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Preface

PQCrypto 2019, the 10th International Workshop on Post-Quantum Cryptography, was
held in Chongqing, China, during May 8-10, 2019.

The aim of the PQCrypto conference series is to serve as a forum for researchers to
present and discuss their work on cryptography in an era with large-scale quantum
computers.

Following the same model as its predecessor, PQCrypto 2019 adopted a two-stage
submission process in which authors registered their paper(s) one week before the final
submission deadline.

The conference received 76 submissions with authors from about 30 countries. Each
paper (that had not been withdrawn by the authors) was reviewed in private by at least
three Program Committee members. The private review phase was followed by an
intensive discussion phase, conducted online. At the end of this process, the Program
Committee selected 22 papers for inclusion in the technical program and publication in
these proceedings. In some cases, a shepherding phase was imposed to ensure that
necessary changes were incorporated by the submitting authors, before the paper was
accepted for inclusion in the program and these proceedings. The accepted papers
cover a broad spectrum of research within the conference’s scope, including both the
design and the analysis of cryptographic systems.

In addition to the 22 contributed technical presentations, the program featured
outstanding invited talks and a presentation on NIST’s ongoing post-quantum cryp-
tography standardization process.

Organizing and running this year’s edition of the PQCrypto conference series was a
team effort, and we are indebted to everyone who helped make PQCrypto 2019 a
success. In particular, we would like to thank all members of the Program Committee
and the external reviewers who were a vital part of compiling the technical program.
Evaluating and discussing the submissions was a labor-intense task, and we truly
appreciate the work that went into this. We also owe a big thank you to Professor Hong
Xiang from Chongqing University, who made sure that all local arrangements fell into
place as needed.

May 2019 Jintai Ding
Rainer Steinwandt
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Finding Closest Lattice Vectors Using
Approximate Voronoi Cells

Emmanouil Doulgerakis, Thijs Laarhoven®™) and Benne de Weger

Eindhoven University of Technology, Eindhoven, The Netherlands
{e.doulgerakis,b.m.m.d.weger}@tue.nl, mail@thijs.co

Abstract. The two traditional hard problems underlying the security
of lattice-based cryptography are the shortest vector problem (SVP) and
the closest vector problem (CVP). For a long time, lattice enumeration
was considered the fastest method for solving these problems in high
dimensions, but recent work on memory-intensive methods has resulted
in lattice sieving overtaking enumeration both in theory and in practice.
Some of the recent improvements [Ducas, Eurocrypt 2018; Laarhoven—
Mariano, PQCrypto 2018; Albrecht—Ducas—Herold-Kirshanova—Postle-
thwaite-Stevens, 2018] are based on the fact that these methods find
more than just one short lattice vector, and this additional data can be
reused effectively later on to solve other, closely related problems faster.
Similarly, results for the preprocessing version of CVP (CVPP) have
demonstrated that once this initial data has been generated, instances of
CVP can be solved faster than when solving them directly, albeit with
worse memory complexities [Laarhoven, SAC 2016].

In this work we study CVPP in terms of approximate Voronoi cells,
and obtain better time and space complexities using randomized slicing,
which is similar in spirit to using randomized bases in lattice enumer-
ation [Gama—Nguyen—Regev, Eurocrypt 2010]. With this approach, we
improve upon the state-of-the-art complexities for CVPP, both theo-
retically and experimentally, with a practical speedup of several orders
of magnitude compared to non-preprocessed SVP or CVP. Such a fast
CVPP solver may give rise to faster enumeration methods, where the
CVPP solver is used to replace the bottom part of the enumeration tree,
consisting of a batch of CVP instances in the same lattice.

Asymptotically, we further show that we can solve an exponential
number of instances of CVP in a lattice in essentially the same amount of
time and space as the fastest method for solving just one CVP instance.
This is in line with various recent results, showing that perhaps the
biggest strength of memory-intensive methods lies in being able to reuse
the generated data several times. Similar to [Ducas, Eurocrypt 2018],
this further means that we can achieve a “few dimensions for free” for
sieving for SVP or CVP, by doing ©(d/logd) levels of enumeration on
top of a CVPP solver based on approximate Voronoi cells.

Keywords: Lattices - Preprocessing - Voronoi cells -
Sieving algorithms - Shortest vector problem (SVP) -
Closest vector problem (CVP)

© Springer Nature Switzerland AG 2019
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1 Introduction

Lattice Problems. Lattices are discrete subgroups of R?: given a basis
B = {by,...,bg} C RY the lattice generated by B is defined as £ = L(B) :=
{Z?Zl Aib; + \; € Z}. Given a basis of £, the shortest vector problem (SVP)
is to find a (non-zero) lattice vector s of Euclidean norm |s|| = A\ (L) =
min, e\ o} ||v]]. Given a basis of a lattice and a target vector ¢ € R?, the closest
vector problem (CVP) is to find a lattice vector s € L closest to t. The prepro-
cessing variant of CVP (CVPP) asks to preprocess the lattice £ such that, when
later given a target vector ¢, one can quickly find a closest lattice vector to t.
SVP and CVP are fundamental in the study of lattice-based cryptography, as
the security of many schemes is directly related to their hardness. Various other
hard lattice problems, such as Learning With Errors (LWE), are closely related to
SVP and CVP; see, e.g., [63,74,75] for reductions among lattice problems. These
reductions show that understanding the hardness of SVP and CVP is crucial for
accurately estimating the security of lattice-based cryptographic schemes.

1.1 Related Work

Worst-Case SVP/CVP Analyses. Although SVP and CVP are both cen-
tral in the study of lattice-based cryptography, algorithms for SVP have received
somewhat more attention, including a benchmarking website to compare differ-
ent methods [1]. Various SVP algorithms have been studied which can solve
CVP as well, such as the polynomial-space, superexponential-time lattice enu-
meration studied in [14,32,38,40,47,66]. More recently, methods have been pro-
posed which solve SVP/CVP in only single exponential time, but which also
require exponential-sized memory [2,6,64]. By constructing the Voronoi cell of
the lattice [4,25,64, 73], Micciancio—Voulgaris showed that SVP and CVP(P) can
provably be solved in time 22¢+°(4) and Bonifas-Dadush reduced the complex-
ity for CVPP to only 2¢+°(4) In high dimensions the best provable complexities
for SVP and CVP are currently due to discrete Gaussian sampling [2, 3], solving
both problems in 29t°(4) time and space in the worst case on arbitrary lattices.

Average-Case SVP/CVP Algorithms. When considering and comparing
these methods in practice on random lattices, we get a completely different pic-
ture. Currently the fastest heuristic methods for SVP and CVP in high dimen-
sions are based on lattice sieving. After a long series of theoretical works on
constructing efficient heuristic sieving algorithms [18-21,50,53,65,68,78,80] as
well as applied papers studying how to further speed up these algorithms in prac-
tice [28,35,39,46,54,57-61,67,71,72], the best heuristic time complexity for solv-
ing SVP (and CVP [52]) currently stands at 20-2924+0(d) [18 59], using 20-208d+0(d)
memory. The highest records in the SVP challenge [1] were recently obtained
using a BKZ-sieving hybrid [7]. These recent improvements have resulted in a
major shift in security estimates for lattice-based cryptography, from estimating
the hardness of SVP/CVP using the best enumeration methods, to estimating
this hardness based on state-of-the-art sieving results [9,24,26,27,36].
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Hybrid Algorithms and Batch-CVP. In moderate dimensions, enumeration-
based methods dominated for a long time, and the cross-over point with single-
exponential time algorithms like sieving seemed to be far out of reach [66].
Moreover, the exponential memory of, e.g., lattice sieving will ultimately also sig-
nificantly slow down these algorithms due to the large number of random mem-
ory accesses [23], and parallelizing sieving efficiently is less trivial than paralleliz-
ing enumeration [7,23,28,46,59,67,79]. Some previous work focused on obtain-
ing a trade-off between enumeration and sieving, using less memory for sieving
[17,43,44] or using more memory for enumeration [48].

Another well-known direction for a hybrid between memory-intensive meth-
ods and enumeration is to use a fast CVP(P) algorithm as a subroutine within
enumeration. As described in, e.g., [40,66], at any given level in the enumeration
tree, one is attempting to solve a CVP instance in a lower-rank sublattice, where
the target vector is determined by the path from the root to the current node
in the tree. Each node at this level in the tree corresponds to a CVP instance
in the same sublattice, but with a different target. If we can preprocess this
low-dimensional sublattice such that the amortized time complexity of solving
a batch of CVP-instances in this sublattice is small, then this may speed up
processing the bottom part of the enumeration tree.

A first step in this direction was taken in [52], where it was shown that with
a sufficient amount of preprocessing and space, one can achieve better amortized
time complexities for batch-CVP than when solving just one instance. The large
memory requirement (at least 2%/2+°(4) memory is required to improve upon
direct CVP approaches) as well as the large number of CVP instances required
to get a lower amortized complexity made this approach impractical to date.

1.2 Contributions: Approximate Voronoi Cells

In this paper we revisit the preprocessing approach to CVP of [52], as well as the
recent trend of speeding up these algorithms using nearest neighbor searching,
and we show how to obtain significantly improved time and space complexities.
These results can be viewed as a first step towards a practical, heuristic alter-
native to the Voronoi cell approach of Micciancio—Voulgaris [66], where instead
of constructing the exact Voronoi cell, the preprocessing computes an approxi-
mation of it, requiring less time and space to compute and store.

First, our preprocessing step consists of computing a list L of most lattice vec-
tors below a given norm.! This preprocessing can be done using either enumera-
tion or sieving. The preprocessed data can best be understood as representing an
approximate Voronoi cell Vi, of the lattice, where the size of L determines how
well V;, approximates the true Voronoi cell V of the lattice; see Fig. 1 for an exam-
ple. Using this approximate Voronoi cell, we then attempt to solve CVP instances
by applying the iterative slicing procedure of Sommer—Feder—Shalvi [73], with
nearest neighbor optimizations to reduce the search costs [12,18].

! Heuristically, finding a large fraction of all lattice vectors below a given norm will
suffice — one does not necessarily need to run a deterministic preprocessing algorithm
to ensure all short lattice vectors are found.
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(a) A tiling of R? with exact Voronoi cells (b) An overlapping tiling of R? with ap-
V of a lattice £ (red/black points), gener- proximate Voronoi cells V;, of the same
ated by the set R = {r1,...,r¢} of all rel- lattice L, generated by a subset of the
evant vectors of L. Here vol(V) = det(L). relevant vectors, L = {r1,r2,r4,75} C R.

Fig. 1. Exact and approximate Voronoi cells of the same two-dimensional lattice L.
For the exact Voronoi cell V (Fig. 1a), the cells around the lattice points form a tiling
of R?, covering each point in space exactly once. Given that a point t lies in the
Voronoi cell around s € £, we know that s is the closest lattice point to t. For the
approximate Voronoi cell Vi (Fig. 1b), the cells around the lattice points overlap,
and cover a non-empty fraction of the space by multiple cells. Given that a vector t
lies in an approximate Voronoi cell around a lattice point s, we further do not have
the definite guarantee that s is the closest lattice point to t. (Color figure online)

The main difference in our work over [52] lies in generalizing how similar Vp,
(generated by the list L) needs to be to V. We distinguish two cases below. As
sketched in Fig. 1, a worse approximation leads to a larger approximate Voronoi
cell, so vol(Vr) > vol(V) with equality iff V = V.

Good approximations: If V;, is a good approximation of V (i.e., vol(V) =
vol(V)), then with high probability over the randomness of the target vec-
tors, the iterative slicer returns the closest lattice vector to random targets.
To guarantee vol(Vy) ~ vol(V) we need |L| > 2#/2%°(d) where additional
memory can be used to speed up the nearest neighbor part of the iterative
slicer. The resulting query complexities are sketched in red in Fig. 2.

Arbitrary approximations: If the preprocessed list contains fewer than 24/2
vectors, then vol(Vr) > vol(V) and with overwhelming probability the itera-
tive slicer will not return the closest lattice point to a random target vector.
However, similar to [40], the running time of this method is decreased by a
much more significant factor than the success probability. So if we are able
to rerandomize the problem instance and try several times, we may still be
faster (and more memory-efficient) than when using a larger list L.
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1.3 Contributions: Randomized Slicing

To actually find solutions to CVP instances with a “bad” approximation Vy, to
the real Voronoi cell V, we need to be able to suitably rerandomize the iterative
slicing procedure, so that if the success probability in a single run of the slicer
is small, we can repeat the method several times for a high success probabil-
ity. To do this, we will run the iterative slicer on randomly perturbed vectors
t' ~ Dyyrs, sampled from a discrete Gaussian over the coset t + £. Here the
standard deviation s needs to be sufficiently large to make sampling from Dy, ¢ s
efficient and the results of the slicer to be almost independent, and s needs to
be sufficiently small to guarantee that the slicer will terminate in a limited num-
ber of steps. Algorithm 1 explicitly describes this procedure, given as input an
approximate Voronoi cell Vy, (i.e., a list L C L of short lattice vectors defining
the facets of this approximate Voronoi cell).

