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Abstract. We propose an automated verification technique for hyper-
safety properties, which express sets of valid interrelations between mul-
tiple finite runs of a program. The key observation is that constructing
a proof for a small representative set of the runs of the product pro-
gram (i.e. the product of the several copies of the program by itself),
called a reduction, is sufficient to formally prove the hypersafety property
about the program. We propose an algorithm based on a counterexample-
guided refinement loop that simultaneously searches for a reduction and
a proof of the correctness for the reduction. We demonstrate that our
tool Weaver is very effective in verifying a diverse array of hypersafety
properties for a diverse class of input programs.

1 Introduction

A hypersafety property describes the set of valid interrelations between multiple
finite runs of a program. A k-safety property [7] is a program safety property
whose violation is witnessed by at least k finite runs of a program. Determinism
is an example of such a property: non-determinism can only be witnessed by
two runs of the program on the same input which produce two different outputs.
This makes determinism an instance of a 2-safety property.

The vast majority of existing program verification methodologies are geared
towards verifying standard (1-)safety properties. This paper proposes an app-
roach to automatically reduce verification of k-safety to verification of 1-safety,
and hence a way to leverage existing safety verification techniques for hypersafety
verification. The most straightforward way to do this is via self-composition [5],
where verification is performed on k memory-disjoint copies of the program,
sequentially composed one after another. Unfortunately, the proofs in these cases
are often very verbose, since the full functionality of each copy has to be captured
by the proof. Moreover, when it comes to automated verification, the invariants
required to verify such programs are often well beyond the capabilities of modern
solvers [26] even for very simple programs and properties.

The more practical approach, which is typically used in manual or auto-
mated proofs of such properties, is to compose k memory-disjoint copies of the
program in parallel (instead of in sequence), and then verify some reduced pro-
gram obtained by removing redundant traces from the program formed in the
previous step. This parallel product program can have many such reductions.
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For example, the program formed from sequential self-composition is one such
reduction of the parallel product program. Therefore, care must be taken to
choose a “good” reduction that admits a simple proof. Many existing approaches
limit themselves to a narrow class of reductions, such as the one where each copy
of the program executes in lockstep [3,10,24], or define a general class of reduc-
tions, but do not provide algorithms with guarantees of covering the entire class
[4,24].

We propose a solution that combines the search for a safety proof with the
search for an appropriate reduction, in a counterexample-based refinement loop.
Instead of settling on a single reduction in advance, we try to verify the entire
(possibly infinite) set of reductions simultaneously and terminate as soon as some
reduction is successfully verified. If the proof is not currently strong enough to
cover at least one of the represented program reductions, then an appropriate
set of counterexamples are generated that guarantee progress towards a proof.

Our solution is language-theoretic. We propose a way to represent sets of
reductions using infinite tree automata. The standard safety proofs are also
represented using the same automata, which have the desired closure properties.
This allows us to check if a candidate proof is in fact a proof for one of the
represented program reductions, with reasonable efficiency.

Our approach is not uniquely applicable to hypersafety properties of sequen-
tial programs. Our proposed set of reductions naturally work well for concurrent
programs, and can be viewed in the spirit of reduction-based methods such
as those proposed in [11,21]. This makes our approach particularly appealing
when it comes to verification of hypersafety properties of concurrent programs,
for example, proving that a concurrent program is deterministic. The parallel
composition for hypersafety verification mentioned above and the parallel com-
position of threads inside the multi-threaded program are treated in a uniform
way by our proof construction and checking algorithms. In summary:

– We present a counterexample-guided refinement loop that simultaneously
searches for a proof and a program reduction in Sect. 7. This refinement loop
relies on an efficient algorithm for proof checking based on the antichain
method of [8], and strong theoretical progress guarantees.

– We propose an automata-based approach to representing a class of program
reductions for k-safety verification. In Sect. 5 we describe the precise class of
automata we use and show how their use leads to an effective proof checking
algorithm incorporated in our refinement loop.

– We demonstrate the efficacy of our approach in proving hypersafety properties
of sequential and concurrent benchmarks in Sect. 8.

2 Illustrative Example

We use a simple program Mult, that computes the product of two non-negative
integers, to illustrate the challenges of verifying hypersafety properties and the
type of proof that our approach targets. Consider the multiplication program in
Fig. 1(i), and assume we want to prove that it is distributive over addition.
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Fig. 1. Program Mult (i) and the parallel composition of three copies of it (ii).

In Fig. 1(ii), the parallel composition of Mult with two copies of itself is illus-
trated. The product program is formed for the purpose of proving distributivity,
which can be encoded through the postcondition x1 = x2 + x3. Since a, b, and
c are not modified in the program, the same variables are used across all copies.
One way to prove Mult is distributive is to come up with an inductive invariant
φijk for each location in the product program, represented by a triple of program
locations (�i, �j , �k), such that true =⇒ φ111 and φ666 =⇒ x1 = x2 + x3. The
main difficulty lies in finding assignments for locations such as φ611 that are
points in the execution of the program where one thread has finished executing
and the next one is starting. For example, at (�6, �1, �1) we need the assignment
φ611 ← x1 = (a + b) ∗ c which is non-linear. However, the program given in
Fig. 1(ii) can be verified with simpler (linear) reasoning.

