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Abstract. We present a key recovery attack against Y. Wang’s Random
Linear Code Encryption (RLCE) scheme recently submitted to the NIST
call for post-quantum cryptography. The public key of this code based
encryption scheme is a generator matrix of a generalised Reed Solomon
code whose columns are mixed in a certain manner with purely random
columns. In this paper, we show that it is possible to recover the under-
lying structure when there are not enough random columns. The attack
reposes on a distinguisher on the dimension of the square code. This
process allows to recover the secret key for all the short key parameters
proposed by the author in O(n5) operations. Our analysis explains also
why RLCE long keys stay out of reach of our attack.
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1 Introduction

The McEliece encryption scheme dates back to the late 70’s [14] and lies among
the possible post-quantum alternatives to number theory based schemes using
integer factorisation or discrete logarithm. However, the main drawback of
McEliece’s original scheme is the large size of its keys. Indeed, the classic instan-
tiation of McEliece using binary Goppa codes requires public keys of several hun-
dreds of kilobytes to assert a security of 128 bits. For example, the recent NIST
submission Classic McEliece [4] proposes public keys of 1.1 to 1.3 megabytes to
assert 256 bits security (with a classical computer).

To reduce the size of the keys, two general trends appear in the literature : the
first one consists in considering codes with a non trivial automorphism group, the
second one in using codes with a higher decoding capacity for encryption. In the
last decade, the second trend led to many proposals involving generalised Reed
Solomon (GRS) codes, which are well-known to have a large minimum distance
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together with efficient decoding algorithms correcting up to half the minimum
distance. On the other hand, the raw use of GRS codes has been proved to be
insecure by Sidelnikov and Shestakov [15]. Subsequently, some variations have
been proposed as a counter-measure of Sidelnikov and Shestakov’s attack. Berger
and Loidreau [3] suggested to replace a GRS code by a random subcode of small
codimension, Wieschebrink [18] proposed to join random columns in a generator
matrix of a GRS code and Baldi et al. [1] suggested to mask the structure of
the code by right multiplying a generator matrix of a GRS code by the sum of
a low rank matrix and a sparse matrix. It turns out that all of these proposals
have been subject to efficient polynomial time attacks [8,11,19].

A more recent proposal by Yongge Wang [16] suggests another way of hiding
the structure of GRS codes. The outline of Wang’s construction is the following:
start from a k × n generator matrix of a GRS code of length n and dimension
k over a field Fq, add w additional random columns to the matrix, and mix
the columns in a particular manner. The design of this scheme is detailed in
Sect. 3.1. This approach entails a significant expansion of the public key size but
may resist above-mentioned attacks such as distinguisher and filtration attacks
[8,10]. This public key encryption primitive is the core of Wang’s recent NIST
submission “RLCE-KEM” [17].

Our Contribution: In the present article we give a polynomial time key recovery
attack against RLCE. For an [n, k] code with w additional random columns, our
attack breaks the system in O(wk2n2) operations, when w < n − k. This allows
us to break half the parameter sets proposed in [17].

2 Notation and Prerequisites

2.1 Generalised Reed Solomon Codes

Notation 1. Let q be a power of prime and k a positive integer. We denote by
Fq[X]<k the vector space of polynomials over Fq whose degree is strictly bounded
from above by k.

Definition 1 (Generalised Reed Solomon codes). Let x ∈ F
n
q be a vector

whose entries are pairwise distinct and y ∈ F
n
q be a vector whose entries are

all nonzero. The generalised Reed Solomon (GRS) code with support x and
multiplier y of dimension k is defined as

GRSk(x,y)
def
= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[x]<k}.

2.2 Schur Product of Codes and Square Codes Distinguisher

Notation 2. The component-wise product of two vectors a and b in F
n
q is

denoted by : a � b
def
= (a1b1, . . . , anbn). This definition extends to the product

of codes where the Schur product of two codes A and B ⊆ F
n
q is defined as

A � B
def
= Span

Fq
{a � b | a ∈ A , b ∈ B}.
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In particular, A �2 denotes the square code of a code A : A �2 def
= A � A .

We recall the following result on the generic behaviour of random codes with
respect to this operation.

Proposition 1 ( [6, Theorem 2.3], informal). For a linear code R chosen at
random over Fq of dimension k and length n, the dimension of R�2 is typically
min(n,

(
k+1
2

)
).

This provides a distinguisher between random codes and algebraically struc-
tured codes such as generalised Reed Solomon codes [8,19], Reed Muller codes [7],
polar codes [2] some Goppa codes [10,12] or algebraic geometry codes [9]. For
instance, in the case of GRS codes, we have the following result.

Proposition 2. Let n, k,x,y be as in Definition 1. Then,

(GRSk(x,y))�2 = GRS2k−1(x,y � y).

In particular, if k < n/2, then dim (GRSk(x,y))�2 = 2k − 1.

Thus, compared to a random code R whose square has a dimension quadratic
in dimR, the square of a GRS code C has a dimension which is linear in dimC .
This criterion allows to distinguish GRS codes of appropriate dimension from
random codes.

2.3 Punctured and Shortened Codes

The notions of puncturing and shortening are classical ways to build new codes
from existing ones. These constructions will be useful for the attack. We recall
here their definition. For a codeword c ∈ F

n
q , we denote (c1, . . . , cn) its entries.

