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Abstract. In ASIACCS 2015, Nuñez, Agudo, and Lopez proposed a
proxy re-encryption scheme, NTRUReEncrypt, based on NTRU, which
allows a proxy to translate ciphertext under the delegator’s public key
into a re-encrypted ciphertext that can be decrypted correctly by del-
egatee’s private key. In addition to its potential resistance to quantum
algorithm, the scheme was also considered to be efficient. However, in
this paper we point out that the re-encryption process will increase the
decryption error, and the increased decryption error will lead to a reac-
tion attack that enables the proxy to recover the private key of the
delegator and the delegatee. Moreover, we also propose a second attack
which enables the delegatee to recover the private key of the delegator
when he collects enough re-encrypted ciphertexts from a same message.
We reevaluate the security of NTRUReEncrypt, and also give suggestions
and discussions on potential mitigation methods.

Keywords: NTRUReEncrypt · NTRU · Decryption failure ·
Reaction attack · Key recovery

1 Introduction

The concept of proxy re-encryption (PRE) scheme was proposed by Blaze,
Bleumer and Strauss in 1998 [5]. A re-encryption scheme allows a proxy to
translate ciphertext under the delegator’s public key into a ciphertext of the
same message that can be decrypted correctly by the delegatee’s private key,
whereas the proxy is given just a re-encryption key and learns nothing about
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the message. A PRE scheme can be seen as an extension of public-key encryp-
tion. It uses same fundamental algorithms as a traditional public key encryption
scheme. Additionally, it also requires algorithms to generate re-encryption keys
and to re-encrypt ciphertexts.

In the literature, there exit a number of proxy re-encryption schemes, based
on number theoretic problems such as the discrete logarithm problem [6]. How-
ever, due to Shor’s quantum algorithm, the integer factorization problem and the
discrete logarithm problem can be solved efficiently [17,18]. It is crucial to have
alternatives that are robust against quantum computers. In 2017, NIST [1,7]
started a standardization process on post-quantum cryptography. Among all can-
didate proposals, lattice based solutions are ones of most promising. Although
NIST considers only public key encryption and signature schemes at this stage,
it is also important to identify lattice based candidate for proxy re-encryption
schemes, for examples [3,20].

At AsiaCCS 2015, Nuñez, Agudo and Lopez [16] proposed a new proxy re-
encryption scheme, NTRUReEncrypt, based on a well-established lattice-based
public-key encryption scheme NTRU. Here the encryption and decryption mes-
sages are identical to the classical NTRUEncrypt scheme. With an additional
re-encryption mechanism, they achieved an efficient post-quantum PRE scheme.

NTRU [12], introduced by Hoffstein, Pipher and Silverman in 1996, has been
standardized by IEEE 1363.1 [19] and ANSI X9.98 [2]. It features high effi-
ciency and low memory requirement. After 20 years of development, there are
three mainstreams of the NTRU algorithms. The IEEE standardized version,
NTRUEncrypt was later on submitted to NIST-PQC process as [21]. The param-
eters follow the design principals outlined in [11]. The other two NTRU based
submissions are NTRU-prime [4] and NTRU-HRSS [15] schemes.

Similar to other lattice based cryptosystems, the NTRU scheme may admit
decryption errors. When a decryption failure occurs, information on private keys
may be (partially) leaked. In 2003, Howgrave et al. [14] successfully demon-
strated an attack that employs large number of queries to a weak decryption
oracle. Unlike a classical decryption oracle, a weak decryption oracle will only
tell whether a valid ciphertext was decrypted correctly or not (see [13]). This
attack is later known as the reaction attack, and becomes common to lattice
based cryptography [8,22]. In practice, to address this attack one may choose
optimized parameters so that the decryption error is negligible in security param-
eter, for example, NTRUEncrypt [11]; or less optimized ones that eliminate the
decryption errors, for example, NTRU-HRSS [15].

