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Abstract. Statistical model checking (SMC) is a technique for analysis
of probabilistic systems that may be (partially) unknown. We present an
SMC algorithm for (unbounded) reachability yielding probably approx-
imately correct (PAC) guarantees on the results. We consider both the
setting (i) with no knowledge of the transition function (with the only
quantity required a bound on the minimum transition probability) and
(ii) with knowledge of the topology of the underlying graph. On the
one hand, it is the first algorithm for stochastic games. On the other
hand, it is the first practical algorithm even for Markov decision pro-
cesses. Compared to previous approaches where PAC guarantees require
running times longer than the age of universe even for systems with a
handful of states, our algorithm often yields reasonably precise results
within minutes, not requiring the knowledge of mixing time.

Introduction

®

Check for
updates

Statistical model checking (SMC) [YS02a] is an analysis technique for prob-
abilistic systems based on

1.
2.
3.

simulating finitely many finitely long runs of the system,
statistical analysis of the obtained results,

yielding a confidence interval/probably approximately correct (PAC) result
on the probability of satisfying a given property, i.e., there is a non-zero prob-
ability that the bounds are incorrect, but they are correct with probability
that can be set arbitrarily close to 1.

One of the advantages is that it can avoid the state-space explosion problem,
albeit at the cost of weaker guarantees. Even more importantly, this technique
is applicable even when the model is not known (black-box setting) or only
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qualitatively known (grey-box setting), where the exact transition probabilities
are unknown such as in many cyber-physical systems.

In the basic setting of Markov chains [Nor98| with (time- or step-)bounded
properties, the technique is very efficient and has been applied to numerous
domains, e.g. biological [JCL+09,PGL+13], hybrid [ZPC10,DDL+12,EGF12,
Larl2] or cyber-physical [BBB+10,CZ11,DDL+13] systems and a substantial
tool support is available [JLS12,BDL+12,BCLS13,BHH12]. In contrast, when-
ever either (i) infinite time-horizon properties, e.g. reachability, are considered or
(ii) non-determinism is present in the system, providing any guarantees becomes
significantly harder.

Firstly, for infinite time-horizon properties we need a stopping criterion such
that the infinite-horizon property can be reliably evaluated based on a finite
prefix of the run yielded by simulation. This can rely on the the complete knowl-
edge of the system (white-box setting) [YCZ10,LP08], the topology of the system
(grey box) [YCZ10,HJB+10], or a lower bound py;, on the minimum transition
probability in the system (black box) [DHKP16,BCC+14].

Secondly, for Markov decision processes (MDP) [Putl4] with (non-trivial)
non-determinism, [HMZ+12] and [LP12] employ reinforcement learning [SB9S]
in the setting of bounded properties or discounted (and for the purposes of
approximation thus also bounded) properties, respectively. The latter also yields
PAC guarantees.

Finally, for MDP with unbounded properties, [BFHH11] deals with MDP
with spurious non-determinism, where the way it is resolved does not affect
the desired property. The general non-deterministic case is treated in [FT14,
BCC+14], yielding PAC guarantees. However, the former requires the knowledge
of mixing time, which is at least as hard to compute; the algorithm in the latter
is purely theoretical since before a single value is updated in the learning process,
one has to simulate longer than the age of universe even for a system as simple
as a Markov chain with 12 states having at least 4 successors for some state.

Our contribution is an SMC algorithm with PAC guarantees for (i) MDP and
unbounded properties, which runs for realistic benchmarks [HKP+19] and con-
fidence intervals in orders of minutes, and (ii) is the first algorithm for stochastic
games (SG). It relies on different techniques from literature.

1. The increased practical performance rests on two pillars:

— extending early detection of bottom strongly connected components in
Markov chains by [DHKP16] to end components for MDP and simple
end components for SG;

— improving the underlying PAC Q-learning technique of [SLW+06]:

(a) learning is now model-based with better information reuse instead of
model-free, but in realistic settings with the same memory require-
ments,

(b) better guidance of learning due to interleaving with precise computa-
tion, which yields more precise value estimates.

(c) splitting confidence over all relevant transitions, allowing for variable
width of confidence intervals on the learnt transition probabilities.
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2. The transition from algorithms for MDP to SG is possible via extend-
ing the over-approximating value iteration from MDP [BCC+14] to SG by
[KKKW18].

To summarize, we give an anytime PAC SMC algorithm for (unbounded) reach-
ability. It is the first such algorithm for SG and the first practical one for MDP.

Related Work

Most of the previous efforts in SMC have focused on the analysis of properties
with bounded horizon [YS02a,SVA04, YKNP06,JCL+09,JLS12, BDL+12].