Algorithm 1. The randomized heuristic slicer for finding closest vectors

Require: A list L C £ and a target ¢ € R?
Ensure: The algorithm outputs a closest lattice vector s € £ to t

1: s<—0 > Initial guess s for closest vector to t
2: repeat

3: Sample t' ~ Dtz s > Randomly shift ¢ by a vector v € £
4: for each r € L do

5: if ||t’ — r|| < ||| then > New shorter vector ' € t + L
6: Replace t' « t' — r and restart the for-loop

T if [|¢'|| < ||t — s|| then

8: s—t—t > New lattice vector s closer to t
9: until s is a closest lattice vector to ¢
10: return s

Even though this algorithm requires sampling many vectors from the coset
t+ £ and running the iterative slicer on all of these, the overall time complexity
of this procedure will still be lower, since the iterative slicer needs less time to
complete when the input list L is shorter. To estimate the number of iterations
necessary to guarantee that the algorithm returns the actual closest vector, we
make the following assumption, stating that the probability that the iterative
slicer terminates with a vector ¢’ € (¢ + £) NV, given that it must terminate to
some vector t' € (t+L£)NVy, is proportional to the ratio of the volumes of these
(approximate) Voronoi cells V and Vy,.

Heuristic assumption 1 (Randomized slicing) For L C L and large s,

vol(V)
VO](VL) ’
This is a new and critical assumption to guarantee that the claimed asymptotic

complexities are correct, and we will therefore come back to this assumption
later on, to show that experiments indeed suggest this assumption is justified.

Pr | Slice,(t) e v] ~ (1)

t'~Diyr,s



8 E. Doulgerakis et al.

1.4 Contributions: Improved CVPP Complexities

For the exact closest vector problem with preprocessing, our improved complexi-
ties over [52] mainly come from the aforementioned randomizations. To illustrate
this with a simple example, suppose we run an optimized (GaussSieve-based [65])
LDSieve [18], ultimately resulting in a list of (4/3)%2%°(4) of the shortest vectors
in the lattice, indexed in a nearest neighbor data structure of size (3/2)%/2+(d),
Asymptotically, using this list as our approximate Voronoi cell, the iterative slicer
succeeds with probability p = (13/16)%/2+°(4) (as shown in the analysis later on),
while processing a query with this data structure takes time (9/8)d/2+"(d). By
repeating a query 1/p times with rerandomizations of the same CVP instance,
we obtain the following heuristic complexities for CVPP.

Proposition 1 (Standard sieve preprocessing). Using the output of the
LDSieve [18] as the preprocessed list and encompassing data structure, we can
heuristically solve CVPP with the following query space and time complexities:

S= (3/2)d/2+o(d) s 20.292d+o(d)’ T = (18/13)d/2+o(d) A 90-235d+0(d)

This point (S,T) is highlighted in light blue in Fig. 2.

If we use a more general analysis of the approximate Voronoi cell approach,
varying over both the nearest neighbor parameters and the size of the prepro-
cessed list, we can obtain even better query complexities. For a memory com-
plexity of (3/2)%/2+o(d) r 20-292d+0(d) e can achieve a query time complexity of
approximately 20-220d+0(d) Ly yuging a shorter list of lattice vectors, and a more
memory-intensive parameter setting for the nearest neighbor data structure. The
following main result summarizes all the asymptotic time—space trade-offs we can
obtain for heuristically solving CVPP in the average case.

Theorem 1 (Optimized CVPP complexities). Let a € (1.03396,v/2) and

a?—1 a?
u < ( az '\ a2-1

CVPP with preprocessing space and time S; and T1, and query space and time
Sy and Ta, where:

4 d/2+o(d) 3 d/2+o(d)
S1 zmax{Sg, (3) }, T :maX{Sg, (2> }, (2)

). With approzimate Voronoi cells we can heuristically solve

d/2+0(d)
S5 ( o ) 3)
a— (a2 =1 (au? —2uva? — 1+ a) ’
d/240(d
16a4(a2—1) oa+uva?—1 [2reld
T, = — . )
—90°+640%—104a*+6402—16 —a3 + a2uv/a? — 1 + 2a

The best query complexities (S2, T2) together form the blue curve in Fig. 2.

Compared to [52], we obtain trade-offs for much lower memory complexities,
and we improve upon both the best CVPP complexities of [52] and the best
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Fig. 2. Query complexities for finding closest vectors, directly (CVP) and with prepro-
cessing (CVPP). The leftmost red points/curve show the best asymptotic SVP/CVP
complexities of Becker-Gama-Joux [19], Becker-Ducas-Gama-Laarhoven [18], and
Herold—Kirshanova—Laarhoven [44]. The rightmost red point and curve are the previ-
ous best CVPP complexities of [52]. The blue curve shows our new CVPP complexities.
(Color figure online)

SVP/CVP complexities of [18,44].2 Observe that our trade-off passes below all
the best CVP results, i.e., we can always solve an exponentially large batch of
2¢4 CVP instances for small ¢ > 0 in the same amount of time as the current
best complexities for solving just one instance, for any memory bound.

Due to the condition that o > 1.0339... (which follows from the fact that
the denominator in Ts needs to remain positive), the blue curve in Fig. 2 termi-
nates on the left side at a minimum query space complexity of 1.033969°(@) ~
20-0482d+0(d) - One might wonder whether we can obtain a continuous trade-off
between the query time and space complexities reaching all the way to 2°(@)
memory and 2¢(9) query time. The lower bound on o might be a consequence of
our analysis, and perhaps a different approach would show this algorithm solves
CVPP in 2°(9) time even with less memory.

As for the other end of the blue curve, as the available space increases, one can
achieve an amortized time complexity for CVP of 2¢4+(4) at the cost of (1/£)°(4)
preprocessed space for arbitrary ¢ > 0. For large query space complexities, i.e.,
when a lot of memory and preprocessing power is available for speeding up the
queries, the blue and red curve converge, and the best parameter choice is to set
a ~ /2 such that V;, ~ V, as explained in Sect. 1.2.

2 As detailed in [52], by modifying sieve algorithms for SVP, one can also solve CVP
with essentially equivalent heuristic time and space complexities as for SVP.
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Concrete Complexities. Although Theorem 1 and Fig. 2 illustrate how well we
expect these methods to scale in high dimensions d, we would like to stress that
Theorem 1 is a purely asymptotic result, with potentially large order terms hid-
den by the o(d) in the exponents for the time and space complexities. To obtain
security estimates for real-world applications, and to assess how fast this algo-
rithm actually solves problems appearing in the cryptanalysis of lattice-based
cryptosystems, it therefore remains necessary to perform extensive experiments,
and to cautiously try to extrapolate from these results what the real attack costs
might be for high dimensions d, necessary to attack actual instantiations of cryp-
tosystems. Later on we will describe some preliminary experiments we performed
to test the practicality of this approach, but further work is still necessary to
assess the impact of these results on the concrete hardness of CVPP.

1.5 High-Level Proof Description

To prove the main results regarding the improved asymptotic CVPP complexities
compared to [52], we first prove that under certain natural heuristic assumptions,
we obtain the following upper bound on the volume of approximate Voronoi cells
generated by the a®to(@) shortest vectors of a lattice. The preprocessing will
consist of exactly this: generate the a@t°(4) shortest vectors in the lattice, and
store them in a nearest neighbor data structure that allows for fast look-ups of
nearby points in space.

Lemma 1 (Relative volume of approximate Voronoi cells). Let L C L
consist of the a0 shortest vectors of a lattice L, with o € (1.03396, v/2).
Then heuristically,

d/2+o(d
vol(Vy) _ 160* (a2 — 1) )
vol(V) —9a8 + 64a8 — 10404 4 6402 — 16 '

()

Using this lemma and the heuristic assumption stated previously, relating the
success probability of the slicer to the volume of the approximate Voronoi cell,
this immediately gives us a (heuristic) lower bound on the success probability
pa Of the randomized slicing procedure, given as input a preprocessed list of
the adto(d) shortest vectors in the lattice. Then, similar to [52], the complexity
analysis is a matter of combining the costs for the preprocessing phase, the costs
of the nearest neighbor data structure, and the cost of the query phase, where
now we need to repeat the randomized slicing of the order 1/p, times — the
difference in the formulas for the complexities compared to [52] comes exactly
from this additional factor 1/p, = vol(Vr)/ vol(V).

To prove the above lemma regarding the volume of approximate Voronoi cells,
we will prove the following statements. First, we show that if the list L contains
the a®to(d) shortest vectors of a random lattice £, then on input a target vector
t, we heuristically expect the slicer to terminate on a reduced vector t' € t+ L of
norm at most [|[t|| < 3 A;1(L), where § is determined by the parameter a. The
relation between o and  can be succinctly described by the following relation
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B =a?/\/4a2 — 4. (6)

More precisely, we show that as long as ||t'|| > 8- A1(£), then with high prob-
ability we expect to be able to combine t' with vectors in L to form a shorter
vector ¢ € t + £ with [|t”|| < ||t]. On the other hand, if we have a vector
t' € t+ L of norm less than 8-\ (L), then we only expect to be able to combine
t’ with a vector in L to form a shorter vector with exponentially small probabil-
ity 2-€(@ In other words, reducing to a vector of norm 3 - A\;(£) can be done
almost “effortlessly”, while after that even making small progress in reducing
the length of £’ comes at an exponential loss in the success probability.

Good Approximations. Next, from the above relation between the size of
the input list, |L| (or @), and the reduced norm of the shifted target vector,
lt'|| (or B), the previous result of [52] immediately follows — to achieve t' € V
we heuristically need 3 = 1 + o(1). This implies that a = /2 is the minimal
parameter that guarantees we will be able to effortlessly reduce to the exact
Voronoi cell, and so L must contain the adto(d) = 9d/2+0(d) ghortest vectors in
the lattice. In that case the success probability is constant, and the costs of the
query phase are determined by a single reduction of ¢ with the iterative slicer.

Arbitrary Approximations. However, even if o < /2 is smaller, and the
corresponding 3 is therefore larger than 1, the slicer might still succeed with
(exponentially) small probability. To analyze the success probability, note that
from the Gaussian heuristic we may assume that the closest vector to our target
t lies uniformly at random in a ball (or sphere) of radius A\;(£) around ¢. Then,
also for the reduced vector ¢’ of norm at most 3- A1 (L), the closest lattice vector
lies in a ball of radius A1(£) around it. Since our list L contains all vectors of
norm less than a- A1 (L), we will clearly find the closest lattice vector in the list L
if the closest lattice vector lies in the intersection of two balls of radii A1 (L) (resp.
a-A1(L)) around ' (resp. 0). Estimating the volume of this intersection of balls,
relative to the volume of the ball of radius A\ (£) around ¢, then gives us a lower
bound on the success probability of the slicer, and a heuristic upper bound on the
volume of the corresponding approximate Voronoi cell. This analysis ultimately
leads to the aforementioned lemma.

Tightness of the Proof. Note that the above proof technique only gives us a
lower bound on the success probability, and an upper bound on the volume of the
approximate Voronoi cell: when the target vector has been reduced to a vector
of norm at most 8- A\ (L£), we bound the success probability of the slicer by
the probability that the slicer now terminates successfully in a single iteration.
Since the algorithm might also succeed in more than one additional iteration, the
actual success probability may be higher. A tighter analysis, perhaps showing
that the given heuristic bound can be improved upon, is left for future work.
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1.6 Intermezzo: Another Few Dimensions for Free

Recently, Ducas [35] showed that in practice, one can effectively use the addi-
tional vectors found by lattice sieving to solve a few extra dimensions of SVP
“for free”. More precisely, by running a lattice sieve in a base dimension d, one
can solve SVP in dimension d' = d+ ©(d/logd) at little additional cost. This is
done by taking all vectors returned by a d-dimensional lattice sieve, and running
Babai’s nearest plane algorithm [16] on all these vectors in the d’-dimensional
lattice to find short vectors in the full lattice. If d’ is close enough to d, one of
these vectors will then be “rounded” to a shortest vector of the full lattice.