In NTRUReEncrypt, the delegator first chooses a small polynomial s, and
encrypts the message m as CA = hA ∗ s + m, where delegator’s private key is
(fA, gA) and delegator’s public key is hA = p ∗ gA ∗ f−1

A . After receiving CA, the
proxy chooses small polynomial e and sends CB = CA ∗ rkA→B + p ∗ e to the
delegatee, where rkA→B = fA ∗ f−1

B is the re-encrypted key of the proxy and
fB is the private key of the delegatee. Finally, the delegatee computes CB ∗ fB

modulo q and reduces it modulo p to recover the message m.
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Our first contribution is to analyze the NTRUReEncrypt scheme using the
aforementioned reaction attack. Note that the NTRUReEncrypt scheme follows
the parameter sets in [11,19,21]. The probability of decryption failure was set to
be negligible in the security parameter for a public key encryption scheme. How-
ever, the re-encryption process of NTRUReEncrypt significantly increases decryp-
tion error1. We give a detailed analyze the probability of decryption failure in
Table 1, and show how to use a reaction attack to recover private keys, given
sufficient many decryption failures. We also note that one can simply mitigate
this attack by increasing the modulus (and also the dimensions accordingly to
ensure the lattice problem is still hard in practice) so that decryption failure
probability becomes negligible again.

Table 1. The probabilities of decryption failure after encryption and re-encryption

Parameter sets log2(Pdec(c)) log2(Pdec(c
′))

ees1087ep1 −219 −92

ees1171ep1 −245 −117

ees1499ep1 −323 −200

ntru-443 −217 −35

ntru-743 −122 −16

Our other contribution is a new attack in which a curious delegatee receiving
a large re-encrypted ciphertexts from a single message can recover the private key
of a delegator. Roughly speaking, note that the intermediate polynomial during
the delegatee’s decryption has the form of CBi

∗fB = p∗gA∗si+m∗fA+p∗ei∗fB .
Once the delegatee collects enough (denoted by l) intermediate polynomials for
a same message m, he can average them to obtain p ∗ gA ∗

∑l
i=1 si/l + m ∗ fA +

p ∗ fB ∗
∑l

i=1 ei/l = fB ∗
∑l

i=1 CBi
/l. Since si, ei are randomly chosen small

polynomials, for sufficiently large l, the coefficients of p ∗ gA ∗
∑l

i=1 si/l and
p ∗ fB ∗

∑l
i=1 ei/l will be very small. Hence, with overwhelming probability, the

equation m ∗ fA = Round(
∑l

i=1 fB ∗CBi
/l) holds, from which we can efficiently

recover the private key fA. To resist such an attack, some randomized padding
scheme should be added carefully (Table 2).

Our second attack indeed bases on the fact that each re-encrypted messages
leaks partial information of the secret key. Our attack is a simple illustration
of such a leakage. In lattice based signatures schemes, transcript leakages are
usually fixed with rejection sampling methods. It is not trivial to apply this
method to an re-encryption scheme. We leave secure instantiation of NTRU
based re-encryption schemes to future work.
1 Indeed, even if the NTRUReEncrypt adopts NTRU-HRSS parameter sets that don’t

have decryption errors by design, the re-encryption process will introduce decryption
errors.
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Table 2. The approximate number of required re-encrypted ciphertexts

Parameter sets Number of ciphertexts

ees1087ep1 258.5

ees1171ep1 258.7

ees1499ep1 259.7

ntru-443 253.5

ntru-743 257.3

Roadmap. The remainder of the paper is organized as follows. In Sect. 2,
we recall the original NTRU encryption and explain its decryption failures. In
Sect. 3, we present the proxy re-encryption scheme NTRUReEncrypt. In Sect. 4,
we give our first attack against NTRUReEncryptand analyze the decryption fail-
ure probability. In Sect. 5, we give our second attack against NTRUReEncrypt.
Finally, we give a short conclusion in Sect. 6.

2 Notations and Preliminaries

2.1 Notations and Definitions

Let R denote the ring Z[X]/(XN − 1), where N is prime. Let + and ∗ denote
addition and multiplication in R, respectively. For integer p, q, gcd(p, q) = 1 and
p � q. Let Rq be the ring Zq[X]/(XN −1) and Rp be the ring Zp[X]/(XN −1).
We use ‖.‖∞ to denote the infinite norm and ‖.‖ to denote the Euclidean norm.