SMC of unbounded properties was first considered in [HLMPO04] and the
first approach was proposed in [SVAO05], but observed incorrect in [HJB+10].
Notably, in [YCZ10] two approaches are described. The first approach proposes
to terminate sampled paths at every step with some probability pierm and re-
weight the result accordingly. In order to guarantee the asymptotic convergence
of this method, the second eigenvalue A of the chain and its mixing time must
be computed, which is as hard as the verification problem itself and requires the
complete knowledge of the system (white box setting). The correctness of [LP08]
relies on the knowledge of the second eigenvalue A, too. The second approach
of [YCZ10] requires the knowledge of the chain’s topology (grey box), which is
used to transform the chain so that all potentially infinite paths are eliminated.
In [HJB+10], a similar transformation is performed, again requiring knowledge
of the topology. In [DHKP16], only (a lower bound on) the minimum transition
probability puyi, is assumed and PAC guarantees are derived. While unbounded
properties cannot be analyzed without any information on the system, knowledge
of Pmin 18 a relatively light assumption in many realistic scenarios [DHKP16]. For
instance, bounds on the rates for reaction kinetics in chemical reaction systems
are typically known; for models in the PRISM language [KNP11], the bounds
can be easily inferred without constructing the respective state space. In this
paper, we thus adopt this assumption.

In the case with general non-determinism, one approach is to give the non-
determinism a probabilistic semantics, e.g., using a uniform distribution instead,
as for timed automata in [DLL+11a, DLL+11b,Lar13]. Others [LP12,HMZ+12,
BCC+14] aim to quantify over all strategies and produce an e-optimal strategy.
In [HMZ+12], candidates for optimal strategies are generated and gradually
improved, but “at any given point we cannot quantify how close to optimal
the candidate scheduler is” (cited from [HMZ+12]) and the algorithm “does
not in general converge to the true optimum” (cited from [LST14]). Further,
[LST14,DLST15,DHS18] randomly sample compact representation of strategies,
resulting in useful lower bounds if e-schedulers are frequent. [HPS+19] gives
a convergent model-free algorithm (with no bounds on the current error) and
identifies that the previous [SKC+14] “has two faults, the second of which also
affects approaches [...] [HAK18,HAK19]”.

Several approaches provide SMC for MDPs and unbounded properties with
PAC guarantees. Firstly, similarly to [LP08,YCZ10], [FT14] requires (1) the
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mixing time 7" of the MDP. The algorithm then yields PAC bounds in time
polynomial in 7' (which in turn can of course be exponential in the size of the
MDP). Moreover, the algorithm requires (2) the ability to restart simulations
also in non-initial states, (3) it only returns the strategy once all states have
been visited (sufficiently many times), and thus (4) requires the size of the state
space |S|. Secondly, [BCC+14], based on delayed Q-learning (DQL) [SLW+06],
lifts the assumptions (2) and (3) and instead of (1) mixing time requires only (a
bound on) the minimum transition probability pmin. Our approach additionally
lifts the assumption (4) and allows for running times faster than those given by
T, even without the knowledge of T.

Reinforcement learning (without PAC bounds) for stochastic games has been
considered already in [LN81,Lit94,BT99]. [WT16] combines the special case of
almost-sure satisfaction of a specification with optimizing quantitative objec-
tives. We use techniques of [KKKW18], which however assumes access to the
transition probabilities.

2 Preliminaries

2.1 Stochastic Games

A probability distribution on a finite set X is a mapping § : X — [0,1], such
that > .y d(x) = 1. The set of all probability distributions on X is denoted
by D(X). Now we define turn-based two-player stochastic games. As opposed to
the notation of e.g. [Con92], we do not have special stochastic nodes, but rather
a probabilistic transition function.

Definition 1 (SG). A  stochastic  game  (SG) is a  tuple
G=(55, Sois A Av, T), where S is a finite set of states partitioned! into the

2

sets S and SO of states of the player Maxzimizer and Minimizer=-, respectively

sy € S is the nitial state, A is a finite set of actions, Av : S — 2A assigns to every
state a set of available actions, and T : S x A — D(S) is a transition function
that given a state s and an action a € Av(s) yields a probability distribution

over successor states. Note that for ease of notation we write T(s,a,t) instead
of T(s,a)(t).

A Markov decision process (MDP) is a special case of SG where S = 0. A
Markov chain (MC) can be seen as a special case of an MDP, where for all
s €S :|Av(s)| = 1. We assume that SG are non-blocking, so for all states s we
have Av(s) # 0.

For a state s and an available action a € Av(s), we denote the set of successors
by Post(s,a) := {t | T(s,a,t) > 0}. We say a state-action pair (s,a) is an exit
of a set of states T, written (s,a)exitsT, if 3t € Post(s,a) : t ¢ T, i.e., if with
some probability a successor outside of T' could be chosen.

We consider algorithms that have a limited information about the SG.

1 I.e., SD Q S7 SO Q S, SDUSO :S, and SDOSQ =@
2 The names are chosen, because Maximizer maximizes the probability of reaching a
given target state, and Minimizer minimizes it.
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Definition 2 (Black box and grey box). An algorithm inputs an SG as
black box if it cannot access the whole tuple, but

— it knows the initial state,
— for a given state, an oracle returns its player and available action,
— given a state s and action a, it can sample a successor t according to T(s,a),
~ it knows pmin < Minges aeav(s) T(s,a,t), an under-approzimation of the min-
tEPost (s,a)
imum transition probability.