On a high level, Ducas’ approach can be viewed as a sieving/enumeration
hybrid, where the top part of enumeration is replaced with sieving, and the bot-
tom part is done regularly as in enumeration, which is essentially equivalent to
doing Babai rounding [16]. The approach of using a CVPP-solver inside enumer-
ation is in a sense dual to Ducas’ idea, as here the bottom part of the enumeration
tree is replaced with a (sieving-like) CVPP routine. Since our CVPP complex-
ities are strictly better than the best SVP/CVP complexities, we can also gain
up to ©(d/logd) dimensions for free as follows:

1. First, we initialize an enumeration tree in the full lattice £ of dimension
d' = d+k, and we process the top k = e-d/ log d levels as usual in enumeration.
This will result in 20(Flogk) — 20(d) target vectors at level k, and this requires
a similar time complexity of 20(?) to generate all these target vectors.

2. Then, we run the CVPP preprocessing on the d-dimensional sublattice of
L corresponding to the bottom part of the enumeration tree. This may for
instance take time 20-2924+0(4) and space 20-298¢+°(d) ysing the sieve of [18].

3. Finally, we take the batch of 20(4) target vectors at level k in the enumeration
tree, and we solve CVP for each of them with our approximate Voronoi cell
and randomized slicing algorithm, with query time 20-220d+o(d) each.

By setting k = ¢ - d/logd as above with small, constant € > 0, the costs for
solving SVP or CVP in dimension d’ are asymptotically dominated by the costs
of the preprocessing step, which is as costly as solving SVP or CVP in dimension
d. So similar to [35], asymptotically we also get ©(d/ log d) dimensions “for free”.
However, unlike for Ducas’ idea, in practice the dimensions are likely not quite
as free here, as there is more overhead for doing the CVPP-version of sieving
than for Ducas’ additional batch of Babai nearest plane calls.

Even More Dimensions for Free. A natural question one might ask now
is: can both ideas be combined to get even more dimensions “for free”? At first
sight, this seems hard to accomplish, as Ducas’ idea speeds up SVP rather than
CVPP. Furthermore, note that when solving SVP without Ducas’ trick, one gets
20-208d+0(d) ghort lattice vectors when only one shortest vector is needed, and so
in a sense one might “naturally” hope to gain something by going for only one
short output vector. Here the analysis of the iterative slicer is already based on
the fact that ultimately, we hope to reduce a single target vector to its closest
neighbor in the lattice. There might be a way of combining both ideas to get
even more dimensions for free, but for now this is left as an open problem.
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1.7 Contributions: Experimental Results

Besides the theoretical contributions mentioned above, with improved heuris-
tic time and space complexities compared to [52], for the first time we also
implemented a (sieving-based) CVPP solver using approximate Voronoi cells.
For the preprocessing we used a slight modification of a lattice sieve, return-
ing more vectors than a standard sieve, allowing us to vary the list size in our
experiments. Our implementations serve two purposes: validating the additional
heuristic assumption we make, and to see how well the algorithm performs.

Validation of the Randomization Assumption. To obtain the aforemen-
tioned improved asymptotic complexities for solving CVPP, we required a new
heuristic assumption, stating that if the iterative slicer succeeds with some prob-
ability p on a CVP instance t, then we can repeat it 1/p times with perturbations
t' ~ D¢4r. s to achieve a high success probability for the same target ¢. To ver-
ify this assumption, we implemented our method and tested it on lattices of
dimension 50 with a range of randomly chosen targets to see whether, if the
probability of success is small, repeating the method m times will increase the
success rate by a factor m. Figure 3 shows performance metrics for various num-
bers of repetitions and for varying list sizes. In particular, Fig. 3a illustrates the
increased success probability as the number of repetitions increases, and Fig. 3¢
shows that the normalized success probability per trial® seems independent of
the number of repetitions. Therefore, the “expected time” metric as illustrated
in Fig. 3b appears to be independent of the number of trials.

Experimental Performance. Unlike the success probabilities, the time com-
plexity might vary a lot depending on the underlying nearest neighbor data
structure. For our experiments we used hyperplane LSH [29] as also used in the
HashSieve [50,58], as it is easy to implement, has few parameters to set, and
performs better in low dimensions (d = 50) than the LDSieve [18,59].

To put the complexities of Fig. 3b into perspective, let us compare the nor-
malized time complexities for CVPP with the complexities of sieving for SVP,
which by [52] are comparable to the costs for CVP. First, we note that the
HashSieve algorithm solves SVP in approximately 4 s on the same machine.
This means that in dimension 50, the expected time complexity for CVPP with
the HashSieve (roughly 2ms) is approximately 2000 times smaller than the time
for solving SVP. To explain this gap, observe that the list size for solving SVP
is approximately 4000, and so the HashSieve algorithm needs to perform in the
order of 4000 reductions of newly sampled vectors with a list of size 4000. For
solving CVPP, we only need to reduce 1 target vector, with a slightly larger list
of 10000 to 15000 vectors. So we save a factor 4000 on the number of reduc-
tions, but the searches are more expensive, leading to a speed-up of less than a
factor 4000.

3 As the success prob. ¢ for m trials scales as ¢ = 1—(1—p)™ if each trial independently
has success prob. p, we computed the success prob. per trial as p =1 — (1 — q)l/m.
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Fig. 3. Experimental results for solving CVPP with randomized slicing in dimension
50. Each data point corresponds to 10 000 random target vectors for those parameters.

Predictions and Extrapolations. For solving SVP or CVP, the Hash-
Sieve [50] reports time complexities in dimension d of 20454=19 5 corresponding
to 11s in dimension 50, i.e., a factor 3 slower than here. This is based on doing
n & 20214 reductions of vectors with the list. If doing only one of these searches
takes a factor 29-21¢ less time, and we take into account that for SVP the time
complexity is now a factor 3 less than in [50], then we obtain an estimated com-
plexity for CVPP in dimension d of 2°-24¢=19 /3 which for d = 50 corresponds
to approximately 2.6 ms. A rough extrapolation would then lead to a time com-
plexity in dimension 100 of only 11 s. This however seems to be rather optimistic
— preliminary experiments in dimensions 60 and 70 suggest that the overhead of
using a lot of memory may be rather high here, as the list size is usually even
larger than for standard sieving.
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1.8 Contributions: Asymptotics for Variants of CVPP

For easier variants of CVP, such as when the target lies closer to the lattice
than expected or an approximate solution to CVP suffices as a solution, we
obtain considerable gains in both the time and space complexities when using
preprocessing. We explicitly consider two variants of CVPP below.

BDDP;. For bounded distance decoding with preprocessing (BDDP), we are
given a target vector t and a guarantee that ¢ lies within distance 0 - A1 (£) to
the nearest lattice vector, for some parameter § > 0. By the Gaussian heuristic,
setting 6 = 1 makes this problem as hard as general CVPP without a distance
guarantee, while for small § — 0 polynomial-time algorithms exist [16].

By adjusting the analysis leading up to Theorem 1 for BDDP, we obtain the
same result as Theorem 1 with two modifications: Ty is replaced by Tgs) below,
and the range of admissable values « changes to (ag, 1), with ag the smallest

root larger than 1 of the denominator of the left-most term in Tgs), and «; the

smallest value larger than 1 such that the left-most term in T(Q‘S) equals 1. The
resulting optimized trade-offs for various ¢ € (0,1) are plotted in Fig. 4a.

4l o ) d/2+0(d)
Té‘”—( 1604 (a2 — 1) 6 -[...]) ®

—9a8+4+8a5(3+562)—8at(24+962426%)+32a2 (62 45%)—166%

Note that in the limit of § — 0, our algorithm tries to reduce a target close
to the lattice to the origin. This is similar to reducing a vector to the 0-vector
in the GaussSieve [65], and even with a long list of all short lattice vectors this
does not occur with probability 1. Here also the limiting curve in Fig. 4a shows
that for 6 — 0 with suitable parameterization we can do better than just with
sieving, but we do not get polynomial time and space complexities.

CVPP,,. For the approximate version of CVPP, a lattice vector v qualifies as a
solution for t if it lies at most a factor « further from the real distance of t from
the lattice, for some x > 1. Heuristically, this is essentially equivalent to looking
for any lattice vector within radius & - A1 (£) of the target, and similar to BDDP
the resulting trade-offs can be summarized by Theorem 1 where T is replaced
by T;) below, and the range of admissable values « again changes to (g, aq)
as before.

d/2+4o(d
(k) 16a (Cv2 — 1) ] e (8)
207 | _0a818a8(345k7)—8at (24 9k% +2k1) 43202 (k2 +rt)—16kF '

For increasing approximation factors Kk — oo, our algorithm tries to reduce a
target vector to vector of norm less than x- A (£). For large « this is increasingly
easy to achieve, and as Kk — o0, both the query time and space complexities in
our analysis converge to zero as expected. Figure 4b highlights this asymptote,
and illustrates the other trade-offs through some examples for small x > 1.
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Fig. 4. Asymptotics for solving variants of CVP(P) with approximate Voronoi cells:
(a) BDDPs and (b) CVPP,. Note that the (tail of the) curve for CVPP\/473 overlaps

with the curve for BDDPy.
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1.9 Open Problems

Combination with Other Techniques. The focus of this work was on the
asymptotic complexities we can achieve for high dimensions d, and therefore we
focused only on including techniques from the literature that lead to the best
asymptotics. In practice however, there may be various other techniques that
can help speed up these methods in moderate dimensions. This for instance
includes Ducas’ dimensions for free [35], progressive sieving [35,54], the recent
sieving-BKZ hybrid [7], and faster NNS techniques [7,11]. Incorporating such
techniques will likely affect the experimental performance as well, and future
work may show how well the proposed techniques truly perform in practice
when all the state-of-the-art techniques are combined into one.

Faster Enumeration with Approximate Voronoi Cells. As explained
above, one potential application of our CVPP algorithm is as a subroutine within
enumeration, to speed up the searches in the bottom part of the tree. Such an
algorithm can be viewed as a trade-off between enumeration and sieving, where
the level at which we insert the CVPP oracle determines whether we are closer
to enumeration or to sieving. An open question remains whether this would
lead to faster algorithms in practice, or if the preprocessing/query costs are too
high. Note that depending on at which level of the tree the CVPP oracle is
inserted, and on the amount of pruning in enumeration, the hardness of the
CVP instances at these levels also changes. Optimizing all parameters involved
in such a combination appears to be a complex task, and is left for future work.

Sieving in the Dual Lattice. For the application of CVPP within enumera-
tion, observe that a decisional CVPP oracle, deciding whether a vector lies close
to the lattice or not, may actually be sufficient; most branches of the enumer-
ation tree will not lead to a solution, and therefore in most cases running an
accurate decision-CVPP oracle is enough to determine that this subtree is not
the right subtree. For those few subtrees that potentially do contain a solution,
one could then run a full CVP(P) algorithm at a slightly higher cost. Improving
the complexities for the decision-version of CVPP may therefore be an interest-
ing future direction, and perhaps one approach could be to combine this with
ideas from [5], by running a lattice sieve on the dual lattice to find many short
vectors in the dual lattice, which can then be used to check if a target vector
lies close to the primal lattice or not.

Quantum Complexities. As one of the strengths of lattice-based cryptog-
raphy is its conjectured resistance to quantum attacks [22], it is important to
study the potential impact of quantum improvements to SVP and CVP algo-
rithms, so that the parameters can be chosen to be secure in a post-quantum
world [15,55]. For lattice sieving for solving SVP, the time complexity expo-
nent potentially decreases by approximately 25% [55], and for CVPP we expect
the exponents may decrease by approximately 25% as well. Studying the exact
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quantum asymptotics of solving CVPP with approximate Voronoi cells is left for
future work.

1.10 Outline

Due to space restrictions, the remainder of the paper, including full details on
all claims, is given in the appendix.* Below we briefly outline the contents of
these appendices for the interested reader.

Appendix A — Preliminaries
This section describes preliminary results and notation for the technical con-
tents, formally states the main hard problems discussed in the paper, formal-
izes the heuristic assumptions made throughout the paper, and describes
existing results on nearest neighbor searching, lattice sieving algorithms,
Voronoi cells, and Voronoi cell algorithms.

Appendix B — Approximate Voronoi cells
In Appendix B we formalize the CVPP approach considered in this paper in
terms of our approximate Voronoi cell framework with randomized slicing,
and we derive our main results regarding improved asymptotic complexities
for exact CVPP. Approximate Voronoi cells are formally introduced, the main
results are stated and proved in terms of this framework, and all corresponding
algorithms are given in pseudocode.

Appendix C — Experimental results
Appendix C describes the experiments we performed with these methods in
more detail, both to verify the (additional) heuristic assumptions we made
for this paper, and to assess the practicality of our CVPP algorithm. Here we
also briefly compare our results to various published complexities for SVP or
CVP(P), to put these numbers into context.

