
Violat: Generating Tests of Observational
Refinement for Concurrent Objects

Michael Emmi1(B) and Constantin Enea2

1 SRI International, New York, NY, USA
michael.emmi@sri.com

2 Université de Paris, IRIF, CNRS,
75013 Paris, France
cenea@irif.fr

Abstract. High-performance multithreaded software often relies on
optimized implementations of common abstract data types (ADTs) like
counters, key-value stores, and queues, i.e., concurrent objects. By using
fine-grained and non-blocking mechanisms for efficient inter-thread syn-
chronization, these implementations are vulnerable to violations of ADT-
consistency which are difficult to detect: bugs can depend on specific
combinations of method invocations and argument values, as well as
rarely-occurring thread interleavings. Even given a bug-triggering inter-
leaving, detection generally requires unintuitive test assertions to capture
inconsistent combinations of invocation return values.

In this work we describe the Violat tool for generating tests that
witness violations to atomicity, or weaker consistency properties. Violat
generates self-contained and efficient programs that test observational
refinement, i.e., substitutability of a given ADT with a given implemen-
tation. Our approach is both sound and complete in the limit: for every
consistency violation there is a failed execution of some test program,
and every failed test signals an actual consistency violation. In practice
we compromise soundness for efficiency via random exploration of test
programs, yielding probabilistic soundness instead. Violat’s tests reliably
expose ADT-consistency violations using off-the-shelf approaches to con-
current test validation, including stress testing and explicit-state model
checking.

1 Introduction

Many mainstream software platforms including Java and .NET support mul-
tithreading to enable parallelism and reactivity. Programming multithreaded
code effectively is notoriously hard, and prone to data races on shared memory
accesses, or deadlocks on the synchronization used to protect accesses. Rather
than confronting these difficulties, programmers generally prefer to leverage
libraries providing concurrent objects [19,29], i.e., optimized thread-safe imple-
mentations of common abstract data types (ADTs) like counters, key-value
stores, and queues. For instance, Java’s concurrent collections include implemen-
tations which eschew the synchronization bottlenecks associated with lock-based
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11562, pp. 534–546, 2019.
https://doi.org/10.1007/978-3-030-25543-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25543-5_30&domain=pdf
https://doi.org/10.1007/978-3-030-25543-5_30

Violat: Generating Tests of Observational Refinement 535

mutual exclusion, opting instead for non-blocking mechanisms [28] provided by
hardware operations like atomic compare and exchange.

Concurrent object implementations are themselves vulnerable to elusive bugs:
even with effective techniques for exploring the space of thread interleavings, like
stress testing or model checking [7,30,47], bugs often depend on specific combi-
nations of method invocations and argument values. Furthermore, even recogniz-
ing whether a given execution is correct is non-trivial, since recognition generally
requires unintuitive test assertions to identify inconsistent combinations of return
values. Technically, correctness amounts to observational refinement [18,21,32],
which captures the substitutability of an ADT with an implementation [23]: any
combination of values admitted by a given implementation is also admitted by
the given ADT specification.

In this work we describe an approach to generating tests of observational
refinement for concurrent objects, as implemented by the Violat tool, which we
use to discover violations to atomicity (and weaker consistency properties) in
widely-used concurrent objects [9,10,12]. Unlike previous approaches based on
linearizability [4,20,46], Violat generates self-contained test programs which do
not require enumerating linearizations dynamically per execution, instead stati-
cally precomputing the ADT-admitted return-value outcomes per test program,
once, prior to testing. Despite this optimization, the approach is both sound
and complete, i.e., in the limit: for every consistency violation there is a failed
execution of some test program, and every failed test witnesses an actual consis-
tency violation. In practice, we compromise soundness for efficiency via random
exploration of test programs, achieving probabilistic soundness instead.

Besides improving the efficiency of test execution, Violat’s self-contained
tests can be validated by both stress testers and model checkers, and double
as regression and conformance tests. Our previous works [9,10,12] demonstrate
that Violat’s tests reliably expose ADT-consistency violations in Java implemen-
tations using the Java Concurrency Stress testing tool [42]. In particular, Violat
has uncovered atomicity violations in over 50 methods from Java’s concurrent
collections; many of these violations seem to correspond with their documen-
tations’ mention of weakly-consistent behavior, while others indicate confirmed
implementation bugs, which we have reported.