3

When input as grey box it additionally knows the number |Post(s,a)| of succes-
sors for each state s and action a.*

The semantics of SG is given in the usual way by means of strategies and the
induced Markov chain [BKO08] and its respective probability space, as follows.
An infinite path p is an infinite sequence p = syagsia; -+ € (S x A)¥, such that
for every i € N, a; € Av(s;) and s, ; € Post(s;,a;).

A strategy of Maximizer or Minimizer is a function o : S — D(A) or S —
D(A), respectively, such that o(s) € D(Av(s)) for all s. Note that we restrict to
memoryless/positional strategies, as they suffice for reachability in SGs [CH12].

A pair (o,7) of strategies of Maximizer and Minimizer induces a Markov
chain G?7 with states S, s, being initial, and the transition function T(s)(t) =
> acav(s) 0(s)(@) - T(s,a,t) for states of Maximizer and analogously for states of
Minimizer, with o replaced by 7. The Markov chain induces a unique probability
distribution P?7 over measurable sets of infinite paths [BK08, Ch. 10].

2.2 Reachability Objective

For a goal set Goal C S, we write ¢0Goal := {syags;a; -+ | 3 € N: s, € Goal}
to denote the (measurable) set of all infinite paths which eventually reach Goal.
For each s € S, we define the value in s as

V(s) := supinf PJ"" (QGoal) = inf sup PZ"" (O Goal),

where the equality follows from [Mar75]. We are interested in V(sy), its
e-approximation and the corresponding (e-)optimal strategies for both players.

3 Up to this point, this definition conforms to black box systems in the sense of [SVA04]
with sampling from the initial state, being slightly stricter than [YS02a] or [RP09],
where simulations can be run from any desired state. Further, we assume that we
can choose actions for the adversarial player or that she plays fairly. Otherwise the
adversary could avoid playing her best strategy during the SMC, not giving SMC
enough information about her possible behaviours.

4 This requirement is slightly weaker than the knowledge of the whole topology, i.e.
Post(s,a) for each s and a.
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Let Zero be the set of states, from which there is no finite path to any state
in Goal. The value function V satisfies the following system of equations, which
is referred to as the Bellman equations:

max,eav(s) V(s,a) ifs e Sy
mineav(s) V(s,a) ifs €Sy
1 if s € Goal
0 if s € Zero

V(s) =

with the abbreviation V(s,a) := >, 4 T(s,a,s’)-V(s'). Moreover, V is the least
solution to the Bellman equations, see e.g. [CHOS].

2.3 Bounded and Asynchronous Value Iteration

The well known technique of value iteration, e.g. [Put14, RF91], works by starting
from an under-approximation of value function and then applying the Bellman
equations. This converges towards the least fixpoint of the Bellman equations,
i.e. the value function. Since it is difficult to give a convergence criterion, the
approach of bounded value iteration (BVI, also called interval iteration) was
developed for MDP [BCC+14,HM17] and SG [KKKW18]. Beside the under-
approximation, it also updates an over-approximation according to the Bellman
equations. The most conservative over-approximation is to use an upper bound
of 1 for every state. For the under-approximation, we can set the lower bound
of target states to 1; all other states have a lower bound of 0. We use the func-
tion INITIALIZE_.BOUNDS in our algorithms to denote that the lower and upper
bounds are set as just described; see [AKW19, Algorithm 8] for the pseudocode.
Additionally, BVI ensures that the over-approximation converges to the least
fixpoint by taking special care of end components, which are the reason for not
converging to the true value from above.

Definition 3 (End component (EC)). A non-empty set T C S of states is
an end component (EC) if there is a non-empty set B C |J . Av(s) of actions
such that (i) for each s € T,a € BN Av(s) we do not have (s,a)exitsT and (i)
for each s,s' € T there is a finite path w = sa ...a,s € (T x B)* x T, i.e. the
path stays inside T and only uses actions in B.

Intuitively, ECs correspond to bottom strongly connected components of the
Markov chains induced by possible strategies, so for some pair of strategies all
possible paths starting in the EC remain there. An end component T is a mazimal
end component (MEC) if there is no other end component 7" such that 7' C 7.
Given an SG G, the set of its MECs is denoted by MEC(G).

Note that, to stay in an EC in an SG, the two players would have to cooperate,
since it depends on the pair of strategies. To take into account the adversarial
behaviour of the players, it is also relevant to look at a subclass of ECs, the so
called simple end components, introduced in [KKKW18].
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Definition 4 (Simple end component (SEC) [KKKW18]). An EC T is
called simple, if for all s € T it holds that V(s) = bestExit(T,V), where

1 if T'N Goal # 0

max sernsg f(s,a) else
(s,a) exits T'

bestExit (T, f) :=

is called the best exit (of Maximizer) from T according to the function f : S — R.
To handle the case that there is no exit of Maximizer in T we set maxy = 0.

