
Verification of Threshold-Based
Distributed Algorithms by Decomposition

to Decidable Logics

Idan Berkovits1(B), Marijana Lazić2,3, Giuliano Losa4, Oded Padon5,
and Sharon Shoham1

1 Tel Aviv University, Tel Aviv-Yafo, Israel
berkovits@mail.tau.ac.il
2 TU Wien, Vienna, Austria

3 TU Munich, Munich, Germany
4 University of California, Los Angeles, USA

5 Stanford University, Stanford, USA

Abstract. Verification of fault-tolerant distributed protocols is an
immensely difficult task. Often, in these protocols, thresholds on set car-
dinalities are used both in the process code and in its correctness proof,
e.g., a process can perform an action only if it has received an acknowl-
edgment from at least half of its peers. Verification of threshold-based
protocols is extremely challenging as it involves two kinds of reasoning:
first-order reasoning about the unbounded state of the protocol, together
with reasoning about sets and cardinalities. In this work, we develop a
new methodology for decomposing the verification task of such proto-
cols into two decidable logics: EPR and BAPA. Our key insight is that
such protocols use thresholds in a restricted way as a means to obtain
certain properties of “intersection” between sets. We define a language
for expressing such properties, and present two translations: to EPR and
BAPA. The EPR translation allows verifying the protocol while assuming
these properties, and the BAPA translation allows verifying the correct-
ness of the properties. We further develop an algorithm for automatically
generating the properties needed for verifying a given protocol, facilitat-
ing fully automated deductive verification. Using this technique we have
verified several challenging protocols, including Byzantine one-step con-
sensus, hybrid reliable broadcast and fast Byzantine Paxos.

1 Introduction

Fault-tolerant distributed protocols play an important role in the avionic and
automotive industries, medical devices, cloud systems, blockchains, etc. Their
unexpected behavior might put human lives at risk or cause a huge financial
loss. Therefore, their correctness is of ultimate importance.

Ensuring correctness of distributed protocols is a notoriously difficult task,
due to the unbounded number of processes and messages, as well as the non-
deterministic behavior caused by the presence of faults, concurrency, and mes-
sage delays. In general, the problem of verifying such protocols is undecidable.
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11562, pp. 245–266, 2019.
https://doi.org/10.1007/978-3-030-25543-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25543-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-25543-5_15

246 I. Berkovits et al.

This imposes two directions for attacking the problem: (i) developing fully-
automatic verification techniques for restricted classes of protocols, or (ii) design-
ing deductive techniques for a wide range of systems that require user assistance.
Within the latter approach, recently emerging techniques [29] leverage decidable
logics that are supported by mature automated solvers to significantly reduce
user effort, and increase verification productivity. Such logics bring several key
benefits: (i) their solvers usually enjoy stable performance, and (ii) whenever
annotations provided by the user are incorrect, the automated solvers can pro-
vide a counterexample for the user to examine.

Deductive verification based on decidable logic requires a logical formalism
that satisfies two conflicting criteria: the formalism should be expressive enough
to capture the protocol, its correctness properties, its inductive invariants, and
ultimately its verification conditions. At the same time, the formalism should be
decidable and have an effective automated tool for checking verification conditions.

In this paper we develop a methodology for deductive verification of
threshold-based distributed protocols using decidable logic, well-established
decidable logics to settle the tension explained above.

In threshold-based protocols, a process may take different actions based on
the number of processes from which it received certain messages. This is often
used to achieve fault-tolerance. For example, a process may take a certain step
once it has received an acknowledgment from a strict majority of its peers, that
is, from more than n/2 processes, where n is the total number of processes.
Such expressions as n/2, are called thresholds, and in general they can depend
on additional parameters, such as the maximal number of crashed processes, or
the maximal number of Byzantine processes.

Verification of such protocols requires two flavors of reasoning, as demon-
strated by the following example. Consider the Paxos [20] protocol, in which
each process proposes a value and all must agree on a common proposal. The
protocol tolerates up to t process crashes, and ensures that every two processes
that decide agree on the decided value. The protocol requires n > 2t processes,
and each process must obtain confirmation messages from n−t processes before
making a decision. The protocol is correct due to, among others, the fact that
if n > 2t then any two sets of n − t processes have a process in common. To
verify this protocol we need to express (i) relationships between an unbounded
number of processes and values, which typically requires quantification over unin-
terpreted domains (“every two processes”), and (ii) properties of sets of certain
cardinalities (“any two sets of n − t processes intersect”). Crucially, these two
types of reasoning are intertwined, as the sets of processes for which we need to
capture cardinalities may be defined by their relations with other state compo-
nents (“messages from at least n−t processes”). While uninterpreted first-order
logic (FOL) seems like the natural fit for the first type of reasoning, it is seemingly
a poor fit for the second type, since it cannot express set cardinalities and the
arithmetic used to define thresholds. Typically, logics that combine both types
of reasoning are either undecidable or not flexible enough to capture protocols
as intricate as the ones we consider.

Verification of Threshold-Based Distributed Algorithms 247

The approach we present relies on the observation that threshold-based pro-
tocols and their correctness proofs use set cardinality thresholds in a restricted
way as a means to obtain certain properties between sets, and that these prop-
erties can be expressed in FOL via a suitable encoding. In the example above,
the important property is that every two sets of cardinality at least n− t have a
non-empty intersection. This property can be encoded in FOL by modeling sets
of cardinality at least n−t using an uninterpreted sort along with a membership
relation between this sort and the sort for processes. However, the validity of
the property under the assumption that n > 2t cannot be verified in FOL.

The key idea of this paper is, hence, to decompose the verification problem
of threshold-based protocols into the following problems: (i) Checking protocol
correctness assuming certain intersection properties, which can be reduced to
verification conditions expressed in the Effectively Propositional (EPR) frag-
ment of FOL [25,35]. (ii) Checking that sets with cardinalities adhering to the
thresholds satisfy the intersection properties (under the protocol assumptions),
which can be reduced to validity checks in quantifier-free Boolean Algebra with
Presburger Arithmetic (BAPA) [19]. Both BAPA and EPR are decidable logics,
and are supported by mature solvers.

A crucial step in employing this decomposition is finding suitable intersection
properties that are strong enough to imply the protocol’s correctness (i.e., imply
the FOL verification conditions), and are also implied by the precise definitions
of the thresholds and the protocol’s assumptions. Thus, these intersection prop-
erties can be viewed as interpolants between the FOL verification conditions
and the thresholds in the context of the protocol’s assumptions. We present
fully automated procedures to find such intersection property interpolants, either
eagerly or lazily.

The main contributions of this paper are1:

1. We define a threshold intersection property (TIP) language for expressing
properties of sets whose cardinalities adhere to certain thresholds; TIP is
expressive enough to capture the properties required to prove the correctness
of challenging threshold-based protocols.

2. We develop two encodings of TIP, one in BAPA, and another in EPR. These
encodings facilitate decomposition of protocol verification into decidable EPR
and (quantifier-free) BAPA queries.

3. We show that there are only finitely many TIP formulas (up to equivalence)
that are valid for any given protocol. Moreover, we present an effective algo-
rithm for computing all TIP formulas valid for a given protocol, as well as an
algorithm for lazily finding a set of TIP formulas that suffice to prove a given
protocol.

4. Put together, we obtain an effective deductive verification approach for
threshold-based protocols: the user models the protocol and its inductive
invariants in EPR using a suitable encoding of thresholds, and defines the

1 An extended version of this paper, which includes additional details and proofs,
appears in [3].

248 I. Berkovits et al.

thresholds and the protocol’s assumptions using arithmetic; verification is car-
ried out automatically via decomposition to well-established decidable logics.