Previous work used Violat in empirical studies, without artifact evaluation
[9,10,12]. This article is the first to consider Violat itself for evaluation, the first
to describe its implementation and usage, and includes several novel extensions.
For instance, in addition to stress testing, Violat now includes an integration with
Java Pathfinder [47]; besides enabling complete systematic coverage of a given test
program, this integration enables the output of the execution traces leading to con-
sistency violations, thus facilitating diagnosis and repair. Furthermore, Violat is
now capable of generating tests of any user-provided implementation, in addition
to those distributed with Java.

536 M. Emmi and C. Enea

2 Overview of Test Generation with Violat

Violat generates self-contained programs to test the observational refinement of
a given concurrent object implementation with respect to its abstract data type
(ADT), according to Fig. 1. While its methodology is fairly platform agnos-
tic, Violat currently integrates with the Java platform. Accordingly, its input
includes the fully-qualified name of a single Java class, which is assumed to
be available either on the system classpath, or in a user-provided Java archive
(JAR); its output is a sequence of Java classes which can be tested with off-
the-shelf back-end analysis engines, including the Java Concurrency Stress test-
ing tool [42] and Java Pathfinder [47]. Our current implementation integrates
directly with both back-ends, and thus reports test results directly, signaling
any discovered consistency violations.

Fig. 1. Violat generates tests by enumerating program schemas invoking a given con-
current object, annotating those schemas with the expected outcomes of invocations
according to ADT specifications, and translating annotated schemas to executable
tests.

Violat generates tests according to a three-step pipeline. The first step,
described in Sect. 3, enumerates test program schemas, i.e., concise descriptions
of programs as parallel sequences of invocations of the given concurrent object’s
methods. For example, Fig. 2 lists several test schemas for Java’s Concurren-
tHashMap. The second step, described in Sect. 4, annotates each schema with
a set of expected outcomes, i.e., the combinations of return values among the
given schema’s invocations which are admitted according to the given object’s
ADT specification. The final step, described in Sect. 5, translates each schema
into a self-contained1 Java class.

Technically, to guide the enumeration of schemas and calculation of out-
comes, Violat requires a specification of the given concurrent object, describing
constructor and method signatures. While this could be generated automatically
from the object’s bytecode, our current implementation asks the user to input
this specification in JSON format. By additionally indicating whether meth-
ods are read-only or weakly-consistent, the user can provide additional hints to
1 The generated class imports only a given concurrent object, and a few basic
java.util classes.

Violat: Generating Tests of Observational Refinement 537

improve schema enumeration and outcome calculation. For instance, excessive
generation of programs with only read-only methods is unlikely to uncover consis-
tency violations, and weakly-consistent ADT methods generally allow additional
outcomes – see Emmi and Enea [12]. Furthermore, Violat attempts to focus the
blame for discovered violations by constructing tests with a small number of
specified untrusted methods, e.g., just one.

3 Test Enumeration

To enumerate test programs effectively, Violat considers a simple representation
of program schemas, as depicted in Fig. 2. We write schemas with a familiar nota-
tion, as parallel compositions {...}||{...} of method-invocation sequences.
Intuitively, schemas capture parallel threads invoking sequences of methods of
a given concurrent object. Besides the parallelism, these schemas include only
trivial control and data flow. For instance, we exclude conditional statements
and loops, as well as passing return values as arguments, in favor of straight-line
code with literal argument values. Nevertheless, this simple notion is expressive
enough to capture any possible outcome, i.e., combination of invocation return
values, of programs with arbitrarily complex control flow, data flow, and syn-
chronization. To see this, consider any outcome y admitted by some execution of
a program with arbitrarily-complex control and data flow in which methods are
invoked with argument values x, collectively. The schema in which each thread
invokes the same methods of a thread of the original program with literal values
x, collectively, is guaranteed to admit the same outcome y.