Intuitively, SECs are ECs where Minimizer does not want to use any of
her exits, as all of them have a greater value than the best exit of Maximizer.
Assigning any value between those of the best exits of Maximizer and Minimizer
to all states in the EC is a solution to the Bellman equations, because both
players prefer remaining and getting that value to using their exits [KKKW18,
Lemma 1]. However, this is suboptimal for Maximizer, as the goal is not reached
if the game remains in the EC forever. Hence we “deflate” the upper bounds
of SECs, i.e. reduce them to depend on the best exit of Maximizer. T is called
maximal simple end component (MSEC), if there is no SEC T” such that T C T".
Note that in MDPs, treating all MSECs amounts to treating all MECs.

Algorithm 1. Bounded value iteration algorithm for SG (and MDP)
1: procedure BVI(SG G, target set Goal, precision € > 0)

2: INITIALIZE.BOUNDS

3: repeat

4: X «— SIMULATE until LOOPING or state in Goal is hit

5: UPDATE(X) > Bellman updates or their modification
6: for T' € FIND_MSECs(X) do

7 DEFLATE(T) > Decrease the upper bound of MSECs
8 until U(sg) — L(sp) < €

Algorithm 1 rephrases that of [KKKW18] and describes the general structure
of all bounded value iteration algorithms that are relevant for this paper. We
discuss it here since all our improvements refer to functions (in capitalized font)
in it. In the next section, we design new functions, pinpointing the difference
to the other papers. The pseudocode of the functions adapted from the other
papers can be found, for the reader’s convenience, in [AKW19, Appendix A].
Note that to improve readability, we omit the parameters G, Goal,L and U of
the functions in the algorithm.

Bounded Value Iteration: For the standard bounded value iteration algo-
rithm, Line 4 does not run a simulation, but just assigns the whole state
space S to X°. Then it updates all values according to the Bellman equations.

5 Since we mainly talk about simulation based algorithms, we included this line to
make their structure clearer.
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After that it finds all the problematic components, the MSECs, and “deflates”
them as described in [KKKW18], i.e. it reduces their values to ensure the con-
vergence to the least fixpoint. This suffices for the bounds to converge and the
algorithm to terminate [KKKW18, Theorem 2].

Asynchronous Bounded Value Iteration: To tackle the state space explo-
sion problem, asynchronous simulation/learning-based algorithms have been
developed [MLGO05,BCC+14, KKKW18]. The idea is not to update and deflate
all states at once, since there might be too many, or since we only have limited
information. Instead of considering the whole state space, a path through the
SG is sampled by picking in every state one of the actions that look optimal
according to the current over-/under-approximation and then sampling a suc-
cessor of that action. This is repeated until either a target is found, or until the
simulation is looping in an EC; the latter case occurs if the heuristic that picks
the actions generates a pair of strategies under which both players only pick
staying actions in an EC. After the simulation, only the bounds of the states on
the path are updated and deflated. Since we pick actions which look optimal in
the simulation, we almost surely find an e-optimal strategy and the algorithm
terminates [BCC+14, Theorem 3.

3 Algorithm

3.1 Model-Based

Given only limited information, updating cannot be done using T, since the true
probabilities are not known. The approach of [BCC+14] is to sample for a high
number of steps and accumulate the observed lower and upper bounds on the
true value function for each state-action pair. When the number of samples is
large enough, the average of the accumulator is used as the new estimate for
the state-action pair, and thus the approximations can be improved and the
results back-propagated, while giving statistical guarantees that each update
was correct. However, this approach has several drawbacks, the biggest of which
is that the number of steps before an update can occur is infeasibly large, often
larger than the age of the universe, see Table1 in Sect. 4.

Our improvements to make the algorithm practically usable are linked to
constructing a partial model of the given system. That way, we have more infor-
mation available on which we can base our estimates, and we can be less conser-
vative when giving bounds on the possible errors. The shift from model-free to
model-based learning asymptotically increases the memory requirements from
O(|S| - |A]) (as in [SLW+06,BCC+14]) to O(|S|* - |A|). However, for systems
where each action has a small constant bound on the number of successors,
which is typical for many practical systems, e.g. classical PRISM benchmarks,
it is still O(|S| - |A|) with a negligible constant difference.

We thus track the number of times some successor t has been observed when
playing action a from state s in a variable #(s,a,t). This implicitly induces
the number of times each state-action pair (s,a) has been played #(s,a) =
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> tes #(s,a,t). Given these numbers we can then calculate probability estimates
for every transition as described in the next subsection. They also induce the
set of all states visited so far, allowing us to construct a partial model of the
game. See [AKW19, Appendix A.2] for the pseudo-code of how to count the
occurrences during the simulations.