5. We implement the approach, leveraging mature existing solvers (Z3 and
CVC4), and evaluate it by verifying several challenging threshold-based pro-
tocols with sophisticated thresholds and assumptions. Our evaluation shows
the effectiveness and flexibility of our approach in modeling and verifying
complex protocols, including the feasibility of automatically inferring thresh-
old intersection properties.

2 Preliminaries

Transition Systems in FOL. We model distributed protocols as transition
systems expressed in many-sorted FOL. A state of the system is a first-order
(FO) structure s = (D, I) over a vocabulary Σ that consists of sorted constant,
function and relation symbols, s.t. s satisfies a finite set of axioms Θ in the form
of closed formulas over Σ. D is the domain of s mapping each sort to a set of
objects (elements), and I is the interpretation function. A FO transition system
is a tuple (Σ,Θ, I,TR), where Σ and Θ are as above, I is a closed formula over
Σ that defines the initial states, and TR is a closed formula over Σ � Σ′ that
defines the transition relation where Σ describes the source state of a transition
and Σ′ = {a′ | a ∈ Σ} describes the target state. We require that TR does not
modify any symbol that appears in Θ. The set of reachable states is defined as
usual. In practice, we define FO transition systems using a modeling language
with a convenient syntax [29].

Properties and Inductive Invariants. A safety property is expressed by a
closed FO formula P over Σ. The system is safe if all of its reachable states
satisfy P . A closed FO formula Inv over Σ is an inductive invariant for a tran-
sition system (Σ,Θ, I,TR) and property P if the following formulas, called the
verification conditions, are valid (equivalently, their negations are unsatisfiable):
(i) Θ → (I → Inv), (ii) Θ → (Inv ∧ TR → Inv′) and (iii) Θ → (Inv → P),
where Inv′ results from substituting every symbol in Inv by its primed version.
We also use inductive invariants to verify arbitrary first-order LTL formulas via
the reduction of [30,31].

Effectively Propositional Logic (EPR). The effectively-propositional
(EPR) fragment of FOL is restricted to formulas without function symbols and
with a quantifier prefix ∃∗∀∗ in prenex normal form. Satisfiability of EPR for-
mulas is decidable [25]. Moreover, EPR formulas enjoy the finite model property,
i.e., ϕ is satisfiable iff it has a finite model. We consider a straightforward exten-
sion of EPR that maintains these properties and is supported by solvers such as
Z3 [5]. The extension allows function symbols and quantifier alternations as long
as the formula’s quantifier alternation graph, denoted QA(ϕ), is acyclic. For ϕ
in negation normal form, QA(ϕ) is a directed graph where the set of vertices is

Verification of Threshold-Based Distributed Algorithms 249

the set of sorts and the set of edges is defined as follows: every function symbol
introduces edges from its arguments’ sorts to its image’s sort, and every exis-
tential quantifier ∃x that resides in the scope of universal quantifiers introduces
edges from the sorts of the universally quantified variables to the sort of x. The
quantifier alternation graph is extended to sets of formulas as expected.

Boolean Algebra with Presburger Arithmetic (BAPA). Boolean Algebra
with Presburger Arithmetic (BAPA) [19] is a FO theory defined over two sorts:
int (for integers), and set (for subsets of a finite universe). The language is defined
as follows:

F :: =B1 = B2 | L1 = L2 | L1 < L2 | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃x.F | ∀x.F | ∃u.F | ∀u.F

B:: =x | ∅ | a | B1 ∪ B2 | B1 ∩ B2 | Bc L:: = u | K | n | i | L1 + L2 | K · L | |B|

where L defines linear integer terms, where u denotes an integer variable, k ∈ K
defines an (interpreted) integer constant symbol . . . ,−2,−1, 0, 1, 2 . . ., n is an
integer constant symbol that represents the size of the finite set universe, i is an
uninterpreted integer constant symbol (as opposed to the constant symbols from
K), and |b| denotes set cardinality; B defines set terms, where x denotes a set
variable, ∅ is a (interpreted) set constant symbol that represents the empty set,
and a is an uninterpreted set constant symbol; and F defines the set of BAPA
formulas, where �1 = �2 and �1 < �2 are atomic arithmetic formulas and b1 = b2
is an atomic set formula. (Other set constraints such as b1 ⊆ b2 can be encoded
in the usual way). In the sequel, we also allow arithmetic terms of the form �

k
where k ∈ K is a positive integer and � ∈ L, as any formula that contains such
terms can be translated to an equivalent BAPA formula by multiplying by k.

A BAPA structure is sB = (D, I) where the domain D maps sort int to the
set of all integers and maps sort set to the set of all subsets of a finite universe
U , called the universal set. The semantics of terms and formulas is as expected,
where the interpretation of the complement operation is defined with respect to
U (e.g., I(∅c) = U), and the integer constant n is interpreted to the size of U ,
i.e. I(n) = |U |.

Both validity and satisfiability of BAPA formulas (with arbitrary quantifi-
cation) are decidable [19], and the quantifier-free fragment is supported by
CVC4 [2].

3 First-Order Modeling of Threshold-Based Protocols

Next we explain our modeling of threshold-based protocols as transition systems
in FOL (Note that FOL cannot directly express set cardinality constraints). The
idea is to capture each threshold by a designated sort, such that elements of
this sort represent sets of nodes that satisfy the threshold. Elements of the
threshold sort are then used instead of the actual threshold in the description of

250 I. Berkovits et al.

the protocol and in the verification conditions. For verification to succeed, some
properties of the sets satisfying the cardinality threshold must be captured in
FOL. This is done by introducing additional assumptions (formally, axioms of
the transition system) expressed in FOL, as discussed in Sect. 4.

Fig. 1. Bosco: a one-step asynchronous Byzantine consensus algorithm [39], and an
excerpt RML (relational modeling language) code of the main transition. Note that
we overload the member relation for all threshold sorts. The formula ∃!x. ϕ(x) is a
shorthand for exists and unique.

Running Example. We illustrate our approach using the example of Bosco—
an asynchronous Byzantine fault-tolerant (BFT) consensus algorithm [39]. Its
modeling in first-order logic using our technique appears alongside an informal
pseudo-code in Fig. 1.

In the BFT consensus problem, each node proposes a value and correct nodes
must decide on a unique proposal. BFT consensus algorithms typically require
at least two communication rounds to reach a decision. In Bosco, nodes execute
a preliminary communication step which, under favorable conditions, reaches an
early decision, and then call an underlying BFT consensus algorithm to ensure
reaching a decision even if these conditions are not met. Bosco is safe when
n > 3t; it guarantees that a preliminary decision will be reached if all nodes are
non-faulty and propose the same value when n > 5t (weakly one-step condition),
and even if some nodes are faulty, as long as all non-faulty nodes propose the
same value, when n > 7t (strongly one-step condition).

Bosco achieves consensus by ensuring that (a) no two correct nodes decide
differently in the preliminary step, and (b) if a correct node decides value v
in the preliminary step then every correct process calls the underlying BFT
consensus algorithm with proposal v. Property (a) is ensured by the fact that
a node decides in the preliminary step only if more than n+3t

2 nodes proposed
the same value. When n > 3t, two sets of cardinality greater than n+3t

2 have
at least one non-faulty node in common, and therefore no two different values
can be proposed by more than n+3t

2 nodes. Similarly, we can derive property
(b) from the fact that a set of more than n+3t

2 nodes and a set of n − t nodes

Verification of Threshold-Based Distributed Algorithms 251

intersect in n+t
2 nodes, which, after removing t nodes which may be faulty, still

leaves us with more than n−t
2 nodes, satisfying the condition in line 9.