Fig. 2. Program schemas generated by Violat for Java’s ConcurrentHashMap class,
along with outcomes which are observed in testing, yet not predicated by Violat.

For a given concurrent object, Violat enumerates schemas according to
a few configurable parameters, including bounds on the number of threads,

538 M. Emmi and C. Enea

invocations, and (primitive) values. By default, Violat generates schemas with
exactly 2 threads, between 3 and 6 invocations, and exactly 2 values. While our
initial implementation enumerated schemas systematically according to a well-
defined order, empirically we found that this strategy spends too much time in
neighborhoods of uninteresting schemas, i.e., which do not expose violations. Ulti-
mately we adopted a pseudorandom enumeration which constructs each schema
independently by randomly choosing the number of threads, invocations, and val-
ues, within the given parameter bounds, and randomly populating threads with
invocations. Methods are selected according to a weighted random choice, in which
theweights of read-only anduntrustedmethods is 1; trustedmutatormethods have
weight 3. The read-only and trusted designations are provided by class specifica-
tions – see Sect. 2. Integer argument values are chosen randomly between 0 and 1,
according to the default value bound; generic-typed arguments are assumed to be
integers. Collection and map values are constructed from randomly-chosen integer
values, up to size 2. In principle, all of these bounds are configurable, but we have
found these defaults to work reasonably well.

Note that while the manifestation of a given concurrency bug can, in prin-
ciple, rely on large bounds on threads, invocations, and values, recent studies
demonstrate that the majority (96%) can be reproduced with just 2 threads [25].
Furthermore, while our current implementation adheres to the simple notion of
schema in which all threads are execute in parallel, Violat can easily be extended
to handle a more complex notion of schema in which threads are partially
ordered, thus capturing arbitrary program synchronization. Nevertheless, this
simple notion seems effective at exposing violations without requiring additional
synchronization – see Emmi and Enea [12, Section 5.2].

4 Computing Expected Outcomes

To capture violations to observational refinement, Violat computes the set of
expected outcomes, i.e., those admitted by a given concurrent object’s abstract
data type (ADT), for each program schema. Violat essentially follows the app-
roach of Line-Up [4] by computing expected outcomes from sequential executions
of the given implementation. While this approach assumes that the sequential
behavior of a given implementation does adhere to its implicit ADT specification
– and that the outcomes of concurrent executions are also outcomes of sequen-
tial executions – there is typically no practical alternative, since behavioral ADT
specifications are rarely provided.

Violat computes the expected outcomes of a given schema once, by enumer-
ating all possible shuffles of threads’ invocations, and recording the return values
of each shuffle when executed by the given implementation. For instance, there
are 10 ways to shuffle the threads of the schema

{ get(1); containsValue(1) } || { put(1,1); put(0,1); put(1,0) }
from Fig. 2, including the sequence

get(1); put(1,1); put(0,1); put(1,0); containsValue(1).

Violat: Generating Tests of Observational Refinement 539

Executing Java’s ConcurrentHashMap on this shuffle yields the values null,
null, null, 1, and true, respectively. To construct the generated outcome, Violat
reorders the return values according to the textual order of their correspond-
ing invocations in the given schema; since containsValue is second in this order,
after get, the generated outcome is null, true, null, null, 1. Among the 10 pos-
sible shuffles of this schema, there are only four unique outcomes – shown later
in Figs. 3 and 4.

Fig. 3. Code generated for the containsValue schema of Fig. 2 for Java Pathfinder.
Code generation for jcstress similar, but conforms to the tool’s idiomatic test format
using decorators, and built-in thread and outcome management.

Note that in contrast to existing approaches based on linearizability [20],
including Line-Up [4], which enumerate linearizations per execution of a given
program, Violat only enumerates linearizations once per schema. This is made
possible for two reasons. First, by considering simple test programs in which all
invocations are known statically, we know the precise set of invocations (includ-
ing argument values) to linearize even before executing the program. Second,
according to sequential happens-before consistency [12], we consider the record-
ing of real-time ordering among invocations infeasible on modern platforms like
Java and C++11, which provide only weak ordering guarantees according to a
platform-defined happens-before relation. This enables the static prediction of
ordering constraints among invocations. While this static enumeration is also
exponential in the number of invocations, it becomes an additive rather than
multiplicative factor, amounting to significant performance gains in testing.