i1 0, i2 0, i3 0
x1 0, x2 0, x3 0
while i2 < a

x1 x1 + c
x2 x2 + c
i1 i1 + 1
i2 i2 + 1

while i3 < b
x1 x1 + c
x3 x3 + c
i1 i1 + 1
i3 i3 + 1

The program on the right is a semantically
equivalent reduction of the full composition of
Fig. 1(ii). Consider the program P = (Copy 1 ||
(Copy 2; Copy 3)). The program on the right is
equivalent to a lockstep execution of the two par-
allel components of P . The validity of this reduc-
tion is derived from the fact that the statements
in each thread are independent of the statements
in the other. That is, reordering the statements of
different threads in an execution leads to an equiva-
lent execution. It is easy to see that x1 = x2 + x3 is
an invariant of both while loops in the reduced pro-
gram, and therefore, linear reasoning is sufficient to
prove the postcondition for this program. Conceptually, this reduction (and its
soundness proof) together with the proof of correctness for the reduced program
constitute a proof that the original program Mult is distributive. Our proposed
approach can come up with reductions like this and their corresponding proofs
fully automatically. Note that a lockstep reduction of the program in Fig. 1(ii)
would not yield a solution for this problem and therefore the discovery of the
right reduction is an integral part of the solution.
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3 Programs and Proofs

A non-deterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F ) where
Q is a finite set of states, Σ is a finite alphabet, δ ⊆ Q × Σ × Q is the transition
relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. A
deterministic finite automaton (DFA) is an NFA whose transition relation is a
function δ : Q × Σ → Q. The language of an NFA or DFA A is denoted L(A),
which is defined in the standard way [18].

3.1 Program Traces

St denotes the (possibly infinite) set of program states. For example, a program
with two integer variables has St = Z × Z. A ⊆ St is a (possibly infinite)
set of assertions on program states. Σ denotes a finite alphabet of program
statements. We refer to a finite string of statements as a (program) trace. For
each statement a ∈ Σ we associate a semantics �a� ⊆ St × St and extend �−�
to traces via (relation) composition. A trace x ∈ Σ∗ is said to be infeasible if
�x�(St) = ∅, where �x�(St) denotes the image of �x� under St. To abstract away
from a particular program syntax, we define a program as a regular language of
traces. The semantics of a program P is simply the union of the semantics of
its traces �P � =

⋃
x∈P �x�. Concretely, one may obtain programs as languages

by interpreting their edge-labelled control-flow graphs as DFAs: each vertex in
the control flow graph is a state, and each edge in the control flow graph is a
transition. The control flow graph entry location is the initial state of the DFA
and all its exit locations are final states.

3.2 Safety

There are many equivalent notions of program safety; we use non-reachability.
A program P is safe if all traces of P are infeasible, i.e. �P �(St) = ∅. Standard
partial correctness specifications are then represented via a simple encoding.
Given a precondition φ and a postcondition ψ, the validity of the Hoare-triple
{φ}P{ψ} is equivalent to the safety of [φ] ·P · [¬ψ], where [] is a standard assume
statement (or the singleton set containing it), and · is language concatenation.

Example 3.1. We use determinism as an example of how k-safety can be encoded
in the framework defined thus far. If P is a program then determinism of P is
equivalent to safety of [φ] · (P1 � P2) · [¬φ] where P1 and P2 are copies of P
operating on disjoint variables, � is a shuffle product of two languages, and [φ]
is an assume statement asserting that the variables in each copy of P are equal.

A proof is a finite set of assertions Π ⊆ A that includes true and false. Each
Π gives rise to an NFA ΠNFA = (Π,St, δΠ , true, {false}) where δΠ(φpre, a) =
{φpost | �a�(φpre) ⊆ φpost}. We abbreviate L(ΠNFA) as L(Π). Intuitively, L(Π)
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consists of all traces that can be proven infeasible using only assertions in Π.
Thus the following proof rule is sound [12,13,17]:

∃Π ⊆ A. P ⊆ L(Π)
P is safe

(Safe)

When P ⊆ L(Π), we say that Π is a proof for P . A proof does not uniquely
belong to any particular program; a single Π may prove many programs correct.

4 Reductions

The set of assertions used for a proof is usually determined by a particular
language of assertions, and a safe program may not have a (safety) proof in that
particular language. Yet, a subset of the program traces may have a proof in
that assertion language. If it can be proven that the subset of program runs that
have a safety proof are a faithful representation of all program behaviours (with
respect to a given property), then the program is correct. This motivates the
notion of program reductions.

Definition 4.1 (semantic reduction). If for programs P and P ′, P ′ is safe
implies that P is safe, then P ′ is a semantic reduction of P (written P ′ 
 P ).