3.2 Safe Updates with Confidence Intervals Using Distributed
Error Probability

We use the counters to compute a lower estimate of the transition probability
for some error tolerance dt as follows: We view sampling t from state-action pair
(s,a) as a Bernoulli sequence, with success probability T(s,a,t), the number of
trials #(s, a) and the number of successes #(s, a,t). The tightest lower estimate
we can give using the Hoeffding bound (see [AKW19, Appendix D.1]) is

#(s,a,t)
#(s,a)

T(s,a,t) := max(0,

— ), (1)

where the confidence width ¢ := ,/%. Since ¢ could be greater than 1,

we limit the lower estimate to be at least 0. Now we can give modified update
equations:

L(s,a): Z T(s,a,t) - L(t)

t:#(s,a,t)>0

U(s,a) = Yo Tat) U |+(1- Y Teat

t:#(s,a,t)>0 t:#(s,a,t)>0

The idea is the same for both upper and lower bound: In contrast to the usual
Bellman equation (see Sect.2.2) we use T instead of T. But since the sum of all
the lower estimates does not add up to one, there is some remaining probability
for which we need to under-/over-approximate the value it can achieve. We use

o=
ai p1
bz

by p2

B

Fig.1. A running example of an SG. The dashed part is only relevant for the later
examples. For actions with only one successor, we do not depict the transition proba-
bility 1 (e.g. T(so, a1,s1)). For state-action pair (s1, b2), the transition probabilities are
parameterized and instantiated in the examples where they are used.
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the safe approximations 0 and 1 for the lower and upper bound respectively; this
is why in L there is no second term and in U the whole remaining probability
is added. Algorithm 2 shows the modified update that uses the lower estimates;
the proof of its correctness is in [AKW19, Appendix D.2].

Lemma 1 (UPDATE is correct). Given correct under- and over-approzi-
mations L,U of the value function V, and correct lower probability estimates
T, the under- and over-approximations after an application of UPDATE are also
correct.

Algorithm 2. New update procedure using the probability estimates

1: procedure UPDATE(State set X)
2: for f e {L,U} do > For both functions
3: for s € X \ Goal do > For all non-target states in the given set

mMaxX, c Ay (s) f(s,a) if s € Sy
f(s) = ~
min,eavs) f (s,a) ifs € So

4:

Ezxample 1. We illustrate how the calculation works and its huge advantage over
the approach from [BCC+14] on the SG from Fig. 1. For this example, ignore
the dashed part and let p; = po = 0.5, i.e. we have no self loop, and an even
chance to go to the target 1 or a sink 0. Observe that hence V(sp) = V(s1) = 0.5.

Given an error tolerance of § = 0.1, the algorithm of [BCC+14] would have
to sample for more than 10° steps before it could attempt a single update. In
contrast, assume we have seen 5 samples of action bo, where 1 of them went to 1
and 4 of them to 0. Note that, in a sense, we were unlucky here, as the observed
averages are very different from the actual distribution. The confidence width for
or = 0.1 and 5 samples is 1/In(0.1)/ — 2 -5 ~ 0.48. So given that data, we get
T (s1, bp, 1) = max(0,0.2—0.48) = 0 and T (sy, by, 0) = max(0,0.8 —0.48) = 0.32.
Note that both probabilities are in fact lower estimates for their true counterpart.

Assume we already found out that o is a sink with value 0; how we gain this
knowledge is explained in the following subsections. Then, after getting only
these 5 samples, UPDATE already decreases the upper bound of (s1,bz) to 0.68,
as we know that at least 0.32 of T(s1,b2) goes to the sink.

Given 500 samples of action by, the confidence width of the probability esti-
mates already has decreased below 0.05. Then, since we have this confidence
width for both the upper and the lower bound, we can decrease the total preci-
sion for (s1,bz) to 0.1, i.e. return an interval in the order of [0.45;0.55]. <

Summing up: with the model-based approach we can already start updating after
very few steps and get a reasonable level of confidence with a realistic number
of samples. In contrast, the state-of-the-art approach of [BCC+14] needs a very
large number of samples even for this toy example.

Since for UPDATE we need an error tolerance for every transition, we need
to distribute the given total error tolerance § over all transitions in the current
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partial model. For all states in the explored partial model S we know the number
of available actions and can over-approximate the number of successors as —

Pmin

Thus the error tolerance for each transition can be set to i1 := 9 Pmin

" [{alseSnaeav(s)}|”
This is illustrated in Example 4 in [AKW19, Appendix B].
Note that the fact that the error tolerance dr for every transition is the same
does not imply that the confidence width for every transition is the same, as the
latter becomes smaller with increasing number of samples #(s, a).

3.3 Improved EC Detection

As mentioned in the description of Algorithm 1, we must detect when the simu-
lation is stuck in a bottom EC and looping forever. However, we may also stop
simulations that are looping in some EC but still have a possibility to leave it;
for a discussion of different heuristics from [BCC+14, KKKW18], see [AKW109,
Appendix A.3].

We choose to define LOOPING as follows: Given a candidate for a bottom EC,
we continue sampling until we are dr-sure (i.e. the error probability is smaller
than dr) that we cannot leave it. Then we can safely deflate the EC, i.e. decrease
all upper bounds to zero.