Definition 2 (punctured and restricted codes). Let C ⊆ F
n
q and L ⊆

�1, n�. The puncturing of C at L is defined as the code

PL (C )
def
= {(ci)i∈�1,n�\L s.t. c ∈ C }.

The restriction of C to L is defined as the code RL (C )
def
= P�1,n�\L (C ) .

Definition 3 (shortened code). Let C ⊆ F
n
q and L ⊆ �1, n�. The shortening

of C at L is defined as the code

SL (C )
def
= PL ({c ∈ C s.t. ∀i ∈ L, ci = 0}).

Shortening a code is equivalent to puncturing the dual code, as explained by
the following proposition, whose proof can be found in [13, Theorem 1.5.7].

Proposition 3. Let C be a linear code over F
n
q and L ⊆ �1, n�. Then,

SL
(
C⊥)

= (PL (C ))⊥ and (SL (C ))⊥ = PL
(
C⊥)

,

where A ⊥ denotes the dual of the code A .
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Notation 3. Throughout the document, the indexes of the columns (or positions
of the codewords) will always refer to the indexes in the original code, although the
code has been punctured or shortened. For instance, consider a code C of length
5 where every word c ∈ C is indexed c = (c1, c2, c3, c4, c5). If we puncture C in
{1, 3}, a codeword c′ ∈ P{1,3} (C ) will be indexed (c′

2, c
′
4, c

′
5) and not (c′

1, c
′
2, c

′
3).

3 The RLCE Scheme

3.1 Presentation of the Scheme

The RLCE encryption scheme is a code based cryptosystem, inspired by the
McEliece scheme. It has been introduced by Wang in [16] and a proposal called
“RLCE-KEM” has recently been submitted as a response for the NIST’s call for
post-quantum cryptosystems [17].

For a message m ∈ F
k
q , the cipher text is c = mG + e where e ∈ F

n+w
q is a

random error vector of small weight t and G ∈ F
k×(n+w)
q is a generator matrix

defined as follows, for given parameters n, k and w.

1. Let x,y ∈ F
n
q be respectively a support and a multiplier (as in Definition 1).

2. Let G0 denote a random k × n generator matrix of the generalised Reed
Solomon code GRSk(x,y) of length n and dimension k. Denote by g1, . . . , gn

the columns of G0.
3. Let r1, . . . , rw be column vectors chosen uniformly at random in F

k
q . Denote

by G1 the matrix obtained by inserting the random columns between GRS
columns at the end of G0 as follows:

G1
def= [g1, . . . , gn−w, gn−w+1, r1, . . . , gn, rw] ∈ F

k×(n+w)
q .

4. Let A1, . . . ,Aw be 2 × 2 matrices chosen uniformly at random in GL2(Fq).
Let A be the block–diagonal non singular matrix

A
def=

⎛

⎜
⎜
⎜
⎝

In−w (0)
A1

. . .
(0) Aw

⎞

⎟
⎟
⎟
⎠

∈ F
(n+w)×(n+w)
q .

5. Let π ∈ Sn+w be a randomly chosen permutation of �1, n + w� and P the
corresponding (n + w) × (n + w) permutation matrix.

6. The public key is the matrix G
def= G1AP and the private key is (x,y,A,P ).

Remark 1. This presentation of the scheme is not exactly the same as in the orig-
inal specifications of RLCE [17]. It is however equivalent. Indeed, the differences
with the original scheme are listed below.
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1. The original specifications of RLCE propose as a public key a matrix

G = SG1AP ,

where S is a k × k non singular matrix. But, since we chose G0 to be a
random generator matrix of the GRS code to which we included random
columns, left multiplication by a random nonsingular matrix does not change
the probability distribution of the public keys.

2. In [17], the matrix G0 is called Gs and is a generator matrix of a GRS code
but its columns are permuted using a permutation matrix P 1 before includ-
ing random columns. Actually, if we chose arbitrary supports and multipliers,
applying a permutation on the columns does not change the probability dis-
tribution of the public keys.

3.2 Suggested Sets of Parameters

In [17] the author proposes 2 groups of 3 sets of parameters. The first group
(referred to as odd ID parameters) corresponds to parameters such that w ∈
[0.6(n − k), 0.7(n − k)], whereas in the second group (even ID parameters) the
parameters satisfy w = n − k. The parameters of these two groups are listed in
Tables 1 and 2.

The attack of the present paper recovers in polynomial time any secret key
when parameters lie in the first group.

Table 1. Set of parameters for the first group: w ∈ [0.6(n − k), 0.7(n − k)].

Security level (bits) Name in [17] n k t w q Public key size (kB)

128 ID 1 532 376 78 96 210 118

192 ID 3 846 618 114 144 210 287

256 ID 5 1160 700 230 311 211 742

Table 2. Set of parameters for the second group: w = n − k.