The definition immediately gives rise to the following proof rule for proving
program safety:

∃P ′ 
 P,Π ⊆ A. P ′ ⊆ L(Π)
P is safe

(SafeRed1)

This generic proof rule is not automatable since, given a proof Π, verifying
the existence of the appropriate reduction is undecidable. Observe that a program
is safe if and only if ∅ is a valid reduction of the program. This means that
discovering a semantic reduction and proving safety are mutually reducible to
each other. To have decidable premises for the proof rule, we need to formulate
an easier (than proving safety) problem in discovering a reduction. One way to
achieve this is by restricting the set of reductions under consideration from all
reductions (given in Definition 4.1) to a proper subset which more amenable to
algorithmic checking. Fixing a set R of (semantic) reductions, we will have the
rule:

∃P ′ ∈ R. P ′ ⊆ L(Π) ∀P ′ ∈ R. P ′ 
 P

P is safe
(SafeRed2)

Proposition 4.2. The proof rule SafeRed2 is sound.



Automated Hypersafety Verification 205

The core contribution of this paper is that it provides an algorithmic solution
inspired by the above proof rule. To achieve this, two subproblems are solved:
(1) Given a set R of reductions of a program P and a candidate proof Π, can
we check if there exists a reduction P ′ ∈ R which is covered by the proof Π? In
Sect. 5, we propose a new semantic interpretation of an existing notion of infinite
tree automata that gives rise to an algorithmic check for this step. (2) Given a
program P , is there a general sound set of reductions R that be effectively
represented to accommodate step (1)? In Sect. 6, we propose a construction of
an effective set of reductions, representable by our infinite tree automata, using
inspirations from existing partial order reduction techniques [15].

5 Proof Checking

Given a set of reductions R of a program P , and a candidate proof Π, we want
to check if there exists a reduction P ′ ∈ R which is covered by Π. We call this
proof checking. We use tree automata to represent certain classes of languages
(i.e sets of sets of strings), and then use operations on these automata for the
purpose of proof checking.

Fig. 2. Language {a} as an
infinite tree.

The set Σ∗ can be represented as an infinite tree.
Each x ∈ Σ∗ defines a path to a unique node in the
tree: the root node is located at the empty string ε,
and for all a ∈ Σ, the node located at xa is a child
of the node located at x. Each node is then iden-
tified by the string labeling the path leading to it.
A language L ⊆ Σ∗ (equivalently, L : Σ∗ → B)
can consequently be represented as an infinite tree
where the node at each x is labelled with a boolean
value B ≡ (x ∈ L). An example is given in Fig. 2.

It follows that a set of languages is a set of infi-
nite trees, which can be represented using automata
over infinite trees. Looping Tree Automata (LTAs)
are a subclass of Büchi Tree Automata where all states are accept states [2].
The class of Looping Tree Automata is closed under intersection and union, and
checking emptiness of LTAs is decidable. Unlike Büchi Tree Automata, emptiness
can be decided in linear time [2].

Definition 5.1. A Looping Tree Automaton (LTA) over |Σ|-ary, B-labelled
trees is a tuple M = (Q,Δ, q0) where Q is a finite set of states, Δ ⊆ Q×B×(Σ →
Q) is the transition relation, and q0 is the initial state.

Intuitively, an LTA M = (Q,Δ, q0) performs a parallel and depth-first traversal
of an infinite tree L while maintaining some local state. Execution begins at the
root ε from state q0 and non-deterministically picks a transition (q0, B, σ) ∈ Δ
such that B matches the label at the root of the tree (i.e. B = (ε ∈ L)). If no
such transition exists, the tree is rejected. Otherwise, M recursively works on
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each child a from state q′ = σ(a) in parallel. This process continues infinitely,
and L is accepted if and only if L is never rejected.

Formally, M ’s execution over a tree L is characterized by a run δ∗ :
Σ∗ → Q where δ∗(ε) = q0 and (δ∗(x), x ∈ L, λa. δ∗(xa)) ∈ Δ for all
x ∈ Σ∗. The set of languages accepted by M is then defined as L(M) = {L |
∃δ∗. δ∗ is a run of M on L }.

Theorem 5.2. Given an LTA M and a regular language L, it is decidable
whether ∃P ∈ L(M). P ⊆ L.

The proof, which appears in [14], reduces the problem to deciding whether
L(M)∩P(L) �= ∅. LTAs are closed under intersection and have decidable empti-
ness checks, and the lemma below is the last piece of the puzzle.

Lemma 5.3. If L is a regular language, then P(L) is recognized by an LTA.

Counterexamples. Theorem 5.2 effectively states that proof checking is decid-
able. For automated verification, beyond checking the validity of a proof, we
require counterexamples to fuel the development of the proof when the proof does
not check. Note that in the simple case of the proof rule safe, when P �⊆ L(Π)
there exists a counterexample trace x ∈ P such that x /∈ L(Π).

With our proof rule SafeRed2, things get a bit more complicated. First,
note that unlike the classic case (safe), where a failed proof check coincides
with the non-emptiness of an intersection check (i.e. P ∩ L(Π) �= ∅), in our
case, a failed proof check coincides with the emptiness of an intersection check
(i.e. R ∩ P(L(Π)) = ∅). The sets R and P(L(Π)) are both sets of languages.
What does the witness to the emptiness of the intersection look like? Each
language member of R contains at least one string that does not belong to any
of the subsets of our proof language. One can collect all such witness strings to
guarantee progress across the board in the next round. However, since LTAs can
represent an infinite set of languages, one must take care not end up with an
infinite set of counterexamples following this strategy. Fortunately, this will not
be the case.