To detect that something is a dr-sure EC, we do not sample for the astronom-
ical number of steps as in [BCC+14], but rather extend the approach to detect
bottom strongly connected components from [DHKP16]. If in the EC-candidate
T there was some state-action pair (s,a) that actually has a probability to exit
the T, that probability is at least puyin. So after sampling (s, a) for n times, the
probability to overlook such a leaving transition is (1 — pyin)™ and it should be

smaller than dr. Solving the inequation for the required number of samples n
In(dt)

ln(lfpinm) )

Algorithm 3 checks that we have seen all staying state-action pairs n times,

and hence that we are dp-sure that T is an EC. Note that we restrict to staying
state-action pairs, since the requirement for an EC is only that there exist staying
actions, not that all actions stay. We further speed up the EC-detection, because
we do not wait for n samples in every simulation, but we use the aggregated
counters that are kept over all simulations.

yields n >

Algorithm 3. Check whether we are dr-sure that T is an EC

1: procedure Or-sure EC (State set T')

2: requiredSamples = %
3: B «—{(s,a) |s € T A—(s,a)exitsT} > Set of staying state-action pairs

4: return /\(s’a)EB #(s,a) > requiredSamples

We stop a simulation, if LOOPING returns true, i.e. under the following three
conditions: (i) We have seen the current state before in this simulation (s € X),
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i.e. there is a cycle. (ii) This cycle is explainable by an EC T in our current
partial model. (iii) We are dp-sure that T is an EC.

Algorithm 4. Check if we are probably looping and should stop the simulation
1: procedure LOOPING(State set X, state s)

2: if s ¢ X then

3: return false > Easy improvement to avoid overhead
4: return 37 C X.T is EC in partial model A's € T A r-sure EC(T)

Example 2. For this example, we again use the SG from Fig.1 without the
dashed part, but this time with p; = ps = p3 = % Assume the path we simulated
is (sp, a1, 51, b2, 51), i.e. we sampled the self-loop of action by. Then {s;} is a can-
didate for an EC, because given our current observation it seems possible that
we will continue looping there forever. However, we do not stop the simulation
here, because we are not yet dr-sure about this. Given ér = 0.1, the required
samples for that are 6, since 111112(1(11%)) = 5.6. With high probability (greater than
(1 = dr) = 0.9), within these 6 steps we will sample one of the other successors
of (s1,bz) and thus realise that we should not stop the simulation in s;. If; on
the other hand, we are in state o or if in state s; the guiding heuristic only picks
by, then we are in fact looping for more than 6 steps, and hence we stop the
simulation. N

3.4 Adapting to Games: Deflating MSECs

To extend the algorithm of [BCC+14] to SGs, instead of collapsing problematic
ECs we deflate them as in [KKKW18], i.e. given an MSEC, we reduce the upper
bound of all states in it to the upper bound of the bestExit of Maximizer. In
contrast to [KKKW18], we cannot use the upper bound of the bestExit based on
the true probability, but only based on our estimates. Algorithm 5 shows how to
deflate an MSEC and highlights the difference, namely that we use U instead
of U.

Algorithm 5. Black box algorithm to deflate a set of states

1: procedure DEFLATE(State set X)
2: for s € X do

3: U(s) = min(U(s), bestExit (X, U )

The remaining question is how to find MSECs. The approach of [KKKW18]
is to find MSECs by removing the suboptimal actions of Minimizer according
to the current lower bound. Since it converges to the true value function, all
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MSECs are eventually found [KKKW18, Lemma 2]. Since Algorithm 6 can only
access the SG as a black box, there are two differences: We can only compare our
estimates of the lower bound L(s,a) to find out which actions are suboptimal.
Additionally there is the problem that we might overlook an exit from an EC,
and hence deflate to some value that is too small; thus we need to check that any
state set FIND_MSECs returns is a dy-sure EC. This is illustrated in Example 3.
For a bigger example of how all our functions work together, see Example 5 in
[AKW19, Appendix BJ.

Algorithm 6. Finding MSECs in the game restricted to X for black box setting
1: procedure FIND_MSECs(State set X)

2 suboptActy — {(s,{a € Av(s) | L (s,a) > L(s)}|s €SyNX}

3 AV' — Av without suboptAct,
4: G’ « G restricted to states X and available actions Av’
5

return {T € MEC(G") | ér-sure EC(T) }

Ezxample 3. For this example, we use the full SG from Fig. 1, including the
dashed part, with py,p> > 0. Let (So, ai, s1, by, s, b1, 51,30, 5, ¢, l) be the path
generated by our simulation. Then in our partial view of the model, it seems
as if T = {so,s1} is an MSEC, since using as is suboptimal for the minimizing
state so® and according to our current knowledge a1, by and by all stay inside T
If we deflated T now, all states would get an upper bound of 0, which would be
incorrect.

Thus in Algorithm 6 we need to require that 7" is an EC dr-surely. This was
not satisfied in the example, as the state-action pairs have not been observed the
required number of times. Thus we do not deflate T', and our upper bounds stay
correct. Having seen (s, bp) the required number of times, we probably know
that it is exiting 7" and hence will not make the mistake. <

3.5 Guidance and Statistical Guarantee

It is difficult to give statistical guarantees for the algorithm we have developed
so far (i.e. Algorithm 1 calling the new functions from Sects. 3.2, 3.3 and 3.4).
Although we can bound the error of each function, applying them repeatedly can
add up the error. Algorithm 7 shows our approach to get statistical guarantees:
It interleaves a guided simulation phase (Lines 7-10) with a guaranteed standard
bounded value iteration (called BVI phase) that uses our new functions (Lines
11-16).

