend.
—Clerk (deacon) Joannes9

Nam tua res agitur, paries cum proximus ardet.10

Connections between the Golden Rule and moral philosophy, ethics, the
sense of duty, law, and a healthy way of life are considered.

Let us summarize the outcomes. Recall that, in the positive form, the Golden
Rule precepts, “Behave to others as you would like them to behave to you.” While
the negative form is, “Do not behave to others as you would not like them to behave
to you.”

The Golden Rule gives an integral and concentrated view of ethics by capturing
its major aspect—the relation to others as to oneself. This rule establishes, fixes and
defines a measure of human nature in everybody as well as morally equalizes all
people and likens them to each other. In Guseinov’s opinion, whenever one speaks
about moral equality one is concerned with only one thing—each individual is
worthy of the right to happiness and “the mutual acknowledgement of this right
is a prerequisite for moral communication.” The Golden Rule demands “from an
individual to put himself/herself in place of other individuals and behave unto them
as if he/she would be in their place.” “The mechanism of the Golden Rule can
be defined as assimilation, as a requirement to mentally take the place of another
individual.” [34, p. 134]. Moral equalization is a quantitative procedure while moral
assimilation a qualitative procedure. Their combination yields a measuring process:
the Golden Rule suggests each man to harmonize his deeds with the deeds of the
others, using his “yardstick” for their deeds and, conversely, their “yardstick” for
his own deeds. Following this rule, every man should find a common measure for
his own deeds and the deeds of the others, always acting in accordance with this
common measure.

9A quote from Izbornik of Sviatoslav, 1073.
10Latin “It is your concern when your neighbor’s wall is on fire.” A quote from Epistles I: 18, 84, by
Quintus Horatius Flaccus (65–8 B.C.), an outstanding Roman lyric poet and satirist, well-known
in the English speaking world as Horace.
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The negative statement of the Golden Rule establishes the lowest admissible
hurdle or bound for the moral attitude of every man to the others, prohibits doing
evil, thereby specifying the minimum ethical requirements to individual behavior.

In turn, its positive statement establishes the highest admissible hurdle for the
moral attitude of every man to the others, encourages doing good, thereby providing
the maximum ethical requirements to individual behavior.

Therefore, the Golden Rule covers the whole range of moral deeds and is a
basis for discriminating between the ethical categories of good and evil. (J. Korczak
wrote, “Many times I thought what “being good” means. To my mind, a good man is
a man who has imagination and understands others, who can feel like others do.”11

A quote from the book [84].)
The same function is performed by the Golden Rule subject to the sense of

duty. To explain this, just consider it from another viewpoint—how does this
rule commensurate the deeds of every man with the deeds of the others? Such a
commensuration proceeds from the following line of reasoning adopted by every
man. “I was born and set up in life by parents, people and society (fed, dressed,
shod, educated, etc.), i.e., they all did good unto me, just as I would like the others
do. So, I am going or must do unto them (parents, people, society) at least in the
same way, i.e., my behavior must not deteriorate or reduce the quality and amount
of life given to me and the others. Moreover, as much as possible, I must apply every
effort to improve or increase the quality and amount of life (mine and of the others,
of the whole society).” In this context, we also translate into English a good quote by
P. Lavrov: “In the course of his development, an intellectually mature man must pay
a considerably higher price than the cost of this development for the mankind.”12

See the original in [91, p. 417].
This is a general understanding for the sense of duty. Of course, there exist

different duties, depending on the meaning of “others.” If “others” are our parents,
then the matter concerns our duty to them; if our nation or country, our duty to the
Motherland; if all people in the world, our duty to the mankind.

A duty is a “normal deviation” from an optimal norm, like a need. In turn, a need
is a deviation from an optimal norm subject to a healthy way of life of an individual.
Likewise, a duty is a deviation from an optimal norm subject to a healthy way of life
of a society. Duties fulfilment by specific people has the same value for a healthy
society as satisfaction of needs for a healthy individual. In his youth, every man
accumulates duty, as he mostly takes from the others and gives almost nothing in
return. At mature age, every man repays by doing his duty.

While moral philosophy (ethics) regulates the relations among people as well as
maintains a healthy society in a small neighborhood of an optimal norm (realization

11Janusz Korczak, the pen name of Henryk Goldszmit, (1878–1942), was a Polish–Jewish doctor,
writer, and child advocate [106] who, in order to maintain his orphanage, refused to escape Nazi-
occupied Poland during World War II.
12Pyotr Lavrov, original name Pyotr Lavrovich Mirtov, (1823–1900), was a Russian Socialist
philosopher, theorist of narodism, and publicist.
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and fulfilment of duty), law does the same in a wider sense—bans, prevents, and
cures pathological deviations from the optimal norm, often called offences and (or)
crimes. Actually, offences and crimes have the same effect on a healthy society as
diseases on a healthy individual. If many offences and crimes occur in a society, it
is de jure sick. Such a society would hardly be healthy in the ethical sense.

The Golden Rule establishes a correlation between a healthy individual and a
healthy society. It declares that the life and health of a society are formed by the
people that compose it; that morality is valuable not by itself but as the result of a
healthy way of life of a specific individual, as a natural continuation of this life and
health. On the one hand, moral health is a part of social health (a group of people,
a nation, etc.); on the other, a constituent of the individual health of every man
belonging to a given society. Law is also not valuable by itself. It represents a natural
continuation of morality and, like the latter, relies on the Golden Rule. T. Hobbes
wrote that a man should “be contented with so much liberty against other men, as
he would allow other men against himselfe.” (see Leviathan, Chapter XIV). Nearly
the same was claimed by an ancient political and juridical rule: “Everybody must
obey only the law he/she has agreed with.” This rule may perhaps seem somewhat
dogmatic yet it is correct in substance, being based on the Golden Rule. Compare
it with another rule: “Observing the rights of the others, we protect our own rights”
(from a movie by Jacques–Yves Cousteau, 1984). This rule is used by thousands of
diggers in the Amazon goldfields, and thefts are a rarity there. A detailed analysis
of its meaning shows that this rule is a particular case of the Golden Rule in the
negative statement. Consequently, in the deep sense, law is a mutual admission
and restriction of freedom. A mutual admission of freedom yields various human
rights, whereas a mutual restriction of freedom results in various human duties.

The Golden Rule is also remarkable for self-sufficiency, self-connectedness and
self-groundedness. In particular, it combines an accidental “I want to. . . ” with
a necessary “I have to. . . .” This combination finally gives what we call freedom.
The Golden Rule is the formula of freedom. Being combined in the Golden Rule,
“I want to. . . ” and “I have to. . . ” complement and restrict each other as well as
establish a measure and moderate each other.

With this combination of “I want to. . . ” and “I have to. . . ,” the Golden Rule also
eliminates the ethical dilemma of happiness versus duty. It demands from every man
only what he wants to be done unto himself. Not without reason it is called Golden.

A negative ectype of the Golden Rule is found in popular expressions, such as “an
eye for an eye, a tooth for a tooth,” “Vengeance is mine; I will repay” and proverbs
“as you sow so shall you reap”, etc. [5]. Their essence is that if you were done evil,
you have the right to or should repay in kind. Despite a superficial similarity
with the Golden Rule, such an approach is actually its antipode. This “rule” works
when the Golden Rule is violated. Its destructive power for human relations can be
illustrated by vengeance (if you do evil unto me, my response will be the same). In
this sense, the most dangerous phenomenon is blood vengeance, which may cause
annihilation of entire families.
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One wonders: if the Golden Rule is so good, why do people infringe it on a
regular basis, doing evil and not fulfilling their duty? Here we may draw an analogy
with a healthy way of life and diseases. The latter do not make our health less
valuable; on the contrary, a sick man tries to recover from his disease as soon as
possible. Similarly, a breach of the Golden Rule does not reduce its value. In the
total balance of human deeds, the deeds based on the Golden Rule outweigh the
deeds that violate it. Otherwise, our society would be far gone and dying.

The Golden Rule is not so trivial as it may seem at a first glance. For this rule to
work efficiently, at least two conditions are required:

1. Man must be normal and healthy; if not, he must take into account any
abnormality and lack of moral health while choosing his attitude to the others.
The attitude to the others is the attitude to oneself.

2. Man must be able to mentally put himself in place of the others, thereby
making appropriate corrections in his behavior. This procedure is not easy.
Frequently people do harm to others not maliciously, but due to thoughtlessness,
in particular, because they are unable to put themselves in place of the others.

Finally, it should be emphasize that the Golden Rule prohibits killing in any form.
Indeed, no normal man wants to die, much less to be killed. If you do not want to
be killed, you should not wish or do it unto others. Therefore, malicious or reckless
killing, as well as enemy annihilation in war or execution of death penalty—all these
contradict the Golden Rule.

1.6 Moral Decline of Modern Society

Do not treat others like you would not have them treat you.
—Russian proverb [8]

The moral level of modern society is discussed.

Nowadays, people often say that modern society suffers from a moral decline
and even from a continuous destruction of ethical norms [116].

According to the Merriam-Webster’s definition, “ethics is the discipline dealing
with what is good and bad and with moral duty and obligation; the principles of
conduct governing an individual or a group; a set of moral issues or aspects (such as
rightness).” At present times, almost anybody speaking about ethics will be blamed
for hypocrisy and dissimulation. Obeying moral norms is no longer fashionable or
prestigious. The elderly note that just several decades ago people were different—
not hesitating to be gentle and admonitory to each other. Today we often feel
awkward to offer our arm to a woman, to assist a blind person cross the road, etc.,
against the typical attitude of every man, his true nature.
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The dynamics of these destructive processes of the human nature are well
described by a Chinese poem:

In the 1950s people helped each other.
In the 1960s people competed with each other.
In the 1970s people betrayed each other.
In the 1980s people cared only about themselves.
In the 1990s people exploited for their benefit everybody they met.

Since the early 2000s, the moral sphere of modern society has been considerably
devalued in the whole world. This is a direct consequence of the prevailing economic
problems and related ideological and political issues: almost all actions of people
are aimed at accumulation of material goods.

In a continuous pursuit of wealth, man has neglected spirituality and stopped
thinking about inner self-development, ignoring the ethical aspect of his deeds. This
trend dates back even to the end of the nineteenth century. Famous Russian writer
and philosopher F.M. Dostoyevsky wrote about an uncontrollable itch for money
that seized the people of that period up to stupefaction; see The Idiot.

Most people forgot (many had never been aware of!) the essence of the Golden
Rule. The destructive processes in modern society may cause a serious stagnation
for our civilization; what is more dangerous, further evolution may even reach an
impasse.

An essential role in the fadeaway of society’s morality, e.g., in Russia and
Germany, was played by corresponding ideologies adopted by bolsheviks and nazi,
respectively. A low ethical level of people often manifests itself at critical periods
of history (revolutions, civil wars and external military conflicts, instable political
regimes, etc.). For example, we mention the crying violation of state norms in
Russia during the Civil War (1918–1921), World War II (1939–1945), Stalin’s
industrialization (1920s–1930s) and also nowadays, in the form of an epidemic
of terrorist acts. All these events led to a deplorable result—the mass mortality of
innocent people.

The ethical aspects are often disregarded in the management of state affairs, i.e.,
in the course of economic, social, agricultural and industrial reforms. As a rule, this
has a negative impact on the environment.

In some countries, a currently unfavorable condition in many spheres of human
life is a direct consequence of governmental miscalculations (incorrect decisions)
given the current ethical level of the society. We are observing a deterioration in
the criminal situation: a growing number of killings (including contract and brutal
murders), tortures, thefts, rapes, corrupt practices, acts of vandalism, etc. In many
cases, these actions go unpunished, as the crime detection and punishment rate went
down. As a somewhat funny example of disorder and chaos, consider a much-talked-
of story that occurred in the middle of the 1990s in one country. Two men were
caught in the government house for stealing a cardboard box with $500,000. After
an official announcement that the owner of that money did not show up, the criminal
case was closed and further investigation terminated. As a result, the two criminals
became “the benefactors of the state” because they found “a buried treasure”; and
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the money were redirected to government’s coffers. Clearly, the owner of the money
acquired it in a most underhand manner (otherwise, he/she would immediately claim
the right for it). The public prosecutor’s office had to identify the source of that
cardboard box with a large sum of money. In fact, no investigation was conducted
and the officials maintained a discreet silence why. To all evidence, police, courts
and public prosecutor’s office were unable to control the criminal situation in the
country, the reason apparently being the high level of corruption of many public
officials.

1.7 The Golden Rule and Policy

Power will intoxicate the best
hearts, as wine the strongest

heads. No man is wise enough,
nor good enough to be trusted

with unlimited power.
—Colton13

Nobody should go into politics
unless he has a hide like a rhinoceros.

—Roosevelt14

This section was written under the impression of the lecture “The Golden
Rule of Ethics and Its Interpretation in Policy” by Academician A. Guseinov,
which was delivered on March 31, 2015, live on Vmeste–RF, the official channel
of the Council of the Federation, the Upper Chamber of the Parliament of the
Russian Federation.

Social Policy There exists a moral judgement of human activity in accordance
with the behavioral rules accepted in a given society. The deeds of every man can
be moral (worthy, noble, proper) and immoral. The criteria used to discriminate
between them are called moral norms. In fact, morality is multiform, it can be treated
as wordly wisdom, the divine commandments, a tool for maintaining social order,
honesty in human relations, the supreme sense of human life, the inner voice of
conscience or even obsolete requirements preventing us from being ourselves.

Morality is based on conscience (the ethical sense that allows every man to assess
his deeds in terms of good and evil) and duty (the ethical will to act following one’s
own idea of correct behavior). Most of the world peoples have features of ethical
behavior such as selflessness, courage, truthfulness, modesty, humanism, wisdom,

13Charles Henry Colton, (1848–1915), was an American clergyman of the Roman Catholic Church
and writer.
14Franklin Delano Roosevelt, (1882–1945), was an American statesman and political leader who
served as the 32nd President of the United States from 1933 until his death in 1945; he won a
record four presidential elections.
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to name a few. The qualities that are disapproved by many peoples (vices) include
foolishness, self-interest, vanity, flattery, and so on.

The fundamental categories of morality are the representations about good
and evil. These are most general concepts for assessing the actions and deeds of
people. Good is the major value of every man, his moral sacred thing. Good stands
against evil.

Each of us chooses between the paths of virtue or vice independently, but we still
bear responsibility for this choice.

The generally accepted ethical requirements and guidelines of moral deeds
constitute the universal component of moral consciousness that is common to all
mankind. They express the demands of an ethical ideal as the supreme moral aim
(the Golden Rule of ethics). Since the ancient times until present, the Golden Rule of
ethics had underwent many changes, but today it still keeps the ideas of freedom and
equality of all people, the self-esteem and dignity of each individual. As repeatedly
mentioned, in its most general form it states, “Behave to others as you would like
them to behave to you.”

A special feature of morality is that it involves values, i.e., the preferences of
people in accordance with their goals and ideals. The ethical values proceed from a
comprehension of welfare (the supreme form of good, the state of complete harmony
between a man and reality). This yields kindness, generosity, compassion, concern
for one’s neighbor, honesty, calmness, hope, and so on. All these values can be
called virtues. They stand against such vices as hate, envy, pride, surfeit, egoism,
greediness, and others.

For every man, moral perfection consists in shifting his internal proportions of
good and evil towards the former. However, to do this every man should make his
personal moral choice.

1.8 Is Ethical Policy Possible?

Nous dansons sur un volcan.15

The character of contradictions between policy and morality depends on the
implementation processes of state power as well as on the types of ethical and
political consciousness. At the same time, these conditions do not fully determine
the matching of moral criteria with the fundamental principles of state authorities.

15French “We are dancing on a volcano.” This famous phrase was addressed by French diplomat
Narcisse-Achille de Salvandy to Louis Philippe, then the Duke of Orleans, at a grand ball given to
the King of Naples. The words turned out to be a prophecy, as 2 months later French King Charles X
was disthroned by the July Revolution of 1830. A similar expression is associated with Maximilien
de Robespierre, (1758–1794), one of the leaders of the French Revolution: “Nous marchons sur
des volcans.”
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Indeed, every social group is guided by its own ethical standards that justify
or direct the activities of its members. This results in several centers of ethical
energetics in politics. First of all, we may discuss the political ethics of different
social groups—intellectuals, youth, working class and others—which characterizes
the degree of assimilation of collective values by an individual. Moreover, in every
country there exist public moral norms that are acknowledged by most of population
as the main goals of life and activity. In turn, they can match to some degree
the universal ethical rules that embody the supreme principles of humanism and
unite people, despite their social, national, religious and other differences. These
principles are “thou shalt not kill,” “thou shalt not steal,” and others.

From a political standpoint, the problem is to correlate these types of ethical
reflection that prioritize human behavior in the field of state power. Perhaps the
most acute problem concerns the role of different collective moral norms, as the
supreme ethical ideals of a group pretend to replace public moral norms. In addition,
separate groups may acknowledge the right of other groups for their own ideals, or
may not. In the latter case, the representatives of such groups often believe that it is
possible to compel people “for their own good” (due to their ignorance, blindness
and misunderstanding of true goals) or may consider any contacts and compromises
with political opponents as inadmissible weakness or even betrayal, etc.

In other words, an extremely dangerous phenomenon for a society is the elevation
of collective values to the rank of public ethics. This causes a moral decline and
dehumanization of politics. For example, bolsheviks considered ethical “only what
serves the cause of working class, which creates the society of communists.” As a
result, they neglected the common values of the mankind and provoked the bloody
bacchanalia of the civil war. During Stalin’s period, snitching against friends and
relatives was officially supported by the soviet authorities. Also recall the extremely
cruel, barbaric treatment of the political opponents in Pol Pot’s Cambodia, Mao’s
China and some other countries. As reasonably noted by Father A. Men,16 the
relativization of morality, the pretentiousness and impenetrability of collective
standards for more general ethical values inevitably lead to violence and “the
pluralism of skulls.”

The fixation of basic ethical principles in the system of legal regulation and
also the development of special structures in state authorities to control the ethical
behavior of public politicians and officials (e.g., restriction of gifts, prevention of
nepotism, etc.) are of crucial importance. Another considerable aspect is to organize
public control of state authorities (in form of mass media and non-governmental
organizations reporting of corruption, false, and so on).

16Alexander V. Men, (1935–1990), was a Russian Orthodox priest, theologian, Biblical scholar
and writer.
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In each country, such a political course must be implemented together with
a proper moral climate in which neither the leader nor ordinary people would
shift the burden of responsibility to certain public or political institutions (family,
party, organization). Only the ethical independence of an individual can serve as
a foundation for the raising of politically conscientious citizens and maintaining
morality as a source for a human-oriented political system of state power.



Chapter 2
Static Case of the Golden Rule

Celui qui croit pouvoir trouver en soi-même
de quoi se passer de tout le monde se trompe
fort; mais celui qui croit qu’on ne peut se
passer de lui se trompe encore davantage.

—La Rochefoucauld1

In this chapter, the concept of Berge equilibrium is introduced as a mathematical
model of the Golden Rule. This concept was suggested by the Russian mathe-
matician K. Vaisman in 1994. The Berge–Pareto equilibrium is formalized and
sufficient conditions for the existence of such an equilibrium are established. As
an application, the existence in the class of mixed strategies is proved.

2.1 What is the Content of the Golden Rule?

Virtue is its own reward.
—English proverb

In the religious-ethical foundations, most nations are guided by the same strategy
of behavior, embodied in the demands of the so-called Golden Rule (see Chap. 1). It
will hopefully become an established ethical rule for the behavior of the mankind.
The well-known statement of the Golden Rule declares, “Behave to others as you
would like them to behave to you” (from a lecture delivered by Academician A.
Guseinov, Director of RAS Institute of Philosophy, during The IX Moscow Science
Festival on October 10, 2014 at Moscow State University). It originates from the

1French “He who thinks he has the power to content the world greatly deceives himself, but he
who thinks that the world cannot be content with him deceives himself yet more.” François de La
Rochefoucauld (1613–1680) was a French classical writer; a quote from Réflexions ou Sentences
et Maximes morales (1665).
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New Testament, see the Gospel of Luke, Chapter 6:31, precepting that “And as ye
would that men should do to you, do ye also to them likewise.”

Prior to formalizing the concept of Berge equilibrium that matches the Golden
Rule, we will present the concept of Nash equilibrium as a standard approach to
resolve conflicts. In fact, a critical discussion of the latter has led to the Berge
equilibrium, the new solution of noncooperative games that is cultivated in this
book.

2.2 Main Notions

Suum cuique.2

Nowadays, when the world shudders at the possibility of escalating military
conflicts, the Golden Rule becomes more relevant than ever. Indeed, the Golden
Rule is a possible way to avoid wars and blood-letting. The modern science of
warfare relies mostly on the concept of Nash equilibrium. In this section, the
definition of a Nash equilibrium is given, preceded by background material from
mathematical theory of noncooperative games.

2.2.1 Preliminaries

Non multa sed multum.3

Some general notions from the mathematical theory of noncooperative
games that will be needed in the text are presented.

Which mythical means were used by Pygmalion to revivify Galatea? We do
not know the true answer, but Pygmalion surely was an operations researcher by
vocation: at some moment of time his creation became alive. This idea underlines
creative activities in any field, including mathematical modeling. To build an integral
entity from a set of odd parts means “to revivify” it in an appropriate sense:

“She has not yet been born:
she is music and word,
and therefore the un-torn,
fabric of what is stirred.” (Mandelshtam4)

2Latin “To each according to its own merits; to each his/her own.” This phrase appeared in
philosophical dialogs and treatises On Duties 1, 5, 14, and Tusculan Disputations, Vol. 22, by
Marcus Tullius Cicero (102–43 BC), a Roman statesman, lawyer, scholar, and writer.
3Latin “Not many, but much,” meaning not quantity but quality. This phrase belongs to Plinius the
Younger (62–114 A.D.); see Letters, VII, 9.
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This section is devoted to the revivification of a conflict.
What is a conflict? Looking beyond the common (somewhat criminal) meaning

of this word, we will use the following notion from [189, p. 333]: “conceptually
a conflict is any phenomenon that can be considered in terms of its participants,
their actions, the outcomes yielded by these actions as well as in terms of parties
interested in one way or another in these outcomes, including the nature of these
interests.” As a matter of fact, game theory suggests mathematical models of
optimal decision-making under conflict. The logical foundation of game theory is
a formalization of three fundamental ingredients, namely, the features of a conflict,
decision-making rules and the optimality of solutions. In this book, we study “rigid”
conflicts only, in which each party is guided by his own reasons according to his
perception and hence pursues individual goals, l’esprit les intérêst du clocher.5

The branch of game theory dealing with such rigid conflicts is known as the
theory of noncooperative games. The noncooperative games described in Chap. 2
possess a series of peculiarities. Let us illustrate them using two simple examples.

Example 2.1.1 Imagine several competing companies (firms) that supply the same
product in the market. Product price (hence, the profit of each firm) depends on
the total quantity of products supplied in the market. The goal of each firm is to
maximize its profit by choosing an appropriate quantity of supply.

Example 2.1.2 The economic potential of an individual country can be assessed
by a special indicator—a function that depends on controllable factors (taxation,
financial and economic policy, industrial and agricultural development, foreign
supplies, investments, credits, etc.) and also on uncontrollable factors (climate
changes and environmental disasters, anthropogenic accidents, suddenly sparked
wars, etc.). Each country seeks to achieve a maximal economic potential through
a reasonable choice of the controllable factors with a proper consideration of the
existing economic relations with other countries.

These examples elucidate well the character of noncooperative games.
The differentia specifica6 of such games are the following.
First, the decision-making process involves several parties (decision makers, e.g.,

sellers or governments), which are often called players in game theory. Note that a
priori they are competitors: quilibet (quisque) fortunae suae faber.7

Second, each player has an individual goal (profit or economic potential maxi-
mization) and the goals are bound to each other: tout s’enchaine, tout se lie dans ce

4Osip E. Mandelshtam, (1891–1938), was a major Russian poet, prose writer, and literary essayist.
5French, meaning narrow-mindedness and a lack of understanding or even interest in the world
beyond one’s own town’s boundaries.
6Latin, meaning a feature by which two subclasses of the same class of named objects can be
distinguished.
7Latin “Every man is the artisan of his own fortune.” This phrase goes back to Appius Claudius
Caecus (4–3 centuries BC), an outstanding statesman, legal expert and author of early Rome who
was one of the first notable personalities in Roman history.
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monde.8 A dazzling success of one party may turn out to be a disaster for another
party.

Third, each player uses his own tools for achieving his goal (for sellers, the quan-
tity of products supplied; for a country, the controllable factors in Example 2.1.2); in
game theory, the controllable factors of each player are called his strategies, while
a specific strategy chosen by a player is his decision or action in a noncooperative
game.

Let us list three important circumstances.
First, quantitative analysis in any field requires an appropriate mathematical

model; this fully applies to noncooperative games. In the course of mathematical
modeling, a researcher inevitably faces the risks of going too deep into details (“not
see the wood for the trees”) and presenting the phenomenon under study in a rough
outline (“throwing out the baby with the bathwater”). The mathematical model of a
noncooperative game often includes the following elements:

– the set of players;
– for each player, the set of his strategies;
– for each player, a scalar functional defined on the set of players’ strategies.

The value of this functional is the degree to which a given player achieves his
goal under given strategies. In game theory, the functional is called the payoff
function (or utility function) of a given player.

Second, “many intricate phenomena become clear naturally if treated in terms
of game theory.” [21, p. 97]. Following these ex cathedra9 pronouncements by
Russian game theory maître N. Vorobiev, we are employing the framework of
noncooperative games in this book.

A series of conventional requirements have been established for a game-
theoretic model (of course, including a sufficient adequacy to the conflict under
consideration) as follows.

First, the model must incorporate all interested parties of the conflict (players).
Second, the model must specify possible actions of all parties (the strategies of

players).
Third, the model must describe the interests of all parties (for each player and

each admissible collection of actions chosen by all players, the model must assign a
value called the payoff of that player).

The main challenges of game theory [24] are

(1◦) the design of optimality principles;
(2◦) the proof of existence of optimal actions for players;
(3◦) the calculation of optimal actions.

Different game-theoretic concepts of optimality often reflect intuitive ideas
of profitability, stability and equitability, rarely with an appropriate axiomatic

8French, meaning that all things in the worlds are interconnected.
9Latin “From the chair,” used with regard to statements made by people in positions of authority.
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characterization. Therefore, in most cases the notion of optimality in game theory
(an optimal solution of a game) is not unique, prior or absolute.

We will make the normative10 approach to noncooperative games the cornerstone
of this book: it will be established which behavior of the players should be
considered optimal (rational or reasonable) [47, 48].

Depending on the feasibility of joint actions among the players (coordination of
their individual actions), the games are classified as noncooperative, cooperative,
and coalitional [50].

In the noncooperative setup of a game (simply called a noncooperative game,
see above), each player chooses his action (strategy) in order to achieve the best
individual result for himself without any coordination with other players: chacun
pour soi, chacun chez soi.11

The cooperative setup of a game (cooperative game) is opposite to the noncoop-
erative one. Here all players jointly choose their strategies in a coordinate way and,
in some cases, even share the results (their payoffs). Alle für einen, einer für alle.12

Finally, in the coalitional setup of a game (coalitional game), all players are
partitioned into pairwise disjoint groups (coalitions) so that the members of each
coalition act cooperatively while all coalitions play a noncooperative game with
each other.

2.2.2 Elements of the Mathematical Model

Ad Disputandum13 Consider several subsystems that are interconnected with
each other. In economics, these can be industrial enterprises or sectors, countries,
sellers in a market, producers of every sort and kind with the same type of
products, and other economic systems (called firms in [124, p. 28]). In ecology,
industrial enterprises with the same purification and treatment facilities, competing
populations of different species (e.g., predators and preys), epidemics propagation
and control. In the mechanics of controlled systems, a group of controlled objects
(aircrafts, missiles) that attempt to approach each other or to capture an evader.

Each subsystem is controlled by a supervisor (henceforth called a player), who
undertakes certain actions for achieving his goal based on available information.
In social and economic systems, the role of players is assigned to the general
managers of industrial enterprises and business companies, the heads of states,

10There also exist other approaches to conflict analysis: descriptive, which is to find the resulting
collections of players’ actions (the so-called strategy profiles) in a given conflict; constructive,
which is to implement the desired (e.g., optimal) strategies in a given conflict; predictive, which is
to forecast the actual result (outcome) of a given conflict.
11French “Every man for himself, every man to himself.”
12German “One for all and all for one.”
13Latin “For discussion.”
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sellers (suppliers) and buyers (customers). In mechanical control systems, this role
is played by the captains of ships or aircrafts and the chiefs of control centers.

Assume that, due to a priori conditions, the players have to follow the “Help
yourself” slogan. This leads to the noncooperative setup of their interaction.

As an example, consider a simplified mathematical model of competition among
N firms in a market.

Example 2.2.3 There are N � 2 competing firms (players) that supply an infinitely
divisible good of the same type (flour, sugar, etc.) in a market. The cost of one unit
of good for firm i is ci > 0, i ∈ N = {1, . . . , N}. Suppose the number of market
participants is sufficiently small so that the prices for goods depend directly on the
quantity supplied by each firm. More specifically, denote by K the total supply
of goods in the market; then the price p of one good can be calculated as p =
max{a − Kb, 0}, where a > 0 gives the constant price of one good without any
supply in the market, while b > 0 is the elasticity coefficient that characterizes the
price drop in response to the supply of one unit of good. Here a natural assumption
is that ci < a, i ∈ N, since otherwise the activity of firms makes no economic
sense. In addition, the production capacities of the players are unlimited and they
sell the goods at the price p.

Suppose the firms operate in stable (not extreme) conditions and hence their
behavior is aimed at increasing profits. Denote by xi the quantity of goods supplied
by firm i (i ∈ N). Then the total supply of goods in the market is given by

K =
N∑

i=1

xi,

while the profit of firm i is described by the function

fi(x) = pxi − cixi (i ∈ N),

where (as before) p is the unit price.
Another reasonable hypothesis is that a − Kb > 0, since otherwise p = 0 and

production yields no benefit for all firms (the profits become negative, fi(x) =
−cixi < 0, i ∈ N). In this case, the function

fi(x) =
[

a − b

N∑

k=1

xk

]

xi − cixi (i ∈ N)

is the profit of firm i.
Therefore, in Example 2.2.3 the players are the competing firms and the action

(strategy) of each player i ∈ N consists in choosing the quantity xi ∈ Xi = [0,+∞)

of its goods supplied in the market. Making its choice, each player i seeks to
maximize its profit fi(x) (payoff) given the supplied quantities x = (x1, . . . , xN)

of all players.
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Idée Générale Now, let us clarify the framework of the noncooperative games
studied in this chapter.

For this purpose, we will answer Quintilian’s questions “Quis? Quid? Ubi?
Quibus auxiliis? Cur? Quomodo? Quando?”14

Quis? (Who?) In fact, a leading part in noncooperative games is assigned to
the players. As mentioned earlier, players can be general managers of industrial
enterprises and business companies, heads of states, sellers (suppliers) and buyers
(customers), captains of ships or aircrafts and so on, i.e., those who have the right
or authority to make decisions, give instructions and control their implementation
(interestingly, some people considering themselves to be (fairly!) serious strongly
object to such a game-theoretic interpretation of their activity). Each player has a
corresponding serial number: 1, 2, . . . , i, . . . , N . Denote by N = {1, 2, . . . , N} the
set of all players and let the set N be finite. Note that games with an infinite number
of players (called non-atomic games) are also studied in game theory [160, 171].
Players may form groups, i.e., coalitions K ⊆ N. A coalition is any subset K =
{i1, . . . , ik} of the player set N. In particular, possible coalitions are singletons (the
noncoalitional setup of the game) and the whole set N (the cooperative setup of the
game). A partition of the set N into pairwise disjoint subsets forming N in union is
a coalitional structure of the game:

P = {K1,K2, . . . ,Kl | Ki ∩Kj = ∅ (i, j = 1, . . . , l; i �= j),

l⋃

i=1

Ki = N}.

For example, in the noncooperative three-player game (N = {1, 2, 3}), there exist
five possible coalitional structures, given by P1 = {{1}, {2}, {3}},P2 = {{1, 2}, {3}},
P3 = {{1}, {2, 3}}, P4 = {{1, 3}, {2}}, P5 = {{1, 2, 3}}.

For a compact notation, we will sometimes consider only two-player games,
letting N = {1, 2}.

In Example 2.2.3, the players are the general managers of competing firms.

Quid? (What?) Each player chooses and then uses his strategy. A strategy is
understood as a rule that associates each state of the player’s awareness with a
certain action (behavior) from a set of admissible actions (behaviors) given this
awareness. For the head of a state, this is a direction of strategic development.
In a sector composed of several industrial enterprises, a strategy of a general
manager is the output of his enterprise, the price of products, the amount of raw
materials and equipment purchased, supply contracts, investments, innovations and
implementation of new technologies, payroll redistribution, penalties, bonuses and
other incentive and punishment mechanisms. For a seller, a strategy is the price of

14Latin “Who? What? Where? Who helped? Why? How? When?”; a well-known system of seven
questions for crime investigation suggested by Roman rhetorician Quintilian, Latin in full Marcus
Fabius Quintilianus, (appr. 35–100 A.D.).
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one good; for the captain of a ship, own course (rudder angle, the direction and
magnitude of reactive force).

Thus, the action of each player consists in choosing and using his individual
strategy, which gives an answer to the question Quid? Speaking formally, the
strategy of player i in the game �3 is xi while the strategy set of this player is
denoted by Xi .

Ubi? (Where?) Here the answer is short: in the conflict, more precisely put, in its
mathematical model described by the noncooperative game. In Example 2.2.3, this
is the market of goods.

Quibus Auxiliis? Quomodo? (Who helped? How?) Actually the players affect the
conflict using their strategies, which is the answer to both questions.

In Example 2.2.3, the firms choose the quantities of their goods supplied in the
market as their strategies. The resulting situation in the market is the strategy profile
in the corresponding noncooperative game.

Cur? (Why?) The answer is: in order to assess the performance of each player. The
noncooperative game (the mathematical model of a conflict adopted in our book)
incorporates the payoff function of player i (i ∈ N). The value of this function
(called payoff or outcome in game theory) is a numerical assessment of the desired
performance. In Example 2.2.3, the payoff function of player i has the form

fi(x, y) =
[

a − b
∑

k∈N
xk

]

xi − cixi.

It measures the profit of firm i in the single-stage game. The following circum-
stances should be taken into account while assessing the performance of each player
in a noncooperative game.

First, the design of payoff functions (performance assessment criteria) is a rather
difficult and at times subjective task: “Nous ne désirerions guére de choses avec
ardeur, si nous connaissions parfaitement ce que nous dèsirons.”15 [119, p. 55].

Sometimes, the goal consists in higher profit or lower cost; in other cases, in
smaller environmental impact. Other goals are possible as well. As a rule, in a
noncooperative game these criteria represent scalar functions defined on the set of
all admissible strategy profiles. For the sake of definiteness, assume each player
seeks to increase his payoff function as much as possible.

Second, in accordance with the noncoalitional setup of the game, the players act
in an isolated way and do not form coalitions. Being guided by the Suum cuique
slogan,16 each player chooses his strategy by maximizing his own payoff.

15French “We would yearn for very few things if we clearly understood what we wanted.” A quote
from Réflexions ou Sentences et Maximes Morales by F. de La Rochefoucauld.
16Latin “To each his own,” or “May all get their due”; also, see the epigraph to Sect. 2.2.1.
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As a result, each player endeavors to implement his cherished goal: “Chacun
produit selon ses facultés et recoit selon ses besoins.”17

Third, the decision-making process in the noncooperative game is organized as
follows. Each player chooses and then uses his strategy, which yields a strategy
profile of the game. The payoff function of each player is defined on the set of
all admissible strategy profiles. The value of this function (payoff) is a numerical
assessment of the player’s performance.

In game theory, both terms are equivalent and widespread! Person = player.
At a conceptual level, during the decision-making process in the noncoalitional

game player i chooses his strategy xi ∈ Xi so that

first, this choice occurs simultaneously for all N players;
second, no agreements or coalitions among the players and no information
exchange are allowed during the game [178, p. 1].

Quando? (When?) The answer to the last question of Quantilian’s system is the
shortest: at the time of decision-making in the conflict (within its mathematical
model—the noncoalitional game) through an appropriate choice of strategies by
the players.

In principle, a conflict can be treated as a certain controlled system, a “black box”
in which the players input their strategies and receive their payoffs at the output.
This is a standard approach to “instantaneous, single-period, static” noncooperative
games in general game theory [23]. However, in most applications (particularly, in
economics and the mechanics of controlled systems), the controlled system itself
undergoes some changes with time, and the players are able to vary their strategies
during the whole conflict. The games whose state evolves in time are called dynamic.
Hopefully, our next book will be focused on the analysis of dynamic games.

2.2.3 Nash Equilibrium

Politica del campanile.18

A generally accepted solution concept for noncooperative games is the so-
called Nash equilibrium.19 Nash equilibrium is widely used in economics, military

17French “From each according to his ability, to each according to his needs.”
18Italian, “The policy of his/her own bell tower.” Used to describe narrow-mindness and commit-
ment to local interests.
19John Forbes Nash, Jr. Born June 13, 1928, in Bluefield, West Virginia. Successfully graduated
from the Carnegie Institute of Technology (now, Carnegie Mellon University) with bachelor’s and
master’s degrees in mathematics. Richard Duffin, Nash’s undergraduate advisor at the Carnegie
Institute of Technology, gave him a brief characterization, “He is a mathematical genius.” In 1948
Nash started his postgraduate study at Princeton University, where he was particularly influenced
by International Economy, the faculty course of J. von Neumann, and by the famous book Theory
of Games and Economic Behavior (1944), written by von Neumann together with O. Morgenstern.
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science, policy and sociology. Almost each issue of modern journals on operations
research, systems analysis or game theory contains papers involving the concept of
Nash equilibrium.

Thus, let us consider a noncooperative three-player game described by

�3 =
〈 {1, 2, 3}, {Xi}i=1,2,3, {fi(x)}i=1,2,3

〉
,

where each player i={1, 2, 3} chooses an individual strategy xi ∈Xi⊆ R
ni in order

to increase his performance fi(x = (x1,x2,x3)), i.e., his payoff fi(x) in a current
strategy profile x = (x1, x2, x3) ∈ ∈ X1 × X2 ×X3 = X.

A Nash equilibrium is a pair (xe, f e = (f1(x
e), f2(x

e), f3(x
e)) ∈ X × R

3

defined by the three equalities

f1(x
e) = max

x1∈X1
f1
(
x1, x

e
2, x

e
3

)
,

f2(x
e) = max

x2∈X2
f2
(
xe

1, x2, x
e
3

)
,

f3(x
e) = max

x3∈X3
f3
(
xe

1, x
e
2, x3

)
.

(2.2.1)

Each player therefore acts selfishly, seeking to satisfy his individual ambitions
regardless of the interests of the other players. As repeatedly mentioned earlier, this
concept of equilibrium was suggested in 1949 by J. Nash, a Princeton University
graduate at that time and a famous American mathematician and economist as
we know him today. Moreover, 45 years later J. Nash, J. Harsanyi and R. Selten
were awarded the Nobel Prize in Economic Sciences “for the pioneering analysis
of equilibria in the theory of non-cooperative games.” Let us note two important
aspects. First, owing to his research in the field of game theory, by the end of the
twentieth century J. Nash became a leading American apologist of the Cold War.
Second, the Nash equilibrium had been so widely used in economics, sociology, and
military science that during the period 1994–2012 the Nobel Committee awarded
seven Nobel Prizes for different investigations that to a large degree stemmed from
the concept of Nash equilibrium. However, the selfish character of NE prevents it
from “paving the way” towards a peaceful resolution of conflicts.

In 1949 Nash presented his thesis on equilibrium solutions of noncooperative games; after 45
years—in 1994—he was awarded the Noble Prize in Economic Sciences for that research. From
1951 to 1959 worked at the Cambridge at Massachusetts Institute of Technology (MIT). In 1958
Fortune called Nash “America’s brilliant young star of the ‘new mathematics.”’ In 1959 moved
to California to work for the RAND Corporation and became a leading expert in the Cold War.
Since 1959 suffered from a mental disorder (completely overcame the disease by 1980, to the
great astonishment of doctors). Since 1980 again worked at Princeton University as a consulting
professor. Was killed in a car crash on May, 24, 2015, at the age of 86. Throughout the world, Nash
is well-known through R. Howard’s movie A Beautiful Mind (2001, featuring R. Crowe) based on
S. Nasar’s book Beautiful Mind: The Life of Mathematical Genius and Nobel Laureate John Nash.
The movie received four Oscars and the Golden Globe.
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2.2.4 Berge Equilibrium

Que jamais le mérite avec lui ne
perd rien, Et que, mieux que du
mal, il se souvient du bien.20

Almost all notions in the modern theory of measure
and integral go back to Lebesgue’s works,

and introduction of these notions was in some sense
a turning point of transition from the mathematics of

the 19th century to the science of the 20th century.
—Vilenkin21

A peaceful resolution of conflicts can be achieved using Berge equilibrium (BE).
This concept appeared in 1994 in Russia, following a critical analysis of C. Berge’s
book [202]. Interestingly, Berge wrote his book as a visiting professor at Princeton
University, simultaneously with Nash, who also worked there under support of the
Alfred P. Sloan Foundation.

A Berge equilibrium is a pair (xB, f B = (f1(x
B), f2(x

B), f3(x
B))) defined by

the equalities

f1
(
xB
) = max

(x2,x3)∈X2×X3
f1
(
xB

1 , x2, x3
)
,

f2
(
xB
) = max

(x1,x3)∈X1×X3
f2
(
x1, x

B
2 , x3

)
,

f3
(
xB
) = max

(x1,x2)∈X1×X2
f1
(
x1, x2, x

B
3

)
.

(2.2.2)

Equilibria (2.2.2) and (2.2.1) exhibit the following fundamental difference.
In (2.2.1), each player directs all efforts to increase his individual payoff (the
value of his payoff function) as much as possible. The antipode of (2.2.1) is (2.2.2),
where each player strives to maximize the payoffs of the other players, ignoring
his individual interests. Such an altruistic approach is intrinsic to kindred relations
and occurs in religious communities. The elements of such altruism can be found
in charity, sponsorship, and so on. The concept of Berge equilibrium also provides
a solution to the Tucker problem in the well-known Prisoner’s Dilemma (see
Example 2.6.1 below). Due to (2.2.2), an application of this equilibrium concept
eliminates armed clashes and murderous wars. This is an absolute advantage of
Berge equilibrium.

As a matter of fact, the Berge equilibrium had an unenviable fate. The publication
of the book [202] in 1957 initiated a sharp response of Shubik [269, p. 821]
(“. . . no attention has been paid to applications to economics. . . the book will be
of a little direct interest to economists. . . ”). Most likely, such a negative review

20“And will not let true merit miss its due, Remembering always rather good than evil.” A quote
from Tartuffe, Scene VII, a famous theatrical comedy by Molière (1622–1873).
21Naum Ya. Vilenkin, (1920–1991), was a Soviet mathematician and student of A. G. Kurosh, who
contributed to general algebra, topology, real-variable theory and functional analysis. A quote from
Kvant, 1975, no. 8, p. 2.
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in combination with Shubik’s authority in scientific community pushed away the
Western experts in game theory and economics from the book [202]. In Russia,
after its translation in 1961, the book was analyzed in depth (Russian researchers
were not acquainted with Shubik’s review!) and the concept of Berge equilibrium
was suggested on the basis of an appropriate modification of the notion of Nash
equilibrium. The difference between Berge equilibrium and Nash equilibrium is
that the former postulates stable payoffs against the deviations of all players
and also reassigns the “ownership” of the payoff function (in the definition of
a Nash equilibrium, the strategies of a separate player and all other players are
interchanged). Note that the book [202] did not actually introduce the definition
of Berge equilibrium, but it inevitably comes to mind while studying the results of
Chaps. 1 and 5 of [202].

Subsequently, the Berge equilibrium was rigorously defined in 1994–1995 by
K. Vaisman in his papers and dissertation [11, 13, 302], under the scientific super-
vision of V. Zhukovskiy. This concept was immediately applied in [280, 281] for
noncooperative linear-quadratic positional games under uncertainty. Unfortunately,
Vaisman’s sudden death at the age of 35 suspended further research on Berge
equilibrium in Russia. At that time, however, the concept of Berge equilibrium was
“exported from Russia” by Algerian postgraduates of V. Zhukovskiy Radjef [266]
and Larbani [248]. Later on, it was actively used by Western researchers (e.g., see
the survey [255] with over 50 references and also the recent review [131, pp. 53–
56] published in Ukraine). As shown by these and more than 100 subsequent
publications, most of research works are dedicated to the properties of Berge
equilibrium, the specific features and modifications of this concept, and relations to
Nash equilibrium. It seems that an incipient theory of Berge equilibrium will soon
emerge as a rigorous mathematical theory. Hopefully, an intensive accumulation of
facts will be replaced by the stage of evolutionary internal development.

This chapter reveals the internal instability of the set of Berge equilibria.
To eliminate this negative feature, we suggest a method to construct a Berge
equilibrium that is Pareto-maximal with respect to all other Berge equilibria. The
method reduces to a saddle point calculation for an auxiliary zero-sum two-player
game that is effectively designed using the original noncooperative game. As a
supplement, we prove the existence of such a (Pareto refined) Berge equilibrium
in mixed strategies under standard assumptions of mathematical game theory, i.e.,
compact strategy sets and continuous payoff functions of the players.

2.3 Compactness of the Set XB

The notion of infinity is our greatest friend;
it is also the greatest enemy of our peace in mind.

—Pierpont22

22James P. Pierpont, (1866–1938), was an American mathematician. Known for research in the
field of real and complex variable functions.
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It is shown that the set of Berge equilibria is closed and bounded.

Thus, we consider the mathematical model of a conflict in the form of a
noncooperative N-player game, N � 2, described by an ordered triplet

� = 〈{N}, {Xi}i∈N, {fi(x)}i∈N〉. (2.3.1)

Here N = {1, 2, . . . , N} denotes the set of players; each of the N players, forming
no coalitions with other players, chooses his strategy (action) xi ∈ Xi ⊆ R

ni

(throughout the book, the symbol R
k, k � 1, stands for the k-dimensional

Euclidean space whose elements are ordered sets of k real numbers in the form
of columns, with the standard scalar product and the Euclidean norm); such a
choice yields a strategy profile x = (x1, . . . , xN) ∈ X = ∏

i∈NXi ⊆ R
n (n =

∑
i∈Nni); a payoff function fi(x) defined on the set X numerically assesses the

performance of player i (i ∈ N); let (x‖zi) = (x1, . . . , xi−1, zi , xi+1, . . . , xN) and
f = (f1, . . . , fN).

A pair (xB, f B) = ((xB
1 , . . . , xB

N), (f1(x
B), . . . , fN (xB))) ∈ X×R

N is called a
Berge equilibrium in game (2.3.1) if

max
x∈X

fi

(
x‖xB

i

)
= fi

(
xB
)

(i ∈ N). (2.3.2)

In the sequel, we will consider mostly the strategy profiles xB from such pairs, also
calling them Berge equilibria in game (2.3.1).

Property 2.3.1 If in the game � the sets Xi are closed and bounded, i.e., Xi ∈
comp R

ni , and the payoff functions fi(·) are continuous, fi(·) ∈ ∈ C(X) (i ∈ N),
then the set XB of all Berge equilibria in the game � is compact in X (possibly,
empty) and f (XB) ∈ comp R

N .

Proof Since XB ⊆ X and X ∈ comp R
n, then XB is bounded. Thus, if we can

show that XB is closed, then XB ∈ comp R
n. Let us prove the closedness of

XB by contradiction. Assume that, for a infinite sequence {x(k)}∞k=0, x(k) ∈ XB ,
there exist a subsequence {x(kr)}∞r=0 and a strategy profile x∗ ∈ X such that, first,
limr→∞ x(kr ) = x∗ and, second, x∗ �∈ XB .

Since x∗ �∈ XB , there exist a strategy profile x̄ ∈ X and a number j ∈ N such
that fj (x̄‖x∗j )>fj (x

∗), where x∗ = (x∗1 , . . . , x∗j , . . . , x∗N) and, as before, (x̄‖x∗j ) =
(x̄1, . . . , x̄j−1, x

∗
j , x̄j+1, . . . , x̄N ).

Owing to the continuity of fj (x̄‖xj ) and fj (x) in x ∈ X and the convergence
limr→∞ x(kr ) = x∗, there exists an integer M > 0 such that, for r � M ,
fj (x̄‖x(kr )

j ) > fi(x
(kr )). This strict inequality contradicts fj (x‖xB

j ) � fj (x
B)

∀x ∈ X, and the conclusion follows. �
Corollary 2.3.1 Let the hypotheses of Property 2.3.1 be valid and the set XB �= ∅
in the game �. Then there exists a Berge equilibrium that is Pareto-maximal with
respect to all other equilibria xB ∈ XB in this game.
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Indeed, since the set XB is compact, fi(·) ∈ C(X) (i ∈ N) and the hypotheses of
Property 2.3.1 hold, the N-criteria choice problem

〈
XB, {fi(x)}i∈N

〉

has a Pareto-maximal alternative xB ∈ XB [152, p. 149]. In other words, for every
x ∈ XB, the system of N inequalities

fi(x) � fi(x
B) (i ∈ N),

with at least one strict inequality, is inconsistent.

2.4 Internal Instability of the Set XB

It is easier to stop the Sun and move the Earth
than to decrease the sum of angles in a triangle,

to make parallels converge, and to drop perpendiculars
to the same line from a far distance.

—Kagan23

It is found that there may exist two Berge equilibria, in one of which each
player has a strictly greater payoff than in the other.

Property 2.4.1 The set XB of all Berge equilibria can be internally unstable, i.e.,
in the game � there may exist two Berge equilibria x(1) and x(2) such that, for all
i ∈ N,

fi

(
x(1)
)

> fi

(
x(2)
)

.

Example 2.4.1 Consider a noncooperative two-player game (N = 2) of the form

�2=
〈
{1, 2}, {Xi=[−1,+1]}i=1,2,

{
f1(x)=−x2

2 + 2x1x2, f2(x)=−x2
1 + 2x1x2

}〉
.

In this game, the strategy profiles are x = (x1, x2) ∈ [−1,+1]2, the strategy sets
of both players coincide, Xi = [−1,+1] (i = 1, 2), while the Berge equilibrium
xB = (xB

1 , xB
2 ) is defined by the inequalities

−x2
2 + 2xB

1 x2 � − (xB
2

)2 + 2xB
1 xB

2 ,

−x2
1 + 2x1x

B
2 � − (xB

1

)2 + 2xB
1 xB

2 ∀ xi ∈[−1,+1] (i = 1, 2),

23Veniamin F. Kagan, (1860–1953), was a Russian and Soviet mathematician. A quote translated
into English from Kvant, 1975, no. 6, p. 16.
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x1B=x2B= fi(xB)= α
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Fig. 2.1 (a) Set of Berge equilibria. (b) Payoffs in Berge equilibria

or

−
(
x2 − xB

1

)2
�−

(
xB

2 − xB
1

)2
, −

(
x1 − xB

2

)2
�−(xB

1 −xB
2 )2 ∀x1, x2∈[−1,+1]

(these inequalities follow from (2.3.2)). Hence, xB
1 = xB

2 = α for all α = const ∈
[−1,+1] (see Fig. 2.1a), and then f B

i = fi(x
B) = α2 for all α = const ∈ [−1,+1]

(see Fig. 2.1b).
Thus, we have established that, first, there may exist a continuum of Berge

equilibria (in Example 2.4.1, the set XB = AB as illustrated by Fig. 2.1a) and,
second, the set XB is internally unstable, since fi(0, 0) = 0 < fi(1, 1) = 1
(i = 1, 2) (see Fig. 2.1b).

Hence, in the game � the players should use the Berge equilibrium that is Pareto-
maximal with respect to all other Berge equilibria. We introduce the following
definition for further exposition.

Definition 2.4.1 A strategy profile x∗ ∈ X is called a Berge–Pareto equilibrium
(BPE) in the game � if

(1) x∗ is a Berge equilibrium in � (x∗ satisfies conditions (2.3.2));
(2) x∗ is a Pareto-maximal alternative in the N-criteria choice problem

�c =
〈
XB, {fi(x)}i∈N

〉
,

i.e., for any alternatives x ∈ XB, the system of inequalities

fi(x) � fi(x
∗) (i ∈ N),

with at least one strict inequality, is inconsistent.

In Example 2.4.1, we have two BPE, x(1) = (−1; −1) and x(2) = (+1; +1),
with the same payoffs fi(x

(1)) = fi(x
(2)) = 1 (i = 1, 2).
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Remark 2.4.1 If XB �= ∅, Xi ∈ comp R
ni , and fi(·) ∈ C(X) (i ∈ N), then

Definition 2.4.1 relies on Corollary 2.3.1, stating that the set of BPE is nonempty
under the two requirements above.

Interestingly, the set of Nash equilibria in the game � is also internally unstable
(this is demonstrated by Example 2.4.1 with the change x1 ↔ x2).

In the forthcoming sections, we will establish sufficient conditions for the
existence of a BPE, which are reduced to a saddle point calculation for an
auxiliary zero-sum two-player game that is effectively designed using the original
noncooperative game.

2.5 No Guaranteed Individual Rationality of the Set XB

Among the splendid generalizations effected by modern mathematics,
there is none more brilliant or more inspiring or more fruitful,

and none more commensurate with the limitless immensity of being itself,
than that which produced the great concept designated . . .

hyperspace or multidimensional space.
—Keyser24

A Nash equilibrium has the property of individual rationality, whereas a
Berge equilibrium generally does not, as illustrated by an example in this section.
It is also established that there may exist a Berge equilibrium in which at least
one player obtains a smaller payoff than the maximin.

Another negative property of a Berge equilibrium is the following.

Property 2.5.1 A Berge equilibrium may not satisfy the individual rationality
conditions, as opposed to the Nash equilibrium xe in the game �2 (under the
assumptions Xi ∈ comp R

ni and fi(·) ∈ C(X) (i ∈ N), the game �2 (the game
� with N = {1, 2}) satisfies the inequalities

f1(x
e) � max

x1∈X1
min

x2∈X2
f1(x1, x2), f2(x

e) � max
x2∈X2

min
x1∈X1

f2(x1, x2),

known as the individual rationality conditions).

Example 2.5.1 Consider a noncooperative two-player game of the form

�′2 = 〈{1, 2}, {X1 = (−∞,+∞), X2 = [−1,+1]}, {f1(x) =
= −4x2

1 + 2x1x2 + x2
2 , f2(x) = −(x1 − 1)2 + 5}〉,

24Cassius Jackson Keyser, (1862–1947), was an American mathematician of pronounced philo-
sophical inclinations. A quote from On Mathematics and Mathematicians, R.E. Moritz, Ed., New
York: Dover, 1958, pp. 360–361.
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where x = (x1, x2). A Berge equilibrium xB = (xB
1 , xB

2 ) in the game �′2 is defined
by the two equalities

max
x2∈X2

f1

(
xB

1 , x2

)
= f1

(
xB
)

, max
x1∈X1

f2

(
x1, x

B
2

)
= f2

(
xB
)

.

The second equality holds only for the strategy xB
1 = 1. Due to the strong convexity

of f1(x) in x2 (which follows from the fact that
∂2f1(x

B
1 ,x2)

∂x2
2

∣
∣
∣
∣
x2

= 2 > 0), the

maximum of the function

f1

(
xB

1 , x2

)
= −4+ 2x2 + x2

2

is achieved on the boundary of X2, more specifically, at the point xB
2 = 1. Thus, the

game �′2 has the Berge equilibrium xB = (1, 1), and the corresponding payoff is
f1(x

B) = f1(1, 1) = −1.
Now, find max

x1∈X1
min

x2∈X2
f1(x1, x2) in two steps as follows. In the first step, construct

a scalar function x2(x1) that implements the inner minimum:

min
x2∈X2

f1(x1, x2) = f1(x1, x2(x1)) ∀x1 ∈ X1.

By the strong convexity of f1(x1, x2) in x2,

∂f1(x1, x2)

∂x2

∣
∣
∣
∣
x2(x1)

= 2x1 + 2x2(x1) = 0,

yielding the unique solution x2(x1) = −x1 and f1[x1] = f1(x1, x2(x1)) = −5x2
1 .

In the second step, construct the outer maximum, i.e., find

max
x1∈X1

f1[x1] = max
x1∈R

f1(x1, x2(x1)) = max
x1∈R

[
−5x2

1

]
= 0.

Consequently,

f1(x
B) = −1 < 0 = max

x1∈R
f1(x1, x2(x1)) = max

x1∈R
min

x2∈[−1,+1]f1(x1, x2),

which shows that the individual rationality property may fail for a Berge equilib-
rium.

Remark 2.5.1 Individual rationality is a requirement for a “good” solution in both
noncooperative and cooperative games: each player can guarantee the maximin
individually, i.e., by his own maximin strategy, regardless of the behavior of the
other players [173]. However, in a series of applications (especially for the linear-
quadratic setups of the game), the maximin often does not exist. Such games were
studied in the books [52, pp. 95–97, 110–116, 120] and [93, pp. 124–131].
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In the case where game (2.3.1) has maximins, Vaisman suggested to incorporate
the individual rationality property into the definition of a Berge equilibrium. Such
equilibria are called Berge–Vaisman equilibria.

2.6 Two-Player Game

You don’t have to be a mathematician
to have a feel for numbers.

—Nash25

The specific features of Berge equilibria in two-player games are identified.

Non-antagonistic Case Consider a special case of game (2.3.1) with two players,
i.e., the game � in which N = {1, 2}. Then a Berge equilibrium xB = (xB

1 , xB
2 ) is

defined by the equalities

f1

(
xB
)
= max

x2∈X2
f1

(
xB

1 , x2

)
, f2

(
xB
)
= max

x1∈X1
f2

(
x1, x

B
2

)
.

Recall that a Nash equilibrium xe in this two-player game is given by the conditions

f1
(
xe) = max

x1∈X1
f1
(
x1, x

e
2

)
, f2

(
xe) = max

x2∈X2
f2
(
xe

1, x2
)
.

A direct comparison of these independent formulas leads to the following result.

Property 2.6.1 A Berge equilibrium in game (2.3.1) with N = {1, 2} coincides
with a Nash equilibrium if both players interchange their payoff functions and then
apply the concept of Nash equilibrium to solve the modified game.

Remark 2.6.1 In view of Property 2.6.1, a special theoretical study of Berge
equilibrium in game (2.3.1) with N = {1, 2} seems unreasonable, despite careful
attempts by a number of researchers. In fact, all results concerning Nash equilibrium
in a two-player game are automatically transferred to the Berge equilibrium setting
(of course, with an appropriate “interchange” of the payoff functions, as described
by Property 2.6.1).

Let us proceed with an example of a two-player matrix game in which the players
have higher payoffs in a Berge equilibrium than in a Nash equilibrium (in the setting
of game, this is an analog of the Prisoner’s Dilemma).

Also note the following interesting fact for game (2.3.1) with N = {1, 2}, fi(x) =
xT

1 Aix1 + xT
2 Bix2, the strategies x1 ∈ R

n1 and x2 ∈ R
n2 , where the matrices Ai

and Bi of compatible dimensions are square, constant and symmetric, A1 > 0,
B1 < 0, A2 < 0, and B2 > 0 (the notation A > 0 (<) stands for the positive
(negative) definiteness of the quadratic form xT Ax): in this game, there exist no

25From a PBS interview with John F. Nash.
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Nash equilibria, while the strategy profile (0n1, 0n2) forms a Berge equilibrium (as
before, 0k denotes the zero vector of dimension k).

Example 2.6.1 Consider the bimatrix game in which player 1 has two strategies,
i.e., chooses between rows 1 and 2. Accordingly, the strategies of player 2 are
represented by columns 1 and 2. For example, the choice of the strategy profile
(1, 2) means that the payoffs of players 1 and 2 are 4 and 7, respectively.

According to the above definitions, in this bimatrix game the strategy profiles
(2, 2) and (1, 1) are a Nash and Berge equilibrium, respectively. As 6 > 5, the
payoffs of both players in the Berge equilibrium are strictly greater than their
counterparts in the Nash equilibrium. The same result occurs in the Prisoner’s
Dilemma, a well-known bimatrix game. Note that the paper [255] gave some
examples of 2 × 2 bimatrix games in which the payoffs in a Nash equilibrium are
greater than or equal to those in a Berge equilibrium.

Antagonistic Case To conclude this section, consider the antagonistic case of
game (2.3.1), which arises for � with N = {1, 2} and f2(x) = −f1(x) = f (x).
In other words, consider an ordered triplet

�a =
〈{1, 2}, {Xi}i=1,2, f (x)

〉
.

A conventional solution of the game �a is the saddle point x0 = (x0
1 , x0

2) ∈ X1×X2,
which is formalized here by the chain of inequalities

f
(
x0

1 , x2

)
� f

(
x0
)
� f

(
x1, x

0
2

)
∀ xi ∈ Xi (i = 1, 2). (2.6.1)

Property 2.6.2 For the antagonistic case �a of the game �, the Berge equilibrium
(xB

1 , xB
2 ) matches the saddle point (x0

1 , x0
2) defined by (2.6.1).

The proof of this property follows immediately from the inequalities

f1

(
xB

1 , x2

)
� f1

(
xB
)

, f2

(
x1, x

B
2

)
� f2

(
xB
)
∀ xi ∈ Xi (i = 1, 2)

and the identity f (x) = f2(x) = −f1(x) ∀ x ∈ X. �
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2.7 Comparison of Nash and Berge Equilibria

There are only two kinds of certain knowledge:
Awareness of our own existence and the truths of mathematics.

—d’Alembert26

A detailed comparison of Berge and Nash equilibria is made.

NE BE

Stability

against a unilateral deviation of a single
player, since the inequality

fi(x
e
1, . . . , xe

i−1, xi , x
e
i+1, . . . , x

e
N)�fi(x

e)

holding ∀xi ∈Xi (i∈N) implies that the
payoff of the deviating player i is not greater
than in the NE.

against the deviations of the coalition of all
players except player i, since the inequality

fi(x1, . . . , xi−1,x
B
i, xi+1, . . . ,xN)�fi(x

B)

holding ∀xj ∈Xj (j ∈N\{i}, i∈N) implies
that the payoff of each player i under such a
deviation of the coalition of the other N − 1
players from the BE is not greater than in the
BE.

Individual rationality (IR)

Here and in the sequel, xN\{i}=(x1, . . . , xi−1,

xi+1, . . . , xN ) ∈ XN\{i} = ∏

j∈N\{i}
Xj . If xe

exists and

Generally speaking, fails (see Property 2.5.1,
Example 2.5.1, and Remark 2.5.1).

f
g
i = max

xi∈Xi

min
xN\{i}∈XN\{i}

f (x‖xi ) =
= min

xN\{i}∈XN\{i}
fi(x‖xg

i ) (i ∈ N), then

fi(x
e)�f

g
i (i∈N), i.e., NE satisfies the IR

condition.

Internal instability

The set of NE is internally unstable (see proof
in [54]).

The set of BE is internally unstable (see
Property 2.4.1 and Example 2.4.1).

To eliminate this drawback both for the NE and BE,

Pareto maximality with respect to

the other equilibria of a given type is required.

Saddle point (SP) in the game

�a =
〈{1, 2}, {Xi}i=1,2, {f1(x1, x2), f2(x1, x2) = −f1(x1, x2)}

〉

is a special case of NE and BE.

NE coincides with the SP (xe
1, xe

2) of the form
max
x1∈X1

f1(x1, x
e
2)=

= f1(x
e
1, x

e
2) = min

x2∈X2
f1(x

e
1, x2).

The BE coincides with the SP (xB
1 , xB

2 ) of the
form max

x2∈X2
f1(x

B
1 , x2) =

= f1(x
B
1 , xB

2 ) = min
x1∈X1

f1(x1, x
B
2 ).

26Jean Le Rond d’Alembert, (1717–1783), was a French mathematician, philosopher, and writer.
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Conclusions

The main difficulty in many modern developments of mathematics
is not to learn new ideas but to forget old ones.

—Sawyer27

Nash equilibria have three undisputable advantages, namely, they are stable,
coincide with the saddle point (containing this generally accepted concept as a
special case), and satisfy the individual rationality condition. The first and second
advantages are shared also by the Berge equilibria.

At the same time, Nash equilibria suffer from several drawbacks, namely, the
internal instability of the set of NE and selfishness (each player seeks to increase his
individual payoff, as by definition ∀i ∈ N: fi(x

e) = max
xi∈Xi

fi (x
e‖xi)).

Internal instability is intrinsic to the set of BE too. This negative feature can be
eliminated by requiring Pareto maximality for the NE and BE. The selfish nature of
NE is eliminated using the altruistic orientation of BE (“help the others if you seek
for their help”). This constitutes a clear merit of BE as a way of benevolent conflict
resolution.

2.8 Sufficient Conditions

Mathematics as an expression of the human mind reflects the active will,
the contemplative reason, and the desire for aesthetic perfection.

Its basic elements are logic and intuition, analysis and construction,
generality and individuality. Though different traditions may emphasize

different aspects, it is only the interplay of these antithetic forces
and the struggle for their synthesis that constitute the life, usefulness,

and supreme value of mathematical science.
—Courant28

2.8.1 Continuity of the Maximum Function of a Finite
Number of Continuous Functions

I turn with terror and horror from this lamentable scourge
of continuous functions with no derivatives.29

27Walter Warwick Sawyer, (1911–2008), was a British mathematician, mathematics educator and
author, who popularized mathematics on several continents.
28Richard Courant, (1888–1972), was a German-born American mathematician, educator and
scientific organizer who made significant advances in the calculus of variations. A quote from The
Australian Mathematics Teacher, vols. 39–40, Australian Association of Mathematics Teachers,
1983, p. 3.
29From a letter of French mathematician Charles Hermite, (1822–1901), to Dutch mathematician
Thomas Joannes Stieltjes, (1856–1894), written in 1893.
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An auxiliary result from operations research is described, which will prove
fruitful for the ensuing theoretical developments.

Consider N + 1 scalar functions ϕi(x, z) = fi(x‖zi) − fi(z) (i ∈ N) and
ϕN+1(x, z) = ∑

i∈N
[fi(x)− fi(z)] that are defined on the Cartesian product X × Z;

from this point on, all strategy profiles x = (x1, . . . , xN) ∈ X = ∏i∈N Xi ⊂ R
n

(n = ∑i∈N ni), and also xi, zi ∈ Xi (i ∈ N), z = (z1, . . . , zN ) ∈ Z = X ⊂ R
n

(recall that (x‖zi) = (x1, . . . , xi−1, zi , xi+1, . . . , xN)).

Lemma 2.8.1 If the N + 1 scalar functions ϕj (x, z) (j = 1, . . . , N,N +1) are
continuous on X × Z while the sets X and Z are compact (X, Z ∈ comp R

n), then
the function

ϕ(x, z) = max
j=1,...,N+1

ϕj (z, z) (2.8.1)

is also continuous on X× Z.

The proof of a more general result can be found in many textbooks on operations
research, e.g., [136, p. 54]; it was included even in textbooks on convex analysis [46,
p. 146]. Note that function (2.8.1) is called the Germeier convolution of the
functions ϕj(x, z) (j=1, . . . , N+1).

Finally, note that our choice of Hermite’s quote on “terror and horror” refers to
the fact that although each of the functions ϕj (x, z) can be differentiable, in general
this is not necessarily true for the function ϕ(x, z) defined by (2.8.1).

2.8.2 Reduction to Saddle Point Design

The result presented in this section is the pinnacle of our book.

Thus, using the payoff functions fi(x) of game (2.3.1), construct the Germeier
convolution

ϕ(x, z)= max

⎧
⎨

⎩
[fi(x‖zi)−fi(z) (i ∈ N)],

⎛

⎝
∑

j∈N
fj (x)−

∑

j∈N
fj (z)

⎞

⎠

⎫
⎬

⎭
, (2.8.2)

with the domain of definition X× (Z = X).
A saddle point (x0, zB) ∈ X × Z of the scalar function ϕ(x, z) in the zero-sum

two-player game

�a = 〈X, Z = X, ϕ(x, z)〉
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is defined by the chain of inequalities

ϕ
(
x, zB

)
� ϕ

(
x0, zB

)
� ϕ

(
x0, z

)
∀ x, z ∈ X. (2.8.3)

Theorem 2.8.1 If in the zero-sum two-player game �a, there exists a saddle
point (x0, zB), then the minimax strategy zB is a Berge–Pareto equilibrium in
noncooperative game (2.3.1).

Proof In view of (2.8.2), the first inequality in (2.8.3) with z = x0 shows that
ϕ(x0, x0) = 0. By (2.8.3) and transitivity, for all x ∈ X,

ϕ
(
x, zB

)
=max

⎧
⎨

⎩

(
fi

(
x‖zB

i

)
−fi

(
zB
))

(i ∈ N),

⎛

⎝
∑

j∈N
fj (x)−

∑

j∈N
fj

(
zB
)
⎞

⎠

⎫
⎬

⎭
�0.

Hence, for each i ∈ N and all x ∈ X,

fi

(
x‖zB

i

)
− fi

(
zB
)
� 0,

∑

j∈N
fj (x) �

∑

j∈N
fj

(
zB
)

.

Hence, for all x ∈ X we have

fi

(
x‖zB

i

)
� fi

(
zB
)

(i ∈ N), max
x∈XB

∑

j∈N
fj (x) =

∑

j∈N
fj

(
zB
)

. (2.8.4)

Since the first N inequalities in (2.8.4) hold for all x ∈ X, the strategy profile
xB = zB satisfies the Berge equilibrium requirements (2.3.2) in the game �. The
last equality in (2.8.4) where x ∈ XB (the set of Berge equilibria) is a sufficient
condition [152, p. 71] for xB = zB to be a Pareto-maximal alternative in the N-
criteria choice problem 〈XB, {fi(x)}i∈N〉. Thus, by Definition 2.4.1, the resulting
strategy profile zB ∈ X is a Berge–Pareto equilibrium in game (2.3.1). �
Remark 2.8.1 Theorem 2.8.1 suggests the following design method of a Berge–
Pareto equilibrium in the noncooperative game (2.3.1):
first, construct the function ϕ(x, z) using formula (2.8.2);
second, find the saddle point (x0, zB) of the function ϕ(x, z) from the chain of
inequalities (2.8.3).

Then the resulting strategy profile zB ∈ X is a Berge–Pareto equilibrium in
game (2.3.1).
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2.8.3 Germeier Convolution

The world of curves has a richer texture than the world of points.
It has been left for the twentieth century to penetrate into this full richness.

—Wiener30

Let us associate with game (2.3.1) the N-criteria choice problem

�ν = 〈X, {fi(x)}i∈N〉,

where X = ∏
i∈N Xi is the set of all admissible alternatives and f (x) =

(f1(x), . . . , fN(x)) is the N-dimensional vector criterion. In the problem �ν , a
decision maker (DM) seeks to choose an alternative x ∈ X in order to maximize
the values of all N criteria (objective functions) f1(x), . . . , fN(x).

2.8.3.1 Necessary and Sufficient Conditions

In Definition 2.4.1 we have used the following notion of a vector optimum for the
problem �ν .

Definition 2.8.1 An alternative xP ∈ X is called Pareto-maximal in the problem �ν

if, for any x ∈ X, the combined inequalities

fi(x) � fi(x
P) (i ∈ N),

with at least one strict inequality, are inconsistent. An alternative xS ∈ X is called
Slater-maximal in the problem �ν if, for any x ∈ X, the combined strict inequalities

fi(x) > fi(x
S) (i ∈ N)

are inconsistent.

In this section, we are dealing with the Germeier convolution

max
i∈N

μifi(x) = ϕ(x), (2.8.5)

where the constants μi belong to the set M of positive vectors from R
N (sometimes,

with the unit sum of their components).

30Norbert Wiener, (1894–1964), was an outstanding American mathematician and philosopher, the
father of cybernetics. A quote from his book I Am a Mathematician: the Later Life of a Prodigy,
MIT Press, 1964.
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Note that if fi(x) = −ψi(x), then formula (2.8.5) yields the standard Germeier
convolution (with ϕ(x) = −ψ(x)) given by

ψ(x) = min
i∈N μiψi(x), (2.8.6)

since

max
i∈N

μifi(x) = −min
i∈N μiψi(x).

Most applications employ Germeier convolutions of two types:

ψ(x) = min
i∈N

ψi(x)

ai

,

where ai = const > 0 are convolution parameters, i = 1, . . . , N , and

ψ(x) = min
i∈N μiψi(x),

where μi = const > 0 are convolution parameters, i = 1, . . . , N . Clearly, the
transition from the first form to the second can be performed by the change of
variables μi = 1

ai
.

The following results were obtained in multicriteria choice theory.

Germeier’s theorem ([152, p. 66]) . Consider the N-criteria choice problem

�ν = 〈X, {fi(x)}i∈N〉,

and assume that the objective functions fi(x) are positive for all x ∈ X and i ∈ N.
An alternative xS ∈ X is Slater-maximal in �ν if and only if there exists a vector

μ = (μ1, . . . , μN) ∈ M such that

max
x∈X

min
i∈N

μifi(x) = min
i∈N

μifi(x
S). (2.8.7)

For the Slater-maximal alternatives xS ∈ X, let μ = μS = (μS
1, . . . , μS

N), where

μS
i =

λ0

fi(xS)
(i ∈ N), λ0 = 1

∑

i∈N
1

fi(xS)

,

which leads to

max
x∈X

min
i∈N μS

i fi (x
S) = λ0.
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Recall that M is the set of positive vectors μ = (μ1, . . . , μN) ∈ R
N (possibly

with the unit sum of components). The next result is a useful generalization of
Germeier’s theorem.