Theorem 5.4. Let M be an LTA and let L be a regular language such that
P �⊆ L for all P ∈ L(M). There exists a finite set of counterexamples C such
that, for all P ∈ L(M), there exists some x ∈ C such that x ∈ P and x /∈ L.

The proof appears in [14]. This theorem justifies our choice of using LTAs instead
of more expressive formalisms such as Büchi Tree Automata. For example, the
Büchi Tree Automaton that accepts the language {{x} | x ∈ Σ∗} would give rise
to an infinite number of counterexamples with respect to the empty proof (i.e.
Π = ∅). The finiteness of the counterexample set presents an alternate proof
that LTAs are strictly less expressive than Büchi Tree Automata [27].
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6 Sleep Set Reductions

We have established so far that (1) a set of assertions gives rise to a regular lan-
guage proof, and (2) given a regular language proof and a set of program reduc-
tions recognizable by an LTA, we can check the program (reductions) against
the proof. The last piece of the puzzle is to show that a useful class of program
reductions can be expressed using LTAs.

Recall our example from Sect. 2. The reduction we obtain is sound because,
for every trace in the full parallel-composition program, an equivalent trace exists
in the reduced program. By equivalent, we mean that one trace can be obtained
from the other by swapping independent statements. Such an equivalence is the
essence of the theory of Mazurkiewicz traces [9].

We fix a reflexive symmetric dependence relation D ⊆ Σ×Σ. For all a, b ∈ Σ,
we say that a and b are dependent if (a, b) ∈ D, and say they are independent
otherwise. We define ∼D as the smallest congruence satisfying xaby ∼D xbay
for all x, y ∈ Σ∗ and independent a, b ∈ Σ. The closure of a language L ⊆ Σ∗

with respect to ∼D is denoted [L]D. A language L is ∼D-closed if L = [L]D. It is
worthwhile to note that all input programs considered in this paper correspond
to regular languages that are ∼D-closed.

An equivalence class of ∼D is typically called a (Mazurkiewicz) trace. We
avoid using this terminology as it conflicts with our definition of traces as strings
of statements in Sect. 3.1. We assume D is sound, i.e. �ab� = �ba� for all inde-
pendent a, b ∈ Σ.

Definition 6.1 (D-reduction). A program P ′ is a D-reduction of a program
P , that is P ′ 
D P , if [P ′]D = P .

Note that the equivalence relation on programs induced by ∼D is a refinement
of the semantic equivalence relation used in Definition 4.1.

Lemma 6.2. If P ′ 
D P then P ′ 
 P .

Ideally, we would like to define an LTA that accepts all D-reductions of a
program P , but unfortunately this is not possible in general.

Proposition 6.3 (corollary of Theorem 67 of [9]). For arbitrary regular
languages L1, L2 ∈ Σ∗ and relation D, the proposition ∃L 
D L1. L ⊆ L2 is
undecidable.

The proposition is decidable only when D is transitive, which does not hold for
a semantically correct notion of independence for a parallel program encoding
a k-safety property, since statements from the same thread are dependent and
statements from different program copies are independent. Therefore, we have:

Proposition 6.4. Assume P is a ∼D-closed program and Π is a proof. The
proposition ∃P ′ 
D P. P ′ ⊆ L(Π) is undecidable.
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In order to have a decidable premise for proof rule SafeRed2 then, we
present an approximation of the set of D-reductions, inspired by sleep sets [15].
The idea is to construct an LTA that recognizes a class of D-reductions of an
input program P , whose language is assumed to be ∼D-closed. This automaton
intuitively makes non-deterministic choices about what program traces to prune
in favour of other ∼D-equivalent program traces for a given reduction. Different
non-deterministic choices lead to different D-reductions.

Fig. 3. Exploring from x
with sleep sets.

Consider two statements a, b ∈ Σ where (a, b) �∈
D. Let x, y ∈ Σ∗ and consider two program runs xaby
and xbay. We know �xbay� = �xaby�. If the automa-
ton makes a non-deterministic choice that the suc-
cessors of xa have been explored, then the successors
of xba need not be explored (can be pruned away)
as illustrated in Fig. 3. Now assume (a, c) ∈ D, for
some c ∈ Σ. When the node xbc is being explored,
we can no longer safely ignore a-transitions, since the
equality �xbcay� = �xabcy� is not guaranteed. There-
fore, the a successor of xbc has to be explored. The
nondeterministic choice of what child node to explore
is modelled by a choice of order in which we explore
each node’s children. Different orders yield different
reductions. Reductions are therefore characterized as
an assignment R : Σ∗ → Lin(Σ) from nodes to lin-
ear orderings on Σ, where (a, b) ∈ R(x) means we
explore child xa after child xb.

Given R : Σ∗ → Lin(Σ), the sleep set sleepR(x) ⊆ Σ at node x ∈ Σ∗ defines
the set of transitions that can be ignored at x:

sleepR(ε) = ∅ (1)
sleepR(xa) = (sleepR(x) ∪ R(x)(a)) \ D(a) (2)

Intuitively, (1) no transition can be ignored at the root node, since nothing has
been explored yet, and (2) at node x, the sleep set of xa is obtained by adding
the transitions we explored before a (R(x)(a)) and then removing the ones that
conflict with a (i.e. are related to a by D). Next, we define the nodes that are
ignored. The set of ignored nodes is the smallest set ignoreR : Σ∗ → B such that

x ∈ ignoreR =⇒ xa ∈ ignoreR (1)
a ∈ sleepR(x) =⇒ xa ∈ ignoreR (2)

Intuitively, a node xa is ignored if (1) any of its ancestors is ignored (ignoreR(x)),
or (2) a is one of the ignored transitions at node x (a ∈ sleepR(x)).