Appendix D — Asymptotics for variants of CVPP
The last appendix finally discusses asymptotic results for variants of CVPP,
namely approximate CVPP and BDDP. This section contains a more formal
statement of the results given in Sect. 1.8, and explains how the analysis
changes compared to the analysis for exact CVPP, and how this leads to
improved complexities for these slightly easier variants of (exact) CVPP.
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Abstract. The speed of NTRU-based Key Encapsulation Mechanisms
(KEMs) in software, especially on embedded software platforms, is lim-
ited by the long execution time of its primary operation, polynomial
multiplication. In this paper, we investigate the potential for speed-
ing up the implementations of four NTRU-based KEMs, using soft-
ware/hardware codesign, when targeting Xilinx Zynq UltraScale+ mul-
tiprocessor system-on-chip (MPSoC). All investigated algorithms com-
pete in Round 1 of the NIST PQC standardization process. They include:
ntru-kem from the NTRUEncrypt submission, Streamlined NTRU Prime
and NTRU LPRime KEMs of the NTRU Prime candidate, and NTRU-
HRSS-KEM from the submission of the same name. The most-time con-
suming operation, polynomial multiplication, is implemented in the Pro-
grammable Logic (PL) of Zynq UltraScale+ (i.e., in hardware) using
constant-time hardware architectures most appropriate for a given algo-
rithm. The remaining operations are executed in the Processing System
(PS) of Zyng, based on the ARM Cortex-A53 Application Processing
Unit. The speed-ups of our software/hardware codesigns vs. purely soft-
ware implementations, running on the same Zynq platform, are deter-
mined experimentally, and analyzed in the paper. Our experiments reveal
substantial differences among the investigated candidates in terms of
their potential to benefit from hardware accelerators, with the special
focus on accelerators aimed at offloading to hardware only the most
time-consuming operation of a given cryptosystems. The demonstrated
speed-ups vs. functionally equivalent purely software implementations
vary between 4.0 and 42.7 for encapsulation, and between 6.4 and 149.7
for decapsulation.
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Post-Quantum Cryptography -+ NTRU - System on Chip -
Programmable logic - High-level synthesis -
Embedded software platforms

1 Introduction

Hardware benchmarking of Post-Quantum Cryptography (PQC) candidates is
extremely challenging due to their high algorithmic complexity, specifications
geared more toward mathematicians than toward engineers, and the lack of
hardware description language libraries containing code of basic building blocks.
As a result, the workload for a single algorithm can easily reach several man-
months. Consequently, due to the Round 1 focus on evaluating security and
software efficiency [20], only a few candidates in the NIST PQC standardization
process have been fully implemented in hardware to date [9,12,15,16,22,24].
To make the matters worse, a substantial number of operations used by PQC
algorithms are both complex and sequential in nature. Porting these operations
to hardware can take a large number of man-hours, and at the same time bring
little benefit in terms of the total execution time.

In this paper, we propose an approach aimed at overcoming these difficul-
ties. This approach is based on the concept of software/hardware codesign. The
majority of the algorithm operations are implemented in software. Only a few
main operations (optimally just one), taking the majority of the execution time,
are offloaded to hardware.

This approach has become very practical in modern embedded systems due
to the emergence of special platforms, integrating the software programmability
of an ARM-based processor with the hardware programmability of FPGA fabric.
Examples include Xilinx Zyng 7000 System on Chip (SoC), Xilinx Zynq Ultra-
Scale+ MPSoC, Intel Arria 10 SoC FPGAs, and Intel Stratix 10 SoC FPGAs.
These devices support hybrid software/hardware codesigns composed of a tra-
ditional C program running on an ARM processor, communicating, using an
efficient interface protocol (such as AMBA AXI4), with a hardware accelerator
described manually using a hardware description language such as VHDL, or
generated automatically, using High-Level Synthesis.

Assuming that an implemented algorithm contains a limited number of oper-
ations, suitable for parallelization, and these operations contribute 91% or more
to the total execution time, then an order of magnitude (or higher) speed-up is
possible, with the amount of development time reduced from months to weeks
or even days.

An additional benefit of this approach is the possibility to easily estimate
the speed-ups that could be achieved by developing and implementing special
instructions of a general-purpose processor (such as ARM) supporting a specific
PQC algorithm or a group of related-algorithms.

Based on extensive software profiling experiments, conducted using both
ARM and AMDG64 platforms, we have determined that all NTRU-based NIST
Round 1 KEMs are very suitable for software/hardware codesign. In particular,
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for all of them, no more than three major operations contribute at least 92%
of the total execution time to both encapsulation and decapsulation. Addition-
ally, the most time consuming of these operations, polynomial multiplications in
Zg|x]/P and Zs[z]/P, with P selected as a polynomial of the prime degree n,
are very easily parallelizable and straightforward to implement in constant time
using moderate amount of hardware resources.

In the rest of this paper, we quantify the influence of a dedicated hardware
accelerator on the performance and implementation cost of each of the following
four Round 1 KEMs: NTRUEncrypt [6], NTRU-HRSS [13], Streamlined NTRU
Prime, and NTRU LPRime [5,21]. The speed-ups of the software/hardware code-
signs vs. purely software implementations are measured, and their influence on
the ranking of candidates is determined.

Table 1. Features of round 1 NTRU-based KEMs.

Feature

NTRUEncrypt

NTRU-HRSS

Streamlined NTRU
Prime

NTRU LPRime

Polynomial P

" —1

b, =(z" —-1)/(z—1)
irreducible in Zg[z]

" —x—1

irreducible in Zg[z]

" —x—1

irreducible in Zg[z]

Degree n* Prime Prime Prime Prime

Modulus q 24 gceil(3.5+1oga(n)) Prime Prime

Weight w Fixed weight for [N/A Fixed weight for f |Fixed weight for b

fand g and r. 3w < 2n and a. 3w < 2n

16w +1<gq 16w+ 26 +3<¢q

Quotient R/q: R/q: Zglz]/(z™ — 1) R/q: R/q:

rings Zolw)/(z" = 1) |S/3: Za[a]/(n) Zyfa)/(@" — 2 —1) |Zlal/(a" — @ — 1)
R/3: R/3:

Zsla]/(z" — = — 1)

Zs[z]/ (=" —=z —1)

#Poly Mults
for
encapsulation

1in R/q

1in R/q

1in R/q

2in R/q

#Poly Mults
for
decapsulation

2in R/q

2in R/q
1in S/3

2 in R/q
1in R/3

3in R/q

Private key f
of the form
14+3F

Yes

No

No

Invertibility
checks in key
generation

Yes

No

No

Decryption
failures

Yes

No

No

No

* denoted by N in the specification of NTRUEncrypt and by p in the specifications of Streamlined
NTRU Prime and NTRU LPRime

2 Background

Basic features of four investigated Round 1 NTRU-based KEMs are summarized
in Table 1. NTRUEncrypt is the only candidate that uses a reducible polynomial,
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which may potentially increase its attack surface. It is also the only candidate
with a non-zero probability of decryption failure, and one of the two (together
with Streamlined NTRU Prime) requiring invertibility checks in key generation.
All polynomials have a prime degree n. Three features that have primary influ-
ence on the area of a corresponding hardware accelerator include: (a) prime vs.
power-of-two modulus ¢ for operations on polynomial coefficients; (b) require-
ment for operations in additional rings, such as Z3[x]/(®,,) in NTRU-HRSS and
Zsz]/ (2™ — x — 1) in Streamlined NTRU Prime; (c) Private key of the form
1+ 3F in NTRUEncrypt.

The execution time of Encapsulation and Decapsulation is affected primarily
by the required number of polynomial multiplications (Poly Mults), which is the
lowest in case of NTRUEncrypt and the highest in case of NTRU LPRime. The
fixed weight of polynomials with small coefficients affects the execution time of
a polynomial multiplication only in case of using a rotator-based multiplier [4,
8,14].

In Table 2, the numerical values of parameters in the implemented variants
of KEMs are summarized. All investigated KEMs use approximately the same
values of the polynomial degree n, which in hardware leads to similar Poly Mult
execution times in terms of the number of clock cycles. NTRUEncrypt and
NTRU-HRSS have an advantage of using a modulus ¢ being a power of two,
which substantially reduces the time of Poly Mult in software, and the area of
the Poly Mult accelerator in hardware. Three out of four KEMs are claimed to
belong to the security category 5, with the number of pre-quantum security bits
estimated to be close to 256. NTRU-HRSS is the only investigated candidate
limited to the security category 1, with the number of pre-quantum security bits
estimated at 136 (i.e., slightly above 128). It should be stressed that no other sets
of parameters, corresponding to any higher security category are provided in the
specification of this KEM. Similarly, no other parameter sets, corresponding to
any lower security levels, are defined in the specifications of Streamlined NTRU
Prime or NTRU LPRime. The public and private key sizes are the smallest for
NTRUEncrypt and the largest for Streamlined NTRU Prime.

3 Previous Work

3.1 Hardware Accelerators for NTRUEncrypt

In 2001, Bailey et al. [4] introduced and implemented a Fast Convolution Algo-
rithm for polynomial multiplication, exploiting the sparsity of polynomials.
In [14], Kamal et al. analyzed several implementation options for traditional
NTRUEncrypt [11] targeting Virtex-E family of FPGAs. In this design, the
polynomial multiplier took advantage of the ternary nature of polynomials in
NTRUEncrypt and utilized an empirically chosen Barrel shifter (rotator). The
results were reported for the parameter set with (n=251, q=128). Liu et al.
implemented the truncated polynomial ring multiplier using linear feedback shift
register (LFSR) in 2015 [17] and an extended LFSR [18] in 2016. Both designs
were implemented using Cyclone IV FPGAs. The former paper reported results
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Table 2. Numerical values of parameters in the implemented variants of round 1
NTRU-based KEMs.

Feature NTRUEncrypt |NTRU-HRSS Streamlined NTRU [NTRU LPRime
Prime
Parameter NTRU-743 ntruhrss701 sntrup4591761 ntrulpr4591761
set
Degree n 743 701 761 761
Modulus q 2048 = 21 8192 = 213 212 < 4591 < 213|212 < 4591 < 213
Polynomials |Fixed weight 494 |Uniform T+ for f and |Fixed weight 286 for|Fixed weight 250 for
with small for f and g. g. Uniform trinary for r |f and r. Uniform b and a.
coefficients  |Uniform trinary |and m trinary for g and m
for r and m
Expected 9112 0 0 0
failure rates
Security 5 1 5 5
category
Pre-quantum 256 136 248 225
security bits
Shared key |384 256 256 256
size in bits
Public key 1023 1140 1218 1047
size™
Secret key 1173 1422 1600 1238
size™
Ciphertext 1023 1281 1047 1175
size™®

* sizes in bytes

for three parameter sets with (n =251, q=128), (n=347, q=128), and (n =503,
q=256). The latter paper reported results for 12 parameter sets specified in
the IEEE Standard NTRUEncrypt SVES [2]. Out of these parameter sets, the
closest one to the cases considered in this paper was the parameter set with
(n="761, =2048). None of the aforementioned designs was made open-source.
In [8], the first full constant-time implementation of the IEEE Standard NTRU-
Encrypt SVES [2] was reported. This implementation supported two parame-
ter sets, with (n=1499, q=2048) and (n=1087, q=2048), and targeted the
Xilinx Virtex UltraScale FPGA. As described above, the results reported in
these papers concerned different parameter values and/or different (mostly much
older) hardware platforms. Additionally, all aforementioned hardware implemen-
tations other than [17] and [8] were not constant time. As a result, their com-
parison with the results presented in this work is neither practical nor fair.

3.2 Software-Hardware Codesign of PQC Algorithms

Only a few attempts to accelerate software implementations of post-quantum
cryptosystems have been made through software/hardware (SW/HW) codesign.
A coprocessor consisting of the PicoBlaze softcore and several parallel acceler-
ation units for the McEliece cryptosystem was implemented on Spartan-3AN
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FPGAs by Ghosh et al. [10]. No speed-up vs. purely software implementation
using PicoBlaze was reported.

In 2015, Aysu et al. [3] built a high-speed implementation of a lattice-based
digital signature scheme using SW/HW codesign techniques. The paper focused
on the acceleration of signature generation. The design targeted the Cyclone
IV FPGA family and consisted of the NIOS2 soft processor, a hash unit, and
a polynomial multiplier. Compared to the C implementation running on the
NIOS2 processor, the most efficient software/hardware codesign reported in the
paper achieved the speed-up of 26,250x at the expense of the increase in the
number of Logic Elements by a factor of 20.