Security level (bits) Name in [17] n k t w q Public key size (kB)

128 ID 0 630 470 80 160 210 188

192 ID 2 1000 764 118 236 210 450

256 ID 4 1360 800 280 560 211 1232

4 Distinguishing by Shortening and Squaring

We will show here that it is possible to distinguish some public keys from random
codes by computing the square of some shortening of the public code. More
precisely, here is our main result.
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Theorem 4. Let C be a code over Fq of length n + w and dimension k with
generator matrix G which is the public key of an RLCE scheme that is based on
a GRS code of length n and dimension k. Let L ⊂ �1, n + w�. Then,

dim (SL (C ))�2 � min(n + w − |L|, 2(k + w − |L|) − 1).

Remark 2. Actually, according to computer experiments, the inequality estab-
lished in Theorem 4 seems to be an equality with a probability close to 1 when
we are not in the degenerate case described in Sect. 6.7. See Remark 4 for further
details.

To prove Theorem 4 we can assume that P is the identity matrix. This is
because of the following lemma.

Lemma 1. For any permutation σ of the code positions �1, n + w� we have

dim (SL (C ))�2 = dim (SLσ (C σ))�2
,

where C σ is the set of codewords in C permuted by σ, that is C σ = {cσ : c ∈ C }
where cσ def

= (cσ(i))i∈�1,n+w� and Lσ def
= {σ(i) : i ∈ L}.

Therefore, for the analysis of the distinguisher, we can make the following
assumption which we will use several times the rest of the section, especially
to simplify the notation. The general case will follow by using Lemma1.

Assumption 5. The permutation matrix P is the identity matrix.

4.1 Analysis of the Different Kinds of Columns

Notation and Terminology. Before proving the result, let us introduce some
notation and terminology. The set of positions �1, n + w� splits in a natural way
into four sets, whose definitions are given in the sequel

�1, n + w� = I1
GRS ∪ I2

GRS ∪ IR ∪ IPR. (1)

Definition 4. The set of GRS positions of the first kind, denoted I1
GRS, cor-

responds to GRS columns which have not been associated to a random column.
This set has cardinality n − w and is given by

I1
GRS

def
= {i ∈ �1, n + w� |π−1(i) � n − w}. (2)

Under Assumption 5, this becomes: I1
GRS

def
= �1, n − w�.

This set is called this way, because at a position i ∈ I1
GRS, any codeword

v ∈ C has an entry of the form

vi = yif(xi). (3)

As we will see later, there might be other code positions that are of this form.
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Definition 5. The set of twin positions, denoted IT, corresponds to columns
that result in a mix of a random column and a GRS one. This set has cardinality
2w and is equal to:

IT
def
= {i ∈ �1, n + w� |π−1(i) > n − w}.

Under Assumption 5, this becomes: IT
def
= �n − w + 1, n + w�.

The set IT can be divided in several subsets as follows.

Definition 6. Each position in IT has a unique corresponding twin position
which is the position of the column with which it was mixed. For all s ∈ �1, w�,
π(n − w + 2s − 1) and π(n − w + 2s) are twin positions. Under Assumption 5,
the positions n − w + 2s − 1 and n − w + 2s are twins for all s in �1, w�.

For convenience, we introduce the following notation.

Notation 6. The twin of a position i ∈ IT is denoted by τ(i).

To any twin pair {i, τ(i)} = {π(n − w + 2s − 1), π(n − w + 2s)} with s ∈
{1, . . . , w} is associated a unique linear form ψs : Fq[x]<k → Fq and a non-
singular matrix As such that for any codeword v ∈ C , we have

vi = asyjf(xj) + csψs(f)
vτ(i) = bsyjf(xj) + dsψs(f), (4)

where j = n − w + s and (
as bs

cs ds

)
= As. (5)

The linear form ψs is the form whose evaluations provides the random column
added on the right of the (n−w + s)-th column during the construction process
of G (see Sect. 3.1, Step 3). From (4), we see that we may obtain more GRS
positions: indeed vi = asyjf(xj) if cs = 0 or vτ(i) = bsyjf(xj) if ds = 0. On the
other hand if csds �= 0 the twin pairs are correlated in the sense that they behave
in a non-trivial way after shortening: Lemma3 shows that if one shortens the
code in such a position its twin becomes a GRS position. We therefore call such
a twin pair a pseudo-random twin pair and the set of pseudo-random twin pairs
forms what we call the set of pseudo-random positions.

Definition 7. The set of pseudo-random positions (PR in short), denoted IPR,
is given by

IPR
def
=

⋃

s∈�1,w� s.t. csds �=0

{π(n − w + 2s − 1), π(n − w + 2s)}. (6)

Under Assumption 5, this becomes:

IPR =
⋃

s∈�1,w� s.t. csds �=0

{n − w + 2s − 1, n − w + 2s}. (7)
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If csds = 0, then a twin pair splits into a GRS position of the second kind
and a random position. The GRS position of the second kind is π(n−w+2s−1)
if cs = 0 or π(n − w + 2s) if ds = 0 (cs and ds can not both be equal to 0 since
As is invertible).

Definition 8. The set GRS positions of the second kind, denoted I2
GRS, is

defined as

I2
GRS

def
= {π(n − w + 2s − 1) | cs = 0} ∪ {π(n − w + 2s) | ds = 0}. (8)

Under Assumption 5, this becomes:

I2
GRS = {n − w + 2s − 1 | cs = 0} ∪ {n − w + 2s | ds = 0}. (9)

Definition 9. The set of random positions, denoted IR, is defined as

IR
def
= {π(n − w + 2s − 1) | ds = 0} ∪ {π(n − w + 2s) | cs = 0}. (10)

Under Assumption 5, this becomes:

IR = {n − w + 2s − 1 | ds = 0} ∪ {n − w + 2s | cs = 0}. (11)

We also define the GRS positions to be the GRS positions of the first or the
second kind.