Finally, we obtain an actual reduction of a program P from a characterization
of a reduction R by removing the ignored nodes from P , i.e. P \ ignoreR.

Lemma 6.5. For all R : Σ∗ → Lin(Σ), if P is a ∼D-closed program then
P \ ignoreR is a D-reduction of P .



Automated Hypersafety Verification 209

The set of all such reductions is reduceD(P ) = {P \ignoreR | R : Σ∗ → Lin(Σ)}.

Theorem 6.6. For any regular language P , reduceD(P ) is accepted by an LTA.

Interestingly, every reduction in reduceD(P ) is optimal in the sense that each
reduction contains at most one representative of each equivalence class of ∼D.

Theorem 6.7. Fix some P ⊆ Σ∗ and R : Σ∗ → Lin(Σ). For all (x, y) ∈
P \ ignoreR, if x ∼D y then x = y.

7 Algorithms

Fig. 4. Counterexample-guided refinement loop.

Figure 4 illustrates
the outline of our
verification algo-
rithm. It is a
counterexample-
guided abstraction
refinement loop in
the style of [12,
13,17]. The key
difference is that
instead of check-
ing whether some
proof Π is a
proof for the pro-
gram P , it checks
if there exists a
reduction of the program P that Π proves correct.

The algorithm relies on an oracle Interpolate that, given a finite set of
program traces C, returns a proof Π ′, if one exists, such that C ⊆ L(Π ′). In
our tool, we use Craig interpolation to implement the oracle Interpolate. In
general, since program traces are the simplest form of sequential programs (loop
and branch free), any automated program prover that can handle proving them
may be used.

The results presented in Sects. 5 and 6 give rise to the proof checking sub
routine of the algorithm in Fig. 4 (i.e. the light grey test). Given a program
DFA AP = (QP , Σ, δP , qP0, FP ) and a proof DFA AΠ = (QΠ , Σ, δΠ , qΠ0, FΠ)
(obtained by determinizing ΠNFA), we can decide ∃P ′ ∈ reduceD(L(AP )). P ′ ⊆
L(AΠ) by constructing an LTA MPΠ for reduceD(L(AP )) ∩ P(L(AΠ)) and
checking emptiness (Theorem 5.2).

7.1 Progress

The algorithm corresponding to Fig. 4 satisfies a weak progress theorem: none
of the counterexamples from a round of the algorithm will ever appear in a
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future counterexample set. This, however, is not strong enough to guarantee
termination. Alternatively, one can think of the algorithm’s progress as follows.
In each round new assertions are discovered through the oracle Interpolate,
and one can optimistically hope that one can finally converge on an existing
target proof Π∗. The success of this algorithm depends on two factors: (1) the
counterexamples used by the algorithm belong to L(Π∗) and (2) the proof that
Interpolate discovers for these counterexamples coincide with Π∗. The latter
is a typical known wild card in software model checking, which cannot be guar-
anteed; there is plenty of empirical evidence, however, that procedures based on
Craig Interpolation do well in approximating it. The former is a new problem
for our refinement loop.

In a standard algorithm in the style of [12,13,17], the verification proof rule
dictates that every program trace must be in L(Π∗). In our setting, we only
require a subset (corresponding to some reduction) to be in L(Π∗). This means
one cannot simply rely on program traces as appropriate counterexamples. The-
orem 5.4 presents a solution to this problem. It ensures that we always feed
Interpolate some counterexample from Π∗ and therefore guarantee progress.

Theorem 7.1 (Strong Progress). Assume a proof Π∗ exists for some reduc-
tion P ∗ ∈ R and Interpolate always returns some subset of Π∗ for traces in
L(Π∗). Then the algorithm will terminate in at most |Π∗| iterations.

Theorem 7.1 ensures that the algorithm will never get into an infinite loop
due to a bad choice of counterexamples. The condition on Interpolate ensures
that divergence does not occur due to the wrong choice of assertions by Interpo-
late and without it any standard interpolation-based software model checking
algorithm may diverge. The assumption that there exists a proof for a reduction
of the program in the fixed set R ensures that the proof checking procedure can
verify the target proof Π∗ once it is reached. Note that, in general, a proof may
exist for a reduction of the program which is not in R. Therefore, the algorithm
is not complete with respect to all reductions, since checking the premises of
SafeRed1 is undecidable as discussed in Sect. 4.

7.2 Faster Proof Checking Through Antichains

The state set of MPΠ , the intersection of program and proof LTAs, has size
|QP × B × P(Σ) × QΠ |, which is exponential in |Σ|. Therefore, even a linear
emptiness test for this LTA can be computationally expensive. Antichains have
been previously used [8] to optimize certain operations over NFAs that also suffer
from exponential blowups, such as deciding universality and inclusion tests. The
main idea is that these operations involve computing downwards-closed and
upwards-closed sets according to an appropriate subsumption relation, which
can be represented compactly as antichains. We employ similar techniques to
propose a new emptiness check algorithm.