Migliore et al. [19] presented a hardware/software codesign for the lattice-
based Fan-Vercauteren (FV) homomorphic encryption scheme with the major-
ity of the Karatsuba-based multiplication/relinearization operation performed
in hardware. The platform used for hardware acceleration was Stratix V GX
FPGA. Software ran on a PC, based on Intel i7-4910MQ, with 4 cores operat-
ing at 2.9 GHz, connected with the FPGA-based DE5-450 Terasic board using
PCI Express (PClIe) 3.0, with eight lines, capable of handling transfers with the
throughput up to 250 MB/s per line in full-duplex. The speed-up compared to
the purely software implementation was estimated to be 1.4x.

Wang et al. [23] reported a software/hardware implementation of the PQC
digital signature scheme XMSS. The selected platform was an Intel Cyclone V
SoC, and the software part of the design was implemented using a soft-core
processor RISC-V. Hardware accelerators supported a general-purpose SHA-256
hash function, as well as several XMSS specific operations. The design achieved
the speed-up of 23x for signing and 18x for verification over a purely software
implementation running on RISC-V.

All the aforementioned platforms were substantially different than the plat-
forms used in this work. The algorithms and their parameters were also substan-
tially different. As a result, limited information could be inferred regarding the
optimal software/hardware partitioning, expected speed-up, or expected com-
munication overhead.

4 Methodology

4.1 Platform and Software

The platform selected for our experiments is Xilinx Zynq UltraScale+ MPSoC
XCZU9EG-2FFVB1156E, which is fabricated using a 16 nm technology and
mounted on the ZCU102 Evaluation Kit from Xilinx. This MPSoC is composed of
two major parts sharing the same chip, the PS and PL. The PS (Processing Sys-
tem) includes a quad-core ARM Cortex-A53 Application Processing Unit (APU),
a dual-core ARM Cortex-R5 Real-Time Processing Unit (RPU), Graphics Pro-
cessing Unit, 256 kB On-Chip Memory, and more. Each processor of the APU
and RPU is equipped with a 32kB instruction cache and a 32kB data cache. In
our experiments, we use only one processor of the APU (Core 0 of Cortex-A53)
running at the frequency of 1.2 GHz. The PL (Programmable Logic) includes
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a programmable FPGA fabric similar to that of Virtex UltraScale+ FPGAs.
The software used is Xilinx Vivado Design Suite HLx Edition, Xilinx Software
Development Kit (XSDK), and Xilinx Vivado HLS, all with the versions no.
2017.2.

A high-level block diagram of the experimental software/hardware codesign
platform is shown in Fig. 1. The hardware accelerator, implementing the Poly-
nomial Multiplier unit, is denoted as Poly Mult. This accelerator is extended
with the Input and Output FIFOs, as well as AXI DMA, for high-speed com-
munication with the Processing System. The details of the Input and Output
FIFO interfaces are shown in Fig. 2. Timing measurements are performed using
an AXI Timer, capable of measuring time in clock cycles of the 200 MHz system
clock. The Poly Mult unit can operate at a variable frequency different than that
of DMA. This frequency can be changed at run time using the Clocking Wizard,
controlled from software. As a result, the Input and Output FIFOs use different
clocks for their read and write operations.
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Main Clock [---» Zyng Processing System ey AXI Timer
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Fig. 1. High-level block diagram of the experimental SW/HW co-design platform.

4.2 Design of Hardware Using the RTL Methodology

The Register-Transfer Level (RTL) designs of hardware accelerators for NTRU-
based KEMs follow closely the block diagrams shown in Figs. 3, 4, 5 and 6.
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Fig. 2. The input and output FIFO interface.
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Fig. 3. LFSR block diagrams. (Color figure online)

The Zq_LFSR, used in all KEMs, is initialized with the value of a polynomial
a(x) with large coefficients. In each subsequent iteration, the output from LFSR
contains the value a(x) - ' mod P. In a single clock cycle, a simple multipli-
cation by z, namely a(z) - 2! mod P= a(z) - 2% - 2 mod P, is performed. For
P = x™ — 1, this multiplication is equivalent to rotation. For P = 2" —z — 1, an
extra addition mod ¢, marked in Fig. 3a with the blue background is required.
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Fig. 4. Block diagram of the Poly Mult unit for NTRUEncrypt.

The multiplication in the ring S/3 for NTRU-HRSS and R/3 for Streamlined
NTRU Prime is performed using the Z3_LFSR, shown Fig. 3b. This circuit oper-
ates using the same principle as Zq_LFSR, except all polynomial coefficients are
reduced mod 3.

The entire Poly Mult unit for NTRUEncrypt is shown in Fig.4. The multi-
plication of a polynomial a(x) with large coefficients by a polynomial b(x) with
small coefficients (limited to —1, 0, and 1), involves calculating a(z) - 2° mod P,
multiplying it by b;, and adding it to the partial sum. The multiplication of each
coefficient by —1 is accomplished by calculating their one’s complement (using
an XOR with cOv, obtained by replicating c0 11 times) and the addition of c0
as carry-in to the following adder, represented by a square with +.

Coefficients of the public key h, are preloaded to the NTRUEncrypt Zq-LFSR
before an encapsulation starts. All of these coefficients can be stored in Reg_h,
and loaded back to Zq_-LFSR in a single clock cycle, in case this LFSR is used
in-between for any operation not involving h. Similarly, coefficients of the private
key f are preloaded to the asymmetric f RAM, visible at the input as a 32x64
RAM, and at the output as a 1024x2 RAM, before the decryption starts.
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Fig. 5. Block diagram of the Poly Mult unit for NTRU-HRSS. (Color figure online)

The partial and final results are stored in the Zq-PISO (Parallel-In Serial-
Out) unit, with the parallel input of the width of 11 - n bits, the parallel output
of the same width (used to enable the accumulation of intermediate products),
and the serial output of the width of 11 bits used to read out the final result to
the output FIFO.

The multiplication ¢ = r* h, performed during encapsulation and the second
part of decapsulation, takes n = 743 clock cycles. The multiplication m/ =
fxc=(143-F)xc, performed during the first part of decapsulation, requires
two additional clock cycles, used respectively for the calculation of F'xc+2- F xc
(with the multiplication of each coefficient of F'xc¢ by 2 accomplished using a shift
to the left by one, denoted in the diagram as << 1) and c¢+3- F'xc. In this paper,
a * b denotes polynomial multiplication, and a - b denotes regular multiplication,
i.e., a multiplication of a polynomial and a constant, or a multiplication of two
polynomial terms.

The Controller is responsible for generating suitable select and enable signals,
communication with the Input and Output FIFOs, interpreting the input headers
with instructions sent by the respective driver, and generating the output header
containing the status and error codes that are sent back to the driver.

A block diagram of the hardware accelerator for NTRU-HRSS is shown in
Fig. 5. The new part, marked using the blue background, is responsible for opera-
tions in the ring S/3. Compared to NTRUEncrypt, the size of all large coefficients
increases from 11 to 13 bits. The portion of the circuit responsible for performing
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Fig. 6. Block diagram of the Poly Mult units for Streamlined NTRU Prime and NTRU
LPRime. The blue parts are used only in the design for Streamlined NTRU Prime and
the red part is used only in the design for NTRU LPRime. (Color figure online)

multiplication by f = (1 + 3 - F) is removed. Other than that, the operation of
the circuit remains almost identical.

A block diagram of the hardware accelerators for Streamlined NTRU Prime
and NTRU LPRime is shown in Fig.6. The operations in R/3 are necessary
only in case of Streamlined NTRU Prime and are similar to operations in S/3
for NTRU-HRSS. Compared to NTRU-HRSS, the main difference is the need
for reduction of partial sums, involving large coefficients, mod ¢. Since now, ¢ is
a 13-bit prime, a conditional subtraction is necessary. An additional register A
is required for NTRU LPRime only, increasing the number of required flip-flops.

4.3 Design of Hardware Using the HLS Methodology

The reference implementation of NTRUEncrypt in C, for n = 743, is based on
the grade school algorithm for multiplication (also known as schoolbook, paper-
and-pencil, etc.). Only for n equal to a power of 2, the fully recursive Karatsuba
multiplication is used. When the grade school implementation of Poly Mult
in C was provided at the input of Vivado HLS, the resulting circuit required
tens of thousands of clock cycles to complete a single multiplication (even after
inserting multiple Vivado HLS directives in the form of pragmas). The similar
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results were obtained by using an earlier C implementation of Poly Mult, based
on the concept of Rotation, developed by OnBoard Security [1].

As a result, the decision was made to treat C like a hardware description
language, and implement Poly Mult from scratch, in such a way to infer the
circuit from Fig. 4. This attempt appeared to be successful, which was indicated
by reaching almost exactly the same number of clock cycles as that required by
the RTL implementation. The same approach was then applied to the remaining
three candidates.

The HLS-ready C code was first verified using a C testbench, based on the
reference software implementation used as a source of test vectors. The resulting
HDL code was then verified using exactly the same VHDL testbench which
was used to verify the RTL implementation. The implementation phase (logic
synthesis, mapping, placing, and routing) was identical for both RTL and HLS
approaches. In the HLS flow, the first result estimates, in terms of the number of
clock cycles, maximum clock frequency, and resource utilization, were generated
in the form of reports by Vivado HLS. However, except for the number of clock
cycles (which was accurate), the remaining numbers did not match the final
post-place & route results.

5 Results

The results of profiling for the purely software implementations, running on a
single core of ARM Cortex-A53, at the frequency of 1.2 GHz, are presented in
the left portion of Table 3. For each of the four investigated algorithms and each
major operation (Encapsulation and Decapsulation), four most time-consuming
functions are identified. In each of the investigated cases, the most time consum-
ing function is poly_mult(), responsible for performing polynomial multiplication
in R/q. The contribution of this function varies between 78.2% in case of the
NTRUEncrypt encapsulation, up to 99.5% in case of the Streamlined NTRU
Prime decapsulation. poly_mult() is the only function listed among the four most
time-consuming functions for all 8 investigated operations. It is also a function
with a well-known potential for vast parallelization (and thus a very substan-
tial speed-up) in hardware. As a result, poly_mult() was a natural candidate
for offloading to hardware, and no other function listed in Table3 could offer
a clear potential for delivering an additional speed-up, especially for multiple
algorithms.

The number of clock cycles required by Poly Mult, the maximum clock fre-
quency, and the resource utilization obtained using the RTL and HLS approaches
are summarized in Table4. In both cases, the number of clock cycles is deter-
mined using simulation. The maximum clock frequency is obtained by using
Vivado in combination with the automated hardware optimization tool called
Minerva [7]. The obtained values correspond to the static timing analysis results
after placing and routing, and have been confirmed experimentally using our
setup shown in Fig. 1. The resource utilization is based on the post-place and
route reports of Vivado. Only resources used to implement Poly Mult are listed in
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Table 3. Profiling results for the software and software/hardware implementations
targeting Zynq UltraScale+ MPSoC. (SW) and (HW) indicate whether poly_mult() is
executed in software or in hardware. x2 means that a given function is called twice.