Corollary 2.8.1 ([152, p. 67]) . Suppose xS ∈ X and ζi(y) (i ∈ N) are increasing
functions of the variable y ∈ R that satisfy

ζ1(f1(x
S)) = ζ2(f2(x

S)) = · · · = ζN(fN(xS)).

An alternative xS is Slater-maximal in the multicriteria choice problem �ν if and
only if

ζ1(f1(x
S)) = max

x∈X
min
i∈N

ζi(fi(x)).

Corollary 2.8.2 ([152, p. 68]) . An alternative xS is Slater-maximal in the multicri-
teria choice problem �ν if and only if

max
x∈X

min
i∈N

[
fi(x)− fi(x

S)
]
= 0.

Finally, a Pareto-maximal alternative xP in the problem �ν has the following
property.

Proposition 2.8.1 ([152, p. 72]) . Let xP∈X and fi(x
P) > 0 (i ∈ N). An alternative

xP is Pareto-maximal in the multicriteria choice problem �ν if and only if there
exists a vector

μ = (μ1, . . . , μN) ∈ M = {μ | μi = const > 0 (i ∈ N),
∑

i∈N
μi = 1}

such that f (xP) yields the maximum point of the function
∑

i∈N fi(x) on the set

{

f (X) =
⋃

x∈X

f (x) | min
i∈N μifi(x

P) � max
x∈X

min
i∈N μifi(x)

}

.

2.8.3.2 Geometrical Interpretation

Consider the Germeier convolution in the case of two criteria in the choice problem
�ν , i.e., f (x) = (f1(x), f2(x)). Assume that at some point A = (f1(x

A), f2(x
A))

one has

μ1f1(x
A) = μ2f2(x

A) = 1
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for some parameter values, i.e., f1(x
A) = 1

μ1
and f2(x

A) = 1
μ2

(see Fig. 2.2). Then
the Germeier convolution takes the form

min
i=1,2

fi(x
A) = 1.

Then the following relations hold on the rays originating from the point A parallel
to the coordinate axes:

1. μ1f1(x) � 1 and μ1f2(x) = 1 on the horizontal ray, or
2. μ1f1(x) = 1 and μ1f2(x) � 1 on the vertical ray.

Hence, mini∈N μifi(x) = 1 on these rays. Consequently, the contour lines of
the Germeier convolution coincide with the boundaries of the cone {f (xA) + R

2+},
where R

2+ = {f = (f1, f2) | fi � 0 (i = 1, 2)}. In the same way, the contour lines
of mini∈{1;2}μifi(x) = γ are defined by the vertical and horizontal rays originating
from the point f (̃x) = (f1(̃x), f2 (̃x)), where μ1f1 (̃x) = μ2f2(̃x) = γ . In other
words, the contour lines of the Germeier convolution mini∈{1;2}μifi(x) = γ form
the boundaries of the cone {f (̃x)+ R

2+}, where f (̃x) = γf (xA).
In the general case of N criteria, the level surfaces form the boundaries of the

cone {f (̃x)+R
N+}, where f (̃x) is any point satisfying the relation mini∈N μifi(x) =

γ = const > 0 (i ∈ N). Therefore, the level surfaces of the Germeier convolution
are the boundaries of the cone of points that dominate its vertex.

It is geometrically obvious that xS is a Slater-maximal alternative in the bi-
criteria choice problem �ν (N = 2) if and only if the interior of the orthant RN+
shifted to the point f (xS) does not intersect f (X) (see Fig. 2.3).
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2.9 Mixed Extension of a Noncooperative Game

The value of pure existence proofs consists precisely in that
the individual construction is eliminated by them and that

many different constructions are subsumed under one fundamental idea,
so that only what is essential to the proof stands out clearly;

brevity and economy of thought are the raison d’être
of existence proofs. . . To prohibit existence proofs. . .

is tantamount to relinquishing the science of mathematics altogether.

—Hilbert31

2.9.1 Mixed Strategies and Mixed Extension of a Game

The theory of probabilities is at bottom nothing but common sense
reduced to calculus; it enables us to appreciate with exactness that

which accurate minds feel with a sort of instinct for which ofttimes
they are unable to account. . . It teaches us to avoid the illusions
which often mislead us; . . . there is no science more worthy of

our contemplations nor a more useful one for admission to our system of
public education.

—Laplace32

The mixed extension of a game that includes mixed strategies and profiles
as well as expected payoffs is formalized.

Let us, consider the noncooperative N-player game (2.3.1). For each compact
set Xi ⊂ R

ni (i ∈ N), consider the Borel σ -algebra B(Xi), i.e., the minimal σ -
algebra that contains all closed subsets of the compact set Xi (recall that a σ -algebra
is closed under taking complements and unions of countable collections of sets).

Assuming that there exist no Berge–Pareto equilibria xB (see Definition 2.4.1)
in the class of pure strategies xi ∈ Xi (i ∈ N), we will extend the set Xi

of pure strategies xi to the mixed ones, using the approach of Borel [204], von
Neumann [261], and Nash [257] and their followers [192, 194, 195, 197, 198].
Next, the idea is to establish the existence of (properly formalized) mixed strategy
profiles in game (2.3.1) that satisfy the requirements of a Berge–Pareto equilibrium
(an analog of Definition 2.4.1).

Thus, we use the Borel σ -algebras B(Xi) for the compact sets Xi (i ∈ N) and
the Borel σ -algebra B(X) for the set of strategy profiles X =∏i∈N Xi , so that B(X)

31David Hilbert, (1862–1943), was a German mathematician who axiomatized geometry and
contributed substantially to the establishment of the formalistic foundations of mathematics.
Recognized as one of the most influential and universal mathematicians of the 19th and early
20th centuries. A quote from the book Hilbert by C.B. Reid, Springer, 1996.
32Pierre-Simon, marquis de Laplace, (1749–1827), was a French scholar who made important
contributions to the development of mathematics, statistics, physics and astronomy. An English
translation of a quote from his book Théorie Analytique des Probabilités, 1795.
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contains all Cartesian products of arbitrary elements of the Borel σ -algebras B(Xi )

(i ∈ N).
In accordance with mathematical game theory, a mixed strategy νi(·) of player i

will be identified with a probability measure on the compact set Xi . By the definition
in [122, p. 271] and notations in [108, p. 284], a probability measure is a nonnegative
scalar function νi(·) defined on the Borel σ -algebra B(Xi ) of all subsets of the
compact set Xi ⊂ R

ni that satisfies the following conditions:

1. νi(
⋃

k Q
(i)
k ) = ⋃

k νi(Q
(i)
k ) for any sequence {Q(i)

k }∞k=1 of pairwise disjoint
elements from B(Xi ) (countable additivity);

2. νi(Xi ) = 1 (normalization), which yields νi(Q
(i)) � 1 for all Q(i) ∈ B(Xi).

Let {νi} denote the set of all mixed strategies of player i (i ∈ N).
Also note that the product measures ν(dx) = ν1(dx1)· · ·νN(dxN), see the

definitions in [122, p. 370] (and the notations in [108, p. 123]), are probability
measures on the strategy profile set X. Let {ν} be the set of such probability
measures (strategy profiles). Once again, we emphasize that in the design of the
product measure ν(dx) the role of a σ -algebra of subsets of the set X1×· · ·×XN =
X is played by the smallest σ -algebra B(X) that contains all Cartesian products
Q(1) × · · · × Q(N), where Q(i) ∈ B(Xi) (i ∈ N). The well-known properties of
probability measures [41, p. 288], [122, p. 254] imply that the sets of all possible
measures νi(dxi) (i ∈ N) and ν(dx) are weakly closed and weakly compact ([122,
pp. 212, 254], [180, pp. 48, 49]). As applied, e.g., to {ν}, this means that from
any infinite sequence {ν(k)} (k = 1, 2, . . .) one can extract a subsequence {ν(kj )}
(j = 1, 2, . . .) that weakly converges to a measure ν(0)(·) ∈ {ν}. In other words, for
any continuous scalar function ϕ(x) on X, we have

lim
j→∞

∫

X

ϕ(x)ν(kj )(dx) =
∫

X

ϕ(x)ν(0)(dx)

and ν(0)(·) ∈ {ν}. Owing to the continuity of ϕ(x), the integrals
∫

X
ϕ(x)ν(dx) (the

expectations) are well-defined; by Fubini’s theorem,

∫

X

ϕ(x)ν(dx) =
∫

X1

· · ·
∫

XN

ϕ(x)νN(dxN) · · · ν1(dx1),

and the order of integration can be interchanged.
Let us associate with game (2.3.1) in pure strategies its mixed extension

〈N, {νi}i∈N, {fi [ν] =
∫

X

fi [x]ν(dx)}i∈N〉, (2.9.1)
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where, like in (2.3.1), N is the set of players while {νi} is the set of mixed strategies
νi(·) of player i. In game (2.9.1), each conflicting party i ∈ N chooses its mixed
strategy νi(·) ∈ {νi}, thereby forming a mixed strategy profile ν(·) ∈ {ν}; the payoff
function of each player i, i.e., the expectation

fi [ν] =
∫

X

fi [x]ν(dx),

is defined on the set {ν}.
For game (2.9.1), the notion of a Berge–Pareto equilibrium x∗ (see Defini-

tion 2.4.1) has the following analog.

Definition 2.9.1 A mixed strategy profile ν∗(·) ∈ {ν} is called a Berge–Pareto equi-
librium in the mixed extension (2.9.1) (equivalently, a Berge–Pareto equilibrium in
mixed strategies in game (2.3.1)) if

first, the profile ν∗(·) is a Berge equilibrium in game (2.9.1), i.e.,

max
νN\{i}(·)∈{νN\{i}}

fi

(
ν‖ν∗i

) = fi(ν
∗) (i ∈ N), (2.9.2)

and second, ν∗(·) is a Pareto-maximal alternative in the N-criteria choice
problem

〈{νB}, {fi(ν)}i∈N〉,

i.e., for all ν(·) ∈ {νB}, the system of inequalities

fi(ν) � fi(ν
∗) (i ∈ N),

with at least one strict inequality, is inconsistent.
Here and in the sequel,

νN\{i}(dxN\{i}) = ν1(dx1) · · · νi−1(dxi−1)νi+1(dxi+1) · · · νN(dxN),
(ν‖ν∗i ) = (ν1(dx1) · · · νi−1(dxi−1)ν

∗
i (dxi)νi+1(dxi+1) · · · νN(dxN)),

ν∗(dx) = ν∗1 (dx1) · · · ν∗N(dxN), {νN\{i}} = {νN\{i}(·)}; in addition, {νB(·)} denotes
the set of Berge equilibria νB(·), i.e., the strategy profiles that satisfy (2.9.2) with ν∗
replaced by νB. Let {ν∗} be the set of mixed strategy profiles in game (2.9.1) that
are given by the two requirements of Definition 2.9.1.

The following sufficient condition for Pareto maximality is obvious, see the
statement below.

Remark 2.9.1 A mixed strategy profile ν∗(·) ∈ {ν} is Pareto-maximal in the game
�̃ν = 〈{νB}, {fi(ν)}i∈N〉 if

max
ν(·)∈{νB}

∑

i∈N
fi(ν) =

∑

i∈N
fi(ν

∗).



2.9 Mixed Extension of a Noncooperative Game 47

2.9.2 Préambule

Proposition 2.9.1 In game (2.3.1), suppose the sets Xi are compact, the payoff
functions fi(x) are continuous on X = X1×· · ·×XN , and the set of mixed strategy
Berge equilibria {νB} that satisfy (2.9.2) with ν∗ replaced by νB is nonempty.

Then {νB} is a weakly compact subset of the set of mixed strategy profiles {ν} in
game (2.9.1).

Proof To establish the weak compactness of the set {νB}, take an arbitrary scalar
function ψ(x) that is continuous on the compact set X and an infinite sequence of
mixed strategy profiles

ν(k)(·) ∈ {νB} (k = 1, 2, . . .) (2.9.3)

in game (2.9.1). Inclusion (2.9.3) (hence, {νB} ⊂ {ν}) implies {ν(k)(·)} ⊂ {ν}. As
mentioned earlier, the set {ν} is weakly compact; hence, there exist a subsequence
{ν(kj )(·)} and a measure ν(0)(·) ∈ {ν} such that

lim
j→∞

∫

X

ψ(x)ν(kj )(dx) =
∫

X

ψ(x)ν(0)(dx).

We will show that ν(0)(·) ∈ {νB(·)} by contradiction. Assume that ν(0)(·) does not
belong to {νB}. Then for sufficiently large j , one can find a number i ∈ N and a
strategy profile ν̄(·) ∈ {ν} such that

fi

[
ν̄‖ν(kj )

i

]
> fi

[
ν(kj )

]
,

which clearly contradicts the inclusion {ν(kj )(·)} ∈ {νB}.
Thus, we have proved the requisite weak compactness. �

Corollary 2.9.1 In a similar fashion, one can prove the compactness (closedness
and boundedness) of the set

f
[{

νB
}]
=

⋃

ν(·)∈{νB}
f [ν], where f = (f1, . . . , fN ),

in the criteria space RN .

Proposition 2.9.2 If in game (2.9.1) the sets Xi ∈ comp R
ni and fi(·) ∈ C(X)

(i ∈ N), then the function

ϕ(x, z) = max
r=1,...,N+1

ϕr(x, z) (2.9.4)
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satisfies the inequality

max
r=1,...,N+1

∫

X×X

ϕr(x, z)μ(dx)ν(dz) �
∫

X×X

max
r=1,...,N+1

ϕr(x, z)μ(dx)ν(dz)

(2.9.5)

for any μ(·) ∈ {ν}, ν(·) ∈ {ν}; recall that

ϕi(x, z) = fi(x‖zi)− fi(z) (i ∈ N),

ϕN+1(x, z) =
∑

i∈N
[fi(x)− fi(z)] . (2.9.6)

Proof Indeed, from (2.9.4) we have N+1 inequalities of the form

ϕr(x, z) � max
j=1,...,N+1

ϕj (x, z) (r = 1, . . . , N + 1)

for each x, z ∈ X. Integrating both sides of these inequalities with respect to an
arbitrary product measure μ(dx)ν(dz) yields

ϕr(μ, ν) =
∫

X×X

ϕr(x, z)μ(dx)ν(dz) �
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ(dx)ν(dz)

for all μ(·)∈{ν}, ν(·)∈{ν} and each r= 1, . . . , N+1. Consequently,

max
r=1,...,N+1

ϕr(μ, ν) = max
r=1,...,N+1

∫

X×X

ϕr(x, z)μ(dx)ν(dz) �

�
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ(dx)ν(dz) ∀ μ(·) ∈ {ν}, ν(·) ∈ {ν},

which proves (2.9.5). �
Remark 2.9.2 In fact, formula (2.9.5) generalizes the well-known property of
maximization: the maximum of a sum does not exceed the sum of the maxima.

2.9.3 Existence Theorem

Good mathematicians see analogies.
Great mathematicians see analogies between analogies.

—Banach33

33Stefan Banach, (1892–1945), was a Polish mathematician who founded modern functional
analysis and helped contributed to the development of the theory of topological vector spaces.
Generally considered one of the most important and influential mathematicians of the twentieth
century.
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The central result of Chap. 2—the existence of a Berge–Pareto equilibrium
in mixed strategies—is established.

Theorem 2.9.1 If in game (2.3.1) the sets Xi ∈ cocomp R
ni and fi(·) ∈ C(X)

(i ∈ N), then there exists a Berge–Pareto equilibrium in mixed strategies.

Proof Consider the auxiliary zero-sum two-player game

�a = 〈 {1, 2}, {X, Z = X}, ϕ(x, z) 〉.

In the game �a, the set X of strategies x chosen by player 1 (which seeks to
maximize ϕ(x, z)) coincides with the set of strategy profiles of game (2.3.1); the
set Z of strategies z chosen by player 2 (which seeks to minimize ϕ(x, z)) coincides
with the same set X. A solution of the game �a is a saddle point (x0, zB) ∈ X×X;
for all x ∈ X and each z ∈ X, it satisfies the chain of inequalities

ϕ
(
x, zB

)
� ϕ

(
x0, zB

)
� ϕ

(
x0, z

)
.

Now, associate with the game �a its mixed extension

�̃a = 〈 {1, 2}, {μ}, {ν}, ϕ(μ, ν) 〉,

where {ν} and {μ} = {ν} denote the sets of mixed strategies ν(·) and μ(·) of
players 1 and 2, respectively. The payoff function of player 1 is the expectation

ϕ(μ, ν) =
∫

X×X

ϕ(x, y)μ(dx)ν(dz).

The solution of the game �̃a (the mixed extension of the game �a) is also a saddle
point (μ0, ν∗) defined by the two inequalities

ϕ
(
μ, ν∗

)
� ϕ

(
μ0, ν∗

)
� ϕ

(
μ0, ν

)
(2.9.7)

for any ν(·) ∈ {ν} and μ(·) ∈ {ν}.
Sometimes, this pair (μ0, ν∗) is called the solution of the game �a in mixed

strategies.
In 1952, Gliksberg [30] established the existence of a mixed strategy Nash

equilibrium for a noncooperative game of N � 2 players. Applying this existence
result to the zero-sum two-player game �a as a special case, we obtain the following
statement. In the game �a, let the set X⊂R

n be nonempty and compact and let the
payoff function ϕ(x, z) of player 1 be continuous on X×X (note that the continuity
of ϕ(x, z) is assumed in Lemma 2.8.1). Then the game �a has a solution (μ0, ν∗)
defined by (2.9.7), i.e., there exists a saddle point in mixed strategies.
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In view of (2.9.4), inequalities (2.9.7) can be written as

∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ(dx)ν∗(dz)

�
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ0(dx)ν∗(dz)

�
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ0(dx)ν(dz)

(2.9.8)

for all ν(·) ∈ {ν} and μ(·) ∈ {ν}. Using the measure νi(dzi) = μ0
i (dxi) (i ∈N) (so

that ν(dz) = μ0(dx)) in the expression

ϕ(μ0, ν) =
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ0(dx)ν(dz),

we obtain ϕ(μ0, μ0) = 0 due to (2.9.6). Similarly, ϕ(ν∗, ν∗) = 0, and it follows
from (2.9.7) that

ϕ(μ0, ν∗) = 0. (2.9.9)

The condition ϕ(μ0, μ0) = 0 and the chain of inequalities (2.9.7) give, by
transitivity,

ϕ(μ, ν∗) =
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ(dx)ν∗(dz) � 0 ∀ μ(·) ∈ {ν}.

In accordance with Proposition 2.9.2, then we have

0 �
∫

X×X

max
j=1,...,N+1

ϕj (x, z)μ(dx)ν∗(dz) � max
j=1,...,N+1

∫

X×X

ϕj (x, z)μ(dx)ν∗(dz).

Therefore, for all j = 1, . . . , N+1,

∫

X×X

ϕj (x, z)μ(dx)ν∗(dz) � 0 ∀ μ(·)∈{ν}. (2.9.10)

Consider two cases as follows.
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Case I (j = 1, . . . , N). Here, by (2.9.10), (2.9.6) and the normalization of ν(·), we
arrive at

0 �
∫

X×X

ϕi(x, z)μ(dx)ν∗(dz) =
∫

X×X

[fi(x‖zi)− fi(z)]μ(dx)ν∗(dz)

=
∫

X×Xi

fi (x‖zi)μ(dx)ν∗i (dz)−
∫

X

fi(z)μ(dz) ·
∫

X

ν∗(dz)

= fi(μ‖ν∗i )− fi(ν
∗) ∀ μ(·)∈{ν}, i ∈ N.

By Definition 2.9.1, ν∗(·) is a Berge equilibrium in mixed strategies in game (2.3.1).

Case II (j = N + 1). Again, using (2.9.10), (2.9.6) and the normalization of ν(·)
and μ(·), we have

0 �
∫

X×X

[
∑

r∈N
fr(x)−

∑

r∈N
fr(z)

]

μ(dx)ν∗(dz)=
∫

X

∑

r∈N
fr(x)μ(dx)·

∫

X

ν∗(dz)

−
∫

X

μ(dx)

∫

X

∑

r∈N
fr (z)ν

∗(dz) =
∑

r∈N
fr(μ)−

∑

r∈N
fr(ν

∗) ∀ μ(·)∈{νB}.

In accordance with Remark 2.9.1, the mixed strategy profile ν∗(·) ∈ {ν} of
game (2.3.1) is a Pareto-maximal alternative in the multicriteria choice problem

�̃ν =
〈{

νB
}

, {fi(ν)}i∈N
〉
.

Thus, we have proved that the mixed strategy profile ν∗(·) in game (2.3.1) is a
Berge equilibrium that satisfies Pareto maximality. Hence, by Definition 2.9.1, the
mixed strategy profile ν∗(·) is a Berge–Pareto equilibrium in game (2.3.1). �

2.10 Linear-Quadratic Two-Player Game

Verba docent, exempla trahunt.34

Readers who studied Lyapunov’s stability theory surely remember algebraic
coefficient criteria. The whole idea of such criteria is to establish the stability of
unperturbed motion without solving a system of differential equations, by using the
signs of coefficients and/or their relationships. In this section of the book, we are
endeavoring to propose a similar approach to equilibrium choice in noncooperative

34Latin “Words instruct, illustrations lead.”
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linear-quadratic two-player games. More specifically, our approach allows one to
decide about the existence of a Nash equilibrium and/or a Berge equilibrium in
these games based on the sign of quadratic forms in the payoff functions of players.

2.10.1 Preliminaries

Consider a noncooperative linear-quadratic two-player game described by

�2 = 〈{1, 2}, {Xi = R
ni }i=1,2, {fi(x1, x2)}i=1,2〉.

A distinctive feature of �2 is the absence of constraints on the strategy sets Xi : the
strategies of player i can be any column vectors of dimension ni , i.e., elements of
the ni-dimensional Euclidean space R

ni with the standard Euclidean norm ‖ · ‖ and
the scalar product. Let the payoff function of player i (i = 1, 2) have the form

fi(x1, x2) = x ′1Aix1 + 2x ′1Bix2 + x ′2Cix2 + 2a′ix1 + 2c′ix2, (2.10.1)

where Ai and Ci are constant symmetric matrices, Bi is a constant rectangular
matrix, and ai and ci are constant vectors, all of compatible dimensions; ′ denotes
transposition; det A denotes, the determinant of a matrix A. Henceforth, A < 0
(>, �) means that the quadratic form z′Az is negative definite (positive definite,
positive semidefinite, respectively). We will adopt the following rules of differenti-
ation of bilinear quadratic forms with respect to the vector argument [19, 27]:

[
∂

∂x1

[
x ′1Bix2

] = Bix2

]

⇒
[

∂

∂x2

[
x ′1Bix2

] = B ′ix1 ∧ ∂

∂x1

[
x ′1Aix1

]

= 2Aix1 ∧ ∂

∂x1

[
a′1x1

] = a1

]

,

∂2

∂x2
i

[
x ′1Aix1

] = 2Ai. (2.10.2)

For a scalar function �(x) of a k-dimensional vector argument x, sufficient
conditions for

max
x∈Rk

�(x) = �(x∗)
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are

(1)
∂�(x)

∂x

∣
∣
∣
∣
x=x∗

= grad �(x)|x=x∗ = 0k,

(2)
∂2�(x)

∂x2

∣
∣
∣
∣
x=x∗

< 0,

(2.10.3)

where 0k denotes a zero column vector of dimension k.

2.10.2 Berge Equilibrium

For the payoff functions (2.10.1), relations (2.10.3) yield the following sufficient
condition for the existence of a Berge equilibrium in the game �2.

Proposition 2.10.1 Assume that in the game �2

A2 < 0, C1 < 0, (2.10.4)

and

det
[
C1 − B ′1A

−1
2 B2

]
�= 0. (2.10.5)

Then the Berge equilibrium xB = (xB
1 , xB

2 ) is given by

xB
1 = −A−1

2 B2

[
C1 − B ′1A

−1
2 B2

]−1 (
B ′1A

−1
2 a2 − c1

)
− A−1

2 a2,

xB
2 =

[
C1 − B ′1A

−1
2 B2

]−1 (
B ′1A

−1
2 a2 − c1

)
.

(2.10.6)

Proof By definition, a strategy profile (xB
1 , xB

2 ) = xB is a Berge equilibrium in the
game �2 if and only if

max
x2∈Rn2

f1
(
xB

1 , x2
) = f1

(
xB
)
,

max
x1∈Rn1

f2
(
x1, x

B
2

) = f2
(
xB
)
.

(2.10.7)
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In view of (2.10.3) and(2.10.1), sufficient conditions for the first equality in (2.10.7)
to hold can be written as

∂f1
(
xB

1 , x2
)

∂x2

∣
∣
∣
∣
∣
x2=xB

2

= 2B ′1xB
1 + 2C1x

B
2 + 2c1 = 0n2,

∂2f1
(
xB

1 , x2
)

∂x2
2

∣
∣
∣
∣
∣
x2=xB

2

= 2C1.

Similarly, for the second equality in (2.10.7) we obtain

∂f2
(
x1, x

B
2

)

∂x1

∣
∣
∣
∣
∣
x1=xB

1

= 2A2x
B
1 + 2B2x

B
2 + 2a1 = 0n1,

∂2f2
(
x1, x

B
2

)

∂x2
1

∣
∣
∣
∣
∣
x1=xB

1

= 2A2.

In accordance with (2.10.4), the matrices C1 and A2 are negative definite and hence
the Berge equilibrium (xB

1 , xB
2 ) in the game �2 satisfies the linear nonhomogeneous

system of matrix equations

{
A2x

B
1 + B2x

B
2 = −a2,

B ′1xB
1 + C1x

B
2 = −c1.

(2.10.8)

Using the chain of implications [A2 < 0] ⇒ [detA2 �= 0] ⇒
[
∃A−1

2

]
, we

multiply the first equation in (2.10.8) on the left by A−1
2 to get

xB
1 = −A−1

2 B2x
B
2 − A−1

2 a2. (2.10.9)

Substituting this expression into the second equation of system (2.10.8), one obtains

[
C1 − B ′1A

−1
2 B2

]
xB

2 = −c1 + B ′1A
−1
2 a2, (2.10.10)

or

xB
2 =

[
C1 − B ′1A

−1
2 B2

]−1 (
B ′1A

−1
2 a2 − c1

)
. (2.10.11)

Here we used the fact that

[
det
[
C1 − B ′1A

−1
2 B2

]
�= 0
]
⇒

[

∃
(
C1 − B ′1A

−1
2 B2

)−1
]

;
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formula (2.10.11) is easily derived upon multiplying both sides of (2.10.10) on the

left by the matrix
[
C1 − B ′1A

−1
2 B2

]−1
. Finally, using the resulting expression for

xB
2 in (2.10.9), we arrive at the first equality of system (2.10.6).

In the same fashion, it is possible to solve system (2.10.8) by multiplying the
second equation by C−1

1 . This leads to

Proposition 2.10.2 Assume inequalities (2.10.4) and

det
[
A2 − B2C

−1
1 B ′1

]
�= 0 (2.10.12)

hold in the game �2. Then the Berge equilibrium xB = (xB
1 , xB

2 ) has the form

xB
1 =

[
A2 − B2C

−1
1 B ′1

]−1
(B2C

−1
1 c1 − a2),

xB
2 = −C−1

1 B ′1
[
A2 − B2C

−1
1 B ′1

]−1 (
B2C

−1
1 c1 − a2

)
− C−1

1 c1.

Remark 2.10.1 System (2.10.8) has a unique solution for A2 < 0 and C1 < 0.
The two explicit forms of this solution presented above are equivalent and can be
reduced to each other.

2.10.3 Nash Equilibrium

In this section, we derive similar results for the Nash equilibrium in the game �2.
Instead of (2.10.7), we consider a Nash equilibrium xe = (xe

1, x
e
2) defined by the

two equalities

max
x1∈Rn1

f1
(
x1, x

e
2

) = f1
(
xe) , max

x2∈Rn2
f2
(
xe

1, x2
) = f2

(
xe) . (2.10.13)

The sufficient conditions for implementing (2.10.13) take the form

gradx1
f1
(
x1, x

e
2

)∣
∣
x1=xe

1
= ∂f1

(
x1, x

e
2

)

∂x1

∣
∣
∣
∣
∣
x1=xe

1

= 2A1x
e
1 + 2B1x

e
2 + 2a1 = 0n1 ,

gradx2
f2
(
xe

1, x2
)∣
∣
x2=xe

2
= ∂f2

(
xe

1, x2
)

∂x2

∣
∣
∣
∣
∣
x2=xe

2

= 2B ′2xe
1 + 2C2x

e
2 + 2c2 = 0n2 ,

∂2f1
(
x1, x

e
2

)

∂x2
1

∣
∣
∣
∣
∣
x1=xe

1

= 2A1 < 0,

∂2f2
(
xe

1, x2
)

∂x2
2

∣
∣
∣
∣
∣
x2=xe

2

= 2C2 < 0.
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The first two conditions give the linear nonhomogeneous system of matrix
equations

{
A1x

e
1 + B1x

e
2 = −a1,

B ′2x
e
1 + C2x

eB2 = −c2.

As in Propositions 2.10.1 and 2.10.2, the conditions A1 < 0 and C2 < 0 allow us to
establish the following results. The onus probandi35 is left to the reader.

Proposition 2.10.3 Assume the inequalities

A1 < 0, C2 < 0, (2.10.14)

and

det
[
C2 − B ′2A

−1
1 B1

]
�= 0 (2.10.15)

hold in the game �2. Then the Nash equilibrium xe = (xe
1, x

e
2) has the form

xe
1 = −A−1

1 B1

[
C2 − B ′2A

−1
1 B1

]−1
(B ′2A

−1
1 a1 − c2)− A−1

1 a1,

xe
2 =

[
C2 − B ′2A

−1
1 B1

]−1
(B ′2A

−1
1 a1 − c2).

Proposition 2.10.4 Assume inequalities (2.10.14) and

det
[
A1 − B1C

−1
2 B ′2

]
�= 0 (2.10.16)

are satisfied in the game �2. Then the Nash equilibrium xe = (xe
1, x

e
2) has the form

xe
1 =

[
A1 − B1C

−1
2 B ′2

]−1 (
B1C

−1
2 c2 − a1

)
,

xe
2 = −C−1

2 B ′2
[
A1 − B1C

−1
2 B ′2

]−1 (
B1C

−1
2 c2 − a1

)
− C−1

2 c2.

2.10.4 Auxiliary Lemma

Despite the negativa non probantur36 principle of Roman law, we will rigorously
obtain a result useful for discarding the games without any Berge and/or Nash
equilibria.

35Latin “The burden of proof.”
36Latin “Negative statements are not proved.”
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Lemma 2.10.1 In the game �2 with A1 > 0, there exists no x̄1 such that, for each
fixed x2,

max
x1∈Rn1

f1(x1, x2) = f1(x̄1, x2). (2.10.17)

In other words, the payoff function f1 of the first player is not maximized in this
game.

Proof Let us “freeze” a certain strategy x2 ∈ R
n2 of the second player. Then the

payoff function of the first player can be written in the form

f1(x1, x2) = x ′1A1x1 + 2x ′1ϕ(x2)+ ψ(x2),

where the column vector ϕ(x2) of dimension n1 and the scalar function ψ(x2)

depend on the frozen value x2 only.
By the hypothesis of Lemma 2.10.1, the symmetric matrix A1 is positive definite.

In this case, the characteristic equation det[A1 − En1λ] = 0 (where En1 denotes an
identity matrix of dimensions n1×n1) has n1 positive real roots owing to symmetry
and, in addition,

x ′1A1x1 � λ∗‖x1‖2 ∀x1 ∈ R
n1 , (2.10.18)

where λ∗ > 0 is the smallest root among them. Thus, maximum (2.10.17) is not
achieved if, for any large value m > 0, there exists a strategy x1(m, x2) ∈ R

n1 such
that

f1(x1(m, x2), x2) > m.

Under (2.10.18), this inequality holds if

λ∗‖x1(m, x2)‖2 + 2x ′1(m, x2)ϕ(x2)+ ψ(x2) > m. (2.10.19)

Let us construct a solution x1(m, x2) of inequality (2.10.19) in the form

x1(m, x2) = βen1, (2.10.20)

where the constant β > 0 will be specified below and e1’s the n1-dimensional vector
with all components equal to 1.

Substituting (2.10.20) into (2.10.19) yields the following inequality for β:

λ∗β2n1 + 2β
(
en1 , ϕ(x2)

)+ ψ(x2)−m > 0.

Hence, for any constant

β > β+ =
∣
∣
(
en1, ϕ(x2)

)∣
∣+
√
(
en1, ϕ(x2)

)2 + λ∗n1|ψ(x2)−m|
λ∗n1
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and corresponding strategy x1(m, x2) = βen1 of the first player, we have

f1(x1(m, x2), x2) > m.

Thus, maximum (2.10.17) does not exist. �
Remark 2.10.2 In this case, the game �2 with a matrix A1 > 0 admits no Nash
equilibria. In combination with Proposition 2.10.1, this shows that

1. the game �2 with matrices A1 > 0 or (and) C2 > 0 and also A2 < 0, C1 < 0
that satisfies condition (2.10.5) has no Nash equilibria, but does have a Berge
equilibrium defined by (2.10.6).

In a similar way, it is easy to obtain the following.
2. If A2 < 0, C1 < 0, condition (2.10.5) or (2.10.12) holds and also A1 > 0 or (and)

C2 >0, then the game �2 has a Berge equilibrium only.
3. If A1 <0, C2 <0, condition (2.10.15) or (2.10.16) holds and also A2 >0 or (and)

C1 >0, then the game �2 has a Nash equilibrium only.
4. If A1 >0 or (and) C2 >0 and also A2 >0 or (and) C1 >0, then the game �2 has

none of these equilibria.
5. If A2 < 0, C1 < 0, A1 < 0, C2 < 0 and also conditions (2.10.5) or (2.10.12)

and (2.10.15) or (2.10.16) hold, then the game �2 has both types of equilibrium.

2.10.5 Concluding Remarks

Thus, we have considered the noncooperative linear-quadratic two-player game
without constraints (Xi = R

ni , i = 1, 2) and with the payoff functions

f1(x1, x2) = x ′1A1x1 + 2x ′1B1x2 + x ′2C1x2 + 2a′1x1 + 2c′1x2,

f2(x1, x2) = x ′1A2x1 + 2x ′1B2x2 + x ′2C2x2 + 2a′2x1 + 2c′2x2.

Here ′ denotes transposition; Ai and Ci are constant symmetric matrices of
dimensions n1 × n1 and n2 × n2, respectively; Bi is a constant rectangular matrix
of dimensions n1 × n2; finally, ai and ci are constant vectors of dimensions n1 and
n2, respectively (i = 1, 2).

Based on Propositions 2.10.1–2.10.4, we introduce the following coefficient
criteria for the existence of Nash and Berge equilibria in the game �2. Par acquit
de conscience,37 they are presented in form of Table 2.1.

How should one use Table 2.1? Just follow the three simple steps indicated
below.

37French “For our peace of mind.”



2.10 Linear-Quadratic Two-Player Game 59

Table 2.1 Coefficient criteria of equilibria

BE NE

Only one of the equilibria exists

A1 > 0 A2 < 0 C1 < 0 (2.10.5) ∃ � ∃ ∀ C2, Bi , ai , ci

A2 < 0 C1 < 0 C2 > 0 (2.10.12) ∃ � ∃ ∀ A1, Bi , ai , ci

A1 < 0 A2 > 0 C2 < 0 (2.10.15) � ∃ ∃ ∀ C1, Bi , ai , ci

A1 < 0 C1 > 0 C2 < 0 (2.10.16) � ∃ ∃ ∀ A2, Bi , ai , ci

None of the equilibria exists

A1 > 0 A2 > 0 � ∃ � ∃ ∀ Bi, Ci, ai , ci

A1 > 0 C1 > 0 � ∃ � ∃ ∀ A2, C2, Bi , ai , ci

A2 > 0 C2 > 0 � ∃ � ∃ ∀ A1, C1, Bi , ai , ci

C1 > 0 C2 > 0 � ∃ � ∃ ∀ A1, A2, Bi , ai , ci

Both equilibria exist

A1 < 0 A2 < 0 C1 < 0 C2 < 0 (2.10.5) and ∃ ∃ ∀ Bi, ai , ci

(2.10.15)

A1 < 0 A2 < 0 C1 < 0 C2 < 0 (2.10.12) ∃ ∃ ∀ Bi, ai , ci

(2.10.16)

Step 1. First, check the signs of the quadratic forms with the matrices A1, A2, C1,
and C2. For example, suppose A1 < 0, C2 < 0 (both matrices are negative
definite), while A2 > 0 (i.e., A2 is positive definite).

Step 2. Find the corresponding row in Table 2.1 (in our case, the conditions A1 < 0,
C2 < 0 and A2 > 0 are in row 3); then verify the nondegeneracy of the

matrix (2.10.15) in column 5, i.e., the condition det
[
C2 − B ′2A

−1
1 B1

]
�= 0.

Step 3. As shown in columns 6 and 7 of Table 2.1, the game �2 with these matrices
has no Berge equilibria, but has a Nash equilibrium for any matrices C1, Bi

and any vectors ai , bi of compatible dimensions. The explicit form of this
Nash equilibrium is given in Proposition 2.10.3.



Chapter 3
The Golden Rule Under Uncertainty

Dubia plus torquent mala.1

As an English proverb goes, “Between the cup and lip a morsel may slip.” This
chapter is devoted to the Golden Rule under uncertainty, which accompanies every
concept of equilibrium (in particular, Berge equilibrium).

3.1 Uncertainty and Types of Uncertainty

L’homme propose et dieu dispose.2

The harm and good of action are conditioned by
a totality of the circumstances.

—Kozma Prutkov3

What is uncertainty? How does uncertainty appear in economic and mechan-
ical systems, sociology and decision-making? These questions are discussed
below.

1Latin “Doubtful ills plague us worst.” A quote from Agamemnon 480, by Seneca the Younger. In
full Lucius Annaeus Seneca, (c. 4 B.C.–65 A.D.), was a Roman philosopher, statesman, orator, and
tragedian.
2French “Man proposes but God disposes.” This proverb emphasizes an influence of various
contingencies on one’s own plans, intentions, or even life.
3An English translation of a quote from [168, p. 230].
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3.1.1 Conceptual Meaning of Uncertainty

The following situation seems common for almost everybody: one needs to reach a
place of employment from home. First of all, a person in this situation (henceforth
called passenger) has to decide which means of transportation to use (subway, bus,
tramcar, suburban electric train, etc.). Choosing a means of transportation (strategy),
the passenger inevitably encounters incomplete and/or inaccurate information:
delays or breakdowns of vehicles, sudden changes of schedule, strikes of drivers,
weather fluctuations, crashes on routes, and so on. As noted by O. Holmes, “The
longing for certainty. . . is in every human mind. But certainty is generally illusion.”4

At best the passenger knows the ranges of variation of these factors, without any
probabilistic appraisals. Nevertheless, he/she has to make a decision! As a matter of
fact, the incomplete and/or inaccurate information about the conditions under
which his/her strategy will be implemented results in its inherent uncertainty.
The uncertainty is caused by the embarrassment of choice.5 We end this section
by quoting Napoleon Bonaparte: “If the art of war were nothing but the art of
avoiding risks, glory would become the prey of mediocre minds. . . I have made all
the calculations; fate will do the rest.”6

3.1.2 Uncertainty in Economic Systems

The following types of uncertainty are common in economic systems [25, 117, 118,
123, 125, 126, 129, 130, 175]:

1. uncertainty in economic indicators;
2. uncertainty about future disturbances, endogenous and exogenous;
3. uncertainty induced by mathematical modeling.

Pliny the Elder was used to say, “In these matters the only certainty is that there is
nothing certain.”7 Among the sources and causes of uncertainty, we are identifying

4Oliver Wendell Holmes, Jr., by name The Great Dissenter, (1841–1935), was a justice of the
United States Supreme Court, U.S. legal historian and philosopher who advocated judicial restraint.
5A house owner (H) asked a heating engineer (E) how much firewood will be required for a winter
season. The latter requested information about the area of the house, the number of rooms, the
location of windows, the number of fireplaces and also a mass of other technical details.

E: You will need from three to nineteen cubic meters of firewood.
H: Why is the answer so inaccurate?
E: Everything depends on how severe the coming winter will be. See [98, p. 41].

6Napoleon I, French in full Napoléon Bonaparte, (1769–1821), was a French general, first consul
(1799–1804), and emperor of the French (1804–1814/1815).
7Gaius Plinius Secundus, (23–79 A.D.), well-known as Pliny the Elder, was a Roman writer, natural
philosopher and scientist.
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pure economic and also political factors. The latter include such unforeseen events
as

• military conflicts and bans on exports and imports dictated by wartime (closure
of borders, military operations in a country, migration, etc.);

• disposition of immovable and movable property (in particular, financial assets)
on political grounds;

• inefficient economic policy and related ethnical and regional problems, polariza-
tion of different social groups.

An economic system, e.g., a firm, is often subject to sudden influence that is
difficult to predict, namely, exogenous disturbances in the form of

• forces of nature (earthquakes, floods, storms, hurricanes, and other natural
phenomena such as cold, ice, hail, thunder, drought, etc.);

• various accidents (fires, blasts, emissions of atomic and heat power plants, etc.);
• product price fluctuations caused by demand-supply dynamics, the varying

number and range of supplies, purchase price fluctuations, the disruption of
supplies;

• bad faith, low qualification or incompetence of economic partners, counteractions
of rivals, acts of terrorism or racketeering;

• emergence or implementation of new technologies (investments made in techno-
logical progress and the resulting economic effects are often separated in time
and therefore can be predicted on a long-term basis only);

as well as endogenous disturbances in the form of

• breakdown and failure of industrial equipment;
• unplanned additional cost and the losses of materials or energy during product

storage and transportation;
• industrial accidents and employee illness;
• mistakes in personnel management;
• incorrect marketing or pricing policies (no sales, old stocks);
• mistakes in planning and product design;
• innovations suggested by employees.

New technologies and also anthropogenic and weather changes may cause
uncertainty in ecological systems. In this context, we also mention epidemics among
biological species and sudden pollution of their habitats [32, 147, 183].

3.1.3 Uncertainty in Mechanical Control Systems

In mechanical control systems, le vague8 can be induced by exogenous disturbances,
which lead to uncertainty in the forces affecting these systems [1, 107, 108,
153, 154, 169, 170, 174]. Atmospheric phenomena such as puff and varying air

8French “Uncertainty.”
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density can be sources of exogeneous disturbance. Incomplete information can be
also a consequence of control program errors. Other disturbing factors include
inaccurate initial data, the spread of characteristics and design parameters of a
moving body, as well as gravitational and other perturbations. A primary cause
of incomplete information in mechanical control systems consists in the inherent
noises of measurement channels, which yield inaccurate motion parameters of the
systems.

Information delays associated with finite periods of time needed to acquire and
process measurement data also cause uncertainty in mechanical control systems.

3.1.4 Uncertainty in Decision-Making

As a matter of fact, uncertainty occurs in decision-making too.
First, in the course of mathematical modeling, since it often seems impossible

to consider the whole variety of constraints on the uncontrolled and controlled
parameters of the process under study within the current level and methods of
science [6, 15–17, 132, 133, 135, 177, 178].

Second, in the understanding of all goals to be achieved by a controlled process:
in many cases these goals are unclear or ambiguous, and their formalization has a
subjective character defined by a player [7, 17, 139–142, 151].

Third, relationships between the process variables in the form of differential
and/or algebraic equations may be inadequate for the process itself [9, 10, 143–146].

3.1.5 Classification of Uncontrolled Factors

In accordance with operations research [28], the strategies are the factors controlled
by a player, i.e., chosen at his own discretion. Also, there exist uncontrolled factors
[295, 296] affecting the outcome, which are not at the player’s disposal (e.g.,
environmental conditions). Obviously, players should have some information about
the values of uncontrolled factors.

Based on the awareness of players, operations research [28] divides the uncon-
trolled factors into three groups: fixed, random, and uncertain.

The fixed uncontrolled factors are the ones that have precisely known (given)
values; e.g., a share sale is transacted if the buyers are informed about the exact
price quotations. In this example the price quotations act as an uncontrolled factor.

The random uncontrolled factors are represented by random variables obeying
given probability distributions.

Finally, the uncertain uncontrolled factors (hereinafter referred to as uncertainty)
are deterministic or random variables with given value ranges or given classes of
admissible probability distributions.



3.1 Uncertainty and Its Types 65

Among the above-mentioned groups, of crucial importance are the random and
uncertain uncontrolled factors. In fact, the fixed uncontrolled factors do not differ
from the other parameters of a mathematical model: their values are given and
not varied at the wish of players. The random factors and uncertainty are also not
affected by the players, but they take unknown values. As a rule, the random factors
have a given probability distribution. In other words, if a random factor takes a
finite set of values y1, . . . , yk , then the players know the probabilities p1, . . . , pk

associated with these values. For a random factor described by a continuous random
variable, one deals with a given probability density function p(x). In both cases, the
optimization criteria (payoffs functions) are defined in terms of expectation.

Even less information is available about uncertainty. Whenever it represents
a deterministic variable, we will assume that there is a given domain Y of its
admissible values and consider the values y ∈ Y only. If uncertainty is a random
variable, then by assumption it belongs to a given class of admissible probability
distributions.

Modern publications on economics distinguish three types of uncertainty as
follows:

– interval uncertainty, for which the only available information consists of the
ranges of admissible values (any probabilistic characteristics are absent for some
reason). This type of uncertainty will be studied in our book;

– random uncertainty, as discussed above;
– fuzzy uncertainty, which is ruled by fuzzy mathematics, an intensively devel-

oping branch [99] founded by L. A. Zadeh.

3.1.6 Classification of Uncertainty

Using different sources of uncertainty, it is possible to suggest four groups of
uncertainty [297–300], namely,

10. uncertainty caused by the purposeful actions of other persons who are not
players;

20. uncertainty reflecting the fuzzy knowledge of all players about their goals;
30. uncertainty occurring due to an insufficient exploration of processes or charac-

teristics;
40. uncertainty arising in the course of data acquisition, processing and transfer.

Let us discuss each group in detail.
10. Real control systems (especially economic, ecological, and social ones) often

operate under conflict. In such systems, uncertainty is connected with the actions of
conflicting parties, which are pursuing individual goals. Uncertainties of this type
are called strategic [28] and cover any uncertainty caused by the actions of such
goal-oriented parties actually not representing players. For example, the operation
of an economic object can be influenced by other enterprises and firms, regardless
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of their economic relations with this object (say, an import product put in a market).
These relations are incorporated into a mathematical model using several parameters
with given ranges of variation (as the only information available to the players),
e.g., the minimal and maximal quantity of products released in the market by an
importer. The specific values of these parameters depend on the specific actions of
other enterprises, i.e., the importer.

In this case, the parameters themselves constitute the uncertainty. Besides, this
type of uncertainty also covers some exogenous disturbances such as the disruption
and variation of the quantity (range) of supply, demand fluctuations for the products
supplied by a given enterprise, the emergence of new technologies, etc.

20. A special status is assigned to the uncertainty that reflects the player’s
understanding of his goals. Roughly speaking, this uncertainty is not a controlled
factor because each player chooses goals at his wish. However, if a player is unable
to make choices or has some doubts, the resulting situation resembles the case
of uncontrolled factors. For further analysis, we will assume that such a situation
can be described by a set of criteria f1(x),. . . , fN (x), each maximized by a given
player without a clear view of a single criterion. As demonstrated below, this player
operates under the same conditions as uncontrolled factors. A similar state of affairs
occurs if the player’s criterion depends on the uncertainty taking a finite set of
values: substituting these values into the criterion, we obtain a vector criterion with
the same number of components as the number of uncertainty values.

Of course, an immediate issue is to design a uniform scalar criterion that
would reflect the “desires” associated with all the elements of the vector criterion
(the criteria convolution problem). The most widespread methods to convolute
the criteria f1(x),. . . , fN(x) are (a) the weighted sum

∑N
i=1 αifi(x) and (b) the

weighted minimum min
1�i�N

αifi(x). In both cases, the weight coefficients must often

satisfy the normalization conditions
∑N

i=1 αi = 1, where αi > 0 (i = 1, . . . , N).
These coefficients can be used to transform the results into a universal measuring
scale. Inaccurate knowledge about the player’s goal is encoded by the uncertain
values of αi (i = 1, . . . , N).

However, such an approach, first, does not eliminate the existing uncertainty
(yielding the uncertain parameters αi ) and, second, can be used if the uncertainty
takes a finite set of values. If this set is infinite or even has the cardinality of the
continuum, then the approach is called into question.

Finally, the relationship between the criterion values and uncertainty can be
determined by different factors such as weather conditions, anthropogenic changes,
a sudden appearance of competitors, price fluctuations in the market, and other
exogenous disturbances [301–305].

30. An increasing amount of information, and consequently a rising number of
studied objects (in particular, their gradual complication), is also increasing the
existing uncertainty due to an insufficient exploration of processes and character-
istics, compelling us emere catullum in sacco.9

9Latin “To buy a cat in the sack.” Meaning to buy something sight unseen or without knowing
anything about the object.
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The growing uncertainty describes well the fact that, in the course of develop-
ment, any fundamental or applied science10 is posing many more problems than it
actually solves. Decision-making based on incomplete data can be interpreted as
conflict with nature. Note that this source of uncertainty has a subjective character
in some sense. Indeed, such uncertainty depends on accumulated experience, the
completeness of modern scientific knowledge, and access to new information. For
example, flight missions to Mars are intended to eliminate blanks in what is known
about this planet and will surely lead to new unexpected problems. The same applies
to the appearance of new technologies.

40. Data acquisition, processing and transfer directly involve computers for
different calculations. In practice, we have to be content with approximate solutions,
reconciling ourselves with the element of uncertainty in the solutions. Rough
information occurs as the result of many factors—computational errors, inaccurate
data transfer as well as the limited precision of numerical representations and
measurements, to name a few.

Solutions obtained by a numerical method are always approximate. There exist
several sources of errors for numerical solutions, such as disagreement between
a mathematical model and the real phenomenon,11 inaccurate initial data, and
imprecision of numerical methods (e.g., roundoff errors for arithmetical and other
operations).

Even hand calculation [179] involves the roundoff effect, which is associated
with a finite number of decimals used for different operations. This problem is
equally important for computer systems and people.

There are several reasons explaining this situation.
First, the amount of computational job that can be performed manually is

considerably smaller compared with that of modern computer systems.
Second, hand calculation allows us to observe roundoff effects and undertake

necessary measures for avoiding mistakes.
Third, hand calculation often employs variable-length numbers, which are

adjusted to eliminate rough errors; by contrast, computer calculation deals with
floating-point numbers of fixed length.

Fourth, hand calculation allows us to estimate the maximal error induced by
rounding. Such estimation is very costly for computer calculation, requiring the use
of statistical estimates.

Practical calculations have led to several popular methods to use computer
systems for error detection and estimation. The latter is vital: prior to writing
programs for a computer system, one needs to assess the expected accuracy.

10In jeder besonderen Naturlehre nur so viel eigentliche Wissenschaft angetroffen werden könne,
als darin Mathematik anzutreffen ist. (German “In every department of physical science there
is only so much science, properly so-called, as there is mathematics.”) A quote from Metaph-
ysische Anfangsgründe der Naturwissenschaft (Metaphysical Foundations of Natural Science) by
Immanuel Kant (1724–1804), an outstanding German philosopher.
11“If my husband would ever meet a woman on the street who looked the women in his paintings,
he would fall over in a dead faint.” —Mrs. Picasso.
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Perhaps, the simplest and most successful approach to the roundoff problem
is to define the range of admissible values. Then each quantity can be described
by two values, i.e., the maximal and minimal ones. In a certain sense, each
quantity is replaced by a range that covers its exact value. Different operations
on quantities correspond to new ranges defined from the original ranges using
appropriate rounding. Therefore, each stage of calculations has reliable limits for
the correct value of a given quantity. These issues form the content of interval
analysis [187, 256].

A direct application of interval methods in calculation processes allows us to
impose limits on the solutions of problems with initial data belonging to given
ranges. The resulting intervals also incorporate the roundoff errors caused by
calculations. For precise initial data, these intervals contain the exact solution of an
original problem and hence interval analysis gives the approximation and roundoff
errors.

To pursue the path of two-sided estimation is a very promising approach, as it
solves the issue of resulting errors. Two-sided estimation is proceeding with the so-
called interval arithmetics [187], which operates with intervals instead of values.
More specifically, it is assumed that initial data, intermediate calculations and final
results belong to some intervals. Thus, a main element of interval calculus is an
interval [a, b] (also termed range) defined as a set of real values x such that {x ∈
R|a � x � b}.

Generally, when a value x is specified for computer systems, it is assumed that
x incorporates an error. In terms of interval analysis, this means that in a computer
system a value x belongs to an interval.

With an interval algorithm used for solving a posed problem, we may construct
an interval function that contains the exact solution. In this case, the accuracy of
the resulting solution is taken into account and it is also possible to perform a prior
analysis of roundoff errors.

Thus, we have presented a list of factors causing uncertainty in different systems,
which does not claim to be exhaustive. But this brief discussion demonstrates
that uncertainty should be considered for the elementary and difficult problems,
particularly, for conflicts, in which the interests of many parties are clashing with
one another and undergoing the influence of uncertain disturbances. Even in simple
market problems these disturbances might not be neglectable. How can one account
for them in noncooperative games under uncertainty (NGU), especially in dynamic
(time-varying) controlled systems? A possible approach based on an appropriate
modification of the principle of guaranteed result [28, 29] was developed for
multicriteria choice problems in [295] and for conflicts in [51, 289]. An alternative
framework using the principle of minimax regret [267, 268] is presented in the
book [66] (though for the noncooperative setup only).

In the mathematical models of CGUs, the influence of several uncertain factors
is assessed by the specific values y1, . . . , ym of corresponding scalar parameters.
These values yj (j = 1, ...,m) describe for instance the quantity of imported
products (put in the market), their unit price, the number of people suffered from
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an accident or fire, the delays of negotiated supplies, and so on. We will also adopt
a column vector y = (y1, . . . , ym), with a set of values denoted by Y ⊂ R

m.
Our book addresses uncertainties that cannot be described by statistical methods.

This situation occurs at least in two cases as follows:

– the probabilistic characteristics of uncertainty exist in principle, but statistical
data are not available (e.g., sudden anthropogenic accidents like the Chernobyl
and Fukushima Daiichi nuclear disasters) or are very expensive to acquire;

– the uncertainty y does not have any probability distribution.

The uncertainty of the second type is well illustrated by the following example;
for details see [18, p. 21]. For a clothing factory, production planning for a next
year heavily affects future profits, which in turn depends on the length y of
women’s skirts. However, taking into account the vagaries of fashion and female
logic dictating fashion trends, any probabilistic characteristics for the parameter y

would be hardly expected. All one can do is to establish some obvious limits of
length variations. In [18, p. 21], E. Ventsel’ called such uncontrollable factors ill
uncertainty due to an unpredictable character of their specific realization. This type
of uncertainty will be considered below.

Once again, we emphasize that recent publications on competitive economics
have identified three types of uncertainty, namely, interval uncertainty (studied in
this book), random uncertainty (based on some probabilistic characteristics of a
variable y distributed on a set Y), and fuzzy uncertainty (based on the concept of a
fuzzy set introduced by Zadeh in [99]).

Thus, throughout this chapter it will be assumed that the players make their
decisions using a value set Y of uncertain parameters y only, i.e., there exist no
probability characteristics for y. Therefore, choosing their strategies, the players are
expecting any realization of y from the set Y.

3.2 General Notions and Obtained Results

3.2.1 Saddle Point and Maximin

Maximin is the problem of finding the minimum amount of

fabric required for sewing a maxi skirt.12

A single-criterion choice problem under uncertainty (SCPU) is described by a
triplet

〈 X1, Y, f1(x1, y) 〉, (3.2.1)

12A Russian translation from a humorous mathematical glossary in [34, p. 204].
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where X1 ⊆ R
n denotes the set of alternatives x1 selected by a decision maker

(DM); Y ⊆ R
m is the set of uncertain factors y; finally, f1(x1, y) is an objective

function defined on X1 × Y that is maximized by the DM under any realization of
y ∈ Y.

For problem (3.2.1), game theory considers at least two types of solutions:

– first, the saddle point (x0
1 , y0) ∈ X1 ×Y, which is defined by the equalities

max
x1∈X1

f1

(
x1, y

0
)
= f1

(
x0

1 , y0
)
= min

y∈Y
f1

(
x0

1 , y
)
; (3.2.2)

– second, the maximin f
g
1 and the maximin alternatives x

g
1 ∈ X1 suggested by A.

Wald [282] in 1939, which are given by

f
g
1 = min

y∈Y
f1
(
x

g
1 , y
) = max

x1∈X1
min
y∈Y

f1(x1, y). (3.2.3)

Remark 3.2.1 The chain of equalities (3.2.2) will be used below to formalize the
guaranteed balanced equilibrium as a solution concept for the noncooperative N-
player game under uncertainty (NGU), the first type of the guaranteed equilibria
developed in this book.

3.2.2 Auxiliary Results from Operations Research, Theory
of Multicriteria Choice and Game Theory

Some background material from operations research, theory of multicriteria
choice and game theory (Nash and Berge equilibria) is provided.

Operations Research
Whilst we deliberate how to begin a thing,

it grows too late to begin it.

—Quintilian

Here we present some auxiliary results from operations research, multicriteria
choice problems and noncooperative games. The following fact was established
in [14, p. 160].

Proposition 3.2.1 Assume that

10. the scalar function F(x, y) is continuous on the product of compact sets X ⊂
R

n and Y ⊂ R
m, where Y is also convex;

20. for each x ∈ X, the function F(x, y) is strictly convex in y on the set Y, i.e., for
each x ∈ X and any y(1), y(2) ∈ Y,

F
(
x, αy(1) + (1− α)y(2)

)
< αF

(
x, y(1)

)
+ (1− α)F

(
x, y(2)

)

for any α ∈ (0, 1).
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Then the m-dimensional vector function y(x) : X → Y defined by

min
y∈Y

F(x, y) = F(x, y(x)) ∀x ∈ X (3.2.4)

is also continuous.

Theory of Multicriteria Choice
Vom Himmel fordert er
Die schönsten Sterne –
Und von der Erde

—Jede höchste Lust.13

We provide some background material from the theory of multicriteria choice
that will be needed below. For two vectors f (k) = (f

(k)
1 , . . . , f

(k)
N ) (k = 1, 2),

introduce the notations:

[
f (1) = f (2)

]⇐⇒
[
f

(1)
i = f

(2)
i (i ∈ N)

]
;

[
f (1) �= f (2)

]⇐⇒ (
f (1) = f (2)

) ;
[
f (1) � f (2)

]⇐⇒
[
f

(1)
i � f

(2)
i (i ∈ N)

]
;

[
f (1) ≥ f (2)

]⇐⇒ (
f (1) � f (2)

) ∧ (f (1) �= f (2)
) ;

[
f (1) �≥ f (2)

]⇐⇒ (
f (1) ≥ f (2)

) ;
[
f (1) > f (2)

]⇐⇒
[
f

(1)
i > f

(2)
i (i ∈ N)

]
;

[
f (1) �> f (2)

]⇐⇒ (
f (1) > f (2)

)
.

(3.2.5)

In the sequel, an n-dimensional vector x ∈ X will be called an alternative, while
an m-dimensional vector y ∈ Y will be called an uncertain factor, more specifically,
a pure uncertainty if y ∈ Y and a counter-situation if y(·) ∈ YX, where YX denotes
the set of all m-dimensional vector functions y(x) defined on the set X and taking
values in the set Y. Further analysis will be confined to the counter-situations y(·) :
Y → X that are continuous on X, i.e., y(·) ∈ C(X, Y).

Definition 3.2.1 For an N-criteria choice problem � = 〈 Y, f (x, y) 〉 with a fixed
alternative x∗ ∈ X,

(a) a pure uncertainty yS ∈ Y is Slater minimal in � if

f (x∗, y) �< f (x∗, yS) ∀ y ∈ Y;

13German “The fairest stars from Heaven he requireth,
From Earth the highest raptures and the best.”
A quote from Faust, Prologue in Heaven (Mephistopheles), by J. von Goethe. Johann Wolfgang
von Goethe, (1749–1832), was a German poet, playwright, novelist, scientist, statesman, theatre
director, critic, and amateur artist. Considered the greatest German literary figure of the modern
era.
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(b) a pure uncertainty yP ∈ Y is Pareto minimal in � if

f (x∗, y) �≤ f (x∗, yP) ∀ y ∈ Y.

For an N-criteria choice problem �(x) = 〈 YX, f (x, y) 〉 that is defined for
all x ∈ X,

(c) a counter-situation yS(x) ∈ YX is Slater minimal if, for each x ∈ X,

f (x, y) �< f (x, yS(x)) ∀ y ∈ Y;

(d) a counter-situation yP(x) ∈ YX is Pareto minimal if, for each x ∈ X,

f (x, y) �≤ f (x, yP(x)) ∀y ∈ Y.

Proposition 3.2.2

(a) If in the problem �(x∗) = 〈 Y, f (x∗, y) 〉 the set Y is compact and the
function f (x∗, y) is continuous on Y, then the set YS of Slater-minimal pure
uncertainties yS is nonempty and compact [152, p. 137].

(b) The pure uncertainty yS ∈ Y that satisfies the condition

min
y∈Y

∑

i∈N
αifi(x

∗, y) =
∑

i∈N

αifi(x
∗, yS) (3.2.6)

for some αi = const � 0 and
∑

i∈N
αi > 0 is Slater minimal in the problem �(x∗)

[152, p. 68–69].
(c) The pure strategy yP ∈ Y that satisfies

min
y∈Y

∑

i∈N
αifi(x

∗, y) =
∑

i∈N
αifi(x

∗, yP) (3.2.7)

for some αi = const > 0 (i ∈N) is Pareto minimal in the problem �(x∗) [152,
p. 71].

(d) In addition, it follows from (3.2.5) that the set YS ⊇ YP of Slater-minimal
uncertainties is the set of the Pareto-minimal pure uncertainties yP in the
problem �(x∗).

Nash Equilibrium
On ne peut pas savoir
tout, il faut se conten-
ter de comprendre.14

14French “To know everything is impossible, so one should be content with his/her own
comprehension.” An English translation of a quote from Notes on the Personality of Belinskii by
Ivan A. Goncharov, (1812–1891), a Russian novelist.
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Now, consider a noncooperative N-player game of the form

〈 N, {Xi}i∈N, {fi [x]}i∈N 〉, (3.2.8)

where N = {1, . . . , N} denotes the set of players and Xi ⊆ R
ni is the set of pure

strategies xi of player i (i∈N).
In game (3.2.8), the players do not build any coalitions and each player i chooses

his strategy xi ∈ Xi simultaneously with the other players, which yields a strategy
profile x = (x1, . . . , xN) ∈ X = ∏

i∈N
Xi . A scalar payoff function fi[x] of player

i is a priori defined on the set X ⊆ R
n (n = ∑

i∈N ni); its value in a specific
strategy profile gives the payoff of player i. At a conceptual level, each player i in
game (3.2.8) seeks for choosing a strategy xi ∈ Xi that would maximize his payoff
in a specific strategy profile x.

In 1949, J. Nash formalized a solution of game (3.2.8), suggesting a strategy
profile known today as Nash equilibrium; see [257].

Definition 3.2.2 A strategy profile xe = (xe
1, . . . , x

e
N) ∈ X is called a Nash

equilibrium in game (3.2.8) if

max
xi∈Xi

fi [xe||xi] = fi [xe] (i ∈ N);

as before, [xe||xi] = [xe
1, . . . , x

e
i−1, xi, x

e
i+1, . . . , x

e
N ].

Remark 3.2.2 In accordance with Definition 3.2.2, for compact sets Xi and contin-
uous payoff functions fi [x] on X, the set Xe of all Nash equilibria in game (3.2.8)
is a compact (possibly empty) subset of X [51, p. 174].

The next result was proved in [22, p. 93] using Brouwer’s fixed-point theorem.

Theorem 3.2.1 Consider game (3.2.8) under the assumptions that

(1◦) the sets Xi are convex and compact;
(2◦) each payoff function fi [x] is continuous on X and concave in the variable xi

for any fixed values of the other variables (i ∈ N).

Then there exists a Nash equilibrium in this game.

Now, consider a game (3.2.8) in which the sets Xi are compact and the payoff
functions fi [x] are continuous on X. Associate with this game (3.2.8) its mixed
extension

〈 N, {νi}i∈N, {fi[ν]}i∈N 〉, (3.2.9)

where N is the same as in (3.2.8); {νi} denotes the set of mixed strategies of player
i, i.e., each νi(·) represents a probability measure—a nonnegative scalar countably-
additive function defined on the Borel σ -algebra of all subsets of the compact set Xi

that is normalized by unity; ν(dx) = ν1(dx1) . . . νN (dxN) is the product measure;
{ν} designates the set of all mixed strategy profiles ν(·); finally, the payoff function
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of player i in game (3.2.9),

fi [ν] =
∫

X

fi [x]ν(dx) =
∫

X1

· · ·
∫

XN

fi[x]νN(dxN) · · · ν1(dx1),

is defined as the expectation fi [x] for the payoff function of game (3.2.8) (using
Fubini’s theorem on switching the order of integration).

Definition 3.2.3 A mixed strategy profile νe(·)∈{ν} is called a Nash equilibrium in
game (3.2.9) if

max
νi (·)∈{νi}

fi [νe||νi] = fi [νe] (i ∈ N),

where νe||νi = νe
1(dx1) . . . νe

i−1(dxi−1)νi(dxi)ν
e
i+1(dxi+1) · · · νe

N(dxN) and
νe(dx) = νe

1(dx1) · · · νe
N(dxN).

The following result was obtained in [22, p. 117–119] using Gliksberg’s fixed-
point theorem.

Theorem 3.2.2 Consider game (3.2.8) under the assumptions that the sets Xi are
convex and compact and the payoff functions fi [x] are continuous on X = ∏

i∈N
Xi .

Then in this game there exists a mixed strategy Nash equilibrium.

We conclude this section with an English translation of a remarkable quote
from the book [10, p. 170]: “Intuition is not adapted to comprehend gaming
opposition. . . Mixed strategies and Nash equilibrium are two revolutionary concepts
that are described in each textbook, yet remain in the shadow of world view.”

The next section introduces one possible concept of guaranteed equilibrium in
a noncooperative game under uncertainty and establishes its existence in mixed
strategies under standard assumptions of mathematical game theory.

Berge Equilibrium
As the call, so the echo.

—Russian proverb [127]

In 1994, V. Zhukovskiy and his postgraduate K. Vaisman formalized the Berge
equilibrium as a solution concept for game (3.2.8); see the publications [11, 12, 302].

Definition 3.2.4 A strategy profile xB = (xB
1 , . . . , xB

N) ∈ X is called a Berge
equilibrium in game (3.2.8) if

max
x∈X

fi

[
x||xB

i

]
= fi

[
xB
]

(i ∈ N),

where [x||xB
i ] = [x1, . . . , xi−1, x

B
i , xi+1, . . . , xN ].
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Theorem 3.2.1 and Property 2.6.1 directly imply

Proposition 3.2.3 Consider game (3.2.8) with N = {1, 2} under the assumptions
that, for each i = 1, 2,

(1◦) the sets Xi are convex and compact;
(2◦) the payoff functions fi [x] (i = 1, 2) are continuous on X, f1[x] is concave in

x2 and f2[x] concave in x1 for each fixed strategy of the other player.

Then there exists a Berge equilibrium in this game.

Denote by XB the set of all Berge equilibria in game (3.2.8). By Property 2.3.1,
XB is a (possibly, empty) compact set if the payoff functions fi [x] are continuous
and the sets Xi (i ∈ N) are compact.

Definition 3.2.5 A strategy profile x∗ ∈ X is called a Berge–Pareto equilibrium in
game (3.2.8) if

first, x∗ is a Berge equilibrium in (3.2.8), i.e.,

max
xi∈Xi

fi [x∗||xi] = fi [x∗] (i ∈ N),

and second, x∗ is a Pareto-maximal alternative in the N-criteria choice problem

〈 XB, {fi[x]}i∈N 〉,

i.e., for all x ∈ XB, the system of inequalities

fi [x] � fi [x∗] (i ∈ N),

with at least one strict inequality, is inconsistent.

Now, let us pass to the mixed extension (2.9.1) of game (3.2.8) (see Sect. 2.9.1).

Definition 3.2.6 A mixed strategy profile ν∗(·) ∈ {ν} is called a Berge–Pareto
equilibrium in mixed strategies in game (3.2.9) (equivalently, a Berge–Pareto
equilibrium in the mixed extension of game (3.2.8)) if

first, ν∗(·) is a Berge equilibrium in game (2.9.1), i.e., conditions (2.9.2) are
satisfied,

and second, ν∗(·) is a Pareto-maximal alternative in the N-criteria choice problem

〈{νB}, {fi[ν]}i∈N〉,

i.e., for all ν(·) ∈ {νB} the system of inequalities

fi [ν] � fi [ν∗] (i ∈ N),

with at least one strict inequality, is inconsistent.
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The following result is a stronger analog of Theorem 3.2.2, which was proved in
Sect. 2.9.3.

Theorem 3.2.3 If in game (3.2.8) the sets Xi ∈ comp R
ni and the functions

fi [·] ∈ C(X) (i ∈ N), then this game possesses a Berge–Pareto equilibrium in
mixed strategies.

3.3 Balanced Equilibrium as an Analog of Saddle Point

Faber est suae quisque fortunae.15

3.3.1 Analogs of Saddle Point: The Idea and Formalization

Nothing obstructs seeing as much as a viewpoint.
—Don-Aminado16

The concept of a Slater-guaranteed balanced Berge equilibrium is formalized
for the noncooperative N-player game under uncertainty.

As a matter of fact, the first type of equilibrium discussed below was suggested
by V. Zhukovskiy in 1994 in the book [93, p. 233] for noncooperative games under
uncertainty and later used by him for different types of equilibria [56] and also
for cooperative games [52]. The whole idea is very simple: replace minimization
in (3.2.2) by a vector minimum (in the sense of Slater, Pareto, Borwein, Geoffrion,
or the A-minimum [295]) and replace maximization by an equilibrium design (in
the sense of Nash, Berge, threats and counter-threats, or active equilibrium [54]).
This approach was employed by K. Vaisman in a series of publications [280, 281].
One of his concepts will be presented below in Definition 3.3.1.

Consider a noncooperative N-player game with pure strategies and pure uncer-
tainties, defined by

〈 N, {Xi}i∈N, Y, {fi(x, y)}i∈N 〉. (3.3.1)

In (3.3.1), N = {1, . . . , N} denotes the set of players; Xi ⊆ R
ni is the set of pure

strategies xi of player i; Y ⊆ R
m gives the set of pure uncertainties y.

15Latin “Each man is the maker of his own fortune.” This phrase appeared in Letters to Ceasar I
by Gaius Sallustius Crispus, (86–35 B.C.), a Roman historian and politician. Considered as one of
the great Latin literary stylists.
16Aminad P. Shpolyanskii, well-known in the Western world as Don–Aminado, (1888–1957), was
a Russian émigré poet and satirist.
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In this game, no coalitions are allowed and each player i chooses his strategy
xi simultaneously with the other players, which yields a strategy profile x =
(x1, . . . , xN) ∈ X = ∏i∈N Xi . Regardless of their choice, some pure uncertainty
y ∈ Y arises in game (3.3.1). For each player i (i ∈ N), a payoff function fi(x, y)

is defined on all such pairs (x, y) ∈ X×Y.
At a conceptual level, each player i in game (3.3.1) chooses a pure strategy xi ∈

Xi in order to maximize his payoff fi(x, y) under any unpredictable realization of
the pure uncertainty y ∈ Y.

Definition 3.3.1 A pair (x̄B, f̄ S) ∈ X×R
N is called a Slater-guaranteed balanced

Berge equilibrium in game (3.3.1) if there exists an uncertain factor yS ∈ Y such
that

(1◦) the pure strategy profile xB is a Berge equilibrium in the game

〈 N, {Xi}i∈N, {fi(x, yS)}i∈N 〉 (3.3.2)

(which is obtained from (3.3.1) by setting y = yS), i.e., by Definition 3.2.4,

max
x∈X

fi

(
x||xB

i , yS

)
= fi

(
xB, yS

)
(i ∈ N); (3.3.3)

(2◦) the uncertain factor yS is Slater minimal in the N-criteria choice problem

〈 Y, {fi

(
xB, y

)
}i∈N 〉 (3.3.4)

(which is obtained from (3.3.1) by setting x = xB), i.e., by Definition 3.2.1,

f
(
xB, y

)
�< f

(
xB, yS

)
∀y ∈ Y; (3.3.5)

(3◦) the pair (x̄B, ȳS) is Slater-maximal in the N-criteria choice problem

〈 {
xB, yS

}
, {fi(x, y)}i∈N

〉
(3.3.6)

(in which each element (xB, yS) of the set {xB, yS} satisfies (3.3.3)
and (3.3.5)), i.e., the vector

f̄ S = f
(
x̄B, ȳS

)
�< f (x, y) ∀(x, y) ∈

{
xB, yS

}
. (3.3.7)

In this case, xB is called a Slater-guaranteeing profile in game (3.3.1) and f̄ S is
called a guaranteed vector payoff.
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3.3.2 Pro et contra of Balanced Equilibrium17

Many intricate phenomena
are naturally clarified within

the framework of game theory.
—Vorobiev [24, p. 97].