A polynomial a(x) = a0 + a1x + · · · + aN−1x
N−1 is identified with its vector

of coefficients a = [a0, a1, · · · , aN−1]. The maximum and minimum coefficients
of polynomial or vector are denoted by

Max(a(x)) = max
0≤i≤N−1

{ai} and Min(a(x)) = min
0≤i≤N−1

{ai}.

The width of a polynomial a(X) is the difference between its largest and smallest
coefficients

Width(a(x)) = Max(a(x)) − Min(a(x)).

The reversal polynomial ā(x) of a polynomial a(x) in R is defined to be
ā(x) = a(x−1). If a = (a0, a1, · · · , aN−1), then ā = (a0, aN−1, aN−2, · · · , a1).

Let â(x) = a(x) ∗ ā(x) in R, a coefficient âi of â(x) is the dot products of a

with its successive rotations xi ∗ a. We have â0 =
∑N−1

i=0 a2
i = ‖a‖2.

For positive integers d1, d2, We set the notation:

T(d1,d2) =

{
trinary polynomials of R with d1 entries

equal to 1 and d2 entries equal to − 1

}

.
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2.2 Overview of NTRU

We now briefly present the basic NTRU encryption scheme, for more details see
[12]. The polynomials used in NTRU are selected from four sets Lf ,Lg,Ls,Lm,
where Lf = {f : f ∈ T(df ,df−1)}, Lg = {g : g ∈ T(dg,dg)}, Ls = {s : s ∈ T(ds,ds)},
and Lm={m ∈ R : every coefficient of m lies between p−1

2 and p−1
2 }.

– KeyGen(1k): On input security parameter k, the key generation algorithm
KenGen first chooses f ∈ Lf , such that f has inverse f−1

q in Rq and f−1
p in

Rp, g ∈ Lg, then computes h = p ∗ g ∗ f−1
q mod q and outputs public key

pk = h and private key sk = (f, g).

– Enc(pk,m): On input the public key pk and a message m ∈ Lm, the encryp-
tion algorithm Enc chooses s ∈ Ls and outputs the ciphertext c = h ∗ s + m
mod q.

– Dec(sk, c): On input the private key sk and the ciphertext c, the decryption
algorithm Dec computes a = c ∗ f mod q, and place the coefficient of a in
the interval (−q/2, q/2]. Outputs m = a ∗ f−1

p mod p.

2.3 Decryption Failures

When decrypting a ciphertext c, one caluates

a = c ∗ f = p ∗ g ∗ s + m ∗ f mod q. (1)

Since the polynomials f , g, s and m are small, the coefficients of polynomial
p ∗ g ∗ s + m ∗ f lie in (−q/2, q/2] with high probability. If the equality mod q in
Eq. (1) also holds over Z. Then, we have

a ∗ f−1
p = p ∗ g ∗ s ∗ f−1

p + m ∗ f ∗ f−1
p = m mod p.

Hence decryption works if Eq. (1) also holds over Z. A warp failure occurs if
‖p ∗ g ∗ s + m ∗ f‖∞ ≥ q/2 and a gap failure occurs if the width of p∗g∗s+m∗f
is greater than or equal to q.

Howgrave et al. [14] presented the attack based on decryption failure. The
attacker selected (m, si) with fixed m, such that ‖p ∗ g ∗ si + m ∗ f‖∞ ≥ q/2.
Once the attacker collected sufficiently large (m, si), the attacker can recover
the private key (g, f).

3 NTRUReEncrypt

3.1 Presentation of the Scheme

In [16], Nuñez et al. proposed a proxy re-encryption scheme NTRUReEncrypt
based on NTRU, where a proxy is given re-encryption key rkA→B that allows
him to translate a message m encrypted under Alice’s public key pkA into a
re-encrypted ciphertext of the same message m decryptable by Bob’s private
key skB .
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The NTRUReEncrypt scheme consists of five algorithms:

– KeyGen(1k): On input the security parameter k, the output of key genera-
tion algorithm for Alice is (skA, pkA), where skA = (fA, gA) and pkA = hA.
Let f−1

A denote the inverse of fA in the ring Rq.