Definition 10. The set of GRS positions, denoted IGRS, is defined as

IGRS
def
= I1

GRS ∪ I2
GRS. (12)

We finish this subsection with a lemma.

Lemma 2. |I2
GRS| = |IR| and |IPR| = 2(w − |IR|).

Proof. Using (7), (9) and (11) we see that, under Assumption 5,

�n − w + 1, n + w� = IPR ∪ I2
GRS ∪ IR (13)

and the above union is disjoint. Next, there is a one-to-one correspondence relat-
ing I2

GRS and IR. Indeed, still under Assumption 5, if cs = 0 for some s ∈ �1, w�,
then n − w + 2s − 1 ∈ I2

GRS and n − w + 2s ∈ IR and conversely if ds = 0. This
proves that |I2

GRS| = |IR|, which, together with (13) yields the result. 	


4.2 Intermediate Results

Before proceeding to the proof of Theorem4, let us state and prove some inter-
mediate results. We will start by Lemmas 3 and 4, that will be useful to prove
Proposition 4 on the structure of shortened RLCE codes, by induction on the
number of shortened positions. This proposition will be the core of the proof of
Theorem 4. Then, we will prove a general result on modified GRS codes with
additional random columns.
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Two Useful Lemmas. The first lemma explains that, after shortening a PR
position, its twin will behave like a GRS position. This is actually a crucial
lemma that explains why PR columns in G do not really behave like random
columns after shortening the code at the corresponding position.

Lemma 3. Let i be a PR position and L a set of positions that neither contains
i nor τ(i). Let C ′ def

= SL (C ). The position τ(i) behaves like a GRS position in
the code S{i} (C ′). That is, the τ(i)-th column of a generator matrix of S{i} (C ′)
has entries of the form

ỹjf(xj)

for some j in �n − w + 1, n� and ỹj in Fq.

Proof. Let us assume that i = n − w + 2s − 1 for some s ∈ {1, . . . , w}. The case
i = n − w + 2s can be proved in a similar way. At position i, for any c ∈ C ′,
from (4), we have

ci = ayjf(xj) + cψs(f),

where j = n − w + s. By shortening, we restrict our space of polynomials to the
subspace of polynomials in Fq[x]<k satisfying ci = 0. Since i is a PR position,
c �= 0 and therefore

ψs(f) = −c−1ayjf(xj).

Therefore, at the twin position τ(i) = n − w + 2s and for any c ∈ S{i} (C ′), we
have

cτ(i) = byjf(xj) + dψj(f)

= yj(b − dac−1)f(xj).

	


Remark 3. This lemma does not hold for a random position, since the proof
requires that c �= 0. It is precisely because of this that we have to make a
distinction between twin pairs, i.e. pairs for which the associated matrix As is
such that csds �= 0 and pairs for which it is not the case.

This lemma allows us to get some insight on the structure of the shortened
code SL (C ). Before giving the relevant statement let us first recall the following
result.

Lemma 4. Consider a linear code A over Fq whose restriction to a subset L
is a subcode of a k-dimensional GRS code. Let i be an element of L. Then the
restriction of S{i} (A ) to L\{i} is a subcode of a (k−1)-dimensional GRS code.

Proof. By definition, the restriction A ′ to L is a code of the form

A ′ def=
{

(yjf(xj))j∈L : f ∈ L
}

,
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where the yj ’s are nonzero elements of Fq, the xj ’s are distinct elements of Fq

and L is a subspace of Fq[X]<k. Clearly the restriction A ′′ of S{i} (A ) to L\{i}
can be written as

A ′′ =
{

(yjf(xj))j∈L\{i} : f ∈ L, f(xi) = 0
}

.

The polynomials f(X) in L such that f(xi) = 0 can be written as f(X) =
(X − xi)g(X) where deg g = deg f − 1 and g ranges in this case over a subspace
L′ of polynomials of degree < k − 1. We can therefore write

A ′′ =
{

(yj(xj − xi)g(xj))j∈L\{i} : g ∈ L′
}

.

This implies our lemma. 	


The Key Proposition. Using Lemmas 3 and 4, we can prove the following
result by induction. This result is the key proposition for proving Theorem4.

Proposition 4. Let L be a subset of �1, n + w� and let L0,L1,L2 be subsets of
L defined as

– L0 the set of GRS positions (see (2), (8) and (12) for a definition) of L:

L0
def
= L ∩ IGRS;

– L1 the set of PR positions (see (6)) of L that do not have their twin in L:

L1
def
= {i ∈ L ∩ IPR | τ(i) �∈ L};

– L2 the set of PR positions of L whose twin position is also included in L:

L2
def
= {i ∈ L ∩ IPR | τ(i) ∈ L}.