Antichains. The set of maximal elements of a set X with respect to some
ordering relation � is denoted max(X). The downwards-closure of a set X with
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respect to � is denoted �X�. An antichain is a set X where no element of X is
related (by �) to another. The maximal elements max(X) of a finite set X is an
antichain. If X is downwards-closed then �max(X)� = X.

The emptiness check algorithm for LTAs from [2] computes the set of inactive
states (i.e. states which generate an empty language) and checks if the initial
state is inactive. The set of inactive states of an LTA M = (Q,Δ, q0) is defined
as the smallest set inactive(M) satisfying

∀(q,B, σ) ∈ Δ.∃a. σ(a) ∈ inactive(M)
q ∈ inactive(M)

(Inactive)

Alternatively, one can view inactive(M) as the least fixed-point of a monotone
(with respect to ⊆) function FM : P(Q) → P(Q) where

FM (X) = {q | ∀(q,B, σ) ∈ Δ.∃a. σ(a) ∈ X}.

Therefore, inactive(M) can be computed using a standard fixpoint algorithm.
If inactive(M) is downwards-closed with respect to some subsumption relation

(�) ⊆ Q × Q, then we need not represent all of inactive(M). The antichain
max(inactive(M)) of maximal elements of inactive(M) (with respect to �) would
be sufficient to represent the entirety of inactive(M), and can be exponentially
smaller than inactive(M), depending on the choice of relation �.

A trivial way to compute max(inactive(M)) is to first compute inactive(M)
and then find the maximal elements of the result, but this involves doing strictly
more work than the baseline algorithm. However, observe that if FM also pre-
serves downwards-closedness with respect to �, then

max(inactive(M)) = max(lfp(FM ))
= max(lfp(FM ◦ �−� ◦ max)) = lfp(max ◦FM ◦ �−�)

That is, max(inactive(M)) is the least fixed-point of a function Fmax
M :

P(Q) → P(Q) defined as Fmax
M (X) = max(FM (�X�)). We can calculate

max(inactive(M)) efficiently if we can calculate Fmax
M (X) efficiently, which is

true in the special case of the intersection automaton for the languages of our
proof P(L(Π)) and our program reduceD(P ), which we refer to as MPΠ .

We are most interested in the state space of MPΠ , which is QPΠ = (QP ×
B × P(Σ)) × QΠ . Observe that states whose B part is � are always active:

Lemma 7.2. ((qP ,�, S), qΠ) /∈ inactive(MPΠ) for all qP ∈ QP , qΠ ∈ QΠ , and
S ⊆ Σ.

The state space can then be assumed to be QPΠ = (QP × {⊥} × P(Σ)) × QΠ

for the purposes of checking inactivity. The subsumption relation defined as the
smallest relation �PΠ satisfying

S ⊆ S′ =⇒ ((qP ,⊥, S), qΠ) �PΠ ((qP ,⊥, S′), qΠ)

for all qP ∈ QP , qΠ ∈ QΠ , and S, S′ ⊆ Σ, is a suitable one since:
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Lemma 7.3. FMP Π
preserves downwards-closedness with respect to �PΠ .

The function Fmax
MP Π

is a function over relations

Fmax
MP Π

: P((QP × {⊥} × P(Σ)) × QΠ) → P((QP × {⊥} × P(Σ)) × QΠ)

but in our case it is more convenient to view it as a function over functions

Fmax
MP Π

: (QP × {⊥} × QΠ → P(P(Σ))) → (QP × {⊥} × QΠ → P(P(Σ)))

Through some algebraic manipulation and some simple observations, we can
define Fmax

MP Π
functionally as follows.

Lemma 7.4. For all qP ∈ QP , qΠ ∈ QΠ , and X : QP × {⊥} × QΠ →
P(P(Σ)),

Fmax
MP Π

(X)(qP ,⊥, qΠ) =

⎧
⎪⎨

⎪⎩

{Σ} if qP ∈ FP ∧ qΠ /∈ FΠ
�

R∈Lin(Σ)

⊔

a∈Σ
S∈X(q′

P ,⊥,q′
Π)

S′ otherwise

where

q′
P = δP (qP , a) X � Y = max{x ∩ y | x ∈ X ∧ y ∈ Y }

q′
Π = δΠ(qΠ , a) X � Y = max(X ∪ Y )

S′ =

{
{(S ∪ D(a)) \ {a}} if R(a) \ D(a) ⊆ S

∅ otherwise

function Check(AP , AΠ , D)

(QP , Σ, δP , q0P , FP ) ← AP

(QΠ , Σ, δΠ , q0Π , FΠ) ← AΠ

function FMax(X)((qP , ⊥, qΠ))
if qP ∈ FP ∧ qΠ /∈ FΠ

return {Σ}
X� ← {Σ}
for R ∈ Lin(Σ)