– ReKeyGen(skA, skB): On input the secret key skA and the secret key
skB , the re-encryption algorithm ReKeyGen computes the re-encryption key
between Alice and Bob as rkA→B = fA ∗ f−1

B mod q. The re-encryption key
can be computed by a simple three-party protocol originally proposed in [6],
is as follows: Alice selects r ∈ Rq and sends r ∗ fA mod q to Bob and r to
the proxy, then Bob sends r ∗ fA ∗ f−1

B mod q to the proxy, so the proxy can
compute rkA→B = fA ∗ f−1

B mod q.

– Enc(pkA,m): On input the public key pkA and the message m, the encryp-
tion algorithm Enc generates s ∈ Tds,ds

, and outputs CA = hA ∗ s + m
mod q.

– ReEnc(rkA→B , CA): On input a re-encryption key rkA→B and a ciphertext
CA, the re-encryption algorithm ReEnc generates e ∈ Tds,ds

and outputs
CB = CA ∗ rkA→B + p ∗ e mod q.

– Dec(skA, CA): On input the secret key skA and the ciphertext CA, the
decryption algorithm computes CA

′ = CA ∗ fA mod q and outputs m = CA
′

mod p.

Next, We would like to point out that

– In order to decrypt the re-encrypted ciphertext correctly, the private polyno-
mial fB has to be congruent to 1 modulo p. So the difference between NTRU
and NTRUReEncrypt of the key generation is that the private key f has the
form of 1 + p ∗ F , where F ∈ T(df ,df ).

– In practical, the message m is padded with random bits and masked according
to a hamming weight restriction, which means message representatives are
trinary polynomials with the number of +1s, −1s, and 0s each be greater
than dm. So for simplicity, m satisfies the hamming weight restriction in this
paper.

– The error term e is chosen randomly from the ring R during the re-encryption
in [16], which is unreasonable. In fact, e should be small, we therefore assume
that e is sampled from the same set as s.

For the correctness of Bob’s decryption, when Bob gets the re-encryption cipher-
text CB , he first computes

CB ∗ fB = (CA ∗ fA ∗ f−1
B + p ∗ e) ∗ fB

= (hA ∗ s + m) ∗ fA + p ∗ e ∗ fB

= p ∗ gA ∗ s + m ∗ fA + p ∗ e ∗ fB mod q.

(2)
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If the last part of Eq. (2) also holds over Z, then we have C ′
B = p ∗ gA ∗ s + m ∗

fA + p ∗ e ∗ fB . After taking modulo p, Bob can obtain the original message m.

Remark 1. The scheme is also bidirectional and multihop, namely it’s trivial
to obtain rkB→A from rkA→B and the re-encryption process can be repeated
multiple times.

3.2 Parameter Sets

The author of [16] implemented NTRUReEncrypt scheme on ees439ep1,
ees1087ep1, ees1171ep1, ees1499ep1 parameter sets following the IEEE P1363.1
standards [19]. They also used the product form polynomials for optimization of
each set. However, some specific parameters are not clear in [16], so we only list
ees1087ep1, ees1171ep1, ees1499ep1 in Table 3.

Note that the NTRU project has proposed new parameter sets ntru-443 and
ntru-743, which are submitted to NIST PQC competition [21]. For completeness,
we also list them in Table 3 to analyze the security of the scheme.

For ees1087ep1, ees1171ep1, ees1499ep1, ntru-443, ntru-743, the private key is
(f, g) = (1+p∗F ) with F ∈ T(df ,df ) and g ∈ T(dg,dg), the polynomial s ∈ T(ds,ds).

Table 3. Some instances of trinary polynomials

Instance N p q dg df=ds=dm

ees1087ep1 1087 3 2048 362 120

ees1171ep1 1171 3 2048 390 106

ees1499ep1 1499 3 2048 499 79

ntru-443 443 3 2048 143 143

ntru-743 743 3 2048 247 247

4 Reaction Attack Against NTRUReEncrypt

Recall that in Bob’s decryption, the intermediate polynomial is p ∗ gA ∗ s + m ∗
fA + p ∗ e ∗ fB and the additional term p ∗ e ∗ fB produces an increased error.
Hence, the decryption failure probability is expected to significantly increase. On
the other hand, the attacks based on the decryption failures has been studied
well in [14]. Therefore, we employ their attack to analyze the security of the
NTRUReEncrypt scheme.