3.1 Threshold-Based Protocols

Parameters and Resilience Conditions. We consider protocols whose def-
initions depend on a set of parameters, Prm, divided into integer parameters,
PrmI , and set parameters, PrmS . PrmI always includes n, the total number
of nodes (assumed to be finite). Protocol correctness is ensured under a set of
assumptions Γ called resilience conditions, formulated as BAPA formulas over
Prm (this means that all the uninterpreted constants appearing in Γ are from
Prm). In Bosco, PrmI = {n, t}, where t is the maximal number of Byzantine fail-
ures tolerated by the algorithm, and PrmS = {f}, where f is the set of Byzantine
nodes; Γ = {n ≥ 3t + 1, |f | ≤ t}.

Threshold Conditions. Both the description of the protocol and the inductive
invariant may include conditions that require the size of some set of nodes to be
“at least t”, “at most t”, and so on, where the threshold t is of the form t = �

k ,
where k is a positive integer, and � is a ground BAPA integer term over Prm (we
do not allow comparing sizes of two sets – we observe that it is not needed for
threshold-based protocols). We denote the set of thresholds by T . For example,
in Bosco, T = {n − t, n+3t+1

2 , n−t+1
2 }.

Wlog we assume that all conditions on set cardinalities are of the form “at
least t” since every condition can be written this way, possibly by introducing
new thresholds:

|X| >
�

k
≡ |X| ≥ � + 1

k
|X| ≤ �

k
≡ |Xc| ≥ k · n − �

k
|X| <

�

k
≡ |X| ≤ � − 1

k

3.2 Modeling in FOL

FO Vocabulary for Modeling Threshold-Based Protocols. We describe
the protocol’s states (e.g., pending messages, votes, etc.) using a core FO vocab-
ulary ΣC that includes sort node and additional sorts and symbols. Parameters
Prm are not part of the FO vocabulary used to model the protocol. Also, we do
not model set cardinality directly. Instead, we encode the cardinality thresholds
in FOL by defining a FO vocabulary ΣPrm

T :

– For every threshold t we introduce a threshold sort sett with the intended
meaning that elements of this sort are sets of nodes whose size is at least t.

– Each sort sett is equipped with a binary relation symbol membert between
sorts node and sett that captures the membership relation of a node in a set.

– For each set parameter a ∈ PrmS we introduce a unary relation symbol
membera over sort node that captures membership of a node in the set a.

252 I. Berkovits et al.

We then model the protocol as a transition system (Σ,Θ, I,TR) where Σ =
ΣC � ΣPrm

T .
We are interested only in states (FO structures over Σ) where the inter-

pretation of the threshold sorts and membership relations is according to their
intended meaning in a corresponding BAPA structure. Formally, these are T -
extensions, defined as follows:

Definition 1. We say that a FO structure sC = (DC , IC) over ΣC and a BAPA
structure sB = (DB , IB) over Prm are compatible if DB(set) = P(DC(node)),
where P is the powerset operator. For such compatible structures and a set of
thresholds T over Prm, the T -extension of sC by sB is the structure s = (D, I)
over Σ defined as follows:

D(s) = DC(s) for every sort s in ΣC I(a) = IC(a) for every a in ΣC

D(sett) = {A ⊆ DC(node) | |A| ≥ IB(t)} I(membera) = IB(a)
I(membert) = {(e, A) | e ∈ DC(node), A ∈ D(sett), e ∈ A}

Note that for the T -extension s to be well defined as a FO structure, we must
have that D(sett) �= ∅ for every threshold t ∈ T . This means that a T -extension
by sB only exists if {A ⊆ D(node) | |A| ≥ IB(t)} �= ∅. This is ensured by the
following condition:

Definition 2 (Feasibility). T is Γ -feasible if Γ |= t ≤ n for every t ∈ T .

Expressing Threshold Constraints. Cardinality constraints can be
expressed in FOL over the vocabulary Σ = ΣC � ΣPrm

T using quantification. To
express that |{n : node | ϕ(n, ū)}| ≥ t, i.e., that there are at least t nodes that
satisfy the FO formula ϕ over ΣC (where ū are free variables in ϕ), we use the fol-
lowing first-order formula over Σ: ∃q : sett. ∀n : node. membert(n, q) → ϕ(n, ū).
Similarly, to express the property that a node is a member of a set parameter a
(e.g., to check if n ∈ f , i.e., a node is faulty) we use the FO formula membera(n).
For example, in Fig. 1, line 5 (right) uses the FO modeling to express the condi-
tion in line 5 (left). This modeling is sound in the following sense:

Lemma 1 (Soundness). Let sC = (DC , IC) be a FO structure over ΣC ,
sB = (DB , IB) a compatible BAPA structure over Prm s.t. sB |= Γ and T a
Γ -feasible set of thresholds over Prm. Then there exists a (unique) T -extension
s of sC by sB. Further:

1. For every a ∈ PrmS and FO valuation ι: s, ι |= membera(n) iff ι(n) ∈ IB(a),
2. For every t ∈ T , formula ϕ, and FO valuation ι: s, ι |= ∃q : sett. ∀n :

node. membert(n, q) → ϕ(n, ū) iff |{e ∈ D(node) | sC , ι[n
→ e] |= ϕ(n, ū)}| ≥
IB(t).

Definition 3. A first-order structure s over Σ is threshold-faithful if it is a
T -extension of some sC by some sB |= Γ (as in Lemma 1).

Verification of Threshold-Based Distributed Algorithms 253

Incompleteness. Lemma 1 ensures that the FO modeling can be soundly used
to verify the protocol. It also ensures that the modeling is precise on threshold-
faithful structures (Def. 1). Yet, the FO transition system is not restricted to
such states, hence it abstracts the actual protocol. To have any hope to verify
the protocol, we must capture some of the intended meaning of the threshold
sorts and relations. This is obtained by adding FO axioms to the FO transition
system. Soundness is maintained as long as the axioms hold in all threshold-
faithful structures. We note that the set of all such axioms is not recursively
enumerable– this is where the essential incompleteness of our approach lies.

4 Decomposition via Threshold Intersection Properties

In this section, we identify a set of properties we call threshold intersection
properties. When captured via FO axioms, these properties suffice for verifying
many threshold-based protocols (all the ones we considered). Importantly, these
are properties of sets adhering to the thresholds that do not involve the protocol
state. As a result, they can be expressed both in FOL and in BAPA. This allows
us to decompose the verification task into: (i) checking that certain threshold
properties are valid in all threshold-faithful structures by checking that they are
implied by Γ (carried out using quantifier free BAPA), and (ii) checking that
the verification conditions of the FO transition-system with the same threshold
properties taken as axioms are valid (carried out in first-order logic, and in EPR
if quantifier alternations are acyclic).

4.1 Threshold Intersection Property Language

Threshold properties are expressed in the threshold intersection property lan-
guage (TIP). TIP is essentially a subset of BAPA, specialized to have the prop-
erties listed above.

Syntax. We define TIP as follows, with t ∈ T a threshold (of the form �
k) and

a ∈ PrmS :

F :: = B �= ∅ | Bc = ∅ | g≥t(B) | F1 ∧ F2 | ∀x : g≥t.F

B:: = a | ac | x | xc | ∅ | ∅c | B1 ∩ B2

TIP restricts the use of set cardinality to threshold guards g≥t(b) with the
meaning |b| ≥ t. No other arithmetic atomic formulas are allowed. Comparison
atomic formulas are restricted to b �= ∅ and bc = ∅. Quantifiers must be guarded,
and negation, disjunction and existential quantification are excluded. We forbid
set union and restrict complementation to atomic set terms. We refer to such
formulas as intersection properties since they express properties of intersections
of (atomic) sets.