X� ← ∅
for a ∈ Σ, S ∈ X((δP (qP , a), ⊥, δΠ(qΠ , a)))

if R(a) \ D(a) ⊆ S
X� ← X� � {(S ∪ D(a)) \ {a}}

X� ← X� 
 X�

return X�

return Fix(FMax)((q0P , ⊥, q0Π)) �= ∅
Algorithm 1. Proof checking algorithm
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A full justification appears in [14]. Formulating Fmax
MP Π

as a higher-order func-
tion allows us to calculate max(inactive(MPΠ)) using efficient fixpoint algo-
rithms like the one in [22]. Algorithm 1 outlines our proof checking routine.
Fix : ((A → B) → (A → B)) → (A → B) is a procedure that computes the
least fixpoint of its input. The algorithm simply computes the fixpoint of the
function Fmax

MP Π
as defined in Lemma 7.4, which is a compact representation of

inactive(MPΠ) and checks if the start state of MPΠ is in it.

Counterexamples. Theorem 5.4 states that a finite set of counterexamples
exists whenever ∃P ′ ∈ reduceD(P ). P ′ ⊆ L(Π) does not hold. The proof of
emptiness for an LTA, formed using rule Inactive above, is a finite tree. Each
edge in the tree is labelled by an element of Σ (obtained from the existential
in the rule) and the paths through this tree form the counterexample set. To
compute this set, then, it suffices to remember enough information during the
computation of inactive(M) to reconstruct the proof tree. Every time a state q
is determined to be inactive, we must also record the witness a ∈ Σ for each
transition (q,B, σ) ∈ Δ such that σ(a) ∈ inactive(M).

In an antichain-based algorithm, once we determine a state q to be inactive,
we simultaneously determine everything it subsumes (i.e. � q) to be inactive as
well. If we record unique witnesses for each and every state that q subsumes,
then the space complexity of our antichain algorithm will be the same as the
unoptimized version. The following lemma states that it is sufficient to record
witnesses only for q and discard witnesses for states that q subsumes.

Lemma 7.5. Fix some states q, q′ such that q′ �PΠ q. A witness used to prove
q is inactive can also be used to prove q′ is inactive.

Note that this means that the antichain algorithm soundly returns potentially
fewer counterexamples than the original one.

7.3 Partition Optimization

The LTA construction for reduceD(P ) involves a nondeterministic choice of lin-
ear order at each state. Since |Lin(Σ)| has size |Σ|!, each state in the automa-
ton would have a large number of transitions. As an optimization, our algo-
rithm selects ordering relations out of Part(Σ) (instead of Lin(Σ)), defined as
Part(Σ) = {Σ1 × Σ2 | Σ1 � Σ2 = Σ} where � is disjoint union. This leads to a
sound algorithm which is not complete with respect to sleep set reductions and
trades the factorial complexity of computing Lin(Σ) for an exponential one.

8 Experimental Results

To evaluate our approach, we have implemented our algorithm in a tool called
Weaver written in Haskell. Weaver accepts a program written in a simple
imperative language as input, where the property is already encoded in the
program in the form of assume statements, and attempts to prove the program
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correct. The dependence relation for each input program is computed using a
heuristic that ensures ∼D-closedness. It is based on the fact that the shuffle
product (i.e. parallel composition) of two ∼D-closed languages is ∼D-closed.

Weaver employs two verification algorithms: (1) The total order algorithm
presented in Algorithm 1, and (2) the variation with the partition optimization
discussed in Sect. 7.3. It also implements multiple counterexample generation
algorithms: (1) Naive: selects the first counterexample in the difference of the
program and proof language. (2) Progress-Ensuring: selects a set of counterex-
amples satisfying Theorem 5.4. (3) Bounded Progress-Ensuring: selects a few
counterexamples (in most cases just one) from the set computed by the progress-
ensuring algorithm. Our experimentation demonstrated that in the vast majority
of the cases, the bounded progress ensuring algorithm (an instance of the par-
tition algorithm) is the fastest of all options. Therefore, all our reports in this
section are using this instance of the algorithm.

For the larger benchmarks, we use a simple sound optimization to reduce
the proof size. We declare the basic blocks of code as atomic, so that internal
assertions need not be generated for them as part of the proof. This optimization
is incomplete with respect to sleep set reductions.

Benchmarks. We use a set of sequential benchmarks from [24] and include
additional sequential benchmarks that involve more interesting reductions in
their proofs. We have a set of parallel benchmarks, which are beyond the scope
of previous hypersafety verification techniques. We use these benchmarks to
demonstrate that our technique/tool can seamlessly handle concurrency. These
involve proving concurrency specific hypersafety properties such as determinism
and equivalence of parallel and sequential implementations of algorithms. Finally,
since the proof checking algorithm is the core contribution of this paper, we have
a contrived set of instances to stress test our algorithm. These involve proving
determinism of simple parallel-disjoint programs with various numbers of threads
and statements per thread. These benchmarks have been designed to cause a
combinatorial explosion for the proof checker and counterexample generation
routines. More information on the benchmarks can be found in [14].

Evaluation

Due to space restrictions, it is not feasible to include a detailed account of all
our experiments here, for over 50 benchmarks. A detailed table can be found in
[14]. Table 1 includes a summary in the form of averages, and here, we discuss
our top findings.