Let C ′ be the restriction of SL (C ) to (IGRS \L0)∪ τ(L1). Then, C ′ is a subcode
of a GRS code of length |IGRS| − |L0| + |L1| and dimension k − |L0| − |L2|

2 ·
Proof. Let us prove by induction on � = |L| that C ′ is a subcode of a GRS code
of length |IGRS| − |L0| + |L1| and dimension k − |L0| − |L2|

2 ·
This statement is clearly true if � = 0, i.e. if L is the empty set. Assume that

the result is true for all L up to some size � � 0. Consider now a set L of size
� + 1. We can write L = L′ ∪ {i} where L′ is of size �.

Let L0,L1,L2 be subsets of L as defined in the statement and L′
0,L′

1,L′
2 be

the subsets of L′ obtained by replacing in the statement L by L′. There are now
several cases to consider for i.

Case 1: i ∈ L0. In this case, L0 = L′
0 ∪ {i}, L1 = L′

1 and L2 = L′
2.

We can apply Lemma 4 with A = SL′ (C ) because by the induction hypoth-
esis, its restriction to L′′ def= (IGRS \ L′

0) ∪ τ(L′
1) is a subcode of a GRS code

of length |IGRS| − |L′
0| + |L′

1| and dimension k − |L′
0| − |L′

2|
2 ·

Therefore the restriction of the shortened code SL (C ) = S{i} (A ) to
L′′ \ {i} = (IGRS \ L0) ∪ τ(L1) is a subcode of a GRS code of length
|IGRS| − |L0| + |L1| and dimension k − |L′

0| − |L′
2|
2 − 1 = k − |L0| − |L2|

2 ·
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Case 2: i ∈ L1. In this case, L0 = L′
0,L1 = L′

1 ∪ {i} and L2 = L′
2. This implies

that L′ does not contain i nor τ(i).
We can therefore apply Lemma 3 with C ′ = SL′ (C ). Lemma 3 states that
the position τ(i) behaves like a GRS position in S{i} (C ′) = SL (C ). By
induction hypothesis, the restriction of the code C ′ to (IGRS \ L′

0) ∪ τ(L′
1)

is a subcode of a GRS code of length |IGRS| − |L′
0| + |L′

1| and dimension
k − |L′

0| − |L′
2|
2 = k − |L0| − |L2|

2 ·
Therefore the restriction of S{i} (C ′) = SL (C ) to (IGRS \ L0) ∪ τ(L1) =
(IGRS \ L′

0) ∪ τ(L′
1) ∪ {τ(i)} is a subcode of a GRS code of dimension k −

|L0| − |L2|
2 and length |IGRS| − |L′

0| + |L′
1| + 1 = |IGRS| − |L0| + |L1|.

Case 3: i ∈ L2. In this case, L0 = L′
0,L1 = L′

1 \ {τ(i)} and L2 = L′
2 ∪ {i, τ(i)}.

In fact, this case can only happen if � � 1 and we will rather consider the
induction with respect to the set L′′ = L \ {i, τ(i)} of size � − 1 and the sets
L′′
0 ,L′′

1 ,L′′
2 such that L′′

0 = L0,L′′
1 = L1,L′′

2 = L2 \ {i, τ(i)}.
By induction hypothesis on L′′, the restriction of C ′′ def= SL′′ (C ) to (IGRS \
L′′
0) ∪ τ(L′′

1) is a subcode of a GRS code of length |IGRS| − |L′′
0 | + |L′′

1 | =
|IGRS| − |L0| + |L1| and dimension k − |L′′

0 | − |L′′
2 |
2 = k − |L0| − |L2|

2 + 1.
Following Assumption 5, we can write without loss of generality that i =
n−w+2s−1 for some s ∈ {1, . . . , w}. The case i = n−w+2s can be proved
in a similar way.

Denote As =
(

a b
c d

)
the non-singular matrix and j = n − w + s. For any

c ∈ C ′, at positions i and τ(i) we have

ci = ayjf(xj) + cψs(f),
cτ(i) = byjf(xj) + dψs(f).

Shortening C ′′ at {i, τ(i)} has the effect of requiring to consider only the
polynomials f for which f(xj) = ψs(f) = 0. Therefore the restriction of
S{i,τ(i)} (C ′′) = SL (C ) at (IGRS \ L′′

0) ∪ τ(L′′
1) is a subcode of a GRS code of

length |IGRS|−|L0|+|L1| and dimension k−|L0|− |L2|
2 +1−1 = k−|L0|− |L2|

2 ·
Case 4: i ∈ IR. In this case L0 = L′

0,L1 = L′
1 and L2 = L′

2. Using the induction
hypothesis yields directly that A = SL′ (C ) is a subcode of a GRS code of
length |IGRS|−|L′

0|+|L′
1| = |IGRS|−|L0|+|L1| and dimension k−|L′

0|−
|L′

2|
2 =

k − |L0| − |L2|
2 · This is also clearly the case for SL (C ) = S{i} (A ).

This proves that the induction hypothesis also holds for |L| = � + 1 and finishes
the proof of the proposition. 	


A General Result on Modified GRS Codes. Finally, we need a very general
result concerning modified GRS codes where some arbitrary columns have been
joined to the generator matrix. A very similar lemma is already proved in [8,
Lemma 9]. Its proof is repeated below for convenience and in order to provide
further details about the equality case.
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Lemma 5. Consider a linear code A over Fq with generator matrix of the form
G =

(
GSCGRS Grand

)
P of size k × (n + r) where GSCGRS is a k × n gener-

ator matrix of a subcode of a GRS code of dimension kGRS over Fq, Grand is
an arbitrary matrix in F

k×r
q and P is the permutation matrix of an arbitrary

permutation σ ∈ Sn+r. We have

dimA �2 � 2kGRS − 1 + r.