540 M. Emmi and C. Enea

Fig. 4. Observed outcomes for the size method, recorded by Java Pathfinder and
jcstress. Outcomes list return values in program-text order, e.g., get’s return value
is listed first.

5 Code Generation and Back-End Integrations

Once schemas are annotated with expected outcomes, the translation to actual
test programs is fairly straightforward. Note that until this point, Violat is
mainly agnostic to the underlying platform for which tests are being generated.
The only exception is in computing the expected outcomes for schema lineariza-
tions, which executes the given concurrent object implementation as a stand-in
oracle for its implicit ADT specification.

Figure 3 lists a simplification of the code generated for the containsValue
schema of Fig. 2. The test program initializes a concurrent-object instance and
a hash table of expected outcomes, then runs the schema’s threads in paral-
lel, recording the results of each invocation, and checks, after threads complete,
whether the recorded outcome is expected. To avoid added inter-thread inter-
ference and the masking of potential weak-memory effects, each recorded result
is isolated to a distinct cache line via Java’s contended decorator. The actual
generated code also includes exception handling, elided here for brevity.

Our current implementation of Violat integrates with two analysis back-ends:
the Java Concurrency Stress testing tool [42] (jcstress) and Java Pathfinder [47].
Figure 4 demonstrates the results of each tool on the code generated from
the containsValue schema of Fig. 2. Each tool observes executions with the 4
expected outcomes, as well as executions yielding an outcome that Violat does
not predict, thus signaling a violation to observational refinement (and atom-
icity). Java Pathfinder explores 18 program paths in a few seconds – achieving
exhaustiveness via partial-order reduction [16] – while jcstress explores nearly
4 million executions in 1 s, observing the unpredicted outcome only twice. Aside
from this example, Violat has uncovered consistency violations in over 50 meth-
ods of Java’s concurrent collections [9,10,12].

Violat: Generating Tests of Observational Refinement 541

6 Usage

Violat is implemented as a Node.js command-line application, available from
GitHub and npm.2 Its basic functionality is provided by the command:

$ violat-validator ConcurrentHashMap.json

...

violation discovered

{ put(0,1); size(); contains(1) } || { put(0,0); put(1,1) }

outcome OK frequency

----------------------- -- ---------

0, 0, true, null, null X 7

0, 1, true, null, null � 703

0, 2, true, null, null � 94,636

null, 1, false, 1, null � 2,263

null, 1, true, 1, null � 59,917

null, 2, true, 1, null � 4

...

reporting violations among 100 generated programs. User-provided classes, indi-
vidual schemas, program limits, and particular back-ends can also be specified:

$ violat-validator MyConcurrentHashMap.json \

--jar MyCollections.jar \

--schema "{get(1); containsValue(1)} || {put(1,1); put(0,1); put(1,0)}" \

--max-programs 1000 \

--tester "Java Pathfinder"

A full selection of parameters is available from the usage instructions:

$ violat-validator --help

7 Related Work

Terragni and Pezzà survey several works on test generation for concurrent
objects [45]. Like Violat, Ballerina [31] and ConTeGe [33] enumerate tests
randomly, while ConSuite [43], AutoConTest [44], and CovCon [6] exploit
static analysis to compute potential shared-memory access conflicts to reduce
redundancy among generated tests. Similarly, Omen [35–38], Narada [40],
Intruder [39], and Minion [41] reduce redundancy by anticipating potential con-
currency faults during sequential execution. Ballerina [31] and ConTeGe [33]
compute linearizations, but only identify generic faults like data races, dead-
locks, and exceptions, being neither sound nor complete for testing observational
refinement: fault-free executions with un-admitted return-value combinations are
false negatives, while faulting executions with admitted return-value combina-
tions are generally false positives – many non-blocking concurrent objects exhibit
2 https://github.com/michael-emmi/violat.

https://github.com/michael-emmi/violat

542 M. Emmi and C. Enea

data races by design. We consider the key innovations of these works, i.e., redun-
dancy elimination, orthogonal and complementary to ours. While Pradel and
Gross do consider subclass substitutability [34], they only consider programs
with two concurrent invocations, and require exhaustive enumeration of the
superclass’s thread interleavings to calculate admitted outcomes. In contrast,
Violat computes expected outcomes without interleaving method implementa-
tions, i.e., considering them atomic.