254 I. Berkovits et al.

Example 1. In Bosco, the following property captures the fact that the intersec-
tion of a set of at least n − t nodes and a set of more than n+3t

2 nodes consists
of at least n−t

2 non-faulty nodes. This is needed for establishing correctness of
the protocol.

∀x : g≥n−t.∀y : g≥n+3t+1
2

. g≥n−t+1
2

(x ∩ y ∩ f c)

Semantics. As TIP is essentially a subset of BAPA, we define its semantics by
translating its formulas to BAPA, where most constructs directly correspond to
BAPA constructs, and guards are translated to cardinality constraints:

B(g≥ �
k
(b)) def= k · |b| ≥ � B(∀x : g. ϕ) def= ∀x. ¬B(g(x)) ∨ B(ϕ)

The notions of structures, satisfaction, equivalence, validity, satisfiability, etc.
are inherited from BAPA. In particular, given a set of BAPA resilience conditions
Γ over the parameters Prm, we say that a TIP formula ϕ is Γ -valid, denoted
Γ |= ϕ, if Γ |= B(ϕ).

If Γ is quantifier-free (which is the typical case), Γ -validity of TIP for-
mulas can be checked via validity checks of quantifier-free BAPA formulas,
supported by mature solvers. Note that Γ -validity of a formula of the form
∀x : g≥t1 . |x ∩ b| ≥ t2 is equivalent to Γ |= ∀u. u ≥ t1 → u + |b| − n ≥ t2,
allowing replacing quantification over sets by quantification over integers, thus
improving performance of existing solvers.

4.2 Translation to FOL

Toverify threshold-basedprotocols,we translateTIP formulas toFOaxioms, using
the threshold sorts and relations. To translate g≥t(b), we follow the principle in
(Sect. 3.2):

FO(¬ϕ) = ¬FO(ϕ) FO(n ∈ bc) = ¬FO(n ∈ b)

FO(ϕ1 ∧ ϕ2) = FO(ϕ1) ∧ FO(ϕ2) FO(n ∈ ∅) = false

FO(∀ x : g. ϕ) = ∀ x : setg .FO(ϕ) FO(n ∈ a) = membera(n)

FO(n ∈ b1 ∩ b2) = FO(n ∈ b1) ∧ FO(n ∈ b2) FO(n ∈ x) = membert(n, x)

FO(b �= ∅) = ∃n : node. FO(n ∈ b) where x is guarded by t

FO(bc = ∅) = ∀n : node. FO(n ∈ b)

FO(g≥t(b)) = ∃x : sett. ∀n : node.membert(n, x) → FO(n ∈ b)

We lift FO to sets of formulas: FO(Δ) = {FO(ϕ) | ϕ ∈ Δ}.
Next, we state the soundness of the translation, which intuitively means that

FO(ϕ) is “equivalent” to ϕ over threshold-faithful FO structures (Definition 1).
This justifies adding FO(ϕ) as a FO axiom whenever ϕ is Γ -valid.

Theorem 1 (Translation soundness). Let sC = (DC , IC) be a first-order
structure over ΣC , sB = (DB , IB) a compatible BAPA structure over Prm, and
s the T -extension of sC by sB. Then for every closed TIP formula ϕ, we have
sB |= ϕ ⇔ s |= FO(ϕ).

Verification of Threshold-Based Distributed Algorithms 255

Corollary 1. For every closed TIP formula ϕ such that Γ |= ϕ, we have that
FO(ϕ) is satisfied by every threshold-faithful first-order structure.

5 Automatically Inferring Threshold Intersection
Properties

To apply the approach described in Sects. 3 and 4, it is crucial to find suitable
threshold properties. That is, given the resilience conditions Γ and a FO tran-
sition system modeling the protocol, we need to find a set Δ of TIP formulas
such that (i) Γ |= ϕ for every ϕ ∈ Δ, and (ii) the VCs of the transition system
with the axioms FO(Δ) are valid.

In this section, we address the problem of automatically inferring such a
set Δ. In particular, we prove that for any protocol that satisfies a natural
condition, there are finitely many Γ -valid TIP formulas (up to equivalence),
enabling a complete automatic inference algorithm. Furthermore, we show that
(under certain reasonable conditions formalized in this section), the FO axioms
resulting from the inferred TIP properties have an acyclic quantifier alternation
graph, facilitating protocol verification in EPR.

Notation. For the rest of this section, we fix a set Prm of parameters, a set Γ
of resilience conditions over Prm, and a set T of thresholds. Note that b �= ∅ ≡
g≥1(b) and bc = ∅ ≡ g≥n(b). Therefore, for uniformity of the presentation, given

a set T of thresholds, we define T̂
def= T ∪ {1,n} and replace atomic formulas of

the form b �= ∅ and bc = ∅ by the corresponding guard formulas. As such, the
only atomic formulas are of the form g≥t(b) where t ∈ T̂ . Note that guards in
quantifiers are still restricted to g≥t where t ∈ T . Given a set PrmS , we also
denote ˆPrmS = PrmS ∪ {ac | a ∈ PrmS}.

5.1 Finding Consequences in the Threshold Intersection Property
Language

In this section, we present Aip– an algorithm for inferring all Γ -valid TIP formu-
las. A näıve (non-terminating) algorithm would iteratively check Γ -validity of
every TIP formula. Instead, Aip prunes the search space relying on the following
condition:

Definition 4. T is Γ -non-degenerate if for every t ∈ T it holds that Γ �|= t ≤ 0.

If Γ |= t ≤ 0 then t is degenerate in the sense that g≥t(b) is always Γ -valid, and
∀x : g≥t. g≥t′(x ∩ b) is never Γ -valid unless t′ is also degenerate.

We observe that we can (i) push conjunctions outside of formulas (since ∀ dis-
tributes over ∧), and assuming non-degeneracy, (ii) ignore terms of the form xc:

256 I. Berkovits et al.

Lemma 2. If T is Γ -feasible and Γ -non-degenerate, then for every Γ -valid ϕ
in TIP, there exist ϕ1, . . . , ϕm s.t. ϕ ≡ ∧m

i=1 ϕi and for every 1 ≤ i ≤ m, ϕi is
of the form:

∀x1 : g≥t1 . . . ∀xq : g≥tq
. g≥t(x1 ∩ . . . ∩ xq ∩ a1 . . . ∩ ak)

where q + k > 0, t1, . . . , tq ∈ T , t ∈ T̂ , a1, . . . , ak ∈ ˆPrmS, and the ai’s are
distinct.

We refer to ϕi of the form above as simple, and refer to g≥t as its atomic guard.
By Lemma 2, it suffices to generate all simple Γ -valid formulas. Next, we show

that this can be done more efficiently by pruning the search space based on a
subsumption relation that is checked syntactically avoiding Γ -validity checks.

Definition 5 (Subsumption). For every h1, h2 ∈ T̂ ∪ ˆPrmS, we denote h1 �Γ

h2 if one of the following holds: (1) h1 = h2, or (2) h1, h2 ∈ T̂ and Γ |= h1 ≥ h2,
or (3) h1 ∈ ˆPrmS, h2 ∈ T̂ and Γ |= |h1| ≥ h2.

For h1, h2 ∈ T̂ and h3 ∈ ˆPrmS , h1 �Γ h2 means that Γ |= ∀x : g≥h1 . g≥h2(x),
and h3 �Γ h2 means that Γ |= g≥h2(h3). We lift the relation �Γ to act on simple
formulas:

Definition 6. Given simple formulas

α =∀x1 : g≥h1 . . . ∀xq : g≥hq
. g≥t(x1 ∩ . . . ∩ xq ∩ hq+1 . . . ∩ hk)

β =∀x1 : g≥h′
1
. . . ∀xq′ : g≥h′

q′ . g≥t′(x1 ∩ . . . ∩ xq′ ∩ h′
q′+1 . . . ∩ h′

k′)

we say that α �Γ β if (i) t �Γ t′, and (ii) there exists an injective function
f : {1, . . . , k′} → {1, . . . , k} s.t. for any 1 ≤ i ≤ k′ it holds that h′

i �Γ hf(i).