Moreover, if the equality holds, then for every i ∈ �n + 1, n + w� we have:

dim P{σ(i)}
(
A �2

)
= dimA �2 − 1.

Proof. Without loss of generality, we may assume that P is the identity matrix
since the dimension of the square code is invariant by permuting the code posi-
tions (see Lemma 1). Let B be the code with generator matrix

(
GSCGRS 0k×r

)
,

where 0k×r is the zero matrix of size k×r. We also define the code B′ generated
by the generator matrix

(
0k×n Grand

)
. We obviously have

A ⊆ B + B′.

Therefore

(A )�2 ⊆ (B + B′)�2

⊆ B�2 + (B′)�2 + B � B′

⊆ B�2 + (B′)�2
,

where the last inclusion comes from the fact that B � B′ is the zero subspace
since B and B′ have disjoint supports. The code B�2 has dimension � 2kGRS−1
whereas dim (B′)�2 � r.

Next, if dimA �2 = 2kGRS − 1 + r, then

A �2 = B�2 ⊕ (B′)�2 and dim(B′)�2 = r.

Since B′ has length r, this means that (B′)�2 = F
r
q and hence, any word of

weight 1 supported by the r rightmost positions is contained in A �2. Therefore,
puncturing this position will decrease the dimension. 	


4.3 Proof of Theorem 4

Proof. By using Proposition 4, we know that the restriction of SL (C ) to (IGRS \
L0)∪ τ(L1) is a subcode of a GRS code of length |IGRS| − |L0|+ |L1| = n−w +
|I2

GRS| − |L0| + |L1| and dimension kGRS
def= k − |L0| − |L2|

2 , where:

– L0
def= IGRS ∩ L;

– L1 is the set of PR positions of L that do not have their twin in L;
– L2 is the union of all twin PR positions that are both included in L.
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We also denote by L3 the set IR ∩ L. We can then apply Lemma 5 to SL (C )
and derive from it the following upper bound:

dim (SL (C ))�2 � 2kGRS − 1 + |IPR \ (L ∪ τ(L1))| + |IR \ L3|. (14)

Next, using Lemma 2, we get

dim (SL (C ))�2

� 2
(

k − |L0| − |L2|
2

)
− 1 + 2 (w − |IR|) − 2|L1| − |L2| + |IR| − |L3|

� 2 (k + w − |L0| − |L1| − |L2| − |L3|) − 1 + (|L3| − |IR|) (15)
� 2 (k + w − |L|) − 1. (16)

The other upper bound on dim (SL (C ))�2 which is dim (SL (C ))�2 � n+w−|L|
follows from the fact that the dimension of this code is bounded by its length.
Putting both bounds together yields the theorem. 	

Remark 4. We ran the following simulations using ID 1 parameters (see Table 1):
for three hundred random independent public keys, we computed dim (SL (C ))�2

for |L| ranging over ��min, �max�, as defined in (21). For more than 99% of the
cases, inequality (14) is an equality. In particular, this means that the inequality
of Theorem 4 is almost always an equality whenever IR is the empty set, i.e.
when we are not in the degenerate case defined in Sect. 6.7.

5 Reaching the Range of the Distinguisher

For this distinguisher to work we need to shorten the code enough so that its
square does not fill in the ambient space, but not too much since the square of the
shortened code should have a dimension strictly less than the typical dimension
of the square of a random code given by Proposition 1. Namely, we need to have:

dim (SL (C ))�2
<

(
k + 1 − |L|

2

)
and dim (SL (C ))�2

< n + w − |L|. (17)

Thanks to Theorem 4, we know that (17) is satisfied as soon as

2(k+w−|L|)−1 <

(
k + 1 − |L|

2

)
and 2(k+w−|L|)−1 < n+w−|L|. (18)

We will now find the values |L| for which the inequalities of (18) are satisfied.

First Inequality. In order to determine when the first inequality of (18) is verified,
let us denote

k′ def= k − |L|.
Inequality (18) becomes 4k′ − 2 + 4w < k′2 + k′, or equivalently k′2 − 3k′ −

4w + 2 > 0, which after a resolution leads to k′ > 3+
√
16w+1
2 ·

Hence, we have:

|L| < k − 3 +
√

16w + 1
2

· (19)
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Second Inequality. The second inequality of (18) is equivalent to

|L| � w + 2k − n. (20)

Conditions to Verify Both Inequalities. Putting inequalities (19) and (20)
together gives that |L| should satisfy

w + 2k − n � |L| < k − 3 +
√

16w + 1
2

·

We can therefore find an appropriate L if and only if

w + 2k − n < k − 3 +
√

16w + 1
2

,

which is equivalent to

n − k > w +
3 +

√
16w + 1
2

= w + O(
√

w).