Others generate tests for memory consistency. TSOtool [17] generates ran-
dom tests against the total-store order (TSO) model, while LCHECK [5] employs
genetic algorithms. Mador-Haim et al. [26,27] generate litmus tests to distin-
guish several memory models, including TSO, partial-store order (PSO), relaxed-
memory order (RMO), and sequential consistency (SC). CppMem [2] considers
the C++ memory model, while Herd [1] considers release-acquire (RA) and
Power in addition to the aforementioned models. McVerSi [8] employs genetic
algorithms to enhance test coverage, while Wickerson et al. [48] leverage the
Alloy model finder [22]. In some sense, these works generate tests of observa-
tional refinement for platforms implementing memory-system ADTs, i.e., with
read and write operations, whereas Violat targets arbitrary ADTs, including
collections with arbitrarily-rich sets of operations.

Violat more closely follows work on linearizability checking. Herlihy and
Wing [20] established the soundness of linearizability for observational refine-
ment, and Filipovic et al. [14] established completeness. Wing and Gong [49]
developed a linearizability-checking algorithm, which was later adopted by Line-
Up [4] and optimized by Lowe [24]; while Violat pays the exponential cost of
enumerating linearizations once per program, these approaches pay that cost per
execution – an exponential quantity itself. Gibbons and Korach [15] established
NP-hardness of per-execution linearizability checking for arbitrary objects, while
Emmi and Enea [11] demonstrate tractability for collections. Bouajjani et al. [3]
propose polynomial-time approximations, and Emmi et al. [13] demonstrate effi-
cient symbolic algorithms. Finally, Emmi and Enea [9,10,12] apply Violat to
checking atomicity and weak-consistency of Java concurrent objects.

Acknowledgement. This work is supported in part by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant No. 678177).

References

1. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014). https://doi.org/10.1145/2627752

2. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: Ball, T., Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, 26–28 January 2011, pp. 55–66. ACM (2011). https://doi.org/
10.1145/1926385.1926394

https://doi.org/10.1145/2627752
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394

Violat: Generating Tests of Observational Refinement 543

3. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking
for concurrent objects. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, 15–17 January 2015, pp. 651–662. ACM
(2015). https://doi.org/10.1145/2676726.2677002

4. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: Zorn, B.G., Aiken, A. (eds.) Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2010, Toronto, Ontario, Canada, 5–10 June 2010, pp. 330–340.
ACM (2010). https://doi.org/10.1145/1806596.1806634

5. Chen, Y., et al.: Fast complete memory consistency verification. In: 15th Interna-
tional Conference on High-Performance Computer Architecture (HPCA-15 2009),
14–18 February 2009, Raleigh, North Carolina, USA, pp. 381–392. IEEE Computer
Society (2009). https://doi.org/10.1109/HPCA.2009.4798276

6. Choudhary, A., Lu, S., Pradel, M.: Efficient detection of thread safety violations
via coverage-guided generation of concurrent tests. In: Uchitel, S., Orso, A., Robil-
lard, M.P. (eds.) Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, 20–28 May 2017, pp. 266–277.
IEEE/ACM (2017). https://doi.org/10.1109/ICSE.2017.32

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2001).
http://books.google.de/books?id=Nmc4wEaLXFEC

8. Elver, M., Nagarajan, V.: McVerSi: a test generation framework for fast memory
consistency verification in simulation. In: 2016 IEEE International Symposium
on High Performance Computer Architecture, HPCA 2016, Barcelona, Spain, 12–
16 March 2016, pp. 618–630. IEEE Computer Society (2016). https://doi.org/10.
1109/HPCA.2016.7446099

9. Emmi, M., Enea, C.: Exposing non-atomic methods of concurrent objects. CoRR
abs/1706.09305 (2017). http://arxiv.org/abs/1706.09305