Function | Time [us] |Time [%] | Function | Time [us] | Time [%]
Software Software/Hardware

NTRUEncrypt - Encaps

1. poly_mult (SW) 743.510| 78.177 |1. generate_r 91.665 38.286
2. generate_r 91.665 9.638 |2. mask-m 40.960 17.108
3. mask_m 40.960| 4.307 |3. poly_mult (HW) 32.115 13.414
4. crypto_hash_sha512 x2 17.650 1.856 | 4. crypto_hash_shab12 x2 |17.650 7.372
NTRUEncrypt - Decaps

1. poly_mult (SW) x2 1492.870| 87.800 |1. generate_r 79.890 29.999
2. generate_r 79.890| 4.699 |2. poly_mult (HW) x2 55.966 21.015
3. unmask_m 40.865 2.403 |3. unmask_m 40.865 15.345
4. unpack_secret_key_CCA 17.975 1.057 | 4. unpack_secret_key_ CCA |17.975 6.750
NTRU-HRSS - Encaps

1. poly_mult (SW) 3091.550| 97.585 |1. poly_Rq_frommsg 31.570 28.138
2. poly_Rq-frommsg 31.570| 0.997 |2. poly_mult (HW) 31.521 28.094
3. owcpa_samplemsg 11.445 0.361 |3. owcpa_samplemsg 11.445 10.201
4. poly_Rq-getnoise 10.595 0.334 | 4. poly_Rq_getnoise 10.595 9.443
NTRU-HRSS - Decaps

1. poly_mult (SW) x2 9302.780| 99.211 |1. poly_mult (HW) x2 51.333 39.678
2. poly_Rq-frommsg 30.460| 0.325 |2. poly-Rg-frommsg 30.460 23.544
3. unpack_sk 10.315 0.110 |3. unpack-sk 10.315 7.973
4. poly_Rq-getnoise 9.975 0.106 |4. poly_Rq-getnoise 9.975 7.710
Streamlined NTRU Prime - Encaps

1. poly_mult (SW) 11,846.950| 92.702 |1. small_random_weightw |766.025 |77.933
2. small_random_weightw 766.025 5.994 | 2. FIPS202_.SHA3_.512 155.080 |15.777
3. FIPS202_SHA3_512 155.080 1.214 | 3. poly_mult (HW) 34.003 3.459
4. rq-decode 10.165 0.080 |4. rq-decode 10.165 1.034
Streamlined NTRU Prime - Decaps

1. poly_mult (SW) x2 35,546.140| 99.489 |1. FIPS202_.SHA3_.512 154.535 |64.734
2. FIPS202_SHA3_512 154.535 0.433 | 2. poly_mult (HW) x2 52.428 21.962
3. rq-decode 10.145 0.028 | 3. rq-decode 10.145 4.250
4. rq_-round3 9.045 0.025 4. rq-round3 9.045 3.789
NTRU LPRime - Encaps

1. poly_mult (SW) x2 23,693.840| 97.908 | 1. small_seeded_weightw |327.195 |57.686
2. small_seeded_weightw 327.195 1.352 | 2. FIPS202_.SHA3.512 x2 |106.355 |18.751
3. FIPS202_.SHA3.512 x2 106.355| 0.439 |3. poly_mult (HW) x2 53.663 9.461
4. rq-fromseed 28.995 0.120 | 4. rq-fromseed 28.995 5.112
NTRU LPRime - Decaps

1. poly_mult (SW) x2 35,540.750 | 98.598 |1. small_seeded_weightw |339.285 |58.920
2. small_seeded_weightw 339.285| 0.941 | 2. FIPS202_.SHA3.512 x2 |102.960 |17.880
3. FIPS202_.SHA3.512 x2 102.960| 0.286 |3. poly_mult (HW) x2 68.484 11.893
4. rq-fromseed 29.000| 0.080 |4. rq-fromseed 29.000 5.036
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Table 4. Differences in results obtained using the RTL and HLS approaches.

Metric 'RTL |HLS | HLS/RTL
NTRUEncrypt

#cycles for Poly Mult in Encaps 744 743 |0.999
#cycles for Poly Mult in Decaps | 1,491 | 1,488 |0.971

Maximum Clk Freq [MHz] 330 251 |0.761
#LUTs 27,912 | 42,667 |1.529
#Slices 4,431 | 6,268 | 1.415
#FFs 24,697 | 24,756 |1.002
#BRAMs 4 3 10.750
NTRU-HRSS

#cycles for Poly Mult in Encaps 702 703 |1.001
#cycles for Poly Mult in Decaps | 2,111 | 2,110 |0.999

Maximum Clk Freq [MHz] 300 295 |0.983
#LUTs 33,230 | 32,196 |0.969
#Slices 5,476 | 6,622 |1.209
#FFs 32,327 | 48,792 | 1.609
#BRAMs 6 4 10.667

Streamlined NTRU prime
#cycles for Poly Mult in Encaps 762 761 |0.998
#cycles for Poly Mult in Decaps | 2,291 | 2,291 |1.000

Maximum Clk Freq [MHz] 255 155 |0.608
#LUTs 65,207 | 88,678 |1.360
#Slices 9,699 | 13,690 1.411
#FFs 32,929 | 31,764 | 0.965
#BRAMs 6 4 10.667
NTRU LPRime

#cycles for Poly Mult in Encaps| 1,524 | 1,522 | 0.998
#cycles for Poly Mult in Decaps | 2,287 | 2,283 |0.998

Maximum Clk Freq [MHz] 255 158 ]0.620
#LUTs 52,297 | 77,385 | 1.480
#Slices 8,483 | 12,215 |1.440
#FFs 39,730 | 39,832 | 1.002

#BRAMs 4 3 10.750
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Table 4. Additional logic implemented in hardware, shown in Fig. 1, such as AXI
DMA, Input FIFO, Output FIFO, Clocking Wizard, and AXI Timer, requires
additional 7,858 LUTs, 1,593 Slices, 8,794 flip-flops, and 11 BRAMs.

Overall, the HLS-based implementations match very well (or even outper-
form) manually developed RTL implementations in terms of the number of
clock cycles and the number of storage elements (flip-flops and BRAMs). The
only exception is NTRU-HRSS, where the number of flip-flops is about 61%
larger in case of using HLS. However, the HLS-based implementations require
between 36% and 53% of more LUTSs, and between 41% and 44% of more Slices.
Once again the only exception is NTRU-HRSS, where the number of LUTSs is
comparable, at the expense of the substantial increase in the number of flip-
flops. Additionally, the maximum clock frequency of the HLS-generated designs
reached between 61% and 98% of the frequency of the manually-generated RTL
designs. The development time was comparable because of the additional learn-
ing curve and more frequent trial-and-error tests necessary to develop an optimal
HLS-ready C code.

Overall, the RTL approach was demonstrated to be superior, although not
by a high margin. This approach is also more mature and more trusted by the
cryptographic engineering community. As a result, in the rest of this paper, only
results obtained using the RTL approach are reported and analyzed.

In Table 5, area overhead caused by special operations specific to particular
KEMs is listed. Overall, Streamlined NTRUPrime and NTRU LPRime pay quite
substantial price in terms of both maximum clock frequency and area compared
to NTRUEncrypt and NTRU-HRSS. For example, replacing ¢ = 2'2 by the 13-
bit prime g = 4591 between NTRU-HRSS and Streamlined NTRU Prime, results
in the 15% decrease in the maximum clock frequency, and increase in the number
of LUTSs by approximately a factor of two. The number of storage elements, flip-
flops and BRAMSs, remains approximately the same. Supporting operations in
S/3 for NTRU-HRSS and R/3 for Streamlined NTRU Prime requires 26.4%

Table 5. Area overhead of special operations of NTRU-based KEMs.

Operations ‘ LUTs ‘ FFs
NTRUEncrypt

Logic supporting multiplication by 1+3F ‘ 12.0% ‘ 0%
NTRU-HRSS

Logic supporting operations in S/3 ‘ 26.4% ‘ 16.4%
Streamlined NTRU Prime

Logic supporting operations in R/3 8.4% 19.3%
Logic supporting mod q 38.0% | 0%
NTRU LPRime

Logic supporting mod q 53.2% | 0%
Logic for register A 0% 24.9%
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and 8.4% of the total number of accelerator LUTs, respectively. The percentage
is larger in NTRU-HRSS primarily because of the smaller total area required
by this KEM. The resource utilization in absolute area units (LUTs, FFs) is
comparable. Supporting special multiplication by 14+-3F in NTRUEncrypt costs
about 12% of the total number of LUTSs, and the special register A in NTRU
LPRime requires about 25% more flip-flops.

Table 6. Timing results.

Algorithm Total Total SW/ | Total Poly Mul |Poly Mul |Poly Mul |SW part
SW [ms] | HW [ms] |speed-up |SW [ms] |HW [ms]| |speed-up |Sped up
by HW [%]
Encapsulation
NTRUEncrypt 0.951 0.239 4.0 0.744 0.032 23.2 78.18
NTRU-HRSS 3.168 |0.112 28.2 3.092 0.032 98.1 97.58
Strl NTRU Prime |12.780 |0.983 13.0 11.847 0.034 348.4 92.70
NTRU LPRime |24.200 |0.567 42.7 23.694 0.054 441.5 97.91
Decapsulation
NTRUEncrypt 1.700 0.266 6.4 1.493 0.056 26.7 87.80
NTRU-HRSS 9.377 |0.129 72.5 9.303 0.051 181.2 98.95
Strl NTRU Prime |35.729 | 0.239 149.7 35.546 0.052 678.0 99.49
NTRU LPRime |36.046 |0.576 62.6 35.541 0.068 519.0 98.60

Timing results are summarized in Table 6. For each investigated KEM and
each major operation (Encapsulation and Decapsulation), we list the total exe-
cution time in software (for the reference software implementations in C running
on ARM Cortex-A53 of Zynq UltraScale+ MPSoC), the total execution time in
software and hardware (after offloading polynomial multiplications to hardware),
and the obtained speed-up. The ARM processor runs at 1.2 GHz, DMA for the
communication between the processor and the hardware accelerator at 200 MHz,
and the hardware accelerators at the maximum frequencies, specific for the RTL
implementations of each algorithm, listed in Table4. All execution times were
obtained through experimental measurements using the setup shown in Fig. 1.

The total speed-up varies from 4.0 for encapsulation in NTRUEncrypt to
149.7 for decapsulation in the Streamlined NTRU Prime. The main reason for
such big differences is the percentage of time spent by the respective software
implementation for operations offloaded to hardware. For the aforementioned
two operations, this percentage varies from 78.18% to 99.49%.

The time required for the polynomial multiplication in hardware is similar for
all algorithms, to the large extant because a significant percentage of that time
is spent for the DMA initialization and data transfer, and only a small percent-
age on actual computations. The software/hardware communication overhead is
quantified in Table 7. It is defined as the percentage of the total number of clock
cycles used for the DMA initialization and the input/output data transfer vs.
the total number of clock cycles used by the hardware accelerator. As shown in
the respective rows of Table 7, this overhead varies between 78% and 89%.
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Table 7. Software/hardware communication overhead.

Feature NTRU NTRU- Streamlined NTRU
Encrypt HRSS NTRU Prime |LPRime

Encapsulation

#cycles for transfer 25 4+ 744 |23 4+ 702 |25 + 762 25 + 1523

(input + output)

F#cycles for Poly Muls | 746 702 765 1,531

##cycles for DMA init | 4,908 4,877 5,249 7,654

Total #cycles 6,423 6,304 6,801 10,733

Transfer overhead % | 88.39 88.86 88.75 85.74

Decapsulation

#cycles for transfer 769 + 1488|725 + 725 | 763 + 787 787 + 2285

(input + output)

#cycles for Poly Muls | 1,494 2,111 2,296 2,295

##cycles for DMA init | 7,442 6,706 6,640 8,330

Total #cycles 11,193 10,267 10,486 13,697

Transfer overhead % | 86.65 79.44 78.10 83.24

Table 8. Actual speed-up for Zynq UltraScale+ MPSoC (with Proc. Clk =1.2 GHz,
Comm. Clk = 200 MHz, Accel. Clk = Max. Clk Freq from Table 3) vs. estimated speed-
up for the case of Special Instructions (SI) of ARM Cortex A53 (Proc. Clk = Comm.
Clk = Accel. Clk = 1.2 GHz).

Feature NTRU NTRU- | Streamlined NTRU
Encrypt | HRSS NTRU Prime |LPRime
Encapsulation
Poly Mul speed-up act | 24.56 101.92| 349.98 444.03
Poly Mul speed-up SI |471.14 2,079.81 | 7,328.01 7,387.49
Ratio SI/Actual 19.19 20.41 20.94 16.64
Total speed-up act 3.97 28.24 13.00 42.67
Total speed-up SI 4.51 38.01 13.44 46.80
Ratio SI/A 1.14 1.35 1.03 1.10
Decapsulation
Poly Mul speed-up act | 29.03 192.35 682.91 522.98
Poly Mul speed-up SI | 382.07 2,507.91 | 8,872.67 6,357.21
Ratio SI/Actual 13.16 13.04 12.99 12.16
Total speed-up actual 6.38 72.48 149.67 62.60
Total speed-up SI .77 110.68 187.38 70.20
Ratio SI/A 1.22 1.53 1.25 1.12
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In spite of this communication penalty, the speed-up for the polynomial mul-
tiplication itself is very high. For all KEMs other than NTRUEncrypt, this speed-
up exceeds 98. For NTRUEncrypt, it is about 23 for encapsulation and 27 for
decapsulation. This lower speed-up can be attributed primarily to the faster
software implementation (due to the use of ¢ = 211).

Overall, offloading polynomial multiplication to hardware has substantially
changed the ranking of investigated KEMs. In pure software, NTRUEncrypt was
by far the most efficient, followed by NTRU-HRSS, and trailed by Streamlined
NTRU Prime and NTRU LPRime. In the software/hardware implementation,
NTRU-HRSS was the fastest for both basic operations. For encapsulation it was
followed by NTRUEncrypt, NTRU LPRime, and Streamlined NTRU Prime, and
for decapsulation, by Streamlined NTRU Prime, NTRUEncrypt, and NTRU
LPRime. However, when analyzing these results, one needs to keep in mind
that NTRU-HRSS provides much lower security level compared to all remaining
KEMs (the security strength category 1 vs. 5), and the specifications of these
KEMs do not support comparing all of them at the same security level.