More precisely, it is assume that the attacker has access to an oracle to
determine whether a validly created ciphertext can be decrypted correctly or
not. The attack takes as follows. The first stage is that the attacker uses the
oracle to collect (m, s, e), which generates the re-encrypted ciphertext CB that
can not be decrypted correctly. The second stage is that the attacker fixes (m, s)
and randomly searches ei, where (m, s, ei) causes decryption failure. The final
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stage is that the attacker uses those êi correlated with f̂B to determine the
private key fB . Note that the proxy can create CAi

by encrypting random mi

with random si and CBi
by re-encrypting CAi

with random ei, we therefore
assume that a corrupt proxy can act as an attacker.

Before explaining our attack, we first show that the decryption failure prob-
ability of NTRUReEncrypt significantly increases for Bob.

4.1 Estimating Decryption Failure Probability of CA

We use the method introduced in [10] to estimate the decryption failure proba-
bility. Recall that in Alice’s decryption, she computes

CA
′ = p ∗ gA ∗ s + fA ∗ m

= p ∗ gA ∗ s + p ∗ FA ∗ m + m mod q,

Decryption works, if
∥
∥CA

′∥∥
∞ = ‖p ∗ (gA ∗ s + FA ∗ m) + m‖∞ < q/2.

Therefore, the decryption failure probability Pdec can be bounded by the prob-
ability that one or more coefficients of gA ∗ s + FA ∗ m has an absolute value
greater than c = (q − 2)/(2p). So we have

Pdec(c) = Pr[‖gA ∗ s + FA ∗ m‖∞ ≥ c] .

For trinary FA ∈ T(df ,df ), gA ∈ T(dg,dg), s ∈ T(ds,ds). Let Xj denote a cofficient
of gA ∗ s + FA ∗ m, then Xj has the form

(gA ∗ s + FA ∗ m)j = (s ∗ gA)j + (FA ∗ m)j ,

and each term in the sum is a sum of either 2ds or 2df coefficients of gA or m.
Note that each term in the sum has mean 0.

For instance, let ε(i) ∈ {1,−1} and a(i) represents index, we have

(s ∗ gA)j =
2ds∑

i=1

ε(i)(gA)a(i).

We assume that the coefficients of gA are independent random variables taking
the value 1 with probability dg

N , −1 with probability dg

N and 0 with probability
N−2dg

N . Hence, the variance σ2
1 of (gA ∗ s)j is computed as:

σ2
1 = E((s ∗ gA)2j ) =

2ds∑

i=1

E((gA)2a(i)) =
4dsdg

N
.

Recall that the message m is sampled uniformly from the set of trinary
polynomials, which restrains that the number of non-zero coefficients can not
exceed N − dm. We also assume that the coefficient of m is chosen as ±1 with
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the probability N−dm

N and 0 with the probability dm

N . Similarly, the variance σ2
2

of (FA ∗ m)j is

σ2
2 = E((FA ∗ m)2j ) = 2df · N − dm

N
.

Suppose 2ds, 2dg are large, the central limit theorem suggests that the distribu-
tion of Xj has the normal distribution with mean 0 and variance σ2:

σ2 = σ2
1 + σ2

2 =
4dsdg + 2df · (N − dm)

N

With complementary error function erfc(·), the probability that a coefficient Xj

has absolute value exceeds c is given by

Pr[|Xj | ≥ c] = erfc(c/
√

2σ).

After applying the union bound, the probability Pdec(c) is bounded by

Pdec(c) = N · erfc(c/
√

2σ),

where
erfc(c/

√
2σ) =

2√
π

·
∫ ∞

c/
√
2σ

e−x2
dx.

4.2 Estimating Decryption Failure Probability of CB

When Bob receives the re-encrypt ciphertext CB , the intermediate process is to
compute

CB
′ = p ∗ gA ∗ s + m ∗ fA + p ∗ e ∗ fB ,

and the failure occurs if

‖p · (gA ∗ s + FA ∗ m + p ∗ FB ∗ e) + pe + m‖∞ ≥ q/2.

Similarly, for trinary FB ∈ T(df ,df ), we get the probability

Pdec(c′) = N · erfc(c′/
√

2σ′),

where

σ′2 = σ2 +
p2 · 4dsdf

N
,

and
c′ = c − 1.