Proof construction time refers to the time spent to construct L(Π) from
a given set of assertions Π and excludes the time to produce proofs for the
counterexamples in a given round. Proof checking time is the time spent
to check if the current proof candidate is strong enough for a reduction of the
program. In the fastest instances (total time around 0.01 s), roughly equal time
is spent in proof checking and proof construction. In the slowest instances, the
total time is almost entirely spent in proof construction. In contrast, in our stress
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Table 1. Experimental results averages for benchmark groups.

Benchmark group Group

count

Proof size Number of

refinement

rounds

Proof

construction

time

Proof

checking

time

Total

time

Looping programs of [24]

2-safety properties

5 63 12 46.69 s 0.1 s 47.03 s

Looping programs of [24]

3-safety properties

8 155 22 475.78 s 11.79 s 448.36 s

Loop-free programs of [24] 27 5 2 0.13 s 0.0004 s 0.15 s

Our sequential benchmarks 13 30 9 14.27 s 2.5 s 17.94 s

Our parallel benchmarks 7 31 8 17.95 0.56 s 18.63 s

tests (designed to stress the proof checking algorithm) the majority of the time
is spent in proof checking. The time spent in proving counterexamples correct
is negligible in all instances. Proof sizes vary from 4 assertions to 298 for the
most complicated instance. Verification times are correlated with the final proof
size; larger proofs tend to cause longer verification times.

Numbers of refinement rounds vary from 2 for the simplest to 33 for the
most complicated instance. A small number of refinement rounds (e.g. 2) implies
a fast verification time. But, for the higher number of rounds, a strong positive
correlation between the number of rounds and verification time does not exist.

For our parallel programs benchmarks (other than our stress tests), the
tool spends the majority of its time in proof construction. Therefore, we designed
specific (unusual) parallel programs to stress test the proof checker. Stress test
benchmarks are trivial tests of determinism of disjoint parallel programs, which
can be proven correct easily by using the atomic block optimization. However,
we force the tool to do the unnecessary hard work. These instances simulate the
worst case theoretical complexity where the proof checking time and number of
counterexamples grow exponentially with the number of threads and the sizes of
the threads. In the largest instance, more than 99% of the total verification time
is spent in proof checking. Averages are not very informative for these instances,
and therefore are not included in Table 1.

Finally, Weaver is only slow for verifying 3-safety properties of large loop-
ing benchmarks from [24]. Note that unlike the approach in [24], which starts
from a default lockstep reduction (that is incidentally sufficient to prove these
instances), we do not assume any reduction and consider them all. The extra
time is therefore expected when the product programs become quite large.

9 Related Work

The notion of a k-safety hyperproperty was introduced in [7] without consider-
ation for automatic program verification. The approach of reducing k-safety to
1-safety by self-composition is introduced in [5]. While theoretically complete,
self-composition is not practical as discussed in Sect. 1. Product programs gener-
alize the self-composition approach and have been used in verifying translation
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validation [20], non-interference [16,23], and program optimization [25]. A prod-
uct of two programs P1 and P2 is semantically equivalent to P1 · P2 (sequential
composition), but is made easier to verify by allowing parts of each program to
be interleaved. The product programs proposed in [3] allow lockstep interleav-
ing exclusively, but only when the control structures of P1 and P2 match. This
restriction is lifted in [4] to allow some non-lockstep interleavings. However, the
given construction rules are non-deterministic, and the choice of product pro-
gram is left to the user or a heuristic.

Relational program logics [6,28] extend traditional program logics to allow
reasoning about relational program properties, however automation is usually
not addressed. Automatic construction of product programs is discussed in [10]
with the goal of supporting procedure specifications and modular reasoning,
but is also restricted to lockstep interleavings. Our approach does not support
procedure calls but is fully automated and permits non-lockstep interleavings.

The key feature of our approached is the automation of the discovery of
an appropriate program reduction and a proof combined. In this case, the only
other method that compares is the one based on Cartesian Hoare Logic (CHL)
proposed in [24] along with an algorithm for automatic verification based on
CHL. Their proposed algorithm implicitly constructs a product program, using
a heuristic that favours lockstep executions as much as possible, and then priori-
tizes certain rules of the logic over the rest. The heuristic nature of the search for
the proof means that no characterization of the search space can be given, and
no guarantees about whether an appropriate product program will be found. In
contrast, we have a formal characterization of the set of explored product pro-
grams in this paper. Moreover, CHL was not designed to deal with concurrency.

Lipton [19] first proposed reduction as a way to simplify reasoning about
concurrent programs. His ideas have been employed in a semi-automatic set-
ting in [11]. Partial-order reduction (POR) is a class of techniques that reduces
the state space of search by removing redundant paths. POR techniques are
concerned with finding a single (preferably minimal) reduction of the input pro-
gram. In contrast, we use the same underlying ideas to explore many program
reductions simultaneously. The class of reductions described in Sect. 6 is based
on the sleep set technique of Godefroid [15]. Other techniques exist [1,15] that
are used in conjunction with sleep sets to achieve minimality in a normal POR
setting. In our setting, reductions generated by sleep sets are already optimal
(Theorem 6.7). However, employing these additional POR techniques may pro-
pose ways of optimizing our proof checking algorithm by producing a smaller
reduction LTA.
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