The advantages of Slater-guaranteed balanced Berge equilibria are discussed.

Let us outline the benefits of this solution concept for the NGUs.
First, using their strategies from a profile x̄B, the players are assured to obtain a

guaranteed vector payoff f̄ S. In accordance with (3.3.5), for xB= x̄B the elements
fi(x̄

B, y) (i ∈ N) cannot be all simultaneously smaller than the corresponding
elements fi(x̄

B, ȳS) (i ∈ N), and by (3.3.7) this is the highest (Slater-maximal)
guarantee among all the possible guarantees f (xB, yS) achieved on any pairs
(xB, yS) that satisfy conditions 1◦ and 2◦ of Definition 3.3.1.

Second, the equilibrium (x̄B, f̄ S) aims at “the maximum opposition to uncer-
tainty,” i.e., it is based on the principle of guaranteed result (which explains its
“guaranteed” character).

Third, this solution concept is wide enough, since it contains main solution
concepts from game theory (saddle point, Berge equilibrium) and theory of multi-
criteria choice (Slater optimum) as special cases. Note that we may also adopt other
optimality principles (Pareto, Geoffrion, Borwein, cone optimality). Connections
between such approaches were considered in [295].

Fourth, the notion of Slater-guaranteed equilibrium is well fitted for practical
design and theoretical analysis (in particular, existence proofs). Indeed, introduce a
dummy player with the set of strategies y ∈ XN+1 = Y and the payoff function

ϕ3(x, y) = −
∑

i∈N
αifi(x, y),

with some

αi = const � 0 (i ∈ N) ∧
∑

i∈N
αi > 0.

Add two other dummy players with the payoff functions

ϕ1(x, z, y) = max{fi(x‖zi, y)− fi(z, y) (i ∈ N),
∑

j∈N
fj (x, y)−

∑

j∈N
fj (z, y)}

17Latin “For and against.”
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and

ϕ2(x, z, y) = −ϕ1(x, z, y) = ϕ(x, z, y).

Let the strategies of player I be the profiles x ∈ X of game (3.3.1) while the
strategies of player II be the profiles z ∈ Z = X (of the same game (3.3.1)). As his
strategy, player III chooses y ∈ Y. Now consider the auxiliary three-player game

〈 {I, II, III}, {X, Z, Y}, {ϕi(x, z, y)}i=1,2,3 〉. (3.3.8)

A Nash equilibrium (xe, ze, ye) in game (3.3.8) is given by the three conditions

max
x∈X

ϕ1(x, ze, ye) = ϕ1(x
e, ze, ye),

max
z∈X

ϕ2(x
e, z, ye) = ϕ2(x

e, ze, ye),

max
y∈Y

ϕ3(x
e, ze, y) = ϕ3(x

e, ze, ye).

(3.3.9)

Using the form of the functions ϕi(x, z, y) (i = 1, 2, 3), from the third equality one
can see that ye = yS and the pair (xe, ze) yields a saddle point of the zero-sum game

〈 X, Z = X, ϕ(x, z, yS) = ϕ1(x, z, yS) 〉.

In combination with Theorem 2.8.1, this result implies the following. If there exists
a Nash equilibrium in game (3.3.8), then (ze, f S = f (xe, ze, ye)) is a Slater-
guaranteed balanced Berge equilibrium (condition 3◦ of Definition 3.3.1 becomes
non-binding).

3.3.3 Games with Separated Payoff Functions

The simplest example is more convincing
than the most eloquent sermons.

—Seneca

The existence of a Slater-guaranteed balanced Berge equilibrium is established
for the noncooperative two-player game under uncertainty with separated payoff
functions that have a special concavity property.

Consider a particular case of game (3.3.1), described by

〈 N, {Xi}i∈N, Y, {fi (x, y) = ϕi(x)+ ψi(y)}i∈N 〉, (3.3.10)
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which differs from (3.3.1) only in the payoff functions fi(x, y) = ϕi(x)+ψi(y) (i ∈
N). In other words, the payoff functions are split into two components associated
with the strategy profiles x ∈ X and uncertain factors y ∈ Y, respectively.

This separation of the functions fi(x, y) allows us to propose a constructive
design method for a Slater-guaranteed balanced Berge equilibrium (see Defini-
tion 3.3.1), which proceeds from an independent analysis of the noncooperative
N-player game

�x = 〈 N, {Xi}i∈N, {ϕi(x)}i∈N 〉 (3.3.11)

and the N-criteria choice problem

�y = 〈 Y, {ψi(y)}i∈N 〉. (3.3.12)

The ensuing exposition will use two N-dimensional vectors, ϕ = (ϕ1, . . . , ϕN) and
ψ = (ψ1, . . . , ψN ), as well as the following auxiliary and obvious statement.

Lemma 3.3.1 For any constant N-dimensional vector a = (a1, . . . , aN),
(a) the system of inequalities

ψ
(1)
i < ψ

(2)
i (i ∈ N)

is inconsistent if and only if this is the case for the system of inequalities

ψ
(1)
i + ai < ψ

(2)
i + ai (i ∈ N);

(b) the following two systems of inequalities are equivalent:

[
ϕ

(1)
i � ϕ

(2)
i (i ∈ N)

]
⇔
[
ϕ

(1)
i + ai � ϕ

(2)
i + ai (i ∈ N)

]
.

With Lemma 3.3.1, a Slater-guaranteed balanced Berge equilibrium in
game (3.3.10) can be obtained by the following algorithm.

Step 1. For the N-criteria choice problem (3.3.12), construct the set YS ⊆ Y of
the Slater-minimal alternatives yS and also the set of outcomes ψ(YS) =
⋃

y∈YS
ψ(y), i.e., the system of inequalities

ψi(y) < ψi(yS) (i ∈ N)

must be inconsistent for any y ∈ Y and each yS ∈ YS (then by
Lemma 3.3.1a the system of inequalities

ϕi(x)+ ψi(y) < ϕi(x)+ ψi(yS) ∀x ∈ X, y ∈ Y (i ∈ N)

is also inconsistent, which gives condition 2◦ of Definition 3.3.1).



3.3 Balanced Equilibrium as an Analog of Saddle Point 81

Step 2. For game (3.3.11), find the set XB ⊆ X of all Berge equilibria xB ∈ X
using the inequalities

ϕi(x||xB
i ) � ϕi(x

B) ∀x ∈ X (i ∈ N),

and then construct the set ϕ(XB) = ⋃x∈XB ϕ(x) (then by Lemma 3.3.1b
the system of inequalities

ϕi(x||xB
i )+ ψi(yS) � ϕi(x

B)+ ψi(yS) ∀yS ∈ Y, x ∈ X (i ∈ N),

holds, which matches condition 1◦ of Definition 3.3.1).
Step 3. Construct the sum of sets

ϕ(XB)+ ψ(YS) =
(
ϕ(XB)+ ψ(yS) | yS ∈ YS

)

=
(
ϕ(xB)+ ψ(YS) | xB ∈ XB

)

=
(
ϕ(xB)+ ψ(yS) | xB ∈ XB, yS ∈ YS

)
.

Step 4. Find the Slater-maximal alternative (x̄B, ȳS) in the N-criteria choice
problem

〈 XB ×YS, {ϕi(x)+ ψi(y)}i∈N 〉,

i.e., calculate (x̄B, ȳS) as follows: for all xB ∈ XB and all yS ∈ YS, the
system of inequalities

ϕi(x̄
B)+ ψi(ȳS) < ϕi(x

B)+ ψi(yS) (i ∈ N)

is inconsistent, which satisfies condition 3◦ of Definition 3.3.1.

The resulting strategy profile (x̄B, ϕ(x̄B) + ψ(ȳS)) is a Slater-guaranteed bal-
anced Berge equilibrium in game (3.3.10).

The suggested algorithm leads to the following existence theorem of a Slater-
guaranteed balanced Berge equilibrium in game (3.3.10).

Theorem 3.3.1 Consider game (3.3.10) with N = {1, 2} under the assumptions
that

(1) the sets Xi and Y are compact and Xi are also convex;
(2) the scalar functions ϕi(x) and ψi(y) are continuous on X = ∏i∈{1,2} Xi and

Y, respectively;
(3) the functions ϕi(x) are concave in xj (i, j = 1, 2; j �= i) for any fixed values

of the other variables (i ∈ {1, 2}).
Then there exists a Slater-guaranteed balanced Berge equilibrium.
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Proof For proving this result, we follow the four steps of the above-mentioned
algorithm.

Step 1. In problem (3.3.12), the set YS is a nonempty and compact (see Theo-
rem 3.3.1) and hence (by the continuity of ψi(y) on Y) ψ(YS) is also a
compact subset of RN (N = 2).

Step 2. In game (3.3.11), the set XB of all Berge equilibria is a nonempty
and compact (see Theorem 3.2.1 and Property 2.3.1). Then the set
ϕ(XB) = ⋃x∈XB ϕ(x) is also compact because the components of the
N-dimensional vector function ϕ(x) are continuous on X.

Step 3. From Steps 1 and 2 of this proof it follows that the product XB × YS and
the sum ϕ(XB)+ ψ(YS) are also compact sets.

Step 4. Consider the bicriteria choice problem

〈 XB × YS, {ϕi(x)+ ψi(y)}i∈N 〉. (3.3.13)

The set XB × YS is compact and the components of the N-dimensional
vector function ϕ(x) + ψ(y) are continuous on XB × YS. Therefore,
there exists a Slater-maximal alternative (x̄B, ȳS) ∈ XB × YS in prob-
lem (3.3.13), i.e., for any (xB, yS) ∈ XB ×YS the system of inequalities

ϕi(x
B)+ ψi(yS) > ϕi(x̄

B)+ ψi(ȳS) (i ∈ N)

is inconsistent.

The resulting pair

(
x̄B, f̄ S = f

(
x̄B, ȳS

)
= ϕi

(
x̄B
)
+ ψi (ȳS)

)

is a Slater-guaranteed balanced Berge equilibrium in game (3.3.10). �
Example 3.3.1 Consider a noncooperative two-player game under uncertainty with
separated payoff functions given by

〈 {1, 2}, {Xi = [−1, 1]}i=1,2, Y, {fi(x, y) = −x2
j + 2x1x2 + yi}i,j=1,2;i �=j 〉,

(3.3.14)

in which x = (x1, x2), y = (y1, y2), and Y = {y = (y1, y2) | y2
1 + y2

2 � 1}. We
will construct a Slater-guaranteed balanced Berge equilibrium in this game using
the suggested algorithm. In accordance with the latter, extract from (3.3.14) the
noncooperative two-player game

�x = 〈{1, 2}, {Xi = [−1, 1]}i=1,2, {ϕi(x) = −x2
j +2x1x2}i,j=1,2;i �=j 〉 (3.3.15)
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and also the bicriteria choice problem

�y = 〈 Y, {ψi(y) = yi}i=1,2 〉, (3.3.16)

where Y = {y = (y1, y2) | y2
1 + y2

2 � 1}.

Step 1. The set Y represents a disc with center (0, 0) and radius R = 1 in
the space R

2, and it coincides with the shaded set ψ(Y) in Fig. 3.1.
Then the Slater minima in problem (3.3.16) are the points lying on the
circumference in the third quadrant; see the solid arc in Fig. 3.2. This set
can be described as

ψ(YS) =
{
yS =

(
y

(S)
1 , y

(S)
2

)
| y(S)

1

= −R cos β, y
(S)
2 = −R sin β ∀β ∈ [0, π/2]

}
.

Step 2. Game (3.3.15) was studied in [68, pp. 177–178]. The set of all Berge
equilibria (Fig. 3.3) is

XB = {(α, α) | ∀α = const ∈ [−1, 1]} ,

and the corresponding payoffs (Fig. 3.4) are

ϕ(XB) =
{
(α2, α2) | ∀α = const ∈ [−1, 1]

}
= OC.

Fig. 3.1 Set Y

y1( 1)

y2( 2)

0

(Y)

Fig. 3.2 Slater minima

1

0

2

R

YS (YS)
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Fig. 3.3 Berge equilibria
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L
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Q
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Thus, every point (α, α) of the bisecting segment AB is a Berge equi-
librium in game (3.3.15). The corresponding payoffs ϕ(XB) form the
segment OC, as illustrated in Fig. 3.4.

Step 3. Then

ϕ(XB)+ψ(YS) = {OC+ψ(YS)} = OC+{yS | ∀β ∈ [0, π/2]} = KPQL

(see the shaded domain in Fig. 3.5).
Step 4. The Slater minima of the set KPQL make up a quarter of the circumfer-

ence (the bold arc PQ in Fig. 3.5), i.e.,

PQ = {1− cos β, 1− sin β | β ∈ [0, π/2]} .
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Each pair ((1, 1), (1 − cos β, 1 − sin β)) with any β ∈ [0, π/2] is a
Slater-guaranteed balanced Berge equilibrium in game (3.3.14).

Thus, the suggested algorithm dictates both players to choose xB
1 = xB

2 = 1 (the
Slater-maximal Berge equilibrium B = (1, 1) in game (3.3.14), see Fig. 3.4). In this
case, the players obtain the guaranteed vector payoff (1 − cos β, 1 − sin β) = f̄ B ,
i.e., for any y ∈ Y the payoffs fi((1, 1), y) cannot be simultaneously smaller than
the corresponding payoffs f̄ B

i (i = 1, 2). And this is the highest guarantee (in the
sense of Slater) among all the guarantees f (xB, yS) = (xB

1 − cos β, xB
2 − sin β) for

all β ∈ [0, π/2] and any other Berge equilibria xB in game (3.3.15).

3.3.4 Existence in Mixed Strategies and One Remark

Not the existence theorem is the valuable thing,
but the construction carried out in the proof.

Mathematics is, as Brouwer sometimes says,
more action than theory.

—Weyl18

The existence of a Slater-guaranteed balanced Berge equilibrium in mixed
strategies is established for the noncooperative N-player game under uncertainty.

Remark 3.3.1 The auxiliary noncooperative game without uncertainty (3.3.9),
(3.3.8) allows us to establish the existence of a Slater-guaranteed balanced Berge
equilibrium in mixed strategies in game (3.3.1) under uncertainty. Let us associate
with game (3.3.1) its mixed extension

�̃ = 〈 N, {νi}i∈N, {μ}, {fi(ν, μ)}i∈N 〉, (3.3.17)

where, like in (3.3.1), N = {1, . . . , N} denotes the set of players. Assuming that the
sets Xi (i ∈ N) and Y are compact and the payoff functions fi(x, y) are continuous
on X × Y, we will construct the sets {νi} of mixed strategies νi(·) of player i.
Specifically, νi(·) is a probability measure on the Borel σ -algebra of all subsets
of the compact set Xi .

The mixed uncertainties μ(·) represent probability measures on the compact set
Y. Let {μ} denote the set of such uncertainties. The mixed strategy profiles ν(·) are
the product measures ν(dx) = ν1(dx1) · · · νN(dxN). Denote by {ν} the set of such
mixed strategy profiles. In a similar fashion, define the product measures η(dxdy) =
ν(dx)μ(dy); then the payoff function of player i in game (3.3.17) is the expectation

18Hermann Weyl, (1885–1955), was a German American mathematician with widely varied
contributions in pure mathematics and theoretical physics.
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fi(ν, μ) =
∫

X

∫

Y

fi(x, y)μ(dy)ν(dx) =
∫

Y

∫

X

fi(x, y)ν(dx)μ(dy).

Recall that f = (f1, . . . , fN ). The following concept is an analog of Defini-
tion 3.3.1 for game (3.3.17).

Definition 3.3.2 A pair (̃νB(·), f̃ S) ∈ {ν} × R
N is called a Slater-guaranteed

balanced Berge equilibrium (SGBBE) in the mixed extension (3.3.17) (or an SGBBE
in mixed strategies in game (3.3.1) under uncertainty) if there exists a mixed
uncertainty μS(·) ∈ {μ} such that

(1◦) the mixed strategy profile νB(·) ∈ {ν} of game (3.3.17) is a Berge equilibrium
in game

〈 N, {νi}i∈N, {fi(ν, μS)}i∈N 〉

(which is obtained from (3.3.17) by setting μ(·) = μS(·)), i.e.,

max
ν(·)∈{ν}

fi(ν||νB
i , μS) = fi(ν

B, μS) (i ∈ N); (3.3.18)

(2◦) the mixed uncertainty μS(·) ∈ {μ} is a Slater-minimal alternative in the N-
criteria choice problem

〈 {μ}, {fi(ν
B, μ)}i∈N 〉

(which is obtained from (3.3.17) by setting ν(·) = νB(·)), i.e.,

f (νB, μ) �< f (νB, μS) ∀μ(·) ∈ {μ}; (3.3.19)

denote by {νB, μS} the set of all product measures that satisfy (3.3.18)
and (3.3.19) simultaneously;

(3◦) the pair (̃νB(·), μ̃S(·)) is a Slater-maximal alternative in the N-criteria choice
problem

〈 {
νB, μS

}
, {fi

(
νB, μS

)
}i∈N

〉
,

i.e.,

f̃ S = f (̃νB, μ̃S) �< f (ν,μ) ∀(ν, μ) ∈
{
νB, μS

}
.



3.4 Strongly-Guaranteed Berge Equilibrium 87

Theorem 3.3.2 Consider game (3.3.1) under the assumptions that the sets Xi

and Y are compact and the payoff functions fi(x, y) are continuous on X × Y
(i ∈ N). Then there exists a Slater-guaranteed balanced Berge equilibrium in mixed
strategies in this game.

The Advantages of Balanced Berge Equilibrium: Further Clarification
The Slater-guaranteed balanced Berge equilibrium (x̄B, f̄ S) introduced by
Definition 3.3.1 has the following obvious pleasant features.

First, using their strategies xB
i from a profile xB, the players surely obtain a

guaranteed vector payoff f B
i , which is often larger (not smaller) than the vector

payoff yielded by the strongly-guaranteed equilibrium; see the next section. Our
aim is to increase guarantees as much as possible!

Second, this equilibrium is based on the hypothesis of “the worst-case uncer-
tainty” for the players, i.e., on the generally accepted principle of guaranteed result
under “strong uncertainty.”

Third, for calculating a Slater-guaranteed balanced Berge equilibrium, it is
necessary to construct a Berge equilibrium in an auxiliary game obtained from the
original game. This feature has allowed us to prove existence (see Theorem 3.3.2)
under the standard assumptions of game theory.

Fourth, condition 3◦ of Definition 3.3.1 eliminates the internal instability of the
set of all Berge equilibria, since by Slater maximality it is impossible to find two
balanced equilibria (x̄(1), f̄ (1)) and (x̄(2), f̄ (2)) such that f̄

(1)
i > f̄

(2)
i (i ∈ N),

where f̄
(j)
i = fi(x̄

(j), ȳ(j)) (j = 1, 2).
Fifth, in the special case (3.3.10) of noncooperative games, such guaranteed

equilibria are interchangeable, in the sense that a pair (x̄, ȳ) satisfies conditions 1◦
and 2◦ of Definition 3.3.1 if and only if x̄ ∈ XB and ȳ ∈ YS (see Steps 1 and 2 in
Sect. 3.3.3).

In conclusion, yet note that the concept of balanced equilibrium suffers from
several drawbacks: no garden without its weeds. Their detailed description as well
as some “recipes” will be given in Sects. 3.4 and 3.5.

3.4 Strongly-Guaranteed Berge Equilibrium

In the final analysis, people are equal but not always,
not everywhere and not in all respects.

—Grzegorczyk19

19Wladislaw Grzegorczyk, a Polish aphorist.
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3.4.1 Introduction

The last thing we decide in writing a book
is what to put first.

—Pascal20

In the previous section, we have considered a solution concept for noncooperative
games under uncertainty (NGUs) known as balanced Berge equilibrium, which
was suggested by Zhukovskiy in [93, p. 233] back in 1994, using an appropriate
modification of the concept of saddle point. The saddle point-based approach was
also used for different types of equilibria in his later publications [51] and [52], the
latter devoted to cooperative games. Section 3.4 presents a novel formalization for
the guaranteed solutions of NGUs that relies on maximin.

3.4.2 Maximin and Its Interpretation Using Two-Level Game

Some man married a very skinny woman.
Being asked why, he said,

“I have chosen the least evil.”
—Bar Hebraeus21

A hierarchical interpretation of the maximin as a two-level game is suggested.

As mentioned earlier, a single-criterion choice problem under uncertainty
(SCCPU) is described by a triplet

〈 X1, Y, f1(x1, y) 〉, (3.4.1)

where X1⊆R
n1 denotes the set of admissible alternatives of a decision maker (DM);

Y ⊆ R
m is the set of uncertain factors y; f1(x1, y) is a DM’s objective function

defined on the set X1 × Y. He seeks to maximize this function by choosing an
appropriate alternative x1 ∈ X1, under any realization of the uncertain factor y ∈ Y.

In operations research, a solution of problem (3.4.1) is a pair (x
g
1 , f

g
1 ) ∈ X1 ×R

such that

f
g
1 = max

x1∈X1
min
y∈Y

f1(x1, y) = min
y∈Y

f1(x
g
1 , y). (3.4.2)

20Blaise Pascal, (1623–1662), was a French mathematician, physicist, religious philosopher, and
master of prose.
21Bar Hebraeus, Arabic Ibn Al-’Ibri (“Son of the Hebrew”), or Abu al-Faraj, Latin name Gregorius,
(1226–1286), was a medieval Syrian scholar noted for his encyclopaedic learning in science and
philosophy. An English translation of a quote from [119, p. 21].
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It was introduced by Wald [282] in 1939. More specifically, using the alternative
x

g
1 the DM achieves the highest guarantee f

g
1 � f1(x

g
1 , y) for all y ∈ Y (also see

Remark 3.4.1).
Let us again consider problem (3.4.1), this time as the following hierarchical

two-player game. Player 1 (the DM) chooses x1 ∈ X1, while player 2 chooses
y∈Y. Assume this game has a fixed sequence of moves [134, p. 79], i.e., player 1 is
given priority in actions over player 2. Such a setup with the first move of player 1
describes well, e.g., an interaction of conflicting parties in a two-level hierarchical
system with a single player at each level. We will also accept the hypothesis that,
whenever the outcome depends on the choice of player 2 only, he always minimizes
the function f1(x1, y). Player 1 is informed about this behavior.

Then player 1 takes advantage of the first move, reporting his strategy x1 ∈ X1
to player 2. Making the second move in this game, player 2 responds with a counter
strategy y(x1) : X1 → Y that minimizes the function f1(x1, y) in y for each x1 ∈
X1. If for each x1 this minimum is achieved at a unique point y(x1), then the best
(guaranteed) result of player 1 gives

f
g
1 = max

x1∈X1
min
y∈Y

f1(x1, y) = max
x1∈X1

f1(x1, y(x1))

= f1
(
x

g
1 , y

(
x

g
1

)) = min
y∈Y

f1
(
x

g
1 , y
)
.

The sequence of moves of the DM and of player 2 is illustrated in Fig. 3.6.

Fig. 3.6 Hierarchy in maximin setup
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As a result, the DM prefers the maximin strategy x
g
1 , which yields the best

guaranteed payoff

f
g
1 � f (x

g
1 , y) ∀y ∈ Y.

Note that, for all x1 ∈ X1, this payoff exceeds all other guaranteed payoffs

f1(x1, y(x1)) = min
y∈Y

f1(x1, y) � f1(x1, y) ∀ x1 ∈ X1.

Remark 3.4.1 The design operation y(x1) : X1 → Y corresponds to the calculation
of the inner minimum

f1(x1, y(x1)) = min
y∈Y

f1(x1, y) ∀x1 ∈ X1

in the maximin formula (3.4.2). On the other hand, the definition of x
g
1 using

f1(x
g, y

(
x

g
1

) = max
x1∈X1

f1(x1, y(x1))

matches the outer maximum in (3.4.2). Actually, the application of these operations
(inner minimum and outer maximum) to the NGUs underlies the concepts of
guaranteed equilibria formalized below.

3.4.3 Drawback of Balanced Equilibrium as Solution
of Noncooperative Game Under Uncertainty

Nobody can be perfect unless he admits his faults,
but if he has faults how can he be perfect?

—Peter22

A major drawback of the balanced equilibrium is identified and two alternative
types of guaranteed equilibria for the NGU are suggested.

In Sect. 3.3, we have considered the NGU

〈 N, {Xi}i∈N, Y, {fi(x, y)}i∈N 〉, (3.4.3)

where N = {1, . . . , N} is the set of players; Xi ⊆ R
ni is the set of pure strategies

xi of player i; X = ∏

i∈N
Xi is the set of all pure strategy profiles x = (x1, . . . , xN);

22Laurence Johnston Peter, (1919–1990), was a Canadian educator and hierarchiologist, author of
the Peter principle.
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Y ⊆ R
m is the set of pure uncertainties y; finally, fi(x, y) is the payoff function of

player i, defined on X × Y. Using an appropriate modification of the saddle point,
balanced equilibrium has been formalized by Definition 3.3.1 as a first concept of
guaranteed solution of game (3.4.3).

At the end of Sect. 3.3.3, we have also pointed to a negative feature of
this concept, which stems from the following circumstance. In accordance with
condition 1◦ of Definition 3.3.1, a strategy profile x̄B ∈ X is a Berge equilibrium if

max
x∈X

fi

(
x̄||xB

i , yS

)
= fi

(
x̄B, yS

)
, (3.4.4)

where the uncertain factor yS has a frozen value. However, even the problem
statement postulates that the uncertain factor y may take arbitrary values from
Y, and orientation towards a specific value yS is quite delusive (note that equal-
ities (3.4.4) do not necessarily hold for other y �= yS). If some value y ∈ Y,
y �= yS, is realized in game (3.4.3), then generally the strategy profile xB fails to be
a Berge equilibrium; moreover, xB yields the vector guarantee f̄ S = f (x̄B, ȳS)

only if all players adhere to their strategies from the profile xB (without any
deviations from xB allowed). Nevertheless, a series of considerable advantages
in favor of Slater-guaranteed balanced Berge equilibrium have been outlined in
Sect. 3.3; in some cases (e.g., for payoff functions with separate components in x

and y), this equilibrium becomes rather useful in applications. The negative feature
can be eliminated using a strongly-guaranteed equilibrium or Slater-guaranteed
equilibrium as the solution concepts of the NGUs; see Sects. 3.4.4 and 3.4.5 for
a detailed description.

3.4.4 Formalization

. . . nothing whatsoever takes place in the universe in which
some relation of maximum and minimum does not appear.

—L. Euler23

A guaranteed solution of a noncooperative game under uncertainty is pro-
posed, which (in our view) is the most obvious concept among the ones analyzed
in Sect. 3.3 and below.

Consider the noncooperative game under uncertainty with a possible information
discrimination of players:

� = 〈N, {Xi}i∈N, YX, {fi(x, y)}i∈N〉. (3.4.5)

23Leonhard Euler, (1707–1783), was a Swiss mathematician and physicist. Recognized as one of
the greatest mathematicians of all time. A quote from Leonhard Euler’s Elastic Curves, by W.A.
Oldfather, C.A. Ellis and D.M. Brown, Isis, vol. 20, no. 1 (Nov., 1933), pp. 72–160.
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In this game, N = {1, 2, . . . , N} denotes the set of players; Xi ⊆ R
ni is the set

of pure strategies xi of player i, and a vector x = (x1, . . . , xN) ∈ X = ∏
Xi

forms a pure strategy profile in the game �; Y ⊆ R
m is the set of uncertain

factors y; YX is the set of functions y(x) defined on X and taking values from
Y; these m-dimensional vector functions y(x) will be called “aware” uncertainties
in game (3.4.5); finally, fi(x, y) = fi(x, y(x)) gives the payoff function of player
i (i ∈ N).

This game runs as follows. The players simultaneously choose their individual
strategies xi ∈ Xi (i ∈ N) without building any coalitions. As a result, we
have a strategy profile in the game �, i.e., an ordered collection of strategies
x = (x1, . . . , xN) ∈ X = X1 × · · · × XN . Let us accept the hypotheses about the
information discrimination of players and the additional awareness of uncertainty.
That is, by analogy with the hierarchical games considered in Sect. 3.4.2, the first
move belongs to the players: they choose and then report their strategies xi ∈ Xi to
a DM, who is “in charge of” uncertainty design. The second move is given to the
DM—he generates N uncertain factors in the form of continuous m-dimensional
vector functions y(i)(x) (i ∈ N) defined on the set X and then reports them to all
N players. Assume the worst-case uncertainties, which spoil the individual payoff
of each player as much as possible. Using this information, the players choose
a strategy profile xB ∈ X yielding a “good” payoff fi(x

B, y(xB)) (e.g., a Berge
equilibrium) for each player i (i ∈ N). The Slater-maximal profile x̄B is selected
from the set of all good profiles. The point is that the set of Berge equilibria {xB} has
internal instability (see Example 3.3.1), i.e., there may exist two profiles x(j) ∈ {xB}
(j = 1, 2) such that fi [x(1)] > fi [x(2)] (i ∈ N). This drawback is eliminated by
using the Slater maximality of x̄B . The hierarchical decision-making procedure of
NGU (3.4.5) is illustrated in Fig. 3.7.

Note that sometimes it is necessary to adopt mixed strategies instead of the pure
ones in order to prove the existence of these good solutions—the strategy profiles
in game (3.4.5). In fact, this approach will be used in the current and forthcoming
sections.

Recall that the guaranteed solution (x
g
1 , f

g
1 ) of a single-criterion choice problem

〈X1, Y, f1(x1, y)〉

is described by the chain of equalities

f
g
1 = max

x1∈X1
min
y∈Y

f1(x1, y) = min
y∈Y

f1
(
x

g
1 , y
)
.

First, we have to calculate the inner minimum

y(x1) = arg min
y∈Y

f1(x1, y),
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Fig. 3.7 Decision-making in the NGU (3.4.5)

and then outer maximum

x
g
1 = arg max

x1∈X1
f1(x1, y(x1)), f

g
1 = f1

(
x

g
1 , y

(
x

g
1

))
.

Let us clarify the optimal meaning of these concepts.
First, it follows from f

g
1 = min

y∈Y
f1(x

g
1 , y) that

f
g
1 � f1

(
x

g
1 , y
) ∀y ∈ Y,

i.e., with the strategy x
g
1 the DM obtains the guaranteed outcome f

g
1 under any

realization of the uncertain factor y ∈ Y.
Second, since f1[x1] = min

y∈Y
f1(x1, y) = f1(x1, y(x1)), with any strategy x1 ∈

X1 the DM obtains a guaranteed outcome

f1[x1] � f1(x1, y) ∀y ∈ Y,
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and the guarantee f
g
1 is highest because

f
g
1 = f1

(
x

g
1 , y

(
x

g
1

))
� f1[x1] = f1(x1, y(x1)) ∀x1 ∈ X1.

The concept of strongly-guaranteed solution of game (3.4.5) that is introduced
below relies on a modification of these two properties of maximin. The modification
itself consists in replacing the inner minimum by N scalar minima, i.e.,

min
y∈Y

fi(x, y) = fi(x, y(i)(x)) = fi [x] ∀x ∈ X (i ∈ N),

and also in replacing the outer maximum by the concept of Berge equilibrium, i.e.,

max
x∈X

fi

[
x||xB

i

]
= fi

[
xB
]

(i ∈ N),

where [x||xB
i ] = [x1, . . . , xi−1, x

B
i , xi+1, . . . , xN ].

We will formalize the concept of Slater-strongly-guaranteed Berge equilibrium
in three steps as follows.

Step 1. Associate with each strategy profile x∈X and each player i∈N a unique
continuous vector function y(i)(x) on X such that

fi

(
x, y(i)(x)

)
= min

y∈Y
fi(x, y) = fi [x] (i ∈ N). (3.4.6)

Step 2. Associate with game (3.4.5) the noncooperative N-player game (without
uncertainty)

〈N, {Xi}i∈N, {fi[x]}i∈N〉, (3.4.7)

further referred to as the game of guarantees. For this game, find a Berge
equilibrium xB ∈ X from the equalities

max
x∈X

fi

[
x|| xB

i

]
= fi

[
xB
]

(i ∈ N). (3.4.8)

Step 3. From the set of all Berge equilibria {xB}, choose the maximal one x̄B

in the vector sense, e.g., find a Slater-maximal alternative x̄B in the N-
criteria choice problem

〈 {
xB
}

, {fi [x]}i∈N
〉
.
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In the case of Slater maximum, it suffices to calculate x̄B using the
condition

max
x∈{xB}

∑

i∈N
αifi[x] =

∑

i∈N
αi f̄i

[
x̄B
]
,

where all the constants αi � 0(i ∈ N)∧ ∑
i∈N

αi > 0, see [152, pp. 68–69].

Finally, construct the N-dimensional vector

f̄
[
x̄B
]
=
(
f̄1

[
x̄B
]
, . . . , f̄N

[
x̄B
])

.

The resulting pair (x̄B, f̄ [x̄B]) ∈ X× R
N , where f = (f1, . . . , fN ), will be called

the Slater-strongly-guaranteed Berge equilibrium in game (3.4.5); in addition, x̄B

is the strongly-guaranteeing strategy profile in game (3.4.5) while f̄i [x̄B] is the
strongly-guaranteed payoff of player i ∈ N.

The game-theoretic meaning of the suggested solution consists in the following.
If the players have chosen the strategies xi ∈ Xi (i ∈ N), thereby forming the profile
x = (x1, . . . , xN), then each player i obtains a payoff fi(x, y) not smaller than
fi [x] (3.4.6) under any realization of the uncertain factor y ∈Y. (This fact follows
from the last equality of (3.4.6), written in the form fi [x] � fi(x, y) ∀y ∈ Y). In
other words, the value fi [x] is the guarantee for player i under the players’ strategies
from the profile x ∈ X and any realization of the uncertain factor y ∈ Y, regardless
of their choice.

Next, in accordance with Step 2 (see the definition), instead of the non-
cooperative game under uncertainty (3.4.5) one has to consider the game of
guarantees (3.4.7), (3.4.6) without uncertainty. In this game, the payoff functions of
the players are their guarantees fi [x] (i ∈ N), while the Berge equilibrium is defined
by the same principle, now applied to the new payoff functions—the guarantees
fi [x] (i ∈ N) of the original payoff functions fi(x, y).

The strongly-guaranteed equilibrium is stable in the sense that, if the players
choose their strategies from the profile xB = (xB

1 , . . . , xB
N), then

First, under any realization of the uncertain factor y ∈ Y the conflicting parties
obtain guaranteed payoffs fi(x

B, y) � fi [xB] = f B
i (i ∈ N) that are not smaller

than their guarantees;
Second, any deviation, e.g., of player 1 from the strategy xB

1 (i.e., the choice
of another strategy x̃1 ∈ X such that x̃1 �= xB

1 ) gives, e.g., to player 2 a payoff
f2(x

B||x̃1, y) with a guarantee f2[xB||x̃1] not higher than the guarantee f2[xB] in
the equilibrium xB (the noncooperative game under uncertainty (3.4.5) is assessed
using the game of guarantees (3.4.7)).
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3.4.5 Existence in Mixed Strategies

The existence of a strongly-guaranteed Berge equilibrium in mixed strategies
is established for the noncooperative two-player game under uncertainty with
continuous payoff functions that are strictly convex in the uncertain factors, and
also with compact sets of strategies and uncertain factors.

To simplify notation, our analysis below will be confined to game (3.4.5) with two
players, i.e., N = {1, 2}.

Let the sets Xi (i=1, 2) be convex and compact and consider the Borel σ -algebra
of all subsets of the set Xi (the details can be found in Remark 3.3.1); as an extension
of the set of (pure) strategies xi ∈ Xi of player i, consider his mixed strategies
μi(·)—probability measures on the compact set Xi , i.e., on the Borel σ -algebra of
the set Xi . Denote by {μi} (i = 1, 2) the set of mixed strategies of player i. Note
that a measure of the form δ(xi − x∗i )(dxi), where δ(·) is the Dirac function, is also
a mixed strategy of player i. The product measures μ(dx1, dx2) introduced by the
definitions in [122, p. 271] with the notations [108, p. 284],

μ(dx1, dx2) = μ1(dx1)μ2(dx2),

are probability measures on the product X = X1 × X2 of the compact sets X1 and
X2. To construct the product measure μ(dx1, dx2), as the σ -algebra of all subsets
X1×X2 one takes the smallest Borel σ -algebra containing all the products Q1×Q2,
where Qi is an element of the Borel σ -algebra of the compact set Xi (i = 1, 2).

If the payoff functions fi [x1, x2] are continuous on X1 × X2, we define the
following integrals in terms of expectation:

fi [μ1, x2] =
∫

X1

fi [x1, x2]μ1(dx1), fi [x1, μ2] =
∫

X2

fi [x1, x2]μ2(dx2).

Since the functions fi [x1, x2] are continuous on X1×X2, the integrals fi [μ1, x2]
and fi [x1, μ2] are continuous functionals on X2 and X1, respectively; see [24,
p. 113]. Then there exist the double integrals

fi [μ1, μ2] =
∫

X2

fi [μ1, x2]μ2(dx2) =
∫

X2

∫

X1

fi [x1, x2]μ1(dx1)μ2(dx2),

∫

X1

fi [x1, μ2]μ1(dx1) =
∫

X1

∫

X2

fi [x1, x2]μ2(dx2)μ1(dx1),

which take the same value by Fubini’s theorem.
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Now let us pass to the mixed extension of game (3.4.7) with N = {1, 2}, i.e., to
the noncooperative game

�̃2 = 〈{1, 2}, {μi}i=1,2, {fi [μ1, μ2]}i=1,2〉,

where {μi} is the set of mixed strategies μi(·) of player i, which are probability
measures on the compact set Xi ; the expectation

fi[μ1, μ2] =
∫

X1×X2

fi [x1, x2]μ1(dx1)μ2(dx2)

gives the mixed extension of the payoff function fi [x1, x2] (i = 1, 2).
A pair of mixed strategies (μB

1 (·), μB
2 (·)) ∈ {μ1} × {μ2} is called a Berge

equilibrium in game �̃2 if

f1[μB
1 , μ2] � f1[μB

1 , μB
2 ] ∀μ2(·) ∈ {μ2},

f2[μ1, μ
B
2 ] � f2[μB

1 , μB
2 ] ∀μ1(·) ∈ {μ1}. (3.4.9)

Interestingly, the set of all payoffs f [μB] = (f1[μB], f2[μB]) on the set of
all Berge equilibria {μB(·) = μB

1 (·)μB
2 (·)} is compact in R

2 (this follows from
Proposition 3.4.1 below).

In accordance with [22, pp. 117–119], if in the game �̃2 the payoff functions
fi [x1, x2] are continuous on X1 × X2 and the sets Xi are compact (i = 1, 2), then
the game �̃2 possesses a Berge equilibrium

μB(·) =
(
μB

1 (·), μB
2 (·)
)
∈ {μ1} × {μ2}.

Sometimes, this profile is called a mixed strategy Berge equilibrium in
game (3.4.7) with N = {1, 2}.
Proposition 3.4.1 Assume that in game (3.4.7) with N = {1, 2} the sets Xi (i =
1, 2) are convex and compact and the payoff functions fi [x1, x2] are continuous on
X1 × X2. Then the set FB = {f1[μB], f2[μB]} of all Berge equilibrium payoffs in
the game �̃2 is a non-empty and compact set, i.e., a closed bounded subset of R2.

Proof In view of the well-known properties of probability measures [41,
p. 288]; [122, p. 254], the set of all possible product measures μ(dx1, dx2) =
μ1(dx1)μ2(dx2) is weakly closed and weakly compact [122, pp. 212, 254]; [180,
pp. 48, 49]. Hence, from each sequence

{
μ(k)(dx)=μ

(k)
1 (dx1)μ

(k)
2 (dx2)

}
(k = 1, 2, . . .)
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one can extract a subsequence

{
μ(kj )(dx) = μ

(kj )

1 (dx1)μ
(kj )

2 (dx2)
}

(j = 1, 2, . . .)

that weakly converges [122, p. 212, 254]; [105, p. 199] to a function μ(·) ∈ ∈{μ},
i.e., for any choice of a continuous scalar function ϕ[x1, x2] defined on X, it holds
that

lim
j→∞

∫

X

ϕ[x1, x2]μ(kj )(dx) =
∫

X

ϕ[x1, x2]μ(dx).

Denote by MB the set of all Berge equilibria μB(dx) = μB
1 (dx1)μ

B
2 (dx2) described

by formulas (3.4.9). Then MB �= ∅, as shown in [22, pp. 117–119]. Now, take an
arbitrary infinite sequence of such equilibria μ(k)(·) ∈MB (k = 1, 2, . . .). Owing to
the weak compactness of the set of probability measures, there exist a subsequence
of measures μ(kj )(·) ∈MB (j = 1, 2, . . .) and a probability measure μ(o)(·) ∈ {μ}
such that, for a continuous function fi[x] = fi [x1, x2] on X,

lim
j→∞ fi

[
μ(kj )

]
= lim

j→∞

∫

X

fi [x]μ(kj )(dx) =
∫

X

fi [x]μ(o)(dx) = fi

[
μ(o)

]
.

Let us show that the limiting measure μ(o)(·) = μ
(o)
1 (·)μ(o)

2 (·) is also a Berge
equilibrium, i.e.,

f1[μ(o)
1 , μ2] � f1[μ(o)] ∀μ2(·) ∈ {μ2},

f2[μ1, μ
(o)
2 ] � f2[μ(o)] ∀μ1(·) ∈ {μ1}.

Assume on the contrary that there exists a measure μ̄1(·) ∈ {μ1} or a measure
μ̄2(·) ∈ {μ2} such that

f1

[
μ

(o)
1 , μ̄2

]
> f1

[
μ(o)

]
∨ f2[μ̄1, μ

(o)
2 ] > f2

[
μ(o)

]
.

For example, let

f1

[
μ

(o)
1 , μ̄2

]
> f1

[
μ(o)

]
,

which is equivalently written as

∫

X

f1[x]μ(o)
1 (dx1)μ̄2(dx2) >

∫

X

f1[x]μ(o)(dx).
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Then, for sufficiently large j ,

∫

X

f1[x]μ(kj )

1 (dx1)μ̄2(dx2) >

∫

X

f1[x]μ(kj )(dx),

which contradicts the inclusion μ(kj )(·) ∈MB , i.e., the Berge equilibrium condition
of each mixed strategy profile μ(kj )(·) ∈MB in the game �̃2. Hence, the set FB =
= {f1[μB], f2[μB] | ∀μB(·) ∈MB} is compact in R

2. �
Our next task is to construct a strongly-guaranteed Berge equilibrium in mixed

strategies for this game using Steps 1–3 above.
Consider game (3.4.5) with N = 2 in which the sets Xi (i = 1, 2) and Y are

compact and the payoff functions fi(x1, x2, y) (i = 1, 2) are continuous on X1 ×
X2 ×Y.

A quadruple (μ̄B
1 (·), μ̄B

2 (·), f̄ B
1 , f̄ B

2 ) ∈ {μ1} × {μ2} × R
2 is called a strongly-

guaranteed Berge equilibrium in mixed strategies in game (3.4.5) with N = 2
if for each i there exists a unique continuous m-dimensional vector functions
y(i)(x) : X1 × X2 → Y (i = 1, 2) such that inequalities (3.4.9) hold for the
function fi [μ1, μ2] (i = 1, 2) and the product measure μ̄B(·) = μ̄B

1 (·)μ̄B
2 (·) yields

a Slater-maximal alternative in the bicriteria choice problem

〈{μB}, {fi [μ]}i=1,2〉.

Here fi [μ] = fi [μ1, μ2] =
∫

X
fi [x]μ1(dx1)μ2(dx2), fi [x] = fi(x, y(i)(x)) =

miny∈Y fi(x, y), μ̄B
i (·) ∈ {μi} indicates the mixed strategy of player i, and f̄ B

i =
f̄i [μB

1 , μB
2 ] (i = 1, 2) is his guaranteed payoff.

Theorem 3.4.1 Consider the noncooperative two-player game under uncertainty

�2 = 〈{1, 2}, {Xi}i=1,2, YX, {fi(x1, x2, y)}i=1,2〉

under the assumptions that
(
10
)

the set Xi ⊂ R
ni of all pure strategies xi of player i is convex and compact

(i = 1, 2) and the set Y ⊂ R
m of uncertain factors y is convex and compact;(

20
)

the payoff function fi(x, y) of player i (i = 1, 2) is continuous on X1×X2×Y
and strictly convex in y ∈ Y for each (x1, x2) ∈ X1 × X2.

Then there exists a strongly-guaranteed Berge equilibrium in mixed strategies in
this game.

Proof Using the compactness of the sets Xi (i = 1, 2) and Y, the concavity of Y
and also the continuity of the payoff functions fi(x1, x2, y) on X1×X2×Y and their
strict convexity in y ∈ Y for each x = (x1, x2) ∈ X1×X2, we conclude (see [14,
p. 54]) that there exist two continuous m-dimensional vector functions y(i)(x1, x2)
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defined on X1×X2 such that

min
y∈Y

fi(x1, x2, y) = fi

(
x1, x2, y

(i)(x1, x2)
)
= fi [x1, x2] (i = 1, 2)

for any (x1, x2) ∈ X1 ×X2. The functions

fi

(
x1, x2, y

(i)(x1, x2)
)
= fi [x1, x2] (i = 1, 2)

are continuous on X1 × X2 as superpositions of the continuous functions
fi(x1, x2, y) and y = y(i)(x1, x2).

Now, design a noncooperative two-player game—the game of guarantees

〈{1, 2}, {Xi}i=1,2, {fi [x1, x2]}i=1,2〉. (3.4.10)

As established earlier, in this game the payoff function fi [x1, x2] of player i (i=
1, 2) is continuous on the product X1 × X2 of compact sets. Consequently, by [22,
pp. 117–119], there exists a mixed strategy Berge equilibrium (μB

1 (·), μB
2 (·)) ∈

{μ1} × {μ2}, which satisfies inequalities (3.4.9). Then construct the pair

fi

[
μB
]
= fi

[
μB

1 , μB
2

]
=

∫

X1×X2

fi [x1, x2]μB
1 (dx1)μ

B
2 (dx2) (i = 1, 2),

in which the set {fi [μB]=fi[μB
1 , μB

2 ]} is compact in R
2 (see Proposition 3.4.1);

MB forms the set of all Berge equilibria μB(·)=μB
1 (·)μB

2 (·) (each of them satisfies
inequalities (3.4.9)). This compact set is nonempty [22, pp. 117–119]; denote it
by FB . Consider a continuous function

∑2
i=1 αifi , where αi = const > 0 and

i ∈ N= {1, 2}, on the compact set FB . By the Weierstrass theorem, there exists a
vector f̄ B=(f̄ B

1 , f̄ B
2 )∈FB such that

max
f∈FB

2∑

i=1

αifi =
2∑

i=1

αi f̄
B
i .

Finally, find the product measure μ̄B(·) = μ̄B
1 (·)μ̄B

2 (·) from the equalities f̄ B
i =

fi [μ̄B] (i = 1, 2).
By definition, the resulting triplet (μ̄B(·), f̄ B

1 , f̄ B
2 ) is a strongly-guaranteed Berge

equilibrium in mixed strategies in game (3.4.5) with N = {1, 2}. �
Remark 3.4.2 First, the assumptions of Theorem 3.4.1 can be relaxed by requiring
only the compactness of the sets Xi (i=1, 2) and Y and the continuity of the payoff
functions fi(x, y) on the set X1×X2×Y (see Theorem 3.5.1 below). Theorem 3.4.1
itself is placed here to illustrate an original method for establishing the existence of
guaranteed equilibria.
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Second, Theorem 3.4.1 generalizes directly to the games with N > 2 players.
In this case, the definition of a strongly-guaranteed equilibrium involves a vector
guarantee f [x] = (f1[x], . . . , fN [x]), since for each x ∈ X and for all y ∈ Y
the value fi(x, y) cannot be smaller than fi [x] (i ∈ N) (see (3.4.6)). This vector
guarantee is lowest among all other vector guarantees f S[x] (Slater guarantees,
see Sect. 3.5) because f S

i [x] � fi [x] ∀x ∈X, i ∈ N (here f S[x] = f (x, yS(x))

and yS(x) yields the Slater-minimal alternative in the N-criteria choice problem
〈Y, f (x, y)〉 for each frozen x∈X). This fact explains the term “strongly-guaranteed
equilibrium.” However, keep in mind that the players seek for as high guarantees as
possible.

Remark 3.4.3 Once again we will stress the game-theoretic meaning and advan-
tages of strongly-guaranteed equilibrium.

First, in accordance with (3.4.6), each strategy profile x ∈ X is associated with
a vector guarantee f [x] = (f1[x], . . . , fN [x]): by the inequality fi(x, y) � fi [x]
∀y ∈ Y (i ∈ N), the payoffs fi(x, y) cannot be smaller than fi[x] (i ∈ N) for all
y ∈ Y. Indeed, with his strategy xi ∈ Xi player i obtains a payoff fi(x, y) that
is surely not less than fi [x] under any realization of the uncertain factors y ∈ Y.
Therefore, transition to the same game of guarantees (3.4.7) for all y ∈ Y allows
the players to forget about the existing uncertainty and to be guided by an increase
of their guarantees only (which depend on the strategy profile x formed by their
choice).

Second, the aspiration of player i ∈ N to increase his guarantee fi [x] also results
in a Berge equilibrium (an analog of the outer maximum in the noncooperative
game of guarantees (3.4.7)). Being a Berge equilibrium, the strategy profile xB =
(xB

1 , . . . , xB
N) is stable against the deviation of any coalition of N − 1 players. For

example, if player 1 is deviating from xB
1 with a choice x1 �= xB

1 , then say the
guarantee f2[xB||x1] of player 2 in the strategy profile [xB||x1] = [x1, x

B
2 , . . . , xB

N ]
cannot exceed f2[xB] (which follows from (3.4.8)), yet may decrease. (Each player
seeks to maximize his guarantee!) Therefore, in contrast to the balanced equilibria
considered in Sect. 3.3, the strategy profile xB still satisfies the Berge equilibrium
conditions for all uncertain factors y ∈ Y (we again emphasize that the guarantees
fi [x] are independent of y).

Third, the set of all Berge equilibria {xB} = XB in the game (3.4.7) is
internally unstable (see Example 3.3.1). This nuisance is eliminated using the Slater
maximality of the suggested solution x̄B.

Then a strongly-guaranteed Berge equilibrium (x̄B, f̄ B) in the NGU (3.4.5) is a
pair (x̄B, f [x̄B]) composed of a Berge equilibrium x̄B in the game of guarantees to
be used by the players and a vector guarantee f [x̄B] = f̄ B yielded by them in this
equilibrium.

Remark 3.4.4 As follows from Remark 3.4.3, an analog of the inner minimum (in
the maximin definition) is Step 1 of strongly-guaranteed equilibrium design. In turn,
Steps 2 and 3 correspond to the outer maximum in the maximin definition. Let us
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show that each vector guarantee in pure strategies

f [x] =
(
f1(x, y(1)(x)

)
= f1[x], . . . , fN

(
x, y(N)(x)

)
= fN [x])

induces a vector guarantee in mixed strategies

f [μ] = (f1[μ], . . . , fN [μ]),

where

fi [μ] =
∫

X

fi

(
x, y(i)(x)

)
μ(dx), i ∈ N.

Indeed, from (3.4.6) for each x ∈ X we have N inequalities of the form

fi [x] � fi(x, y) ∀y ∈ Y.

Integrating both sides of these inequalities with an arbitrary mixed strategy profile
μ(·) as the integration measure gives

fi[μ]=
∫

X

fi

(
x, y(i)(x)

)
μ(dx)�

∫

X

fi(x, y)μ(dx)=fi[μ, y] ∀y ∈ Y (i∈ N).

Equivalently, every mixed strategy profile μ(·) ∈ {μ} in the game

〈 N, {μi}i∈N, Y, {fi [μ, y]}i∈N 〉

induces a vector guarantee f [μ] = (f1[μ], . . . , fN [μ]): for any y ∈ Y, the payoffs
fi [μ, y] cannot be smaller than fi [μ].

Then, in accordance with Steps 2 and 3 of strongly-guaranteed Berge equilibrium
design in game (3.4.5) with mixed strategies, it is necessary to build the vector
guarantees f [μB] achieved on all mixed strategy Berge equilibria μB(·) ∈ {μ}.
Finally, among them we have to choose the Slater-maximal strategy profile μ̄B(·).

3.4.6 Linear-Quadratic Setup of Game

A good example is the best sermon.
—English proverb

An explicit form of a strongly-guaranteed Berge equilibrium in mixed strate-
gies is obtained for the noncooperative linear-quadratic two-player game under
uncertainty.
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This section considers game (3.4.5) with N = {1, 2}, the sets Xi =R
n and Y=

R
m (no constraints), and the linear-quadratic payoff functions in xi and y given by

f1(x, y)=x ′2A1x2+2x ′1x2+2x ′2C1y+y ′D1y+2a′1x2+ϕ1(x1),

f2(x, y)=x ′1A2x1−2x ′2x1+2x ′1C2y+y ′D2y+2a′2x1+ϕ2(x2).
(3.4.11)

In this game, x1 and x2 are n-dimensional column vectors, y is an m-dimensional
column vector, prime denotes transposition, constant vectors ai and matrices
Ai,Ci,Di have compatible dimensions, and the matrices Ai and Di are symmetric
(i = 1, 2). Recall that the notation Ai < 0 (Di > 0) means the negative
(positive) definiteness of the quadratic form x ′Aix for all x ∈ R

n (y ′Diy for all
y ∈ R

m, respectively), while the notation K � 0 the negative semidefiniteness of
the quadratic form x ′Kx for all x ∈ R

n. Also, 0n stands for an n-dimensional zero
vector, ϕi(xi) (i = 1, 2) are scalar continuous functions.

Thus, we are studying the noncooperative two-player game under uncertainty

〈{1, 2}, {Xi = R
n}i=1,2, Y = R

m, {fi(x1, x2, y)}i=1,2〉, (3.4.12)

in which the payoff functions fi(x1, x2, y) are defined by (3.4.11), player i chooses
the n-dimensional column vector xi ∈ R

n as his strategy, and the uncertain factors
are y ∈ R

m. The special form (3.4.11) of the payoff functions fi(x1, x2, y) covers
all linear and quadratic terms in xj (i, j = 1, 2; i �= j). An attempt to consider other
possible terms would run into cumbersome calculations, still remaining the same in
principle.

Proposition 3.4.2 Consider game (3.4.12) with

Ai < 0, Di > 0 (i = 1, 2). (3.4.13)

For any continuous scalar functions ϕi(xi) (i = 1, 2), the strongly-guaranteed
Berge equilibrium (xB

1 , xB
2 , f B

1 , f B
2 ) has the form

xB
1 = −

[(
A1 − C1D

−1
1 C′1

)−1 +
(
A2 − C2D

−1
2 C′2

)]−1

×

×
[(

A1 − C1D
−1
1 C′1

)−1
a1 + a2

]

,

xB
2 =

[(
A2 − C2D

−1
2 C′2

)−1 +
(
A1 − C1D

−1
1 C′1

)]−1

× (3.4.14)

×
[(

A2 − C2D
−1
2 C′2

)−1
a2 − a1

]

,

f B
1 = −

[
xB

2

]′ [
A1 − C1D

−1
1 C′1

]
xB

2 + ϕ1

(
xB

1

)
,

f B
2 = −

[
xB

1

]′ [
A2 − C2D

−1
2 C′2

]
xB

1 + ϕ2

(
xB

2

)
.
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Proof The following chain of implications is immediate from (3.4.13) and [93]:

[Di > 0] ⇒ [detDi �= 0] ⇒
[
∃D−1

i

]
,

[Di >0] ⇒
[
D−1

i >0
]
⇒
[
CiD

−1
i C′i �0

]
⇒
[
−CiD

−1
i C′i �0

]
,

[
Ai < 0 ∧−CiD

−1
i C′i � 0

]
⇒
[
Ai − CiD

−1
i C′i < 0

]
.

(3.4.15)

Next, the proof will proceed along Steps 1 and 2 of strongly-guaranteed Berge
equilibrium design for game (3.4.5) with N = {1, 2}.
Step 1. Find y(i)(x1, x2) from the condition

fi(x1, x2, y
(i)(x1, x2)) = min

y
fi(x1, x2, y). (3.4.16)

Without any constraints imposed on the strategy profiles x = (x1, x2) ∈
R

2n (xi ∈Rn and y∈Rm), in expression (3.4.16) the sufficient conditions
of minimum over all m-dimensional vector functions y(i)(x) reduce to

gradyfi(x, y(i)(x)) = ∂fi(x, y)

∂y

∣
∣
∣
∣
y(i)(x)

= 2Diy
(i)(x)+ 2C′ixj = 0m,

(i, j = 1, 2; i �= j)

(3.4.17)

∂2fi(x, y)

∂y2

∣
∣
∣
∣
y(i)(x)

= 2Di > 0 (i = 1, 2),

where ∂2fi

∂y2 denotes the Hessian of fi(x, y) with respect to the compo-
nents of the m-dimensional vector y; here we have used the inequalities
Di > 0 from (3.4.13) and also the gradient calculation formulas

∂
∂y

(y ′Lx) = Lx, ∂
∂y

(x ′Ky) = K ′x, ∂
∂y

(y ′Dy) = 2Dy

from [93, pp. 13–16]. In accordance with (3.4.17),

y(i)(x) = −D−1
i C′ixj (i, j = 1, 2; i �= j). (3.4.18)

For all x ∈ R
2n (i, j = 1, 2; i �= j ), from (3.4.18) we also have the

identity

[y(i)(x)]′Diy
(i)(x)+ 2x ′jCiy

(i)(x)=−[y(i)(x)]′Diy
(i)(x). (3.4.19)
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Using (3.4.18) and (3.4.19), find

f1[x1, x2] = f1

(
x1, x2, y

(1)(x)
)
= x ′2A1x2 + 2x ′1x2

−
[
y(1)(x)

]′
D1y

(1)(x)+ 2a′1x2 + ϕ1(x1)

= x ′2
[
A1 − C1D

−1
1 C′1

]
x2 + 2x ′1x2

+ 2a′1x2 + ϕ1(x1), f2[x1, x2] = f2

(
x1, x2, y

(2)(x)
)

= x ′1
[
A2 − C2D

−1
2 C′2

]
x1 − 2x ′2x1 + 2a′2x1 + ϕ2(x2),

(3.4.20)

where, by (3.4.15),

Ai − CiD
−1
i C′i < 0 (i = 1, 2). (3.4.21)

Step 2. To construct the strategy profile (xB
1 , xB

2 ) that yields maximum in (3.4.8),
one again employs the sufficient conditions

∂f1
[
xB

1 , x2
]

∂x2

∣
∣
∣
∣
∣
xB

2

= 2
[
A1 − C1D

−1
1 C′1

]
xB

2 + 2xB
1 + 2a1 = 0n,

∂f2
[
x1, x

B
2

]

∂x1

∣
∣
∣
∣
∣
xB

1

= −2xB
2 + 2

[
A2 − C2D

−1
2 C′2

]
xB

1 + 2a2 = 0n,

∂2f1
[
xB

1 , x2
]

∂x2
2

∣
∣
∣
∣
∣
xB

2

= 2
[
A1 − C1D

−1
1 C′1

]
< 0,

∂2f2
[
x1, x

B
2

]

∂x2
1

∣
∣
∣
∣
∣
xB

1

= 2
[
A2 − C2D

−1
2 C′2

]
< 0.

(3.4.22)

A special remark is in order. When Ai < 0 and Di > 0, the first two
equalities in (3.4.22) are necessary conditions for the existence of a Berge
equilibrium (xB

1 , xB
2 ); this system of equations has a unique solution and

hence the resulting equilibrium is also unique.
The last two inequalities in (3.4.22) follow directly from (3.4.21). Using
the first two equalities, we arrive at the following system of two linear



106 3 The Golden Rule Under Uncertainty

algebraic equations in the two unknown vectors xB
1 and xB

2 :

{
(A1 − C1D

−1
1 C′1)xB

2 + xB
1 = −a1,

−xB
2 + (A2 − C2D

−1
2 C′2)xB

1 = −a2.
(3.4.23)

Multiplication of the first equation on the right by the inverse of the
nondegenerate matrix A1 − C1D

−1
1 C′1 (see (3.4.21)) and summation by

columns yields

[
(A1 − C1D

−1
1 C′1)−1 + (A2 − C2D

−1
2 C′2)

]
xB

1

= −
[
(A1 − C1D

−1
1 C′1)−1a1 + a2

]
. (3.4.24)

In the same way, multiplication of the second equation on the right by the
inverse of the nondegenerate matrix A2−C2D

−1
2 C′2 with minus sign and

summation by columns yields

[
(A2 − C2D

−1
2 C′2)−1 + (A1 − C1D

−1
1 C′1)

]
xB

2 =
= (A2 − C2D

−1
2 C′2)−1a2 − a1.

(3.4.25)

From (3.4.21) we have

(Ai − CiD
−1
i C′i )−1 < 0 (i = 1, 2),

and, by (3.4.21),

(A1 − C1D
−1
1 C′1)−1 + (A2 − C2D

−1
2 C′2) < 0,

(A2 − C2D
−1
2 C′2)−1 + (A1 − C1D

−1
1 C′1) < 0.

Hence, these matrices are invertible.
Then the first two formulas of (3.4.14) follow from (3.4.24) and (3.4.25).
To construct f B

i = fi [xB
1 , xB

2 ] (i = 1, 2), we will again utilize the first
two equalities in (3.4.22). In particular,

f B
1 = f1

[
xB

1 , xB
2

]
=
[
xB

2

]′ [
A1 − C1D

−1
1 C′1

]
xB

2 + 2
[
xB

1

]′
xB

2

+ 2a′1xB
2 + ϕ1

(
xB

1

)
= −

[
xB

2

]′ [
A1 − C1D

−1
1 C′1

]
xB

2 + ϕ1

(
xB

1

)
,

and similarly

f B
2 = −

[
xB

1

]′ [
A2 − C2D

−1
2 C′2

]
xB

1 + ϕ2

(
xB

2

)
.
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Step 3. The quadruple (xB
1 , xB

2 , f B
1 , f B

2 ) is unique due to the strict convexity of
fi(x, y) (3.4.21) in y for each x ∈ R

2n, conditions (3.4.13), and the
special remark for Step 2. �

Example 3.4.1 To apply Proposition 3.4.2, we first have to verify require-
ments (3.4.13) and then construct the strongly-guaranteed Berge equilibrium
(xB

1 , xB
2 , f B

1 , f B
2 ) by formulas (3.4.14). Let the variables x1, x2, and y in (3.4.14)

as well as the constants ai (i = 1, 2) be scalar and choose the matrices Ai = − 1
2 ,

Ci = 1, and Di = 2. In this case, Ai − CiD
−1
i C′i = − 1

2 − 1
2 = −1 (i = 1, 2), and

formulas (3.4.14) yield

xB
1 = [−1− 1]−1[−1a2 − a1] = 1

2
(a1 + a2), x

B
2 = −[−1− 1]−1[−1a1 + a2]

= 1

2
(a1 − a2), f

B
1 = −

1

4
(a1 + a2)

2, f B
2 = −

1

4
(a1 − a2)

2.

The dependence of the strong guarantees f B
i on a1 and a2 is illustrated in

Figs. 3.8 and 3.9 by the parabolic cylinders f B
1 = − 1

4 (a1 + a2)
2 and f B

2 =
− 1

4 (a1 − a2)
2.

The vertex of the parabola f B
1 = − 1

4υ2 in Fig. 3.8 is “sliding” along the line
a1 = a2. By analogy, the vertex of the parabola f B

2 = − 1
4u2 in Fig. 3.9 is “sliding”

along the line a1 = −a2, also forming a parabolic cylinder. Here a1 + a2 = υ and
a1 − a2 = u.

Fig. 3.8 Strong guarantee
f B

1 as function of a1 and a2
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Fig. 3.9 Strong guarantee
f B

2 as function of a1 and a2

3.5 Slater-Guaranteed Equilibria

The mathematicians and physics men
Have their mythology; they work alongside the truth,
Never touching it; their equations are false
But the things work. Or, when gross error appears,
They invent new ones; they drop the theory of waves
In universal ether and imagine curved space.
Nevertheless their equations bombed Hiroshima.
The terrible things worked.

—Jeffers24

In this section, the third type of guaranteed solutions of a conflict (noncooperative
N-player game under uncertainty) is suggested, the central concept for Chap. 3,
based on an appropriate modification of maximin. The properties of this solution as
well as its existence in the class of mixed strategies are established.

3.5.1 Definition and Properties

Hier liegt der Hund begraben.

—German proverb25

To formalize another guaranteed solution of the game

〈 N, {Xi}i∈N, YX, {fi(x, y)}i∈N 〉 (3.5.1)

24John Robinson Jeffers, (1887–1962), was an American poet. A fragment from his poem The
Great Wound.
25German “That’s where the dog lies buried.” Close to the English proverb “That’s where the shoe
pinches!” Used to emphasize the essence of something.
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using the maximin-type approach, we will again consider the following zero-sum
game with a scalar payoff function f (x, y):

〈 {1, 2}, X, YX, f (x, y) 〉, (3.5.2)

where X⊆R
n denotes the set of all strategies x of player 1 and YX= {y(x)|X→Y}

is the set of counter-strategies y(x) of player 2. In game (3.5.2), player 1 seeks
to maximize the scalar payoff function f (x, y) with an appropriate choice of his
strategy x ∈ X under information discrimination, as follows. Making the first move
in game (3.5.2), player 1 informs the opponent about his intended strategies x ∈ X.
Using this information, player 2 forms a counter-strategy y(x) : X → Y in order to
minimize f (x, y) with y = y(x). Next, player 2 makes the second move, reporting
the chosen strategy y(·) ∈ YX to player 1. The final decision is left to player 1: he
designs a strategy xg ∈ X with maximization of f (x, y(x)), i.e., calculates

xg = arg max
x∈X

f (x, y(x)).

As a result, player 1 obtains the guaranteed payoff f g = f (xg, y(xg)) because

f (xg, y(xg)) � f (xg, y) ∀y ∈ Y, (3.5.3)

which follows from the design rule of the counter-strategy y(xg) = arg miny∈Y
f (xg, y).

Recall that the formalization procedure of the maximin f g and maximin strategy
xg consists of two sequential operations:

– first, the inner minimum, i.e., for all x ∈ X it is necessary to find a counter-
strategy y(x) : X → Y such that

min
y∈Y

f (x, y) = f (x, y(x)) ∀x ∈ X; (3.5.4)

– second, the outer maximum

max
x∈X

f (x, y(x)) = f (xg, y(xg)) = f g. (3.5.5)

In accordance with (3.5.4), for x = xg we have inequality (3.5.3), i.e., the
strategy x = xg gives player 1 the guaranteed payoff f g � f (xg, y) ∀y ∈
Y. Moreover, by (3.5.5) this guarantee f g is highest among all guarantees
f (x, y(x)) (for any strategies x ∈ X of player 1), since

f (x, y(x)) � f (xg, y(xg)) = f g ∀x ∈ X.

Now, introduce the concept of Slater-guaranteed Berge equilibrium (SGBE) for
the noncooperative game (3.5.1) using an appropriate modification of maximin, i.e.,
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first, replacing the scalar inner minimum with a vector minimum (here the Slater
minimum)

and second, replacing the outer maximum initially with Berge equilibria design
and then with the vector maximum on the set of all Berge equilibria (here the Slater
maximum on the set of all Berge equilibria).

Definition 3.5.1 A pair (x̄B, f̄ S) ∈ X × R
N is called a Slater-guaranteed Berge

equilibrium in game (3.5.1) if there exists an uncertain factor yS(x) : X → Y such
that

(1) f̄ S = (f̄ S
1 , . . . , f̄ S

N

) = f
(
x̄B, yS

(
x̄B
))

, i.e.,

f̄ S
i = fi

(
x̄B, yS

(
x̄B
))

(i ∈ N);

(2) for each x ∈ X, the uncertain factor yS(x) is a Slater-minimal alternative
in the N-criteria choice problem 〈Y, f (x, y)〉, i.e., for any alternative x =
(x1, . . . , xN) ∈ X1× · · · ×XN = X the system of N strict inequalities

fi[x] = fi(x, yS(x)) > fi(x, y) ∀y ∈ Y (i ∈ N) (3.5.6)

is inconsistent;
(3) the strategy profiles xB ∈ X are Berge equilibria in the noncooperative game

〈 N, {Xi}i∈N, {fi(x, yS(x))}i∈N 〉, (3.5.7)

i.e.,

max
x∈X

fi

(
x||xB

i , yS

(
x||xB

i

))
= fi

[
xB
]
, i ∈ N, (3.5.8)

where (x||xB
i ) = (x1, . . . , xi−1, x

B
i , xi+1, . . . , xN); denote by XB the set of all

Berge equilibria;
4. the strategy profile x̄B ∈ XB is a Slater-maximal alternative [81] in the N-

criteria choice problem

〈
XB, {fi(x, yS(x))}i∈N

〉
,

i.e., for all x ∈ XB the system of strict inequalities

f̄ S
i = fi

(
x̄B, yS

(
x̄B
))

< fi(x, yS(x)), i ∈ N, (3.5.9)

is inconsistent.
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Remark 3.5.1

(a) As inequalities (3.5.6) are inconsistent for x = x̄B, the N-dimensional vector
f̄ S forms the Slater guarantee: if the players choose their strategies from the
profile x̄B, then it is impossible to reduce all payoffs f̄ S

i (i ∈ N) simultaneously
with any choice y ∈ Y, because for all y ∈ Y the inequalities fi(x̄

B, y) <

fi(x̄
B, yS(x̄B)) = f̄ S

i , i ∈ N, fail.
(b) Condition (3.5.8) implies that each strategy profile xB ∈ XB is a Berge

equilibrium in the noncooperative game (3.5.7) and hence is stable against the
deviations of any coalitions of size N − 1.

(c) Due to the inconsistency of inequalities (3.5.9), the vector guarantee f̄ S =
(f̄ S

1 , . . . , f̄ S
N) is highest in the vector sense among all guarantees f (xB, yS(xB))

∀xB ∈ XB.

Therefore, following their strategies x̄B
i (i ∈ N) from the Berge equilibrium

x̄B = (x̄B
1 , . . . , x̄B

N), the players obtain the vector guarantee f̄ S for all y ∈ Y;
furthermore, this guarantee is highest (Slater-maximal, see (3.5.9)) among all
guarantees yielded by the strategies xB

i (i ∈ N) from the other Berge equilibria
xB ∈ XB. (Note that in Example 2.4.1 the set of Slater-guaranteed Berge equilibria
is (x̄B, f̄ B) = ((1; 1), (1− cos β); (1− sin β)|β ∈ [0, π

2 ])).

3.5.2 Existence of Guaranteed Equilibrium in Mixed Strategies

Grau, teurer Freund, ist alle Theorie,
Und grün des Lebens goldner Baum.26

The existence of a Slater-guaranteed Berge equilibrium is established in the
noncooperative game under uncertainty in the class of mixed strategies, under
standard assumptions of game theory.

Problem Statement and Auxiliary Results Consider the noncooperative N-player
game under uncertainty defined by an ordered quadruple

� = 〈N, {Xi}i∈N, YX, {fi(x, y)}i∈N 〉. (3.5.10)

Recall that in the game �,
N = {1, . . . , N} denotes the set of players, with an integer N � 2;
Xi ⊆ R

ni is the set of pure strategies xi of player i (i ∈ N);
Y ⊆ R

m is the set of uncertain factors y.

26German “My worthy friend, gray are all theories,
And green alone Life’s golden tree.” A quote from Faust, The Study (Mephistopheles), by J.W.
von Goethe.
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In this game, the players do not build any coalitions and each player i (i ∈ N)

chooses his pure strategy xi , which yields a pure strategy profile x = (x1, . . . , xN)

of the game �, and x ∈ X = ∏

i∈N
Xi .

By analogy with the inner minimum in maximin, we will assume the information
discrimination of the players: they report their chosen strategies xi (more precisely,
the strategy profile x = (x1, . . . , xN) ∈ X) to a DM, who is responsible for
uncertainty generation. This DM generates the uncertain factors in the form of a
counter-strategy profile y(x) : X → Y, y(·) ∈ YX. Thus, the uncertainty in the
game � will be identified with the m-dimensional vector function y(x) : X → Y.
Note that the DM chooses y(x) = yS(x) in order to achieve the Slater minimum of
f (x, yS(x)) in the N-criteria choice problem

�(x) = 〈 Y, {f (x, y) = (f1(x, y), . . . , fN(x, y)} 〉 (3.5.11)

for each x ∈ X. In other words, for each x ∈ X the system of strict inequalities

fi(x, y) < fi(x, yS(x)) ∀y ∈ Y, i ∈ N,

is inconsistent. Then the following result holds.

Proposition 3.5.1 Consider the game � under the assumptions that

(a) the sets Xi (i ∈ N) and Y are nonempty, convex and compact;
(b) the scalar functions fi(x, y) (i ∈ N) are continuous on X× Y and there exists

at least one j ∈ N such that for each x ∈ X the function fj (x, y) is strictly
convex in y ∈ Y, i.e. for any y(1), y(2) ∈ Y and any λ ∈ (0, 1),

fj

(
x, λy(1) + (1− λ)y(2)

)
< λfj

(
x, y(1)

)
+ (1− λ)fj

(
x, y(2)

)
.

Then there exists a unique Slater-minimal aware uncertainty yS(x) in this game
that is continuous in x ∈ X.