We estimate decryption failure probabilities with the parameters specified in
Sect. 3.2 and list them below (Table 4).

As we can see, the probability that the re-encrypted ciphertext CB fails to
decrypt is much greater than that of CA. What’s more, the decryption failures
lead to reaction attack.
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Table 4. The probabilities of decryption failure during encryption and re-encryption

Instance σ2 σ′2 log2(Pdec(c)) log2(Pdec(c
′))

ees1087ep1 373 850 −219 −92

ees1171ep1 334 679 −245 −117

ees1499ep1 255 405 −323 −200

ntru-443 378 2040 −217 −35

ntru-743 658 3614 −122 −16

4.3 Description of the Attack

For completeness, we simply describe the attack as below. See [14] for more
details about the reaction attack based on the decryption failure.

– Stage 1: The attacker first collects (m, s, e), which will generate the re-
encrypted ciphertext CB that can not be decrypted correctly. Moreover, the
triplet (m, s, e) should satisfy two conditions: there must be a coefficient of
p ∗ gA ∗ s + m ∗ fA that is both abnormally far from its expected value and
further from the expected value than any other coefficient, and the distances
between the two coefficients of p∗gA ∗s+m∗fA furthest from their expected
value, which is known as the gap of p∗gA ∗s+m∗fA, should be large enough.

– Stage 2: For fixed (m, s) found in Stage 1, the attacker randomly chooses
ei and collects (m, s, ei) that causes decryption failure for Bob. Suppose the
i−th coefficient of p ∗ gA ∗ s + m ∗ fA is abnormally far from its expected
value, then it is most likely that the absolute value of the i−th coefficient of
p ∗ gA ∗ s + m ∗ fA + p ∗ ei ∗ fB exceeds q/2. The strength of this bias towards
the i−th coefficient of the p ∗ gA ∗ s + m ∗ fA + p ∗ ei ∗ fB will depend on the
gap of p ∗ gA ∗ s + m ∗ fA. What’s more, it suggests that ei is correlated with
xi ∗ fB . Since the reversal of xi ∗ fB equals to x−i ∗ fB , êi is corrected with
f̂B .

– Stage 3: For sufficiently large k, the value of f̂B can be derived from the
average of the polynomials ê1,ê2, · · · ,êk. Furthermore, fB can be recovered
from f̂B according to the algorithm introduced in [9].
Since the proxy has the re-encryption key rkA→B = fA ∗ f−1

B mod q and the
public key of Alice is hA = p∗gA ∗f−1

A mod q. Once the attaker recovers the
private key fB , fA can be found by computing fA = rkA→B ∗ fB mod q and
gA can be found by computing gA = p ∗ gA ∗ hA mod q.

5 Key Recovery Attack Against NTRUReEncrypt

In this section, we show that curious Bob can recover Alice’s secret keys fA when
collecting enough ciphertexts from a single message.
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5.1 Key Idea of Recovering fA for Bob

For simplicity, suppose a message m could be encrypted l times using the same
public key fA of Alice, and the ciphertexts are computed as

CAi
= hA ∗ si + m i = 1, · · · , l.

When Bob receives CBi
corresponding to CAi

, he can first computes the following
relation

fB ∗ CBi
= p ∗ gA ∗ si + p ∗ fB ∗ ei + m ∗ fA.

Next, Bob obtains

fB ∗
l∑

i=1

CBi
= p ∗ gA ∗ (

l∑

i=1

si) + p ∗ fB ∗ (
l∑

i=1

ei) + l ∗ m ∗ fA.

Note that p, gA, si, fB , and ei are small. We can expect that for sufficiently large
l, p∗gA∗

∑l
i=1 si/k and p∗fB ∗

∑l
i=1 ei/k are small enough. Since the coefficients

of m ∗ fA are integer, the following equation holds with high probability,

m ∗ fA = Round(
l∑

i=1

fB ∗ CBi
/l).

where Round(·) is a rounding function.
Since Bob can decrypt correctly to obtain the message m, so the unknown

private key fA will be recovered by solving the above linear equations.