The simulation phase builds the partial model by exploring states and remem-
bering the counters. In the first iteration of the main loop, it chooses actions
randomly. In all further iterations, it is guided by the bounds that the last BVI

5 For dr = 0.2, sampling the path to target once suffices to realize that L(so,a2) > 0.
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phase computed. After NV simulations (see below for a discussion of how to
choose Ny ), all the gathered information is used to compute one version of the
partial model with probability estimates T for a certain error tolerance 0x. We
can continue with the assumption, that these probability estimates are correct,
since it is only violated with a probability smaller than our error tolerance (see
below for an explanation of the choice of dx). So in our correct partial model,
we re-initialize the lower and upper bound (Line 12), and execute a guaran-
teed standard BVI. If the simulation phase already gathered enough data, i.e.
explored the relevant states and sampled the relevant transitions often enough,
this BVI achieves a precision smaller than ¢ in the initial state, and the algo-
rithm terminates. Otherwise we start another simulation phase that is guided
by the improved bounds.

Algorithm 7. Full algorithm for black box setting

1: procedure BLACKVI(SG G, target set Goal, precision € > 0, error tolerance § > 0)
2: INITIALIZE.BOUNDS

3: k=1 > guaranteed BVI counter
4: S0 > current partial model
5: repeat
6: k—2-k
7. O — %

// Guided simulation phase
8: for N times do
9: X « SIMULATE
10: S«—SuX

// Guaranteed BVI phase

. Sk Pmin . . .

11: o «— (et naehvo)]] > Set dr as described in Section 3.2
12: INITIALIZE_BOUNDS
13: for k- ’S‘ times do
14: UPDATE(S)
15: for T € FIND_-MSECs(S) do
16: DEFLATE(T)

17: until U(sg) — L(sg) <€

Choice of §;: For each of the full BVI phases, we construct a partial model
that is correct with probability (1 — d;). To ensure that the sum of these errors
is not larger than the specified error tolerance §, we use the variable k, which is

initialised to 1 and doubled in every iteration of the main loop. Hence for the
o0 o0
. 1)
i-th BVI, k = 2°. By setting 0 = %, we get that E 0 = E 5 = 6, and hence
i=1 i=1
the error of all BVI phases does not exceed the specified error tolerance.
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When to Stop Each BVI-Phase: The BVI phase might not converge if the
probability estimates are not good enough. We increase the number of iterations
for each BVI depending on k, because that way we ensure that it eventually
is allowed to run long enough to converge. On the other hand, since we always
run for finitely many iterations, we also ensure that, if we do not have enough
information yet, BVI is eventually stopped. Other stopping criteria could return

arbitrarily imprecise results [HM17]. We also multiply with

§‘ to improve the
chances of the early BVIs to converge, as that number of iterations ensures that
every value has been propagated through the whole model at least once.

Discussion of the Choice of Nj: The number of simulations between the
guaranteed BVI phases can be chosen freely; it can be a constant number every

)

time, or any sequence of natural numbers, possibly parameterised by e.g. k, ‘g

€ or any of the parameters of G. The design of particularly efficient choices or
learning mechanisms that adjust them on the fly is an interesting task left for
future work. We conjecture the answer depends on the given SG and “task” that
the user has for the algorithm: E.g. if one just needs a quick general estimate of
the behaviour of the model, a smaller choice of N}, is sensible; if on the other
hand a definite precision ¢ certainly needs to be achieved, a larger choice of N}
is required.

Theorem 1. For any choice of sequence for Ny, Algorithm 7 is an anytime
algorithm with the following property: When it is stopped, it returns an interval
for V(sy) that is PACT for the given error tolerance § and some €', with 0 <
e < 1.

Theorem 1 is the foundation of the practical usability of our algorithm. Given
some time frame and some N, it calculates an approximation for V(s,) that is
probably correct. Note that the precision €’ is independent of the input parameter
€, and could in the worst case be always 1. However, practically it often is
good (i.e. close to 0) as seen in the results in Sect. 4. Moreover, in our modified
algorithm, we can also give a convergence guarantee as in [BCC+14]. Although
mostly out of theoretical interest, in [AKW19, Appendix D.4] we design such a
sequence N, too. Since this a-priori sequence has to work in the worst case, it
depends on an infeasibly large number of simulations.

Theorem 2. There exists a choice of Ny, such that Algorithm 7 is PAC for any
input parameters €,0, i.e. it terminates almost surely and returns an interval for
V(sy) of width smaller than € that is correct with probability at least 1 — 4.

" Probably Approximately Correct, i.e. with probability greater than 1 — §, the value
lies in the returned interval of width &’.
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3.6 Utilizing the Additional Information of Grey Box Input

In this section, we consider the grey box setting, i.e. for every state-action pair
(s,a) we additionally know the exact number of successors |Post(s,a)|. Then
we can sample every state-action pair until we have seen all successors, and
hence this information amounts to having qualitative information about the
transitions, i.e. knowing where the transitions go, but not with which probability.