10. Emmi, M., Enea, C.: Monitoring weak consistency. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 487–506. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3 26

11. Emmi, M., Enea, C.: Sound, complete, and tractable linearizability monitoring for
concurrent collections. PACMPL 2(POPL), 25:1–25:27 (2018). https://doi.org/10.
1145/3158113

12. Emmi, M., Enea, C.: Weak-consistency specification via visibility relaxation.
PACMPL 3(POPL), 60:1–60:28 (2019). https://dl.acm.org/citation.cfm?id=
3290373

13. Emmi, M., Enea, C., Hamza, J.: Monitoring refinement via symbolic reasoning. In:
Grove, D., Blackburn, S. (eds.) Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, USA,
15–17 June 2015, pp. 260–269. ACM (2015). https://doi.org/10.1145/2737924.
2737983

14. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51–52), 4379–4398 (2010). https://doi.org/10.
1016/j.tcs.2010.09.021

15. Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comput. 26(4),
1208–1244 (1997). https://doi.org/10.1137/S0097539794279614

16. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60761-7

https://doi.org/10.1145/2676726.2677002
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1109/HPCA.2009.4798276
https://doi.org/10.1109/ICSE.2017.32
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1109/HPCA.2016.7446099
https://doi.org/10.1109/HPCA.2016.7446099
http://arxiv.org/abs/1706.09305
https://doi.org/10.1007/978-3-319-96145-3_26
https://doi.org/10.1145/3158113
https://doi.org/10.1145/3158113
https://dl.acm.org/citation.cfm?id=3290373
https://dl.acm.org/citation.cfm?id=3290373
https://doi.org/10.1145/2737924.2737983
https://doi.org/10.1145/2737924.2737983
https://doi.org/10.1016/j.tcs.2010.09.021
https://doi.org/10.1016/j.tcs.2010.09.021
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7

544 M. Emmi and C. Enea

17. Hangal, S., Vahia, D., Manovit, C., Lu, J.J., Narayanan, S.: TSOtool: a program
for verifying memory systems using the memory consistency model. In: 31st Inter-
national Symposium on Computer Architecture (ISCA 2004), 19–23 June 2004,
Munich, Germany, pp. 114–123. IEEE Computer Society (2004). https://doi.org/
10.1109/ISCA.2004.1310768

18. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In: Robi-
net, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer,
Heidelberg (1986). https://doi.org/10.1007/3-540-16442-1 14

19. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, San Mateo (2008)

20. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.
org/10.1145/78969.78972

21. Hoare, C.A.R., He, J., Sanders, J.W.: Prespecification in data refinement. Inf. Pro-
cess. Lett. 25(2), 71–76 (1987). https://doi.org/10.1016/0020-0190(87)90224-9

22. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002). https://doi.org/10.1145/505145.505149

23. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994). https://doi.org/10.1145/197320.197383

24. Lowe, G.: Testing for linearizability. Concurrency Comput. Pract. Exp. 29(4)
(2017). https://doi.org/10.1002/cpe.3928

25. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive
study on real world concurrency bug characteristics. In: Eggers, S.J., Larus, J.R.
(eds.) Proceedings of the 13th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS 2008, Seattle,
WA, USA, 1–5 March 2008, pp. 329–339. ACM (2008). https://doi.org/10.1145/
1346281.1346323

26. Mador-Haim, S., Alur, R., Martin, M.M.K.: Generating litmus tests for contrasting
memory consistency models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 273–287. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 26

27. Mador-Haim, S., Alur, R., Martin, M.M.K.: Litmus tests for comparing memory
consistency models: how long do they need to be? In: Stok, L., Dutt, N.D., Hassoun,
S. (eds.) Proceedings of the 48th Design Automation Conference, DAC 2011, San
Diego, California, USA, 5–10 June 2011, pp. 504–509. ACM (2011). https://doi.
org/10.1145/2024724.2024842

28. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In: Burns, J.E., Moses, Y. (eds.) Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed Comput-
ing, Philadelphia, Pennsylvania, USA, 23–26 May 1996, pp. 267–275. ACM (1996).
https://doi.org/10.1145/248052.248106