In other words, the distinguisher works up to values of w that are close to the
second choice n − k = w. From now on, we set

�min
def= w + 2k − n and �max

def=
⌈
k − 3 +

√
16w + 1
2

− 1
⌉

· (21)

Practical Results. We have run experiments using Magma [5] and Sage. For
the parameters of Table 1, here are the intervals of possible values of |L| so that
the code SL (C )�2 has a non generic dimension:

– ID 1: n = 532, k = 376, w = 96, |L| ∈ �316, 354�;
– ID 3: n = 846, k = 618, w = 144, |L| ∈ �534, 592�;
– ID 5: n = 1160, k = 700, w = 311, |L| ∈ �551, 663�.

The interval always coincides with the theoretical interval ��min, �max�.

6 The Attack

In this section we will show how to find an equivalent private key (x,y,A,P )
defining the same code.

We assume that all the matrices As =
(

as bs

cs ds

)
appearing in the definition of

the scheme in Subsect. 3.1 are such that csds �= 0. We explain in Sect. 6.7 how to
deal with the special case csds = 0. Note that this corresponds to a case where
IR = ∅ and I2

GRS = ∅.

Remark 5. In the present section where we the goal is to recover the permuta-
tion, we no longer work under Assumption 5.
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6.1 Outline of the Attack

In summary, the attack works as follows.

1. Compute the interval ��min, �max� of the distinguisher and choose � in the
middle of the distinguisher interval. Ensure � < �max.

2. For several sets of indices L ⊆ �1, n + w� such that |L| = �, compute SL (C )
and identify pairs of twin positions contained in �1, n+w�. Repeat this process
until identifying all pairs of twin positions, as detailed in Sect. 6.2.

3. Puncture the twin positions in order to get a GRS code and recover its struc-
ture using the Sidelnikov Shestakov attack [15].

4. For each pair of twin positions, recover the corresponding 2 × 2 non-singular
matrix Ai, as explained in Sect. 6.6.

5. Finish to recover the structure of the underlying GRS code.

6.2 Identifying Pairs of Twin Positions

Let L ⊆ �1, n+w� be such that both |L| and |L|+ 1 are contained in the distin-
guisher interval. We compare the dimension of (SL (C ))�2 with the dimension of(
P{i} (SL (C ))

)�2 for all positions i in �1, n + w� \ L.

– If i ∈ IGRS (see (2), (8) and (12) for the definition), puncturing does not
affect the dimension of the square code:

dim (SL (C ))�2 = dim
(
P{i} (SL (C ))

)�2
.

– If i ∈ IPR (see (6) for a definition) and τ(i) ∈ L, then according to Lemma 3,
the position i is “derandomised” in SL (C ) and hence behaves like a GRS
position in the shortened code. Therefore, very similarly to the previous case,
the dimension does not change.

– If i ∈ IPR and τ(i) �∈ L, in SL (C ), the two corresponding columns behave
like random ones. Assuming that the inequality of Theorem4 is an equality,
which almost always holds when no pair of twin positions is degenerate (see
Sect. 6.7 and Remark 4), then, according to Lemma 5, puncturing SL (C )�2 at
i (resp. τ(i)) reduces its dimension. Therefore,

dim
(
P{i} (SL (C ))

)�2 = dim
(
P{τ(i)} (SL (C ))

)�2 = dim (SL (C ))�2 − 1.

If some pair of twin positions is degenerate, the non-degenerate ones can be
identified in the same way.

This provides a way to identify any position in �1, n + w� \ L having a twin
which also lies in �1, n + w� \ L: by searching zero columns in a parity-check
matrix of SL (C )�2, we obtain the set TL ⊂ �1, n + w� \ L of even cardinality of
all the positions having their twin in �1, n + w� \ L:

TL
def=

⋃

{i,τ(i)}⊆�1,n+w�\L
{i, τ(i)}.
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Once these positions are identified, we can associate each such position to its
twin. This can be done as follows. Take i ∈ TL and consider the code SL∪{i} (C ).
The column corresponding to the twin position τ(i) has been derandomised and
hence will not give a zero column in a parity-check matrix of

(
SL∪{i} (C )

)�2, so
puncturing the corresponding column will not affect the dimension.

This process can be iterated by using various shortening sets L until obtaining
w pairs of twin positions. It is readily seen that considering O(1) such sets is
enough to recover all pairs with very large probability.

6.3 Recovering the Remainder of the Code

As soon as all the pairs of twin positions are identified, consider the code
PIPR (C ) punctured at IPR. Since the randomised positions have been punc-
tured this code is nothing but a GRS code and, applying the Sidelnikov Shes-
takov attack [15], we recover a pair a, b such that PIPR (C ) = GRSk(a, b).

6.4 Joining a Pair of Twin Positions : The Code C (i)

To recover the remaining part of the code we will consider iteratively the pairs
of twin positions. We recall that IPR corresponds to the set of positions having
a twin. Let {i, τ(i)} be a pair of twin positions and consider the code

C (i) def= P�1,n�\(IGRS∪{i,τ(i)}) (C ) .