In that setting, we can improve the EC-detection and the estimated bounds in
UPDATE. For EC-detection, note that the whole point of dr-sure EC is to check
whether there are further transitions available; in grey box, we know this and
need not depend on statistics. For the bounds, note that the equations for L and
U both have two parts: The usual Bellman part and the remaining probability
multiplied with the most conservative guess of the bound, i.e. 0 and 1. If we
know all successors of a state-action pair, we do not have to be as conservative;
then we can use mingepost(s,a) L(t) respectively maxicpost(s,a) U(t). Both these
improvements have huge impact, as demonstrated in Sect. 4. However, of course,
they also assume more knowledge about the model.

4 Experimental Evaluation

We implemented the approach as an extension of PRISM-Games [CFK+13a]. 11
MDPs with reachability properties were selected from the Quantitative Verifi-
cation Benchmark Set [HKP+19]. Further, 4 stochastic games benchmarks from
[CKJ12,SS12, CFK+13b, CKPS11] were also selected. We ran the experiments
on a 40 core Intel Xeon server running at 2.20 GHz per core and having 252 GB
of RAM. The tool however utilised only a single core and 1 GB of memory for
the model checking. Each benchmark was ran 10 times with a timeout of 30 min.
We ran two versions of Algorithm 7, one with the SG as a black box, the other
as a grey box (see Definition 2). We chose A}, = 10,000 for all iterations. The
tool stopped either when a precision of 10~® was obtained or after 30 min. In
total, 16 different model-property combinations were tried out. The results of
the experiment are reported in Table 1.

In the black box setting, we obtained ¢ < 0.1 on 6 of the benchmarks. 5
benchmarks were ‘hard’ and the algorithm did not improve the precision below
1. For 4 of them, it did not even finish the first simulation phase. If we decrease
Nk, the BVI phase is entered, but still no progress is made.

In the grey box setting, on 14 of 16 benchmarks, it took only 6 min to achieve
€ < 0.1. For 8 these, the exact value was found within that time. Less than
50% of the state space was explored in the case of pacman, pneuli-zuck-3,
rabin-3, zeroconf and cloud 5. A precision of ¢ < 0.01 was achieved on 15/16
benchmarks over a period of 30 min.
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Table 1. Achieved precision € given by our algorithm in both grey and black box
settings after running for a period of 30 min (See the paragraph below Theorem 1 for
why we use ¢’ and not €). The first set of the models are MDPs and the second set are
SGs. -’ indicates that the algorithm did not finish the first simulation phase and hence
partial BVI was not called. m is the number of steps required by the DQL algorithm
of [BCC+14] before the first update. As this number is very large, we report only
logio(m). For comparison, note that the age of the universe is approximately 10?° ns;
logarithm of number of steps doable in this time is thus in the order of 26.

Model States | Explored % | Precision logio(m)
Grey/Black | Grey Black

consensus 272 100/100 0.00945 | 0.171 | 338
csma-2-2 1,038 |93/93 0.00127 | 0.2851 | 1,888
firewire 83,153 | 55/- 0.0057 |1 129,430
ij-3 7 100/100 0 0.0017 2,675
ij-10 1,023 |100/100 0 0.5407 | 17
pacman 498 18/47 0.00058 | 0.0086 | 1,801
philosophers-3 | 956 56/21 0 1 2,068
pnueli-zuck-3 {2,701 |25/71 0 0.0285 | 5,844
rabin-3 27,766 | 7/4 0 0.026 | 110,097
wlan-0 2,954 | 100/100 0 0.8667 | 9,947
zeroconf 670 29/27 0.00007 | 0.0586 | 5,998
cdmsn 1,240 |100/98 0 0.8588 | 3,807
cloud-5 8,842 | 49/20 0.00031 | 0.0487 | 71,484
mdsm-1 62,245 | 69/- 0.09625 | 1 182,517
mdsm-2 62,245 | 72/- 0.00055 | 1 182,517
team-form-3 | 12,476 | 64 /- 0 1 54,095

Figure 2 shows the evolution of the lower and upper bounds in both the grey-
and the black box settings for 4 different models. Graphs for the other models
as well as more details on the results are in [AKW19, Appendix CJ.
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Fig. 2. Performance of our algorithm on various MDP and SG benchmarks in grey and
black box settings. Solid lines denote the bounds in the grey box setting while dashed
lines denote the bounds in the black box setting. The plotted bounds are obtained after
each partial BVI phase, because of which they do not start at [0, 1] and not at time 0.
Graphs of the remaining benchmarks may be found in [AKW19, Appendix C].

5 Conclusion

We presented a PAC SMC algorithm for SG (and MDP) with the reachability
objective. It is the first one for SG and the first practically applicable one.
Nevertheless, there are several possible directions for further improvements.
For instance, one can consider different sequences for lengths of the simula-
tion phases, possibly also dependent on the behaviour observed so far. Further,
the error tolerance could be distributed in a non-uniform way, allowing for fewer
visits in rarely visited parts of end components. Since many systems are strongly
connected, but at the same time feature some infrequent behaviour, this is the
next bottleneck to be attacked. [KM19]
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