Proof If αi = const � 0 (i ∈ N) and
N∑

i=1
αi > 0, then for each x ∈ X the minimizer

yS(x) = arg min
y∈Y

N∑

i=1

αifi(x, y) (3.5.12)

is [152, pp. 68–69] a Slater-minimal uncertainty [79, 80] in (3.5.11). On the other
hand, under the assumptions of Proposition 3.5.1, using (3.5.12) with αj = const >

0 and αk = 0 (k �= j, k ∈ N) leads to the desired result, see [14, p. 54]. �
Thus, in the game � the first move belongs to the players: they choose and then

report their pure strategies xi ∈ Xi (i.e., the strategy profile x = (x1, . . . , xN) ∈
X) to a DM, who is “in charge of” uncertainty design. The second move is given
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to the DM—he generates the Slater minimal uncertainty y(x) = yS(x) and then
reports it to each player. The third move is made by the players—in the induced
noncooperative game without uncertainty

�b = 〈 N, {Xi}i∈N, {fi(x, yS(x))}i∈N 〉, (3.5.13)

they find a Berge equilibrium xB∈X from the conditions

max
x∈X

fi

(
x||xB

i , yS

(
x||xB

i

))
= fi

(
xB, yS

(
xB
))

(i ∈ N). (3.5.14)

However, some difficulties may arise concerning the existence of pure-strategy
Berge equilibria xB = (xB

1 , . . . , xB
N) as game (3.5.13) evolves. (These equilibria

must satisfy the system of N equalities (3.5.14)). In fact, despite the continuity of
fi [x] = fi(x, yS(x)) (i ∈ N), there are numerous examples without an equilibrium
xB. Following the standard approach of mathematical game theory, we will consider
the mixed extension of game (3.5.13), i.e.,

�̃b = 〈 N, {μi}i∈N, {fi [μ]}i∈N 〉. (3.5.15)

By Theorem 2.9.1, game (3.5.15) possesses Berge equilibria μB(·) ∈ {μ} provided
the functions fi(x, yS(x)) are continuous in x∈X (i∈N). The Berge equilibria are
obtained from N equalities of the form

max
μ(·)∈{μ}

fi

[
μ||μB

i

]
= fi

[
μB
]

(i ∈ N). (3.5.16)

Next, for each compact set Xi , one considers the Borel σ -algebra of all subsets of
the set Xi and chooses as a mixed strategy μi(·) a nonnegative countably additive
scalar function μi(·) defined on this Borel σ -algebra that is normalized by unity
on Xi . Denote by {μi} the set of such mixed strategies. We introduce the product
measure μ(dx) =μ1(dx1) · · ·μN(dxN) and the set {μ} in the same way as before.
Finally, in (3.5.15) and (3.5.16) the expectations are the payoff functions of players,
i.e.,

fi [μ] =
∫

X

fi(x, yS(x))μ(dx) (i ∈ N).

Theorem 2.9.1 ensures the existence of a product measure μB(·)∈{μ} that satisfies
conditions (3.5.16). Furthermore, the set of such Berge equilibrium measures {μB}
is weakly compact (see Proposition 2.9.1).

We will study game (3.5.1) and associate with it the quasi-mixed extension

〈 N, {μi}i∈N, YX, {fi[μ]}i∈N 〉, (3.5.17)

where N = {1, . . . , N};
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Fig. 3.10 Sequence of moves in game (3.5.1) based on SGBE

X = ∏
i∈N Xi is the set of pure strategy profiles x = (x1, . . . , xN) ∈ X in

game (3.5.1);
{μi} stands for the set of mixed strategies μi(·) of player i ∈ N; a mixed strategy

profile is the product measure μ(·) = μ1(·) · · ·μN(·);
YX is regarded as the set of uncertain factors, i.e., counter-strategies y(x) :X→

Y;
fi [μ] =

∫

X fi(x, y(x))μ(dx) is the payoff function of player i in game (3.5.17),
which represents the expectation of the payoff function fi(x, y) = fi(x, y(x)) in
game (3.5.1) under any realizations of the strategy profile x ∈ X and continuous
uncertainty y(·)∈C(X, Y) (Fig. 3.10).

Definition 3.5.2 A pair (μ̄B(·), f̃ S) ∈ {μ}×R
N is called a Slater-guaranteed Berge

equilibrium in mixed strategies in game (3.5.1) if there exists an uncertainty, i.e., a
counter-strategy yS(x) : X → Y, such that

(1◦) for each strategy profile x ∈ X the uncertainty yS(x) is a Slater-minimal
alternative in the N-criteria choice problem

�(x) = 〈 Y, {f (x, y)} 〉,
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that is, for each x ∈ X the system of inequalities

fi(x, y) < fi(x, yS(x)) ∀y ∈ Y, i ∈ N,

is inconsistent;
(2◦) the mixed strategy profile μB(·) ∈ {μ} is a Berge equilibrium in the mixed

extension

〈 N, {μi}i∈N, {fi [μ] =
∫

X

fi(x, yS(x))μ(dx)}i∈N 〉

of the noncooperative game without uncertainty

〈 N, {Xi}i∈N, {fi(x, yS(x)) = fi[x]}i∈N 〉,

i.e., for μB(·) all the N equalities of the form (3.5.16) hold; denote by {μB}
the set of all μB(·);

(3◦) the strategy profile μ̄B(·) ∈ {μB} is a Slater-maximal alternative in the N-
criteria choice problem

〈 {μB}, {fi[μ]}i∈N 〉, (3.5.18)

i.e., for any μ(·) ∈ {μB} the system of N strict inequalities

fi [μ] > fi

[
μ̄B
]

(i ∈ N)

is inconsistent;
(4◦) the components f̃ S

i (i ∈ N) of the vector f̃ S = (f̃ S
1 , . . . , f̃ S

N) satisfy f̃ S
i =

fi [μ̄B] (i ∈ N).

3.5.3 Existence Theorem

He that will not apply new re-
medies must expect new evils.

—Bacon27

The central result of this section—the existence of a Slater-guaranteed Berge
equilibrium in mixed strategies in game (3.5.1) under standard assumptions of
mathematical game theory—is established.

27Sir Francis Bacon, (1561–1626), was an English lawyer, statesman, and philosopher.
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Theorem 3.5.1 Consider game (3.5.1) under the assumptions that

(1◦) the sets Xi (i∈N) and Y are convex and compact;
(2◦) the payoff functions fi(x, y) (i∈N) are continuous on X×Y and there exists

at least one number j ∈ N such that for each x ∈ X the function fj (x, y) is
strictly convex in y ∈ Y.

Then there exists a Slater-guaranteed Berge equilibrium in mixed strategies in
this game.

Proof Assumptions (1◦) and (2◦) of Theorem 3.5.1 in combination with Propo-
sition 3.5.1 imply the existence of a continuous uncertainty yS(x) : X → Y
on X that is Slater minimal in the N-criteria choice problem �(x) (3.5.11) for
each x ∈ X. Next, construct the noncooperative N-player game (3.5.13) without
uncertainty. In this game, the payoff functions fi(x, yS(x)) are continuous on X
as superpositions of the continuous functions fi(x, y) and yS(x). Then the mixed
extension (3.5.15) of game (3.5.13) possesses a Berge equilibrium μB(·) ∈ {μ}.
Denote by {μB} the set of all Berge equilibria μB(·). This set is weakly compact,
which follows from the same weak properties of {μ} and inequalities (3.5.16). But
then the set FB = {f [μB]|μB(·) ∈ {μB}} is also compact in R

N , and in addition
FB ⊂ F = {f [μ]| μ(·) ∈ {μ}}.

Consider the linear convolution
∑

i∈N αifi , where αi = const ≥ 0 (i ∈ N),
defined on the set FB . Due to the continuity on the compact set FB, there exists an
N-dimensional vector f̃ S = (f̃ S

1 , . . . , f̃ S
N) ∈ FB such that

max
f∈FB

∑

i∈N
αifi =

∑

i∈N
αi f̃

S
i .

Using f̃ S, find a mixed strategy profile μ̄B(·)∈ ∈{μB} for which

f̃ S
i = fi[μ̄B] (i ∈ N).

This profile μ̄B(·) is a Slater-maximal alternative in the N-criteria choice prob-
lem (3.5.18). Therefore, the resulting pair (μ̄B(·), f̃ S) ∈ {μ} × R

N is the
Slater-guaranteed Berge equilibrium in mixed strategies in game (3.5.1), as follows
directly from Definition 3.5.2. �
Remark 3.5.2 Let us discuss the game-theoretic meaning of Definition 3.5.2; recall
that f = (f1, . . . , fN ).

First, in accordance with condition (2◦) of this definition, every strategy profile
x∈X generates a vector guarantee f (x, yS(x)) in pure strategies, since for all y∈Y
all payoffs fi(x, y) cannot be simultaneously smaller than fi(x, yS(x)) (i ∈ N).
This expresses an analog of the inner minimum in maximin.

Second, inequalities (3.5.16) lead to

fi

[
x||μB

i

]
� fi

[
μB
]
∀x ∈ X (i ∈ N),
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because the Dirac δ-function δ(xi− x̄i)(dx̄i) is a probability measure from {μi} and
hence [22, p. 125]

f
[
x||μB

i

]
≮ f

[
μB
]
.

Hence, the mixed strategy Berge equilibrium μB(·) is stable against any pure
strategy deviations of the coalition of size N − 1.

Third, each vector guarantee f (x, yS(x)) in pure strategies (the Slater minimum
in �(x) = 〈Y, {f (x, y)}〉) yields a vector guarantee f [μ] in mixed strategies.
Really, the system of inequalities

f e
i [x] = fi(x, yS(x)) > fi(x, y) ∀ y = const ∈ Y, i ∈ N, (3.5.19)

is inconsistent for all x ∈ X if and only if, for each x ∈ X and each y ∈ Y, there
exists a corresponding number j (x, y) = j ∈ N such that

fj (x, yS(x)) � fj (x, y).

Integrating both sides with respect to x using an arbitrary mixed strategy profile
μ(·) ∈ {μ} as the integration measure gives

f S
j [μ]=

∫

X

fj (x, yS(x))μ(dx) �
∫

X

fj (x, y)μ(dx)=fj [μ, y] ∀ y= const∈Y,

which is equivalent to the following. Each mixed strategy profile μ(·) ∈ {μ}
yields the vector guarantee f S[μ] = (f S

1 [μ], . . . , f S
N [μ]), because for any y ∈ Y

all payoffs fi [μ, y] cannot be simultaneously smaller than f S
i [μ] (in terms of

component-wise comparison).
Fourth, by associating with the pure strategy game

〈 N, {Xi}i∈N, {fi(x, yS(x)) = f B
i [x]}i∈N 〉 (3.5.20)

its mixed extension

〈 N, {μi}i∈N, {f B
i [μ]}i∈N 〉, (3.5.21)

we have actually passed from the noncooperative game of vector guarantees (3.5.20)
in pure strategies to its mixed extension, i.e., the noncooperative game of vector
guarantees (3.5.21) in mixed strategies. Now, an analog of the outer maximum
in maximin is a sequential application of two operations, the calculation of all
Berge equilibria in game (3.5.15) and the construction of the Slater-maximal Berge
equilibrium μ̄B(·) among them. Consequently, by choosing their mixed strategies
and forming a mixed strategy profile μ(·) ∈ {μ}, the players obtain the payoffs
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fi [μ, y] = ∫X fi(x, y)μ(dx) that cannot be simultaneously smaller than f S
i [μ] =∫

X fi(x, yS(x))μ(dx) (i ∈ N) under any pure uncertainties y ∈ Y. Among all the
Berge equilibria μB(·) ∈ {μ}, the solution recommends that the players use the
Slater-maximal measure, i.e., the strategy profile μ̄B(·) ∈ {μB} yielding the largest
(Slater-maximal) vector payoff f̄ [μ̄B]. As a matter of fact, this expresses an analog
of the outer maximum in maximin. �



Chapter 4
Applications to Competitive Economic
Models

There is no branch of mathematics, however abstract,
which may not some day be applied to phenomena of the real world.

—Lobachevsky1

This chapter is devoted to a study of the equilibrium solutions (in the sense
of Berge and Nash) of the Cournot and Bertrand oligopoly models. As a special
case, the models with import as an uncertain disturbance are also analysed using
mathematical theory of noncooperative games.

4.1 The Cournot Oligopoly Model

Never let any Government imagine that it can choose perfectly safe courses;
rather let it expect to have to take very doubtful ones, because it is found

in ordinary affairs that one never seeks to avoid one trouble without
running into another; but prudence consists in knowing how to distinguish

the character of troubles, and for choice to take the lesser evil.
—Machiavelli2

Berge equilibria in the Cournot oligopoly model are constructed. A detailed
comparison of the Berge and Nash equilibria in this model is given. Conditions
under which the players obtain higher payoffs in a Berge equilibrium than in a
Nash equilibrium are established.

1Nikolay I. Lobachevsky, (1792–1856), was a Russian mathematician and founder of non-
Euclidean geometry.
2Niccolò Machiavelli, (1469–1527), was an Italian Renaissance political philosopher and states-
man, secretary of the Florentine republic. A quote from The Prince, Chapter XXI.
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4.1.1 Introduction

Start from inferiority
in order to reach superiority;

in other words, scratch your heels
rather than the back of your head.

—Kozma Prutkov3

In many large areas of economy (such as metallurgy, oil production and refining,
electronics), the main competition takes place among several companies that dom-
inate the market. The first models of such markets—oligopolies—were described
more than a 100 years ago by Cournot [226], Bertrand [205], and Hotelling [239].
Modeling of oligopolies continues in many modern works. For instance, in 2014
the Nobel Prize in Economic Sciences was awarded to J. Tirole “for his analysis
of market power and regulation in sectors with few large companies.” Tirole is
the author of The Theory of Industrial Organization [278], an excellent modern
textbook on the theory of imperfect competition [157–159, 162, 163].

Publications studying the behavior of oligopolies usually proceed from the
assumption that each company is primarily concerned with its own profits. This
approach meets the concept of Nash equilibrium [258], widely adopted to model
the behavior of players in a competitive market. The exact opposite of such a
“selfish” equilibrium is the “altruistic” concept of Berge equilibrium: without caring
about himself, each player acts (chooses strategies) so as to maximize the profits
of all other market participants. This concept appeared in Russia in 1994 and
was called Berge equilibrium in reference to C. Berge’s monograph [202], which
was originally published in French back in 1957. The first research works on the
concept of Berge equilibrium belong to Vaisman and Zhukovskiy [11, 13, 302].
Once it became known outside Russia, the concept of Berge equilibrium gradually
gained popularity, as witnessed by a large number of publications related to this
type of equilibrium. Most of them however deal with purely theoretical issues
or applications to psychology [223, 227]. To our knowledge there are only a few
researchers exploring Berge equilibrium in economic problems. Perhaps, this state
of affairs is to a large extent a consequence of Shubik’s critical review [269] of
Berge’s book [202] (“. . . The arguments have been presented in a rather abstract
manner and no attention has been paid to applications to economics. The book will
be of a little direct interest to economists. . . ”). As it turns out, things are not so
black and white. In Sect. 4.1, we will consider Berge equilibrium in the Cournot
oligopoly model and also its relationship to Nash equilibrium. What is important,
we will exhibit the cases in which the players gain greater profits by following the
concept of Berge equilibrium than by using the Nash equilibrium strategies.

3An English translation of a quote from [168, p. 239].
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4.1.2 Basic Notations and Definitions

Mathematics may be defined as the subject
in which we never know what we are talking about,

nor whether what we are saying is true.

—Russel

The concepts of Berge and Nash equilibria are formalized for the Cournot
oligopoly model.

Recall that we are considering a noncooperative N-player game identified with a
triplet [42–45]

� = 〈N, {Xi}i∈N, {fi(x)}i∈N〉. (4.1.1)

Here N = {1, 2, . . . , N} denotes the set of players (N > 1); each of N players
chooses his strategy (action) xi ∈ Xi ⊆ R

ni without forming coalitions with other
players (as before, Rk, k � 1, is the k-dimensional Euclidean space—the real
arithmetical space composed of all ordered collections of k real numbers written
as column vectors, with the standard scalar product and the Euclidean norm ‖ · ‖);
their choice forms a strategy profile

x = (x1, . . . , xN) ∈ X =
∏

i∈N
Xi ⊆ R

n (n =
∑

i∈N
ni)

in this game; the payoff function fi(x), defined on the set X, numerically assesses
the performance (quality) of player i (i ∈ N); in the sequel, we denote (x‖zi) =
(x1, . . . , xi−1, zi , xi+1, . . . , xN) and f = (f1, . . . , fN ).

Definition 4.1.1 A pair (xe, f e) = ((xe
1, . . . , x

e
N), (f1(x

e), . . . , fN (xe))
) ∈ X ×

R
N is called a Nash equilibrium in game (4.1.1) if

max
xi∈Xi

fi(x
e‖xi) = fi(x

e) (i ∈ N); (4.1.2)

in what follows, xe itself will be also called a Nash equilibrium in game (4.1.1).

Definition 4.1.2 A pair (xB, f B) = ((xB
1 , . . . , xB

N), (f1(x
B), . . . , fN (xB))) ∈ X×

R
N is called a Berge equilibrium in game (4.1.1) if

max
x∈X

fi(x‖xB
i ) = fi(x

B) (i ∈ N); (4.1.3)

by analogy, xB itself will be also called a Berge equilibrium in game (4.1.1).
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4.1.3 The Cournot Oligopoly and Equilibrium Strategies

Explicit forms of the Berge and Nash equilibria as well as corresponding
payoffs in the Cournot oligopoly model are found.

In 1838, Cournot [226] studied a market with domination of several large players
producing the same product. It was postulated in [226] that the market participants
are competing with each other for the market share by the law of demand and supply.
Later on, this model was called the Cournot oligopoly.

Thus, adhering to this pricing model, we will consider the Cournot oligopoly—a
market of a homogeneous product with N players (firms). Assign numbers from 1
to N to them and denote by N = {1, 2, . . . , N} the set of players. Let qi be the
quantity of products supplied by firm i (i ∈ N) during a given time period. In the
Cournot oligopoly, each quantity qi satisfies the constraints

α � qi � β (i = 1, . . . , N), (4.1.4)

where α > 0 and β are constants. The right inequality qi � β in (4.1.4) means
that the production capacity of each firm is limited, while the left inequality α � qi

requires from each firm to supply a guaranteed minimum quantity α in order to
be admitted to the market. In other words, the market has a regulating arbitrator
(e.g., government in the electricity market) that allows only large players with a
guaranteed minimum supply α regardless of the market price.

Next, assume that the production cost of player i (i ∈ N) is a linear function of
the quantity qi , i.e., can be written as cqi + d , where the constants c and d specify
the average variable and fixed cost, respectively. Variable cost includes, e.g., wages,
raw material purchases, and depreciation of equipment, while fixed cost includes
the rent of premises, land, equipment, licences, and so on.

The price p is determined by the law of supply and demand depending on the
total quantity q̄ = q1 + q2 + · · · + qN supplied by all players. Let the price p be a
linear function of the total supply as follows:

p(q̄) = a − bq̄, (4.1.5)

where a = const > 0 is an initial price and the positive constant b (known as the
elasticity coefficient) shows the price drop in response to unit product supply.

Suppose the resulting price balances the existing demand and supply. In other
words, each firm sells everything it produces. Thus, the revenue of player i (i ∈ N)

is

p(q̄)qi = (a − bq̄)qi =
[
a − b

∑

k∈N
qk

]
qi,
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and its profit (revenue minus cost) is

πi(qi, . . . , qN) =
[
a − b

∑

k∈N
qk

]
qi − (cqi + d). (4.1.6)

Finally, a natural hypothesis accepted in this model is that each firm determines
the quantity of its product, expecting the rational behavior of its competitors.

This economic interaction can be described by a noncooperative N-player game
of the form

〈N, {Qi = [α, β]}i∈N, {πi(q1, . . . , qN)}i∈N〉. (4.1.7)

Here, like in (4.1.1), N = {1, 2, . . . , N} denotes the set of players, and Qi = [α, β]
is the set of admissible strategies of player i (i ∈ N). All strategy profiles have the
form q = (q1, . . . , qN) ∈ Q = Q1 × Q2 × · · · × QN , while the payoff function
πi(q) = πi(q1, . . . , qN) of player i is given by (4.1.6).

Proposition 4.1.1 If a > c, then game (4.1.7) possesses a Berge equilibrium qB =
(qB

1 , qB
2 , . . . , qB

N), where qB
i = α (i ∈ N), and the corresponding payoffs of the

players are

πB
i = πi(q

B) = [a − Nbα]α − (cα + d) = [a − c]α − bNα2 − d.

Proof A Berge equilibrium in game (4.1.7) satisfies the system of N inequalities

πi(q‖qB
i ) � πi(q

B) ∀ q ∈ Q (i ∈ N), (4.1.8)

where, as before, (q‖qB
i ) = (q1, q2, . . . , qi−1, q

B
i , qi+1, . . . , qN).

With (4.1.6), inequalities (4.1.8) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
a − b

(
qB

1 + q2 + · · · + qN

)]
qB

1 − (cqB
1 + d)

�
[
a − b

(
qB

1 + qB
2 + · · · + qB

N

)]
qB

1 − (cqB
1 + d),

[
a − b

(
q1 + qB

2 + · · · + qN

)]
qB

2 − (cqB
2 + d)

�
[
a − b

(
qB

1 + qB
2 + · · · + qB

N

)]
qB

2 − (cqB
2 + d),

. . . . . . . . . . . . . . . .
[
a − b

(
q1 + q2 + · · · + qB

N

)]
qB
N − (cqB

N + d)

�
[
a − b

(
qB

1 + qB
2 + · · · + qB

N

)]
qB
N − (cqB

N + d).

They hold for all qi ∈ Qi (i ∈ N).
Clearly, a Berge equilibrium in game (4.1.7) is qB = (α, α, . . . , α), and the

corresponding payoffs πB
i (i ∈ N) are

πB
i = πi(q

B) = [a − Nbα]α − (cα + d) = [a − c]α − bNα2 − d.
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Indeed, by reducing its supply as much as possible, each player i (i ∈ N) increases
the profit of all other participants of game (4.1.7). �

Now consider game (4.1.7) with Nash equilibrium as its solution concept.

Proposition 4.1.2 If a > c, then game (4.1.7) possesses a Nash equilibrium

qe = (qe
1, q

e
2, . . . , q

e
N),

where for each i ∈ N the equilibrium strategy is calculated by

qe
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α, if
a − c

b(N + 1)
� α,

a − c

b(N + 1)
, if α <

a − c

b(N + 1)
< β,

β, if
a − c

b(N + 1)
� β.

(4.1.9)

The payoff of player i (i ∈ N) in the Nash equilibrium is given by

πe
i = πi(q

e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(a − c)α − bNα2 − d, if
a − c

b(N + 1)
� α,

(a − c)2

(N + 1)2b
− d, if α <

a − c

b(N + 1)
< β,

(a − c)β − bNβ2 − d, if
a − c

b(N + 1)
� β.

Proof A Nash equilibrium in (4.1.7) satisfies the system of N equalities (see
Definition 4.1.1)

π1(q
e) = max

q1∈[α,β]π1(q
e‖q1)

= max
q1∈[α,β]{[a − b(q1 + qe

2 + · · · + qe
N)]q1 − (cq1 + d)},

π2(q
e) = max

q2∈[α,β]π2(q
e‖q2)

= max
q2∈[α,β]{[a − b(qe

1 + q2 + · · · + qe
N)]q2 − (cq2 + d)}, (4.1.10)

. . . . . . . . . . . . . . .

πN(qe) = max
qN∈[α,β]πN(qe‖qN)

= max
qN∈[α,β]{[a − b(qe

1 + qe
2 + · · · + qN)]qN − (cqN + d)}.
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In (4.1.11), for each i ∈ N the symbol (qe‖qi) denotes a strategy profile qe in which
the strategy qe

i of player i is replaced by qi .
For each i ∈ N, the function πi(q

e‖qi) achieves maximum in the variable qi

under two conditions, namely,

∂πi(q
e‖qi)

∂qi

∣
∣
∣
∣
qi=qe

i

= [a − 2bqi − b
(
qe

1 + · · · + qe
i−1

+qe
i+1 + · · · + qe

N

)− c
]∣
∣
qi=qe

i
= 0, (4.1.11)

∂2πi(q
e‖qi)

∂q2
i

∣
∣
∣
∣
∣
qi=qe

i

= −2b < 0.

The second condition in system (4.1.12) holds since the elasticity coefficient is b >

0. For each i ∈ N, the first equality leads to the following system of N linear
equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2qe
1 + qe

2 + qe
3 + · · · + qe

N =
a − c

b
,

qe
1 + 2qe

2 + qe
3 + · · · + qe

N =
a − c

b
,

. . . . . . . . .

qe
1 + qe

2 + qe
3 + · · · + 2qe

N =
a − c

b
.

The solution is the strategy profile

qe = (qe
1, q

e
2, . . . , q

e
N) =

(
a − c

(N + 1)b
,

a − c

(N + 1)b
, . . . ,

a − c

(N + 1)b

)

.

Under the condition α <
a − c

b(N + 1)
< β, the resulting strategies qe

i (i ∈
N) maximize the functions πi(q

e‖qi) on the interval [α, β] and hence are Nash
equilibrium strategies in game (4.1.7).

In the case
a − c

b(N + 1)
� α, the second inequality in (4.1.12) implies that each of

the functions πi(q
e‖qi) (i ∈ N) is monotonically decreasing on the interval [α, β].

Therefore, the maxima in (4.1.11) are achieved at qe
i = α (i ∈ N).

If
a − c

b(N + 1)
� β, then for each i ∈ N the function πi(q

e‖qi) is monotonically

increasing on [α, β]. Accordingly, equalities (4.1.11) hold at qe
i = β (i ∈ N).

Combining the three cases above, we conclude that the Nash equilibrium
strategies in game (4.1.7) are given by formula (4.1.9).
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Let us calculate the payoffs πi(q
e) in the strategy profile (4.1.9) (i ∈ N).

Substituting expressions (4.1.9) into the payoff functions (4.1.6) yields the Nash
equilibrium payoffs in game (4.1.7) for each player i ∈ N. In particular, under the

condition
a − c

b(N + 1)
� α, we find that

πe
i = πi(α, α, . . . , α) = [a − bNα] α − (cα + d) = (a − c)α − bNα2 − d.

In the case where
a − c

b(N + 1)
� β, the Nash equilibrium payoff of player i is

πe
i = πi(β, β, . . . , β) = [a − bNβ] β − (cβ + d) = (a − c)β − bNβ2 − d.

Finally, if α <
a − c

b(N + 1)
< β, the Nash equilibrium payoff is

πe
i = πi

(
a − c

(N + 1)b
,

a − c

(N + 1)b
, . . . ,

a − c

(N + 1)b

)

=
[

a − bN
a − c

(N + 1)b

]
a − c

(N + 1)b
−
(

c
a − c

(N + 1)b
+ d

)

= (a − c)2

(N + 1)b
− (a − c)2

(N + 1)b
· N

N + 1
− d = (a − c)2

(N + 1)2b
− d.

Summarizing, the payoff of player i in the Nash equilibrium profile has the form

πe
i = πi(q

e) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(a − c)α − bNα2 − d, if
a − c

b(N + 1)
� α,

(a − c)2

(N + 1)2b
− d, if α <

a − c

b(N + 1)
< β,

(a − c)β − bNβ2 − d, if
a − c

b(N + 1)
� β.

�

4.1.4 Comparison of Payoffs: Berge Equilibrium
vs. Nash Equilibrium

It would not be an overstatement to say that,
with the recent development of computing means and

advances in mathematical logic, contemporary mathematics
has entered a new period in which the focus of research
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is shifting from an object under study towards the ways and forms
to define it; from problems themselves to possible methods of solution.

—Aleksandrov4

In this section, the advantages provided by Berge equilibrium in real applica-
tions are demonstrated for the first time in economic research. More specifically,
using the Cournot oligopoly model, the cases in which the firms obtain higher
payoffs in the Berge equilibrium than in the traditional Nash equilibrium are
exhibited.

Let us compare the payoffs yielded by the Berge equilibrium strategies with
their counterparts in the case of Nash equilibrium. Again we consider three cases as
follows.

Case I. If
a − c

b(N + 1)
� α, the Nash equilibrium strategies xe

i defined by (4.1.9)

coincide with the Berge equilibrium strategies xB
i = α (i ∈ N). Hence,

the players have the same payoffs in the Nash equilibrium as in the Berge
equilibrium, i.e.,

πe
i = πB

i for
a − c

b(N + 1)
� α. (4.1.12)

Case II. Under the inequality α <
a − c

b(N + 1)
< β, the payoff of player i (i ∈ N)

in the Nash equilibrium is

πe
i = πi(q

e) = (a − c)2

(N + 1)2b
− d,

while the Berge equilibrium payoff is

πB
i = πi(q

B) = α[a − c − bNα] − d.

Their difference equals

πe
i − πB

i =
(

(a − c)2

(N + 1)2b
− d

)

−
(

(a − c)α − bNα2 − d
)

= bNα2 − (a − c)α + (a − c)2

(N + 1)2b

= bN

(

α − a − c

(N + 1)b

)

·
(

α − a − c

N(N + 1)b

)

.

4Aleksandr D. Aleksandrov, (1912–1999), was a Soviet and Russian mathematician, physicist,
philosopher, and mountaineer. An English translation of a quote from the book Mathematics: Its
Contents, Methods and Meaning, Moscow, 1956, vol. 1, p. 59.
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Because the game involves at least two players (N > 1) and a − c > 0,

a − c

N(N + 1)b
<

a − c

(N + 1)b
.

Recall that the guaranteed minimum quantity and the elasticity coefficient are
α > 0 and b > 0. Hence, the difference πe

i − πB
i is positive if

0 < α <
a − c

N(N + 1)b
,

negative if

a − c

N(N + 1)b
< α <

a − c

(N + 1)b
,

and zero if

α = a − c

N(N + 1)b
.

Thus, for all i ∈ N,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

πe
i > πB

i , if α <
a − c

N(N + 1)b
and

a − c

(N + 1)b
< β,

πe
i = πB

i , if α = a − c

N(N + 1)b
and

a − c

(N + 1)b
< β,

πe
i < πB

i , if
a − c

N(N + 1)b
< α <

a − c

(N + 1)b
< β.

(4.1.13)

Finally, consider

Case III. In this case, α < β � a − c

(N + 1)b
, and the Nash equilibrium strategy of

firm i is to supply the maximum possible quantity of products in the market, i.e.,
xe
i = β (i ∈ N). Its profit in the Nash equilibrium is

πe
i = (a − c)β − bNβ2 − d.

Following the concept of Berge equilibrium, the player has to reduce the supplied
quantity down to the guaranteed minimum, i.e., xB

i = α (i ∈ N). The
corresponding Berge equilibrium payoff is

πB
i = (a − c)α − bNα2 − d.
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b

a

a–c

a–c
(N+1)b

(N+1)b
a–c a–c a–c a–c

N(N+1)b

Nb

2Nb Nb

a–c

a +  b

Nb

K

L

M

II
III

I

Fig. 4.1 Comparison of payoffs in Berge and Nash equilibria

Consider the difference of the players’ payoffs in the Nash and Berge equilibria
within the Cournot oligopoly model (4.1.7). For player i ∈ N,

πe
i − πB

i = (a − c)β − bNβ2 − d −
[
(a − c)α − bNα2 − d

]

= (a − c)(β − α)− bN(β2 − α2) = (β − α) · [a − c − bN(β + α)] .

Since β > α, the difference has the same sign as the decreasing linear function

a − c − bN(α + β).

This function changes sign if α+β = a − c

bN
. Hence, the difference πe

i −πB
i vanishes

when α + β = a − c

bN
(see the segment LM in Fig. 4.1). For α + β <

a − c

bN
, the

difference πe
i − πB

i takes positive values; for α + β >
a − c

bN
, negative values.
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Consequently, in the case α < β � a − c

(N + 1)b
, the payoffs of player i in the

Berge and Nash equilibria, πB
i and πe

i , satisfy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

πe
i > πB

i , if α + β <
a − c

Nb
and α < β,

πe
i = πB

i , if α + β = a − c

Nb
and α < β,

πe
i < πB

i , if α + β >
a − c

Nb
and α < β.

(4.1.14)

Bringing together all the three cases, using formulas (4.1.12)–(4.1.14) we easily
obtain a complete comparison of the Berge and Nash equilibrium payoffs of player
i (i ∈ N) in game (4.1.7) (see Fig. 4.1). Within domain I, the payoff πe

i in the Nash
equilibrium is greater than its counterpart πB

i in the Berge equilibrium.
Within domain II, the opposite holds, as the Berge equilibrium yields a higher

payoff for player i (i ∈ N) than the Nash equilibrium.
Within domain III and also on the jogged line KLM, the payoffs of all players in

the two types of equilibria coincide.

Remark 4.1.1 Propositions 4.1.1 and 4.1.2 as well as Sect. 4.1.3 justify the fol-
lowing method for selecting solutions (as set of players’ strategies) in the Cournot
oligopoly model.

Step I. For the given constants a, b, c, and N , calculate the four values

a − c

N(N + 1)b
,

a − c

2Nb
,

a − c

(N + 1)b
,

a − c

Nb
.

Step II. Using these values, draw domains I–III as illustrated in Fig. 4.1.
Step III. Determine the values α∗ and β∗ that specify the “corridors” of admissi-

ble supply quantities qi .
Step IV. Find the point (α∗, β∗) in Fig. 4.1 and identify the domain it belongs to.

Finally, using Propositions 4.1.1 and 4.1.2 and also the results derived in
Sect. 4.1.3, write the explicit form of the equilibrium solution—the equilibrium
profile and corresponding payoffs of all players.

In conclusion, let us re-emphasize a crucial aspect: the comparative analysis
performed in this section breaks the dominating stereotype imposed by M. Shubik
that the altruistic Berge equilibrium is fruitless for economic problems. Hopefully,
these pioneering results on an efficient use of Berge equilibrium in competitive
economic models will be further developed to cover other economic applications.
Thus, Berge equilibrium will take a worthy place in economics, just like in
psychology and sociology (e.g., see surveys in [223, 227]). Some steps towards the
realization of these hopes will be made in the forthcoming sections of the book.
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4.2 The Cournot Duopoly with Import

In the development of mathematics, it is easy to observe three major trends
that are intrinsic to Russian mathematics as well. The first trend

concerns an intensive elaboration of separate branches of mathematics,
with further differentiation and fragmentation, the appearance of new and

narrow directions of research that have specific problems and methods of analysis . . .
The second trend is, to some extent, opposite to the first, seeking for

an extensive coverage of the subject of mathematics and revealing the ideas that
connect its different parts for further development using some general methods. . .

The third trend of modern mathematics, which is of crucial importance and
actually a continuation of the best traditions of its classical development,
consists in an organic link between theory and practice, in aspiration for

filling the subject of mathematics with a particular content through a wide use of
mathematical methods in natural and technical problems.

—Vekua∗5

In a series of papers [73, 74], new concepts of guaranteed equilibria in noncoop-
erative games under uncertainty were suggested. In this section, we will exhibit two
types of such equilibria in the Cournot duopoly with import, which plays the role of
an uncertain factor.

4.2.1 Mathematical Model

In ancient times the mathematical problems were set by the Gods, as,
for example, the problem of the doubling the cube, in connection with

the alteration in the dimensions of the Delphic altar.
Then, in a later period, the problems were set by the Demigods:

Newton, Euler, Lagrange. Today we have a third period,
when problems are set by practice.

—Chebyshev∗6

The Cournot oligopoly model with two restrictions is considered. First, only
two players (firms) are engaged in the noncooperative game. Second, import is
incorporated in the model as an interval uncertainty.

Recall that in the Cournot duopoly model two firms (termed players 1 and 2)
are competing in a homogeneous product market. Let q1 and q2 be the quantities
of products supplied by them during a given time period. Imagine that another firm
(importer) enters the market, and both players know nothing about the intentions and
quantity of products supplied by it. They can merely hypothesize that this quantity

5Ilya N. Vekua, (1907–1977), was a distinguished Georgian mathematician; see the Short
Biographies at the end of the book. An English translation of a quote from Nature, 1957, no. 11.
6Pafnuty L. Chebyshev, (1821–1894), was the founder of the St. Petersburg mathematical school;
see the Short Biographies at the end of the book. An English translation of a quote from
Encyclopedia of Mathematics, Grave D.A., Ed., Kiev, 1912, p. 10.
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has some nonnegative value y ∈ [0,+∞). The production cost of player i is a linear
function of the quantity qi (i = 1, 2), i.e., can be written as cqi + d , where the
constants c and d specify the average variable and fixed cost, respectively. Variable
cost covers, e.g., wages, raw material purchases, and depreciation of equipment,
while fixed cost covers the rent of premises, land, equipment, licences, etc. The
price p is determined by the law of supply and demand depending on the total
quantity q̄ = q1+q2+y supplied by all players. Let the price p be a linear function
of the total supply: p(q̄) = a − bq̄, where a = const > 0 is an initial price and
the positive constant b (the elasticity coefficient) characterizes the price drop in
response to unit product supply. Suppose the resulting price balances the existing
demand and supply. In other words, each firm sells everything it produces. Thus,
the revenue of player 1 is [291–294]

p(q̄)q1 = (a − bq̄)q1 = [a − b (q1 + q2 + y)] q1,

and its profit (revenue minus cost) is

ψ1(q1, q2, y) = [a − b (q1 + q2 + y)] q1 − (cq1 + d)

= aq1 − bq2
1 − bq1q2 − byq1 − cq1 − d. (4.2.1)

The profit of player 2 has the form

ψ2(q1, q2, y) = [a − b (q1 + q2 + y)] q2 − (cq2 + d)

= aq2 − bq1q2 − bq2
2 − byq2 − cq2 − d. (4.2.2)

Each firm defines the quantity of its product, expecting the rational behavior of
the competitor and also any realization of the uncertain factor (the quantity supplied
by the importer).

Following Germeier’s principle of guaranteed result, we will assume that each
player i (i = 1, 2) seeks to maximize the payoff function

Fi(q1, q2, y) = ψi(q1, q2, y)+ y2 (4.2.3)

with an appropriate choice of the quantity qi .
The first term in (4.2.3) represents the profit of player i while the second compels

him to oppose the uncertainty as much as possible.

Remark 4.2.1 The presence of y2 in (4.2.3) can be also explained in the following
way. For each player i (i = 1, 2), we actually study a bi-criteria choice problem
in which the first criterion is his profit ψi(q1, q2, y) and the second criterion agrees
with the principle of guaranteed result: player i should take decisions in response to
the worst-case uncertainty that “maximally spoils his life” with largest admissible
values. This recommendation leads to the second criterion y2, also maximized by
player i. Therefore, the bi-criteria choice problem arising for each player has two
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criteria to be maximized, the profit and y2. The linear convolution of these criteria
with positive coefficients (here both equal to 1) produces the payoff function (4.2.3).
And it suffices to maximize this convolution in order to obtain the Pareto-maximal
alternative in the bi-criteria choice problem.

An ordered quadruple

� = 〈{1, 2}, {Xi = [0,+∞)}i=1,2, Y = [0,+∞) , {Fi(x, y)}i=1,2〉

forms a noncooperative two-player game under uncertainty. Here 1 and 2 are the
numbers of players; their strategies are qi ∈ Xi = [0,+∞). By choosing specific
strategies, the players construct a strategy profile x = (q1, q2) ∈ X = X1 × X2 in
the game. Some nonnegative value of the uncertainty y ∈ Y is realized regardless of
their choice. The payoff function Fi(x, y) (4.2.3) of player i is defined on all pairs
(x, y) ∈ X×Y.

Below we will employ two solution concepts, namely, strongly-guaranteed
equilibrium and Pareto-guaranteed equilibrium, which were proposed in the papers
[73, 74].

4.2.2 Strongly-Guaranteed Equilibrium

One of the endlessly alluring aspects of mathematics
is that its thorniest paradoxes have a way of

blooming into beautiful theories.
—Davis7

The concept of strongly-guaranteed equilibrium (SGE) is formalized on the
basis of [74]. This concept lies at the junction of maximin and Nash equilibrium.
Using strategic uncertainties y(x) : X → Y, an explicit form of the SGE in the
Cournot oligopoly model with import is obtained.

Definition 4.2.1 A strongly-guaranteed equilibrium (SGE) in the game � is a
triplet (xN, F N

1 , F N
2 ) ∈ X×R

2 for which there exist two functions y(i)(x) : X → Y
such that

first, for each strategy profile x ∈ X the strategic uncertainty y(i)(x) : X → Y is
unique and maximal in the bi-criteria choice problem

〈Y, Fi (x, y)〉 (i = 1, 2),

7Philip J. Davis, (1923–2018), was an American mathematician.
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Fig. 4.2 SGE design

i.e.,

min
y∈Y

Fi(x, y) = Fi(x, y(i)(x)) = Fi [x] ∀ x ∈ X (i = 1, 2); (4.2.4)

second, the strategy profile xN = (xN
1 , xN

2 ) is a Nash equilibrium in the game of
guarantees

�g = 〈{1, 2}, {Xi}i=1,2, {Fi [x]}i=1,2〉,

i.e.,

max
x1∈X1

F1[x1, x
N
2 ] = F1[xN

1 , xN
2 ] = F N

1 ,

max
x2∈X2

F2[xN
1 , x2] = F2[xN

1 , xN
2 ] = F N

2 .
(4.2.5)

A hierarchical interpretation of SGE is a two-level three-stage game described
as follows (see Fig. 4.2). In the first stage (move), two players occupying the upper
level send all their admissible strategy profiles x = (x1, x2) ∈ X to the lower level.

The second stage (move) involves the lower-level player; for each i = 1, 2 and
each strategy profile x ∈ X, this player forms the guarantees Fi [x] � Fi(x, y)

∀ y ∈ Y (i = 1, 2) and then sends them to the upper level.
In the third stage (move), the players participate in the game of guarantees

�g = 〈{1, 2}, {Xi}i=1,2, {Fi [x]}i=1,2〉

and, using (4.2.5), find the Nash equilibrium and the corresponding payoffs F N
i =

Fi [xN] (i = 1, 2). The resulting pair (xN, F N = (F N
1 , F N

2 )) forms the SGE of the
game �.

The players are suggested to use the strategies (xN
1 , xN

2 ), because if the actions
of the two players lead to a strategy profile x = (x1, x2), then Fi(x, y) � Fi [x]
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∀ y ∈ Y (i = 1, 2). In other words, the payoff of each player i cannot be smaller
than its guarantee

Fi [x] = min
y∈Y

Fi(x, y) (i = 1, 2)

under any realization of the uncertainty y ∈ Y. Hence, as the uncertain factor y may
take arbitrary values from Y, using their strategies from the profile x = (x1, x2) both
players may firmly count on their guarantees Fi[x] (i = 1, 2) only. In this case, a
natural approach (see Chap. 3 and the papers [73, 74]) is to choose as a solution of
the game � the strategy profiles xN ∈ X that implement the Nash equilibrium in the
game of guarantees �g. Thus, we have justified the following design method for the
strongly-guaranteed equilibrium in the game �.

(a) find two scalar functions y(i)(x) : X → Y (i = 1, 2) such that

Fi [x] = min
y∈Y

Fi(x, y) = Fi(x, y(i)(x)) ∀ x ∈ X (i = 1, 2);

(b) for the game of guarantees

�g = 〈{1, 2}, {Xi}i=1,2, {Fi[x]}i=1,2〉,

construct the Nash equilibrium xN defined by equalities (4.2.5).

The resulting triplet (xN, F N
1 , F N

2 ) is the strongly-guaranteed equilibrium in the
game �.

Proposition 4.2.1 In the game � with b > 0, d <
5(a − c)2

49b
, and a > c, the

strongly-guaranteed equilibrium has the form

((xN
1 , xN

2 ), (F N
1 , F N

2 )) =
((

2(a − c)

7b
,

2(a − c)

7b

)

,

(
5(a − c)2

49b
,

5(a − c)2

49b

))

.

Proof Apply the above-mentioned procedure to the mathematical model of the
Cournot duopoly with import—the game �. Let us implement steps (a) and (b).

(a) For the payoff function of player 1,

F1(x, y) = [a − b(x1 + x2 + y)]x1 − (cx1 + d)+ y2,

construct the function

y(1)(x) = arg min
y∈Y

Fi(x, y) ∀x ∈ X.



136 4 Applications to Competitive Economic Models

A sufficient condition consists of

∂F1(x, y)

∂y

∣
∣
∣
∣
y=y(1)(x)

= −bx1 + 2y(1)(x) = 0 ∀x ∈ X,

∂2F1(x, y)

∂y2

∣
∣
∣
∣
y=y(1)(x)

= 2 > 0.

Hence, y = y(1)(x) = bx1

2
, and therefore

F1[x] = min
y∈Y

F1(x, y) = F1(x, y(i)(x)) =
[

a − b

(
3x1

2
+ x2

)]

x1

−(cx1 + d)+ bx2
1

4
= ax1 − 5

4
bx2

2 − bx1x2 − (cx1 + d),

F2[x] = min
y∈Y

F2(x, y) = ax2 − 5

4
bx2

1 − bx1x2 − (cx2 + d).

(b) Conditions (4.2.5) hold if

∂F1[x1, x
N
2 ]

∂x1

∣
∣
∣
∣
∣
x1=xN

1

= (a − c)− 5

2
bxN

1 − bxN
2 = 0,

∂2F1[x1, x
N
2 ]

∂x2
1

= −5

2
b < 0,

∂F2[xN
1 , x2]

∂x2

∣
∣
∣
∣
∣
x2=xN

2

= (a − c)− bxN
1 −

5

2
bxN

2 = 0,

∂2F2[xN
1 , x2]

∂x2
2

= −5

2
b < 0.

This leads to the following system to calculate xN = (xN
1 , xN

2 ):

⎧
⎪⎨

⎪⎩

5xN
1 + 2xN

2 = 2
a − c

b
,

2xN
1 + 5x2 = 2N a − c

b
.
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Then

xN
i =

2(a − c)

7b
(i = 1, 2),

and finally

F N
i = Fi [xN] = 5(a − c)2

49b
− d (i = 1, 2).

�

4.2.3 Pareto-Guaranteed Equilibrium

As a rule, it happens that natural phenomena and
economic processes are wider than available mathematical tools.

This is a permanent motivation for further development of
mathematics, its concepts and theories.

—Gnedenko8

As in Sect. 4.2.2, the concept of Pareto-guaranteed equilibrium in which the
payoffs are not smaller than in the strongly-guaranteed equilibrium is introduced.
This concept was proposed in [74] at the junction of Pareto minimum and Nash
equilibrium.

The guarantees FN
i (i = 1, 2) obtained in Proposition 4.2.1 are smallest.

However, the players seek for maximum payoffs and hence for as high guarantees
as possible. Therefore, we will adopt the guarantees that are not smaller than their
counterparts from Sect. 4.2.1.

Definition 4.2.2 A Pareto-guaranteed equilibrium (PGE) in the game � is a triplet
(xe, ψe

1 , ψe
2) for which there exists a function yP(x) : X → Y such that

first, for each strategy profile x ∈ X the function yP(x) is a Pareto-minimal
uncertainty in the bi-criteria choice problem

〈 Y, {Fi(x, y)}i=1,2 〉,

which is derived from � for each fixed strategy profile x = (x1, x2) ∈ X; i.e., under
each frozen profile x ∈ X the system of inequalities

Fi(x, y) � Fi(x, yP(x)) ∀ y ∈ Y (i = 1, 2),

with at least one strict inequality, is inconsistent;

8Boris V. Gnedenko, (1912–1995), was a Soviet mathematician and student of A. N. Kolmogorov.
An English translation of a quote from Kvant, 1977, no. 11, p. 26.
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second, the strategy profile xe = (xe
1, x

e
2) is a Nash equilibrium in the game

(without uncertainty)

〈{1, 2}, {Xi}i=1,2, {Fi(x, yP(x))}i=1,2〉,
which is obtained from the game � by replacing the uncertainty y with its realization
yP(x).

In addition, xe is called a Pareto-guaranteeing equilibrium while F e = (F e
1 , F e

2 ),
F e

i = Fi(x
e, yP(xe)) (i = 1, 2), is called the corresponding vector guarantee of

player i.
A Pareto-guaranteed equilibrium (PGE) in the Cournot duopoly with import is a

triplet (xe, ψe
1 , ψe

2 ), where the Pareto-guaranteeing strategy profile xe = (xe
1, x

e
2) is

the same as in the PGE of the game �, while ψe
i = ψi(x

e, yP (xe)) (i = 1, 2) are the
players’ profits included in their guaranteed payoff (F e

i = Fi(x
e
1, x

e
2, yP(xe

1, x
e
2))

for firm i, i = 1, 2).

4.2.3.1 Design Algorithm for Pareto-Guaranteed Equilibrium

In accordance with Definition 4.2.2, we suggest the following design algorithm for
the PGE in the Cournot duopoly model with import.

Step I. Pareto inner minimum calculation: find a continuous function yP(x) :
X → Y that yields the Pareto minimum in the bi-criteria choice problem

〈 Y = [0,+∞) , {Fi(x, y)}i=1,2 〉 ∀x ∈ X, (4.2.6)

which is obtained from the game � for each fixed strategy profile x = (x1, x2) ∈
X;

Step II. Nash equilibrium calculation: find the Nash equilibrium xe = (xe
1, x

e
2)

in the game of guarantees (without uncertainty)

〈{1, 2}, {Xi = [0,+∞)}i=1,2, {Fi(x, yP(x))}i=1,2〉, (4.2.7)

which is obtained from the game � by substituting the Pareto-minimal uncer-
tainty yP = yP(x);

Step III. Calculation of the profits ψe
i : find the players’ profits ψi(x

e
1, x

e
2,

yP(xe
1, x

e
2)) = ψe

i (i = 1, 2).

4.2.3.2 Pareto Inner Minimum Calculation

For the sake of compactness, we will further adopt the form

Fi(x, y) = ψi(q1, q2, y)+ y2

2
(i = 1, 2),

where ψi(q1, q2, y) are given by (4.2.1) and (4.2.2).
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Lemma 4.2.1 Suppose there exist values α, β > 0 and a scalar function yP(x) :
X → Y such that, for each x ∈ X,

min
y∈Y

[αF1(x, y)+ βF2(x, y)] = Idem [y → yP(x)] ,

where Idem [y → yP(x)] denotes the bracketed expression with y replaced by
yP(x). Then for each x ∈ X the function yP(x) is Pareto minimal in the bi-criteria
choice problem (4.2.6).

Proof of this result can be found in almost every textbook on multicriteria
optimization.

Lemma 4.2.2 The uncertainty

yP(x1, x2) = b(x1 + x2)

2

is Pareto minimal in the bi-criteria choice problem (4.2.6) for each strategy profile
x = (x1, x2) ∈ [0,+∞)2.

Proof Consider the function

F(x, y) = F1(x, y)+ F2(x, y) = ψ1(x1, x2, y)+ ψ2(x1, x2, y)+ y2

= a(x1 + x2)− b(x1 + x2)
2 − by(x1 + x2)− c(x1 + x2)− 2d + y2.

For each fixed x = (x1, x2) ∈ X, the minimal value of this function is achieved at

yP(x) = b(x1 + x2)

2
because

∂F

∂y

∣
∣
∣
∣
y=yP(x)

= −b(x1 + x2)+ 2yP(x) = 0

and

∂2F

∂y2

∣
∣
∣
∣
y=yP(x)

= 2 > 0.

Hence, by Lemma 4.2.1 with α = β = 1, the uncertainty yP(x) = b(x1 + x2)

2
is

Pareto minimal in the bi-criteria choice problem (4.2.6). �
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4.2.3.3 Nash Equilibrium Calculation

Proposition 4.2.2 For b > 0 and a > c, the Nash equilibrium in game (4.2.7) has
the form

xe = (xe
1, x

e
2) =

(
a − c

b(3+ b)
,

a − c

b(3+ b)

)

.

Proof Using the uncertainty yP(x) found in Lemma 4.2.2 as well as formulas (4.2.2)
and (4.2.3), we obtain

F1(x, yP(x)) = ax1 − bx2
1 − bx1x2

−b2(x1 + x2)

2
x1 − cx1 − d + b2(x1 + x2)

2

8
,

F2(x, yP(x)) = ax2 − bx2
2 − bx1x2

−b2(x1 + x2)

2
x2 − cx2 − d + b2(x1 + x2)

2

8
. (4.2.8)

The sufficient conditions for the existence of a Nash equilibrium xe = (xe
1, x

e
2) in

game (4.2.7) can be reduced to the following combined equalities and inequalities:

∂F1

∂x1

∣
∣
∣
∣
x=xe

= a − 2bxe
1 − bxe

2 −
b2

2
(2xe

1 + xe
2)− c+ b2

4
(xe

1 + xe
2) = 0, (4.2.9)

∂2F1

∂x2
1

∣
∣
∣
∣
∣
x=xe

= −2b − 3b2

4
< 0, (4.2.10)

∂F2

∂x2

∣
∣
∣
∣
x=xe

= a− bxe
1− 2bxe

2−
b2

2
(xe

1+ 2xe
2)− c+ b2

4
(xe

1+ xe
2) = 0, (4.2.11)

∂2F2

∂x2
2

∣
∣
∣
∣
∣
x=xe

= −2b− 3b2

4
< 0. (4.2.12)

Conditions (4.2.10) and (4.2.12) hold because b > 0, while (4.2.9) and (4.2.11) rep-
resent a system of two linear inhomogeneous equations with constant coefficients,

⎧
⎪⎪⎨

⎪⎪⎩

(

2b + 3b2

4

)

xe
1 +

(

b + b2

4

)

xe
2 = a − c,

(

b + b2

4

)

xe
1 +

(

2b + 3b2

4

)

xe
2 = a − c.

(4.2.13)
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The determinant of this system is

� =

∣
∣
∣
∣
∣
∣
∣

2b+ 3b2

4
b + b2

4

b + b2

4
2b+ 3b2

4

∣
∣
∣
∣
∣
∣
∣

=
(

2b + 3b2

4

)2

−
(

b + b2

4

)2

= (3b + b2)

(

b + b2

2

)

,

and � �= 0 by b > 0.
Calculating the determinants

�1 =

∣
∣
∣
∣
∣
∣
∣

a − c b + b2

4

a − c 2b + 3b2

4

∣
∣
∣
∣
∣
∣
∣

= (a − c)

∣
∣
∣
∣
∣
∣
∣

1 b + b2

4

1 2b + 3b2

4

∣
∣
∣
∣
∣
∣
∣

= (a − c)

(

2b + 3b2

4
− b − b2

4

)

= (a − c)

(

b + b2

2

)

,

�2 =

∣
∣
∣
∣
∣
∣
∣

2b + 3b2

4
a − c

b + b2

4
a − c

∣
∣
∣
∣
∣
∣
∣

= (a − c)

∣
∣
∣
∣
∣
∣
∣

2b + 3b2

4
1

b + b2

4
1

∣
∣
∣
∣
∣
∣
∣

= (a − c)

(

2b + 3b2

4
− b − b2

4

)

= (a − c)

(

b + b2

2

)

we finally write the solution of system (4.2.13) as

xe
1 = xe

2 =
�1

�
= �2

�
=

(a − c)

(

b + b2

2

)

(3b + b2)

(

b + b2

2

) = a − c

b(3+ b)
> 0.

�
Proposition 4.2.3 The Pareto-guaranteed equilibrium in the Cournot duopoly with
import is the triplet (xe, ψe

1 , ψe
2 ), where

xe = (xe
1, x

e
2) =

(
a − c

b(3+ b)
,

a − c

b(3+ b)

)

and the corresponding profit of firm i is

ψe
i = ψi(x

e
1, x

e
2, yP (xe

1, x
e
2)) =

(a − c)2

b(3+ b)2 − d (i = 1, 2).
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Proof Taking advantage of Proposition 4.2.2, we merely have to calculate the
profits ψe

i and the guaranteed payoffs F e
i .

First, a direct substitution of xe into yP(x1, x2) = b(x1 + x2)

2
gives yP(xe

1, x
e
2) =

a − c

3+ b
.

Second, using xe = (xe
1, x

e
2) =

(
a − c

b(3+ b)
,

a − c

b(3+ b)

)

and yP(xe
1, x

e
2) =

a − c

3+ b
in (4.2.1)–(4.2.3), we easily find the guaranteed payoffs F e

i of the players, which
contain

ψe
i = ψi(x

e
1, x

e
2, yP(xe

1, x
e
2)) =

[
a − b

(
xe

1 + xe
2 + yP(xe

1, x
e
2)
)]

xe
i − (cxe

i + d)

=
[

a − b

(

2
a − c

b(3+ b)
+ a − c

3+ b

)]

· a − c

b(3+ b)
−
[

c(a − c)

b(3+ b)
+ d

]

= (a − c)2

b(3+ b)2 − d (i = 1, 2).

The guaranteed payoffs are

F e
i = Fi(x

e, yP(xe)) = ψe
i +

y2
P(xe)

2
=
(

a − c

3+ b

)2 2+ b

2b
− d (i = 1, 2). �

Remark 4.2.2 It follows from (4.2.8) that
∂2F1(x, yP(x))

∂x2
2

= b2

4
> 0. In accordance

with Table 2.1 (row 4) and (2.10.1), the noncooperative game of guarantees

〈{1, 2}, {Xi = R
ni }i=1,2, {Fi(x, yP(x))}i=1,2〉

possesses no Berge equilibria. At the same time, there exists a guaranteeing Nash
equilibrium in this game, and we have found its explicit form.

4.3 The Bertrand Duopoly Model

Wherever there is number, there is beauty.
—Proclus9

9Proclus, (c. 410–485 A.D.), was the last major ancient Greek philosopher.
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4.3.1 Mathematical Model

A writer only begins a book. A reader finishes it.
—Johnson10

In 1883, Bertrand [205] suggested a price competition model for duopoly
markets in which the strategy of each player is the unit price of products. Note that
Bertrand continued Cournot’s research [225]. The mathematical model developed
by Cournot proceeds from the assumption that both players (firms) choose the
quantity of supplied products while the unit price is determined by the law of supply
and demand. More specifically, the unit price is established at the level of buyers
demand for all products put in the market. On the other hand, Bertrand relied on
a more natural behavior of economic agents, assuming that each seller chooses not
the quantity of supplied products (like in the Cournot setup) but the unit price.11

As a rule, buyers consider the same-usage products supplied by different firms
as different products. Therefore, suppose each firm enters the market with its own
product but all products are substitutable.

Thus, assume there are two firms selling the same product in the market. Let the
strategy of each firm (player) be the unit price for its product. Thus, each firm i

chooses a unit price pi = const � 0 (i = 1, 2). The announcement of unit prices
by both players leads to a strategy profile—a unit price vector �p = (p1, p2). The
market demand for the product of player i (i ∈ {1, 2}) is assumed to be a linear
function of the announced unit prices, i.e.,

Q1(p) = q − l1p1 + l2p2, Q2(p) = q − l1p2 + l2p1. (4.3.1)

Here q specifies an initial demand and the elasticity coefficient l1 = const > 0
shows the demand drop in response to a unit price increase. In turn, the elasticity
coefficient l2 = const > 0 characterizes the demand rise in response to the unit
price increase of the substitute product. Denote by c > 0 the cost of unit product;
then the profit of firm i (further referred to as the payoff function of player i ∈ {1, 2})
is given by

f1( �p) = [q − l1p1 + l2p2](p1 − c),

f2( �p) = [q − l1p2 + l2p1](p2 − c).
(4.3.2)

10Samuel Johnson, byname Dr. Johnson, (1709–1784), was an English critic, biographer, essayist,
poet, and lexicographer.
11“PRICE, n. Value, plus a reasonable sum for the wear and tear of conscience in demanding
it.” An ironic definition that belongs to Ambrose Gwinnett Bierce, (1842–1914), an American
newspaperman and satirist.
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Consequently, the mathematical model of this competitive interaction between
the firms (sellers) can be described as the ordered triplet

� = 〈{1, 2}, {Pi = (c, β]}i=1,2, {fi( �p)}i=1,2〉. (4.3.3)

This noncooperative two-player normal form game uses the following notations:
{1, 2} is the set of players; β = const > c as a maximum unit price determined
by the market (and conscience!), sometimes regardless of the player’s preferences;
pi ∈ (c, β] as the strategy of player i—the unit price of product; �p = (p1, p2) as a
strategy profile, i.e., the price policy established in the market; fi( �p) as the payoff
function of player i, which measures its performance in a current strategy profile
�p = (p1, p2) ∈ P = P1 × P2; an explicit form of fi( �p) is given by (4.3.2).

The game � has several specific features, namely,
first, the maximum unit price β and cost c are assumed to be the same for both

players (a quite natural hypothesis for single-product markets);
second, the rules of this game forbid the coalition {1, 2} (which reflects the

noncooperative character of the game �);
and third, the unit price is pi � c (i = 1, 2) (otherwise, it makes no economic

sense for player i to enter the market).

4.3.2 Main Notions

In 1949, 21 years old American mathematician and economist J. Nash, at that
time a postgraduate of Princeton University, suggested an original concept of
equilibrium [257] in noncooperative games. As repeatedly mentioned throughout
the book, in 1994 J. Nash, J. Harsanyi and R. Selten were awarded the Nobel Prize
in Economic Sciences. For the game �, this concept can be defined as follows.

Definition 4.3.1 A pair ( �pe, �f ( �pe) = �f e) ∈ P × R
2 is called a Nash equilibrium

in the game � if

max
pi∈Pi

fi( �pe ‖ pi) = fi( �pe) (i = 1, 2); (4.3.4)

a strategy profile �pe = (pe
1, p

e
2) that satisfies (4.3.4) is also called a Nash

equilibrium.

Here and in the sequel, we use the standard notations of noncooperative games,
( �pe ‖ p1) = (p1, p

e
2) and ( �pe ‖ p2) = (pe

1, p2) for �p = (p1, p2). In addition,
introduce the vector �f = (f1, f2) ∈ R

2.
This concept of equilibrium has turned out to be very attractive in economics,

sociology, military sciences and other fields, causing “a whole star shower” of
Nobel Prizes in Economic Sciences, which is still not exhausted. However, there are
spots on the sun: condition (4.3.4) reflects selfish behavioral principles and, being



4.3 The Bertrand Duopoly Model 145

guided by (4.3.4), each player seeks to increase his own payoff only, ignoring the
interests of the others. In particular, with this concept of equilibrium each player
breaks the Golden Rule of ethics: “Do to others as you would like them to do to
you.” It originates from the New Testament, see the Gospel according to St. Luke,
Chapter 6:31, precepting that “And as ye would that men should do to you, do ye
also to them likewise.” Such an altruistic approach is implemented by the concept
of Berge equilibrium.

Definition 4.3.2 A pair ( �pB, �f ( �pB)) ∈ P × R
2 is called a Berge equilibrium in

the game � if

max
�p∈P

fi( �p ‖ pB
i ) = fi( �pB) (i = 1, 2); (4.3.5)

a strategy profile �pB = (pB
1 , pB

2 ) that satisfies (4.3.5) is also called a Berge
equilibrium.

As noted above, the concept of Berge equilibrium was suggested in 1994
by Russian mathematician K. Vaisman from Orekhovo-Zuevo State Pedagogical
Institute, see [11, 13, 302], in his Candidate of Sciences Dissertation. Sadly, Vaisman
died on March 10, 1998, after a struggle with cancer, not reaching even the age
of 36. The whole idea of this equilibrium appeared after a careful reading of C.
Berge’s book [202] and a brainstorming session on the advantages and drawbacks
of the Nash equilibrium �pe. It consists in replacing �pe with �pB, pi with pB

i and
�pe ‖ pi with �p ‖ pB

i in formula (4.3.4). Yet these simple modifications eliminate
the selfish character of Nash equilibrium. Indeed, following their strategies from the
Berge equilibrium �pB, the players forget about their individual interests, making
every effort to increase the payoffs of the other players. Such an altruistic approach
is cultivated by family relationships (of course, in tight-knit loving families!) and
religious communities. The elements of this altruism are inherent to charitable
associations, sponsors and kinsmen in general. Note that, on the strength of (4.3.5),
application of Berge equilibria rules out military conflicts and bloodletting. This
concept of equilibrium also provides a solution to the well-known Prisoner’s
Dilemma.

Unfortunately, the monograph [202] had an unenviable fate. Soon after publica-
tion, a well-recognized expert in game theory, M. Shubik wrote the review [269],
underlining that “. . . no attention has been paid to applications to economics” (in
our view, that is totally unfair) and “. . . the book will be of a little direct interest
to economists. . . ” (again, in our view, unfair). The latter judgement stimulated our
paper [70] with a detailed study of the Berge and Nash equilibria in the well-known
competitive Cournot oligopoly model [225], including the cases in which a Berge
equilibrium yields higher payoffs than a Nash equilibrium. The same problem, now
for the Bertrand duopoly model, will be treated in the current section. We will give
a comparative analysis of using both types of equilibria depending on the highest
unit price of the product supplied in the market.
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Good surveys of Berge equilibrium can be found in [223] and [131, pp. 53–
56]. As indicated by these surveys, most research works consider the properties and
specific features of Berge equilibria as well as their modifications and connections
to Nash equilibria. We anticipate that the incipient framework of Berge equilibria
will soon reach the status of a rigorous mathematical theory. Probably, the intensive
accumulation of facts will be replaced by a stage of evolutionary development. We
believe that this book and the papers [70–72, 300, 303, 304] are contributing to this
second stage.

4.3.3 Explicit Design of Berge and Nash Equilibria

Thus, the game � is defined, and we will find an explicit form of the Nash and Berge
equilibria (see Definitions 4.3.1 and 4.3.2, respectively).

4.3.3.1 Berge Equilibrium

On the basis of Definition 4.3.2, we obtain

Proposition 4.3.1 If l2 > l1, the Berge equilibrium in the game � has the form

( �pB, �f ( �pB)) = (pB
1 , pB

2 , f1( �pB), f2( �pB)), (4.3.6)

where �pB = (pB
1 , pB

2 ), pB
i = β (i = 1, 2), and the vector of the Berge

equilibrium payoffs �f ( �pB) = (f1( �pB), f2( �pB)) is

fi( �pB) = (l2 − l1)(β − c)2 + (q + c(l2 − l1))(β − c) (i = 1, 2). (4.3.7)

Recall that β is the maximum unit price of the product determined by the law of
supply and demand.

Proof Let p be the unit price of the product in the market. Then for each i = 1, 2,

fi( �p) = [q + p(l2 − l1)](p − c) = (l2 − l1)p(p − c)+ q(p − c)

= (l2 − l1)(p − c)2 + (q + c(l2 − l1))(p − c),

where p ∈ (c, β]. Since l2 > l1 and
∂2fi( �p)

∂(p − c)2
= 2(l2 − l1) > 0, each payoff

function fi( �p) is strictly convex and increasing in p. Therefore, each fi( �p) achieves
maximum at p = β, which gives pB

1 = pB
2 = β. And direct substitution of this

result into the payoff function yields the desired formula of the Berge equilibrium
payoffs. �



4.3 The Bertrand Duopoly Model 147

4.3.3.2 Nash Equilibrium

Using Definition 4.3.1, we arrive at

Proposition 4.3.2 If l2 �= 2l1, the Nash equilibrium in the game � has the form

( �pe, �f ( �pe)) = (pe
1, p

e
2, f1( �pe), f2( �pe)),

where

�pe = (pe
1, p

e
2), pe

i =
q + l1c

2l1 − l2
= pN (i = 1, 2), (4.3.8)

and the vector of the Nash equilibrium payoffs is

fi( �pe) = l1(p
N − c)2 = l1

(
q + (l2 − l1)c

2l1 − l2

)2

(i = 1, 2). (4.3.9)

Proof Differentiating twice the explicit form (4.3.2) of the function fi( �p) gives
∂2fi( �pe ‖ pi)

∂pi
2 = −2li < 0. Thus, the payoff function fi( �p) is strictly concave in

pi . This means that

max
p1∈P1

f1(p1, p
e
2)

is achieved at pe
1 under the condition

∂f1(p1, p
e
2)

∂p1

∣
∣
∣
∣
p1=pe

1

= q − 2l1p
e
1 + l2p

e
2 + l1c = 0. (4.3.10)

In a similar way,

∂f2(p
e
1, p2)

∂p2

∣
∣
∣
∣
p2=pe

2

= q + l2p
e
1 − 2l1p

e
2 + l1c = 0.

Consequently, the Nash equilibrium �pe = (pe
1, p

e
2) satisfies the following system

of two linear inhomogeneous equations with constant coefficients:

{−2l1p
e
1 + l2p

e
2 = −(q + l1c),

l2p
e
1 − 2l1p

e
2 = −(q + l1c).

For l2 �= 2l1, the solution is

pe
1 = pe

2 =
q + l1c

2l1 − l2
= pN .



148 4 Applications to Competitive Economic Models

Moreover, it follows from (4.3.10) that

q − l1p
e
1 + l2p

e
2 = l1(p

N − c),

and, in terms of notations (4.3.8), fi( �pe) = l1(p
N − c)2. Hence, by (4.3.8)

and (4.3.2), we get (4.3.9). Concluding this proof, note that the assumption pN > c

is quite natural: otherwise, Nash equilibrium incurs losses. �

4.3.4 Use of Berge Equilibrium

Remark 4.3.1 Based on formulas (4.3.7) and (4.3.9), let us construct the following
auxiliary scalar function under the conditions l2 > l1 and l2 �= 2l1:

F(l1, l2, β) = fi( �pB)− fi( �pe) = (l2 − l1)(β − c)2

+[q + c(l2 − l1)](β − c)− l1

(
q + c(l2 − l1)

2l1 − l2

)2

(i = 1, 2).
(4.3.11)

Then from Propositions 4.3.1 and 4.3.2 we derive the following results.
First, if there exist positive values (l1, l2, β) such that fi( �pB) − fi( �pe) =

F(l1, l2, β) > 0 (<,=), then the Berge equilibrium with these values (l1, l2, β)

yields a greater (smaller or the same) payoff as the Nash equilibrium.
Second, it is necessary to check that, for such positive values (l1, l2, β), the unit

prices chosen by both players and also the maximum unit price β are not smaller
than the cost (otherwise, sales become unprofitable and make no economic sense).

We will explore two cases of possible relationships between the elasticity
coefficients, namely, l2 > l1 and l2 < l1.

Case I: l2 > l1 > 0.

Then the equation

(l2 − l1)(β − c)2 + [q + c(l2 − l1)](β − c)− l1

(
q + c(l2 − l1)

2l1 − l2

)2

= 0

has the roots

(β − c)±=
−[q+c(l2 − l1)]±

√

[q + c(l2 − l1)]2 + 4l1(l2 − l1)[q + c(l2 − l1)]2
(2l1 − l2)2

2(l2 − l1)

=
−[q + c(l2 − l1)] ± |q + c(l2 − l1)| l2

|2l1 − l2|
2(l2 − l1)

. (4.3.12)
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Subcase Ia: 2l1 − l2 > 0.

It follows from (4.3.12) that

(β(1) − c)+ =
[q + c(l2 − l1)]

(

−1+ l2

2l1 − l2

)

2(l2 − l1)
= q + c(l2 − l1)

2l1 − l2
> 0,

(β − c)− =
[q + c(l2 − l1)]

(

−1− l2

2l1 − l2

)

2(l2 − l1)
= − [q + c(l2 − l1)]l1

(l2 − l1)(2l1 − l2)
< 0,

which yields

β(1) = q + c(l2 − l1)

2l1 − l2
+ c = q + cl1

2l1 − l2
= pN > c. (4.3.13)

The graph of the function F = F(l1, l2, β) for each fixed pair (l1, l2) ∈
{(l1, l2)|2l1 > l2 > l1 > 0} is shown in Fig. 4.3 (under the inequality |(β − c)−| >

(β(1) − c)+).
Combining Propositions 4.3.1 and 4.3.2 with the conditions l2 > l1 and 2l1 > l2

(Fig. 4.4), Remark 4.3.1 and formula (4.3.13), we establish the following fact.

Proposition 4.3.3 Consider the game � with 0 < l1 < l2 < 2l1. Then, for players
i = 1, 2,

fi( �pB) > fi( �pe) if β > β(1) = q + cl1

2l1 − l2
= pN ;

fi( �pB) = fi( �pe) if β = β(1);
fi( �pB) < fi( �pe) if β ∈ (c, β(1)),

(4.3.14)

where the Berge and Nash equilibria are �pB = (β, β) and �pe = (pe
1, p

e
2), pe

1 =
pe

2 =
q + cl1

2l1 − l2
, respectively. The payoffs in these equilibria are given by

fi( �pB) = (l2 − l1)(β − c)2 + [q + c(l2 − l1)](β − c),

fi( �pe) = l1

(
q + c(l2 − l1)

2l1 − l2

)2

(i = 1, 2).
(4.3.15)

Remark 4.3.2 By Proposition 4.3.1, for any (l1, l2) from the interior of the shaded
domain in Fig. 4.4, the payoffs of both players are greater in the Berge equilibrium
�pB than in the Nash equilibrium �pe if the maximum unit price satisfies the condition
β > pN (smaller if c < β < pN and coincide if β = pN ).

Subcase Ib: l2 > 2l1.
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Fig. 4.3 Graph of the function F(l1, l2, β) for 2l1 > l2 > l1 > 0

Fig. 4.4 Set of pairs l = (l1, l2) with 0 < l1 < l2 < 2l1

Proposition 4.3.4 Consider the game � with l2 >2l1. Then, for players i = 1, 2,

fi( �pB) > fi( �pe) if β > β(2) = ql1 + c(l2 − l1)
2

(l2 − l1)(l2 − 2l1)
> c,

fi( �pB) = fi( �pe) if β = β(2),

fi( �pB) < fi( �pe) if β ∈ (c, β(2)),

(4.3.16)

and the payoffs of both players in the Berge equilibrium �pB = (β, β) and in

the Nash equilibrium �pe = (pe
1, p

e
2), pe

i = q + cl1

2l1 − l2
(i = 1, 2), again have

form (4.3.15).