5.2 Analyze the Size of l

For the attack, we need l that satisfies
∥
∥
∥
∥
∥
p ∗ gA ∗

l∑

i=1

si/l

∥
∥
∥
∥
∥

∞
≤ 1

4
,

∥
∥
∥
∥
∥
p ∗ fB ∗

l∑

i=1

ei/l

∥
∥
∥
∥
∥

∞
≤ 1

4
,

to ensure m ∗ fA = Round(
∑l

i=1 fB ∗ CBi
/l).

For any si ∈ T(ds,ds), let X =
∑l

i=1 si/l = (X0, · · · ,XN−1). For sufficiently
large l, the central limit theorem states that X has the N dimension normal
distribution N (0, Σ), where the diagonal elements of Σ are 2ds

lN and the rest are
−2ds

lN(N−1) .

We define ‖Σ‖∞ = max
i

∑N
j=1 |σij |, where σij is the component of Σ. Now

we have ‖Σ‖∞ = 4ds

lN . Let λ denote the maximal eigenvalue of Σ, then we have
λ ≤ ‖Σ‖∞ = 4ds

lN .
On the other hand, there exists Y = (Y0, Y1, · · · , YN−1) and an orthogonal

matrix D, such that
X = Y D,
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where Y0, · · · , YN−1 are independent variables and the covariance matrix of Y
is a diagonal matrix in which the elements on the diagonal are the eigenvalues
of the covariance matrix Σ of X. Hence, let V ar(Yj) denote the variance of Yj ,
we know

λ = max
j

V ar(Yj) ≤ 4ds

lN
.

To estimate the probability Pr
[∥
∥
∥p ∗ gA ∗

∑l
i=1 si/l

∥
∥
∥

∞
≤ 1

4

]
, we can consider

the probability Pr
[⋂N

j=1 |Xj | ≤ ε
]
, where ε satifies

∥
∥
∥
∥
∥
p ∗ gA ∗ (

l∑

i=1

si/l)

∥
∥
∥
∥
∥

∞
≤ 2dgpε ≤ 1

4
.

Since X0, · · · , XN−1 are not independent, we can consider the probability
Pr

[⋂N
j=1 |Yj | ≤ ε/N

]
instead, where

Pr

⎡

⎣
N⋂

j=1

|Yj | ≤ ε/N

⎤

⎦ =
N−1∏

i=0

Pr[|Yj | ≤ ε/N ] .

By the Chebyshev inequality, we know that

Pr[|Yj | ≤ ε/N ] ≥ 1 − V ar(Yj)
(ε/N)2

.

Finally we obtain

Pr

⎡

⎣
N⋂

j=1

|Yj | ≤ ε/N

⎤

⎦ ≥ (1 − λ

(ε/N)2
)N ≥ (1 − 4dsN

lε2
)N .

Recall that ei has the same distribution, a similar analysis applies. So, for
simplicity, we compute the value of l that makes 4dsN

lε2 as small as possible by
setting ε = 1

8pdg
. We roughly give the l needed to recover the private key with

overwhelming probability (0.8 for the following table) in ees1087ep1, ees1171ep1,
ees1499ep1, ntru-443 and ntru-743 (Table 5).

Table 5. The approximate number of received re-encrypted ciphertexts

Instance l

ees1087ep1 4.06 · 1017

ees1171ep1 4.83 · 1017

ees1499ep1 9.67 · 1017

ntru-443 1.26 · 1016

ntru-743 1.82 · 1017
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6 Conclusion

In this paper, we presented two key recovery attacks against NTRUReEncrypt
to show the weakness of the scheme.

– The first one is based on the attack introduced in [14]. The attacker has access
to an oracle that can detect whether the valid ciphertext can be decrypted
correctly or not. The countermeasures to mitigate this attack is by tuning
the parameters to ensure that the decryption failure probability is negligible,
i.e., < 2−128.

– The second one is based on the fact that Bob knows the original message m,
so he can compute an equation in the form of p∗ gA ∗

∑l
i=1 si/l+m∗fA +p∗

fB ∗
∑l

i=1 ei/l = fB ∗
∑l

i=1 CBi
/l. For sufficiently large l, p ∗ gA ∗

∑l
i=1 si/l

and p ∗ fB ∗
∑l

i=1 ei/l converge to 0. Hence fA can be recovered by solving
m ∗ fA = Round(fB ∗

∑l
i=1 CBi

/l).
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