29. Moir, M., Shavit, N.: Concurrent data structures. In: Mehta, D.P., Sahni, S. (eds.)
Handbook of Data Structures and Applications. Chapman and Hall/CRC (2004).
https://doi.org/10.1201/9781420035179.ch47

30. Musuvathi, M., Qadeer, S.: CHESS: systematic stress testing of concurrent soft-
ware. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 15–16. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71410-1 2

https://doi.org/10.1109/ISCA.2004.1310768
https://doi.org/10.1109/ISCA.2004.1310768
https://doi.org/10.1007/3-540-16442-1_14
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1016/0020-0190(87)90224-9
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/197320.197383
https://doi.org/10.1002/cpe.3928
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1145/2024724.2024842
https://doi.org/10.1145/2024724.2024842
https://doi.org/10.1145/248052.248106
https://doi.org/10.1201/9781420035179.ch47
https://doi.org/10.1007/978-3-540-71410-1_2

Violat: Generating Tests of Observational Refinement 545

31. Nistor, A., Luo, Q., Pradel, M., Gross, T.R., Marinov, D.: Ballerina: automatic
generation and clustering of efficient random unit tests for multithreaded code.
In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) 34th International Conference on
Software Engineering, ICSE 2012, 2–9 June 2012, Zurich, Switzerland, pp. 727–737.
IEEE Computer Society (2012). https://doi.org/10.1109/ICSE.2012.6227145

32. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977). https://doi.org/10.1016/0304-3975(77)90044-5

33. Pradel, M., Gross, T.R.: Fully automatic and precise detection of thread safety
violations. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2012, Beijing, China, 11–
16 June 2012, pp. 521–530. ACM (2012). https://doi.org/10.1145/2254064.2254126

34. Pradel, M., Gross, T.R.: Automatic testing of sequential and concurrent substi-
tutability. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) 35th International Con-
ference on Software Engineering, ICSE 2013, San Francisco, CA, USA, 18–26 May
2013, pp. 282–291. IEEE Computer Society (2013). https://doi.org/10.1109/ICSE.
2013.6606574

35. Samak, M., Ramanathan, M.K.: Multithreaded test synthesis for deadlock detec-
tion. In: Black, A.P., Millstein, T.D. (eds.) Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages & Appli-
cations, OOPSLA 2014, Part of SPLASH 2014, Portland, OR, USA, 20–24 October
2014, pp. 473–489. ACM (2014). https://doi.org/10.1145/2660193.2660238

36. Samak, M., Ramanathan, M.K.: Omen+: a precise dynamic deadlock detector for
multithreaded java libraries. In: Cheung, S., Orso, A., Storey, M.D. (eds.) Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FS-22), Hong Kong, China, 16–22 November 2014, pp.
735–738. ACM (2014). https://doi.org/10.1145/2635868.2661670

37. Samak, M., Ramanathan, M.K.: Omen: a tool for synthesizing tests for dead-
lock detection. In: Black, A.P. (ed.) Conference on Systems, Programming, and
Applications: Software for Humanity, SPLASH 2014, Portland, OR, USA, 20–24
October 2014, Companion Volume, pp. 37–38. ACM (2014). https://doi.org/10.
1145/2660252.2664663

38. Samak, M., Ramanathan, M.K.: Trace driven dynamic deadlock detection and
reproduction. In: Moreira, J.E., Larus, J.R. (eds.) ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2014, Orlando, FL, USA,
15–19 February 2014, pp. 29–42. ACM (2014). https://doi.org/10.1145/2555243.
2555262

39. Samak, M., Ramanathan, M.K.: Synthesizing tests for detecting atomicity viola-
tions. In: Nitto, E.D., Harman, M., Heymans, P. (eds.) Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, 30 August–4 September 2015, pp. 131–142. ACM (2015). https://
doi.org/10.1145/2786805.2786874

40. Samak, M., Ramanathan, M.K., Jagannathan, S.: Synthesizing racy tests. In:
Grove, D., Blackburn, S. (eds.) Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, Portland, OR, USA,
15–17 June 2015, pp. 175–185. ACM (2015). https://doi.org/10.1145/2737924.
2737998