In this code, any position is GRS but positions i and τ(i). Hence, for any
codeword c ∈ C (i) we have:

ci = ayjf(xj) + cψj(f)
cτ(i) = byjf(xj) + dψj(f) (22)

for some integer j ∈ �n − w + 1, n�, where ψj and A =
(

a b
c d

)
are defined as in

(4) and (5).
Note that we do not need to recover exactly (x,y,A,P ). We need to recover

a 4-tuple (x′,y′,A′,P ′) which describes the same code. Thus, without loss of
generality, after possibly replacing a by ayj and b by byj , one can suppose that
yj = 1. Moreover, after possibly replacing ψj by dψj , one can suppose that d = 1.
Recall that in this section we suppose that cd �= 0.

Thanks to these simplifying choices, (22) becomes

ci = af(xj) + cψj(f)
cτ(i) = bf(xj) + ψj(f).
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6.5 Shortening C (i) at the Last Position to Recover xj

If we shorten C (i) at the τ(i)-th position, according to Lemma 3, it will “deran-
domise” the i-th position (it implies ψj(f) = −bf(xj)) and any c ∈ S{τ(i)}

(
C (i)

)

verifies
ci = (a − bc)f(xj).

Since the support xj and multiplier yj are known at all the positions of C (i)

but the two PR ones, for any codeword c ∈ S{τ(i)}
(
C (i)

)
, one can find the

polynomial f ∈ Fq[x]<k whose evaluation provides c. Therefore, by collecting a
basis of codewords in S{τ(i)}

(
C (i)

)
and the corresponding polynomials, we can

recover the values of xj and a − bc.

6.6 Recovering the 2 × 2 Matrix

Once we have xj we need to recover the matrix

A =
(

a b
c 1

)
.

Note that, its determinant detA = a − bc has already been obtained in the pre-
vious section. First, one can guess b as follows. Let G(i) be a generator matrix of
C (i). As in the previous section, by interpolation, one can compute the polyno-
mials f1, . . . , fk whose evaluations provide the rows of G(i). Consider the column
vector

v
def=

⎛

⎜
⎝

f1(xj)
...

fk(xj)

⎞

⎟
⎠

and denote by vi and vτ(i) the columns of G(i) corresponding to positions ci

and cτ(i):

vi =

⎛

⎜
⎝

af1(xj) + cψj(f1)
...

afk(xj) + cψj(fk)

⎞

⎟
⎠ and vτ(i) =

⎛

⎜
⎝

bf1(xj) + ψj(f1)
...

bfk(xj) + ψj(fk)

⎞

⎟
⎠ .

Next, search λ ∈ Fq such that vi − λvτ(i) is collinear to v. This relation of
collinearity can be expressed in terms of cancellation of some 2 × 2 determinants
which are polynomials of degree 1 in λ. Their common root is nothing but c.

Finally, we can find the pair (a, b) by searching the pairs (λ, μ) such that

(i) λ − cμ = detA;
(ii) vi − λv and vτ(i) − μv are collinear.

Here the relation of collinearity will be expressed as the cancellation of 2 × 2
determinants which are linear combinations of λ, μ and λμ and elementary elim-
ination process provides us with the value of the pair (a, b).
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6.7 How to Treat the Case of Degenerate Twin Positions?

Recall that a pair of twin positions i, τ(i) is such that any codeword c ∈ C has
i-th and τ(i)-th entries of the form:

ci = ayjf(xj) + bψj(f) cτ(i) = cyjf(xj) + dψj(f).

This pair is said to be degenerate if either b or d is zero. In such a situation,
some of the steps of the attack cannot be applied. In what follows, we explain
how this rather rare issue can be addressed.

If either b or d is zero, then one of the positions is actually a pure GRS
position while the other one is PR but the process explained in the article does
not manage to associate the two twin columns.

Suppose without loss of generality that b = 0. In the first part if the attack,
when we collect pairs of twin positions, the position τ(i) will be identified as PR
with no twin sister a priori. To find its twin sister, we can proceed as follows.
For any GRS position j replace the j-th column vj of a generator matrix G
of C by an arbitrary linear combination of vj and the τ(i)-th column, this will
“pseudo–randomise” this column and if the j-th column is the twin of the τ(i)-th
one, this will be detected by the process of shortening, squaring and searching
zero columns in the parity check matrix.

7 Complexity of the Attack

The most expensive part of the attack is the step consisting in identifying pairs
of twin positions. Recall that, from [8], the computation of the square of a code
of length n and dimension k costs O(k2n2) operations in Fq. We need to compute
the square of a code O(w) times, because there are w pairs of twin positions.
Hence this step has a total complexity of O(wn2k2) operations in Fq. Note that
the actual dimension of the shortened codes is significantly less than k and hence
the previous estimate is overestimated.

The cost of the Sidelnikov Shestakov attack is that of a Gaussian elimination,
namely O(nk2) operations in Fq which is negligible compared to the previous
step. The cost of the final part is also negligible compared to the computation of
the squares of shortened codes. This provides an overall complexity in O(wn2k2)
operations in Fq.

Conclusion

We presented a polynomial time key-recovery attack based on a square code
distinguisher against the public key encryption scheme RLCE. This attack allows
us to break all the so-called odd ID parameters suggested in [17]. Namely, the
attack breaks the parameter sets for which the number w of random columns was
strictly less than n− k. Our analysis suggests that, for this kind of distinguisher
by squaring shortenings of the code, the case w = n − k is the critical one. The
even ID parameters of [17], for which the relation w = n−k always holds, remain
out of the reach of our attack.
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