Lemma 3. Let α, β be simple formulas such that α �Γ β. If Γ |= α then Γ |= β.

Corollary 2. If no simple formula with q quantifiers is Γ -valid then no simple
formula with more than q quantifiers is Γ -valid.

Algorithm 1 depicts Aip that generates all Γ -valid simple formulas, relying on
Lemma 3. Aip uses a näıve search strategy; different strategies can be used
(e.g. [26]). Based on Corollary 2, Aip terminates if for some number of quan-
tifiers no Γ -valid formula is discovered.
Algorithm 1. Algorithm for Inferring Intersection Properties (Aip)
Input: PrmS , T , Γ

1 set checked true = checked false = [] ;
2 foreach q = 0, 1, . . . do
3 foreach simple formula ϕ over T and PrmS with q quantifiers do
4 if exists ψ ∈ checked true s.t. ψ �Γ ϕ then yield ϕ ;
5 else if exists ψ ∈ checked false s.t. ϕ �Γ ψ then continue ;
6 else if Γ |= ϕ then yield ϕ ; add ϕ to checked true ;
7 else add ϕ to checked false ;
8 if no formulas were added to checked true then terminate ;

Verification of Threshold-Based Distributed Algorithms 257

Lemma 4 (Soundness). Every formula ϕ that is returned by the algorithm is
Γ -valid.

Lemma 5 (Completeness). If T is Γ -feasible and Γ -non-degenerate, then
for every Γ -valid TIP formula ϕ there exist ϕ1 . . . ϕm s.t. ϕ ≡ ∧m

i=1 ϕi and Aip
yields every ϕi.

Next, we characterize the cases in which there are finitely many Γ -valid TIP
formulas, up to equivalence, and thus, Aip is guaranteed to terminate.

Definition 7. T is Γ -sane if for every t1, t2 ∈ T , Γ �|= t1 ≤ 0 ∨ t2 > n − 1.
(T,PrmS) is Γ -sane if, in addition, for every t1 ∈ T , a ∈ ˆPrmS, Γ �|= t1 ≤
0 ∨ |a| = n.

Theorem 2. Assume that T is Γ -feasible. Then the following conditions are
equivalent: (1) There are finitely many Γ -valid simple formulas. (2) There are
finitely many Γ -valid TIP formulas, up to equivalence. (3) T is Γ -sane.

Corollary 3 (Termination). If T is Γ -feasible and Γ -sane, Aip terminates.

5.2 From TIP to Axioms in EPR

The set of simple formulas generated by Aip, Δ, is translated to FOL axioms
as described in Sect. 4.2. Next, we show how to ensure that the quantifier alter-
nation graph (Sect. 2) of FO(Δ) is acyclic. A simple formula induces quantifier
alternation edges in QA(FO(ϕ)) from the sorts of its universal quantifiers to
the sort of its atomic guard g≥t (or if t = 1 to the node sort). Therefore, from
Lemma 3, for a Γ -valid ϕ, cycles in QA(FO(ϕ)) may only occur if they occur in
the graph obtained by �Γ . Furthermore, if QA(FO(ϕ)) is not acyclic, then the
atomic guard must be equal to one of the quantifier guards. We refer to such a
formula as a cyclic formula. We show that, under the following assumption, we
can eliminate all cyclic formulas from Δ.

Definition 8. T is Γ -acyclic if for every t1, t2 ∈ T , if Γ |= t1 = t2 then t1 = t2.

Intuitively, if T is not Γ -acyclic, then it has (at least) two “equivalent” thresh-
olds, making one of them redundant. If that is the case, we can alter the protocol
and its proof so that one of these guards is eliminated and the other one is used
instead.

Theorem 3. Let T be Γ -feasible and Γ -acyclic and (T,PrmS) be Γ -sane. Let
Δ be the set returned by Aip, and Δ′ = {ϕ ∈ Δ | ϕ is acyclic}. Then the VCs
of the FO transition system with axioms FO(Δ) are valid iff they are valid with
axioms FO(Δ′). Further, QA(FO(Δ′)) is acyclic.

5.3 Finding Minimal Properties Required for a Protocol

If Δ consists of all acyclic Γ -valid TIP formulas returned by Aip, using FO(Δ)
as FO axioms leads to divergence of the verifier. To overcome this, we propose
two variants.

258 I. Berkovits et al.

Minimal Equivalent. Δmin. Some of the formulas in FO(Δ) are implied by
others, making them redundant. We remove such formulas using a greedy pro-
cedure that for every ϕi ∈ Δ, checks whether FO(Δ \ {ϕi}) |= FO(ϕi), and if
so, removes ϕi from Δ. Note that if QA(FO(Δ)) is acyclic, the check translates
to (un)satisfiability in EPR.

This procedure results in Δmin ⊆ Δ s.t. FO(Δmin) |= FO(Δ) and no strict
subset of Δmin satisfies this condition. That is, Δmin is a local minimum for
that property.

Interpolant. Δint. There may exist Δint ⊆ Δ s.t. FO(Δint) �|= FO(Δ) but
FO(Δint) suffices to prove the first-order VCs, and enables to discharge the
VCs more efficiently. We compute such a set Δint iteratively. Initially, Δint = ∅.
In each iteration, we check the VCs. If a counterexample to induction (CTI)
is found, we add to Δint a formula from Δ not satisfied by the CTI. In this
approach, Δ is not pre-computed. Instead, Aip is invoked lazily to generate
candidate formulas in reaction to CTIs.

6 Evaluation

We evaluate the approach by verifying several challenging threshold-based dis-
tributed protocols that use sophisticated thresholds: we verify the safety of
Bosco [39] (presented in Sect. 3) under its 3 different resilience conditions, the
safety and liveness (using the liveness to safety reduction presented in [30]) of
Hybrid Reliable Broadcast [40], and the safety of Byzantine Fast Paxos [23].
Hybrid Reliable Broadcast tolerates four different types of faults, while Fast
Byzantine Paxos is a fast-learning [21,22] Byzantine fault-tolerant consensus
protocol; fast-learning protocols are notorious because two such algorithms,
Zyzzyva [17] and FaB [28], were recently revealed incorrect [1] despite having
been published at major systems conferences.

Implementation. We implemented both algorithms described in Sect. 5.3.
AipEager eagerly constructs Δ by running Aip, and then uses EPR reasoning
to remove redundant formulas (whose FO representation is implied by the FO
representation of others). To reduce the number of EPR validity checks used
during this minimization step, we implemented an optimization that allows us
to prove redundancy of TIP formulas internally based on an extension of the
notion of subsumption from Sect. 5. AipLazy computes a subset of Δ while using
Aip in a lazy fashion, guided by CTIs obtained from attempting to verify the FO
transition system. Our implementations use CVC4 to discharge BAPA queries,
and Z3 to discharge EPR queries. Verification of first-order transition systems is
performed using Ivy, which internally uses Z3 as well. All experiments reported
were performed on a laptop running 64-bit Windows 10, with a Core-i5 2.2 GHz
CPU, using Z3 version 4.8.4, CVC4 version 1.7, and the latest version of Ivy.