Using the actual results for the existing modern embedded systems platform,
Zynq UltraScale+ MPSoC, we can also estimate the results for a hypothetical
future platform, an ARM processor, equipped with special instructions capable
of executing polynomial multiplication. We assume that in such platform, the
number of clock cycles required for computations and input/output transfer will
remain the same. However, both the Poly Mult and the transfer of data will be
performed at the same frequency as the frequency of the processor itself (e.g.,
1.2 GHz). We also assume that the DMA initialization is not any longer required.

The speed-ups calculated under such assumptions are referred to as speed-ups
for the case of Special Instructions (SI). These speed-ups are summarized and
compared with the actual speed-ups (obtained for Zynq UltraScale+ MPSoC)
in Table 8. The SI speed-ups for Poly Mult itself exceed the actual speed ups by
a factor varying between 16.64 and 20.94 for encapsulation, and between 12.16
and 13.16 for decapsulation. At the same time, the total speed-ups improve for
the case of special instructions by much smaller factor, varying between 1.03 and
1.35 for encapsulation, and between 1.12 and 1.53 for decapsulation. As a result,
our study can be used as a relatively accurate predictor of the improvements
possible by extending a modern ARM processor with special instructions capable
of performing the respective variants of Poly Mult.

On the other hand, our current study cannot be used to predict the perfor-
mance and ranking of the investigated candidates when implemented entirely in
hardware. Such implementations can benefit from elimination of the communi-
cation overhead between a processor and a hardware accelerator. They may also
take advantage of an ability to parallelize some additional operations, other than
Poly Mult. At the same time for many auxiliary operations, which are sequential
in nature, moving from a processor to reconfigurable fabric, operating at much
lower clock frequency, may have either negative or at least negligible effect on the
overall performance. As a result, the actual full hardware implementations are
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required to properly rank candidates in terms of their performance in FPGAs
and ASICs.

When it comes to alternative software/hardware implementations, the right
side of Table 3, may serve as a starting point for future work. This side, presents
the results of profiling for our software/hardware implementations. Only for
the NTRU-HRSS decapsulation, Poly Mult remains the most time-consuming
operation. For all remaining algorithms it moves to the second or third position
in the ranking. The new most time consuming functions, such as generate_r
for NTRUEncrypt, small random_weightw for the Streamlined NTRU Prime -
Encapsulation, and small_seeded_weightw for NTRU LPRime are likely to be
parallalizable and thus suitable for offloading to hardware. On the other hand,
FIPS202_SHA3_512 is mostly sequential, and thus it is likely to offer a lower
performance gain when implemented in hardware. Additional factors, such as
the development effort, the total size of inputs and outputs of a given function,
as well as the area/memory requirements may need to be taken into account
when investigating any alternative software/hardware partitioning schemes.

6 Conclusions

Using SW/HW codesign allows the implementers of candidates for new crypto-
graphic standards (such as NIST PQC standards) to substantially reduce the
development time compared to the use of purely hardware implementations.
The implementers avoid reproducing in hardware the cumbersome and mostly
sequential operations required for input/output, as well as multiple auxiliary
operations that have a negligible influence on the total execution time. Instead,
they can focus on major and most time consuming operations, which can easily
contribute about 90% to the total execution time, and are suitable for paralleliza-
tion. In this study, we have clearly demonstrated the viability of this approach
in case of four Round 1 NIST PQC candidates and their major operation, Poly
Mult. The obtained results shed a light on the correct ranking of the investigated
four NTRU-based KEMs when offloading the most time consuming operations
to hardware is a design option.
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Abstract. Group signature is a fundamental cryptographic primitive,
aiming to protect anonymity and ensure accountability of users. It allows
group members to anonymously sign messages on behalf of the whole
group, while incorporating a tracing mechanism to identify the signer of
any suspected signature. Most of the existing group signature schemes,
however, do not guarantee security once secret keys are exposed. To
reduce potential damages caused by key exposure attacks, Song (ACM-
CCS 2001) put forward the concept of forward-secure group signature
(FSGS), which prevents attackers from forging group signatures pertain-
ing to past time periods even if a secret group signing key is revealed at
the current time period. For the time being, however, all known secure
FSGS schemes are based on number-theoretic assumptions, and are vul-
nerable against quantum computers.

In this work, we construct the first lattice-based FSGS scheme. Our
scheme is proven secure under the Short Integer Solution and Learning
With Errors assumptions. At the heart of our construction is a scal-
able lattice-based key evolving mechanism, allowing users to periodically
update their secret keys and to efficiently prove in zero-knowledge that
key evolution process is done correctly. To realize this essential building
block, we first employ the Bonsai tree structure by Cash et al. (EURO-
CRYPT 2010) to handle the key evolution process, and then develop
Langlois et al.’s construction (PKC 2014) to design its supporting zero-
knowledge protocol.

Keywords: Group signatures - Key exposure * Forward-security -
Lattice-based cryptography - Zero-knowledge proofs

1 Introduction

GROUP SIGNATURES. Initially suggested by Chaum and van Heyst [19], group
signature (GS) allows users of a group controlled by a manager to sign mes-
sages anonymously in the name of the group (anonymity). Nevertheless, there
is a tracing manager to identify the signer of any signature should the user
abuse the anonymity (traceability). These seemingly contractive features, how-
ever, allow group signatures to find applications in various real-life scenarios
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such as e-commence systems and anonymous online communications. Unfortu-
nately, the exposure of group signing keys renders almost all the existing schemes
unsatisfactory in practice. Indeed, in the traditional models of group signatures,
e.g., [6,8,10,29,30,55], the security of the scheme is no longer guaranteed when
the key exposure arises. So now let us look closely at the key exposure problem
and the countermeasures to it.

EXPOSURE OF GROUP SIGNING KEYS AND FORWARD-SECURE GROUP SIGNA-
TURES. Exposure of users’ secret keys is one of the greatest dangers to many cryp-
tographic protocols in practice [56]. Forward-secure mechanisms first introduced
by Anderson [4], aim to minimize the damages caused by secret key exposures.
More precisely, forward-security protects past uses of private keys in earlier time
periods even if a break-in occurs currently. Afterwards, many forward-secure
schemes were constructed, such as forward-secure signatures [1,7,26], forward-
secure public key encryption systems [9,16,22], and forward-secure signatures
with un-trusted update [13,40,41]. At the heart of these schemes is a key evolv-
ing technique that operates as follows. It divides the lifetime of the scheme into
discrete T' time periods. Upon entering a new time period, a subsequent secret
key is computed from the current one via a one-way key evolution algorithm.
Meanwhile, the preceding key is deleted promptly. Due to the one-wayness of the
updating algorithm, the security of the previous keys is preserved even though
the current one is compromised. Therefore, by carefully choosing a secure scheme
that operates well with a key evolving mechanism, forward-security of the scheme
can be guaranteed.

As investigated by Song [56], secret key exposure in group signatures is much
more damaging than in ordinary digital signatures. In group signatures, if one
group member’s signing key is disclosed to the attacker, then the latter can sign
arbitrary messages. In this situation, if the underlying group signature scheme
is not secure against exposure of group signing keys, then the whole system
has to be re-initialized, which is obviously inefficient in practice. Besides its
inefficiency, this solution is also unsatisfactory. Once there is a break-in of the
system, all previously signed group signatures become invalid since we do not
have a mechanism to distinguish whether a signature is generated by a legitimate
group member or by the attacker. What is worse, one of the easiest way for a
misbehaving member Eve to attack the system and/or to repudiate her illegally
signed signatures is to reveal her group signing key secretly in the Internet and
then claim to be a victim of the key exposure problem [26]. Now the users who
had accepted signatures before Eve’s group signing key is exposed are now at
the mercy of all the group members, some of whom (e.g., Eve) would not reissue
the signatures with the new key.

The aforementioned problems induced by the exposure of group signing keys
motivated Song [56] to put forward the notion of forward-secure group signature
(FSGS), in which group members are able to update their group signing keys at
each time period via a one-way key evolution algorithm. Therefore, when some
group member’s singing key is disclosed, all the signatures generated during
past periods remain valid, which then prevents dishonest group members from
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repudiating signatures by simply exposing keys. Later, Nakanishi, Hira, Fun-
abiki [50] defined a rigourous security model of FSGS for static groups, where
users are fixed throughout the scheme, and demonstrated a pairing-based con-
struction. Subsequently, Libert and Yung [42] extended Nakanishi et al.’s work
to capture the setting of the dynamically growing groups. However, all these
schemes are constructions based on number-theoretic assumptions and are frag-
ile in the presence of quantum adversaries. In order not to put all eggs in one
basket, it is imperative to consider instantiations based on alternative, post-
quantum foundations, e.g., lattice assumptions. In view of this, let us now look
at the topic of lattice-based group signatures.

LATTICE-BASED GROUP SIGNATURES. In 2010, Gordon et al. [25] introduced the
first lattice-based instantiation of GS. Since then, numerous schemes have been
put forward with various improvements on security, efficiency, and functionality.
While many of them [11,15,21,31,36,44,52] aim to provide enhancement on
security and efficiency, they are solely designed for the static groups and often
fall too short for specific needs of real-life applications. With regard to advanced
features, there have been proposed several schemes [32,33,39,45-47] and they are
still behind their counterparts in the number-theoretic setting. Specifically, [32,
33,45,47] deal with dynamic user enrollments and/or revocations of misbehaving
users while [39,46] attempt to restrict the power of the tracing manager or keep
his actions accountable. For the time being, the problem of making GS secure
against the key exposure problem is still open in the context of lattices. Taking
into account the great threat of key exposure to GS and the vulnerability of
GS from number-theoretic assumptions in front of quantum computers, it would
be tempting to investigate lattice-based instantiations of FSGS. Furthermore, it
would be desirable to achieve it with reasonable overhead, e.g., with complexity
at most poly-logarithmic in T'.

Our CONTRIBUTIONS. We introduce the first FSGS scheme in the context of
lattices. The scheme satisfies the security requirements put forward by Nakan-
ishi et al. [50] in the random oracle model. Assuming the hardness of the Short
Integer Solution (SIS) problem and the Learning With Errors (LWE) problem,
our scheme achieves full anonymity and a stronger notion of traceability named
forward-secure traceability, which captures the traceability in the setting of key
exposure problems. Let A be the security parameter, N be the expected number
of group members, and T be total time periods, our construction achieves sig-
nature size O(A(log N + logT)), group public key size O(A\%(log N + logT)),
and secret key size (5()\2(1ogN + logT)?logT). In particular, forward secu-
rity is achieved with a reasonable cost: the size of keys and signatures are at
most O(log® T) larger than those of the basic GS scheme [32] upon which we
build ours.

OVERVIEW OF OUR TECHNIQUES. Typically, designing secure GS requires a
combination of digital signature, encryption scheme and zero-knowledge (ZK)
protocol. Let us first consider an ordinary GS scheme similar to the template
proposed by Bellare et al. [6]. In the scheme, each user is assigned an ¢ bit
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string id as identity, where ¢ = log N. The user’s signing key is a signature
on his identifier id, generated by the group manager. Specifically, we let the
signing key be a short vector viq satisfying Aiq - via = u mod ¢ for some public
vector u. When signing a message, the user first encrypts his identity id to a
ciphertext ¢ and proves that he possesses a valid signature on his identity that
is also correctly encrypted to c. To achieve forward-security, we would need a
mechanism to update the group signing key periodically and a ZK protocol to
prove that the key updating procedure is done honestly.

Inspired by the HIBE-like key evolving technique from Nakanishi et al. [50]
and Libert and Yung [42], which in turn follows from [9,13,16], we exploit the
hierarchical structure of the Bonsai tree [18] to enable periodical key updating.
To the best of our knowledge, this is the only lattice-based HIBE in the stan-
dard model with supporting (Stern-like [57]) ZK proofs by Langlois et al. [32],
which seems to be the right stepping stone towards our goal. Let T = 2¢ be
the total number of time periods. To enable key updating, each user id is asso-
ciated with a subtree of depth d, where the leaves of the tree correspond to
successive time periods in the apparent way. Let the subtree be identified by
matrices Ajq, AY, |, A}, ,...,AY, ;, A}, and z = Bin(t) be the binary repre-
sentation of ¢. In order to show the key evolution is done correctly, we observe
that it suffices to prove possession of a (short) Bonsai signature viq, satisfy-
ing [Aid|A§E]1\ e |AZ[:1}1] - Viq> = umod ¢. However, proving knowledge of the
Bonsai signature departs from the protocol presented in [32]. The matrix Ajq
should be secret and the binary string z should be public in our case while it is
the other way around in [32]. Nevertheless, analyzing the above equation care-
fully, it actually reduces to proving knowledge of short vectors w; and ws and a
binary string id such that Ajq-w; +A”-wy = umod ¢, where viq. = (w1 ||w)
and A" is built from some public matrices. To prove knowledge of wq, we can
employ the decomposition/extension/permutation techniques by Ling et al. [43]
that operate in Stern’s framework [57]. Regarding the ZK protocol for proving
knowledge of w; and id, it indeed depends on the signature scheme used by the
group manager to certify users. For simplicity, we employ the Bonsai tree signa-
ture [18] as well. Then, by utilizing the ZK protocol in [32], we are able to prove
knowledge of w; and id and manage to obtain the desired ZK protocol for prov-
ing possession of viq.. It is worth mentioning that, besides the Bonsai signature,
the Boyen signature [12] is also a plausible candidate, for which a ZK protocol
showing the possession of a valid message-signature pair was known [44].