As before, β denotes the maximum unit price.

Remark 4.3.3 The proof of Proposition 4.3.4 is based on
first, the implication [l2 > 2l1] ⇒ [l2 > l1] and the two roots

(β(2) − c)+ = [q + c(l2 − l1)]l1
(l2 − l1)(l2 − 2l1)

> 0, (β − c)− = −q + c(l2 − l1)

l2 − 2l1
< 0,

of the equation F(l1, l2, p) = 0;
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Fig. 4.5 Graph of the function F(l1, l2, β) for l2 > 2l1

Fig. 4.6 Set of pairs l = (l1, l2) for l2 > 2l1 > 0

second, the graph of the function F(l1, l2, β) = fi( �pB) − fi( �pe) displayed in
Fig. 4.5;

third, the chain of relations

β(2) = (β(2) − c)+ + c = ql1 + c(l2 − l1)
2

(l2 − l1)(l2 − 2l1)
> c;

fourth, the inequality

(β(2) − c)+ > |(β − c)−| = β(1) − c.

By Proposition 4.3.4, for any (l1, l2) from the interior of the shaded wedge in
Fig. 4.6 (excluding its boundary—the lines l1 = 0 and l2 = 2l1), the payoffs of
both players are greater in the Berge equilibrium than in the Nash equilibrium if the
maximum unit price satisfies the condition β > β(2) (smaller if β ∈ (c, β(2)) and
coincide if β = β(2)).



152 4 Applications to Competitive Economic Models

Case II: l1 > l2 > 0.

There are two important subcases, q + c(l2 − l1) > 0 and q + c(l2 − l1) < 0.

Subcase IIa: q + c(l2 − l1) > 0.

Proposition 4.3.5 If the elasticity coefficients l1 and l2 from (4.3.2) satisfy

l1 > l2 > l1 − q

c
, (4.3.17)

then the Berge equilibrium in the game � has the form

( �pB; �f ( �pB)) = (β, β; f1( �pB), f2( �pB))

=
(

q + c(l1 − l2)

2(l1 − l2)
,
q + c(l1 − l2)

2(l1 − l2)
; [q + c(l2 − l1)]2

4(l1 − l2)
,

[q + c(l2 − l1)]2
4(l1 − l2)

)

. (4.3.18)

Proof Conditions (4.3.17) directly imply

[l1 > l2] ⇒ [2l1 − l2 > 0],
[
l2 > l1 − q

c

]
⇒ [q + c(l2 − l1) > 0].

The set of the two-dimensional vectors

l = (l1, l2) ∈
{
(l1, l2)|

[
l1 > l2 > l1 − q

c

]
∧ [li > 0 (i = 1, 2)]

}

is shown in Fig. 4.7.

Fig. 4.7 Set of pairs
{
(l1, l2)|

[
l1 > l2 > l1 − q

c

]
∧ [li > 0 (i = 1, 2)]

}
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Fig. 4.8 Graph of the function fi [β] for l1 > l2 > l1 − q

c

Recall that the two players have the same cost c and the same maximum unit price
β of their products. Following (4.3.2), we introduce the two coinciding functions

fi [β] = [q + β(l2 − l1)](β − c)

= (l2 − l1)(β − c)2 + [q + c(l2 − l1)](β − c) (i = 1, 2). (4.3.19)

Double differentiation of the function fi [β] (i = 1, 2) (4.3.19) yields
d2fi [β]

d(β − c)2 = 2(l2 − l1) < 0, and hence fi [β] is strictly concave in β − c.

The graph of fi [β] intersects the axis (β − c) at the points (β − c)1 = 0 and

(β−c)2 = −q + c(l2 − l1)

l2 − l1
> 0. The function fi [β] achieves maximum at the point

(β − c)∗ = q + c(l2 − l1)

2(l1 − l2)
, and the maximum value is fi [β∗] = [q + c(l2 − l1)]2

4(l1 − l2)
,

where β∗ = (β − c)∗ + c = q + c(l1 − l2)

2(l1 − l2)
(see Fig. 4.8).

Thus, under conditions (4.3.17), the criterion fi [β] determining the maximum

unit price β∗ takes the maximum value fi[β∗] = [q + c(l2 − l1)]2
4(l1 − l2)

at the point

β∗ = q + c(l1 − l2)

2(l1 − l2)
. This concludes the proof of Proposition 4.3.5. �

Combining Propositions 4.3.5 and 4.3.2, we get the following result.

Proposition 4.3.6 Consider the game � in which the elasticity coefficients li =
const > 0 (i = 1, 2) satisfy

l1 > l2 > l1 − q

c
.
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Then both players obtain higher payoffs in the Berge equilibrium �pB than in the
Nash equilibrium, i.e.,

fi( �pB) > fi( �pe) (i = 1, 2), (4.3.20)

where the Berge equilibrium payoff is given by (4.3.18) and the Nash equilibrium
payoff by (4.3.8) and (4.3.9).

Proof Due to the implications [l1 > l2] ⇒ [2l1 > l2] ⇒ [2l1 − l2 > 0]
and Proposition 4.3.2, there exists the Nash equilibrium ( �pe; �f ( �pe)) defined by
formulas (4.3.8) and (4.3.9). Next, recall the two implications [l1 > l2] ⇒ [l1−l2 >

0] and
[
l2 > l1 − q

c

]
⇒ [q + c(l2 − l1) > 0] from the proof of Proposition 4.3.5,

which ensure the existence of the Berge equilibrium (4.3.18) in the game �. A direct
comparison of (4.3.18) and (4.3.9) yields

fi( �pB)− fi( �pe) = [q + c(l2 − l1)]2
4(l1 − l2)

− l1
[q + c(l2 − l1)]2

(2l1 − l2)2

= [q + c(l2 − l1)]2l22

4(l1 − l2)(2l1 − l2)2 > 0 (i = 1, 2),

i.e., (4.3.20) holds. �
Remark 4.3.4 Proposition 4.3.6 has a dual character: it can be applied to analyze
the real competitive markets described by the Bertrand duopoly model and also to
design such markets.

4.3.4.1 First Application

Step 1. For a real competitive market, identify the numerical values of the
following parameters:
the elasticity coefficients l∗1 and l∗2 ;
the cost c;
the initial demand q;
and the maximum unit price β.

Step 2. Using the values c and q , draw Fig. 4.7 in the first quadrant of the plane
{l1, l2}.

Step 3. Answer the two questions:

(a) Does the point l∗ = (l∗1 , l∗2 ) belong to the interior of the shaded domain in
Fig. 4.7?

(b) Does the value β coincide with
q + c(l∗1 − l∗2 )

2(l∗1 − l∗2 )
?
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Step 4. If both answers are affirmative, the players should choose their
strategies from the Berge equilibrium �pB = (pB

1 , pB
2 ) = (β, β) =

(
q + c(l∗1 − l∗2 )

2(l∗1 − l∗2 )
,
q + c(l∗1 − l∗2 )

2(l∗1 − l∗2 )

)

, thereby obtaining the payoffs fi( �pB) =
[q + c(l∗2 − l∗1 )]2

4(l∗1 − l∗2 )
(i = 1, 2), which are greater than the payoffs fi( �pe) =

l1

(
q + c(l∗2 − l∗1 )

2l∗1 − l∗2

)2

(i = 1, 2) in the Nash equilibrium

�pe =
(

q + l∗1c

2l∗1 − l∗2
,

q + l∗1c

2l∗1 − l∗2

)

.

Second application is the design of competitive markets.

Step 1. Using the desired numerical values of the cost c and initial demand q ,
draw the bisecting line l2 = l1 in the first quadrant of the plane {l1, l2} as well as
its translate to the right by q/c (see Fig. 4.9).
Thus, in the first quadrant of the plane {l1, l2}, we obtain a track with the deadlock
[0, q/c] on the axis l1, as illustrated in Fig. 4.9.

Step 2. Adjust the maximum unit price β to the value
q + c(l1 − l2)

2(l1 − l2)
with

economic, governmental and other regulatory measures.
Step 3. Then for all points l = (l1, l2) inside the shaded track in Fig. 4.9 (which

is formed by the two half-lines l2 = l1, l2 = l1 − q

c
, li > 0 (i = 1, 2) and the

deadlock
[
0,

q

c

]
on the axis l1), the players should choose their strategies β =

q + c(l1 − l2)

2(l1 − l2)
from the Berge equilibrium �pB = (β, β), as the corresponding

payoffs
[q + c(l2 − l1)]2

4(l1 − l2)
are higher that their counterparts l1

(
q + c(l1 − l2)

2l1 − l2

)2

in the Nash equilibrium �pe =
(

q + cl1

2l1 − l2
,

q + cl1

2l1 − l2

)

).

Fig. 4.9 Construction of the domain
{
l = (l1, l2)|l1 > l2 > l1 − q

c

}
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Subcase IIb:
[
l2 < l1 − q

c

]
⇔ [q + c(l2 − l1) < 0].

Proposition 4.3.7 Consider the game � with l2 < l1 − q

c
. Then, for any β > c,

fi( �pe) > 0 > fi( �pB) (i = 1, 2), (4.3.21)

where the payoffs fi( �pe) and strategies pe
i in the Nash equilibrium are given

by (4.3.9) and (4.3.8), respectively.

Proof First of all, note that
[
l2 < l1 − q

c

]
⇒ [l2 < l1] ⇒ [l2 − 2l1 < 0].

In addition, q + c(l2 − l1) < 0. Then the set
{
l = (l1, l2)|0<l2 <l1− q

c

}
is the

interior of an acute angle that adjoins the axis l1 (see Fig. 4.10).

Wedge IV is formed by the rays l2 = 0 and l2 = l1 − q

c
emanating from the

vertex (
q

c
, 0).

For any l = (l1, l2) ∈ int IV, we have l2 < l1 and q + c(l2 − l1) < 0. These
inequalities in combination with (4.3.2) yield

fi(β, β) = (l2 − l1)(β − c)2 + [q + c(l2 − l1)](β − c) < 0 ∀β > c (i = 1, 2),

which proves the right-hand inequality in (4.3.21).
Further, for any l = (l1, l2) ∈ int IV, by the inequalities 2l1 − l2 �= 0, q + c(l2 −

l1) < 0 and Proposition 4.3.2,

fi( �pe) = l1

(
q + c(l2 − l1)

2l1 − l2

)2

> 0 (i = 1, 2).

This proves the left-hand inequality in (4.3.21). �

Fig. 4.10 Set of pairs l = (l1, l2) ∈
{
(l1, l2)|0 < l2 < l1 < l1 − q

c

}
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Fig. 4.11 Choice of better equilibrium

Remark 4.3.5 In accordance with Proposition 4.3.7, under the conditions l2 <

l1 − q

c
and β > c, both players should prefer the Nash equilibrium to the Berge

equilibrium (of course, if the point l = (l1, l2) falls inside the shaded wedge in
Fig. 4.10).

Remark 4.3.6 Propositions 4.3.3–4.3.7 allow one to choose a better equilibrium in
terms of payoffs (Berge or Nash) depending on the location of the point l = (l1, l2)

in the first quadrant of the plane {l1, l2} and the maximum unit price β only if
this point belongs to the interior of the shaded domains I–IV in Figs. 4.4, 4.6, 4.7,
and 4.10 (see Fig. 4.11).

However, which equilibrium (NE or BE) should be chosen if the point l = (l1, l2)

lies on the boundaries of domains I–IV? This question will be treated in the next
section.

4.3.5 Choice of Appropriate Equilibrium on the Boundaries
of the Constructed Domains

Let the point l be on the boundaries of the shaded domains—see the dash-and-dot

lines in Fig. 4.11, which are formed by the rays l1 = 0, l2 = 2l1, l2 = l1, l2 = l1− q

c
,

and l2 = 0 in the first quadrant (li � 0, i = 1, 2). Which equilibrium is a better
choice then?

4.3.5.1 Boundary l1 = 0

Proposition 4.3.8 Consider the game � with l1 = 0. Then for any β > c,

fi( �pB) > fi( �pe) (i = 1, 2),

i.e., the Berge equilibrium �pB = (β, β) is preferable to the Nash equilibrium for
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Fig. 4.12 Graph of the function F(0, l2, β) for l1 = 0

both players, having the payoffs

fi( �pB) = l2(β − c)2 + [q + l2c](β − c).

Proof For l1 = 0, the auxiliary function (4.3.11) takes the form

F(0, l2, β) = l2(β − c)2 + [q + cl2](β − c).

Then
∂F (0, l2, β)

∂(β − c)
= 2l2(β−c)+[q+cl2] and

∂2F(0, l2, β)

∂(β − c)2 = 2l2 > 0. Hence,

the function F(0, l2, β) is strictly convex in the variable β − c and increasing for
β − c > 0 (see Fig. 4.12). In addition, the graph of this function intersects the axis

(β − c) at the two points (β − c)1 = 0 and (β − c)2 = −q + l2c

2l2
< 0.

The conclusion follows from Fig. 4.12 and the inequality F(0, l2, β) = fi( �pB)−
fi( �pe) > 0 ∀β > c. �

4.3.5.2 Boundary l1 = l2 > 0

Proposition 4.3.9 Consider the game � with l2 = l1. Then for each i = 1, 2,

fi( �pB) > fi( �pe) if β > c + q

l1
,

fi( �pB) < fi( �pe) if β < c + q

l1
,

fi( �pB) = fi( �pe) if β = c + q

l1
,

where �pB = (β, β), �pe = (pe
1, p

e
2), and pe

1 = pe
2 =

q + l1c

l1
.



4.3 The Bertrand Duopoly Model 159

Proof For l1 = l2, the auxiliary function (4.3.11) takes the form

F(l1, l2, β) = q(β − c)− l1
q2

(2l1 − l2)2 = q[β − c − q

l1
].

Hence,

F(l1, l2, β) = fi( �pB)− fi( �pe) = q

[

β − c − q

l1

]

,

which leads to the desired result by Remark 4.3.1. �

4.3.5.3 Boundary l2 = l1 − q

c

Proposition 4.3.10 Consider the game � with l2 = l1− q

c
. Then both players have

the highest payoffs in the Nash equilibrium �pe = (pe
1, p

e
2) = (c, c), which here

coincides with the Berge equilibrium.

Proof Using (4.3.11) and the implication

[
l2 = l1 − q

c

]
⇒ [q + c(l2 − l1) = 0],

we have

F(l1, l2, β) = fi( �pB)− fi( �pe) = (l2 − l1)(β − c)2 = −q

c
(β − c)2 < 0,

where l2 − l1 = −q

c
.

For q + c(l2 − l1) = 0, vector (4.3.9) has components fi( �pe) = 0 (i = 1, 2).
Thus, it is necessary to extend the set of admissible strategies with the additional
point β = c. Then �pB = (c, c) = �pe. �

4.3.5.4 Boundary l2 = 0

Once again, formula (4.3.11) with l2 = 0 yields

F(l1, 0, β) = −l1(β − c)2 + (q − cl1)(β − c)− (q − cl1)
2

4l1
.



160 4 Applications to Competitive Economic Models

Since
∂F (l1, 0, β)

∂(β − c)
= −2l1(β − c)+ [q − cl1] and

∂2F(l1, 0, β)

∂(β − c)2 = −2l1 < 0, the

function F(l1, 0, β) is concave in the variable β − c. We will analyze two subcases,
q > cl1 and q < cl1.

4.3.5.5 Subcase q > cl1

Proposition 4.3.11 Consider the game � with l2 = 0 and q > cl1. Then for each
i = 1, 2,

fi( �p B) = fi( �p e) for β = q + cl1

2l1
= pN,

fi( �p B) < fi( �p e) for [β > c] ∧ [β �= pN],

where �pe =
(

q + l1c

2l1
,
q + l1c

2l1

)

, fi( �pe) = (q − l1c)
2

4l1
, �pB = (β, β), and

fi( �pB) = −l1(β − c)2 + (q − cl1)(β − c).

Proof The graph of F(l1, 0, β) touches the axis (β− c) at the unique point β− c =
q − cl1

2l1
> 0, since

F(l1, 0, β) = −l1

[

(β − c)− q − cl1

2l1

]2

� 0.

Due to this fact as well as the implication [q > cl1] ⇒ [q − cl1 > 0] and the strict
concavity of F(l1, 0, β) in β − c, the function F(l1, 0, β) has the graph presented
in Fig. 4.13.

Fig. 4.13 Graph of the function F(l1, 0, β) for l2 = 0 and q > cl1
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Thus, we have shown that F(l1, 0, β) < 0 for β − c �= q − cl1

2l1
and

F(l1, 0, β) = 0 only for β = q − cl1

2l1
+ c = q + cl1

2l1
= pe

i (i = 1, 2). In

combination with Remark 4.3.1, this concludes the proof of Proposition 4.3.11. �

4.3.5.6 Subcase q < cl1

Proposition 4.3.12 Consider the game � with l2 = 0 and q < cl1. Then for each
i = 1, 2,

fi( �pe) > fi( �pB) ∀β > c,

where, like in Proposition 4.3.11, �pe =
(

q + l1c

2l1
,
q + l1c

2l1

)

, fi( �pe) = (q − l1c)
2

4l1
,

�pB = (β, β), and fi( �pB) = −l1(β − c)2 + (q − cl1)(β − c).

Proof The conclusion is immediate from (4.3.11), the fact that

F(l1, 0, β) = −l1

[

(β − c)− q − cl1

2l1

]2

< 0

for all β > c and Remark 4.3.1. The corresponding graph of F(l1, 0, β) is shown in
Fig. 4.14. �

Fig. 4.14 Graph of the function F(l1, 0, β) for l2 = 0 and q < cl1
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Remark 4.3.7 For the boundary l2 = 2l1, complete results have not been obtained
so far.

4.3.6 Compromising Behavioral Principles for Higher Benefits

As is well-known, in any noncooperative game (of course, including the Bertrand
duopoly model) the players choose their strategies in order to maximize their
payoffs. For the time being, our analysis is confined to a couple of alternatives,
namely,

first, the selfish Nash equilibrium (NE);
second, the altruistic Berge equilibrium (BE).
We are eliminating the concept of active equilibrium and the equilibrium in

threats and counter-threats as its special case, comparing NE and BE only.

1. Here a major role can be played by the so-called psychological factor, a
common assumption in theory of noncooperative games. Nash equilibrium
(Proposition 4.3.2) is a recipe for an extremely self-centered player who cares
about individual interests only. On the other hand, a convinced altruist should
use the strategy dictated by the Golden Rule of ethics, i.e., Berge equilibrium
(Proposition 4.3.1).

2. Our idea consists in neglecting the psychological factor by a simple comparison
of the payoffs in the NE and BE. This can be implemented using the following
procedure, dictated by the the content of the current Sect. 4.3.

Step 1. Using the numerical values of the parameters q, c, l1, and l2, find the three
values

β(1) = q + cl1

2l1 − l2
, β(2) = ql1 + c(l2 − l1)

2

(l2 − l1)(l2 − 2l1)
,

fi( �pe) = l1

[
q + (l2 − l1)c

2l1 − l2

]2

(i = 1, 2).

Step 2. In the first quadrant of the plane {l1, l2}, draw the half-lines l1 = 0, l2 =
l1, l2 = 2l1, l2 = l1 − q

c
, and l2 = 0 to exhibit the domains I–IV (see Fig. 4.11).

Step 3. Find out which of the domains I–IV contains the point l∗ = (l1, l2).
Further steps are devoted to the choice of an appropriate solution concept
(Nash or Berge equilibrium) as well as to the explicit-form calculation of the
corresponding strategies and payoffs of the players. These issues are completely
settled by two elements of the model: first, the maximum unit price β determined
by the law of supply and demand in the market; second, the domain that contains
the point l∗.
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(a) Let l∗ ∈ I; then by Proposition 4.3.4,
(a1) for β > β(2), both players should choose the BE �pB = (β, β), obtaining the

payoffs

fi( �pB) = (l2− l1)(β− c)2+[q+ c(l2− l1)](β− c) (i = 1, 2); (4.3.22)

(a2) for c < β < β(2), both players should choose the NE �pe = (pN
1 , pN

2 ), pN
i =

q + cl1

2l1 − l2
(i = 1, 2), obtaining payoffs

fi( �pe) = l1

[
q + (l2 − l1)c

2l1 − l2

]2

(i = 1, 2); (4.3.23)

(a3) for β = β(2), the payoffs of both players in the BE �pB and in the NE �pe

coincide.
(b) Let l∗ ∈ II; then by Proposition 4.3.3,

(b1) for β > β(1), both players should choose the BE �pB = (β, β), obtaining
payoffs (4.3.22);

(b2) for c < β < β(1), both players should choose the NE �pe, obtaining
payoffs (4.3.23);

(b3) for β = β(1), the payoffs of both players in the BE and NE are

l1

[
q + (l2 − l1)c

2l1 − l2

]2

.

(c) Let l∗ ∈ III; then by Proposition 4.3.6 both players should choose the BE
�pB = (β, β) for all β > c, obtaining payoffs (4.3.22).

(d) Let l∗ ∈ IV; then by Proposition 4.3.7 both players should choose the NE �pe

for all β > c, obtaining payoffs (4.3.23).

If the point l∗ = (l1, l2) falls on the boundaries of domains I–IV, then an
appropriate concept of equilibrium should be chosen using the following table

l1 = 0, l2 > 0 Proposition 4.3.8

l2 = l1 > 0 Proposition 4.3.9

l2 = l1 − q/c > 0 Proposition 4.3.10

l1 > 0, l2 = 0, q > cl1 Proposition 4.3.11

l1 > 0, l2 = 0, q < cl1 Proposition 4.3.12

Or simply by using Fig. 4.15 as a guide for Sect. 4.3.
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Fig. 4.15 Graph of the function F(l1, 0, β) for l2 = 0 and q < cl1

4.4 The Bertrand Model with Import

Gain cannot be made without some person’s loss.
—Syrus12

The Bertrand price competition model of the previous section is augmented
with import as a disturbing factor (uncertainty). Only a Pareto-guaranteed Nash
equilibrium is constructed because Pareto-guaranteed Berge equilibria do not
exist (see Remark 4.4.1).

4.4.1 Mathematical Model

Not he who has much is rich, but he who gives much.
—Fromm13

Generally, buyers consider the same-usage products supplied by different firms
as different products. Such products are often substitutable. For example, two brands
of identical-composition apple juice (sometimes, even produced from the same
concentrate in the same facilities, yet for different sellers) can be positioned as
different products intended for different groups of buyers. Nevertheless, a buyer
may painlessly switch from one brand to the other.

Consider two firms in the market, 1 and 2, that supply products A and B,
respectively. Assume A and B are interchangeable: whenever the products of one
firm are unavailable, a buyer purchases the product of the other firm without

12Publilius Syrus, (flourished first century B.C.), was a Latin mime writer and artist.
13Erich Fromm, (1900–1980), was a German-born American psychoanalyst and social philoso-
pher.
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discomfort. The strategy of each firm (player in the market) is the unit price for its
product. Let p1 and p2 be the unit prices announced by players 1 and 2, respectively.
After price announcement, the demand for each product is determined by the law of
supply and demand. Assume that the demand has the linear form, i.e.,

Q1(p1, p2) = q − l1p1 + l2p2, Q2(p1, p2) = q − l1p2 + l2p1.

Here q specifies an initial demand and the elasticity coefficient l1 > 0 shows the
demand drop in response to a unit increase in price. In turn, the elasticity coefficient
l2 > 0 characterizes the demand rise in response to a unit increase in price of the
substitute product.

Denote by c the cost of product unit, the same for both firms. Then the profits of
the firms are described by the functions [31]

f1(p1, p2) = (q − l1p1 + l2p2)(p1 − c),

f2(p1, p2) = (q − l1p2 + l2p1)(p2 − c).
(4.4.1)

The mathematical model of this competitive interaction between the firms is the
noncooperative game without uncertainty

� = 〈{1, 2}, {Pi = [0,+∞)}i=1,2, {fi(p1, p2)}i=1,2〉.
The strategy of player i (i = 1, 2) is a unit price pi � 0 announced by it without
negotiations with the competitor. The payoff functions of the players are defined
by (4.4.1).

Due to the strict concavity of fi(p1, p2) in pi (which follows from
∂2fi

∂p2
i

=
= −2l1 < 0), the sufficient conditions for the existence of a strategy profile pe

i that
maximizes fi(p1, p2) in pi can be written as the system of two linear equations

⎧
⎪⎪⎨

⎪⎪⎩

∂f1(p1, p2)

∂p1

∣
∣
∣
∣
pe
= q + l1c − 2l1p

e
1 + l2p

e
2 = 0,

∂f2(p1, p2)

∂p2

∣
∣
∣
∣
pe
= q + l1c − 2l1p

e
2 + l2p

e
1 = 0.

(4.4.2)

For l2 �= 2l1, the unique solution of system (4.4.2) has the form

pe
1 = pe

2 =
q + l1c

2l1 − l2
,

thus taking positive values for l2 < 2l1.
This solution is the Nash equilibrium in the game �, and the corresponding

payoffs of the players are

f e
1 = f e

2 = l1

[
q − c(l1 − l2)

2l1 − l2

]2

.
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4.4.2 Consideration of Import

The development of modern mathematical science
is characterized by the growing role of algebraic methods,

their wide penetration into many of its branches.
—Bogolyubov14

An approach to account for import in the Bertrand duopoly model is suggested.

Now, in addition to the two firms (players 1 and 2) that supply the interchangeable
products A and B, suppose that another firm (importer of a similar product C, e.g.,
a third brand of apple juice) enters the market. Suppose both players know nothing
about its intentions and pricing policy. Perhaps, the importer will try to capture a
market share, or mess with the market participants by cutting the unit price, or do
something else. The importer will announce some unit price y, which acts as prior
uncertainty in this model (the only reasonable hypothesis is that this price takes a
value y � 0).

Choosing its strategy (the unit price pi ), each firm i must then take into account
the competitor’s actions and also any possible realization of the uncertainty y (the
price announced by the importer).

Firms 1 and 2 announce their unit prices p1 and p2, respectively, thereby forming
a strategy profile (p1, p2) ∈ X = X1 × X2, i.e., a current situation in the market.
Simultaneously with and regardless of the players’ choice, a specific value of the
uncertainty y is realized. Let the resulting demand depend linearly on the prices with
the elasticity coefficients l1 (the demand drop in response to a unit price increase)
and l2 (the demand rise in response to a unit price increase of the substitute product).
Then the demand function for the products of firm 1 is given by

Q1(p1, p2, y) = q − l1p1 + l2y + l2p2 = q − l1p1 + l2(p2 + y).

In the same way, the demand function for the products of firm 2 has the form

Q2(p1, p2, y) = q − l1p2 + l2(p1 + y).

As before, we will assume both brands have the same unit cost c. Then the
profit15 of firm 1 is given by

f1(p1, p2, y)= Q1(p1, p2, y)(p1−c)= [q − l1p1 + l2(p2 + y)] (p1−c),

(4.4.3)

14Nikolay N. Bogolyubov, (1909–1992), was a Soviet mathematician and theoretical physicist
who contributed to quantum field theory, classical and quantum statistical mechanics, and theory
of dynamical systems. An English translation of a quote from Vestnik Akad. Nauk SSSR, 1966,
no. 7, p. 38.
15“And gain is gain, however small.” From Paracelsus by Robert Browning, (1812–1889), a major
English poet of the Victorian age.
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and that of firm 2 by

f2(p1, p2, y)= Q2(p1, p2, y)(p2−c)= [q − l1p2 + l2(p1 + y)] (p2−c).

(4.4.4)

Without any agreement, both firms announce their unit prices, seeking to
maximize their individual profits. Choosing an appropriate strategy, each firm must
consider any possible realization of the uncertain factor y (the nonnegative import
price).

As a mathematical model of this duopoly one can take the noncooperative game
under uncertainty given by

〈{1, 2}, {Pi}i=1,2, Y, {�i(p1, p2, y)}i=1,2〉. (4.4.5)

Here 1 and 2 denote the numbers of players (firms); the strategy of each firm i

is a unit price pi ∈ Pi = [0,+∞) (i = 1, 2); the uncertain factor y takes
arbitrary values from the set Y = [0,+∞); in accordance with Germeier’s principle
of guaranteed result, the payoff function �i(p1, p2, y) of player i (i = 1, 2) is

composed of its profit fi(p1, p2, y) and the term
y2

2
(see Remark 4.2.1), i.e.,

�1(p1, p2, y) = [q − l1p1 + l2(p2 + y)] (p1−c)+ y2

2
,

�2(p1, p2, y) = [q − l1p2 + l2(p1 + y)] (p2−c)+ y2

2
.

(4.4.6)

The component
y2

2
in the payoff functions (4.4.6) compels each player to oppose

the uncertainty as much as possible.
Thus, the game runs as follows. Without forming coalition, the players indepen-

dently choose their individual strategies p i (i = 1, 2), which result in a strategy
profile p = (p1, p2) ∈ P = P1 × P2 in this game. Some nonnegative value of
the uncertainty y ∈ Y is realized simultaneously with and independently of their
choice. The payoff function �i(p1, p2, y) (4.4.6) of player i is defined on all pairs
(p, y) ∈ P×Y. For a realized pair (p, y), the value of this function gives the payoff
of player i and the value of fi(p1, p2, y) the corresponding profit.

A Pareto-guaranteed equilibrium (PGE) of game (4.4.5) is a triplet (pe,�e
1,�

e
2)

for which there exists a function yP (p) : P → Y such that
first, for each fixed p ∈ P, the function yP(p) : P → Y is the Pareto-minimal

uncertainty in the bi-criteria choice problem

〈Y, {�i(p, y)}i=1,2〉,

which is obtained from (4.4.5) for each fixed strategy profile p = (p1, p2) ∈ P;
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second, the strategy profile p e = (p e
1 , p e

2 ) is a Nash equilibrium in the game
without uncertainty

〈{1, 2}, {Pi}i=1,2, {�i(p, yP(p))}i=1,2〉,

which is obtained from game (4.4.5) by replacing the uncertainty y with its
realization yP(p).

In this case, p e is a Pareto-guaranteeing strategy profile, while the corresponding
vector guarantee is �e

i = �i(p
e, yP (p e)).

A Pareto-guaranteed equilibrium (PGE) in the Bertrand duopoly with import is a
triplet (p e, f e

1 , f e
2 ), where the Pareto-guaranteeing strategy profile p e = (p e

1 , p e
2 )

is the same as in game (4.4.5) and f e
i = fi(p

e, yP(p e)) is the corresponding profit
of firm i.

In the sequel, we will design the Pareto-guaranteed equilibrium in the Bertrand
duopoly with import using an algorithm similar to the one suggested in Sect. 4.2.3.

More specifically, to get the PGE in the Bertrand duopoly model with import, it
is necessary to perform the following steps:

(1) find a continuous scalar function yP = yP(p) yielding the Pareto minimum in
the bi-criteria choice problem

〈Y = [0,+∞) , {�i(p, y)}i=1,2〉, (4.4.7)

which is obtained from (4.4.5) for each fixed strategy profile p = (p1, p2) ∈ P;
(2) construct a strategy profile p e = (p e

1 , p e
2 ) yielding a Nash equilibrium in the

game without uncertainty

〈{1, 2}, {Pi = [0,+∞)}i=1,2, {�i(p, yP(p))}i=1,2〉, (4.4.8)

which is obtained from game (4.4.5) by substituting the Pareto-minimal uncer-
tainty yP = yP(p);

(3) calculate the corresponding prices p1 = p e
1 and p2 = p e

2 as well as the profit
fi(p

e
1 , p e

2 , yP(p e
1 , p e

2 )) = f e
i of each player i (i = 1, 2).

4.4.3 Calculation of Inner Pareto Minimum

Calculus is the outcome of a dramatic intellectual struggle
which has lasted for twenty-five hundred years.

—Courant

The Pareto-minimal guaranteeing uncertainty in the Bertrand duopoly model
is constructed.

The following result holds.
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Proposition 4.4.1 The uncertainty

yP(p1, p2) = l2
2c− p1 − p2

2

is Pareto-minimal in the bi-criteria choice problem (4.4.7) for each strategy profile
p = (p1, p2) ∈ [0,+∞)2.

Proof Consider the function

F(p, y) = �1(p, y)+�2(x, y) = f1(p1, p2, y)+ f2(p1, p2, y)+ y2

= [q − l1p1 + l2(p2 + y)] (p1−c)+ [q − l1p2 + l2(p1 + y)] (p2−c)+ y2.

For each fixed p = (p1, p2) ∈ P, the minimum value of this function is achieved

for yP(p) = l2
2c − p1 − p2

2
if

∂F

∂y

∣
∣
∣
∣
y=yP(p)

= l2(p1 − c)+ l2(p2 − c)+ 2yP(p) = 0

and

∂2F

∂y2

∣
∣
∣
∣
y=yP(p)

= 2 > 0.

Hence, by Lemma 4.2.1 with α = β = 1, the uncertainty yP(p) =
l2

2c− p1 − p2

2
is Pareto-minimal in the bi-criteria choice problem (4.4.7) for

each fixed strategy profile p = (p1, p2) ∈ P. �

4.4.4 Design of Nash Equilibrium

A mathematician, like a painter or a poet, is a maker of patterns.
—Hardy16

A Nash equilibrium in the game of guarantees is constructed.

Proposition 4.4.2 For l1 >
1

8
and l2 > 0, the Nash equilibrium in game (4.4.8)

has the form

pe = (pe
1, p

e
2) =

(
q + c(l1 + l2

2)

2l1 − l2 + l2
2

,
q + c(l1 + l2

2)

2l1 − l2 + l2
2

)

.

16Godfrey Harold Hardy, (1877–1947), was a leading English pure mathematician whose work
was mainly in analysis and number theory.
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Proof Substituting the uncertainty yP(p) from Proposition 4.4.1 into (4.4.6) yields

�1(p, yP (p)) =
[

q − l1p1 + l2p2 + l2
2

2c− p1 − p2

2

]

(p1 − c)

+l2
2
(2c− p1 − p2)

2

8
,

�2(p, yP (p)) =
[

q − l1p2 + l2p1 + l2
2

2c− p1 − p2

2

]

(p2 − c)

+l2
2
(2c− p1 − p2)

2

8
.

The sufficient conditions for the existence of a Nash equilibrium p e = (p e
1 , p e

2 )

in game (4.4.8) can be written as

∂�1(p1, p
e
2)

∂p1

∣
∣
∣
∣
p1=pe

1

= (−l1 − l2
2

2
)(pe

1 − c)+ q − l1p
e
1 + l2p

e
2

+l2
2

2c − pe
1 − pe

2

2
− l2

2

4
(2c− pe

1 − pe
2) = 0, (4.4.9)

∂2�1(p1, p
e
2)

∂p2
1

∣
∣
∣
∣
∣
p1=pe

1

= −2l1 − 3

4
l2
2 < 0, (4.4.10)

∂�2(p
e
1, p2)

∂p2

∣
∣
∣
∣
p2=pe

2

=
(

−l1 − l2
2

2

)

(pe
2 − c)+ q − l1p

e
2 + l2p

e
1

+l2
2

2c − pe
1− pe

2

2
− l2

2

4
(2c− pe

1 − pe
2) = 0, (4.4.11)

∂2�2(p
e
1, p2)

∂p2
2

∣
∣
∣
∣
∣
p2=pe

2

= −2l1 − 3

4
l2
2 < 0. (4.4.12)

Conditions (4.4.10) and (4.4.12) hold because l2 > 0 and l1 >
1

8
. Equalities (4.4.9)

and (4.4.11) represent a system of two inhomogeneous linear equations with
constant coefficients

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(

2l1 + 3l2
2

4

)

pe
1 +

(
l2
2

4
− l2

)

pe
2 = q + c(l1 + l2

2),

(
l2
2

4
− l2

)

pe
1 +

(

2l1 + 3l2
2

4

)

pe
2 = q + c(l1 + l2

2).

(4.4.13)
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The determinant of this system is

� =

∣
∣
∣
∣
∣
∣
∣
∣

2l1 + 3l2
2

4

l2
2

4
− l2

l2
2

4
− l2 2l1 + 3l2

2

4

∣
∣
∣
∣
∣
∣
∣
∣

=
(

2l1 + 3l2
2

4

)2

−
(

l2
2

4
− l2

)2

= (2l1 − l2 + l2
2)

(

2l1 + l2 + l2
2

2

)

,

and hence � �= 0 since l1 >
1

8
and l2 > 0.

Finally, calculating the determinants

�1 =

∣
∣
∣
∣
∣
∣
∣
∣

q + c(l1 + l2
2)

l2
2

4
− l2

q + c(l1 + l2
2) 2l1 + 3l2

2

4

∣
∣
∣
∣
∣
∣
∣
∣

=
[
q + c(l1 + l2

2)
]

∣
∣
∣
∣
∣
∣
∣
∣

1
l2
2

4
− l2

1 2l1 + 3l2
2

4

∣
∣
∣
∣
∣
∣
∣
∣

=
[
q + c(l1 + l2

2)
]
(

2l1 + 3l2
2

4
− l2

2

4
+ l2

)

=
[
q + c(l1 + l2

2)
]
(

2l1 + l2 + l2
2

2

)

and

�2 =

∣
∣
∣
∣
∣
∣
∣
∣

2l1 + 3l2
2

4
q + c(l1 + l2

2)

l2
2

4
− l2 q + c(l1 + l2

2)

∣
∣
∣
∣
∣
∣
∣
∣

=
[
q + c(l1 + l2

2)
]

∣
∣
∣
∣
∣
∣
∣
∣

2l1 + 3l2
2

4
1

l2
2

4
− l2 1

∣
∣
∣
∣
∣
∣
∣
∣

=
[
q + c(l1 + l2

2)
]
(

2l1 + 3l2
2

4
− l2

2

4
+ l2

)

=
[
q + c(l1 + l2

2)
]
(

2l1 + l2 + l2
2

2

)

,

we obtain the solution of system (4.4.13) in the form

pe
i =

�i

�
=

[
q + c(l1 + l2

2)
]
(

2l1 +l2 + l2
2

2

)

(2l1 − l2 + l2
2)

(

2l1 +l2 + l2
2

2

) = q + c(l1 + l2
2)

2l1 − l2 + l2
2

(i = 1, 2).

�
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4.4.5 Calculation of the Corresponding Profits

For the Bertrand duopoly model, the explicit-form profits of firms in the
Pareto-guaranteed equilibrium are derived.

First, a direct substitution of p e = (p e
1 , p e

2 ) into the expression yP(p) =
l2

2c− p1 − p2

2
shows that yP(p e

1 , p e
2 ) = l2

cl1 − cl2 − q

2l1 − l2 + l2
2

.

Second, using

p e = (p e
1 , p e

2 ) =
(

q + c(l1 + l2
2)

2l1 − l2 + l2
2

,
q + c(l1 + l2

2)

2l1 − l2 + l2
2

)

and yP(p e
1 , p e

2 )= l2
cl1 − cl2 − q

2l1 − l2 + l2
2

in (4.4.3) and (4.4.4), one finds the correspond-

ing profits of the players:

f e
1 = f1(p

e
1, p

e
2, yP(pe

1, p
e
2))

= [q − l1p
e
1 + l2(p

e
2 + yP (pe

1, p
e
2))
]
(pe

1 − c) = l1
[q + c(l2 − l1)]2

(2l1 − l2 + l2
2)2

,

f e
2 = f2(p

e
1, p

e
2, yP(pe

1, p
e
2))

= [q − l1p
e
2 + l2(p

e
1 + yP (pe

1, p
e
2))
]
(pe

2 − c) = l1
[q + c(l2 − l1)]2

(2l1 − l2 + l2
2)2

.

Consequently, we have established

Proposition 4.4.3 Consider the Bertrand duopoly model with import in which

l1 >
1

8
and l2 > 0. The Pareto-guaranteed equilibrium in this model is the triplet

(pe, f e
1 , f e

2 ), where

p e = (p e
1 , p e

2 ) =
(

q + c(l1 + l2
2)

2l1 − l2 + l2
2

,
q + c(l1 + l2

2)

2l1 − l2 + l2
2

)

,

and the corresponding profit of firm i is given by the formula

f e
i = l1

[q + c(l2 − l1)]2

(2l1 − l2 + l2
2)2

(i = 1, 2). �
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Remark 4.4.1 In the game of guarantees (4.4.8),
∂2�1

∂p2
2

= ∂2�2

∂p2
1

= l2
2

4
> 0. Since

game (4.4.8) is linear-quadratic, in the notations of Table 2.1 we obtain the case
C1 > 0 and A1 > 0. In accordance with rows 3 and 4 of this table, the game of
guarantees (4.4.8) has no guaranteed Berge equilibria.



Chapter 5
New Approaches to the Solution
of Noncooperative Games
and Multicriteria Choice Problems

The way out of trouble is never as simple as the way in.
—Howe1

This chapter considers three new approaches to important problems of
mathematical game theory and multicriteria choice, which are described in four
sections (5.1–5.4). The first approach ensures payoff increase with simultaneous risk
reduction in the Savage–Niehans sense in multicriteria choice problems (Sect. 5.1)
and noncooperative games (Sect. 5.2). The second approach allow us to stabilize
coalitional structures in cooperative games without side payments under uncertainty
(Sect. 5.3). The third approach serves to integrate the selfish Nash equilibrium
with the altruistic Berge equilibrium. Note that the investigations in Sects. 5.2–5.4
involve a special Germeier convolution of criteria and calculation of its saddle point
in mixed strategies.

5.1 A New Approach to Optimal Solutions of Multicriteria
Choice Problems: Consideration of Savage–Niehans Risk

Wer wagt, gewinnt.2

Prologue

This section introduces an original approach to multicriteria choice problems
under uncertainty: a decision maker (DM) seeks not only to increase the
guaranteed values of each criterion, but also to reduce the guaranteed risk

1Edgar Watson Howe, (1853–1937), was an American editor, novelist, and essayist.
2German “Those who risk win.” This is an analog of the English proverb “Nothing ventured,
nothing gained.”
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of such increase. The approach lies at the junction of multicriteria choice
problems [53, 55, 152] and the Savage–Niehans principle of minimax regret
(risk) [85, 268]. More specifically, we will employ the notion of a weakly
efficient estimate and the Germeier theorem [213, p. 66] from the theory of
multicriteria choice problems and an estimated value of the regret function as the
Savage–Niehans risk from the principle of minimax regret [66]. Considerations
are restricted to interval-type uncertainty, i.e., the DM merely knows the limits
of a range of values, without any probabilistic characteristics. We suggest a
new concept—the Slater-maximal strongly-guaranteed solution in outcomes and
risks (SGOR)—and establish its existence under standard assumptions of math-
ematical programming (continuous criteria, compact strategy sets and compact
uncertainty [58–65]). As a possible application, the SGOR in the diversification
problem of a deposit into sub-deposits in different currencies is calculated in
explicit form.

Introduction
Consider a multicriteria choice problem under uncertainty (MCPU)

�c = 〈N,X, Y, f (x, y)〉,

where N = {1, . . . , N} (N ≥ 2) denotes the set of numbers assigned to the elements
fi(x, y) of a vector criterion f (x, y) = (f1(x, y), . . . , fN (x, y)); X ⊂ R

n is the
set of alternatives x; Y ⊂ R

m forms the set of interval uncertainty y. For Savage–
Niehans risk function design, we will also use the strategic uncertainties y(x) :
X → Y , denoting their set by YX.

At a conceptual level, it is often assumed that the DM in the problem �c seeks for
an alternative x ∈ X that maximizes the values of all criteria (outcomes) under any
realization of the uncertainty y ∈ Y . In Sect. 5.1, we will also take into account N

new criteria—the risks posed by increasing these outcomes. Thus, the problem setup
will include N additional criteria, i.e., the Savage–Niehans risk functions associated
with outcome increase [172].

Thus, the next section will justify in mathematical terms the new design method
of alternatives in the MCPUs that simultaneously “hits two targets,” namely,
achieving higher guarantees of all outcomes under smaller risks posed by them.
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5.1.1 The Savage–Niehans Principle of Minimax Regret

Payer de sa personne.3

In 1939 A. Wald, a Romanian mathematician who emigrated to the USA in
1938, introduced the maximin principle, also known as the principle of guaran-
teed outcome [282]. This principle allows one to find a guaranteed outcome in
a single-criterion choice problem under uncertainty (SCPU). Almost a decade
later, German mathematician J. Niehans (1948) and American mathematician,
economist, and statistician L. Savage (1951) suggested the principle of minimax
regret (PMR) for building guaranteed risks in the SCPUs [268]. In the modern
literature, this principle is also referred to as the Savage risk or the Niehans–
Savage criterion. Interestingly, during World War II Savage worked as an assistant
of J. von Neumann, which surely contributed to the appearance of the PMR. Note
that the authors of two most remarkable dissertations in economics and statistics
are annually awarded the Savage Prize, which was established in 1971 in the
USA.

For the single-criterion problem �1 = 〈X,Y, φ(x, y)〉, the PMR is to construct a
pair (xr, Rr

φ) ∈ X ×R that satisfies the chain of equalities [3, 4, 156]

Rr
φ = max

y∈Y
Rφ(xr, y) = min

x∈X
max
y∈Y

Rφ(x, y), (5.1.1)

where the Savage–Niehans risk function [268] has the form

Rφ(x, y) = max
z∈X

φ(z, y)− φ(x, y). (5.1.2)

The value Rr
φ given by (5.1.1) is called the Savage–Niehans risk in the problem

�1. The risk function Rφ(x, y) assesses the difference between the realized value
of the criterion φ(x, y) and its best-case value maxz∈X φ(z, y) from the DM’s
view. Obviously, the DM strives to reduce Rφ(x, y) as much as possible with an
appropriately chosen alternative x ∈ X, naturally expecting the strongest opposition
from the uncertainty in accordance with the principle of guaranteed result (see
formula (5.1.1)). Therefore, adhering to (5.1.1)–(5.1.2), the DM is an optimist
seeking for the best-case value maxx∈X φ(x, y). In contrast, the pessimistic DM
is oriented towards the worst-case result—the Wald maximin solutions

(
x0, φ0 =

maxx∈X miny∈Y φ(x, y) = miny∈Y φ(x0, y)
)
.

In the sequel, we will consider that the DM in the problem �c is an optimist:
for each element fi(x, y) (i ∈ N) of the vector criterion f (x, y), he forms a
corresponding Savage–Niehans risk function

Ri(x, y) = max
z∈X

fi(z, y)− fi(x, y) (i ∈ N). (5.1.3)

3French “Put oneself at risk.”
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Note two important aspects as follows. First, each criterion fi(x, y) from �c has
its own risk Ri(x, y)

(
see (5.1.3)

)
. Second, the DM tries to choose alternatives

x ∈ X so as to reduce all risks Ri(x, y), expecting any realization of the strategic
uncertainty y(·) ∈ YX, y(x) : X → Y .

Remark 5.1.1 The models �c arise naturally, e.g., in economics: a seller in a market
is interested in maximizing his profits under import uncertainty.

For a survey of other possible uncertainties, we refer to the books [138, 53,
pp. 19–32] and other publications [69, 75–78].

The uncertainties present in the problem �1 lead to the sets

φ(x, Y ) = {φ(x, y)| ∀y ∈ Y },

which are induced by an alternative x ∈ X. The set φ(x, Y ) can be reduced using
risks. What is a proper comprehension of risk? A well-known Russian expert in
optimization, T. Sirazetdinov, claims that today there is no rigorous mathematical
definition of risk. The monograph [185, p. 15] even suggested sixteen possible
concepts of risk. Most of them require statistical data on uncertainty. However,
in many cases the DM does not possess such information for objective reasons.
Precisely these situations will be studied in the current section and Sect. 5.1.

Thus, here risks will be understood as possible deviations of realized values from
the desired ones. Note that this definition (in particular, the Savage–Niehans risk)
is in good agreement with the conventional notion of microeconomic risk; e.g.,
see [182, pp. 40–50].

Risk management is a topical problem of economics: in 1990, H. Markowitz was
awarded the Nobel Prize in Economic Sciences “for having developed the theory
of portfolio choice.” In this chapter, the idea of his approach will be extended to
the multicriteria choice problems and conflicts under uncertainty. In publications on
microeconomics (e.g., see [182, p. 103; 183, p. 5]), all decision makers are divided
into three categories: risk-averse, risk-neutral, and risk-seeking. In Sect. 5.1, the DM
is assumed to be a risk-neutral person and, of course, an optimist [86–90].

5.1.2 Strong Guarantees and Transition from
�c to 2N -Criteria Choice Problem

The first blow is half the battle.

—English proverb

For each of the N criteria fi(x, y) (i ∈ N), construct the corresponding risk
function Ri(x, y) using formulas (5.1.3), thereby extending the MCPU �c to the
2N-criteria choice problem

〈N,X, Y, {fi (x, y),−Ri(x, y)}i∈N〉. (5.1.4)
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In (5.1.4), the sets N, X, and Y are the same as in �c, while the vector criterion
f (x, y) has an additional term in the form of the N-dimensional vector−R(x, y) =
(−R1(x, y), . . . ,−RN(x, y)). Here the minus sign reflects a uniform effect of
any alternative x ∈ X on each criterion fi(x, y)(i ∈ N). More specifically, in
problem (5.1.4) the DM chooses an alternative x ∈ X in order to increase as much
as possible the value of each element fi(x, y) and −Ri(x, y) (i ∈ N) of the two
N-dimensional vectors f (x, y) and −R(x, y). Moreover, the DM must expect any
realization of the uncertainty y ∈ Y (note that an increase of−Ri(x, y) is equivalent
to a decrease of Ri(x, y) due to the minus sign and Ri(x, y) ≥ 0).

Now, consider the strong guarantees of criteria. In a series of papers [73, 74],
the authors suggested three methods to take the uncertain factors into account—an
analog of saddle point [74] and two analogs of maximin [73], namely, strong and
vector guarantees. Note that strong guarantee is used below, while vector guarantee
was applied in [92, 94, 95, 97, 295].

Definition 5.1.1 A scalar function fi [x] is called a strong guarantee of a criterion
fi(x, y) : X → Y if, for each x ∈ X,

fi [x] ≤ fi(x, y) ∀y ∈ Y (i ∈ N).

Remark 5.1.2 Obviously, the function fi [x] = miny∈Y fi(x, y) ∀x ∈X is a strong
guarantee of fi(x, y). Hence, we have an explicit design method for the strong
guarantees of all 2N criteria from (5.1.4).

Let us find the strong guarantees Ri [x] of the risk functions Ri(x, y) given
by (5.1.3). This will be done in three steps as follows.

First, define

ψi(y) = max
z∈X

fi(z, y) ∀y ∈ Y (i ∈ N).

Second, construct the Savage–Niehans risk function

Ri(x, y) = ψi(y)− fi(x, y) (i ∈ N).

Third, calculate the strong guarantee miny∈Y [−Ri(x, y)], i.e.,

Ri [x] = max
y∈Y

Ri(x, y) (i ∈ N).

Note that the DM seeks to minimize the risk Ri(x, y) with an appropriate alternative
x ∈ X under any realization of the uncertainty y ∈ Y .

Whenever the functions fi[x] and−Ri[x] described in the remark exist, they are
strong guarantees of fi(x, y) and −Ri(x, y), respectively. Indeed, for each x ∈ X,
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we have the implications

[
fi [x] = min

y∈Y
fi(x, y)

]⇒ [
fi[x] ≤ fi(x, y) ∀y ∈ Y

]
,

[− Ri [x] = min
y∈Y

(−Ri(x, y))
]⇒ [− Ri[x] ≤ −Ri(x, y) ∀y ∈ Y

]
.

The existence of fi [x] and Ri[x] follows from a well-known result in operations
research, which was mentioned earlier.

Lemma 5.1.1 (see [136, p. 54]) If the sets X and Y are compact and the criteria
fi(x, y) are continuous on X × Y , then the functions fi [x] = miny∈Y fi(x, y) and
ψi [y] = maxz∈X fi(z, y) are continuous on X and Y , respectively.

From this point onwards, compRn stands for the set of all compact sets from
space R

n. In addition, if fi(x, y) is continuous on X × Y , we will write fi(x, y) ∈
C(X × Y ).

Remark 5.1.3 If in the MCPU �c the criterion fi(x, y) ∈ C(X×Y ), X ∈ compR
n,

and Y ∈ compRm, then the Savage–Niehans risk function Ri(x, y) (i ∈ N)

defined by (5.1.3) is continuous on X × Y . Indeed, the continuity of ψi [y] =
maxz∈X fi(z, y) follows from Lemma 5.1.1, and hence by (5.1.3) the function
Ri(x, y) = ψ[y] − fi(x, y) (i ∈ N) is also continuous.

Remark 5.1.4 The Savage–Niehans risk function (5.1.3) characterizes the deviation
of the criterion fi(x, y) from the desired value maxz∈X fi(z, y). This stimulates the
DM’s choice of an alternative x ∈ X that would reduce as much as possible the
difference Ri(x, y) from (5.1.3) or, equivalently, maximize −Ri(x, y).

Let us associate with the initial MCPU �c the 2N-criteria choice problem (5.1.4).
Once again, at a conceptual level the DM in problem (5.1.4) seeks for an alternative
x ∈X under which all the 2N criteria fi(x, y) and −Ri(x, y) (i ∈ N) would take
the greatest values possible under any realization of the uncertainty y ∈ Y .

5.1.3 Formalization of a Guaranteed Solution in Outcomes
and Risks for Problem �c

Universalia sunt realia.4

The MCPUs are well-described in the literature (in particular, we refer to the
monograph [295]). The specifics of the interval-type uncertainty y figuring in the
problem �c compel the DM to use in (5.1.4) the available information (the limits

4This Latin phrase expresses a main postulate of realism: universals exist in reality and indepen-
dently from consciousness.
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of the range of values). In this section, our analysis will be confined to the strong
guarantees fi [x] and −Ri[x] of the criteria fi(x, y) and −Ri(x, y), respectively.
Therefore, it seems natural to pass from the MCPU (5.1.4) to the multicriteria
choice problem of guarantees without uncertainty

�g = 〈X, {fi [x],−Ri[x]}i∈N〉.

The criteria fi [x] and −Ri [x] in �g are closely related in terms of optimization:
the criterion Ri [x] is used for assessing the DM’s risk posed by the outcome fi [x]
so that an increase in the difference fi [x] − Ri[x] leads to a higher guaranteed
outcome fi [x] and (or) a lower guaranteed risk Ri[x]. Conversely, a decrease in this
difference leads to a lower guaranteed outcome fi [x] and (or) a higher risk Ri [x].
The DM is interested in the maximization of fi [x] with simultaneous minimization
of Ri[x] for each i ∈ N. Therefore, we will associate with the original 2N-criteria
choice problem �g the auxiliary N-criteria choice problem

�a = 〈X, {Fi [x] = fi [x] − Ri [x]}i∈N〉. (5.1.5)

For a formalization of the optimal solution in guaranteed outcomes and risks
for the problem �c, we will use a concept of vector maximum from the theory
of multicriteria choice problems [152]. A first optimal solution of this type was
introduced in 1909 by Italian economist and sociologist V. Pareto, (1848–1923),
and subsequently it because known as a Pareto maximum.

The analysis below will employ the concept of Slater maximum, which includes
the Pareto maximum as a particular case. Perhaps this concept appeared in the
Russian literature after the translation [191] of a paper by Hurwitz.

Definition 5.1.2 An alternative xS ∈ X is called Slater-maximal (weakly efficient)
in the N-criteria choice problem (5.1.5) if the system of strict inequalities

Fi [x] > Fi[xS] (i ∈ N)

is inconsistent for any x ∈ X.

Remark 5.1.5 By Definition 5.1.2, an alternative x∗ ∈ X is not Slater-maximal in
problem (5.1.5) if there exists an alternative x ∈ X satisfying the N inequalities

Fi [x] > Fi [x∗] (i ∈ N).

Proposition 5.1.1 (Sufficient Conditions) If

min
i∈N Fi [xS] = max

x∈X
min
i∈N Fi [x], (5.1.6)

then the alternative xS ∈ X is Slater-maximal in problem (5.1.5).
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Proof By equality (5.1.6) and Remark 5.1.5, for any alternative x ∈ X there exists a
number j ∈ N such that

[
Fj [x] ≤ Fj [xS]]⇒ [

the system of inequalities Fj [x]>
Fj [xS] (i∈N) is inconsistent

]⇒ [
xS is Slater-maximal in problem (5.1.5)

]
. �

Theorem 5.1.1 (Existence) If fi(·) ∈ C(X×Y ) and the sets X and Y are compact,
then there exists a Slater-maximal alternative xS ∈ X in problem (5.1.5).

Proof Using Lemma 5.1.1,

[
fi(·) ∈ C(X × Y ), i ∈ N

]⇒ [
fi [x] ∈ C(X), i ∈ N

]
,

and, in accordance with Remark 5.1.3, Ri(·) ∈ C(X × Y ) (i ∈ N). Then, again by
Lemma 5.1.1, mini∈N Fi [x] = mini∈N(fi [x] − Ri[x]) ∈ C(X) (i ∈ N). Since the
continuous function mini∈N Fi [x] defined on the compact set X achieves maximum
its at some point xS ∈X, we arrive at (5.1.6), and now the conclusion follows from
Proposition 5.1.1. �
Definition 5.1.3 A triplet (xS, f [xS], R[xS]) is called a strongly-guaranteed solu-
tion in outcomes and risks (SGOR) of the MCPU �c if

(1) fi [x] = min
y∈Y

fi(x, y), Ri [x] = max
y∈Y

Ri(x, y) (i ∈ N);

(2) the alternative xS is Slater-maximal in problem (5.1.5).

Recall that

f [x] = (f1[x], . . . , fN [x]), R[x] = (R1[x], . . . , RN [x]),
Ri[x] = max

y∈Y
Ri(x, y), Ri(x, y)=max

z∈X
fi(z, y)−fi(x, y) (i∈N). (5.1.7)

Why is the strongly-guaranteed solution in outcomes and risks (SGOR) a good
solution of the MCPU �c?

First, it provides an answer to the indigenous Russian question: “What is to
be done?” (See, e.g., N. Chernyshevsky’s book with the same title and [155].)
The decision maker is suggested to choose the alternative xS from the triplet
(xS, f [xS], R[xS]).

Second, for all i ∈ N, this alternative xS yields outcomes fi(x
S, y) that are not

smaller than fi [xS]with a risk Ri(x
S, y) not exceeding Ri [xS] under any realization

of the uncertainty y ∈ Y . In other words, xS establishes lower bounds on the
outcomes realized under x = xS and also upper bounds on the risks posed by them.

Third, the situation xS implements the largest (Slater-maximal) outcomes and
corresponding “minus” risks, i.e., there is no other situation x �= xS in which all
outcome guarantees fi [xS] would increase and, at the same time, all risk guarantees
Ri[xS] would decrease.

In fact, the second and third properties considered together give some ana-
log of the maximin alternative in the single-criterion problem �1 under uncer-
tainty if the inner minimum and outer maximum in maximin are replaced by
miny∈Y Fi(x, y) (i ∈ N) and Slater maximum, respectively. There are two lines of
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further investigations in this field. In accordance with the first direction, one should
substitute Slater maximality with Pareto, Borwein, Geoffrion optimality or conical
optimality, and then establish connections between such different solutions. The
second direction proceeds from the DM’s desire for higher profits under the lowest
guarantees in the sense of Definition 5.1.2. Consequently, it is possible to replace
scalar minimum (from the inner minimum in maximin) by one of the listed vector
minima, thereby increasing the guarantees for some i ∈ N.

Also, it seems interesting to build a bridge between such solutions; some research
efforts were made in the monograph [295].

Remark 5.1.6 Definition 5.1.2 suggests a constructive method of SGOR design. It
consists of four steps as follows.

Step 1. Using fi(x, y), find maxz∈X fi(z, y) = ψi [y] and construct the Savage–
Niehans risk function Ri(x, y) = ψi [y] − fi(x, y) for the criterion
fi(x, y) (i ∈ N).

Step 2. Evaluate the outcome guarantees fi [x] = miny∈Y fi(x, y) and also the
risk guarantees Ri [x] = maxy∈Y Ri(x, y) (i ∈ N).

Step 3. For the auxiliary N-criteria choice problem of guarantees �a, calculate

the Slater-maximal alternative xS. At this step, we may take advantage of
Proposition 5.1.2 or perform transition to the concept of Pareto optimality.
For the sake of completeness, we recall this concept.

Definition 5.1.4 An alternative xP ∈ X is called Pareto-maximal (efficient) in
problem (5.1.5) if for any alternatives x ∈ X the system of inequalities

Fi [x] � Fi [xP] (i ∈ N),

with at least one strict inequality, is inconsistent.

Note that, first, by Definitions 5.1.2 and 5.1.3, every Pareto-maximal alter-
native is also Slater-maximal (the converse generally fails); second, by Karlin’s
lemma [152, p. 71], an alternative xP ∈ X that satisfies the condition

max
x∈X

∑

i∈N
αiFi [x] =

∑

i∈N
αiFi [xP] (5.1.8)

for some αi = const > 0 is Pareto-maximal for problem (5.1.5).
For the bi-criteria choice problem, letting α1 = α2 = 1 in (5.1.8) gives the

equality

max
x∈X

(F1[x] + F2[x]) = F1[xS] + F2[xS] (5.1.9)

for obtaining a Pareto-maximal (hence, Slater-maximal) alternative xS.
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Step 4. Using xS, evaluate the guarantees fi [xS] and Ri[xS] (i ∈ N) and compile

the two N-dimensional vectors f [xS] = (f1[xS], . . . , fN [xS]) and R[xS] =
(R1[xS], . . . , RN [xS]).

The resulting triplet (xS, f [xS], R[xS]) is the desired SGOR, which complies
with Definition 5.1.3, i.e., for each criterion fi(x, y) (i ∈ N) the alternative xS leads
to a guaranteed outcome fi [xS] with a guaranteed Savage–Niehans risk Ri[xS] .

5.1.4 Risks and Outcomes for Diversification of a Deposit
into Sub-deposits in Different Currencies

Verba docent, exempla trahunt.5

As mentioned earlier, in economics all decision makers are divided [101–104]
into three categories: risk-averse, risk-neutral, and risk-seeking. In this section,
we will solve the problem of diversification of a one-year deposit into sub-
deposits in rubles and foreign currency for a risk-neutral person. Note that a
similar problem was addressed in the paper [100, p. 9], and the results established
therein differ from those below. The case is that the Slater solutions generally
form a set of distinct elements. Like in [100], the analysis in this section involves
different elements of the same set.

Let us proceed to the diversification problem. The amount of money in a deposit
diversified into two sub-deposits (in rubles and foreign currency) accumulated by

the end of the year can be represented as φ(x, y) = x(1 + r) + (1− x)

k
(1 + d)y;

see [96, pp. 58–60] and also the explanations below. This leads to the single-
criterion choice problem �1 = 〈X,Y, φ(x, y)〉, which was studied in [100]. In
particular, the guaranteed solutions for risk-averse, risk-neutral, and risk-seeking
persons were found. In contrast to the paper [100] dealing with the single-criterion
choice problem with the criterion φ(x, y), in this section we will consider a bi-
criteria analog of the problem �1 with the criteria

f1(x) = x(1+ r), f2(x, y) = (1− x)

k
(1+ d)y. (5.1.10)

Our intention is to apply the mathematical methods described in Sect. 5.1.3.
The first criterion concerns the annual income for the sub-deposit in rubles from

an investment x, while the second concerns the annual income for the sub-deposit
in foreign currency from the residual investment 1 − x. In formula (5.1.10), r

and d denote the interest rates for the sub-deposits in rubles and foreign currency,
respectively; k and y are the exchange rates (to the ruble) at the beginning and at the

5Latin “Words instruct, illustrations lead.”
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Fig. 5.1 Three possible arrangements of the point k
1+ r

1+ d
and the interval [a, b] on axis y

end of the year, respectively; finally, x ∈ [0, 1] specifies a proportion in which the
main deposit is divided into the sub-deposits. Thus, x is the part corresponding to
the ruble sub-deposit, while the other part 1− x is converted into foreign currency,
1− x

k
, and then allocated to the corresponding sub-deposit. At the end of the year,

it is converted back into rubles,
(1− x)

k
(1 + d)y; the resulting amount of money

makes up f1(x) + f2(x, y). The decision maker (depositor) has to determine the
part x under which the resulting amount of money is as large as possible. It must be
taken in account that the future exchange rate y is usually unknown. However, we
will assume a range of its possible fluctuations, i.e., y ∈ [a, b], where the constants
b > a > 0 are given or a priori known.

The mathematical model of the bi-criteria deposit diversification problem can be
written as an ordered triplet

�2 = 〈X = [0, 1], Y = [a, b], {fi(x, y)}i=1,2〉, (5.1.11)

where the functions fi(x, y) are defined by (5.1.10); the set X = [0, 1] consists of
the DM’s alternatives x; Y = [a, b] is the set of uncertainties y; finally, fi(x, y)

denote the DM’s utility functions (criteria), and their values are called outcomes.
In the terminology of operations research, �2 is a single-criterion choice problem
under uncertainty. The DM’s desire to take into account the existing uncertain
factors has a close connection with risk—“possible deviations of some variables
from the desired values” [185, p. 18]. We will use the Savage–Niehans risk function.
For problem (5.1.11), consider three cases as illustrated in Fig. 5.1, namely,

1. k
1+ r

1+ d
≤ a;

2. k
1+ r

1+ d
≥ b;

3. a < k
1+ r

1+ d
< b.

Cases 1 and 2 Recall that �2 is a bi-criteria problem under uncertainty. We will
solve it using Definition 5.1.4, which is based on the concept of Pareto optimality.6

6Cases 1 and 2 will be considered with Pareto optimality, and case 3 with Proposition 5.1.1.
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Proposition 5.1.2 In cases 1 and 2, the SGOR in the problem �2 has the explicit
form

(xS, f [xS], R[xS]) = (xS; f1[xS], f2[xS];R1[xS], R2[xS])

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
0; 0,

1+ d

k
a; 1+ r, 0

)
, if

1+ r

1+ d
k ≤ a,

(
1; 1+ r, 0; 0,

1+ d

k
b
)
, if

1+ r

1+ d
k ≥ b.

(5.1.12)

That is, in case 1 (Fig. 5.1), the DM invests everything in the foreign currency sub-

deposit, obtaining with zero risk (surely!) a guaranteed minimum amount of
1+ d

k
a

at the end of the year; in case 2, he invests everything in the ruble sub-deposit,
obtaining with zero risk a guaranteed minimum amount of 1 + r at the end of the
year. In both cases, the guaranteed minimum amounts are obtained with zero risk
under any exchange rate fluctuations y ∈ [a, b] during the year.

Proof We carry out the proof in two steps. In the first step, following Remark 5.1.6,
we construct the resulting 2N-criteria choice problem of guarantees �g and then the
N-criteria choice problem (5.1.5). In the second step, for this problem (5.1.5), we
find the Slater-maximal alternative xS using Proposition 5.1.1 and then calculate the
explicit form of the SGOR for the bi-criteria choice problem (5.1.11).

First Step In (5.1.11), the criteria are given by

f1(x, y) = f1(x) = x(1+ r), f2(x, y) = (1− x)

k
(1+ d)y.

Sub-step 1 Using (5.1.3), construct the Savage–Niehans risk function

R1(x, y) =
[

max
z∈[0,1]

f1(z)

]

− (1+ r)x

= (1+ r)− x(1+ r) = (1− x)(1+ r),

R2(x, y) =
[

max
z∈[0,1]f2(z, y)

]

− (1− x)
1+ d

k
y

= 1+ d

k
y − (1− x)

1+ d

k
y = xy

1+ d

k
.

Sub-step 2 Now, calculate the strong guarantees in outcomes and risks

f1[x] = min
y∈[a,b]x(1+ r) = x(1+ r),

f2[x] = min
y∈[a,b](1− x)

1+ d

k
y = (1− x)

1+ d

k
a,
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R1[x] = max
y∈[a,b]R1(x, y) = (1− x)(1+ r),

R2[x] = max
y∈[a,b]R2(x, y) = x

1+ d

k
b.

Sub-step 3 The quad-criteria choice problem of guarantees takes the form

�g = 〈X = [0, 1], {fi [x], −Ri[x]}i=1,2〉.

Step 2 also allows us to define the criteria

F1[x] = f1[x] − R1[x]
= x(1+ r)− (1− x)(1+ r) = (2x − 1)(1+ r),

F2[x] = f2[x] − R2[x]

= (1− x)
1+ d

k
a − x

1+ d

k
b = 1+ d

k
a − 1+ d

k
(a + b)x

in the auxiliary bi-criteria choice problem (5.1.5)

�a = 〈X = [0, 1], {Fi[x]}i=1,2〉.

Second Step

Sub-step 4 Maximize the sum of criteria

max[0,1](F1[x] + F2[x]) = F1[xS] + F2[xS].

The resulting Pareto-maximal (ergo, Slater-maximal) alternative xS is

F [xS] = max[0,1] F [x], (5.1.13)

where

F [x] = F1[x] + F2[x] = (2x − 1)(1+ r)+ 1+ d

k
a − 1+ d

k
(a + b)x

= x
[
2(1+ r)− 1+ d

k
(a + b)

]− (1+ r)+ 1+ d

k
a

= 1+ d

k

{[2γ − (a + b)]x − γ + a
}
,

and γ = 1+ r

1+ d
k. The function F [x] under maximization is linear in x and defined

on the interval [0, 1]. Therefore, it achieves maximum at one of the endpoints of this
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interval, i.e., either at x = 0, or at x = 1. For x = 0, we have F [0] = 1+ d

k
(a−γ );

for x = 1, F [1] = 1+ d

k
(γ − b).

Lemma 5.1.2 The implication

[
a ≥ γ

]⇒ [
F [0] > F [1]]

is valid.

Proof Indeed,

[a ≥ γ ] ⇔
[
[a + a

2
≥ γ

] ≥ [a + b

2
> γ

]
]

⇒ [a − γ > γ − b]

⇒ [
F [0] = 1+ d

k
(a − γ ) > F [1] = 1+ d

k
(γ − b)

]
.

�
In a similar fashion, we can easily establish

Lemma 5.1.3

[
γ ≥ b

]⇒ [
F [0] < F [1]].

Proof Indeed,

[γ ≥ b] ⇔
[

γ ≥ b + b

2

]

⇒
[

γ >
b + a

2

]

⇒ [γ − b > a − γ ]

⇒
[

F [1] = 1+ d

k
(γ − b) > F [0] = 1+ d

k
(a − γ )

]

.

�
Sub-step 5 By Lemmas 5.1.2 and 5.1.3, the maximum in (5.1.13) is achieved

(a) at xS = 0 if a ≥ γ ;
(b) at xS = 1 if γ ≥ b.

The corresponding guarantees are calculated using this result and Sub-step 2:

f1[0] = 0, f2[0] = 1+ d

k
a, R1[0] = 1 + r , and R2[0] = 0; in addition, f1[1] =

1 + r , f2[1] = 0, R1[1] = 1, and R2[1] = 1+ d

k
b. Recall that γ = 1+ r

1+ d
k, and

the proof of Proposition 5.1.2 is complete. �
Let us make a few of remarks. First, R1[0] = 1 + r means the risk with which

f1[0] = 0 “does not reach” the largest outcome f1[1] = 1+ r (the Savage–Niehans
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risk). The value R2[1] = 1+ d

k
b has a similar meaning. Second, Proposition 5.1.2

was proved in the paper [115] using a different technique.
Finally, consider case 3. Here we will utilize, first, the results of Sub-step 3 of

Proposition 5.1.2, in particular, the bi-criteria choice problem

�a = 〈X = [0, 1], {Fi[x]}i=1,2〉,

where

F1[x] = (2x − 1)(1+ r),

F2[x] = 1+ d

k
a − 1+ d

k
(a + b)x; (5.1.14)

second, the sufficient conditions (5.1.6) for the existence of the alternative xS (see
Proposition 5.1.1), writing them for the deposit diversification problem (5.1.11) as

min
i=1,2

Fi [xS] = max
x∈[0,1] min

i=1,2
Fi [x].

Proposition 5.1.3 If a <
1+ r

1+ d
k < b, the SGOR in the problem �2 has the form

(
xS, f [xS], R[xS]

)
=
(
xS; f1[xS], f2[xS]; R1[xS], R2[xS]

)

=
(

γ + a

2γ + a + b
; (γ + a)(1+ r)

2γ + a + b
,

γ + b

2γ + a + b

1+ d

k
a;

(1+r)
γ + b

2γ + a + b
, b

1+ d

k

γ + a

2γ + a + b

)

. (5.1.15)

Proof Draw the graphs of the two functions F1[x] and F2[x] from (5.1.14). These
functions are linear in x and defined on the interval [0, 1] (a compact set!); see
Fig. 5.2.

In Fig. 5.2 the function mini=1,2{F1[x], F2[x]} is indicated by the bold line, see
the angle ABC. For maxx∈[0,1]mini=1,2{F1[x], F2[x]}, the point B satisfies the
equality

F1[xS] = F2[xS]

or, using (5.1.14),

xS

[

2(1+ r)+ 1+ d

k
(a + b)

]

= 1+ r + 1+ d

k
a.
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Fig. 5.2 Graphs of functions defined by (5.1.14)

With the notation γ = 1+ r

1+ d
k, it can be written as

xS [2γ + a + b] = γ + a,

which gives

xS = γ + a

2γ + a + b
, 1− xS = γ + b

2γ + a + b
.