Figure 2 lists the protocols we verified and the details of the evaluation. Each
experiment was repeated 10 times, and we report the mean time (μ) and standard

Verification of Threshold-Based Distributed Algorithms 259

F
ig
.
2
.
P

ro
to

co
ls

v
er

ifi
ed

u
si

n
g

o
u
r

te
ch

n
iq

u
e.

F
o
r

ea
ch

p
ro

to
co

l,
T

is
th

e
se

t
o
f
th

re
sh

o
ld

s
a
n
d

Γ
is

th
e

re
si

li
en

ce
co

n
d
it

io
n
.
A
ip

E
a
g
e
r

li
st

s
m

et
ri

cs
fo

r
th

e
p
ro

ce
d
u
re

o
f

fi
n
d
in

g
a
ll

Γ
-v

a
li
d

T
IP

fo
rm

u
la

s
(t

a
k
in

g
ti

m
e
t C

),
a
n
d

v
er

if
y
in

g
th

e
tr

a
n
si

ti
o
n

sy
st

em
u
si

n
g

th
e

re
su

lt
in

g
p
ro

p
er

ti
es

(t
a
k
in

g
ti

m
e
t v

).
O

b
ta

in
in

g
a

m
in

im
a
l
su

b
se

t
th

a
t

F
O

-i
m

p
li
es

th
e

re
st

ta
k
es

n
eg

li
g
ib

le
ti

m
e,

so
w

e
d
id

n
o
t

in
cl

u
d
e

it
in

th
e

ta
b
le

.
T

h
e

p
ro

p
er

ti
es

a
re

g
iv

en
in

Δ
P
r
o
t
o
c
o
l

E
a
g
e
r

,
w

h
er

e
g i

d
en

o
te

s
g ≥

t i
.
In

a
d
d
it

io
n

to
th

e
ru

n
ti

m
es

,
V

sh
ow

s
c v
,
w

h
er

e
c

is
th

e
n
u
m

b
er

o
f

Γ
-v

a
li
d

si
m

p
le

fo
rm

u
la

s
th

a
t

w
er

e
ch

ec
k
ed

u
si

n
g

th
e

B
A

P
A

so
lv

er
(C

V
C

4
),

a
n
d

v
is

th
e

to
ta

l
n
u
m

b
er

o
f
Γ

-v
a
li
d

si
m

p
le

fo
rm

u
la

s.
N

a
m

el
y,

v
−

c
si

m
p
le

fo
rm

u
la

s
w

er
e

in
fe

rr
ed

to
b
e

va
li
d

v
ia

su
b
su

m
p
ti

o
n
.
I

re
p
o
rt

s
th

e
a
n
a
lo

g
o
u
s

m
et

ri
c

fo
r

Γ
-i
n
va

li
d

si
m

p
le

fo
rm

u
la

s.
F
in

a
ll
y,

Q
re

p
o
rt

s
th

e
m

a
x
im

a
l
n
u
m

b
er

o
f
q
u
a
n
ti

fi
er

s
co

n
si

d
er

ed
(f

o
r

w
h
ic

h
a
ll

fo
rm

u
la

s
w

er
e

Γ
-i
n
va

li
d
).

A
ip

L
a
z
y

li
st

s
m

et
ri

cs
fo

r
th

e
p
ro

ce
d
u
re

o
f

fi
n
d
in

g
a

se
t

o
f
Γ

-v
a
li
d

T
IP

fo
rm

u
la

s
su

ffi
ci

en
t

to
p
ro

v
e

th
e

p
ro

to
co

l
b
a
se

d
o
n

co
u
n
te

re
x
a
m

p
le

s.
T

h
e

re
su

lt
in

g
se

t
is

li
st

ed
in

Δ
P
r
o
t
o
c
o
l

L
a
z
y

,
a
n
d
t I

li
st

s
th

e
to

ta
l
Iv

y
ru

n
ti

m
e,

w
it

h
th

e
st

a
n
d
a
rd

d
ev

ia
ti

o
n

sp
ec

ifi
ed

b
el

ow
.
V

(r
es

p
.
I)

li
st

s
th

e
n
u
m

b
er

o
f

Γ
-v

a
li
d

(r
es

p
.
Γ

-i
n
va

li
d
)

si
m

p
le

fo
rm

u
la

s
co

n
si

d
er

ed
b
ef

o
re

th
e

fi
n
a
l

se
t

w
a
s

re
a
ch

ed
.
C
T
I

li
st

s
th

e
n
u
m

b
er

o
f

co
u
n
te

re
x
a
m

p
le

it
er

a
ti

o
n
s

re
q
u
ir

ed
,

a
n
d
Q

li
st

s
th

e
m

a
x
im

a
l
n
u
m

b
er

o
f
q
u
a
n
ti

fi
er

s
o
f
a
n
y

T
IP

fo
rm

u
la

co
n
si

d
er

ed
.
F
in

a
ll
y,

t v
li
st

s
th

e
ti

m
e

re
q
u
ir

ed
to

v
er

if
y

th
e

fi
rs

t-
o
rd

er
tr

a
n
si

ti
o
n

sy
st

em
a
ss

u
m

in
g

th
e

o
b
ta

in
ed

se
t

o
f
p
ro

p
er

ti
es

.
T

.O
.
in

d
ic

a
te

s
th

a
t

a
ti

m
e

o
u
t

o
f
1

h
w

a
s

re
a
ch

ed
.

260 I. Berkovits et al.

deviation (σ). The figure’s caption explains the presented information, and we
discuss the results below.

AipEager For all protocols, running Aip took less than 1 min (column tC), and
generated all Γ -valid simple TIP formulas. We observe that for most formu-
las, (in)validity is deduced from other formulas by subsumption, and less than
2%–5% of the formulas are actually checked using a BAPA query. With the
optimization of the redundancy check, minimization of the set is performed in
negligible time. The resulting set, ΔEager, contains 3–5 formulas, compared to
39–79 before minimization.

Due to the optimization described in Sect. 4 for the BAPA validity queries,
the number of quantifiers in the TIP formulas that are checked by Aip does
not affect the time needed to compute the full Δ. For example, Bosco under
the Strongly One-step resilience condition contains Γ -valid simple TIP formulas
with up to 7 quantifiers (as n > 7t and t1 = n − t), but Aip does not take
significantly longer to find Δ. Interestingly, in this example the Γ -valid TIP
formulas with more than 3 quantifiers are implied (in FOL) by formulas with at
most 3 quantifiers, as indicated by the fact that these are the only formulas that
remain in ΔBosco Strongly One-step

Eager .

AipLazy With the lazy approach based on CTIs, the time for finding the set
of TIP formulas, ΔLazy, is generally longer. This is because the run time is
dominated by calls to Ivy with FO axioms that are too weak for verifying the
protocol. However, the resulting ΔLazy has a significant benefit: it lets Ivy prove
the protocol much faster compared to using ΔEager. Comparing tV in AipEager
vs. AipLazy shows that when the former takes a minute, the latter takes a few
seconds, and when the former times out after 1 h, the latter terminates, usually
in under 1 min. Comparing the formulas of ΔEager and ΔLazy reveals the reason.
While the FO translation of both yields EPR formulas, the formulas resulting
from ΔEager contain more quantifiers and generate much more ground terms,
which degrades the performance of Z3.

Another advantage of the lazy approach is that during the search, it avoids
considering formulas with many quantifiers unless those are actually needed.
Comparing the 3 versions of Bosco we see that AipLazy is not sensitive to the
largest number of quantifiers that may appear in a Γ -valid simple TIP formula.
The downside is that AipLazy performs many Ivy checks in order to compute the
final ΔLazy. The total duration of finding CTIs varies significantly (as demon-
strated under the column tI), in part because it is very sensitive to the CTIs
returned by Ivy, which are in turn affected by the random seed used in the
heuristics of the underlying solver.