41. Samak, M., Tripp, O., Ramanathan, M.K.: Directed synthesis of failing concur-
rent executions. In: Visser, E., Smaragdakis, Y. (eds.) Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2016, Part of SPLASH 2016, Ams-

https://doi.org/10.1109/ICSE.2012.6227145
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1145/2254064.2254126
https://doi.org/10.1109/ICSE.2013.6606574
https://doi.org/10.1109/ICSE.2013.6606574
https://doi.org/10.1145/2660193.2660238
https://doi.org/10.1145/2635868.2661670
https://doi.org/10.1145/2660252.2664663
https://doi.org/10.1145/2660252.2664663
https://doi.org/10.1145/2555243.2555262
https://doi.org/10.1145/2555243.2555262
https://doi.org/10.1145/2786805.2786874
https://doi.org/10.1145/2786805.2786874
https://doi.org/10.1145/2737924.2737998
https://doi.org/10.1145/2737924.2737998

546 M. Emmi and C. Enea

terdam, The Netherlands, 30 October–4 November 2016, pp. 430–446. ACM (2016).
https://doi.org/10.1145/2983990.2984040

42. Shipilev, A.: The java concurrency stress tests (2018). https://wiki.openjdk.java.
net/display/CodeTools/jcstress

43. Steenbuck, S., Fraser, G.: Generating unit tests for concurrent classes. In: Sixth
IEEE International Conference on Software Testing, Verification and Validation,
ICST 2013, Luxembourg, Luxembourg, 18–22 March 2013, pp. 144–153. IEEE
Computer Society (2013). https://doi.org/10.1109/ICST.2013.33

44. Terragni, V., Cheung, S.: Coverage-driven test code generation for concurrent
classes. In: Dillon, L.K., Visser, W., Williams, L. (eds.) Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
14–22 May 2016, pp. 1121–1132. ACM (2016). https://doi.org/10.1145/2884781.
2884876

45. Terragni, V., Pezzè, M.: Effectiveness and challenges in generating concurrent tests
for thread-safe classes. In: Huchard, M., Kästner, C., Fraser, G. (eds.) Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engi-
neering, ASE 2018, Montpellier, France, 3–7 September 2018, pp. 64–75. ACM
(2018). https://doi.org/10.1145/3238147.3238224

46. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14295-6 40

47. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with java
pathfinder. In: Avrunin, G.S., Rothermel, G. (eds.) Proceedings of the ACM/SIG-
SOFT International Symposium on Software Testing and Analysis, ISSTA 2004,
Boston, Massachusetts, USA, 11–14 July 2004, pp. 97–107. ACM (2004). https://
doi.org/10.1145/1007512.1007526

48. Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automatically com-
paring memory consistency models. In: Castagna, G., Gordon, A.D. (eds.) Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, 18–20 January 2017, pp. 190–204. ACM
(2017). http://dl.acm.org/citation.cfm?id=3009838

49. Wing, J.M., Gong, C.: Testing and verifying concurrent objects. J. Parallel Distrib.
Comput. 17(1–2), 164–182 (1993). https://doi.org/10.1006/jpdc.1993.1015

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2983990.2984040
https://wiki.openjdk.java.net/display/CodeTools/jcstress
https://wiki.openjdk.java.net/display/CodeTools/jcstress
https://doi.org/10.1109/ICST.2013.33
https://doi.org/10.1145/2884781.2884876
https://doi.org/10.1145/2884781.2884876
https://doi.org/10.1145/3238147.3238224
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.1145/1007512.1007526
http://dl.acm.org/citation.cfm?id=3009838
https://doi.org/10.1006/jpdc.1993.1015
http://creativecommons.org/licenses/by/4.0/

	Violat: Generating Tests of Observational Refinement for Concurrent Objects
	1 Introduction
	2 Overview of Test Generation with Violat
	3 Test Enumeration
	4 Computing Expected Outcomes
	5 Code Generation and Back-End Integrations
	6 Usage
	7 Related Work
	References