Using the formulas of Sub-step 2 (the proof of Proposition 5.1.2), we calculate the
strong guarantees in outcomes and risks:

f1[xS] = (1+ r)
γ + a

2γ + a + b
, f2[xS] = 1+ d

k
a

γ + b

2γ + a + b
,

R1[xS] = (1+ r)
γ + b

2γ + a + b
, R2[xS] = 1+ d

k
b

γ + a

2γ + a + b
.

�
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Thus, we have established the following result (see Proposition 5.1.3). If a <
1+r
1+d

k < b, the strongly-guaranteed solution in outcomes and risks of the deposit
diversification problem (Definition 5.1.2) has form (5.1.15). It suggests the DM to
invest the part γ+a

2γ+a+b
in the ruble sub-deposit and the residual part γ+b

2γ+a+b
in the

foreign currency sub-deposit. At the end of the year, the DM will obtain the amount
(1+r)

γ+a
2γ+a+b

for the ruble sub-deposit with the Savage–Niehans risk (1+r)
γ+b

2γ+a+b

and the amount 1+d
k

a
γ+b

2γ+a+b
(after conversion in rubles) for the foreign currency

sub-deposit with the Savage–Niehans risk 1+d
k

b
γ+a

2γ+a+b
under any exchange rate

fluctuations y ∈ [a, b] during the year.

Remark 5.1.7 If 1+r
1+d

k � a (case 1), the DM is recommended to invest everything
in the foreign currency sub-deposit, because at the end of the year he will obtain the
guaranteed minimum income 1+d

k
a with zero risk (Proposition 5.1.2).

If 1+r
1+d

k � b (case 2), the DM is recommended to invest everything in the ruble
sub-deposit, which will yield him the guaranteed minimum income 1+ r with zero
risk at the end of the year (Proposition 5.1.2).

5.2 A New Approach to Optimal Solutions of Noncooperative
Games: Accounting for Savage–Niehans Risk

He who takes chances does not risk.7

The novelty of the approach presented below is that each person in a conflict
(player) seeks not only to increase his payoff but also to reduce his risk, taking
into account a possible realization of any uncertainty from a given admissible set.
A new concept, the so-called strongly-guaranteed Nash equilibrium in payoffs
and risks, is introduced and its existence in mixed strategies is proved under
standard assumptions of the theory of noncooperative games, i.e., compactness
and convexity of the sets of players’ strategies and continuity of the payoff
functions.

5.2.1 Principia Universalia

Consider the noncooperative N-player normal-form game under uncertainty

〈N, {Xi}i∈N, Y, {fi(x, y)}i∈N〉, (5.2.1)

7An English translation of a statement from [26].



192 5 New Approaches to the Solution of Noncooperative Games and Multicriteria. . .

where N = {1, 2, . . . , N ≥ 2} denotes the set of players; each player i ∈ N chooses
and uses a pure strategy xi ∈ Xi ⊂ R

ni (i ∈ N), which yields a strategy profile
x = (x1, . . . , xN) ∈ X =∏i∈N Xi ⊆ R

n (n =∑i∈N ni); regardless of the players’
actions, an uncertainty y ∈ Y ⊂ R

m is realized in game (5.2.1); the payoff function
fi(x, y) of player i is defined on the pairs (x, y) ∈ X×Y, and its value is called the
payoff of player i.

At a conceptual level, the goal of each player in the standard setup considered
before was to choose his strategy so as to achieve as great payoff as possible.

The middle of the twentieth century was a remarkable period for the theory
of noncooperative games. In 1949, 21 year old Princeton University postgraduate
J. Nash suggested and proved the existence of a solution [257] that subsequently
became known as the Nash equilibrium: a strategy profile xe ∈ X is called a Nash
equilibrium in a game 〈N, {Xi}i∈N, {fi [x]}i∈N〉 if

max
xi∈Xi

fi [xe||xi] = fi [xe] (i ∈ N),

where [xe||xi] = [xe
1, . . . , x

e
i−1, xi, x

e
i+1, . . . , x

e
N ].

This concept (and the approach driven by it) has become invaluable for resolving
global (and other) problems in economics, social and military sciences. After 45
years, in 1994, J. Nash together with R. Selten and J. Harsanyi were awarded the
Nobel Prize in Economic Sciences “for their pioneering analysis of equilibria in the
theory of non-cooperative games.” In 1951, American mathematician, economist
and statistician L. Savage, who worked as a statistics assistant for J. von Neumann
during World War II, proposed [268] the principle of minimax regret (the Savage–
Niehans risk). In particular, for a single-criterion choice problem under uncertainty
� = 〈X, Y, ϕ(x, y)〉, the principle of minimax regret can be written as

min
x∈X

max
y∈Y

R(x, y) = max
y∈Y

R(xe, y) = R, (5.2.2)

where the Savage–Niehans risk function [268] has the form

R(x, y) = max
z∈X

ϕ(z, y)− ϕ(x, y). (5.2.3)

The value R(x, y) is called the Savage–Niehans risk in a single-criterion choice
problem �. It describes the risk of decision makers while choosing an alternative
x (the difference between the desired value of the criterion maxx∈X ϕ(x, y) and the
realized value ϕ(x, y)). Note that a decision maker seeks to reduce precisely this
risk as much as possible by choosing x ∈ X. In fact, the combination of the concept
of Nash equilibrium with the principle of minimax regret is the fundamental idea of
Sect. 5.2. Such an approach matches the desire of each player not only to increase
his payoff, but also to reduce his risk while realizing this desire.
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In this context, two questions arise naturally:

1. How can we combine the two objectives of each player (payoff increase with
simultaneous risk reduction) using only one criterion?

2. How can we combine these actions (alternatives) in a single strategy profile, in
such a way that uncertainty is also accounted for?

5.2.2 How Can We Combine the Objectives of Each Player
to Increase the Payoff and Simultaneously Reduce the
Risk?

There’s no great loss without some small gain.
—Laura Ingalls Wilder8

Construction of Savage–Niehans Risk Function

Recall that, in accordance with the principle of minimax regret, the risk of
player i is defined by the value of the Savage–Niehans risk function [183, 184,
186]

Ri(x, y) = max
z∈X

fi(z, y)− fi(x, y), (5.2.4)

where fi(x, y) denotes the payoff function of player i in game (5.2.1). Thus, to
construct the risk function Ri(x, y) for player i, first we have to find the dependent
maximum

max
x∈X

fi(x, y) = fi [y]

for all y ∈ Y. To calculate fi [y], in accordance with the theory of two-level
hierarchical games, it is necessary to assume the discrimination of the lower-level
player, who forms the uncertainty y ∈ Y and sends this information to the upper
level for constructing counterstrategies x(i)(y) : Y → X so that

max
x∈X

fi(x, y) = fi(x
(i)(y), y) = fi[y] ∀ y ∈ Y.

The set of such counterstrategies is denoted by XY. (Actually, this set consists of
n-dimensional vector functions x(y) : Y → X with the domain of definition Y and
the codomain X.) Thus, to construct the first term in (5.2.4) at the upper level of the

8Laura Elizabeth Ingalls Wilder (1867–1957) was an American writer known for the Little House
on the Prairie series of children’s books.
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hierarchy, we have to solve N single-criterion problems of the form

〈XY, Y, fi (x, y)〉 (i ∈ N),

for each uncertainty y ∈ Y; here XY is the set of counterstrategies x(y) : Y → X,
i.e., the set of pure uncertainties y ∈ Y. The problem itself consists in determining
the scalar functions fi [y] defined by the formula

fi [y] = max
x(·)∈XY

fi(x, y) ∀ y ∈ Y.

After that, the Savage–Niehans risk functions are constructed by formula (5.2.4).

Continuity of Risk Function, Guaranteed Payoffs and Risks
Ad informandum.9

Hereinafter, the collection of all compact sets of Euclidean space R
k is denoted

by comp R
k , and if a scalar function ψ(x) on the set X is continuous, we write

ψ(·) ∈ C(X).
The main role in this section will be played by the following result.

Proposition 5.2.1 If X∈comp Rn, Y∈comp Rm, and fi(·)∈C(X×Y), then

(a) the maximum function maxx∈X fi(x, y) is continuous on Y;
(b) the minimum function miny∈Y fi(x, y) is continuous on X.

These assertions can be found in most monographs on game theory, operations
research, systems theory, and even in books on convex analysis [46].

Corollary 5.2.1 If in game (5.2.1) the sets X ∈ compRn and Y ∈ compRm and the
functions fi(·) ∈ C(X×Y), then the Savage–Niehans risk function Ri(x, y) (i ∈ N)

is continuous on X× Y.

Indeed, by Proposition 5.2.1 the first term in (5.2.4) is continuous on Y and a
difference of continuous functions is itself continuous for all (x, y) ∈ X× Y.

Let us proceed with guaranteed payoffs and risks in game (5.2.1). In a series
of publications [73, 74], three different ways to account for uncertain factors of
decision-making in conflicts under uncertainty were proposed. Our analysis below
will be confined to one of them presented in [74]. The method that will be applied in
this section consists in the following. Each payoff function fi(x, y) in game (5.2.1)
is associated with its strong guarantee fi [x] = miny∈Y fi(x, y) (i ∈ N). As a
consequence, choosing their strategies from a strategy profile x ∈ X, the players
ensure a payoff fi [x] ≤ fi(x, y) ∀y ∈ Y to each player i, i.e., under any realized
uncertainty y ∈ Y. Such a strongly-guaranteed payoff fi [x] seems natural for
the interval uncertainties y ∈ Y addressed in the book, because no additional
probabilistic characteristics of y (except for information on the admissible set Y ⊂
R

m) are available. An example of such uncertainties can be the length of women’s

9Latin “To inform.”
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skirts [18]. For a clothing factory, production planning for a next year heavily affects
its future profits; however, in view of the vagaries of fashion and female logic
dictating fashion trends, availability of any probabilistic characteristics would be
hardly expected. In such problems, it is possible to establish only some obvious
limits of length variations. Proposition 5.2.1, in combination with Corollary 5.2.1
as well as the continuity of fi(x, y) and Ri(x, y) on X × Y, leads to the following
result.

Proposition 5.2.2 If in game (5.2.1) the sets Xi (i ∈ N) and Y are compact and
the payoff functions fi(x, y) are continuous on X× Y, then the guaranteed payoffs

fi [x] = min
y∈Y

fi(x, y) (i ∈ N) (5.2.5)

and the guaranteed risks

Ri [x] = max
y∈Y

Ri(x, y) (i ∈ N) (5.2.6)

are scalar functions that are continuous on X.

Remark 5.2.1 First, the meaning of the guaranteed payoff fi [x] from (5.2.5) is that,
for any y ∈ Y, the realized payoffs fi(x, y) are not smaller than fi[x]. In other
words, using his own strategies from a strategy profile x ∈ X in game (5.2.1), each
player ensures a payoff fi(x, y) of at least fi[x] under any uncertainty y ∈ Y (i ∈
N). Therefore, the guaranteed payoff fi [x] gives a lower bound for all possible
payoffs fi(x, y) occurring when the uncertainty y runs through all admissible values
from Y. Second, the guaranteed risk Ri [x] also gives an upper bound for all Savage–
Niehans risks Ri(x, y) that can be realized under any uncertainties y ∈ Y. Indeed,
from (5.2.6) it immediately follows that

Ri(x, y) � Ri [x] ∀ y ∈ Y (i ∈ N).

Thus, adhering to his strategy xi from a strategy profile x ∈ X, player i ∈ N

obtains a guarantee in the payoff fi [x], because fi [x] ≤ fi(x, y) ∀y ∈ Y, and
simultaneously a guarantee in the risk Ri [x] ≥ Ri(x, y) ∀y ∈ Y.

Transition from Game (5.2.1) to a Noncooperative Game with Two-Component
Payoff Function
The new mathematical model of a noncooperative N-player game under uncertainty
with a two-component payoff function of each player in the form

G = 〈N, {Xi}i∈N, Y, {fi(x, y),−Ri(x, y)}i∈N〉.

matches the desire of each player to increase his payoff and simultaneously reduce
his risk. Here N, Xi and Y are the same as in game (5.2.1); the novelty consists
in the transition from the one-component payoff function fi(x, y) of each player
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i to the two-component counterpart {fi(x, y),−Ri(x, y)}, where Ri(x, y) denotes
the Savage–Niehans risk function for player i. Recall that Ri(x, y) figures in the
game G with the minus sign, as in this case player i seeks to increase both criteria
simultaneously by an appropriate choice of his strategy xi ∈ Xi . In this model, we
expect any uncertainty y ∈ Y to occur. Since Ri(x, y) ≥ 0 for all (x, y) ∈ X × Y,
an increase of −Ri(x, y) is equivalent to a reduction of Ri(x, y).

Since the game G involves interval uncertainties y ∈ Y only (the only available
information is the range of their variation), each player i ∈ N should focus on the
guaranteed payoffs fi [x] from (5.2.5) and the guaranteed risks Ri [x] from (5.2.6).
This approach allows one to pass from the game G to the game of guarantees

Gg = 〈N, {Xi}i∈N, {fi [x],−Ri[x]}i∈N〉,

in which each player i ∈ N chooses his strategy xi ∈ Xi so as to simultaneously
maximize both criteria fi [x] and −Ri[x]. By “freezing” the strategies of all players
in Gg except for xi , we arrive at the bi-criteria choice problem

G
g
i = 〈Xi , {fi [x],−Ri[x]}〉

for each player i. Recall that, in the bi-criteria choice problem G
g
i , the strategies of

all players except for player i are considered to be fixed (“frozen”), and this player
i chooses his strategy xi ∈ Xi so that for xi = xS

i the maximum possible values of
fi [x] and −Ri[x] are simultaneously realized. Right here it is necessary to answer
the first of the two major questions formulated at the end of Sect. 5.2.1.

How Can We Combine the Objectives of Each Player (Increase Payoff and
Simultaneously Reduce Realized Risk) Using Only One Criterion?

Duo quum faciunt idem, non est idem.10

To answer this question, we will apply the concept of vector optimum—the
Pareto efficient solution—proposed in 1909 by Italian economist and sociologist
Pareto [263].

In what follows, for the choice problem G
g
i , introduce the notations fi[xi] =

fi [x] and Ri [xi] = Ri[x] for the frozen strategies of all players except for the
strategy xi of player i. Then the problem G

g
i = 〈Xi , {fi[x],−Ri[x]}〉 can be

transformed into

〈Xi , {fi [xi],−Ri[xi]}〉. (5.2.7)

10Latin “When two do the same thing, it is not the same thing.” This phrase belongs to Terence,
Latin in full Publius Terentius Afer, (195–159? B.C.), after Plautus the greatest Roman comic
dramatist. See The Brothers V. 3.



5.2 A New Approach to Optimal Solutions of Noncooperative Games:. . . 197

Proposition 5.2.3 If in problem (5.2.7) there exist a strategy xe
i ∈ Xi and a value

σi ∈ (0, 1) such that xe
i maximizes the scalar function

�i [xi] = fi[xi] − σiRi [xi], (5.2.8)

i.e.,

�i [xe
i ] = max

xi∈Xi

(fi [xi] − σiRi[xi]), (5.2.9)

then xe
i is the Pareto-maximal alternative in (5.2.7); in other words, for any xi ∈ Xi

the system of two inequalities

fi [xi] � fi [xe
i ], −Ri [xi] � −Ri [xe

i ],

with at least one strict inequality, is inconsistent.

Reductio ad Absurdum Assume on the contrary that the strategy xe
i yielded by

(5.2.9) is not the Pareto-maximal alternative in problem (5.2.7). Then there exists a
strategy x̄i ∈ Xi of player i such that the system of two inequalities

fi [x̄i] � fi [xe
i ], −Ri [x̄i] � −Ri [xe

i ],

with at least one strict inequality, is consistent.

Multiply both sides of the first inequality by 1−σi > 0 and of the other inequality
by σi > 0 and then add separately the left- and right-hand sides of the resulting
inequalities to obtain

(1− σi)fi [x̄i] − σiRi[x̄i] > (1− σi)fi [xe
i ] − σiRi [xe

i ]

or, taking into account (5.2.8),

�i[x̄i] > �i[xe
i ].

This strict inequality contradicts (5.2.9), and the conclusion follows. �
Remark 5.2.2 The combination of criteria (5.2.5) and (5.2.6) in form (5.2.8) is of
interest for two reasons. First, even if for x̄i �= xe

i we have an increase of the
guaranteed result fi [x̄i] > fi [xe

i ], then due to the Pareto maximality of xe
i and the

fact that Ri [xi] ≥ 0 such an improvement of the guaranteed payoff fi [x̄i] > fi [xe
i ]

inevitably leads to an increase of the guaranteed risk Ri[x̄i] > Ri [xe
i ]; conversely,

for the same reasons, a reduction of the guaranteed risk Ri[x̄i] < Ri[xe
i ] leads to a

reduction of the guaranteed payoff fi[x̄i] < fi [xe
i ] (both cases are undesirable for

player i). Therefore, the replacement of the bi-criteria choice problem (5.2.7) with
the single-criterion choice problem 〈Xi , fi [xi] − σiRi [xi]〉 matches the desire of
player i to increase fi [xi] and simultaneously reduce Ri [xi].
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Second, since Ri [xi] ≥ 0, an increase of the difference fi [xi] − σiRi[xi]
also matches the desire of player i to increase the guaranteed payoff fi [x] and
simultaneously reduce the guaranteed risk Ri[x].

5.2.3 Formalization of Guaranteed Equilibrium in Payoffs
and Risks for Game (5.2.1)

Omnis determinatio est negatio.11

Punctum Saliens12

Now, let us answer the second question from Sect. 5.2.1: how can we combine
the efforts of all N players in a single strategy profile taking into account
the existing interval uncertainty? To do this, from game (5.2.1) we will pass
sucessively to noncooperative games �1, �2 and �3, where

�1 = 〈N, {Xi}i∈N, Y, {fi(x, y),−Ri(x, y)}i∈N〉,
�2 = 〈N, {Xi}i∈N, {fi [x],−Ri[x]}i∈N〉,
�3 = 〈N, {Xi}i∈N, {�i[x] = fi [x] − σiRi[x]}i∈N〉.

In all these three games, N = {1, 2, . . . , N ≥ 2} is the set of players; xi ∈ Xi ⊂
R

ni (i ∈ N) denote the strategies of player i; x = (x1, . . . , xN) ∈ X = ∏i∈N Xi ⊂
Rn (n = ∑

i∈N ni ) forms a strategy profile; y ∈ Y ⊂ Rm are uncertainties; the
payoff function fi(x, y) of each player i ∈ N is defined on the pairs (x, y) ∈ X×Y;
in (5.2.4), Ri(x, y) denotes the Savage–Niehans risk function of player i; finally,
σi ∈ (0, 1) (i ∈ N) are some constants. In the game �1, the payoff function of player
i becomes two-component as the difference between the payoff function fi(x, y) of
player i from (5.2.1) and the risk function Ri(x, y) from (5.2.4).

In the game �2, the payoff function fi(x, y) and the risk function Ri(x, y)

are replaced with their guarantees fi[x] = miny∈Y fi(x, y) and Ri [x] =
maxy∈Y Ri(x, y), respectively. Finally, in the game �3, the linear combination
of the guarantees fi[x] and −Ri[x] (see Proposition 5.2.3) is used instead of the
payoff function of player i.

Internal Instability of the Set of Nash Equilibria
A bird may be known by its song.

—English proverb

11Latin “All determination is negation.” This phrase belongs to Benedict de Spinoza, (1632–1677),
a Dutch Jewish philosopher.
12This Latin word combination identifies a starting point, an origin, a source, the heart of the
matter.
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Consider a noncooperative N-player game in pure strategies (a non-zero-sum
game of guarantees) of the form

� = 〈N, {Xi}i∈N, {�i[x]}i∈N〉. (5.2.10)

Each player i chooses and uses his pure strategy xi ∈ Xi ⊂ R
ni without making

coalitions with other players, thereby forming a strategy profile x = (x1, . . . , xN) ∈
X = ∏

i∈N Xi ⊆ R
n (n = ∑

i∈N
ni ); a payoff function �i [x] is defined for each

i ∈ N on the set of strategy profiles X, and its value is called the payoff of player i.
Below, we will again use the notations [xe||xi] = [xe

1, . . . , x
e
i−1, xi, x

e
i+1, . . . , x

e
N ]

and � = (�1, . . . ,�N).

Definition 5.2.1 A strategy profile xe = (xe
1, . . . , x

e
N) ∈ X is called a Nash

equilibrium in game (5.2.10) if

max
xi∈Xi

�i [xe‖xi] = �i[xe] (i ∈ N); (5.2.11)

denote by Xe the set {xe} of Nash equilibria in game (5.2.12).

Let us analyze the internal instability of Xe. A subset X∗ ⊂ Rn is internally
unstable if there exist at least two strategy profiles x(j)∈X∗ (j=1, 2) such that

[
�[x(1)] < �[x(2)]

]
⇔

[
�i[x(1)] < �i[x(2)] (i ∈ N)

]
, (5.2.12)

and internally stable otherwise.

Example 5.2.1 Consider the two-player game

〈{1, 2}, {Xi = [−1, 1]}i=1,2, {fi(x) = −x2
i + 2x1x2}i=1,2〉. (5.2.13)

A strategy profile xe = (xe
1, x

e
2) ∈ [−1, 1]2 is a Nash equilibrium in

game (5.2.13) if (see (5.2.11))

−x2
i + 2x1x

e
2 � −(xe

i )
2 + 2xe

1x
e
2 ∀ xi ∈ [−1, 1] (i = 1, 2),

which is equivalent to

−(x1 − xe
2)

2 � −(xe
1 − xe

2)
2, −(xe

1 − x2)
2 � −(xe

1 − xe
2)

2.

Therefore, xe
1 = xe

2 = α ∀α = const ∈ [−1, 1], i.e., in (5.2.13) we have the sets

Xe = {(α, α) | ∀ α ∈ [−1, 1]}
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Fig. 5.3 Set Xe = AB. Set f (Xe) = ⋃

α∈[−1,1]
(α2, α2) = OC

and fi(Xe) = ⋃xe∈Xe fi(x
e) = ⋃α∈[−1,1](α2, α2), as illustrated in Fig. 5.3. Thus,

the set Xe is internally unstable, since for game (5.2.13) with x(1) = (0, 0) and
x(2) = (1, 1) we obtain fi(x

(1)) = 0 < fi(x
(2)) = 1 (i = 1, 2) (see (5.2.12)).

Remark 5.2.3 In the zero-sum setup of game (5.2.10) (i.e., with N = {1, 2} and
f1 = −f2 = f ), the equality f (x(1)) = f (x(2)) holds for any two saddle points
x(k) ∈ X (k = 1, 2) (by the equivalence of saddle points). Therefore, the set of
saddle points in the zero-sum game is always internally stable. Note that a saddle
point is a Nash equilibrium in the zero-sum setup of game (5.2.10).

Remark 5.2.4 In the non-zero-sum setup of game (5.2.10), internal instability (see
Example 5.2.1) does not occur if there is a unique Nash equilibrium in (5.2.10).

Let us associate with game (5.2.10) an auxiliary N-criteria choice problem of the
form

�c = 〈Xe, {�i[x]}i∈N〉, (5.2.14)

where the set Xe of alternatives x coincides with the set of Nash equilibria xe of
game (5.2.10) and the ith criterion �i [x] is the payoff function (5.2.8) of player i.

Definition 5.2.2 An alternative xP ∈ Xe is a Pareto-maximal (weakly efficient)
alternative in (5.2.14) if for all x ∈ Xe the system of inequalities

�i[x] � �i[xP] (i ∈ N),

with at least one strict inequality, is inconsistent. Denote by XP the set {xP} of all
such strategy profiles.

In accordance with Definition 5.2.2, the set XP ⊆ Xe is internally stable.
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The following assertion is obvious. If

∑

i∈N
fi(x) �

∑

i∈N
fi(x

P) (5.2.15)

for all x ∈ Xe, then xP is a Pareto-maximal alternative in problem (5.2.14).

Remark 5.2.5 A branch of mathematical programming focused on numerical meth-
ods of Nash equilibria design in games (5.2.10) has recently become known as
equilibrium programming. At Moscow State University, research efforts in this
field are being undertaken by the groups of Professors F.P. Vasiliev and A.S.
Antipin at the Faculty of Computational Mathematics and Cybernetics. However,
the equilibrium calculation methods developed so far yield a Nash equilibrium that
is not necessarily Pareto-maximal (in other words, the methods themselves do not
guarantee Pareto maximality). At the same time, such a guarantee appears (!) if equi-
librium is constructed using the sufficient conditions below—see Theorem 5.2.1.

Formalization of Pareto–Nash Equilibrium
That’s a horse of another colour.

—English proverb

Let us return to the noncooperative game (5.2.10)

� = 〈N, {Xi}i∈N, {�i[x]}i∈N〉,

associating with it the N-criteria choice problem (5.2.14)

〈Xe, {�i[x]}i∈N〉.

Recall that the set of Nash equilibria xe of game (5.2.10) (Definition 5.2.1) is
denoted by Xe, while the set of Pareto-maximal alternatives xP of problem (5.2.14)
(Definition 5.2.2) is denoted by XP.

Definition 5.2.3 A strategy profile x∗ ∈ X is called a Pareto–Nash equilibrium in
game (5.2.10) if x∗ is simultaneously

(a) a Nash equilibrium in (5.2.10) (Definition 5.2.1) and
(b) a Pareto-maximal alternative in (5.2.14) (Definition 5.2.2).

Remark 5.2.6 The existence of x∗ in game (5.2.10) with Xe �= ∅, compact sets Xi

and continuous payoff functions �i[x] (i ∈ N) follows directly from the fact that
Xe ∈ compX.
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Sufficient Conditions of Pareto–Nash Equilibrium in Game (5.2.10)
Cest tout ce qu’il faut.13

Relying on (5.2.11) and (5.2.15), introduce N + 1 scalar functions of the form

ϕi(x, z) = fi(z‖xi)− fi(z) (i ∈ N),

ϕN+1(x, z) =
∑

r∈N
fr(x)−

∑

r∈N
fr(z), (5.2.16)

where z = (z1, . . . , zN ), zi ∈ Xi (i ∈ N), z ∈ X, and x ∈ X. The Germeier
convolution [152, p. 66] of the scalar functions (5.2.16) is given by

ϕ(x, z) = max
j=1,...,N+1

ϕj (x, z). (5.2.17)

Finally, let us associate with game (5.2.10) and the N-criteria choice prob-
lem (5.2.14) the zero-sum game

〈 X, Z = X, ϕ(x, z) 〉 , (5.2.18)

in which the first player chooses his strategy x ∈ X to increase the payoff function,
while the opponent (the second player) forms his strategy z ∈ X, seeking to decrease
as much as possible the payoff function ϕ(x, z) from (5.2.16) and (5.2.17).

A saddle point (x0, z∗) ∈ X2 in game (5.2.18) is defined by the chain of
inequalities

ϕ(x, z∗) � ϕ(x0, z∗) � ϕ(x0, z) ∀ x, z ∈ X. (5.2.19)

In this case, the saddle point is formed by the minimax strategy z∗,
(

min
z∈X

max
x∈X

ϕ(x, z) = max
x∈X

ϕ(x, z∗)
)

,

in combination with the maximin strategy x0,

(

max
x∈X

min
z∈X

ϕ(x, z) = min
z∈X

ϕ(x0, z)

)

,

in game (5.2.18).
The next result provides a sufficient condition for the existence of a Pareto

equilibrium in game (5.2.10).

13French “All that is needed.”
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Theorem 5.2.1 If there exists a saddle point (x0, z∗) in the zero-sum game (5.2.18)
(i.e., inequalities (5.2.19) hold), then the minimax strategy z∗ is a Pareto–Nash
equilibrium in game (5.2.10).

Proof Let z = x0 in the right-hand inequality of (5.2.19). Then, using (5.2.16) and
(5.2.17), we obtain

ϕ(x0, x0) = max
j=1,...,N+1

ϕj (x
0, x0) = 0.

In accordance with (5.2.19), it appears that

0 � ϕ(x, z∗) = max
j=1,...,N+1

ϕj (x, z∗) ∀x ∈ X.

Therefore, the following chain of implications is valid for all x ∈ X:

[

0 � max
j=1,...,N+1

ϕj (x, z∗) � ϕj (x, z∗)
]

 ⇒ [
ϕj (x, z∗) � 0 (j = 1, . . . , N + 1)

]

(5.2.16) ⇒
{
[
fi(z

∗‖xi)− fi(z
∗) � 0 ∀xi ∈ Xi (i ∈ N)

]

∧
[
∑

i∈N
fi(x)−

∑

i∈N
fi(z

∗) � 0 ∀x ∈ Xe

]}

 ⇒
{[

max
xi∈Xi

fi (z
∗‖xi) = fi(z

∗) (i ∈ N)

]

∧
[

max
x∈Xe

∑

i∈N
fi(x) =

∑

i∈N
fi(z

∗)
]}

(5.2.11),(5.2.15) ⇒
{[

z∗ ∈ Xe]
∧[

z∗ ∈ XP
]}

,

Due to the inclusion Xe ⊆ X. �
Remark 5.2.7 Theorem 5.2.1 suggests the following design method for a Pareto–
Nash equilibrium x∗ in game (5.2.10).

Step 1. Using the payoff function �i[x] (i ∈ N) from (5.2.10) and also the
vectors z = (z1, . . . , zN ), zi ∈ Xi , and x = (x1, . . . , xN), xi ∈ Xi (i ∈ N),
construct the function ϕ(x, z) by formulas (5.2.16) and (5.2.17).

Step 2. Find the saddle point (x0, z∗) of the zero-sum game (5.2.18).

Then z∗ is the Pareto–Nash equilibrium solution of game (5.2.10).
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As far as we know, numerical calculation methods for the saddle point (x0, z∗)
of the Germeier convolution

ϕ(x, z) = max
j=1,...,N+1

ϕj (x, z)

are lacking; however, they are crucial (see Theorem 5.2.1) for constructing Nash
equilibria that are simultaneously Pareto-maximal strategy profiles. Seemingly, this
is a new field of equilibrium programming and it can be developed, again in
our opinion, using the mathematical tools of Germeier convolution optimization
maxj ϕj (x) that were introduced by Professor V. F. Demyanov.

Remark 5.2.8 The next statement follows from results of operations research (see
Proposition 5.2.1) and is a basic recipe for proving the existence of a Pareto–Nash
equilibrium in mixed strategies in game (5.2.10) (see Sect. 5.2.4). Namely, in game
(5.2.10) with the sets Xi ∈ comp R

ni and the payoff functions �i [·] ∈ C(X) (i ∈
N), the Germeier convolution ϕ(x, z) = maxj=1,...,N+1 ϕj (x, z) (5.2.16), (5.2.17)
is continuous on X× X.

Formalization of Strongly-Guaranteed Equilibrium in Payoffs and Risks
Cest tout dire!14

Let us consider the concept of guaranteed equilibrium in game (5.2.1) from the
viewpoint of a risk-neutral player. Assume each player i exhibits a risk-neutral
behavior, i.e., chooses his strategy to increase the payoff (the value of the payoff
function fi(x, y)) and simultaneously reduce the risk (the value of the Savage–
Niehans risk function Ri(x, y) = maxz∈X fi(z, y)−fi(x, y)) under any realization
of the uncertainty y ∈ Y. Hereinafter, we use three N-dimensional vectors f =
(f1, . . . , fN ), R = (R1, . . . , RN), and � = (�1, . . . ,�N) as well as N values
σi ∈ (0, 1) (i ∈ N).

Definition 5.2.4 A triplet (xP, f P, RP) is called a strongly-guaranteed Nash equi-
librium in payoffs and risks in game (5.2.1) if

first, f P = f [xP] and RP = R[xP];
second, there exist scalar functions fi [x] = miny∈Y fi(x, y) and Ri[x] =

= maxy∈Y Ri(x, y), Ri(x, y) = maxz∈X fi(z, y) − fi(x, y) (i ∈ N), that are
continuous on X;

third, the set Xe of all Nash equilibria xe in the game of guarantees

�3 = 〈N, {Xi}i∈N, {�i[x] = fi [x] − σiRi [x]}i∈N〉

14French “That just goes to show!”
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is non-empty at least for one value σi ∈ (0, 1), i.e.,

max
xi∈Xi

�i [xe‖xi] = �i[xe], (i ∈ N),

where Xe = {xe} and [xe||xi] = [xe
1, . . . , x

e
i−1, xi , x

e
i+1, . . . , x

e
N ];

fourth, xP is a Pareto-maximal alternative in the N-criteria choice problem of
guarantees

〈Xe, {�i[x]}i∈N〉,

i.e., the system of inequalities

�i[x] � �i[xP] (i ∈ N) ∀ x ∈ Xe,

with at least one strict inequality, is inconsistent.

Remark 5.2.9 Let us list a number of advantages of this equilibrium solution.
First, as repeatedly mentioned, economists often divide decision makers (in our

game (5.2.1), players) into three groups. The first group includes those who do not
like to take risks (risk-averse players); the second group, risk-seeking players; and
the third group, those who consider the payoffs and risks simultaneously (risk-
neutral players). Definition 5.2.4 treats all players as risk-neutral ones, though
it would be interesting to analyze the players from different groups (risk-averse,
risk-seeking and risk-neutral players). We hope to address these issues in future
work.

Second, lower and upper bounds on the payoffs and risks are provided by the
inequalities fi [xP] � fi(x

P, y) ∀y ∈ Y and Ri [xP] � Ri(x
P, y) ∀y ∈ Y,

respectively; note that the continuity of the guarantees fi [x] and Ri [x] follows
directly from the inclusions Xi ∈ comp R

ni (i ∈ N), Y ∈ comp R
m, and

fi [·] ∈ (X×Y) (see Proposition 5.2.2).
Third, an increase of the guaranteed payoffs for a separate player (as compared

to fi [xP]) would inevitably cause an increase of the guaranteed risk (again, as
compared to Ri[xP]), whereas a reduction of this risk would inevitably cause a
reduction of the guaranteed payoff.

Fourth, it is impossible to increase the difference �i[xP] for all players
simultaneously (this property follows from the Pareto maximality of the strategy
profile xP).

Fifth, the best solution has been selected from all guaranteed solutions, as the
difference �i[xP] takes the largest value (in the sense of vector maximum).

Sixth, under the assumption that the sets Xi (i ∈ N) and Y are compact and
the payoff functions fi(x, y) are continuous on X × Y, the guarantees fi [x] and
Ri[x] exist and are continuous on X (Proposition 5.2.2). Therefore, the existence of
solutions formalized by Definition 5.2.4 rests on the existence of Nash equilibria in
the game of guarantees. Note that the framework developed in this section of Chap. 5
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can be also applied to the concepts of Berge equilibrium, threats and counterthreats,
and active equilibrium.

Below we will present a new method of proving the existence of a strongly-
guaranteed Nash equilibrium in payoffs and risks. In particular, using the Germeier
convolution of the payoff function, we have already established sufficient conditions
for the existence of Nash equilibria in pure strategies that are simultaneously Pareto-
maximal with respect to all other equilibria (see Theorem 5.2.1).

Concluding this section, we will show the existence of such an equilibrium in
mixed strategies under standard assumptions of noncooperative games (compact
strategy sets and continuous payoff functions of all players).

5.2.4 Existence of Pareto Equilibrium in Mixed Strategies

Se plaindre que la mariée soit trop belle.15

The hope that game (5.2.10) has a Pareto equilibrium in pure strategies (Defi-
nition 5.2.3) is delusive. Such an equilibrium may exist only for a special form of
the payoff functions, a special structure of the strategy sets, and a special number
of players. Therefore, adhering to an approach that stems from Borel [209], von
Neumann [261], Nash [257] and their followers, we will establish the existence
of a Pareto equilibrium in mixed strategies in game (5.2.10) under standard
assumptions of noncooperative games (compact strategy sets and continuous
payoff functions).

Thus, suppose that in game (5.2.10) the sets Xi of pure strategies xi are
convex and compact in R

ni (i.e., convex, closed and bounded; denote this by
Xi ∈ cocomp R

ni ) while the payoff function fi [x] of each player i (i ∈ N) is
continuous on the set of all pure strategy profiles X =∏i∈N Xi .

Consider the mixed extension of game (5.2.10). For each of the N compact sets
Xi (i ∈ N), construct the Borel σ -algebra B(Xi ) and probability measures νi(·) on
B(Xi ) (i.e., nonnegative countably-additive scalar functions defined on the elements
of B(Xi ) that are normalized to 1 on Xi). Denote by {νi} the set of such measures;
a measure νi(·) is called a mixed strategy of player i (i ∈ N) in game (5.2.10).
Then, for the same game (5.2.10), construct mixed strategy profiles, i.e., the product
measures ν(dx) = ν1(dx1) · · · νN(dxN). Denote by {ν} the set of such strategy
profiles. Finally, calculate the expected values

fi(ν) =
∫

X

fi(x)ν(dx) (i ∈ N). (5.2.20)

15French “Complaining that the bride is too beautiful.” In our book, the advantages of Proposi-
tion 5.2.4 have exceeded all expectations.
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As a result, we associate with the game �3 (5.2.10) its mixed extension

�̃3 = 〈N, {νi}i∈N, {fi(ν)}i∈N〉.

In the noncooperative game �̃3,

νi(·) ∈ {νi} is a mixed strategy of player i;
ν(·) ∈ {ν} is a mixed strategy profile;
fi(ν) is the payoff function of player i, defined by (5.2.20).

In what follows, we will use the vectors z = (z1, . . . , zN ) ∈ X, where zi ∈
Xi (i ∈ N), and x = (x1, . . . , xN) ∈ X, as well as the mixed strategy profiles
ν(·), μ(·) ∈ {ν} and the expected values

�i(ν) =
∫

X

�i(x)ν(dx), �i(μ) =
∫

X

�i(z)μ(dz),

�i(μ‖νi) =
∫

X1

· · ·
∫

Xi−1

∫

Xi

∫

Xi+1

· · ·
∫

XN

�i(z1, . . . , zi−1, xi, zi+1,

. . . , zN )μN(dzN) · · ·μi+1(dzi+1)νi(dxi)μi−1(dzi−1) · · ·μ1(dz1).

(5.2.21)

Once again, take notice that xi, zi ∈ Xi (i ∈ N) and x, z ∈ X.
The following concept of Nash equilibrium in mixed strategies νe(·) ∈ {ν}

in game (5.2.10) corresponds to Definition 5.2.1 of a Nash equilibrium in pure
strategies xe ∈ X in the same game (5.2.10).

Definition 5.2.5 A strategy profile νe(·) ∈ {ν} is called a Nash equilibrium in the
game �̃3 if

�i [νe‖νi ] � �i[νe] ∀ν(·) ∈ {νi} (i ∈ N); (5.2.22)

sometimes, the same strategy profile νe(·) ∈ {ν} will be also called a Nash
equilibrium in mixed strategies in game (5.2.10).

By Glicksberg’s theorem [30], under the conditions Xi ∈ cocomp Rni and fi(·) ∈
C(X) (i ∈ N), there exists a Nash equilibrium in mixed strategies in game (5.2.10).
Denote by Y the set of such mixed strategy profiles {ν}.

With the game �̃3 we associate the N-criteria choice problem

�̃ν = 〈Y, {�i[ν]}i∈N〉 . (5.2.23)

In (5.2.23), the DM chooses a strategy profile ν(·) ∈ Y in order to simultaneously
maximize all elements of a vector criterion �(ν) = (�1(ν), . . . ,�N(ν)). Here a
generally accepted solution is a Pareto-maximal alternative.
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Definition 5.2.6 A strategy profile νP(·) ∈ Y is called a Pareto-maximal alternative
for the N-criteria choice problem �̃ν from (5.2.23) if for any ν(·) ∈ Y the system
of inequalities

�i[ν] � �P
i [ν] (i ∈ N),

with at least one strict inequality, is inconsistent.

An analog of (5.2.15) states the following. If

∑

i∈N
fi(ν) �

∑

i∈N
fi(ν

P), (5.2.24)

for all ν(·) ∈ Y, then the mixed strategy profile νP(·) ∈ Y is a Pareto-maximal
alternative in the choice problem �̃ν (5.2.23).

Definition 5.2.7 A mixed strategy profile ν∗(·) ∈ {ν} is called a Pareto–Nash
equilibrium in mixed strategies in game (5.2.10) if

1o. ν∗(·) is a Nash equilibrium in the game �̃3 (Definition 5.2.5);
2o. ν∗(·) is a Pareto-maximal alternative in the multicriteria choice problem

(5.2.23) (Definition 5.2.6).

Now, we will prove the existence of a Nash equilibrium in mixed strategies that
is simultaneously Pareto-maximal with respect to all other Nash equilibria.

Proposition 5.2.4 Consider the noncooperative game (5.2.10), assuming that

10. the set of pure strategies Xi of each player i is a nonempty, convex, and compact
set in R

ni (i ∈ N);
20. the payoff function �i[x] of player i (i ∈ N) is continuous on the set of all

strategy profiles X =∏i∈N Xi .

Then there exists a Pareto equilibrium in mixed strategies in game (5.2.10).

Proof Using formulas (5.2.16) and (5.2.17), construct the scalar function

ϕ(x, z) = max
j=1,...,N+1

ϕj (x, z),

where, as before,

ϕi(x, z) = fi(z‖xi)− fi(z) (i ∈ N),

ϕN+1(x, z) =
∑

r∈N
fr(x)−

∑

r∈N
fr(z),
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z= (z1, . . . , zN )∈X, zi ∈Xi (i∈N), and x= (x1, . . . , xN)∈X, xi ∈ Xi (i ∈ N). By
the construction procedure and Remark 5.2.9, the function ϕ(x, z) is well-defined
and continuous on the product of compact sets X×X.

Introduce the auxiliary zero-sum game

�a = 〈 {I, II}, X, Z = X, ϕ(x, z) 〉.

In this game, player I chooses his strategy x ∈ X to maximize a continuous payoff
function ϕ(x, z) on X×Z (Z = X) while player II seeks to minimize it by choosing
an appropriate strategy z ∈ X.

Next, we can apply a special case of Glicksberg’s theorem [30] to the game �a,
since the saddle point in the game �a coincides with the Nash equilibrium in the
noncooperative two-player game

�2 = 〈 {I, II}, {X, Z = X}, {fI(x, z) = ϕ(x, z), fII(x, z) = −ϕ(x, z)} 〉.

In this game, player I chooses his strategy x ∈ X to maximize fI(x, z) = ϕ(x, z),
while player II seeks to maximize fII(x, z) = −ϕ(x, z). In the game �2, the sets
X and Z = X are compact, while the payoff functions fI(x, z) and fII(x, z) are
continuous on X× Z. Therefore, by the aforementioned Glicksberg theorem, there
exists a Nash equilibrium (νe, μ∗) in the mixed extension of the game �2, i.e.,

�̃2 = 〈 {I, II}, {ν}, {μ}, {fi(ν, μ) =
∫

X

∫

X

fi(x, z)ν(dx)μ(dz)}i=I,II 〉.

Moreover, (νe, μ∗) obviously represents a saddle point in the mixed extension of
the game �a,

�̃a =
〈

{I, II}, {ν}, {μ}, ϕ(ν, μ) =
∫

X

∫

X

ϕ(x, z)ν(dx)μ(dz)

〉

.

Consequently, by Glicksberg’s theorem, there exists a pair (νe, μ∗) representing a
saddle point of ϕ(v,μ), i.e.,

ϕ(ν,μ∗) � ϕ(νe, μ∗) � ϕ(νe, μ), ∀ ν(·), μ(·) ∈ {ν}. (5.2.25)

Setting μ = νe in the right-hand inequality in (5.2.25), we obtain ϕ(νe, νe) = 0,
and hence for all ν(·) ∈ {ν} inequalities (5.2.25) yield

0 � ϕ(ν,μ∗) =
∫

X

∫

X

max
j=1,...,N+1

ϕj (x, z)ν(dx)μ∗(dz). (5.2.26)
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As established in [67],

max
j=1,...,N+1

∫

X

∫

X

ϕj (x, z)ν(dx)μ(dz)

�
∫

X

∫

X

max
j=1,...,N+1

ϕj (x, z)ν(dx)μ(dz). (5.2.27)

(This is an analog of the property that the maximum of a sum is not greater than the
sum of corresponding maxima.) From (5.2.26) and (5.2.27) it follows that

max
j=1,...,N+1

∫

X

∫

X

ϕj(x, z)ν(dx)μ∗(dz) � 0 ∀ ν(·) ∈ {ν},

but then for each j = 1, . . . , N + 1 we surely have

∫

X

∫

X

ϕj (x, z)ν(dx)μ∗(dz) � 0 ∀ ν(·) ∈ {ν}. (5.2.28)

Recall the normalization conditions of the mixed strategies and mixed strategy
profiles, namely,

∫

X

νi(dxi) = 1,

∫

X

μi(dzi) = 1 (i ∈ N),

∫

X

ν(dx) = 1,

∫

X

μ(dz) = 1,

(5.2.29)

which hold ∀ νi(·) ∈ {νi} and ∀ μi(·) ∈ {μi} as well as ∀ ν(·) ∈ {ν} and ∀ μ(·) ∈
{μ}. Taking these conditions into account, we will distinguish two cases, j ∈ N and
j = N + 1, and further specify inequalities (5.2.28) for each case.

Case 1: j ∈ N Using (5.2.16) and (5.2.29) for each i ∈ N, inequality (5.2.28) is
reduced to

∫

X

∫

X

[fi(z‖xi)− fi(z)] ν(dx)μ∗(dz) =
∫

X

∫

Xi

[fi(z‖xi)

−fi(z)] νi(dxi)μ
∗(dz) =

∫

X

∫

Xi

fi(z‖xi)νi(dxi)μ
∗(dz)

−
∫

X

fi(z)μ
∗(dz)

∫

Xi

νi (dxi)
(5.2.29)=

⎡

⎢
⎣

∫

X1

· · ·
∫

Xi−1

∫

Xi

∫

Xi+1

· · ·
∫

XN

fi (z1,
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. . . zi−1, xi, zi+1, . . . zN )μ∗N(dzN) · · ·μ∗i+1(dzi+1)νi(dxi)μ
∗
i−1(dzi−1)

. . . μ∗1(dz1)
]− fi(μ

∗) = fi(μ
∗‖νi)− fi(μ

∗) � 0 ∀ νi(·) ∈ {νi}.

In combination with (5.2.22), this inequality shows that μ∗(·) ∈ N, i.e., the mixed
strategy profile μ∗(·) is a Nash equilibrium in game (5.2.10) (Definition 5.2.5).

Case 2: j = N + 1 Now inequality (5.2.28) takes the form

∫

X

∫

X

ϕN+1(x, z)ν(dx)μ∗(dz)=
∫

X

∫

X

∑

i∈N
fi(x)ν(dx)μ∗(dz)

−
∫

X

∫

X

∑

i∈N
fi(z)ν(dx)μ∗(dz) =

∫

X

∑

i∈N
fi(x)ν(dx)

∫

X

μ∗(dz)

−
∫

X

∑

i∈N
fi(z)μ

∗(dz)

∫

X

ν(dx)=
∑

i∈N

∫

X

fi(x)ν(dx)

−
∑

i∈N

∫

X

fi(z)μ
∗(dz)

(5.2.24)=
∑

i∈N
fi(ν)−

∑

i∈N
fi(μ

∗) � 0 ∀ν(·) ∈ N,

since N ⊆ {ν}. Hence, for νP = μ∗ we directly get (5.2.24), i.e., the strategy profile
μ∗(·) is a Pareto-maximal alternative in the N-criteria choice problem �̃c (5.2.23)
(Definition 5.2.2).

This result, together with the inclusion μ∗(·) ∈ N, completes the proof of
Proposition 5.2.4. �

5.2.5 De omni re scibili et quibusdam aliis16

Still, this book is devoted to the Golden Rule of ethics, mostly to the altruistic
concept of Berge equilibrium. Our intention has been to start Sect. 5.2 with Nash
equilibrium, thereby paying tribute to outstanding mathematician J. Nash, who was
tragically killed in a car crash on May 23, 2015. However, as easily noticed, all the
constructions, and lines of reasoning used in Sect. 5.2.4 can be successfully carried
over to the case of Berge equilibrium. We will do this below, concluding Sect. 5.2.

16Latin “Of all things that can be known and all kind of other things.” The first part of this phrase
(de omni re scibili, meaning “of all things that can be known”) was the motto of pompous young
lad and famous Italian philosopher Pico della Mirandola, who thought this was a fitting description
of his encyclopedic knowledge. The second part (et quibusdam aliis, meaning “and even certain
other things”) was ironically appended by pompous old and famous French philosopher Voltaire,
who was somewhat under the impression he was any less full of himself.
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To avoid repetitions, we will emphasize the moments in the proof that are dictated
by the specifics of Berge equilibrium.

Again consider the N-player game (5.2.1)

〈N, {Xi}i∈N, Y, {fi(x, y)}i∈N〉

and, using formulas (5.2.4), define the Savage–Niehans risk functions

Ri(x, y) = max
z∈X

fi(z, y)− fi(x, y).

Next, by formulas (5.2.5) and (5.2.6), construct the strongly-guaranteed payoff fi [x]
of player i and the corresponding guaranteed Savage–Niehans risk Ri [x]. As a
result, we arrive at the game of guarantees

�g = 〈N, {Xi}i∈N, {fi [x],−Ri[x]}i∈N〉.

Then it is natural to pass to the auxiliary game (5.2.10),

〈N, {Xi}i∈N, {�i [x] = fi [x] − σiRi [x]}i∈N〉,

with a constant σi ∈ (0, 1).
Recall that, if in the two-player game (N = {1, 2}) the players exchange

their payoff functions, then a Nash equilibrium in the new game is a Berge
equilibrium in the original game. Therefore, all the properties intrinsic to Nash
equilibria remain in force for Berge equilibria. In particular, the set of Berge
equilibria is internally unstable. With this instability in mind, let us introduce an
analog of Definition 5.2.3 for the auxiliary game (5.2.10). As before, [x‖zi] =
[x1, . . . , xi−1, zi , xi+1, . . . , xN ].
Definition 5.2.8 A strategy profile xB ∈ X is called a Pareto–Berge equilibrium in
game (5.2.10) if xB = (xB

1 , . . . , xB
N) is simultaneously

1◦. a Berge equilibrium in (5.2.10), i.e.,

max
x∈X

�i[x‖xB
i ] = �i[xB] (i ∈ N),

and
2◦. a Pareto-maximal alternative in the N-criteria choice problem

〈XB, {�i[x]}i∈N〉,
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i.e., for any x ∈ XB the system of inequalities

�i [x] � �i[xB] (i ∈ N),

with at least one strict inequality, is inconsistent.

Denote by XB the set of all {xB}.
Sufficient conditions for the existence of a Pareto–Berge equilibrium also involve

the Germeier convolution, with the N-dimensional vectors x = (x1, . . . , xN) ∈
X, z = (z1, . . . , zN ) ∈ X, f = (f1, . . . , fN), R = (R1, . . . , RN ), and � =
(�1, . . . ,�N), as well as N constants σi ∈ [0, 1] (i ∈ N). Specifically, consider
the N + 1 scalar functions

ψ1(x, z) = �1[z1, x2, . . . , xN ] −�1[z],
ψ2(x, z) = �2[x1, z2, . . . , xN ] −�2[z],
· · · · · · · ·
ψN(x, z) = �2[x1, x2, . . . , zN ] −�2[z],
ψN+1(x, z) =

N∑

j=1
�j [x] −

N∑

j=1
�j [z],

(5.2.30)

and their Germeier convolution

ψ(x, z) = max
j=1,...,N+1

ψj (x, z). (5.2.31)

Proposition 5.2.5 If there exists a saddle point (x0, zB) ∈ X × X in the zero-sum
game

〈 X, Z = X, ψ(x, z) 〉,

i.e.,

max
x∈X

ψ(x, zB) = ψ(x0, zB) = min
z∈X

ψ(x0, z),

then the minimax strategy zB is a Pareto–Berge equilibrium in game (5.2.10).

Like in Proposition 5.2.4, we may establish the existence of a Pareto–Berge
equilibrium in mixed strategies.

Proposition 5.2.6 Consider the noncooperative game (5.2.10), assuming that

10. the sets Xi (i ∈ N) and Y are nonempty, convex and compact in R
ni (i ∈ N);

20. the payoff functions fi(x, y) (i ∈ N) are continuous on the Cartesian product
X×Y.

Then there exists a Pareto–Berge equilibrium in mixed strategies in this game.
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5.2.6 A la fin des fins17

Classical scholars believe that the whole essence of mathematical game theory is to
provide comprehensive answers to the following three questions:

1. What is an appropriate optimality principle for a given game?
2. Does an optimal solution exist?
3. If yes, how can one find it?

The answer to the first question for the noncooperative N-player game (5.2.1) is
the concept of Pareto–Nash equilibrium (Definition 5.2.4) or the concept of Pareto–
Berge equilibrium (Definition 5.2.8).

Next, the answer to the second question is given by Propositions 5.2.4 or 5.2.6: if
the sets of strategies are convex and compact and the payoff functions of the players
are continuous on X× Y, then such equilibria exist in mixed strategies.

Finally, the answer to the third question is provided by the following procedure:
first, construct the guarantees of the outcomes fi [x] (5.2.5) and risks Ri [x] (5.2.6);
second, define the functions �i[x] = fi [x] − σiRi [x] (i ∈ N); third, find the
Germeier convolution of the payoff functions ϕ(x, z) using formulas (5.2.16) and
(5.2.17) for Nash equilibrium or using formulas (5.2.30) and (5.2.31) for Berge
equilibrium; fourth, calculate the saddle point (x0, z∗) of this convolution; then the
minimax strategy z∗ is the desired Pareto–Berge (or Pareto–Nash) equilibrium.

A Suivre18 We expect to apply this approach in the game-theoretic problems of
Markowitz’s portfolio theory.

5.3 Cooperation in a Conflict of N Persons Under
Uncertainty

To negotiate is not to do as one likes.
— Napoleon Bonaparte

In this section, we introduce a new principle of coalitional equilibration.
The integration of individual and collective rationality (from the theory of
noncooperative games without side payments) and this principle allows us to
formalize the corresponding concept of coalitional equilibrium (CE) for a conflict
of N persons under uncertainty. Next, we establish sufficient conditions for the
existence of CE, which are reduced to saddle point design for the Germeier
convolution of guaranteed payoffs. Following the above-mentioned approach of
E. Borel, J. von Neumann and J. Nash, we also prove the existence of CE in

17French “At the end after all.”
18French “To be continued.”



5.3 Cooperation in a Conflict of N Persons Under Uncertainty 215

the class of mixed strategies under standard assumptions of mathematical game
theory (convex and compact sets of uncertainties, convex and compact strategy
sets, and continuous payoff functions). At the end of Sect. 5.3, some lines of
further research are outlined.

5.3.1 Introduction

The mathematical model of cooperation studied in this section of Chap. 5 is
described by a cooperative N-player normal-form game under uncertainty without
side payments. As before, assume that the conflicting parties know merely the range
of variation (intervals) of uncertain factors, without any probabilistic characteristics.
A proper consideration of uncertainties in the models of real conflicts yields
more adequate results, which is confirmed by a huge number of publications (the
Google Scholar database contains over 1 million research works with keywords
“mathematical modeling under uncertainty”). Uncertainty often occurs due to
incomplete (inaccurate) knowledge about the strategies implemented by conflicting
parties: C. Shannon was used to say, “Information is the resolution of uncertainty.”19

As mentioned earlier, an economic system is often affected by sudden exogenous
disturbances (e.g., varying numbers and ranges of supplies, product price fluctua-
tions caused by demand-supply dynamics) as well as endogenous disturbances (e.g.,
breakdown and failure of industrial equipment, mistakes in planning and product
design); the emergence of new technologies may interfere with ecological systems;
disturbances in mechanical systems may be due to weather conditions (temperature,
pressure, humidity, etc.). Thus, we naturally face the following question: how to
account for the cooperative character of a conflict and as well as for existing
uncertainties during strategy choice?

A distinctive feature of each cooperative conflict is a proper consideration of the
interests of any admissible coalition—a group of players (conflicting parties) with a
coordinated choice of their strategies for achieving the best possible outcomes. Our
framework will proceed from several assumptions as follows.

First, if the members of a coalition agree about joint actions by negotiations,
then their agreement remains in force during the entire game, i.e., agreements are
compulsory.

Second, players cannot distribute any part of their payoffs to other players (i.e.,
the analysis will be confined to games without side payments also called games with
non-transferable payoffs).

Third, the payoff of an empty coalition is zero, i.e., only active players may obtain
nonzero payoffs.

19Claude Elwood Shannon, (1916–2001), was an American mathematician and electrical engineer
who laid the theoretical foundations for digital circuits and information theory.
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5.3.2 Game of Guarantees

Consider a mathematical model of a conflict described by a cooperative N-player
normal-form game under uncertainty with non-transferable payoffs

� = 〈N = {1, . . . , N}, {Xi}i∈N, YX, {fi(x, y)}i∈N〉.

In this game,N = {1, . . . , N} denotes the set of players; each of the N conflicting
parties chooses his strategy xi ∈ Xi ⊂ R

ni (i ∈ N), thereby forming a strategy
profile x = (x1, . . . , xN) ∈ X = ∏

i∈N Xi ⊂ R
n (n = ∑

i∈N ni); regardless of
their actions, an interval uncertainty y ∈ Y ⊂ R

m is present in �; a payoff function
of player i, fi(x, y), is defined on all pairs (x, y) ∈ X × Y , and its value in a
specific strategy profile gives the payoff of player i. At a conceptual level, each
player i in the game � seeks to choose a strategy x∗i (i ∈ N) that would maximize
his payoff under any admissible coalition and any realization of the uncertain factor
y(x) : X → Y , y(·) ∈ YX (in particular, strategic uncertainty).

A well-known English proverb states, “Never cackle till your egg is laid.”
This emphasizes the crucial role of uncertainty; but taking uncertain factors into
consideration makes the payoff functions fi(x, Y ) = ⋃

y∈Y fi(x, y) multivalued.
This inevitably complicates further analysis of the cooperative games �. Thus, our
idea is to assess the performance of each player i in � using a lower guarantee fi [x]
of the payoff function fi(x, y). We suggest that as such guarantees one should take
fi [x] = miny∈Y fi(x, y),∀y ∈ Y. This formula implies fi [x] � fi(x, y) ∀y ∈ Y ,
and hence the performance of player i in the game � can be assigned the lower
bound fi [x] under any strategy profile x ∈ X. In other words, for any uncertainty
y ∈ Y the payoff function fi(x, y) cannot be smaller than fi [x]. Note that the
existence of a continuous scalar function fi [x] on X follows from the compactness
(closedness and boundedness) of the sets Xi (i ∈ N) and Y and the continuity of
fi(x, y) on X × Y .

5.3.3 Coalitional Equilibrium

Denote by 2N the set of all coalitions (nonempty subsets of the set N), i.e., 2N ={
K|K ⊆ 2N

}
. For each coalition K ∈ 2N, let −K stand for the set N\K , that is,

−K = N\K; in particular, −i = N\ {i}. Then the coalitional structure {K,−K}
is a partition of the whole player set N. For this coalitional structure, any strategy
profile x = (x1, . . . , xN) can be represented as x = (xK, x−K), where xK ∈ XK =∏

j∈K Xj and x−K ∈ X−K =∏j∈N\K Xj .
Recall a pair of important properties from the theory of cooperative games

without side payments [121]. For a strategy profile x∗ ∈ X in the game of guarantees

�g = 〈N, {Xi}i∈N, {fi [x]}i∈N = min
y∈Y

fi(x, y)〉,
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we say that

(a) the individual rationality condition (IRC) holds if

fi [x∗] ≥ f 0
i = max

xi∈Xi

min
x−i∈X−i

fi [xi, x−i] = min
x−i∈X−i

fi[x0
i , x−i ] (i ∈ N),

where x = (xi, x−i ) and X−i =∏j∈N\{i}Xj ; thus, using the maximin strategy

x0
i , player i obtains a payoff fi [x0

i , x−i ] � f 0
i ∀x−i ∈ X−i (i ∈ N);

(b) the collective rationality condition (ColRC) holds if the strategy x∗ is a Pareto-
maximal alternative in the N-criteria choice problem �

g
c = 〈X, {fi [x]}i∈N〉;

in other words, for all x ∈ X the system of inequalities fi [x] � fi[x∗] (i ∈
N), with at least one strict inequality, is inconsistent. (If for any x ∈ X we
have

∑
i∈N fi [x] �∑i∈N fi [x∗], then x∗ is a Pareto-maximal alternative in the

problem �
g
c ).

By modifying the concepts of Nash and Berge equilibria [257, 258, 305], we
introduce

(c) the coalitional rationality condition (CoalRC) for the game of guarantees �g as
the inequality

fi [x∗] � fi [xK, x∗−K ] ∀xK ∈ XK,∀K ∈ 2N (i ∈ N).

Definition 5.3.1 A strategy profile x∗ ∈ X is called a coalitional equilibrium (CE)
if it simultaneously satisfies IRC, ColRC, and CoalRC in the game of guarantees
�g.

Remark 5.3.1 In accordance with IRC, a player benefits from building coalitions
with other players if the resulting payoff is not smaller than his payoff yielded by
the maximin strategy. ColRC gives the largest payoff vector to a player (in the vector
sense!). Finally, CoalRC makes his payoff stable against the deviations of separate
players or any admissible coalitions from x∗.

5.3.4 Sufficient Condition

As dictated by Definition 5.3.1, a CE x∗ must satisfy IRC, ColRC, and CoalRC.
However, all these conditions follow from N2 + 1 inequalities of the form

fi [x∗] � fi[x∗j , x−j ] ∀x−j ∈ X−j (i, j ∈ N),

∑

i∈N
fi [x] �

∑

i∈N
fi [x∗] ∀x ∈ X, (5.3.1)

where x∗ = (x∗1 , . . . , x∗N).
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To formulate sufficient conditions for the existence of CE, we will employ the
original approach from [67]. For this purpose, we introduce an N-dimensional vec-
tor z = (z1, . . . , zN ) ∈ X and the function ϕ(x, z) as the Germeier convolution [28]
of the functions ϕr(x, z) (r = 1, . . . , N + 1):

ϕj (x, z) = max
i∈N
{fi [zj , x−j ] − fi [z]} (j ∈ N),

ϕN+1(x, z) =
∑

i∈N
fi [x] −

∑

i∈N
fi [z], (5.3.2)

ϕ(x, z) = max
r=1,...,N+1

ϕr(x, z). (5.3.3)

A saddle point (x0, z∗) ∈ X×Y of the scalar function ϕ(x, z) (5.3.2) is given by
the chain of inequalities

ϕ(x, z∗) � ϕ(x0, z∗) � ϕ(x0, z) ∀ x, z ∈ X. (5.3.4)

Theorem 5.3.1 If (x0, z∗) ∈ X × X is a saddle point of the function ϕ(x, y), then
the minimax strategy z∗ is the coalitional equilibrium in the game �g.

Proof Indeed, formula (5.3.2) with z = x0 gives ϕ(x0, x0) = 0. Then, using
transitivity and (5.3.3),

[ϕ(x0, z∗) ≤ 0] ⇒ [ϕ(x, z∗) ≤ 0 ∀x ∈ X],

and the conclusion follows by (5.3.2). �
Remark 5.3.2 In accordance with Theorem 5.3.1, CE design is reduced to the
calculation of a saddle point (x0, z∗) for the Germeier convolution ϕ(x, z) (5.3.3).
Thus, we have developed a constructive method of CE design in the game �, which
includes the following steps:

First, define the scalar function ϕ(x, z) using formulas (5.3.2) and (5.3.3);
Second, find a saddle point (x0, z∗) of the function ϕ(x, z) (see the chain of

inequalities (5.3.4));
Third, calculate the values fi [x∗] (i ∈ N).

Then the pair (z∗, f [z∗] = (f1[z∗], . . . , fN [z∗])) ∈ X × R
N is a coalitional

equilibrium in the game �g: the players should apply their strategies from the profile
z∗, thereby obtaining the guaranteed payoffs fi [z∗].

5.3.5 Existence of Coalitional Equilibrium in Mixed Strategies

One must be very optimistic to look for a coalitional equilibrium in the class of pure
strategies, even for the two-player games. Adhering to the approach of Borel [209],
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von Neumann [261], Nash [257, 258] and their followers, we will establish the
existence of mixed strategy CE. Let us begin with a series of auxiliary results laying
the foundations of a corresponding existence theorem.

5.3.5.1 Auxiliary Results

Denote by cocompRni the set of all convex and compact subsets (convex, closed
and bounded sets) of the Euclidean ni -dimensional space R

ni , and write fi(·) ∈
C(X× Y) if a scalar function fi(x, y) is continuous on X×Y.

Let us return to the noncooperative game without side payments �. Without
special mention, we will assume that the elements of the ordered quadruple � satisfy
the following requirements.

Condition 5.3.1

Xi ∈ cocompRni (i ∈ N), Y ∈ compRm, fi(·) ∈ C(X× Y). (5.3.5)

Next, let us pass to the mixed extension of the game �g, which includes mixed
strategies, mixed strategy profiles and expected payoffs.

Suppose the game � satisfies inequalities (5.3.5); then fi(x, y) is continuous on
the product X × Y of compact sets, where X = ∏

i∈N Xi . For each compact set
Xi ⊂ R

ni (i ∈ N), construct the Borel σ -algebra B(Xi ). Within the framework
of mathematical game theory, a mixed strategy νi(·) of player i is identified
with a probability measure on the compact set Xi . A probability measure is a
nonnegative scalar function νi(·) defined on the Borel σ -algebra B(Xi ) that satisfies
the following two conditions:

1. νi

(⋃
k Q

(i)
k

)
= ⋃

k νi

(
Q

(i)
k

)
for any sequence {Q(i)

k }∞k=1 of pairwise disjoint

elements from B(Xi ) (countable additivity);
2. νi(Xi ) = 1 (normalization), which implies νi

(
Q(i)

) ≤ 1 for all Q(i) ∈ B(Xi ).

Denote by {νi} the set of all mixed strategies of player i (i ∈ N). Construct a
mixed strategy profile as the product measure

ν(dx) = ν1(dx1) · · · νN(dxN),

and let {ν} be the set of all such profiles. In addition, denote by fi[ν] =∫

X

fi [x]ν(dx) the expected payoff of player i. Then the mixed extension of the game

of guarantees �g has the form

�̃g = 〈N = {1, . . . , N}, {νi}i∈N, {fi[ν] =
∫

X

fi[x]ν(dx)}i∈N〉. (5.3.6)

Similarly to Definition 5.3.1, introduce
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Definition 5.3.2 A mixed strategy profile ν∗(·) ∈ {ν} is called a coalitional equi-
librium (CE) in the mixed extension (5.3.6) (equivalently, a coalitional equilibrium
(CE) in mixed strategies in the game �̃g) if

1. the profile ν∗(·) is coalitionally rational in game (5.3.6), i.e.,

fi [ν1, . . . , ν
∗
j , . . . , νN ] � fi [ν∗] ∀νk(·)∈{νk} (k∈N\ {j } ; i, j ∈N) (5.3.7)

(denote by {ν∗} the set of all coalitional equilibria in game (5.3.6));
2. ν∗(·) is a Pareto-maximal alternative in the N-criteria choice problem

�̃
g
c = 〈{ν∗}, {fi[ν]}i∈N〉,

i.e., for all ν(·) ∈ {ν∗} the system of inequalities

fi [ν] � fi [ν∗] (i ∈ N),

with at least one strict inequality, is inconsistent.

An obvious sufficient condition for Pareto maximality is provided in the next
remark.

Remark 5.3.3 A mixed strategy profile ν∗(·) ∈ {ν∗} is a Pareto-maximal alternative
in �̃

g
c = 〈{ν∗}, {fi[ν]}i∈N〉 if

max
ν(·)∈{ν∗}

∑

i∈N
fi [ν] =

∑

i∈N
fi[ν∗].

Proposition 5.3.1 In the game �g with sets Xi ∈ cocompRni and fi [·] ∈
C(X) (i ∈ N), the function

ϕ(x, z) = max
r=1,...,N+1

ϕr(x, z) (5.3.8)

satisfies the inequality

max
r=1,...,N+1

∫

X×X

ϕr(x, z)μ(dx)ν(dz)�
∫

X×X

max
r=1,...,N+1

ϕr(x, z)μ(dx)ν(dz) (5.3.9)

for any μ(·) ∈ {ν} and ν(·) ∈ {ν}; recall that the scalar functions ϕr(x, z) are
defined by (5.3.2).

Inequality (5.3.9) was proved in [67].

Remark 5.3.4 In fact, formula (5.3.9) generalizes the well-known property of
maximization: the maximum of a sum does not exceed the sum of the individual
maxima.
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Proposition 5.3.2 If in the game �g conditions (5.3.5) hold, then the function
ϕ(x, z) (5.3.8) is continuous on X× (Z = X).

The proof of a more general result (stating that the maximum of a finite number of
continuous functions is continuous) can be found in many textbooks on operations
research, e.g., in [136, p. 54, 187].

5.3.5.2 Existence Theorem

The central result of this section—the existence of a coalitional equilibrium in mixed
strategies in the game �g—is established under conditions (5.3.5).

Theorem 5.3.2 If in the game �g the sets Xi ∈ cocompRni and fi [·] ∈ C(X)

(i ∈ N), then there exists a coalitional equilibrium in mixed strategies in this game.

Proof Consider the following auxiliary zero-sum two-player game:

�a = 〈{1, 2}, {X, Z = X}, ϕ(x, z)〉.

In the game �a, the set X of strategies x chosen by player 1 (which seeks to
maximize ϕ(x, z)) coincides with the set of strategy profiles of the game �g.
A solution of the game �a is a saddle point (x0, z∗) ∈ X × X; for all x ∈ X

and each z ∈ X, it satisfies the chain of inequalities

ϕ(x, z∗) � ϕ(x0, z∗) � ϕ(x0, z).

Now, associate with the game �a its mixed extension

�̃a = 〈{1, 2}, {μ}, {ν}, ϕ(μ, ν)〉,

where {ν} and {μ} = {ν} denote the sets of mixed strategies ν(·) and μ(·) of
players 1 and 2, respectively. The payoff function of player 1 is the expectation

ϕ(μ, ν) =
∫

X×X

ϕ(x, z)μ(dx)ν(dz). (5.3.10)

The solution of the game �̃a is also a saddle point (μ0, ν∗) defined by the two
inequalities

ϕ(μ, ν∗) � ϕ(μ0, ν∗) � ϕ(μ0, ν) (5.3.11)

for any ν(·) ∈ {ν} and μ(·) ∈ {ν}.
Sometimes, this pair (μ0, ν∗) is called the solution of the game �a in mixed

strategies.
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In 1952, I. Gliksberg [30] established the existence of a mixed strategy Nash
equilibrium for a noncooperative game of N � 2 players. Applying his theorem to
the zero-sum two-player game �a as a special case, we obtain the following result. In
the game �a, let the set X⊂R

n be nonempty, convex and compact and let the payoff
function ϕ(x, z) of player 1 be continuous on X × X (note that the continuity of
ϕ(x, z) is assumed in Proposition 5.3.2). Then the game �a has a solution (μ0, ν∗)
defined by (5.3.11), i.e., there exists a saddle point in mixed strategies in this game.

In view of (5.3.10), inequalities (5.3.11) can be written as

∫

X×X

max
r=1,...,N+1

ϕr(x, z)μ(dx)ν∗(dz)

�
∫

X×X

max
r=1,...,N+1

ϕr(x, z)μ0(dx)ν∗(dz)

�
∫

X×X

max
r=1,...,N+1

ϕr(x, z)μ0(dx)ν(dz)

for all ν(·) ∈ {ν} and μ(·) ∈ {ν}. Using the measure νi(dzi) = μ0
i (dxi) (i ∈ N)

(and hence ν(dz) = μ0(dx)) in the expression

ϕ(μ0, ν) =
∫

X×X

max
r=1,...,N+1

ϕr(x, z)μ0(dx)ν(dz),

we obtain ϕ(μ0, μ0) = 0 on the strength of (5.3.11). Similarly, ϕ(ν∗, ν∗) = 0, and
then it follows from (5.3.11) that

ϕ(μ0, ν∗) = 0. (5.3.12)

The condition ϕ(μ0, ν∗) = 0 and the chain of inequalities (5.3.11) by transitivity
give

ϕ(μ, ν∗) =
∫

X×X

max
r=1,...,N+1

ϕr(x, z)μ(dx)ν∗(dz) � 0 ∀μ(·) ∈ {ν}.

In accordance with Proposition 5.3.1, we then have

0 �
∫

X×X

max
r=1,...,N+1

ϕr(x, z)μ(dx)ν∗(dz) � max
r=1,...,N+1

∫

X×X

ϕr(x, z)μ(dx)ν∗(dz).
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Therefore, for all r = 1, . . . , N + 1,

∫

X×X

ϕr(x, z)μ(dx)ν∗(dz) � 0 ∀μ(·) ∈ {ν}.

Consider the following two cases.

Case I (r = 1, . . . , N) Here, by (5.3.2) and the normalization of ν(·), for r = 1
we get

0 �
∫

X×X

ϕ1(x, z)μ(dx)ν∗(dz)

=
∫

X×X

max
i∈N

{fi [z1, x2, . . . , xN ] − fi [z]}μ(dx)ν∗(dz)

�
∫

X×X

fi[z1, x2, . . . , xN ]μ(dx)ν∗(dz)−
∫

X

fi [z]ν∗(dz)

∫

X

μ(dx)

= fi [ν∗1 , μ2, . . . , μN ] − fi [ν∗] (i ∈ N).

For r = 2, . . . , N and i ∈ N, the inequalities

0 � fi [μ1, ν
∗
2 , μ3, . . . , μN ] − fi[ν∗],

. . .