Finally, ΔLazy provides more insight into the protocol design, since it presents
minimal assumptions that are required for protocol correctness. Thus, it may be
useful in designing and understanding protocols.

Verification of Threshold-Based Distributed Algorithms 261

7 Related Work

Fully Automatic Verification of Threshold-Based Protocols. Algorithms
modeled as Threshold automata (TA) [14] have been studied in [13,16], and ver-
ified using an automated tool ByMC [15]. The tool also automatically synthe-
sizes thresholds as arithmetic expressions [24]. Reachability properties of TAs
for more general thresholds are studied in [18]. There have been recent advances
in verification of synchronous threshold-based algorithms using TAs [41], and
of asynchronous randomized algorithms where TAs support coin tosses and an
unbounded number of rounds [4]. Still, this modeling is very restrictive and not
as faithful to the pseudo-code as our modeling.

Another approach for full automation is to use sound and incomplete proce-
dures for deduction and invariant search for logics that combine quantifiers and
set cardinalities [8,10]. However, distributed systems of the level of complexity
we consider here (e.g., Byzantine Fast Paxos) are beyond the reach of these
techniques.

Verification of Distributed Protocols Using Decidable Logics. Padon
et al. [33] introduced an interactive approach for the safety verification of dis-
tributed protocols based on EPR using the Ivy [29] verification tool. Later
works extended the approach to more complex protocols [32], their implementa-
tions [42], and liveness properties [30,31]. Those works verified some threshold
protocols using ad-hoc first-order modeling and axiomatization of threshold-
intersection properties, whereas we develop a systematic methodology. Moreover,
the axioms were not mechanically verified, except in [42], where a simple inter-
section property—intersection of two sets with more than n

2 nodes—requires a
proof by induction over n. The proof relies on a user provided induction hypoth-
esis that is automatically checked using the FAU decidable fragment [9]. This
approach requires user ingenuity even for a simple intersection property, and we
expect that it would not scale to the more complex properties required for e.g.
Bosco or Fast Byzantine Paxos. In contrast, our approach completely automates
both verification and inference of threshold-intersection properties required to
verify protocol correctness.

Dragoi et al. [6] propose a decidable logic supporting cardinalities, uninter-
preted functions, and universal quantifiers for verifying consensus algorithms
expressed in the partially synchronous Heard-Of Model. As in this paper, the
user is expected to provide an inductive invariant. The PSync framework [7]
extends the approach to protocol implementations. Compared to our approach,
the approach of Dragoi et al. is less flexible due to the specialized logic used and
the restrictions of the Heard-Of Model.

Our approach decomposes verification into EPR and BAPA. Piskac [34]
presents a decidable logic that combines BAPA and EPR, with some restric-
tions. The verification conditions of the protocols we consider are outside the
scope of this fragment since they include cardinality constraints in the scope of
quantifiers. Furthermore, this logic is not supported by mature solvers. Instead

262 I. Berkovits et al.

of looking for a specialized logic per protocol, we rely on a decomposition which
allows more flexibility.

Recently, [11] presented an approach for verifying asynchronous algorithms
by reduction to synchronous verification. This technique is largely orthogonal
and complementary to our approach, which is focused on the challenge of cardi-
nality thresholds.

Verification using interactive theorem provers. We are not aware of works based
on interactive theorem provers that verified protocols with complex thresholds
as we do in this work (although doing so is of course possible). However, many
works used interactive theorem provers to verify related protocols, e.g., [12,27,
36–38,43] (the most related protocols use either n

2 or 2n
3 as the only thresholds,

other protocols do not involve any thresholds). The downside of verification
using interactive theorem provers is that it requires tremendous human efforts
and skills. For example, the Verdi proof of Raft included 50,000 lines of proof
in Coq for 500 lines of code [44].

8 Conclusion

This paper proposes a new deductive verification approach for threshold-based
distributed protocols by decomposing the verification problem into two well-
established decidable logics, BAPA and EPR, thus allowing greater flexibility
compared to monolithic approaches based on domain-specific, specialized logics.
The user models their protocol in EPR, defines the thresholds and resilience
conditions using arithmetic in BAPA, and provides an inductive invariant. An
automatic procedure infers threshold intersection properties expressed in TIP
that are both (1) sound w.r.t. the resilience conditions (checked in quantifier-
free BAPA) and (2) sufficient to discharge the VCs (checked in EPR). Both
logics are supported by mature solvers, and allow providing the user with an
understandable counterexample in case verification fails.

Our evaluation, which includes notoriously tricky fast-learning consensus pro-
tocols, shows that threshold intersection properties are inferred in a matter of
minutes. While this may be too slow for interactive use, we expect improvements
such as memoization and parallelism to provide response times of a few seconds
in an iterative, interactive setting. Another potential future direction is combin-
ing our inference algorithm with automated invariant inference algorithms.

Acknowledgements. We thank the anonymous referees for insightful comments
which improved this paper. This publication is part of a project that has received
funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No [759102-SVIS]
and [787367-PaVeS]). The research was partially supported by Len Blavatnik and the
Blavatnik Family foundation, the Blavatnik Interdisciplinary Cyber Research Center,
Tel Aviv University, the Israel Science Foundation (ISF) under grant No. 1810/18, the
United States-Israel Binational Science Foundation (BSF) grant No. 2016260 and the
Austrian Science Fund (FWF) through Doctoral College LogiCS (W1255-N23).

Verification of Threshold-Based Distributed Algorithms 263

References

1. Abraham, I., Gueta, G., Malkhi, D., Alvisi, L., Kotla, R., Martin, J.P.: Revisiting
Fast Practical Byzantine Fault Tolerance (2017)

2. Bansal, K., Reynolds, A., Barrett, C., Tinelli, C.: A new decision procedure for
finite sets and cardinality constraints in SMT. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 82–98. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-40229-1 7

3. Berkovits, I., Lazić, M., Losa, G., Padon, O., Shoham, S.: Verification of
threshold-based distributed algorithms by decomposition to decidable logics. CoRR
abs/1905.07805 (2019). http://arxiv.org/abs/1905.07805

4. Bertrand, N., Konnov, I., Lazic, M., Widder, J.: Verification of Randomized Dis-
tributed Algorithms under Round-Rigid Adversaries. HAL hal-01925533, Novem-
ber 2018. https://hal.inria.fr/hal-01925533

5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

6. Drăgoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A logic-based
framework for verifying consensus algorithms. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 161–181. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54013-4 10

7. Dragoi, C., Henzinger, T.A., Zufferey, D.: PSync: A partially synchronous lan-
guage for fault-tolerant distributed algorithms. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20–22, 2016, vol. 51, no. 1,
pp. 400–415 (2016). https://dblp.uni-trier.de/rec/bibtex/conf/popl/DragoiHZ16?
q=speculative%20AQ4%20Byzantine%20fault%20tolerance

8. Dutertre, B., Jovanović, D., Navas, J.A.: Verification of fault-tolerant protocols
with sally. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol.
10811, pp. 113–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77935-5 8

9. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

10. v. Gleissenthall, K., Bjørner, N., Rybalchenko, A.: Cardinalities and universal
quantifiers for verifying parameterized systems. In: Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, pp. 599–613. ACM (2016)

11. von Gleissenthall, K., Kici, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend syn-
chrony: synchronous verification of asynchronous distributed programs. PACMPL
3(POPL), 59:1–59:30 (2019). https://dl.acm.org/citation.cfm?id=3290372

12. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: Ironfleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, 4–7 October 2015, pp. 1–17 (2015). https://doi.org/10.1145/
2815400.2815428,

https://doi.org/10.1007/978-3-319-40229-1_7
https://doi.org/10.1007/978-3-319-40229-1_7
http://arxiv.org/abs/1905.07805
https://hal.inria.fr/hal-01925533
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-54013-4_10
https://doi.org/10.1007/978-3-642-54013-4_10
https://dblp.uni-trier.de/rec/bibtex/conf/popl/DragoiHZ16?q=speculative%20AQ4%20Byzantine%20fault%20tolerance
https://dblp.uni-trier.de/rec/bibtex/conf/popl/DragoiHZ16?q=speculative%20AQ4%20Byzantine%20fault%20tolerance
https://doi.org/10.1007/978-3-319-77935-5_8
https://doi.org/10.1007/978-3-319-77935-5_8
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://dl.acm.org/citation.cfm?id=3290372
https://doi.org/10.1145/2815400.2815428,
https://doi.org/10.1145/2815400.2815428,

264 I. Berkovits et al.

13. Konnov, I., Lazic, M., Veith, H., Widder, J.: Para2: Parameterized path
reduction, acceleration, and SMT for reachability in threshold-guarded dis-
tributed algorithms. Form. Methods Syst. Des. 51(2), 270–307 (2017).
https://link.springer.com/article/10.1007/s10703-017-0297-4

14. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: reachability. Inf. Comput. 252, 95–109
(2017)

15. Konnov, I., Widder, J.: ByMC: byzantine model checker. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 327–342. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03424-5 22

16. Konnov, I.V., Lazic, M., Veith, H., Widder, J.: A short counterexample property
for safety and liveness verification of fault-tolerant distributed algorithms. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, 18–20 January 2017, pp. 719–734 (2017)

17. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
Byzantine fault tolerance. SIGOPS Oper. Syst. Rev. 41(6), 45–58 (2007)

18. Kukovec, J., Konnov, I., Widder, J.: Reachability in parameterized systems: all
flavors of threshold automata. In: CONCUR. LIPIcs, vol. 118, pp. 19:1–19:17.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

19. Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: boolean
algebra with presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS
(LNAI), vol. 3632, pp. 260–277. Springer, Heidelberg (2005). https://doi.org/10.
1007/11532231 20

20. Lamport, L.: The Part-time Parliament 16(2), 133–169 (1998–2005). https://doi.
org/10.1145/279227.279229

21. Lamport, L.: Lower bounds for asynchronous consensus. In: Schiper, A., Shvarts-
man, A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in Distributed
Computing. LNCS, vol. 2584, pp. 22–23. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-37795-6 4

22. Lamport, L.: Lower bounds for asynchronous consensus. Distrib. Comput. 19(2),
104–125 (2006)

23. Lamport, L.: Fast byzantine paxos, 17 November 2009. uS Patent 7,620,680
24. Lazic, M., Konnov, I., Widder, J., Bloem, R.: Synthesis of distributed algorithms

with parameterized threshold guards. In: OPODIS (2017, to appear). http://
forsyte.at/wp-content/uploads/opodis17.pdf

25. Lewis, H.R.: Complexity results for classes of quantificational formulas. Comput.
Syst. Sci. 21(3), 317–353 (1980)

26. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible mus enumer-
ation. Constraints 21(2), 223–250 (2016)

27. Liu, Y.A., Stoller, S.D., Lin, B.: From clarity to efficiency for distributed algo-
rithms. ACM Trans. Program. Lang. Syst. 39(3), 121–1241 (2017). https://doi.
org/10.1145/2994595

28. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Trans. Dependable Secure
Comput. 3(3), 202–215 (2006)

29. McMillan, K.L., Padon, O.: Deductive verification in decidable fragments with ivy.
In: Podelski, A. (ed.) SAS 2018. LNCS, vol. 11002, pp. 43–55. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99725-4 4

30. Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reducing
liveness to safety in first-order logic. PACMPL 2(POPL), 26:1–26:33 (2018)

https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10703-017-0297-4
https://doi.org/10.1007/978-3-030-03424-5_22
https://doi.org/10.1007/11532231_20
https://doi.org/10.1007/11532231_20
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.1007/3-540-37795-6_4
https://doi.org/10.1007/3-540-37795-6_4
http://forsyte.at/wp-content/uploads/opodis17.pdf
http://forsyte.at/wp-content/uploads/opodis17.pdf
https://doi.org/10.1145/2994595
https://doi.org/10.1145/2994595
https://doi.org/10.1007/978-3-319-99725-4_4

Verification of Threshold-Based Distributed Algorithms 265

31. Padon, O., Hoenicke, J., McMillan, K.L., Podelski, A., Sagiv, M., Shoham, S.:
Temporal prophecy for proving temporal properties of infinite-state systems. In:
FMCAD, pp. 1–11. IEEE (2018)

32. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning
about distributed protocols. PACMPL 1(OOPSLA), 1081–10831 (2017)

33. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Krintz, C., Berger, E. (eds.) Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, 13–17 June 2016, pp. 614–
630. ACM (2016)

34. Piskac, R.: Decision procedures for program synthesis and verification (2011).
http://infoscience.epfl.ch/record/168994

35. Piskac, R., de Moura, L., Bjrner, N.: Deciding effectively propositional logic using
DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010)

36. Rahli, V., Guaspari, D., Bickford, M., Constable, R.L.: Formal specification, ver-
ification, and implementation of fault-tolerant systems using eventml. ECEASST
72 (2015). https://doi.org/10.14279/tuj.eceasst.72.1013

37. Rahli, V., Vukotic, I., Völp, M., Esteves-Verissimo, P.: Velisarios: Byzantine fault-
tolerant protocols powered by Coq. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol.
10801, pp. 619–650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89884-1 22

38. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. PACMPL 2(POPL), 28:1–28:30 (2018)

39. Song, Y.J., van Renesse, R.: Bosco: one-step Byzantine asynchronous consensus.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-87779-0 30

40. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Dist. Comp. 2, 80–94 (1987)

41. Stoilkovska, I., Konnov, I., Widder, J., Zuleger, F.: Verifying safety of synchronous
fault-tolerant algorithms by bounded model checking. In: Vojnar, T., Zhang, L.
(eds.) TACAS 2019. LNCS, vol. 11428, pp. 357–374. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17465-1 20

42. Taube, M., et al.: Modularity for decidability of deductive verification with appli-
cations to distributed systems. In: PLDI, pp. 662–677. ACM (2018)

43. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying
distributed systems. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, 15–17
June 2015, pp. 357–368 (2015). https://doi.org/10.1145/2737924.2737958

44. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.E.: Plan-
ning for change in a formal verification of the raft consensus protocol. In: Proceed-
ings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs,
Saint Petersburg, FL, USA, 20–22 January 2016, pp. 154–165 (2016). https://doi.
org/10.1145/2854065.2854081

http://infoscience.epfl.ch/record/168994
https://doi.org/10.14279/tuj.eceasst.72.1013
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1007/978-3-540-87779-0_30
https://doi.org/10.1007/978-3-030-17465-1_20
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2854065.2854081
https://doi.org/10.1145/2854065.2854081

266 I. Berkovits et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Verification of Threshold-Based Distributed Algorithms by Decomposition to Decidable Logics
	1 Introduction
	2 Preliminaries
	3 First-Order Modeling of Threshold-Based Protocols
	3.1 Threshold-Based Protocols
	3.2 Modeling in FOL

	4 Decomposition via Threshold Intersection Properties
	4.1 Threshold Intersection Property Language
	4.2 Translation to FOL

	5 Automatically Inferring Threshold Intersection Properties
	5.1 Finding Consequences in the Threshold Intersection Property Language
	5.2 From TIP to Axioms in EPR
	5.3 Finding Minimal Properties Required for a Protocol

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