0 � fi[μ1, . . . , μN−1, ν
∗
N ] − fi [ν∗]

are proved in the same way.
By Definition 5.3.2, ν∗(·) is a coalitionally-rational profile in mixed strategies in

the game �g.

Case II (r = N + 1) Again, using (5.3.2) and the normalization of ν(·) and μ(·),
we have that

0 �
∫

X×X

[
∑

i∈N
fi [x] −

∑

i∈N
fi[z]

]

μ(dx)ν∗(dz)

=
∫

X

∑

i∈N
fi [x]μ(dx)

∫

X

ν∗(dz)−
∫

X

μ(dx)

∫

X

∑

i∈N
fi [z]ν∗(dz)

=
∑

i∈N
fi [μ] −

∑

i∈N
fi [ν∗].
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In accordance with Remark 5.3.3, the mixed strategy profile ν∗(·) ∈ {ν} in the
game �g is a Pareto-maximal alternative in the N-criteria choice problem

�̃
g
c = 〈{ν}, {fi [ν]}i∈N〉.

Thus, we have proved that the mixed strategy profile ν∗(·) in the game �̃g is
a coalitionally-rational profile in mixed strategies that satisfies Pareto maximality.
Hence, by Definition 5.3.2, the pair (ν∗, f [ν∗]) is a coalitional equilibrium in mixed
strategies in the game �̃g. �

5.3.6 Concluding Remarks

Let us summarize the new results on cooperative games derived in this section of
Chap. 5.

First, we have formalized the concept of coalitional equilibrium (CE) considering
the interests of any coalition in a cooperative N-player game.

Second, we have developed a constructive method of CE design that is based
on the calculation of the minimax strategy for a special Germeier convolution
associated with the guaranteed payoffs of the players.

Third, we have proved the existence of CE in mixed strategies under standard
assumptions of mathematical game theory (continuous payoff functions, compact
strategy sets, and compact uncertainties).

In our view, an important role is also played by qualitative properties that follow
directly from the above analysis.

1. The CE x∗ ∈ X is stable against the deviations of any admissible coalitions:
by modifying their strategies, the players of a coalition either worsen their
guaranteed payoffs, or obtain the same guaranteed payoffs as before;

2. CE is applicable even if the coalitional structures evolve during the cooperative
game (in particular, if all coalitions remain invariable);

3. CE can be used to build stable unions (alliances) of players;

these are by far not all advantages of CE!
As a matter of fact, there exists another merit worth mentioning.
The individual and collective rationality conditions have always been in the

focus of researchers who study cooperative games. But the individual interests of
players fit well the concept of Nash equilibrium with its intrinsic selfish character
(“to each his own”), while the collective interests of players fit the concept of
Berge equilibrium with its altruism (“help everybody, sometimes ignoring one’s own
interests”). However, such a behavior goes against the human nature of the players.
This negative feature of both concepts is eliminated by coalitional rationality.
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5.4 How Can One Combine the Altruism of Berge
Equilibrium with the Selfishness of Nash Equilibrium?
Hybrid Equilibrium

Love thy neighbour as thyself.20

Chacun est artisan de sa bonne fortune.21

The answer to this question will be given below. In short, these features can be
combined, but in the class of mixed strategies. For a noncooperative N-player
normal-form game, we introduce the concept of hybrid equilibrium (HE) by
combining the concepts of Nash and Berge equilibria and Pareto maximum. Some
properties of hybrid equilibria are explored and their existence in mixed strategies
is established under standard assumptions of mathematical game theory (convex
and compact strategy sets and continuous payoff functions). Similar results are
obtained for noncooperative N-player normal-form games under uncertainty.

5.4.1 Introduction

As repeatedly mentioned throughout the book, in 1949 twenty-one years old
Princeton University postgraduate J. F. Nash suggested and proved the existence
of a solution [257, 258], which subsequently became known as Nash equilibrium
(NE). Nash equilibrium has been widely used in economics, military science, policy
and sociology. After 45 years, J. Nash together with R. Selten and J. Harsanyi were
awarded the Nobel Prize in Economic Sciences “for their pioneering analysis of
equilibria in the theory of non-cooperative games.” The point is that NE has stability
against arbitrary unilateral deviations of a single player, which explains its success
in economic and political applications [199–201].

Almost every issue of modern journals on operations research, systems anal-
ysis, or game theory contains papers involving the concept of Nash equilibrium.
However, there are spots on the sun: an obvious drawback of NE is its pronounced
selfishness, as each player seeks to increase his own payoff only [203, 206, 207, 210].

The antipode of NE is the concept of Berge equilibrium (BE): each player makes
every effort to maximize the payoffs of the other players, neglecting his individual
interests. BE was formalized in 1985 by Zhukovskiy [290] as a possible solution of
noncooperative N-player games, after a critical analysis of C. Berge’s book Théorie
générale des jeux a n personnes [202] published in 1957 (which explains the term
“Berge equilibrium”). In 1995, Russian mathematician K. Vaisman defended his

20The Old Testament, Leviticus 19:9–18.
21French “Every one is the architect of his own fortune.”
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Candidate of Sciences Dissertation entitled “Berge equilibrium” [11] at Department
of Applied Mathematics and Control Processes (St. Petersburg State University)
under the scientific supervision of Zhukovskiy. This dissertation and Vaisman’s
early papers [12, 13, 280, 281] attracted the attention of researchers, first in Russia
and then abroad. As of today, the number of publications related to this equilibrium
has exceeded three hundreds, including this book. BE is a good mathematical model
for the Golden Rule of ethics (“Behave to others as you would like them to behave
to you.”). BE is famed for its altruism.

Obviously, these features—selfishness and altruism—are intrinsic (in some
proportion) to any individual, including a conflicting party. However, it seems
delusive to expect that such a combined solution exists in pure strategies. Therefore,
again employing the approach of Borel [209], von Neumann [261], Nash [251]
and their followers, we will establish the existence of a combined Nash–Berge
equilibrium in mixed strategies. This solution is called a hybrid equilibrium (HE).
The main goal of Sect. 5.4 is to prove the existence of HE in mixed strategies. Also
note a negative property of NE [57] and BE (see Chap. 2 of this book): the sets
of both types of equilibria are internally unstable, i.e., there may exist two (NE or
BE) profiles such that the payoff of each player in one of them is strictly greater
than in the other. We will remove this undesirable negative feature by adding the
Pareto maximality of HE with respect to all other equilibria. Thus, our formalization
combines three properties, namely, a HE is

first, a Nash equilibrium [240–250];
second, a Berge equilibrium [228–237];
third, Pareto-maximal with respect to the other equilibria [211, 212, 224].
This section of Chap. 5 proves the following result: if a noncooperative N-player

normal-form game has bounded convex and closed strategy sets of players and
continuous payoff functions, then there exists a HE in mixed strategies in this game.

In addition, we obtain sufficient conditions for the existence of HE that are
reduced to calculation of a saddle point for a special Germeier convolution of payoff
functions.

Finally, the derived results are extended to the case of noncooperative N-player
normal-form games under strategic uncertainty. A proper consideration of uncertain
factors yields more adequate models of real conflicts, which is testified by numerous
publications in this field (recall the over 1 million research works with keywords
“mathematical modeling under uncertainty” in Google Scholar) [214–222].

5.4.2 Formalization of Hybrid Equilibrium

Consider the mathematical model of a conflict as a noncooperative N-player
normal-form game described by an ordered triplet

� = 〈N, {Xi}i∈N, {fi(x)}i∈N〉.



5.4 How Can One Combine the Altruism of Berge Equilibrium with the. . . 227

Here N = {1, 2, . . . , N} denotes the set of players (N > 1); each of N players
chooses his strategy xi ∈ Xi ⊆ R

ni , thereby forming a strategy profile

x = (x1, . . . , xN) ∈ X =
∏

i∈N
Xi ⊆ R

n (n =
∑

i∈N
ni)

in this game; a payoff function fi(x) is defined on the set X, which gives the payoff
of player i (i∈N). At a conceptual level, each player i in the game � is looking for
a strategy xi that would maximize his payoff.

A natural approach is to define a solution of the game � using a pair

(x∗, f (x∗) = f1(x
∗), . . . , fN (x∗)) ∈ X×R

N,

where the strategies of a profile x∗ = (x∗1 , . . . , x∗N) ∈ X1 × · · · × XN = X are
determined by an optimality principle while the components of the vector f (x∗)
specify the corresponding payoffs of players under these strategies. As noted by
N. Vorobiev, the founder of the largest national scientific school on game theory,
“. . . the practice of games shows that all the optimality principles developed so
far directly or indirectly reflect the idea of a stable strategy profile that satisfies
these principles. . . ” [22, p. 94]. To introduce the concept of hybrid equilibrium, we
will adopt three optimality principles, namely, Nash equilibrium, Berge equilibrium
(from the theory of noncooperative games) and Pareto maximum (PM, from the
theory of multicriteria choice problems). Interestingly, each of these principles has
its own type of stability: NE is stable against the unilateral deviations of any player
i (i.e., the deviations of xi from x∗i ); BE is stable against the deviations of all
players except for one player i with the payoff function fi(x) (i.e., the deviations
of (x1, . . . , xi−1, xi+1, . . . , xN) from (x∗1 , . . . , x∗i−1, x

∗
i+1, . . . , x

∗
N)); finally PM is

stable against the deviations of all players (i.e., the deviation of the whole current
profile x from the optimal solution x∗). Using the standard notation (x‖zi) =
= (x1, . . . , xi−1, zi, xi+1, . . . , xN) of noncooperative games, we introduce the
following notions.

Definition 5.4.2.1 A strategy profile xe = (xe
1, . . . , x

e
i , . . . , x

e
N) ∈ X is called a

Nash equilibrium in the game � if

max
xi∈Xi

fi(x
e‖xi) = fi(x

e) (i ∈ N). (5.4.2.1)

Definition 5.4.2.2 A strategy profile xB = (xB
1 , . . . , xB

i , . . . , xB
N) ∈ X is called a

Berge equilibrium in the game � if

max
x∈X

fi(x‖xB
i ) = fi(x

B) (i ∈ N). (5.4.2.2)
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Let us associate with the game � the N-criteria choice problem

�c = 〈X, f (x) 〉,

where the set of alternatives X coincides with the set of strategy profiles X in
the game � and the vector criterion has the form f (x) = (f1(x), . . . , fN(x)),
consisting of the payoff functions fi(x) of all players i ∈ N in the game �.

Definition 5.4.2.3 An alternative (here a strategy profile x ∈ X) is Slater (Pareto)-
maximal in the problem �c if, for all x ∈ X, the system of inequalities fi(x) >

fi(x
∗) (i ∈ N) (fi(x) � fi(x

P ) (i ∈ N), respectively), with at least one strict
inequality, is inconsistent.

Corollary 5.4.2.1 The following sufficient condition of Pareto maximality is obvi-
ous: if

max
x∈X

∑

i∈N
fi(x) =

∑

i∈N
fi(x

∗) ∀x ∈ X, (5.4.2.3)

then the strategy profile x∗ is Pareto-maximal in the problem �c.

Now, we introduce the central concept of Sect. 5.4.

Definition 5.4.2.4 A pair (x∗, f (x∗)) ∈ X × R
N is called a Pareto hybrid

equilibrium (PHE) in the game � if the strategy profile x∗ is simultaneously a
Nash equilibrium and a Berge equilibrium in this game, and also a Pareto-maximal
alternative in the multicriteria choice problem �c, i.e., the PHE x∗ satisfies the
following three conditions:

max
xi∈Xi

fi (x
∗‖xi) = fi(x

∗) (i ∈ N),

max
x∈X

fi(x‖x∗i ) = fi(x
∗) (i ∈ N),

x∗ is Pareto-maximal in �c.

(5.4.2.4)

Remark 5.4.2.1 By Corollary 5.4.2.1, a strategy profile x∗ is a PHE in the game �

if it simultaneously satisfies the three optimality conditions (5.4.2.1)–(5.4.2.3).

Remark 5.4.2.2 By analogy with Definition 5.4.2.4, we may easily introduce
the concept of Slater hybrid equilibrium (SHE), by simply replacing the Pareto
maximality of x∗ with its Slater maximality in the problem �c.

5.4.3 Properties of Hybrid Equilibria

Hereinafter, cocompRn stands for the set of convex and compact subsets of Rn and
we write ϕ(·) ∈ C(X) if ϕ(·) is a continuous scalar function defined on X.
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In this section, the game � is assumed to satisfy the conditions

Xi ∈ cocompRni , fi(·) ∈ C(X) (i ∈ N). (5.4.3.1)

Property 5.4.3.1 Under conditions (5.4.3.1), any PHE in the game � is simultane-
ously a SHE; the set of all SHE is compact in X× R

N (possibly, empty).

Property 5.4.3.1 directly follows from the fact that a Pareto-maximal alternative
in the choice problem �c is also Slater-maximal (in general, the converse is not true),
while the set of Slater-maximal alternatives XS in �c is nonempty and compact in
X [152, p. 142].

The sets of Nash and Berge equilibria, Xe and XB, in the game � are also compact
in X (perhaps, empty) if assumptions (5.4.3.1) hold. In this case, the intersection of
the three compact sets XS⋂Xe⋂XB = X∗ is also a compact set in X (again, it
may be empty). The compactness of f (X∗) = {f (x)|x ∈ X∗} is an immediate
consequence of the continuity of the payoff functions fi(x) on X (i ∈ N).

Note that, generally speaking, the set of PHE can be noncompact due to the
noncompactness of the set of all Pareto-maximal alternatives XP in the choice
problem �c. Also keep in mind the inclusion f (XP) ⊆ f (XS).

Property 5.4.3.2 Under assumptions (5.4.3.1), the PHE x∗ satisfies the individual
rationality condition, i.e.,

fi(x
∗) � max

xi∈Xi

min
xN\{i}∈XN\{i}

fi(xi, xN\{i})

= min
xN\{i}∈XN\{i}

fi(x
0
i , xN\{i}) = f 0

i (i ∈ N), (5.4.3.2)

where x = (x1, . . . , xi, . . . , xN) = (xi, xN\{i}), xN\{i} = (x1, . . . , xi−1, xi+1, . . . ,

xN) and XN\{i} = ∏

j∈N\{i}
Xj (N \ {i} = 1, . . . , i − 1, i + 1, . . . , N).

Indeed, each Nash equilibrium x∗ in the game � has property (5.4.3.2) (indi-
vidual rationality), i.e., fi(x

∗) � f 0
i (i ∈ N), where x0

i and f 0
i are the maximin

strategy and the payoff of player i, respectively.

Remark 5.4.3.1 As illustrated by Vaisman’s counter-example [56, pp. 68–69],
individual rationality generally fails for a Berge equilibrium xB in the game �.

Property 5.4.3.3 A PHE x∗ is collectively rational in a cooperative N-player game
without side payments. This is a consequence of the Pareto maximality of the
alternative x∗ in the choice problem �c.

Remark 5.4.3.2 Individual rationality imposes certain requirements to alliances
(coalitions) with other players: player i joins a coalition only if his payoff
guaranteed by the coalition is not smaller than the maximin value f 0

i , which can
be achieved by this player independently using the maximin strategy x0

i .
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Collective rationality drives all players to the largest payoffs (in the vector
sense!)—the Pareto maxima.

As x∗ is a Nash equilibrium, each player seeks to maximize his payoff.
Berge equilibrium matches an altruistic aspiration of each player to maximize

the payoffs of all other players.
Let us note that, the first two requirements (individual and collective rationality)

are among the standard criteria of “good” solutions for cooperative N-player games
without side payments. At the same time, the properties brought by the Nash and
Berge equilibria are new for such games, which (we believe) makes the novel
concept of PHE an efficient, “good” solution for the game �.

5.4.4 Sufficient Conditions

To formulate sufficient conditions for the existence of PHE in the game �,
we will ensure Pareto maximality in terms of Definition 5.4.2.3 by satisfying
equality (5.4.2.3). The sufficient conditions will be based on the original approach
from [67]. Let us introduce an N-dimensional vector z = (z1, . . . , zN ) ∈ X and the
Germeier convolution [27, 28] of the form

ϕi(x, z) = fi(z‖xi)− fi(z) (i ∈ N),

ϕi+N(x, z) = fi(x‖zi)− fi(z) (i ∈ N),

ϕ2N+1(x, z) =
∑

j∈N
fj (x)−

∑

j∈N
fj (z),

ψ(x, z) = max
r=1,...,2N+1

ϕr(x, z). (5.4.4.1)

A saddle point (x0, z∗) ∈ X×X of the scalar function ψ(x, z) (5.4.4.1) is given
by the chain of inequalities

ψ(x, z∗) � ψ(x0, z∗) � ψ(x0, z) ∀x ∈ X, z ∈ X. (5.4.4.2)

Theorem 5.4.4.1 If (x0, z∗) is a saddle point of the function ϕ(x, y) (5.4.4.2) in the
zero-sum two-player game

�a = 〈X, Z = X, ψ(x, z)〉,

then the maximin strategy z∗ ∈ X is a PHE of the game �.

Proof Indeed, formula (5.4.4.1) with z = x0 gives ψ(x0, x0) = 0. Then, by
transitivity,

ψ(x, z∗) � 0 ∀x ∈ X.
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Using the fact that maxr=1,...,2N+1 ϕr(x, z∗) � 0 ∀x ∈ X and (5.4.4.1), we arrive
at a set of 2N + 1 inequalities of the form

fi(z
∗‖xi) � fi(z

∗) ∀xi ∈ Xi (i ∈ N),

fi(x‖z∗i ) � fi(z
∗) ∀x ∈ X (i ∈ N),

∑

j∈N
fj (x) �

∑

j∈N
fj (z

∗) ∀x ∈ X.

Here the first N inequalities make z∗ ∈ X a Nash equilibrium in the game
� (see (5.4.2.1)); the second group of inequalities ensures that z∗ is a Berge
equilibrium as dictated by (5.4.2.2); finally, the last, (2N + 1)th inequality means
that z∗ is a Pareto-maximal alternative in the choice problem �c. �
Remark 5.4.4.1 By Theorem 5.4.4.1, the construction of a PHE reduces to the
calculation of a saddle point (x0, z∗) for the Germeier convolution ψ(x, z) (5.4.4.1).
Thus, we have developed a constructive method of PHE design in the game �, which
consists of the following steps:

first, define the scalar function ψ(x, z) using formulas (5.4.4.1);
second, find a saddle point (x0, z∗) of the function ψ(x, z) (see the chain of

inequalities (5.4.4.2));
third, calculate the values fi(z

∗) (i ∈ N).
Then the pair (z∗, f (z∗) = (f1(z

∗), . . . , fN(z∗))) is a PHE in the game �: each
player i ∈ N should apply his strategy from the profile z∗, thereby obtaining the
payoff fi(z

∗).

Remark 5.4.4.2 The whole complexity of constructing a PHE in the game � lies
in calculation of the saddle point (x0, z∗) (5.4.4.2) for the Germeier convolution
ψ(x, z) = maxr=1,...,2N+1 ϕr(x, z) (5.4.4.1). The reason is that the maximization of
a finite number of functions ϕr(x, z) (r = 1, . . . , 2N+1) spoils the differentiability
and concavity (or convexity) of the functions ϕr(x, z), despite the fact that it
preserves the continuity of this function on the product X × Z of the compact
sets X and Z; see [136, p. 54]. Here we face a situation well described by C.
Hermite: “I turn with terror and horror from this lamentable scourge of continuous
functions with no derivatives” (see footnote no. 29 in p. 63 of this book). Thus, it
is necessary to develop numerical calculation methods for the saddle point (x0, z∗)
of the Germeier convolution maxr=1,...,2N+1 ϕr(x, z). Unfortunately, to this date we
were not able to find any literature devoted to this field of research. In particular, the
saddle point calculation problem was not solved at the International Conference on
Constructive Nonsmooth Analysis and Related Topics (CNSA-2017, St. Petersburg,
May 22–27, 2017) dedicated to the Memory of Professor V. Demyanov.
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5.4.5 Existence of Pareto Hybrid Equilibrium in Mixed
Strategies

One must be a rather optimistic person to look for a game � (especially with an
explicit form of the payoff function) in which a PHE in pure strategies x∗i ∈ Xi

(i ∈ N) exists (by Definition 5.4.2.4, the desired strategy profile x∗ must be
simultaneously a Nash equilibrium and a Berge equilibrium in the game � and also a
Pareto-maximal alternative in the corresponding choice problem). Thus, employing
the approach of Borel [208], von Neumann [261], Nash [257] and their followers,
we will extend the set Xi of pure strategies xi to a set of mixed strategies. Then we
will establish the existence of appropriately formalized mixed strategy profiles in
the game � that satisfy the three requirements of hybrid equilibrium.

As before, cocompRni stands for the set of all convex and compact (closed and
bounded) subsets of the Euclidean ni -dimensional space R

ni while fi(·) ∈ C(X)

means that the scalar function fi(x) is continuous on X.
Consider again the noncooperative N-player game � without side payments.

Without special mention, assume that the elements of the ordered triplet � satisfy
requirements (5.4.3.1), i.e.,

Xi ∈ cocompRni , fi(·) ∈ C(X) (i ∈ N).

For each compact set Xi ⊂ R
ni (i ∈ N), consider the Borel σ -algebra B(Xi ).

Further, consider the Borel σ -algebra B(X) for the set X =∏i∈N Xi of all strategy
profiles, such that B(X) contains all Cartesian products of elements from the Borel
σ -algebras B(Xi ) (i ∈ N).

Within the framework of mathematical game theory, a mixed strategy νi(·)
of player i is identified with a probability measure on the compact set Xi . By
definition [122, p. 271], in the notations of [108, p. 284] a probability measure is a
nonnegative scalar function νi(·) defined on the Borel σ -algebraB(Xi ) that satisfies
the following two conditions:

1. νi

(⋃
k Q

(i)
k

)
= ⋃

k νi

(
Q

(i)
k

)
for any sequence {Q(i)

k }∞k=1 of pairwise disjoint

elements from B(Xi ) (countable additivity);
2. νi(Xi ) = 1 (normalization), which implies νi

(
Q(i)

) ≤ 1 for all Q(i) ∈ B(Xi ).

Denote by {νi} the set of all mixed strategies of player i (i ∈ N).
The product measures ν(dx)= ν1(dx1)· · ·νN(dxN), treated in the sense of the

well-known definitions from [122, p. 370] (and in the notations of [108, p. 123]),
are probability measures on the strategy profile set X. Let {ν} be the set of such
probability measures (strategy profiles). Once again, we emphasize that in the
construction of the product measure ν(dx), the role of the σ -algebra of all subsets
of the set X1×· · ·×XN = X is played by the smallest σ -algebra B(X) that contains
all Cartesian products Q(1) × · · · ×Q(N), where Q(i) ∈ B(Xi) (i ∈ N). The well-
known properties of probability measures [41, p. 288], [122, p. 254] imply that the
sets of all possible measures νi(dxi) (i ∈ N) and ν(dx) are weakly closed and
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weakly compact (see [122, pp. 212, 254], and [180, pp. 48, 49]). As applied, e.g.,
to {ν}, this means that from any infinite sequence {ν(k)} (k = 1, 2, . . .) one can
extract a subsequence {ν(kj )} (j = 1, 2, . . .) which weakly converges to a measure
ν(0)(·) ∈ {ν}. In other words, for any continuous scalar function ψ(x) on X,

lim
j→∞

∫

X

ψ(x)ν(kj )(dx) =
∫

X

ψ(x)ν(0)(dx)

and ν(0)(·) ∈ {ν}. Due to the continuity of ψ(x), the integrals
∫

X
ψ(x)ν(dx) (the

expectations) are well defined; by Fubini’s theorem,

∫

X

ϕ(x)ν(dx) =
∫

X1

· · ·
∫

XN

ϕ(x)νN(dxN) · · · ν1(dx1),

and the order of integration can be interchanged.
Let us associate with the game � in pure strategies its mixed extension

�̃ = 〈N, {νi}i∈N, {fi [ν] =
∫

X

f [x]ν(dx)}i∈N〉, (5.4.5.1)

where, like in �, N is the set of players while {νi} is the set of mixed strategies
νi(·) of player i; in game (5.4.5.1), each conflicting party i ∈ N chooses its mixed
strategy νi(·) ∈ {νi}, thereby forming a mixed strategy profile ν(·) ∈ {ν}; the payoff
function of each player i, i.e., the expectation

fi [ν] =
∫

X

fi [x]ν(dx),

is defined on the set {ν}.
For game (5.4.5.1), the notion of a PHE x∗ (see Definition 5.4.2.4) has the

following analog.

Definition 5.4.5.1 A mixed strategy profile ν∗(·) ∈ {ν} is called a hybrid equi-
librium (HE) in the mixed extension 5.4.5.1 (equivalently, a hybrid equilibrium in
mixed strategies in the game �) if

1. ν∗(·) is a Nash equilibrium in the game �̃, i.e.,

max
νi (·)∈{νi}

fi(ν
∗‖νi) = fi(ν

∗) (i ∈ N); (5.4.5.2)
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2. ν∗(·) is a Berge equilibrium in game (5.4.5.1), i.e.,

max
νN\{i}(·)∈{νN\{i}}

fi(ν‖ν∗i ) = fi(ν
∗) (i ∈ N); (5.4.5.3)

3. ν∗(·) is a Pareto-maximal alternative in the N-criteria choice problem

�̃c = 〈{ν}, {fi(ν)}i∈N〉,

i.e., for all ν(·) ∈ {ν}, the system of inequalities

fi(ν) � fi(ν
∗) (i ∈ N),

with at least one strict inequality, is inconsistent.
Here and in the sequel,

νN\{i}(dxN\{i}) = ν1(dx1) · · · νi−1(dxi−1)νi+1(dxi+1) · · · νN(dxN),

(ν‖ν∗i ) = ν1(dx1) · · · νi−1(dxi−1)ν
∗
i (dxi)νi+1(dxi+1) · · · νN(dxN),

ν∗(dx) = ν∗1 (dx1) · · · ν∗N(dxN);

in addition, denote by {ν∗} the set of hybrid equilibria ν∗(·), i.e., the set of strategy
profiles that satisfy the three requirements of Definition 5.4.5.1.

Let us state several results used below for proving the existence of HE in mixed
strategies. The following sufficient condition of Pareto maximality is obvious.

Proposition 5.4.5.1 A mixed strategy profile ν∗(·) ∈ {ν} is a Pareto-maximal
alternative in the choice problem �c = 〈{ν}, {fi(ν)}i∈N〉 if

max
ν(·)∈{ν}

∑

i∈N
fi(ν) =

∑

i∈N
fi(ν

∗). (5.4.5.4)

Proposition 5.4.5.2 Consider the game � under conditions (5.4.3.1), i.e., the sets
Xi are convex and compact and the payoff functions fi(x) are continuous on X =
X1 × · · · ×XN . Let
{νe} be the set of Nash equilibria νe(·) that satisfy (5.4.5.2) with ν∗(·) replaced

by νe(·);
{νB} be the set of Berge equilibria νB(·) that satisfy (5.4.5.3) with ν∗(·) replaced

by νB(·);
{νP} be the set of alternatives νP(·) that satisfy (5.4.5.4) with ν∗(·) replaced by

νP(·) (i.e., νP is a Pareto-maximal alternative in mixed strategies in the N-criteria
choice problem 〈{ν}, {fi(ν)}i∈N〉).

Then the set {ν∗} of hybrid equilibria ν∗(·) in the mixed extension �̃ of the game
� is a weakly compact subset of the set of mixed strategy profiles {ν} in the game
�{ν∗} (may be empty).
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Proof Under conditions (5.4.3.1), we have {νe} �= Ø as shown by Gliksberg’s
theorem [30]. Next, the fact {νB} �= Ø has been established in the preceding
sections of our book. The non-emptiness of the set of Pareto-maximal alternatives,
{νP } �= Ø, can be proved in analogous manner. The intersection of a finite number
of weakly compact sets (in our case, three) is also weakly compact, possibly
empty. �
Corollary 5.4.5.1 Under conditions (5.4.3.1), the set

f ({ν∗}) =
⋃

ν(·)∈{ν∗}
f (ν), f = (f1, . . . , fN ),

is compact (bounded and closed) in the N-dimensional Euclidean criterion space
R

N .

Theorem 5.4.5.1 below establishes the implication (5.4.3.1)⇒ {ν∗} �= Ø, which
is the central result of Sect. 5.4.

Proposition 5.4.5.3 Consider game (5.4.5.1) under conditions (5.4.3.1). Then the
function ϕr(x, z) in the formula

ψ(x, z) = max
r=1,...,2N,2N+1

ϕr(x, z) (5.4.5.5)

satisfies the inequality

max
r=1,...,2N,2N+1

∫

X×X

ϕr(x, z)μ(dx)ν(dz)

�
∫

X×X

max
r=1,...,2N,2N+1

ϕr(x, z)μ(dx)ν(dz) (5.4.5.6)

for any μ(·) ∈ {ν} and ν(·) ∈ {ν}, where

ϕi(x, z) = fi(x‖zi)− fi(z) (i ∈ N),

ϕj (x, z) = fj (z‖xi)− fj (z) (j ∈ {N + 1, . . . , 2N}),
ϕ2N+1(x, z) =

∑

i∈N
[fi(x)− fi(z)]. (5.4.5.7)

This proposition was proved in [57].

Remark 5.4.5.1 In fact, formula (5.4.5.6) generalizes the well-known property of
maximization: the maximum of a sum does not exceed the sum of the maxima.

Let us state an interesting fact from operations research, which plays a crucial
role in the proof of Theorem 5.4.5.1. Consider 2N + 1 scalar functions ϕr(x, z)
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(r = 1, . . . , 2N, 2N + 1), where z = (z1, . . . , zN ) ∈ Z = X and ϕj (x, z) (j =
1, . . . , 2N + 1) are defined by (5.4.5.7).

Proposition 5.4.5.4 If 2N + 1 scalar functions ϕj (x, z) (j = 1, . . . , 2N+1) are
continuous on the product X× (Z = X) of compact sets, then the function

ψ(x, z) = max
j=1,...,2N+1

ϕj (x, z)

is also continuous on X× Z.

The proof of a more general result can be found in many textbooks on operations
research, e.g., [136, p. 54] and [46].

Finally, let us establish the central result of Sect. 5.4 — the existence of a hybrid
equilibrium (HE) in mixed strategies under conditions (5.4.3.1).

Theorem 5.4.5.1 If in the game � the sets Xi ∈ cocompRni and fi(·) ∈ C(X) (i ∈
N), then there exists a hybrid equilibrium in mixed strategies in this game.

Proof. Consider an auxiliary zero-sum two-player game

�a = 〈{1, 2}, {X, Z = X}, ψ(x, z)〉.

In the game �a, the set X of strategies x chosen by player 1 (seeking to maximize
ψ(x, z)) coincides with the set of strategy profiles of the game �; the set Z of
strategies z chosen by player 2 (seeking to minimize ψ(x, z)) coincides with X.
A solution of the game �a is a saddle point (x0, zB) ∈ X × X; for all x ∈ X and
each z ∈ X, it satisfies the chain of inequalities

ψ(x, zB) � ψ(x0, zB) � ψ(x0, z).

Now, associate with the game �a its mixed extension

�̃a = 〈{1, 2}, {μ}, {ν}, ψ(μ, ν)〉,

where {ν} and {μ} = {ν} denote the sets of mixed strategies ν(·) and μ(·) of
players 1 and 2, respectively. The payoff function of player 1 is the expectation

ψ(μ, ν) =
∫

X×X

ψ(x, z)μ(dx)ν(dz).

The solution of the game �̃a is also a saddle point (μ0, ν∗) defined by the two
inequalities

ψ(μ, ν∗) � ψ(μ0, ν∗) � ψ(μ0, ν), (5.4.5.8)

for any ν(·) ∈ {ν} and μ(·) ∈ {ν}.
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Sometimes, the pair (μ0, ν∗) is also called the solution of the game �a in mixed
strategies.

Applying Gliksberg’s [30] existence theorem of a mixed strategy Nash equi-
librium for a noncooperative game of N � 2 players to the zero-sum two-player
game �a, we obtain the following result. In the game �a, suppose the set X⊂ R

n

is nonempty, convex and compact and the payoff function ψ(x, z) of player 1
is continuous on X × X (note that the continuity of ψ(x, z) is assumed in
Proposition 5.4.5.4). Then the game �a has a solution (μ0, ν∗) defined by (5.4.5.8),
i.e., there exists a saddle point in mixed strategies in this game.

Using (5.4.5.5), inequalities (5.4.5.8) can be written as
∫

X×X

max
j=1,...,2N+1

ϕj (x, z)μ(dx)ν∗(dz)

�
∫

X×X

max
j=1,...,2N+1

ϕj(x, z)μ0(dx)ν∗(dz)

�
∫

X×X

max
j=1,...,2N+1

ϕj(x, z)μ0(dx)ν(dz) (5.4.5.9)

for all ν(·) ∈ {ν} and μ(·) ∈ {ν}. Using the measure νi(dzi) = μ0
i (dxi) (i∈N) (and

hence ν(dz) = μ0(dx)) in the expression

ψ(μ0, ν) =
∫

X×X

max
j=1,...,2N+1

ϕj (x, z)μ0(dx)ν(dz),

we obtain ψ(μ0, μ0) = 0 due to (5.4.5.5). Similarly, ψ(ν∗, ν∗) = 0, and then it
follows from (5.4.5.8) that

ψ(μ0, ν∗) = 0.

The condition ψ(μ0, μ0) = 0 and the chain of inequalities (5.4.5.8) by transitivity
give

ψ(μ, ν∗) =
∫

X×X

max
j=1,...,2N+1

ϕj (x, z)μ(dx)ν∗(dz) � 0 ∀μ(·) ∈ {ν}.

By Proposition 5.4.5.3, we then have

0 �
∫

X×X

max
j=1,...,2N+1

ϕj (x, z)μ(dx)ν∗(dz)

� max
j=1,...,2N+1

∫

X×X

ϕj (x, z)μ(dx)ν∗(dz).
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Therefore, for all j = 1, . . . , 2N + 1,

∫

X×X

ϕj (x, z)μ(dx)ν∗(dz) � 0 ∀μ(·) ∈ {ν}. (5.4.5.10)

Consider three cases as follows.

Case I (j = N, . . . , 2N) Here, by (5.4.5.10), (5.4.5.7) and the normalization of
μ(·), we obtain

0 �
∫

X×X

ϕN+i (x, z)μ0(dx)ν(dz) =
∫

X×X

[fi(z‖xi)− fi(z)]μ0(dx)ν(dz)

=
∫

X×X

fi(z‖xi)μ
0(dx)ν(dz)−

∫

X

fi(z)μ
0(dx)

∫

X

ν(dz)

= fi(μ
0‖νi)− fi(μ

0) ∀ν(·) ∈ {ν} (i ∈ N).

By (5.4.5.2), μ0(·) is a Nash equilibrium in the game �̃ (equivalently, a Nash
equilibrium in mixed strategies in the game �).

Case II (j = 1, . . . , N) Again, using (5.4.5.10), (5.4.5.7) and the normalization of
ν(·),

0 �
∫

X×X

ϕi(x, z)μ(dx)ν∗(dz) =
∫

X×X

[fi(x‖zi)− fi(z)]μ(dx)ν∗(dz)

=
∫

X×Xi

fi(x‖zi)μ(dx)ν∗i (dz)−
∫

X

fi(z)μ(dz)

∫

X

ν∗(dz)

= fi(μ‖ν∗i )− fi(ν
∗) ∀μ(·) ∈ {ν} (i ∈ N).

In view of (5.4.5.3), the mixed strategy profile ν∗(·) is a Berge equilibrium in the
game �, by Definition 5.4.5.1.

Case III (j = 2N + 1) Again, using (5.4.5.10), (5.4.5.7) and the normalization of
ν(·) and μ(·), we have

0 �
∫

X×X

[
∑

r∈N
fr(x)−

∑

r∈N
fr(z)

]

μ(dx)ν∗(dz)

=
∫

X

∑

r∈N
fr(x)μ(dx)

∫

X

ν∗(dz)−
∫

X

μ(dx)

∫

X

∑

r∈N
fr (z)ν

∗(dz)

=
∑

r∈N
fr(μ)−

∑

r∈N
fr (ν

∗) ∀μ(·) ∈ {ν}.



5.4 How Can One Combine the Altruism of Berge Equilibrium with the. . . 239

By Proposition 5.4.5.1 and (5.4.5.4), the mixed strategy profile ν∗(·)∈{ν} of the
game � (2.3.1) is a Pareto-maximal alternative in the multicriteria choice problem

�̃c = 〈{ν}, {fi(ν)}i∈N〉.

Thus, we have proved that the mixed strategy profile ν∗(·) in the game � is
simultaneously a Nash equilibrium and a Berge equilibrium that satisfies Pareto
maximality. Hence, by Definition 5.4.5.1, the mixed strategy profile ν∗(·) is a hybrid
equilibrium in the game �. �

5.4.6 Hybrid Equilibrium in Games Under Uncertainty

Let us augment the mathematical model of a conflict

� = 〈N, {Xi}i∈N, {fi(x)}i∈N〉

by including the influence of uncertain factors y ∈ Y. Assume that these factors
take arbitrary values from given ranges without any probability characteristics (e.g.,
the distribution of y on Y is absent for some reasons). Once again, we emphasize
that a proper consideration of uncertainties gives a more adequate description of
the decision-making process in economics, ecology, sociology, management, trade,
policy, security, and so on. Uncertain factors occur due to incomplete (inaccurate)
knowledge about the realizations of strategies chosen by conflicting parties. “There
is no such uncertainty as a sure thing.” (R. Burns).22 For example, an economic
system is subject to almost unpredictable exogenous disturbances (forces of nature,
disruption of supplies, low qualification or incompetence of economic partners,
counteractions of rivals, to name a few) as well as endogenous disturbances (break-
down and failure of industrial equipment, unplanned additional cost and losses of
materials, innovations suggested by employees, etc.). New technologies and also
anthropogenic and weather changes may cause uncertainty in ecological systems;
in mechanical systems, among the sources of uncertainty are weather conditions.
“The only thing that makes life possible is permanent, intolerable uncertainty; not
knowing what comes next.” (Ursula K. Le Guin).23 Possible approaches to take the
effect of uncertain factors into account were the subject of investigations [73, 74]
initiated in 2013, which resulted in the book [68]. In this section of Chap. 5, we will
use elementary methods to deal with uncertainty.

22Robert Burns, (1759–1796), was a national poet of Scotland, who wrote lyrics and songs in Scots
and in English.
23Ursula K. Le Guin, original name Ursula Kroeber, (1929–2018), was an American writer best
known for tales of science fiction and fantasy.
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Consider a noncooperative N-player normal form game under uncertainty

〈N, {Xi}i∈N, Y, {fi(x, y)}i∈N〉. (5.4.6.1)

Compared with the game � (which shares the first two components of its ordered
triplet with game (5.4.6.1), namely, N = {1, 2, . . . , N} and the set Xi of pure
strategies xi of player i, i ∈ N), in this game we have an additional set Y ⊂ R

m

of uncertain factors y and payoff functions fi(x, y) that depend on y.
Game (5.4.6.1) runs as follows. Each player i ∈ N chooses his individual strategy

xi ∈ Xi ⊂ R
ni (i ∈ N), which gives a strategy profile x = (x1, . . . , xN) ∈ ∈

X = ∏
j∈N Xj ⊂ R

n (n = ∑
j∈N nj ) in this game. Regardless of their choice,

an arbitrary uncertainty y ∈ Y figures in (5.4.6.1). For each player i (i ∈ N), a
payoff function fi(x, y) is defined on all such pairs (x, y) ∈ X×Y. At a conceptual
level, each player i seeks to maximize his payoff fi(x, y) under any unpredictable
realization of the uncertainty y ∈ Y. This last requirement calls for estimating the set

fi(x, Y ) =
⋃

y∈Y

fi(x, y)

for each player i (i ∈ N). In turn, for such a multivalued function fi(x, Y) (i ∈ N),
it is necessary to choose another function fi [x] that would act as a guarantee
for any element fi(x, y) from the set fi(x, Y). As defined by the Merriam–
Webster dictionary, guarantee is an assurance for the fulfillment of a condition.
A most obvious guarantee for player i in game (5.4.6.1) is the so-called strong
guarantee [73], provided by the scalar function

fi [x] = min
y∈Y

fi(x, y). (5.4.6.2)

Indeed, it follows from (5.4.6.2) that, for each strategy profile x ∈ X,

fi [x] � fi(x, y) ∀y ∈ Y,

i.e., in each strategy profile x ∈ X the value fi(x, y) is not smaller than the guarantee
fi [x] under any realization of the uncertainty y ∈ Y. Recall an important result from
operations research that is repeatedly used in this book.

Proposition 5.4.6.1 ([136, p. 54, 187]) If a scalar function F(x, y) is continuous
on the product X×Y of convex and compact sets X and Y, then the function f [x] =
min
y∈Y

F(x, y) is continuous on X.

Therefore, all the N strong guarantees fi [x] (5.4.6.2) are continuous on X under
the assumptions Xi ∈ compRni (i ∈ N), Y ∈ compRm and fi(·) ∈ C(X×Y).
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This approach allows us to associate with game (5.4.6.1) under uncertainty the
game of guarantees (without uncertainty)

�g = 〈N, {Xi}i∈N, {fi [x]}i∈N〉, (5.4.6.3)

which coincides with the game � from Sect. 5.4.2 provided that fi(x) is replaced by
the strong guarantee fi [x] = miny∈Y fi(x, y).

In contrast to (5.4.6.1), here the performance of each player i is assessed using
the strong guarantee fi [x] instead of the payoff function fi(x, y) itself (this seems
quite natural for considering arbitrary realizations y ∈ Y).

Then the following analog of Definition 5.4.2.4 can be suggested for the game
under uncertainty (5.4.6.1) with the strong guarantees (5.4.6.2).

Definition 5.4.6.1 A pair (xP, f [xP] = (f1[xP], . . . , fN [xP])) ∈ X×R
N is called

a strongly-guaranteed Pareto hybrid equilibrium in game (5.4.6.1) if

1. the strong guarantees fi [x] (5.4.6.2) are continuous on X;
2. the strategy profile xP is simultaneously a Nash equilibrium and a Berge

equilibrium in the game of guarantees (5.4.6.3), i.e.,

max
xi∈Xi

fi [xP‖xi] = fi [xP] (i ∈ N),

and

max
x∈X

fi [x‖xP
i ] = fi [xP] (i ∈ N),

respectively;
3. the strategy profile xP is a Pareto-maximal alternative in the N-criteria choice

problem 〈X, {fi [x]}i∈N〉.
Similarly to Definition 5.4.5.1, we introduce an analog of Definition 5.4.6.1 with

a feature that the players use mixed strategies νi(·) (i ∈ N) in game (5.4.6.1).

Definition 5.4.6.2 A mixed strategy profile νP(·) ∈ {ν} is called a strongly-
guaranteed Pareto hybrid equilibrium in mixed strategies in game (5.4.6.1) if

1. for each player i (i ∈ N), there exists the strong guarantee

fi [x] = min
y∈Y

fi(x, y)

that is continuous on X;
2. νP is simultaneously a Nash equilibrium and a Berge equilibrium in game

(5.4.5.1), i.e., equalities (5.4.5.2) and (5.4.5.3) hold with ν∗(·) replaced by νP(·);
3. νP in game (5.4.5.1) is a Pareto-maximal alternative in the N-criteria choice

problem �̃c = 〈{ν}, {fi [ν]}i∈N〉.
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Finally, the combination of Proposition 5.4.6.1 and Theorem 5.4.4.1 directly
leads to the following result on the existence of a strongly-guaranteed Pareto hybrid
equilibrium in mixed strategies.

Theorem 5.4.6.1 Consider game (5.4.6.1) with convex and compact sets Xi (i ∈
N), compact set Y, and payoff functions fi(x, y) (i ∈ N) continuous on X×Y. Then
there exists a strongly-guaranteed Pareto hybrid equilibrium in mixed strategies in
this game.

Remark 5.4.6.1 Our analysis in Sect. 5.4.6 has been confined to the strong guar-
antees fi [x] = miny∈Y fi(x, y) (i ∈ N) as the smallest ones. It is possible to
adopt the so-called vector guarantees: the components of an N-dimensional vector
f [x] = (f1[x], . . . , fN [x]) form a vector guarantee for an N-dimensional vector
f (x, y) = (f1(x, y), . . . , fN (x, y)) if, for all y ∈ Y and each x ∈ X, the N strict
inequalities

fi(x, y) < fi [x] (i ∈ N)

are inconsistent. In other words, the vector guarantee f [x] cannot be reduced
simultaneously in all the components by choosing y ∈ Y. In terms of vector
optimization, for each alternative x ∈ X the vector f [x] is a Slater minimum
(weakly efficient) solution in the N-criteria choice problem �(x) = 〈Y, f (x, y)〉.

In the same fashion, using other concepts of vector optima (minima in the
sense of Pareto, Geoffrion, Borwein, cone optimality), we may introduce a whole
collection of vector guarantees. These guarantees have the remarkable property that
their values, first, are not smaller than the corresponding components of the strong
guarantee vector f [x] (5.4.6.2) but, second, can be large. Recall that the goal is to
increase the payoffs of players (in particular, by increasing their guarantees!). In
this respect, the listed vector guarantees are preferable to their strong counterparts.
However, one should keep in mind an important aspect: transition from the
game under uncertainty (5.4.6.1) to the game of guarantees �g (with subsequent
application of Theorem 5.4.4.1) is possible only if the new payoff functions fi [x]
(i ∈ N) in the game �g are continuous. This continuity can be ensured in the
following way.

Let Xi ∈ compRni , Y ∈ compRm and fi(·) ∈ C(X × Y) (i ∈ N) in
game (5.4.6.1). In addition, require that for each x ∈ X at least one fj (x, y) (j ∈ N)

is strictly convex in y on the set Y. Then the minimum in

min
y∈Y

fi(x, y) = fj [x] (5.4.6.4)

is achieved at a unique point y∗(x) for each x ∈ X, and the m-dimensional
vector function y∗(x) itself is continuous on X; see [136, p. 54]. In this case, the
superposition of the continuous functions fi(x, y) and y∗(x) implies the continuity
of all scalar functions fi[x] = fi(x, y∗(x)) (i ∈ N). We finalize the design of
�g with the following fact. Assume for each x ∈ X the same function fj [x] is
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implemented by the minimum in (5.4.6.4). Then for all x ∈ X the N-dimensional
vector f [x] = (f1[x], . . . , fN [x]) is a Slater-minimal alternative in the current N-
criteria choice problem �(x) = 〈Y, {fi(x, y)}i∈N〉. In other words, it is impossible
to find ȳ ∈ Y such that fi(x, ȳ) < fi[x] (i ∈ N). A detailed treatment of these
issues for Slater, Pareto, Geoffrion, Borwein, and cone optimality will be given in
our future publications.



Chapter 6
Conclusion

Game theory is a mathematical framework for strategy analysis and design as well as
for optimal decision-making under conflict and behavioral uncertainty. On the one
hand, game theory plays a key role for modern economics; on the other, it suggests
possible approaches and solutions for complex strategic problems in various fields
of human activity.

The logical methods of optimal strategy design in mathematical terms date
back to the beginning of the seventeenth century. The problems of production and
pricing in oligopolies, i.e., the classical problems of game theory, were studied in
the nineteenth century by Cournot [225, 226] and Bertrand [204, 205]. The idea
of a game as a mathematical model for a conflict of interests appeared at the
beginning of the past century in the works of Lasker, E. Zermelo, and E. Borel [209].
Pioneering results on game theory were published since the 1920s, but a systematic
treatment was first presented in 1944 by J. von Neumann and O. Morgenstern in
their monograph Theory of Games and Economic Behavior [262]. The title and
content of this book indicated that game theory was claiming for a revolution in
economic sciences with its novel approach. Thus, the year 1944—the first edition
of the book—is generally considered as the birth of game theory.

Further development of game theory was associated with the name of American
mathematician Nash [257, 258], who formulated the principles of decision dynam-
ics. The cited monograph by von Neumann and Morgenstern became well-known
mostly owing to an exploration of zero-sum games, in which a win of one party
means a simultaneous loss of the other. However, equal attention in the book was
paid to the games with non-opposing interests. Nash analyzed different management
strategies in economics and business as well as different behavioral strategies and
arrived at an important conclusion. With such strategies, one party is always gaining
while the other losing, i.e., they yield victors and vanquished. Nash was wondering:
is it possible to find an equilibrium in which nobody wins and also nobody loses?
Such strategies would revolutionize negotiations, resolution of conflicts and design
of other compromise decisions.
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Nash created analysis methods for the games in which all parties simultaneously
win or lose. An example of such a game is wage negotiations between a labor
union and an employer. This situation may result in a lengthy strike (affecting
both parties) or a mutually beneficial agreement. Nash modeled a situation (the
so-called Nash equilibrium or noncooperative equilibrium, as we know it today)
in which both parties use optimal strategies, thereby achieving a stable equilibrium.
The players are interested in keeping this equilibrium, since any unilateral deviation
would worsen their condition.

Nevertheless, the concept of Nash equilibrium is selfish: it guides each player
towards maximization of his/her/its own payoff only. The constructive criticism
of this selfish approach motivated V. Zhukovskiy and his postgraduate student K.
Vaisman to adequately consider the interests of all other parties of a conflict, even at
the cost of neglecting the individual interests of each player. In 1994 they formulated
the altruistic concept of Berge equilibrium, which is the subject of this book. Here
are three English proverbs related to Berge equilibrium.

(a) It is better to give than to take.1

(b) Share and share alike.2

(c) Live and let live.3

Game theory has been evolving through different stages, with different levels
of interest from the scientific community. In the 1950s, game-theoretic methods
seemed to be very promising, but all excitement gradually faded in the 1960s–1970s,
despite the considerable mathematical results established then. However, the 1980s
saw an increased utilization of game-theoretic methods in different applications, and
today one would hardly find any field of economics and business science (micro-
and macro-economics, finance, marketing, management, etc.) which can be studied
without a basic background in game theory [109–116, 128, 147, 152, 161–167, 175–
188, 190, 193, 196].

In the course of development, game theory has become a general logical-
mathematical theory of conflicts. Game-theoretic methods allow us to analyze
different conflicts (phenomena and processes), to outline and predict the behavioral
scenarios for all conflicting parties, as well as to suggest recommendations on
conflict resolution and elimination of dangerous consequences.

During the two or three recent decades, the value of game theory and the interest
in game-theoretic research have significantly increased in many fields of economic
and social sciences. It is no exaggeration to state that game theory is vital for modern

1Originates from The Bible, Acts 20:35: “In all things I have shown you that by working hard in
this way we must help the weak and remember the words of the Lord Jesus, how he himself said,
‘It is more blessed to give than to receive.”’
2Give equal shares to all. Daniel Defoe appears to be the first to have used this phrase in The Life
and Strange Adventures of Robinson Crusoe (1719): “He declar’d he had reserv’d nothing from
the Men, and went Share and Share alike with them in every Bit they eat.”
3People should accept the way other people live and behave, especially if they do things in a
different way.
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economics. In the present time the scientific community is devoting much research
effort to extend the scope of game theory. On the one hand, this theory forms a
rather abstract branch of mathematics; on the other, a rather efficient analysis tool
for economic, political, legal, military, technical and other problems. Applications
of game-theoretic methods are found in agriculture, medicine, ecology, sports,
anthropology, psychology, pedagogy, sociology, and others.

In modern economics and business science, game theory has a wide variety of
applications. Game-theoretic tools and approaches may be fruitful in situations
connected with strategic decision-making, competition, cooperation, risks and
uncertainty. At the macro-level, game theory is used for decision-making processes
in international trade, competition, taxation, protectionist practices and cartelization
(e.g., OPEC), including an assessment of contributions for each party and further
allocation of profits. At the micro-level, game theory assists, e.g., in advertising cost
optimization in a competitive market, efficient production organization or auction
design. Using game-theoretic methods, one may choose business partners for joint
projects, construct behavioral scenarios for competitors, as well as find mechanisms
of interregional interactions and income allocation schemes. Game-theoretic models
are widespread in planning and prediction, strategic development design, pricing,
negotiations, in particular, coordination of mutual interests and relations of partners,
asset owners, employees and employers, and other economic agents. Moreover,
game-theoretic methods are used to analyze the behavior of criminal gangs and
political struggle.

Game theory provides

–a formal and clear language to analyze different economic phenomena, processes
and systems;

–possible tools to check intuitive or rational decisions and solutions in terms of their
consistency and applicability to a given problem;

–principles, criteria and methods to find optimal solutions.

A classical and most remarkable example of successful application of game-
theoretic methods was the Federal Communications Committee (FCC) spectrum
auction held in 1994 [148]. The organizers intended to collect at least $ 3.5 million
but, with the help of game theory experts, the real revenues reached approximately
$ 8 billion [238, 252, 253, 259–265, 270–277, 279, 283–289, 306].

Nowadays, the number of publications (papers, monographs, textbooks) on game
theory is into tens of thousands [149, 150]. Despite its long history, game theory
has become appreciated by the scientific community only relatively recently. The
pioneering research of future Nobel laureates J. Nash, R. Selten, L. Hurwitz, R.
Myerson and others took place in the 1950s. Yet the first Nobel Prize in Economic
Sciences for the advances in game theory was awarded in 1994, which was the
first indication of wide scientific recognition. Since then, during a period of less
than 15 years, the Nobel Prize in Economic Sciences was awarded seven times for
game-theoretic research; in particular, in 2005 jointly to R. Aumann and T. Schelling
“for having enhanced our understanding of conflict and cooperation through game-
theory analysis.”
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As a matter of fact, an explicit polarization can be observed in the monographs
and textbooks on game theory. In a considerable part of these publications, the
authors give a detailed description of the mathematical framework of game theory,
including solution concepts, principles and models, restricting themselves to a few
abstract examples. As a result, it may seem that game theory has nothing to do
with real economic problems. Such books are characterized by a high level of
formal abstraction and a considerable simplification of real situations, which makes
the corresponding game-theoretic models unsuitable in practice [193]. This gap
between theory and practice often appears in light assumptions and conclusions,
which are not accompanied by good interpretations in the context of a given problem
or not reduced to specific managerial decisions or behavioral strategies in a given
situation.

This state of affairs explains the existing scepticism of practitioners (economists
and managers) towards game theory. Another reason of the scepticism that restricts
the use of game theory is the relatively high complexity of this theory. The main
complexity consists in its logic rather than its mathematical framework.

Another considerable part of the literature is focused on outlining economic
situations that can be described by games, without a proper consideration of
methods and tools to find solutions. Such an approach conceals the rich capabilities
of game theory. As a result, practitioners have a clear idea that this theory is
applicable, but do not fully comprehend how. In other words, the practical results
included in the monographs and textbooks on the subject are either trivial, or very
complicated [147, p. 246].

The authors of this book are far from overestimating the capabilities of game
theory, which is often done by some researchers. Game-theoretic models represent a
tool that should be properly handled and applied whenever possible. Like any other
models, games provide a more or less adequate approximation of real situations
and events. This does not mean, however, that the models cannot be efficient in
practical problems. Game theory itself is neither a universal description of real life
in mathematical terms, nor a universal solution procedure for all problems. For a
successful application of game theory, one needs to be facilitated with its logical-
mathematical framework and also with the subject under study.

Indeed, game theory and its postulates may seem rather abstract or even unsuit-
able. But we believe that the major application of game theory is the development
of a special “strategic vision” of a current situation, often nonformalizable yet
facilitating a qualitative, complete and rigorous analysis.

As a counterweight to the generally accepted selfish Nash equilibrium, this book
is devoted to a new solution concept for noncooperative games—the altruistic Berge
equilibrium. For over twenty years since its appearance, Berge equilibrium has
been facing different troubles. First, the sudden death of K. Vaisman at the age
of 35, who was the initiator and enthusiast of this concept; second, the negative
review of Shubik [269] of Berge’s book [202] in which the main idea of this
equilibrium was described; third, the unclear usefulness of Berge equilibrium
in real problems (where and how can it be applied?); fourth, the easiness of
deriving theoretical results on Berge equilibrium in two-player games (for such
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games, Berge equilibrium design is reduced to Nash equilibrium calculation if the
players exchange their payoff functions); and fifth, the absence of an authoritative
researcher to lead this direction of investigations. These reasons (and probably
others not mentioned here) suspended the elaboration of a constructive theory of
Berge equilibria at the stage of accumulation of facts, revelation of properties,
comparison with Nash equilibrium, and analysis mostly in the context of matrix
games.

In our opinion, the forthcoming stage of development will be associated with
an heuristic approach to the mathematical theory of Berge equilibrium. No doubt,
at this stage it is necessary to answer the following questions of paramount
importance:

10. How should a Berge equilibrium be constructed?
20. Does a Berge equilibrium exist?

Actually, these questions are directly addressed in the present book for the static
setup of noncooperative N-player games (such games have no dynamics and are
time-invariant).

One central result of the book is that the Germeier convolution is involved in
answering question 10. More specifically, the problem is reduced to a saddle point
calculation for a special Germeier convolution (Sect. 2.8.3) of the players’ payoff
functions, which is efficiently constructed using the original noncooperative game:
the minimax strategy at this saddle point is the Berge equilibrium in the original
game.

This technique has allowed us to answer question 20 about the existence of a
Berge equilibrium. Moreover, our existence theorem takes into account the internal
instability of the set of Berge equilibria (there may exist two Berge equilibria such
that the players’ payoffs in one equilibrium are strictly greater than in the other,
see Example 2.4.1). To deal with this, the concept of Berge equilibrium has been
augmented by Pareto maximality with respect to other Berge equilibria, yielding the
so-called Berge–Pareto equilibrium (Definition 2.9.1). Theorem 2.9.1 establishes
the existence of a Berge–Pareto equilibrium in mixed strategies for continuous
payoff functions and compact strategy sets of all players.

Another central result consists in laying the theoretical foundations of Berge
equilibrium design under interval strategic uncertainty, a novel direction of Berge
equilibrium-related research. We suggest two decision approaches under such
conditions. First, the formal definition of a strongly-guaranteed Berge equilibrium,
which is reduced to instantaneous minimization of each payoff function and further
transition to the game of guarantees. Second, the formal definition of Slater-minimal
guarantees [82, 83] for each situation, with the same transition to the game of
guarantees [33, 109–114]. This approach involves a two-level hierarchical game
in which the lower level is formed by strategic uncertainties (under the information
discrimination of all players). Both definitions lead to an appropriate modification
of the maximin. The latter and former approaches yield existence theorems in mixed
strategies, see Theorem 3.5.1 and also the end of Sect. 3.5.3.
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Finally, the applications to the Cournot and Bertrand oligopoly models are
described in Chap. 4, including the case of import as an uncertain factor.

Note that the material presented in Chap. 4 settles the issue regarding the use
of Berge equilibrium in real problems. In addition, as explained in the Preface,
the concept of Berge equilibrium completely matches the Golden Rule of ethics:
“Behave to others as you would like them to behave to you.”

Finally, we should emphasize that the approach adopted in Chap. 3 is not the only
possible one. Even for the antagonistic case of noncooperative games, there exist
other principles (minimax regret, pessimism–optimism) as well as other criteria
(Laplace–Bayes, Hodges–Lehmann, BK-criterion, P -criterion [137]), each having
certain advantages and shortcomings. We have not considered Berge equilibrium
for differential positional games, although the existence theorem for the separate
dynamical system was established earlier in [72] under an appropriately modified
formalization of the players’ strategies and motions generated by them. (Also
see numerous publications of Zhukovskiy’s scholars on dynamic programming-
based Berge equilibrium design for specific multistage games arising in competitive
economics). Other applications-relevant models not covered by this book include
differential positional games with time delay, multistage positional setups of the
games, and many more. The above-mentioned problems are waiting for thorough
study, and the reader will certainly discover many interesting facts getting deeper
into them. “On deep paths of mystery unknown creatures leave their spoor.”4

4A fragment from Ruslan and Lyudmila, a poem by Aleksandr S. Pushkin, (1799–1837), a Russian
poet, novelist, dramatist, and short-story writer. Considered as the greatest poet and founder of
modern Russian literature.
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Rich as we are in biography, a well-written life is
almost as rare as a well-spent one; and there are

certainly many more men whose history deserves
to be recorded than persons willing and able to record it.

—Carlyle1

This section describes in brief the life and research activities of leading Russian
speaking mathematicians and mechanical engineers of the past and present who
are little known in the Western countries, but frequently mentioned in the text. The
list includes 8 distinguished persons, namely, I. Vekua, N. Vorobiev, Yu. Germeier,
N. Krasovskii, L. Pontryagin, B. Pshenichnyi, A. Subbotin, and P. Chebyshev.
They are ordered alphabetically. Probably, the short biographies below have some
omissions, but the authors hope that this material will be of interest for the
reader.

Pafnuty Lvovich Chebyshev (born May, 26, 1821—died December 8, 1894), was
a Russian mathematician and mechanical engineer, the founder of St. Petersburg
Mathematical School, Assistant Academician (since 1853), Extraordinary Academi-
cian (since 1856), and Ordinary Academician (since 1859) of the St. Petersburg
Academy of Sciences. Born in the village of Okatovo (Kaluga Governorate, Russian
Empire). Received primary education at home. Graduated from Moscow State
University (1841). During the period 1847–1882, worked at St. Petersburg State
University (since 1850, as Professor). Full Member of the Artillery Division of the
Military-Scientific Committee (since 1855), Member of the Scientific Council at the
Ministry of Public Education (1856–1873), and Full Member of the Interim Artillery
Committee (since 1859).

1A quote from Critical and Miscellaneous Essays by Thomas Carlyle, (1795–1881), a Scottish
historian and essayist.
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His major research was devoted to mathematical analysis, polynomial approx-
imation of functions, number theory, probability theory, theory of machines and
mechanisms, theory of surfaces, variational calculus, and some other directions
of mathematics and mechanics. A distinctive feature of his research activities
was a close connection between theory and practice, as he repeatedly emphasized
himself. Studied the integration of algebraic functions: proved the integrability
of the differential binomial in the class of elementary functions; elaborated the
general theory of orthogonal polynomials; posed the problem of moments and
derived quadrature formulas. With the aim of reducing the amount of calculations,
in 1873 suggested quadrature formulas with equal coefficients, under the additional
requirement that the formulas have good accuracy for any polynomials of degree
not greater than n − 1, where n denotes the number of nodes. That research was
closely related to his work at the Interim Artillery Committee.

Considered quadratic approximations, approximations using trigonometric poly-
nomials and rational functions. Chebyshev’s approximation theory has become
a major component of the constructive theory of functions. In 1849 and 1850,
established important results on the distribution of prime numbers. Believed that the
construction of probability theory must have a reliable mathematical foundation.
Proved the central limit theorem of probability theory. In 1846, provided a new
proof for the Poisson theorem as well as outlined its applicability in practice. In
1867, suggested a simple yet general proof for the law of large numbers. In 1887,
demonstrated that the results of his research on the limit values of integrals can
be used for proving the Laplace–Poisson theorem (on the probability with which
the sum of very many independent random variables lies on a given interval).
In the theory of surfaces, in 1878 elaborated theory of nets; in particular, solved
the problem of mapping a plane into an arbitrary surface so that the lengths
of lines are preserved. Owing to the studies of parabolic interpolation using the
least-squares method, in 1867 introduced a new calculus similar to variational
calculus.

Chebyshev was the founder of the mathematical theory of mechanisms. In 1854,
published his work Theory of mechanisms known as parallelograms. Pioneered
the structural analysis of plane mechanisms and established a condition for the
existence of a mechanism. Constructed a series of mechanisms that execute a given
law (including walking and rowing mechanisms), which have been appreciated
just recently. Designed a steam engine, an adding machine, and a centrifugal
regulator with good mechanical properties. Using his mechanisms for an approx-
imate reproduction of mathematical laws, elaborated a theory of polynomial
approximation of functions with smallest deviation from zero. Chebyshev and his
followers were at the dawn of major research directions in Russian and Soviet
mathematics.

Corresponding Member (since 1860) and Foreign Member (since 1874) of
the Paris Academy of Sciences, Member of the London Royal Society (since
1877), Member of the Berlin Academy of Sciences (since 1871), Member of the
Bologne Academy of Sciences (since 1873), Member of the Swedish Academy
of Sciences (since 1893), as well as Honorary Member of many other academies
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of sciences, scientific communities and universities. In 1944, the USSR Academy
of Sciences established the Chebyshev Medal and Prize for best research in
mathematics and the Chebyshev Prize for best research in theory of machines and
mechanisms.

Yury Borisovich Germeier (born July 18, 1918, Atkarsk, Saratov oblast—died
June 24, 1975, Moscow), was a Russian mathematician. Graduated from the Faculty
of Mechanics and Mathematics at Moscow State University (1941). Candidate of
Sciences in Physics and Mathematics (1947). Doctor of Sciences in Physics and
Mathematics (1963).

His Candidate of Sciences dissertation was entitled “The Derivatives of Riemann
and de la Vallée–Poussin, and Their Application to Some Questions in the Theory of
Trigonometric Series.” His Doctor of Sciences dissertation was devoted to assessing
the efficiency of aviation systems in combination with some optimization problems
and random process problems.

Since 1968, Professor of the Department of Computational Mathematics at the
Faculty of Mechanics and Mathematics (Moscow State University). In 1970–1975,
the founder and first head of the Department of Operations Research at the Faculty
of Mechanics and Mathematics (Moscow State University). Delivered lectures on
mathematical and methodological foundations of operations research and game
theory with nonantagonistic interests.

Was awarded the Order of the Red Banner of Labour (1957), the Order of the
Badge of Honor (1975), the Medal for Valorous Labour during the Great Patriotic
War (1946), the Medal for the 800th Anniversary of Moscow (1948), and the Medal
for Valorous Labour (1970). His research interests covered the properties of general-
ized derivatives and their connection with the summability of trigonometric series.
His results became a starting point for further research in this field, particularly
for the properties of symmetric second-order derivatives. Studied the efficiency
of aircraft launched torpedoes. Conducted fundamental scientific investigations
on the design of a universal efficiency assessment method for air-to-air gunnery.
Made considerable advances in the assessment of ordinance principles for combat
aircrafts, the efficiency and reliability of aviation equipment and systems. Took an
important step in reliability theory, passing from the purely probabilistic setups
to the maximin ones. Suggested to compensate insufficient information about
distribution laws using the principle of guaranteed result. Derived pioneering results
on the worst-case distribution laws, which yielded a new interpretation for standard
laws of reliability theory. A founder of the national school of operations research.
Contributed much to theory of games with nonantagonistic interests. Identified an
applications-relevant class of games with hierarchical structure that describes most
of economic systems. Introduced and justified punishment strategies. Solved some
games with incompletely known interests of cooperating players and games with
forbidden situations. Jointly with N.N. Moiseev, laid the foundations of a theory of
hierarchical systems. Established the instability of classical solutions in cooperative
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games and generalized the concept of equilibrium. Published over 150 research
works, including two fundamental monographs [28, 29].

Nikolay Nikolaevich Krasovskii (born September 7, 1924—died April 4, 2012),
was a Russian mathematician, Academician of the USSR Academy of Sciences
(since 1968), Corresponding Member of the USSR Academy of Sciences (since
1964). Born in Sverdlovsk. Graduated from the Ural Polytechnic Institute (1949).
In 1949–1959, worked at the Ural Polytechnic Institute (since 1957, as Professor).
Since 1959, worked at the Ural State University. In 1970–1977, was the director
of the Institute of Mathematics and Mechanics at the Ural Scientific Center of the
USSR Academy of Sciences. At present, the Institute is bearing his name.

His major research was devoted to the stability of motion and dynamics of
controlled systems as well as to the general qualitative theory of differential
equations. Developed the method of Lyapunov functions and solved the existence
problem of such functions in basic cases of stability and instability. Created some
stability analysis methods for essentially nonlinear systems with large disturbances.
Suggested a new functional interpretation of systems with aftereffect and, based
on this interpretation, solved stabilization and control problems for such systems.
Extended Lyapunov’s stability theory to the stochastic systems with Markovian
switching. Elaborated the stabilization theory of controlled systems. For linear
systems, introduced an analysis method of programmed optimal control in the
form of the functional problem of moments. Elaborated a control theory for game-
theoretic dynamic problems. Proposed a new setup of differential games with the
existence of a saddle point in pairs of appropriately adjusted classes of strategies
(in particular, the concept of a feedback mixed strategy), and proved the existence
of a saddle point in the class of such strategies. Developed efficient algorithms of
optimal strategy design. Conducted research in the field of qualitative theory of
ordinary differential equations and equations with delayed argument. Also made
some contributions to complex analysis, variational calculus, and approximate
calculations. Died on April 4, 2012. Buried in Yekaterinburg.

Lev Semenovich Pontryagin (born September 3, 1908—died May 3, 1988), was
a Russian mathematician, Academician of the USSR Academy of Sciences (since
1958), Corresponding Member of the USSR Academy of Sciences (since 1939).
Born in Moscow. Lost his sight at the age of 14 in an accident. Graduated from
Moscow State University (1929). Was a student of P.S. Aleksandrov. Since 1930,
worked at Moscow State University (since 1935, as Professor) and, since 1939,
simultaneously at the Steklov Institute of Mathematics (the USSR Academy of
Sciences). In 1970, established the Department of Optimal Control at the Faculty of
Computational Mathematics and Cybernetics (Moscow State University) and was
the head of the department till his death.

His major research was devoted to theory of differential equations, topology,
theory of oscillations, control, variational calculus, and algebra. Further developed
Alexander’s duality law and proved (1932) it, connecting the Betti groups of an
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arbitrary bounded and closed set in the Euclidean space with the Betti groups of
its complement. Solved the calculation problem of Betti groups. In topology and
topological algebra, elaborated the theory of characters of commutative topological
groups; proved theorems on the structure of rather wide types of topological groups
and formulated a new direction in topological algebra; proved the theorem asserting
that the only locally bicompact connected fields are the fields of real numbers,
complex numbers, and quaternions. Obtained a series of results in homotopy theory
(Pontryagin classes). Developed the mathematical theory of optimal processes based
on Pontryagin’s maximum principle. Also made considerable contributions to the
theory of asymptotics of relaxation oscillations, variational calculus, dimension
theory, ordinary differential equations, theory of regulation, functional analysis;
established and supervised a new direction in theory of differential games of quality.

Honorary Member of the International Academy of Astronautics (since 1966),
Vice-President of the International Mathematical Union (1970–1974), Honorary
Member of the Hungarian Academy of Sciences (since 1972).

Hero of Socialist Labour (1969).
Laureate of the Lenin Prize (1962), USSR State Prize (1941), International

Lobachevsky Prize (1966).

Boris Nikolaevich Pshenichnyi (born April 24, 1937—died October 17, 2000),
was a Ukrainian mathematician. In 1959, graduated from Lvov State University
with specialization in mathematics. In 1964, defended the Candidate of Sciences
dissertation, and in 1969 the Doctor of Sciences dissertation. Professor (since 1974),
Corresponding Member of the National Academy of Sciences of Ukraine (since
1985), and Academician of the National Academy of Sciences of Ukraine (since
1992). Till 1996, worked at the Glushkov Institute of Cybernetics (the National
Academy of Sciences of Ukraine). Since 1996, was the head of the Department of
Numerical Methods of Optimal Control at the Institute of Applied Systems Analysis
(the National Academy of Sciences of Ukraine).

Laureate of the State Prize of the Ukrainian SSR (1978), USSR State Prize
(1981), Glushkov Prize (1994), and State Prize of Ukraine in Science and Tech-
nology (1999).

Headed a scientific school of optimal control (theory and applications), dif-
ferential games and convex analysis. His results on the necessary conditions of
extremum provided a general framework for problems arising in theories of Cheby-
shev approximations, optimal control, and multivalued mappings. He formulated
the maximum principle for differential inclusions and extended it to problems
with operator constraints. Developed the linearization method for the numerical
resolution of most constrained optimization problems. Studied models of economic
dynamics, stability of solutions of differential equation, and numerical methods
of nonsmooth optimization. Suggested efficient numerical methods for nonlinear
programming and computational mathematics.

B. Pshenichnyi published over 170 research works, including 8 monographs
(some translated into German, French and English). For many years, delivered
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lectures at Kiev National University; prepared over 50 Candidates of Sciences and
10 Doctors of Sciences, who are working in Ukraine and abroad. Was repeatedly
invited as a visiting professor to Harvard University, University of Paris (Sorbonne),
and Humboldt University of Berlin. Died on October 17, 2000, in Kiev.

Andrei Izmailovich Subbotin (born February, 16, 1945—died October 14, 1997),
was a Russian mathematician. Doctor of Sciences in Physics and Mathematics
(1973), Corresponding Member of the Russian Academy of Sciences (1991), and
Full Member of the Russian Academy of Sciences (1997).

Born in Kirov. After graduation (1967) from the Faculty of Mathematics and
Mechanics at Ural State University with specialization in mechanics, worked
at the Institute of Mathematics and Mechanics (the Ural Branch of the USSR
Academy of Sciences); since 1977, head of the Department of Dynamical Systems
at the Institute. Since 1992, Professor at Ural State University. Delivered lectures
on theory of differential games and generalized solutions of first-order partial
differential equations. Scholar of Academician N.N. Krasovskii.

His major research was devoted to optimal control, positional differential
games, and generalized solutions to Hamilton–Jacobi equations. Made fundamental
contributions to the concept of positional differential game and proved a basic
result of game theory—the alternative theorem for antagonistic games; developed
analytical and constructive methods for solving differential games. Together with
his followers, elaborated the theory of minimax (generalized) solutions to first-order
partial differential equations: proved an existence and uniqueness theorem for the
minimax solutions of the Cauchy and Dirichlet boundary-value problems for such
equations, and established the well-posedness of the minimax solutions and their
equivalence to the viscosity solutions introduced by M.G. Crandall and P.-L. Lions.
Introduced analytical and constructive methods for this theory and its applications
to dynamic optimization.

Authored over 100 research works, including five monographs. Prepared 12
Candidates of Sciences and three Doctors of Sciences. Was awarded the Prize and
Golden Medal of the USSR Academy of Sciences for Young Researchers (1973),
the Order of the Red Banner of Labour (1976). Laureate of the Lenin Prize (1976).
In 2003, the Presidium of the Ural Branch of the Russian Academy of Sciences
established the Subbotin Prize to be awarded annually for outstanding investigations
and inventions with a considerable significance for science and practice (the best
research work in mathematics).

Ilia Nesterovich Vekua (born April 23, 1907—died December 2, 1977), was a
Georgian mathematician, Academician of the USSR Academy of Sciences (since
1958), Corresponding Member of the USSR Academy of Sciences (since 1946),
Academician of the Academy of Sciences of the Georgian SSR (since 1946), and
the President of the Academy of Sciences of the Georgian SSR (since 1972). Born
in the village of Sheshelety, Kutais Governorate, Russian Empire (modern day
Ochamchira District, Abkhazia). Graduated from Tbilisi State University (1930).



Short Biographies 257

During the period 1952–1954, worked at Moscow University; in 1953–1958, at
the Steklov Institute of Mathematics (the USSR Academy of Sciences); in 1958–
1964, at Novosibirsk State University as the rector; in 1965–1972, at Tbilisi State
University as the rector.

His major research was devoted to theory of functions, mathematical theory of
elasticity, theory of differential equations of mixed type, theory of boundary-value
problems for elliptic systems of equations, theory of multidimensional singular
integral equations, and fluid mechanics. Simultaneously with L. Bers and D. Hilbert,
elaborated the theory of pseudo-analytic functions. Studied the application of the
theory of functions of a complex variable and the theory of differential and integral-
differential equations to a series of problems arising in physics and mechanics, in
particular, in the theory of elasticity. Suggested to treat arbitrary shells of positive
curvature using analytic function methods. In 1959, developed the method of
infinitely small bendings by demonstrating that some characteristics of a bending
of positive curvature in the conjugate-isometric parameterization are generalized
analytic functions. Elaborated the theory of singular integral equations and general
solution methods for a wide class of elliptic partial differential equations. Created
the framework of generalized analytic functions for the solution and analysis of
general boundary-value problems.

Hero of Socialist Labour (1969). Laureate of the Stalin Prize (1950), Lenin Prize
(1963), USSR State Prize (1984). Was awarded six Orders of Lenin (1959, 1961,
1966, 1969, 1975, 1977), and the Order of the Badge of Honor (1946). Honoured
Science Worker of the Georgian SSR (1950).

Nikolay Nikolaevich Vorobiev (born September 18, 1925—died July 14, 1995),
was a Russian mathematician, expert in the field of algebra, mathematical logic,
and probability theory, as well as the founder of the largest national school of
game theory. Born in Leningrad. First entered Leningrad Ship Engineering Institute
and then moved to the Faculty of Mechanics and Mathematics at Leningrad State
University. Graduated from LSU in 1948. In 1952 defended his Candidate of
Sciences dissertation in 1961, his Doctor of Sciences dissertation Professor since
1965. During the period 1951–1965, worked at the Leningrad branch of the Steklov
Institute of Mathematics (the USSR Academy of Sciences); in 1965–1975, at the
Leningrad branch of the Central Economics and Mathematics Institute (the USSR
Academy of Sciences); in 1975–1990, at the Institute of Social and Economic
Problems (the USSR Academy of Sciences). Was an active lecturer at Leningrad
State University.

After a survey paper published in 1959, developed the framework of cooperative
(coalitional) game theory with a randomized behavior of agents and solved a
series of associated nonstandard problems of probability theory and combinatorial
topology.

Made considerable contributions in many branches of game theory and obtained
pioneering results on cooperative games.



258 Short Biographies

Professor N.N. Vorobiev authored the monographs [20, 24], important surveys
and several popular brochures. Was an active organizer of conferences on game
theory (1968, 1971, 1974). Done much to develop mathematical game theory in
Russia, established a large scientific school, which still continues research in the
field. Died in Leningrad in 1995.



References

1. Isaacs, R., Differential Games: A Mathematical Theory with Applications to Warfare and
Pursuit, Control and Optimization, Dover, 1999.

2. Balashev, L.E., Zolotoe pravilo povedeniya (The Golden Rule of Behavior), Moscow:
Akademiya, 1999.

3. Bardin, A.E., Risks and Regrets of Players in Games, Tr. III Mezhd. Konf. (Proc. III Int. Conf.),
2010, Orekhovo-Zuevo: Mosk. Gos. Oblast. Gumanit. Inst., pp. 86–89.

4. Bardin, A.E., Risks and Regrets of Producers in the Market Model with Import under
Uncontrollable Factors, Tr. III Mezhd. Konf. (Proc. III Int. Conf.), 2010, Orekhovo-Zuevo:
Mosk. Gos. Oblast. Gumanit. Inst., pp. 277–281.

5. Barskii, L., Chelovek! Eto zvuchit gor’ko (Man! This Sounds Bitterly), Moscow: Izd. Kh.G.S.
6. Blagodatskikh, A.I. and Petrov, N.N., Sbornik zadach i uprazhnenii po teorii igr (A

Compilation of Problems and Exercises on Game Theory), Moscow–Izhevsk: Inst. Komp.
Issled., 2007.

7. Boltyanskii, V.G., Optimal’noe upravlenie diskretnymi sistemami (Optimal Control of Dis-
crete Systems), Moscow: Nauka, 1973.

8. Bol’shaya kniga aforizmov (A Big Book of Aphorisms), Moscow: Eksmo, 2005.
9. Borisovich, Yu.G., Gel’man, B.D., Myshkis, A.D., and Obukhovskii, V.V., Vvedenie v teoriyu

mnogoznachnykh otobrazhenii (An Introduction to Theory of Multivalued Maps), Voronezh:
Voronezh. Univ., 1986.

10. Boss, V., Lektsii po matematike. Tom 12. Kontrprimery i paradoksy (Lectures on Mathematics.
Vol. 12. Counter-examples and Paradoxes), Moscow: URSS, Librokom, 2009.

11. Vaisman, K.S., Berge Equilibrium, Cand. Sci. (Phys.-Math.) Dissertation, St. Petersburg: St.
Petersburg. Gos. Univ., 1995.

12. Vaisman, K.S. and Zhukovskiy, V.I., Specifics of Zero-Sum Games with Vector Payoff
Function, in Mnogokriterial’nye sistemy pri neopredelennosti (Multicriteria Systems under
Uncertainty), Chelyabinsk: Chelyabinsk. Univ., 1988, pp. 22–28.

13. Vaisman, K.S., Berge Equilibrium, in Lineino-kvadratichnye differentsial’nye igry (Linear-
Quadratic Differential Games), Zhukovskiy, V.I. and Chikrii, A.A., Eds., Kiev: Naukova
Dumka, 1994, pp. 119–143.

14. Vasil’ev, F.P., Metody optimizatsii (Optimization Methods), Moscow: Faktorial Press, 2002.
15. Vasin, A.A., Krasnoshchekov, P.S., and Morozov, V.V., Issledovanie operatsii (Operations

Research), Moscow: Akademiya, 2008.
16. Vasil’ev, V.A., A-Equilibrium and Fuzzy A-Core in Pure Exchange Model with Externalities,

Automation and Remote Control, 2016, vol. 77, no. 11, pp. 2080–2089.

© Springer Nature Switzerland AG 2020
M. E. Salukvadze, V. I. Zhukovskiy, The Berge Equilibrium: A Game-Theoretic
Framework for the Golden Rule of Ethics, Static & Dynamic Game Theory:
Foundations & Applications, https://doi.org/10.1007/978-3-030-25546-6

259

https://doi.org/10.1007/978-3-030-25546-6


260 References

17. Vatel’, I.A. and Ereshko, F.I., Matematika konflikta i sotrudnichestva (Mathematics of
Conflict and Cooperation), Moscow: Znanie, 1973.

18. Ventsel’, E.S., Issledovanie operatsii (Operations Research), Moscow: Znanie, 1976.
19. Voevodin, V.V. and Kuznetsov, Yu.A., Matritsy i vychisleniya (Matrices and Calculations),

Moscow: Nauka, 1984.
20. Vorobiev, N.N., Noncooperative Games, in Problemy kibernetiki (Problems of Cybernetics),

1978, vol. 33, pp. 69–90.
21. Vorobiev, N.N., Issledovanie operatsii, (Operations Research), Moscow: Nauka, 1972.
22. Vorobiev, N.N., Osnovy teorii igr. Beskoalitsionnye igry (Fundamentals of Game Theory.

Noncooperative Games), Moscow: Nauka, 1984.
23. Vorobiev, N.N., Modern State of Game Theory, Uspekhi Mat. Nauk, 1970, vol. 25, no. 2,

pp. 81–140.
24. Vorobiev, N.N., Teoriya igr dlya ekonomistov-kibernetikov (Game Theory for Economists-

Cyberneticians), Moscow: Nauka, 1985.
25. Gabasov, R. and Kirillova, F.M., Osnovy dinamicheskogo programmirovaniya (Fundamentals

of Dynamic Programming), Minsk: Belaruss. Gos. Univ., 1975.
26. Poisk, 2004, nos. 34–35, p. 7.
27. Gantmacher, F.R., The Theory of Matrices. Vols. 1 and 2, New York: Chelsea Publishing,

1959.
28. Germeier, Yu. B., Vvedenie v teoriyu issledovaniya operatsii (Introduction to Operations

Research), Moscow: Nauka, 1971.
29. Germeier, Yu.B., Non-antagonistic Games, Reidel, 1986.
30. Glicksberg, I.L., A Further Generalization of the Kakutani Fixed Point Theorem, with

Application to Nash Equilibrium Points, Proc. Am. Math. Soc., 1952, vol. 3, no. 1, pp. 170–
174.

31. Gorbatov, A.S. and Zhukovskiy V.I., Berge Equilibrium in Bertrand Oligopoly with Import,
Taurida J. Comp. Sci. Theory and Math., 2015, no. 2(27), pp. 55–64.

32. Gorelik, V.A. and Kononenko, A.F., Teoretiko–igrovye modeli prinyatiya reshenii v ekologo-
ekonomicheskikh sistemakh (Game-Theoretic Models of Decision-Making in Ecological-
Economic Systems), Moscow: Radio i Svyaz’, 1982.

33. Gorelik, V.A., Gorelov, M.A., and Kononenko, A.F., Analiz konfliktnykh situatsii v sistemakh
upravleniya (Analysis of Conflict Situations in Control Systems), Moscow: Radio i Svyaz’,
1991.

34. Gorobets, B.S., Pedagogi shutyat tozhe. . . Tol’ko strozhe (Teachers Are Joking Too. . . But in
a Stricter Way), Moscow: Librokom, 2011.

35. Hurwicz, L., Programming in Linear Topological Spaces, in Issledovaniya po lineinomu
programmirovaniyu (Studies in Linear Programming), Arrow, K.J., Hurwicz, L., and Uzawa,
H., Moscow: Inostrannaya Literatura, 1962, pp. 65–155.

36. Guseinov, A.A., Zolotoe pravilo nravstvennosti (The Golden Rule of Ethics), Moscow:
Molodaya Gvardiya, 1988.

37. Guseinov, A.A., Velikie proroki i mysliteli. Nravstvennye ucheniya ot Moiseya do nashikh dnei
(Great Prophets and Thinkers. Ethical Teachings from Moses to Present), Moscow: Veche,
2009.

38. Guseinov, A.A., Antichnaya etika (Antique Ethics), Moscow: Librokom, 2011.
39. Guseinov, A.A., Filosofiya - mysl’ i postupok: stat’i, doklady, lektsii, interv’yu (Philosophy—

Thought and Deed: Papers, Presentations, Lectures, Interviews), St. Petersburg: Gumanit.
Univ. Profsoyuzov, 2012.

40. Guseinov, A.A., Philosophy as an Ethical Project, Voprosy Filosofii, 2014, no. 4, pp. 16–26.
41. Dunford, N. and Schwartz, J.T., Linear Operators, New York: Interscience, 1958. Translated

under the title Lineinye operatory. Obshchaya teoriya, Moscow: Inostrannaya Literatura,
1962, vol. 1.

42. Differentsial’nye igry. Ukazatel’ literatury za 1968–1976 (Differential Games. Index of
Literature for 1968–1976), Ushakov, V.N., Ed., Sverdlovsk: Ural. Nauchn. Tsentr Akad. Nauk
USSR, 1978.



References 261

43. Differentsial’nye igry neskol’kikh lits. Ukazatel’ literatury za 1968–1983 (Differential Multi-
person Games. Index of Literature for 1968–1983), Zhukovskiy, V.I. and Dochev, D.T., Eds.,
Ruse, Bulgaria: Center for Mathematics, 1985.

44. Differentsial’nye igry neskol’kikh lits. Ukazatel’ literatury za 1984–1988 (Differential Multi-
person Games. Index of Literature for 1984–1988), Zhukovskiy, V.I. and Ushakov, V.N., Eds.,
Sverdlovsk: Ural. Otd. Akad. Nauk USSR, 1990.

45. Differentsial’nye igry neskol’kikh lits. Ukazatel’ literatury za 1989–1994 (Differential Mul-
tiperson Games. Index of Literature for 1989–1994), Zhukovskiy, V.I. and Ukhobotov, V.I.,
Eds., Chelyabinsk: Gos. Univ., 1995.

46. Dmitruk, A.V., Vypuklyi analiz. Elementarnyi vvodnyi kurs (Convex Analysis. An Elementary
Introductory Course), Moscow: Makspress, 2012.

47. Dubina, I.N., Osnovy teorii ekonomicheskikh igr (Theoretical Foundations of Economic
Games), Moscow: Knorus, 2010.

48. Egorov, A.I., Osnovy teorii upravleniya (Foundations of Control Theory), Moscow: Fizmatlit,
2004.

49. Zhautykov, O.A., Zhukovskiy, V.I., and Zharkynbaev, S.Zh, Differentsial’nye igry neskol’kikh
lits (s zapazdyvaniem vremeni) (Differential Multiperson Games with Time Delay), Almaty:
Nauka, 1988.

50. Zhitomirskii, G.I., Dynamic Problems with Conflict, Extended Abstract of Cand. Sci.
Dissertation (Phys.-Math.), Leningrad State Univ., Leningrad, 1989.

51. Zhukovskiy, V.I., Vvedenie v differentsial’nye igry pri neopredelennosti (Introduction to Dif-
ferential Games under Uncertainty), Moscow: Mezhd. Nauchno-Issled. Inst. Probl. Upravlen.,
1997.

52. Zhukovskiy, V.I., Kooperativnye igry pri neopredelennosti i ikh prilozheniya (Cooperative
Games under Uncertainty and Their Applications), Moscow: URSS, 2010, 2nd ed.

53. Zhukovskiy, V.I., Konflikty i riski (Conflicts and Risks), Moscow: Ross. Zaochn. Inst. Tekstil.
Legk. Promysh., 2007.

54. Zhukovskiy, V.I., Vvedenie v differentsial’nye igry pri neopredelennosti. Ravnovesie po Neshu
(Introduction to Differential Games under Uncertainty. Nash Equilibrium), Moscow: URSS,
2010.

55. Zhukovskiy, V.I., Vvedenie v differentsial’nye igry pri neopredelennosti. Ravnovesie ugroz i
kontrugroz (Introduction to Differential Games under Uncertainty. Equilibrium in Threats and
Counter-Threats), Moscow: URSS, 2010.

56. Zhukovskiy, V.I., Vvedenie v differentsial’nye igry pri neopredelennosti. Ravnovesie po
Berzhu–Vaismanu (Introduction to Differential Games under Uncertainty. Berge–Vaisman
Equilibrium), Moscow: URSS, 2010.

57. Zhukovskiy, V.I., Riski pri konfliktnykh situatsiyakh (Risks in Conflict Situations), Moscow:
URSS, LENAND, 2011.

58. Zhukovskiy, V.I. and Bel’skikh, Yu.A., Nash and Berge Equilibria in a Two-Player Linear-
Quadratic Game, Tr. XIII Mezhd. Nauchno-Praktich. Konf. “Otechestvennaya nauka v epokhu
izmenenii: postulaty proshlogo i teorii novogo vremeni” (Proc. XIII Int. Scientific-Practical
Conf. “National Science in the Era of Change: Postulates of Past and Theories of New Time”),
St. Petersburg, National Association of Scientists, 2015, vol. 13, pp. 41–44.

59. Zhukovskiy, V.I., Bel’skikh, Yu.A., and Samsonov, S.P., Coefficient Criteria for Equilibrium
Choice (An Example of a Linear-Quadratic Two-Player Game), Vestn. South Ural State Univ.
Ser. Math. Mech. Phys., 2015, vol. 7, no. 4, pp. 20–26.

60. Zhukovskiy, V.I. and Vysokos, M.I., The Golden Rule in the Cournot Duopoly Model,
Taurida J. Comp. Sci. Theory and Math., 2015, no. 2(27), pp. 46–54.

61. Zhukovskiy, V.I., Vysokos, M.I., and Gorbatov, A.S., Berge Equilibrium in the Single-
Stage Setup of Controlled Cournot Duopoly, Analiz, Modelirovanie, Upravlenie, Razvitie
Sotsial’no-Ekonomicheskikh Sistem: Tr. IX Mezhd. Shkoly-Simpoziuma (AMUR-2015) (Anal-
ysis, Modeling, Management, Development of Socio-economic Systems: Proc. IX Int.
School-Symposium (AMMD-2015)), Krymskii Fed. Univ., Simferopol, 2015, pp. 105–109.



262 References

62. Zhukovskiy, V.I. and Gorbatov, A.S., Connection between the Golden Rule and Berge Equi-
librium, Control Theory and Theory of Generalized Solutions of Hamilton–Jacobi Equations
(CGS’2015): Abstracts of II International Seminar dedicated to the 70th Anniversary of
Academician A.I. Subbotin, Yekaterinburg, Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk,
2015, pp. 58–60.

63. Zhukovskiy, V.I. and Gorbatov, A.S., Zero Risk in Single-Criterion Choice Problems,
Upravlen. Risk., 2015, vol. 74, no. 2, pp. 29–36.

64. Zhukovskiy, V.I. and Dochev, D.T., Vektornaya optimizatsiya dinamicheskikh sistem (Vector
Optimization of Dynamic Systems), Ruse, Bulgaria: Center for Mathematics, 1981.

65. Zhukovskiy, V.I. and Zhiteneva, Yu.M., Bertrand Difference–Differential Game Model in the
Framework of Berge Equilibrium, Analiz, Modelirovanie, Upravlenie, Razvitie Sotsial’no-
Ekonomicheskikh Sistem: Tr. IX Mezhd. Shkoly-Simpoziuma (AMUR-2015) (Analysis,
Modeling, Management, Development of Socio-economic Systems: Proc. IX Int. School-
Symposium (AMMD-2015)), Krymskii Fed. Univ., Simferopol, 2015, pp. 109–114.

66. Zhukovskiy, V.I. and Zhukovskaya, L.V., Risk v mnogokriterial’nykh i konfliktnykh sistemakh
pri neopredelennosti (Risk in Multicriteria Choice and Conflict Systems under Uncertainty),
Moscow: URSS, 2004.

67. Zhukovskiy, V.I. and Kudryavtsev, K.N., Pareto-Optimal Nash Equilibrium: Sufficient Con-
ditions and Existence in Mixed Strategies, Automation and Remote Control, 2016, vol. 77,
no. 8, pp. 1500–1510.

68. Zhukovskiy, V.I. and Kudryavtsev, K.N., Uravnoveshivanie konfliktov i prilozheniya (Equili-
brating Conflicts and Applications), Moscow: URSS, 2012.

69. Zhukovskiy, V.I., Kudryavtsev, K.N., and Smirnova, L.V., Garantirovannye resheniya kon-
fliktov i prilozheniya (Guaranteed Solutions of Conflicts and Applications), Moscow: URSS,
2013.

70. Zhukovskiy, V.I., Kudryavtsev, K.N., and Gorbatov, A.S., The Berge Equilibrium in Cournot
Oligopoly Model, Vestn. Udmurt. Univ. Math. Mech. Comp. Sci., 2015, vol. 25, no. 2, pp. 147–
156.

71. Zhukovskiy, V.I. and Kudryavtsev, K.N., Mathematical Foundations of the Golden Rule. I.
Static Case, Automation and Remote Control, 2017, vol. 78, no. 10, pp. 1920–1940.

72. Zhukovskiy, V.I., Smirnova, L.V., and Gorbatov, A.S., Mathematical Foundations of the
Golden Rule. II. Dynamic Case, Mat. Teor. Igr Prilozh., 2016, vol. 8, no. 1, pp. 27–62.

73. Zhukovskiy, V.I. and Kudryavtsev, K.N., Equilibrating Conflicts under Uncertainty. I. Ana-
logue of a Saddle-Point, Mat. Teor. Igr Prilozh., 2013, vol. 5, no. 1, pp. 27–44.

74. Zhukovskiy, V.I. and Kudryavtsev, K.N., Equilibrating Conflicts under Uncertainty. II.
Analogue of a Maximin, Mat. Teor. Igr Prilozh., 2013, vol. 5, no. 2, pp. 3–45.

75. Zhukovskiy, V.I. and Kudryavtsev, K.N., The Existence of Guaranteed Imputation in Counter-
Strategies, Spectral and Evolution problems: Proc. 17th Crimean Autumn Mathematical
School-Symposium, Simferopol, 2007, vol. 17, pp. 28–31.

76. Zhukovskiy, V.I. and Makarkina, T.V., Two Approches to Make Guaranteed Decisions
in the Cournot Duopoly Model with Import, Analiz, Modelirovanie, Upravlenie, Razvi-
tie Sotsial’no-Ekonomicheskikh Sistem: Tr. IX Mezhd. Shkoly-Simpoziuma (AMUR-2015)
(Analysis, Modeling, Management, Development of Socio-economic Systems: Proc. IX Int.
School-Symposium (AMMD-2015)), Krymskii Fed. Univ., Simferopol, 2015, pp. 227–232.

77. Zhukovskiy, V.I. and Makarkina, T.V., Consideration of Import in the Cournot Duopoly,
Taurida J. Comp. Sci. Theory and Math., 2015, no. 2(27), pp. 65–76.

78. Zhukovskiy, V.I., Makarkina, T.V., Samsonov, S.P., and Gorbatov, A.S., Berge Equilibrium
for a Price Competition Model in a Duopoly Market, Tr. XII Mezhd. Nauchno-Praktich. Konf.
“Otechestvennaya nauka v epokhu izmenenii: postulaty proshlogo i teorii novogo vremeni”
(Proc. XII Int. Scientific-Practical Conf. “National Science in the Era of Change: Postulates
of Past and Theories of New Time”), Yekaterinburg, National Association of Scientists, 2015,
vol. 7, pp. 94–98.



References 263

79. Zhukovskiy, V.I. and Molostvov, V.S., Mnogokriterial’naya optimizatsiya sistem v usloviyakh
nepolnoi informatsii (Multicriteria Optimization of Systems under Incomplete Information),
Moscow: Mezhd. Nauchno-Issled. Inst. Probl. Upravlen., 1990.

80. Zhukovskiy, V.I. and Molostvov, V.S., Mnogokriterial’noe prinyatie reshenii v usloviyakh
neopredelennosti (Multicriteria Decision-Making under Uncertainty), Moscow: Mezhd.
Nauchno-Issled. Inst. Probl. Upravlen., 1988.

81. Zhukovskiy, V.I. and Salukvadze, M.E., Mnogokriterial’nye zadachi upravleniya v usloviyakh
neopredelennosti (Multicriteria Control Problems under Uncertainty), Tbilisi: Metsniereba,
1991.

82. Zhukovskiy, V.I. and Salukvadze, M.E., Mnogoshagovye pozitsionnye konflikty i ikh
prilozheniya (Multistage Positional Conflicts and Their Applications), Moscow–Tbilisi:
Intelekti, 2011.

83. Zhukovskiy, V.I. and Salukvadze, M.E., Nekotorye igrovye zadachi upravleniya i ikh
prilozheniya (Some Game-Theoretic Problems of Control and Their Applications), Tbilisi:
Metsniereba, 1998.

84. Zhukovskiy, V.I. and Salukvadze, M.E., Optimizatsiya garantii v mnogokriterial’nykh
zadachakh upravleniya (Optimization of Guarantees in Multicriteria Control Problems),
Tbilisi: Metsniereba, 1996.

85. Zhukovskiy, V.I. and Salukvadze, M.E., Riski i iskhody v mnogokriterial’nykh zadachakh
upravleniya (Risks and Outcomes in Multicriteria Control Problems), Tbilisi: Intelekti, 2004.

86. Zhukovskiy, V.I. and Sachkov, S.N., About an Uncommon yet Benevolent Method of
Conflict Resolution, Aktual. Voprosy Razvitiya Innovats. Deyatel’n. Nov. Tysyachelet., 2014,
no. 10(14), pp. 61–64.

87. Zhukovskiy, V.I. and Sachkov, S.N., An Unusual Way of Resolving Conflicts, Tr. Konf.
“Sovremennye tekhnologii upravleniya-2014” (Proc. Conf. “Contemporary Technology of
Management-2014”), Moscow, 2014, pp. 337–355.

88. Zhukovskiy, V.I., Sachkov, S.N., and Sachkova, E.N., Application of the Golden Rule
of Ethics in One Model of Competitive Economy, Tr. Mezhd. Nauchn.-Praktich. Konf.
“Problemy razvitiya sovremennoy nauki i puti ikh resheniya” (Proc. Int. Scientific-Practical
Conf. “Development Problems of Modern Science and Ways to Solve Them”), Yekaterinburg,
National Association of Scientists, 2015.

89. Zhukovskiy, V.I. and Smirnova, L.V., Application of the Golden Rule in a Positional
Differential Game, Analiz, Modelirovanie, Upravlenie, Razvitie Sotsial’no-Ekonomicheskikh
Sistem: Tr. IX Mezhd. Shkoly-Simpoziuma (AMUR-2015) (Analysis, Modeling, Management,
Development of Socio-economic Systems: Proc. IX Int. School-Symposium (AMMD-2015)),
Krymskii Fed. Univ., Simferopol, 2015, pp. 115–120.

90. Zhukovskiy, V.I. and Smirnova, L.V., The Existence of Guaranteed Equilibrium, in Analiz,
modelirovanie, upravlenie, razvitie (Analysis, Modeling, Management, Development), Ver-
nadskii Gos. Univ., Sevastopol, 2012, pp. 159–163.

91. Zhukovskiy, V.I. and Smirnova, L.V., The Existence of Berge Equilibrium in a Differential
Game with Separated Dynamics, Taurida J. Comp. Sci. Theory and Math., 2015, no. 2(27),
pp. 77–86.

92. Zhukovskiy, V.I. and Tynyanskii, N.T., Ravnovesnye upravleniya mnogokriterial’nykh
dinamicheskikh sistem (Equilibrium Control of Multicriteria Dynamic Systems), Moscow:
Mosk. Gos. Univ., 1984.

93. Zhukovskiy, V.I. and Chikrii, A.A., Lineino-kvadratichnye differentsial’nye igry (Linear-
Quadratic Differential Games), Kiev: Naukova Dumka, 1994.

94. Zhukovskiy, V.I., Chikrii, A.A., and Soldatova, N.G., The Berge Equilibrium in the Conflicts
under Uncertainty, XII Vserossiiskoe soveshchanie po problemam upravleniya (VSPU-2014)
(Proc. XII All-Russian Meeting on Control Problems (AMCP-2014)), Moscow: Inst. Probl.
Upravlen., 2014, pp. 8290–8302.

95. Zhukovskiy, V.I., Chikrii, A.A., and Soldatova, N.G., Existence of Berge Equilibrium in
Conflicts under Uncertainty, Automation and Remote Control, 2016, vol. 77, no. 4, pp. 640–
655.



264 References

96. Zhukovskiy, V.I., Chikrii, A.A., and Soldatova, N.G., Diversification Problem of Deposits,
in Analiz, modelirovanie, upravlenie, razvitie (Analysis, Modeling, Management, Develop-
ment), Vernadskii Gos. Univ., Sevastopol, 2015, pp. 134–142.

97. Zhukovskiy, V.I. and Chikrii, A.A., On Discrete Conflict-Controlled Processes Described
by Grunvald-Letnikov Fractional Systems, Journal of Automation and Information Sciences,
2015, vol. 47, no. 1, pp. 24–34.

98. Zabavnye anekdoty (Funny Stories), Saint-Petesrburg: Dilya, 1994.
99. Zadeh, L.A., The Concept of a Linguistic Variable and Its Application to Approximate

Reasoning, Information Sciences, 1975, vol. 8, no. 4, pp. 301–357.
100. Kapitonenko, V.V., Finansovaya matematika i ee prilozheniya (Financial Mathematics and Its

Applications), Moscow: Prior, 2000.
101. Karlin, S., Mathematical Methods and Theory in Games, Programming and Economics,

London-Paris: Pergamon Press, 1959.
102. Kleimenov, A.F., Neantagonisticheskie pozitsionnye differentsial’nye igry (Nonantagonistic

Positional Differential Games), Yekaterinburg: Nauka, 1993.
103. Kolemaev, V.A., Matematicheskaya ekonomika (Mathematical Economics), Moscow: Yuniti,

2002.
104. Kolesnik, G.V., Teoriya igr (Game Theory), Moscow: Librokom, 2010.
105. Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza

(Elements of Theory of Functions and Functional Analysis), Moscow: Nauka, 1976.
106. Korczak, J., Kak lyubit’ detei (How to Love Children), Moscow: Znanie, 1968.
107. Krasovskii, N.N., Upravlenie dinamicheskoi sistemoi (Control of Dynamic System), Moscow:

Nauka, 1985.
108. Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differen-

tial Games), Moscow: Nauka, 1985.
109. Kudryavtsev, K.N., Coordinated Solutions in Multiagent Information Environment, Extended

Abstract of Cand. Sci. Dissertation (Phys.-Math.), South-Ural Fed. Univ., Chelyabinsk, 2011.
110. Kudryavtsev, K.N., On the Absence of Maximin Strategies in a Differential Game, Vestn.

Yuzhno-Ural. Gos. Univ. Ser. Mat. Mekh. Fiz., 2010, vol. 3, no. 30, pp. 13–20.
111. Kudryavtsev, K.N., One Pricing Problem under Uncertainty, Tr. Vseross. Konf. “Teoriya

upravleniya i matematicheskoe modelirovanie” (Proc. All-Russia Conf. “Control Theorey
and Mathematical Modeling”), Izhevsk, Russia, Udmurt. Univ., 2015, pp. 263–264.

112. Kudryavtsev, K.N., On the Existence of Guaranteed Solutions in Payoffs and Risks for
Cooperative Games under Uncertainty, Sist. Upravlen. Inform. Tekh., 2010, no. 1.1(39),
pp. 148–152.

113. Kudryavtsev, K.N. and Meshkov, V.M., About One Planning Model of Advertising Budget in
Duopoly, Tr. XV Mezhd. Konf. “Sistemy komp’yuternoy matematiki i ikh prilozheniya” (Proc.
XV Int. Conf. “Systems of Computer Mathematics and Their Applications”), Smolensk: Gos.
Univ., 2014, vol. 15, pp. 173–175.

114. Kudryavtsev, K.N. and Stabulit, I.S., Strongly-Guaranteed Equilibrium in One Spatial
Competition Problem, Tr. XVI Mezhd. Konf. “Sistemy komp’yuternoy matematiki i ikh
prilozheniya” (Proc. XVI Int. Conf. “Systems of Computer Mathematics and Their Appli-
cations”), Smolensk: Gos. Univ., 2015, vol. 16, pp. 181–183.

115. Kudryavtsev, K.N. and Stabulit, I.S., Pareto-Guaranteed Equilibrium in 2D Hotelling
Duopoly, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Mat. Modelir. Programmir., 2012, vol. 14,
no. 40, pp. 173–177.

116. Lavrov, P.L., Sotsial’naya revolyutsiya i zadachi nravstvennosti. Tom 1 (Social Revolution
and Ethical Tasks. Vol. 1), Moscow: Mysl’, 1965.

117. Labsker, L.G. and Yashchenko, N.A., Teoriya igr v ekonomike (Game Theory in Economics),
Moscow: Knorus, 2012.

118. Lagunov, V.N., Vvedenie v differentsial’nye igry (Introduction to Differential Games),
Vilnius: Inst. Mat. Kibern. Akad. Nauk Litovsk. SSR, 1979.

119. Larets ostroslovov (Casket of Wisecrackers), Moscow: Izdatel’stvo Politicheskoi Literatury,
1991.



References 265

120. Lezhnev, A.V., Dinamicheskoe programmirovanie v ekonomicheskikh zadachakh (Dynamic
Programming in Economic Problems), Moscow: BINOM, Laboratoriya Znanii, 2006.

121. Luce, R.D. and Raiffa, H., Games and Decisions: Introduction and Critical Survey, Dover
Books on Mathematics, 1989.

122. Lyusternik, L.A. and Sobolev, V.I., Elementy funktsional’nogo analiza (Elements of Func-
tional Analysis), Moscow: Nauka, 1969.

123. Mazalov, V.V., Mathematical Game Theory and Applications, Wiley, 2014.
124. Makarov, V.A. and Rubinov, A.M., Matematicheskaya teoriya ekonomicheskoi dinamiki i

ravnovesie (Mathematical Theory of Economic Dynamics and Equilibrium), Moscow: Nauka,
1973.

125. McConnell, C.R., Brue, S.L., and Flynn, S.M., Economics: Principles, Problems, and
Policies, McGraw-Hill, 2011.

126. Malafeev, O.A., Upravlyaemye konfliktnye sistemy (Controlled Conflict Systems), St.-
Petersburg: Gos. Univ., 2005.

127. Malkin, G.E., Bol’shaya kniga aforizmov dlya ochen’ umnykh (A Big Book of Aphorisms for
Really Smart Persons), Moscow: RIPOL Klassik, 2005.

128. Malkin, I.G., Teoriya ustoychivosti dvizheniya (Theory of Motion Stability), Moscow: Nauka,
1996.

129. Mamedov, M.B., About Pareto Optimal Nash Equilibrium, Izv. Akad. Nauk Azerbaidzhana.
Ser. Fiz.-Mat. Nauk, 1983, vol. 4, no. 2, pp. 11–17.

130. Matveev, V.A., Konechnye beskoalitsionnye igry i ravnovesiya (Finite Noncoalitional Games
and Equilibria), Pskov: Ped. Inst., 2004.

131. Mashchenko, S.O., Concept of Nash Equilibrium and Its Development, Zh. Obchisloval.
Prikladn. Mat., 2012, no. 1(107), pp. 40–65.

132. Mishchenko, E.F. and Rozov, N.Kh., Differentsial’nye uravneniya s malym parametrom i
relaksatsionnye kolebaniya (Small-Parameter Differential Equations and Relaxation Oscil-
lations), Moscow: Nauka, 1975.

133. Morozov, V.V., On Mixed Strategies in Game with Vector Payoff Function, Tr. III Vsesoyuzn.
Konf. po issledovaniyu operatsii (Proc. III All-Soviet Conf. on Operations Research), Gorky,
1978, pp. 210–211.

134. Morozov, V.V., Osnovy teorii igr (Foundations of Game Theory), Moscow: Mosk. Gos. Univ.,
2002.

135. Morozov, V.V., Mixed Strategies in a Game with Vector Payoffs, Vestn. Mosk. Gos. Univ.
Vychisl. Mat. Kibern., 1978, no. 4, pp. 44–49.

136. Morozov, V.V., Sukharev, A.G., and Fedorov, V.V., Issledovanie operatsii v zadachakh
i uprazhneniyakh (Operations Research in Problems and Exercises), Moscow: Vysshaya
Shkola, 1986.

137. Muschick, E. and Müller, P., Metody prinyatiya tekhnicheskikh reshenii (Methods of Techni-
cal Decision-Making), Moscow: Mir, 1990.

138. Knight, F.H., Risk, Uncertainty, and Profit, Boston: Houghton Mifflin, 1921.
139. Noghin, V.D., Duality in Multiobjective Programming, Zh. Vychisl. Mat. Matem. Fiz., 1977,

vol. 17, no. 1, pp. 254–258.
140. Noghin, V.D., Prinyatie reshenii v mnogokriterial’noi srede (Decision-Making in Multicrite-

ria Environment), Moscow: Fizmatlit, 2005.
141. Petrov, N.N., Teoriya igr (Game Theory), Izhevsk: Udmurt. Univ., 1997.
142. Petrov, N.N., Matematicheskie igry (Mathematical Games), Moscow: URSS, 2012.
143. Petrosjan, L.A. and Danilov, N.N., Kooperativnye differentsial’nye igry i ikh prilozheniya

(Cooperative Differential Games and Their Applications), Tomsk: Gos. Univ., 1985.
144. Petrosjan, L.A. and Zakharov, V.V., Matematicheskie modeli v ekologii (Mathematical Models

in Ecology), St. Petersburg: Gos. Univ., 1997.
145. Petrosjan, L.A., Zenkevich, N.A., and Semina, E.A., Teoriya igr (Game Theory), Moscow:

Vysshaya Shkola, 1998.
146. Petrosjan, L.A., Zenkevich, N.A., and Shevkoplyas, E.V., Teoriya igr (Game Theory), St.

Petersburg: BKhV-Peterburg, 2012.



266 References

147. Pecherskii, S.L. and Belyaeva, A.A., Teoriya igr dlya ekonomistov. Vvodnyy kurs (Game
Theory for Economists. An Introductory Course), St. Petersburg: Evrop. Univ., 2004.

148. Pisarchuk, N.N., Vvedenie v teoriyu igr (Introduction to Game Theory), Minsk: Belorus. Gos.
Univ., 2011.

149. Podinovskii, V.V., General Zero-Sum Two-Person Games, Zh. Vychisl. Mat. Matem. Fiz.,
1981, vol. 21, no. 5, pp. 1140–1153.

150. Podinovskii, V.V., The Principle of Guaranteed Result for Partial Preference Relations, Zh.
Vychisl. Mat. Matem. Fiz., 1979, vol. 19, no. 6, pp. 1436–1450.

151. Podinovskii, V.V., Efficient Plans in Multicriteria Choice Problems under Uncertainty, Model.
Prots. Prinyat. Reshen., Vladivostok: Dal’nevostochn. Nauchn. Tsentr Akad. Nauk SSSR,
1978, pp. 102–113.

152. Podinovskii, V.V. and Noghin, V.D., Pareto-optimal’nye resheniya mnogokriterial’nykh
zadach (Pareto Optimal Solutions of Multicriteria Problems), Moscow: Fizmatlit, 2007.

153. Pontryagin, L.S., Ordinary Differential Equations, Adiwes International Series in Mathemat-
ics, Addison-Wesley, 1962.

154. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., The Mathe-
matical Theory of Optimal Processes, Interscience Publishers, 1962.

155. Ras, A., Davaite melochit’sya (Let Us Split Hairs), Moscow: Ripol Klassik, 2006.
156. Rogov, M.A., Risk–menedzhment (Risk Management), Moscow: Finansy i Statistika, 2001.
157. Rozen, V.V., Modeli prinyatiya reshenii v ekonomike (Models of Decision-Making in

Economics), Moscow: Vysshaya Shkola, 2002.
158. Rozen, V.V., Equilibria in Games with Ordered Outcomes, in Sovremennye napravleniya

teorii igr (Modern Directions of Game Theory), Vilnius: Moklas, 1976, pp. 115–118.
159. Rozen, V.V., Properties of Outcomes in Equilibria, in Matematicheskie modeli povedeniya

(Mathematical Models of Behavior), Saratov: Gos. Univ., 1975, vol. 2, pp. 45–49.
160. Rosenmüller, J., The Theory of Games and Markets, Elsevier, 1981.
161. Russko–anglo–nemetskii tolkovyi slovar’ po biznesu (Russian–English–German Glossary on

Business Science), Kuznetsova, N.N., Novikova, E.V., Plekhanov, S.V., and Chekmezov,
N.A., Eds., Moscow: Gorizont, 1992.

162. Rybnikov, K.A., Matematicheskie modeli konfliktnykh situatsii (Mathematical Models of
Conflict Situations), Moscow: Mosk. Gos. Univ., 1998.

163. Safronov, S.G., Model of Market and Producers of Goods, in Slozhnye dinamicheskie sistemy
(Complex Dynamic Systems), Pskov: Pedagogich. Inst., 1994, pp. 157–162.

164. Slovar’ inostrannykh slov (Glossary of Foreign Terms), Moscow: Sovetskaya entsiklopediya,
1964.

165. Smirnova, L.V., Hurwitz Principle in Complex Controlled Systems, Extended Abstract of
Cand. Sci. Dissertation (Phys.-Math.), Moscow Pedagogical Stat Univ., Moscow, 1998.

166. Smol’yakov, E.R., Ravnovesnye modeli pri nesovpadayushchikh interesakh uchastnikov
(Equilibrium Models under Noncoinciding Interests of Parties), Moscow: Nauka, 1986.

167. Smol’yakov, E.R., Teoriya konfliktnykh ravnovesii (Theory of Conflict Equilibria), Moscow:
URSS, 2004.

168. Sochineniya Koz’my Prutkova (Works of Kozma Prutkov), Moscow: Sovetskaya Rossiya,
1981.

169. Subbotin, A.I. and Chentsov, A.G., Optimizatsiya garantii v zadachakh upravleniya (Opti-
mization of Guarantees in Control Problems), Moscow: Nauka, 1981.

170. Tynyanskii, N.T. and Zhukovskiy, V.I., Non-Zero-Sum Differential Games (Noncooperative
Setup), in Itogi nauki i tekhniki. Mat. analiz (Results of Science and Technology. Mathemati-
cal Analysis), 1977, vol. 15, pp. 199–266.

171. Ulanov, V.A., On a Differentia Game with Infinite Number of Players, in Problemy teorii igr
v obshchikh sistemakh (Problems of Game Theory in General Systems), Yakutsk. Gos. Univ.,
1988, pp. 32–39.

172. Utkin, E.A., Risk-menedzhment (Risk Management), Moscow: Ekmos, 1998.
173. Fedorov, V.V., Chislennye metody maksimina (Numerical Methods of Maximin), Moscow:

Nauka, 1979.



References 267

174. Fel’dbaum, A.A., Osnovy teorii avtomaticheskikh sistem (Foundations of Automatic Control
Systems), Moscow: Nauka, 1966.

175. Fischer, S., Dornbusch, R., and Schmalensee, R., Economics, McGraw-Hill, 1988.
176. Fedin, S.N., Gorobets, B.S., and Zolotov Yu.A., Uchenye shutyat (Scientists Are Joking),

Moscow: Librokom, 2012
177. von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior, Princeton:

Princeton Univ. Press, 1944.
178. Harsanyi J.C. and Selten R., A General Theory of Equilibrium Selection in Games, Cam-

bridge: MIT Press, 1988.
179. Hamming, R.W., Numerical Methods for Scientists and Engineers, McGraw-Hill, 1962.
180. Hille, E. and Phillips, R.S., Functional Analysis and Semi-Groups, American Mathematical

Society Colloquium Publications, vol. 31, Providence: Am. Math. Soc., 1957. Translated
under the title Funktsional’nyi analiz i polugruppy, Moscow: Inostrannaya Literatura, 1962.

181. Khoroshilova, E.V., Sovremennye anekdoty i vyskazyvaniya (Modern Funny Stories and
Sayings), Moscow: Maks-Press, 2009.

182. Tsvetkova, E.V. and Arlyukova, I.O., Riski v ekonomicheskoi deyatel’nosti (Risks in Eco-
nomic Activity), St.-Petersburg: Inst. Vneshneekon. Svyav. Ekon. Prav., 2002.

183. Cheremnykh, Yu.N., Mikroekonomika. Prodvinutyi uroven’ (Microeconomics: Advance
Level), Moscow: Info-M, 2008.

184. Cherkasov, V.V., Delovoi risk v predprinimatel’skoi deyatel’nosti (Business Risk in
Entrepreneurship), Kiev: Libra, 1996.

185. Shakhov, V.V., Vvedenie v strakhovanie. Ekonomicheskii aspekt (Introduction to Insurance.
Economic Aspect), Moscow: Finansy i Statistika, 1994.

186. Shikin, E.V., Ot igr k igram (From Games to Games), Moscow: URSS, 1997.
187. Shokin, Yu.I., Interval’nyi analiz (Interval Analysis), Novosibirsk: Sib. Otd. Ross. Akad.

Nauk, 1981.
188. Shubik, M., The Present and Past of Game Theory, Mat. Teor. Igr Prilozh., 2012, vol. 4, no. 1,

pp. 93–116.
189. Entsiklopediya kibernetiki. Tom 2. (Encyclopeadia of Cybernetics. Vol. 2), Kiev: Glavn.

Redakts. Ukrainsk. Sovetsk. Entsiklop., 1974.
190. Entsiklopediya matematiki. Tom 1–5. (Encyclopeadia of Mathematics. Vols. 1–5), Moscow:

Sovetsk. Entsiklop., 1977–1985.
191. Arrow, K.J., Hurwicz, L., and Uzawa, H., Studies in Linear and Non-linear Programming,

Stanford Mathematical Studies in the Social Sciences, Stanford Univ. Press, 1958.
192. Yanovskaya, E.B., Equilibria in General Noncooperative Games and Their Mixed Extensions,

in Teoretiko-igrovye voprosy prinyatiya resheniy (Game-Theoretic Issues of Decision-
Making), Leningrad: Nauka, 1978, pp. 43–65.

193. A century of mathematics in America 1988–1989, vol. 1–3, ed. AMS (vol. 1. P. 382).
194. Abalo, K.Y. and Kostreva, M.M., Some Existence Theorems of Nash and Berge Equilibria,

Appl. Math. Lett., 2004, vol. 17, pp. 569–573.
195. Abalo, K.Y. and Kostreva, M.M., Berge Equilibrium: Some Recent Results from Fixed-Point

Theorems, Appl. Math. and Comp., 2005, vol. 169, pp. 624–638.
196. Archibald, R.C., A Semicentennial History of American Mathematical Society. 1888–1938 (2

vols.), 1938.
197. Aumann, R.J. and Peleg, B., Von Neumann–Morgenstern Solutions to Cooperative Games

without Side Payments, Bull. Amer. Math. Soc., 1960, vol. 66, pp. 173–179.
198. Basar, T., A Contrexample in Linear-Quadratic Game: Existence of Nonlinear Nash Solutions,

J. Optimiz. Theory and Appl., 1974, vol. 14, no. 4, pp. 425–430.
199. Basar, T. and Olsder, G.J., Dynamic Noncooperative Game Theory, London: Academic Press,

1982.
200. Bellman, R., Dynamic Programming and a New Formalism in the Calculus of Variations,

Proc. Nat. Acad. Sci. USA, 1953, vol. 39, pp. 1077–1082.



268 References

201. Bellman, R., On the Application of Dynamic Programming to Variational Problems Arising
in Mathematical Economics, Proc. Symposium in Calculus of Variations and Applications,
New York: McGraw–Hill, 1956, pp. 115–138.

202. Berge, C., Théorie générale des jeux á n personnes games, Paris: Gauthier Villars, 1957.
(Russian translation: Berge, C., Obshchaya teoriya igr neskol’kikh lits, Moscow: Fizmatgiz,
1961).

203. Blackwell, O., An Analog of the Minimax Theorem for Vector-Payoffs, Pacific J. Math., 1956,
no. 6, pp. 1–8.

204. Bertrand, J., Caleul des probabilities, Paris, 1888.
205. Bertrand, J., Book review of theorie mathematique de la richesse sociale and of recherches sur

les principles mathematiques de la theorie des richesses, Journal de Savants, 1883, vol. 67,
pp. 499–508.

206. Bertrand, J., Review of theory mathematique de la richesse sociale recherches sur les principes
mathematique de la theorie des richesses, Journal des Savants, 1883, vol. 68, pp. 449–508.

207. Borel, E., La théorie du jeu et les equations intégrales a noyau symétrique, Compes Rendus
de l’Académic des Sciences, 1921, vol. 173, pp. 1304–1308.

208. Borel, E., Sur les jeux an interviennent l’hasard et l’abilité des joueurs, in Théorie des
probabilite’s, Paris, 1924, pp. 204–224.

209. Borel, E., Sur les systemes de formes lineares a determinant symetrique gauche et la theorie
generale du jeu, Comptes Rendus de l’Academie des Sciences, 1927, vol. 184, pp. 52–53.

210. Bohnenblust, H.F. and Karlin, S., On a Theorem of Ville, in Contributions to the Theory of
Games, Princeton: University Press, 1953, pp. 155–160.

211. Born, P., Tijs, S., and van der Aarssen, J., Pareto–Equilibrium in Multi-Objective Games,
Methods of Operations Research, 1988, vol. 60, pp. 302–312.

212. Borwein, J., Proper Efficient Points for Maximization with Respect to Cones, SIAM J. Control
and Optimiz., 1977, vol. 15, no. 1, pp. 57–63.

213. Case, J.H. and Kimeldorf, G., On Nash Equilibrium Points and Games of Imperfect
Information, J. Optimiz. Theory and Appl., 1972, vol. 9, no. 5, pp. 302–323.

214. Chan, W.L. and Lau, W.T., Vector Saddle-Point and Distributed Parameter Differential
Games, Comput. and Math. Appl., 1989, vol. 18, nos. 1–3, pp. 195–207.

215. Chang, S.S., Lee, G.M., and Lee, B.S., Minimax Inequalities for Vector-Valued Mappings on
W -spaces, J. Math. Anal. and Appl., 1996, vol. 198, no. 2, pp. 371–380.

216. Chang, S.S., Yuan, G.X., and Lee, G.M., Saddle-Points and Minimax Theorems for Vector-
Valued Multifunctions of H -spaces, Appl. Math. Lett., 1998, vol. 11, no. 3, pp. 101–107.

217. Chen, G.Y. and Li, S.J., Existence of Solutions for a Generalized Vector-Valued Quasivaria-
tional Inequality, J. Optimiz. Theory and Appl., 1996, vol. 90, no. 2, pp. 321–334.

218. Chikrii, A.A., Chikrii, G.T., and Zhukovskiy, V.I., Game Problems of Control for Functional-
Differential Systems, in Recent Advances in Information Technology, Wojcik, W. and Sikora,
J., Eds., CRC Press, 2017, pp. 13–49.

219. Chernoff, H., Rational Selection of Decision Function, Econometrica, 1954, vol. 22, pp. 422–
443.

220. Cochrane, J. and Zeleny, M., Multiple Criteria Decision Making, Columbia: University of
South Carolina Press, 1973.

221. Cohon, J.L., Multiobjective Programming and Planning, New York: Academic Press, 1978.
222. Colman, A.M., Körner, T.W., Musy, O., and Tazdaït, T., Mutual Support in Games: Some

Properties of Berge Equilibria, Journal of Mathematical Psychology, 2011, vol. 55, no. 2,
pp. 166–175.

223. Colman, A.M., Körner, T.W., Musy, O., and Tazdait, T., Mutual Support in Games: Some
Properties of Berge Equilibria, J. Mathematical Psychology, 2011, vol. 55, pp. 166–175.

224. Corly, H.N., Games with Vector Payoffs, J. Optimiz. Theory and Appl., 1985, vol. 47, pp. 491–
498.

225. Cournot, A., Principes de la theorie des richeses, Paris, 1863.
226. Cournot, A., Recherches sur les principes mathématiques de la théorie de richesses, Paris,

1838.



References 269

227. Gaskó, N., Dumitrescu, D., and Lung, R.I., Evolutionary Detection of Berge and Nash
Equilibria, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2011), Pelta,
D.A. et al. (Eds.), SCI vol. 387, pp. 149–158.

228. Deghdak, M. and Florenzano, M., On the Existence of Berge‘s Strong Equilibrium, Interna-
tional Game Theory Review, 2011, vol. 13, no. 3, pp. 325–340.

229. Deghdak, M., On the Existence of Berge Equilibrium with Pseudocontinuous Payoffs,
ROMAII Journal, 2014, vol. 10, no. 1, pp. 25–37.

230. Dinh, T.L. and Vargas, C., A Saddle-Point Theorem for Set-Valued Maps, Nonlinear Anal.-
Theor., 1992, vol. 18, no. 1, pp. 1–7.

231. Dolezal, J., Some Properties of Nonzero-Sum Multistage Games, in Lect. Notes Comput. Sci.,
1975, vol. 27, pp. 451–459.

232. Drâgustin, C., Min-max pour des criteres multiples. Recherche operationelle, Operations
Research, 1979, vol. 12, no. 2, pp. 169–180.

233. Dumitrescu, D., Lung, R.I., and Gaskó, N., Detecting Strong Berge Pareto Equilibrium in a
Non-Cooperative Game Using an Evolutionary Approach, 6th IEEE International Symposium
on Applied Computational Intelligence and Informatics, Timisoara, Romania, 2011.

234. Ferro, F., Minimax Theorem for Vector-Valued Functions, J. Optimiz. Theory and Appl., 1989,
vol. 60, pp. 19–31.

235. Ferro, F., Minimax Theorem for Vector-Valued Functions. Part 2, J. Optimiz. Theory and
Appl., 1991, vol. 68, no. 1, pp. 35–48.

236. Ferro, F., Minimax Type Theorems for n-Valued Functions, Annali di Matematica Pura ed
Appl., 1982, vol. 32, pp. 113–130.

237. Ferro, F., Minimax Theorem for Vector-Valued Functions. Part 2, Dic. Mat. Univ. Genova,
1989, vol. 101, pp. 1–17.

238. Geoffrion, A.M., Proper Efficiency and the Theory of Vector Maximization, J. Math. Anal.
and Appl., 1968, vol. 22, no. 3, pp. 618–630.

239. Hotelling, H., Stability in Competition, Economic Journal, 1929, vol. 39, pp. 41–57.
240. Hurwicz, L., Optimality Criteria for Decision Making under Ignorance, Cowles Commission

Discussion Paper, Statistics, 1951, no. 370.
241. Jentzsch, G., Some Thoughts on the Theory of Cooperative Games, Advances in Game

Theory, Ann. Math. Studies, 1964, vol. 52, pp. 407–442.
242. Keskin, K. and Saglam, H.C., On the Existence of Berge Equilibrium: An Order Theo-

retic Approach, International Game Theory Review, 2015, vol. 17, no. 3, pp. 1550007.
DOI:10.1142/S0219198915500073

243. Abalo, K.Y. and Kostreva, M.M., Fixed Points, Nash Games and Their Organizations,
Topological Methods in Nonlinear Analysis, 1996, vol. 8, pp. 205–215.

244. Abalo, K.Y. and Kostreva, M.M., Equi-Well-Posed Games, Journal of Optimization Theory
and Applications, 1996, vol. 89, no. 1, pp. 89–99.

245. Abalo, K.Y. and Kostreva, M.M., Some Existence Theorems of Nash and Berge Equilibria,
Appl. Math. Lett., 2004, vol. 17, pp. 569–573.

246. Abalo, K.Y. and Kostreva, M.M., Intersection Theorems and Their Applications to Berge
Equilibria, Applied Mathematics and Computation, 2006, vol. 182, pp. 1840–1848.

247. Koopmans, T.C., Analysis of Production as an Efficient Combination of Activities, in Activity
Analysis of Production and Allocation, New York: Wiley, 1951, pp. 33–97.

248. Larbani, M. and Nessah, R., A Note on the Existence of Berge and Berge–Nash Equilibria,
Mathematical Social Sciences, 2008, vol. 55, pp. 258–271.

249. Leitmann, G., Cooperative and Non-Cooperative Many Player Differential Games, Vienn:
Springer Verlag, 1974.

250. Lin, J.G., Maximal Vectors and Multi-Objective Optimization, J. Optimiz. Theory and Appl.,
1976, vol. 18, no. 1, pp. 41–68.

251. Li, Z.F. and Wang, S.Y., A Type of Minimax Inequality for Vector-Valued Mappings, J. Math.
Anal. and Appl., 1998, vol. 227, no. 1, pp. 68–80.



270 References

252. Lung, R.I., Gaskó, N., and Dumitrescu, D., Characterization and Detection of
ε-Berge-Zhukovskii Equilibria, PLoS ONE, 2015, vol. 10, no. 7: e0131983.
DOI:10.1371/journal.pone.0131983

253. Van Megen, F., Born, P., and Tijs, S., A Preference Concept for Multicriteria Game,
Mathematical Methods of OR, 1999, vol. 49, no. 3, pp. 401–412.

254. Milnor, J., Games Against Nature, in Decision Processes, New York: Wiley, 1954, pp. 49–60.
255. Musy, O., Pottier, A., and Tazdait, T., A New Theorem to Find Berge Equilibria, International

Game Theory Review, 2012, vol. 14, no. 1, p. 1250005. DOI:10.1142/S0219198912500053
256. Moore, R.E., Interval Analysis, New York: Prentice-Hall, 1966.
257. Nash, J.F., Non-Cooperative Games, Ann. Math., 1951, vol. 54, pp. 286–295.
258. Nash, J.F., Equilibrium Points in N-Person Games, Proc. Nat. Academ. Sci. USA, 1950,

vol. 36, pp. 48–49.
259. Nessah, R., Larbani, M., and Tazdait, T., A Note on Berge Equilibrium, Applied Mathematics

Letters, 2007, vol. 20, no. 8, pp. 926–932.
260. Nessah, R., Larbani, M., and Tazdait, T., Coalitional ZP-Equilibrium in Games and Its

Existence, International Game Theory Review, 2015, vol. 17, no. 3, p. 1550002.
261. Von Neumann, J., Zur Theorie der Gesellschaftspiele, Math. Ann., 1928, vol. 100, pp. 295–

320.
262. Von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior, Princeton

Univ. Press, 1944.
263. Pareto, V., Manuel d’économie politique, Paris: Geard, 1909.
264. Petrosian, L.A., Differential Games of Pursuit, London, Singapore: World Scientific, 1993.
265. Pottier, A. and Nessah, R., Berge-Vaisman and Nash Equilibria: Transformation of Games,

International Game Theory Review, 2014, vol. 16, no. 4, p. 1450009.
266. Radjef, M., Sur l‘existence d‘un équilibre de Berge pour un jeu différential n-personnes

(On the Existence of a Berge Equilibrium for an n-Person Differential Game), Cahiers
Mathématiques de l‘Université d‘Oran, 1998, no. 1, pp. 89–93.

267. Savage, L.Y., The Foundation of Statistics, New York: Wiley, 1954.
268. Savage, L.Y., The Theory of Statistical Decision, J. American Statistic Association, 1951,

no. 46, pp. 55–67.
269. Shubik, M., Review of C. Berge “General theory of n-person games,” Econometrica, 1961,

vol. 29, no. 4, p. 821.
270. Steuer, R., Multiple Criteria Optimization: Theory, Computation and Application, New York:

John Wiley and Sons, 1986.
271. Smith, D.E. and Ginsburg, Y., A History of Mathematics in America before 1900 (Three

Centuries of Science in America), Ayer Co Pub., 1980.
272. Steinhaus, H., A Definition for a Theory of Games and Pursuit, Nav. Res. Log. Quart., 1960,

vol. 7, pp. 105–107.
273. Tanaka, T., Existence Theorems for Cone Saddle-Points of Vector-Valued Functions in

Infinite- -Dimensional Space, J. Optimiz. Theory and Appl., 1989, vol. 62, no. 1, pp. 127–138.
274. Tanaka, T., Generalized Quasiconvexities Cone Saddle-Points and Minimax Theorem for

Vector- -Valued Functions, J. Optimiz. Theory and Appl., 1994, vol. 81, no. 2, pp. 355–377.
275. Tanaka, T., Generalized Semicontinuity and Existence Theorems for Cone Saddle- -Points,

Appl. Math. Opt., 1997, vol. 36, no. 3, pp. 313–322.
276. Tanaka, T., Some Minimax Problems of Vector-Valued Function, J. Optimiz. Theory and

Appl., 1988, vol. 9, no. 3, pp. 505–524.
277. Tanaka, T., Two Types of Minimax Theorems for Vector-Valued Functions, J. Optimiz. Theory

and Appl., 1991, vol. 68, no. 2, pp. 321–334.
278. Tirol, J., The Theory in Industrial Organization, Cambridge: MIT Press, 1988.
279. Vaisbord, E.M. and Zhukovskiy, V.I., Introduction to Multi Player Differential Games and

Their Applications, New York: Gordon and Breach, 1988.
280. Vaisman, K.S., The Berge Equilibrium for Linear–Quadratic Differential Game, The 3-rd

Intern. Workshop on Multiple Criteria Problems under Uncertainty, Orekhovo-Zuevo, Russia,
1994, p. 96.



References 271

281. Vaisman, K.S. and Zhukovskiy, V.I., The Berge Equilibrium under Uncertainty, The 3-rd
Intern. Workshop on Multiple Criteria Problems under Uncertainty, Orekhovo-Zuevo, Russia,
1994, pp. 97–98.

282. Wald, A., Contribution to the Theory of Statistical Estimation and Testing Hypothesis,
Annuals Math. Statist., 1939, vol. 10, pp. 299–326.

283. Wald, A., Statistical Decision Functions, New York: Wiley, 1950.
284. Wang, S., An Existence Theorem of a Pareto Equilibrium, Applied Mathematical Letters,

1991, vol. 3, pp. 61–63.
285. Won Kyu Kim, On a Generalized Berge Strong Equilibrium, Commun. Korean Math. Soc.,

2014, vol. 29, no. 2, pp. 367–377.
286. Zeleny, M., Games with Multiple Payoffs, International Journal of Game Theory, 1976,

vol. 4, pp. 179–191.
287. Zhao, J., The Equilibrium of a Multiple Objective Game, International Journal of Game

Theory, 1991, vol. 20, pp. 171–182.
288. Zermelo, E., Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels,

Proceed. of the Fifth Intern. Congress of Mathematicians (Cambridge, 1912), Cambridge
University Press, 1913, pp. 501–504.

289. Zhukovskiy, V.I., Lyapunov Functions in Differential Games, London and New York: Taylor
and Francis, 2003.

290. Zhukovskiy, V.I., Some Problems of Non-Antagonistic Differential Games, in Mathematical
Methods in Operations Research, Institute of Mathematics with Union of Bulgarian Mathe-
maticians, Rousse, 1985, pp. 103–195.

291. Zhukovskii, V.I. and Gorbatov, A.S., Properties of the Savage Risk Function, Int. Game
Theory Review, in press.

292. Zhukovskii, V.I., Kudryavtsev, K.N., and Gorbatov, A.S., Berge Equilibrium in Cournot’s
Model of Oligopoly, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2015, vol. 25, no. 2,
pp. 147–156.

293. Zhukovskiy, V.I., Molostvov, V.S., and Zhukovskaya, L.V., On Existence of Guaranteed Risk,
Intern. Conf. on Appl. Math, Glushkov Inst. Cybern., Kyiv, 2002, p. 36.

294. Zhukovskiy, V.I., Molostvov, V.S., and Vaisman, K.S., Non-Cooperative Games under
Uncertainty, in Game Theory and Appl., 1997, vol. III, pp. 189–222.

295. Zhukovskiy, V.I. and Salukvadze, M.E., The Vector-Valued Maximin, New York: Academic
Press, 1994.

296. Zhukovskiy, V.I. and Salukvadze, M.E., Sufficient Conditions in Vector-Valued Maximin
Problems, J. Optimiz. Theory and Appl., 1996, vol. 90, no. 3, pp. 523–534.

297. Zhukovskiy, V.I., Sachkov, S.N., and Gorbatov, A.S., Mathematical Model of the Golden
Rule, SCIENCE, TECHNOLOGY AND LIFE - 2014: Proceedings of the International
Scientific Conference, Czech Republic, Karlovy Vary, December 27–28, 2014, pp. 17–23.

298. Zhukovskiy, V., Topchishvili, A., and Sachkov, S., Application of Probability Measures to the
Existence Problem of Berge–Vaisman Guaranteed Equilibrium, Model Assisted Statistics and
Applications, 2014, vol. 9, no. 3, pp. 223–239.

299. Zhukovskiy, V.I. and Sachkov, S.N., Bilanciamento conflitti Friendly, Italian Science Review,
2014, vol. 9(18), pp. 169–179.

300. Zhukovskiy, V.I., Sachkov, S.N., and Smirnova, L.V., Existence of Berge Equilibrium in
Mixed Strategies, Uchenye Zapiski Tavrich. Natsional. Univ., 2014, pp. 261–279.

301. Zhukovskiy, V.I., Sachkov, S.N., and Smirnova, L.V., Berge Equilibrium, Analiz, Mod-
elirovanie, Upravlenie, Razvitie Sotsial’no-Ekonomicheskikh Sistem: Tr. VIII Mezhd. Shkoly-
Simpoziuma (AMUR-2014) (Analysis, Modeling, Management, Development of Socio-
economic Systems: Proc. VIII Int. School-Symposium (AMMD-2014)), Krymskii Fed. Univ.,
Simferopol, 2014, pp. 124–133.

302. Zhukovskiy, V.I., Salukvadze, M.E., and Vaisman, K.S., Berge Equilibrium, Preprint. Tbilisi:
Institute of Control Systems, 1994.



272 References

303. Zhukovskiy, V.I. and Topchishvili, A.T., Mathematical Model of the Golden Rule in Form
of Differential Positional Game of Many Persons, Int. J. Operations and Quantitative
Management, 2016, vol. 22, no. 3, pp. 203–229.

304. Zhukovskiy, V.I. and Topchishvili, A.T., The Explicit Form of Berge Strongly-Guaranteed
Equilibrium in Linear-Quadratic Non-Cooperative Game, International Journal of Opera-
tions and Quantitative Management, 2015, vol. 21, no. 4, pp. 265–273.

305. Zhukovskiy, V.I. and Larbani, M., Berge Equilibrium in Normal Form Static Games: A
Literature Review, Izv. Inst. Matem. Inform. Udmurt. Gos. Univ., 2017, vol. 49, no. 1 (29),
pp. 80–110.

306. Zhukovskiy, V.I. and Larbani, M., Alliance in Three Person Games, Dostizhen. Matem.
Mekhan., 2017, vol. 22, no. 1 (29), pp. 105–119.


	Biography of Mindia E. Salukvadze
	Preface
	Basic Notations
	Introduction
	Contents
	1 What Is the Golden Rule of Ethics?
	1.1 Scribitur ad narrandum, non ad probandum
	1.2 World Religions About the Golden Rule
	1.3 The Golden Rule and Philosophy
	1.4 What Does the Golden Rule Suggest?
	1.5 The Golden Rule as the Key Principle of Social Life
	1.6 Moral Decline of Modern Society
	1.7 The Golden Rule and Policy
	1.8 Is Ethical Policy Possible?

	2 Static Case of the Golden Rule
	2.1 What is the Content of the Golden Rule?
	2.2 Main Notions
	2.2.1 Preliminaries
	2.2.2 Elements of the Mathematical Model
	2.2.3 Nash Equilibrium
	2.2.4 Berge Equilibrium

	2.3 Compactness of the Set XB
	2.4 Internal Instability of the Set XB
	2.5 No Guaranteed Individual Rationality of the Set XB
	2.6 Two-Player Game
	2.7 Comparison of Nash and Berge Equilibria
	2.8 Sufficient Conditions
	2.8.1 Continuity of the Maximum Function of a Finite Number of Continuous Functions
	2.8.2 Reduction to Saddle Point Design
	2.8.3 Germeier Convolution
	2.8.3.1 Necessary and Sufficient Conditions
	2.8.3.2 Geometrical Interpretation


	2.9 Mixed Extension of a Noncooperative Game
	2.9.1 Mixed Strategies and Mixed Extension of a Game
	2.9.2 Préambule
	2.9.3 Existence Theorem

	2.10 Linear-Quadratic Two-Player Game
	2.10.1 Preliminaries
	2.10.2 Berge Equilibrium
	2.10.3 Nash Equilibrium
	2.10.4 Auxiliary Lemma
	2.10.5 Concluding Remarks


	3 The Golden Rule Under Uncertainty
	3.1 Uncertainty and Types of Uncertainty
	3.1.1 Conceptual Meaning of Uncertainty
	3.1.2 Uncertainty in Economic Systems
	3.1.3 Uncertainty in Mechanical Control Systems
	3.1.4 Uncertainty in Decision-Making
	3.1.5 Classification of Uncontrolled Factors
	3.1.6 Classification of Uncertainty

	3.2 General Notions and Obtained Results
	3.2.1 Saddle point and maximin
	3.2.2 Auxiliary Results from Operations Research, Theory of Multicriteria Choice and Game Theory

	3.3 Balanced Equilibrium as an Analog of Saddle Point
	3.3.1 Analogs of Saddle Point: The Idea and Formalization
	3.3.2 Pro et contra of Balanced Equilibrium
	3.3.3 Games with Separated Payoff Functions
	3.3.4 Existence in Mixed Strategies and One Remark

	3.4 Strongly-Guaranteed Berge Equilibrium
	3.4.1 Introduction
	3.4.2 Maximin and Its Interpretation Using Two-Level Game
	3.4.3 Drawback of Balanced Equilibrium as Solution of Noncooperative Game Under Uncertainty
	3.4.4 Formalization
	3.4.5 Existence in Mixed Strategies
	3.4.6 Linear-Quadratic Setup of Game

	3.5 Slater-Guaranteed Equilibria
	3.5.1 Definition and Properties
	3.5.2 Existence of Guaranteed Equilibrium in Mixed Strategies
	3.5.3 Existence Theorem


	4 Applications to Competitive Economic Models
	4.1 The Cournot Oligopoly Model
	4.1.1 Introduction
	4.1.2 Basic Notations and Definitions
	4.1.3 The Cournot Oligopoly and Equilibrium Strategies
	4.1.4 Comparison of Payoffs: Berge Equilibrium vs. Nash Equilibrium

	4.2 The Cournot Duopoly with Import
	4.2.1 Mathematical Model
	4.2.2 Strongly-Guaranteed Equilibrium
	4.2.3 Pareto-Guaranteed Equilibrium
	4.2.3.1 Design Algorithm for Pareto-Guaranteed Equilibrium
	4.2.3.2 Pareto Inner Minimum Calculation
	4.2.3.3 Nash Equilibrium Calculation


	4.3 The Bertrand Duopoly Model
	4.3.1 Mathematical Model
	4.3.2 Main Notions
	4.3.3 Explicit Design of Berge and Nash Equilibria
	4.3.3.1 Berge Equilibrium
	4.3.3.2 Nash Equilibrium

	4.3.4 Use of Berge Equilibrium
	4.3.4.1 First Application

	4.3.5 Choice of Appropriate Equilibrium on the Boundaries of the Constructed Domains
	4.3.5.1 Boundary l1=0
	4.3.5.2 Boundary l1=l2>0
	4.3.5.3 Boundary l2=l1-q/c
	4.3.5.4 Boundary l2=0
	4.3.5.5 Subcase q>cl1
	4.3.5.6 Subcase q<cl1

	4.3.6 Compromising Behavioral Principlesfor Higher Benefits

	4.4 The Bertrand Model with Import
	4.4.1 Mathematical Model
	4.4.2 Consideration of Import
	4.4.3 Calculation of Inner Pareto Minimum
	4.4.4 Design of Nash Equilibrium
	4.4.5 Calculation of the Corresponding Profits


	5 New Approaches to the Solution of Noncooperative Games and Multicriteria Choice Problems
	5.1 A New Approach to Optimal Solutions of Multicriteria Choice Problems: Consideration of Savage–Niehans Risk
	5.1.1 The Savage–Niehans Principle of Minimax Regret
	5.1.2 Strong Guarantees and Transition from c to 2N-Criteria Choice Problem
	5.1.3 Formalization of a Guaranteed Solution in Outcomes and Risks for Problem c
	5.1.4  Risks and Outcomes for Diversification of a Deposit into Sub-deposits in Different Currencies

	5.2 A New Approach to Optimal Solutions of Noncooperative Games: Accounting for Savage–Niehans Risk
	5.2.1 Principia Universalia
	5.2.2 How Can We Combine the Objectives of Each Player to Increase the Payoff and Simultaneously Reduce the Risk?
	5.2.3 Formalization of Guaranteed Equilibrium in Payoffs and Risks for Game (5.2.1)
	5.2.4 Existence of Pareto Equilibrium in Mixed Strategies
	5.2.5 De omni re scibili et quibusdam aliis
	5.2.6 A la fin des fins

	5.3 Cooperation in a Conflict of N Persons Under Uncertainty
	5.3.1 Introduction
	5.3.2 Game of Guarantees
	5.3.3 Coalitional Equilibrium
	5.3.4 Sufficient Condition
	5.3.5 Existence of Coalitional Equilibrium in MixedStrategies
	5.3.5.1 Auxiliary Results
	5.3.5.2 Existence Theorem

	5.3.6 Concluding Remarks

	5.4 How Can One Combine the Altruism of Berge Equilibrium with the Selfishness of Nash Equilibrium? Hybrid Equilibrium
	5.4.1 Introduction
	5.4.2 Formalization of Hybrid Equilibrium
	5.4.3 Properties of Hybrid Equilibria
	5.4.4 Sufficient Conditions
	5.4.5 Existence of Pareto Hybrid Equilibrium in Mixed Strategies
	5.4.6 Hybrid Equilibrium in Games Under Uncertainty


	6 Conclusion
	Short Biographies
	References