In the above, we have discussed the (Stern-like) ZK protocol showing knowl-
edge of correctly updated signing key viq|gin(¢), the main technical building
block in achieving our FSGS scheme. The next question is then how should
the user derive viq|gin(¢) for all possible ¢ using his group signing key viq. To
this end, we make a minor but significant change to the group signing key.
Observe that for the Bonsai tree signature, once a trapdoor matrix Siq satisfy-
ing Ajq - Sia = 0 mod ¢ is known, the user id is able to generate viq|gin(s) for all
possible t. Therefore, we let the user’s signing key be S;q instead. Nevertheless,
we then observe user id should not hold Sjq at all times, as the adversary could
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also generate all possible viq|gin(r) Once Siq is known to him. One trivial method
is to generate all possible viqgin(s) and then delete all the previous ones upon
entering a new period. However, this will incur linear dependency on 7', which
is undesirable for efficiency purpose.

To achieve logarithmic overhead, we should think of a way to employ the
structure of the Bonsai tree. Let Nodes;_r_1) be the set of nodes such that
it has size at most logT" and contains exactly one ancestor of each leaf or the
leaf itself between t and T — 1'. Now we let the signing key of user id at time
t be trapdoor matrices Siq), for all 2 € Nodes;_,p_1). The user is then able to
produce all possible viqgin(;) by employing Siq). if z is an ancestor of Bin(?).
More importantly, for each 2’ € Nodes(t41-71-1), there exists a unique ancestor
z € Nodes(;_7_1), which enables the evolving of the signing key from time ¢ to
t + 1, thanks to the basis delegation algorithm of the Bonsai signature.

As discussed so far, we have shown how to update the key periodically and
identified the ZK protocol for the honest behaviour of update. The thing that
remains is to find a public key encryption (PKE) scheme that is compatible
with the above ingredients. Furthermore, to achieve full anonymity, it typically
requires the PKE scheme to be CCA-secure. To this end, we apply the CHK
transform [17] to the identity-based encryption scheme [24]. For the obtained
PKE scheme, we observe that there exists a Stern-like ZK protocol (see [44]) for
proving knowledge of the plaintext, which is compatible in our setting.

To summarize, we have obtained a lattice-based FSGS scheme by developing
several technical building blocks from previous works in a non-trivial way. Our
scheme satisfies full anonymity due to the facts that the underlying encryption
scheme is CCA-secure and that the underlying ZK protocol is statistically zero-
knowledge, and achieves forward-secure traceability due to the security of the
Bonsai tree signature [18]. We believe that, our construction - while not being
truly novel - would certainly help to enrich the area of lattice-based GS.

RELATED WORK. Recently, Kansal, Dutta and Mukhopadhyay [27] proposed a
lattice-based FSGS scheme that operates in the model of Libert and Yung [42].
Unfortunately, it can be observed that their construction does not satisfy the
correctness and security requirements of [42]. (For details, see full version of this

paper.)

2 Preliminaries

Throughout the paper, all vectors are column vectors. When concatenating two
matrices of form A € R™*™ and B € R"**, we use the notion [A|B] € R™*(m+k)
while we denote (x|ly) € R™** as the concatenation of two vectors of form
x € R™ and y € R¥. Let [m] be the set {1,2,--- ,m}.

! This set can be determined by the Nodeselect algorithm presented by Libert and
Yung [42].
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2.1 Forward-Secure Group Signatures

We now recall the syntax and security requirements of forward-secure group sig-
nature (FSGS), as formalized by Nakanishi et al. [50]. An FSGS scheme consists
of the following polynomial-time algorithms.

KeyGen: This algorithm takes the tuple (A, T, N) as input, with A being secu-
rity parameter, T" being total number of time periods, and N being maxi-
mum number of group members. It then returns group public key gpk, secret
key msk of group manager (GM), secret key mosk of tracing manager (TM),
initial user secret keys uskg. uskg is an array of initial N secret signing
key {uskg[0], usko[1],- - ,uskg[N — 1]}, with uskg|[i] being the initial key of
user %.

KeyUpdate: On inputs gpk, usk[i], 7, and ¢ + 1, with usk;[i] being the secret
signing key of user 4 at time ¢, this randomized algorithm outputs the secret
signing key usk;1[i] of user ¢ at time ¢ + 1.

Sign: On inputs gpk, usk;[é], user i, time period ¢, and message M, this random-
ized algorithm generates a signature X' on message M.

Verify: It takes as inputs gpk, time period ¢, message M and signature X', and
returns 1/0 indicating the validity of the signature.

Open: On inputs gpk, mosk, ¢, M and X, this deterministic algorithm returns an
index ¢ or L.

Correctness. For all A\,T, N, (gpk, msk, mosk, usky) «— KeyGen(\,T,N), Vi €
{0,1,--- ,N — 1}, all M € {0,1}*, all usk;[i] «— KeyUpdate(gpk, usk;_1[i], ?,t)
for all ¢t € {0,1,---T — 1}, the following equations hold:

Verify(gpk, t, M, Sign(gpk, usk;[i], t, M)) = 1,

Open(gpk, mosk, t, M, Sign(gpk, usk,[i], t, M)) = i.

Forward-Secure Traceability. This requirement demands that any PPT adver-
sary, even if it can corrupt the tracing manager and some (or all) group members,
is not able to produce a valid signature (i) that is opened to some non-corrupted
user or (ii) that is traced to some corrupted user, but the signature is signed at
time period preceding the secret key query of this corrupted user. Note that (i)
captures the standard traceability requirement as in [6] while (ii) deals with the
new requirement in the context of forward-security.

Full Anonymity. This requirement demands that any PPT adversary is infeasible
to figure out which of two signers of its choice signed the challenged message of
its choice at time period ¢ of its choice. Details are referred to [50] or the full
version of this paper.

2.2 Some Background on Lattices

Let n € Z* and A be a lattice of dimension n over R™. Let S = {s1,--- ,s,} C
R™ be a basis of A. For simplicity, we write S = [s1]---[s,] € R"*". Define
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S]] = Max;|[s; || Let S = [81]- - - [8n] be the Gram-Schmidt orthogonalization of

S. We refer to ||S|| as the Gram-Schmidt norm of S. For any ¢ € R” and o € RT,
2

define the following: pg.c(x) = exp(—m2=8l) and p, o (4) = Y xen Poe(x) for

2
any x € A. Define the discrete Gaussiartly distribution over the lattice A with
parameter o and center ¢ to be Dy ;¢(X) = po.c(X)/po,c(A) for any x € A. We
often omit c if it is O.
Let n,m,q € Z* with ¢ > 2. For A € Z}*™ and u € Z; that admits a

solution to the equation A - x = u mod ¢, define
AH(A)={ecZ™:Ae=0 modq},A*(A)={ecZ™:Ae=u mod g}.

Define discrete Gaussian distribution over the set A"(A) in the following way:
D pu(a),o,c(X) = po,c(X)/poc(A%(A)) for x € A¥(A).

Lemma 1 ([24,53]). Let n,m,q € Z* with ¢ > 2 and m > 2nlogq. Let 0 € R
such that o > w(y/logm).

— Then for all but a 2q~" fraction of all A € Zy*™, the distribution of the syn-
drome u= A -e mod q is within negligible statistical distance from uniform
over Ly for € <= Dzm 5. Besides, given A -e = u mod g, the conditional
distribution of € <> Dzm 5 18 D pu(a)o-

- Let v < Dz, t =logn, and 8 = [0 - t]. Then the probability of |x| < [ is
overwhelming.

— The distribution Dzm , has min-entropy at least m — 1.

We next present two hard average-case problems: the Short Integer Solution
(SIS) problem (in the £, norm) and the Learning With Errors (LWE) problem.

Definition 1 ([2,24,49], SIS, ). Given A S Zy*™, find a vector e € Z™

n,m,q,3
so that A -e =0mod ¢ and 0 < |le]|o < 5.

Let ¢ > [By/n be an integer and m, 3 be polynomials in n, then solving the
SIS, .q.5 Problem (in the £, norm) is no easier than solving the SIVP., problem

in the worst-case for some v = - O(y/nm) (see [24,48]).

Definition 2 ([54], LWE,, ;). Fors € Z;, define a distribution As ,, over Zy x
Zq as follows: it samples a uniform vector a over Zy and an element e according
to x, and outputs the pair (a,a’ -s+e). Then the goal of the LWE,, 4, problem is
to distinguish m = poly(n) samples chosen according to the distribution As , for
some secret s € Zy from m samples chosen according to the uniform distribution
over Ly X ZLq.

Let B = O(y/n) and x be an efficiently samplable distribution over Z that out-
puts samples e € Z with |e|] < B with all but negligible probability in n. If
g > 2 is an arbitrary modulus, then the LWE,, , , problem is at least as hard as
the worst-case problem SIVP, with v = O(n - ¢/B) through an efficient quan-
tum reduction [14,54]. Additionally, it is showed that the hardness of the LWE



Forward-Secure Group Signatures from Lattices 51

problem is maintained when the secret s is chosen from the error distribution y
(see [5]).

Now let us recall some algorithms from previous works that will be used
extensively in this work.

Lemma 2 ([3]). Let n,m,q € Z" with ¢ > 2 and m = O(nlogq). There is a
PPT algorithm TrapGen(n,m, q) which returns a tuple (A,S) such that

= A is within negligible statistical distance from uniform over Zgy>™,
~ S is a basis for AX(A), i.e., A-S =0mod ¢, and ||S|| < O(vnlogq).

Lemma 3 ([24]). Let S € Z™ ™ be a basis of A*(A) for some A € Z}*™
whose columns expand the entire group Zq. Let u be a vector over Zy and s >

w(y/Togn) - ||S||. There is a PPT algorithm SampleD(A, S, u,s) which returns a
vector v € A*(A) from a distribution that is within negligible statistical distance

Jrom D gu(a),s-
We also need the following two algorithms to securely delegate basis.

Lemma 4 ([18]). Let S € Z™ ™ be a basis of A-(A) for some A € Z}*™

whose columns generate the entire group Ziy. Let A’ € Z’q”m/ be any matriz
containing A as a submatriz. There is a deterministic polynomial-time algorithm
ExtBasis(S, A’) which returns a basis S’ € Z™ *™ of A+(A’) with |S'|| = ||S].

Lemma 5 ([18]). Let S be a basis of an m-dimensional integer lattice A and
a parameter s > w(y/Iogn) - ||S||. There is a PPT algorithm RandBasis(S, s)
that outputs a mew basis S’ of A with ||S’|| < s-+/m. Moreover, for any two
bases So,S1 of A and any s > max{||So|,|S1|} - w(v/Iogn), the outputs of
RandBasis(Sg, s) and RandBasis(S1, s) are statistically close.

2.3 The Bonsai Tree Signature Scheme

Our construction builds on the Bonsai tree signature scheme [18]. Now we
describe it briefly. The scheme takes the following parameters: A is the secu-
rity parameter and n = O(A), £ is the message length, integer ¢ = poly(n)
is sufficiently large, m = O(nlogq), L= O(v/nlogq), s = w(v/logn) - E, and
B = [s-logn]. The verification key is the tuple (Ao, A}, Ai,..., A9, A}, u) while
the signing key is Sp, where (Ag, Sp) is generated by the TrapGen(n,m, q) algo-
rithm as described in Lemma 2 and matrices AY, Al,..., A%, A} and vector u
are all uniformly random and independent over Zg*™ and Zj, respectively.

To sign a binary message id € {0,1}¢, the signer first computes the
matrix Ajq = [A0|Ai1dm| e |Aiedm] € ZZX(Hl)m, and then outputs a vector
v € A"(Ajq) via the algorithm SampleD(ExtBasis(Sp, Aid), u,s). To verify the
validity of v on message id, the verifier computes A;q as above and checks if
Aiq-v=u mod g and ||v||s < B hold. They proved that this signature scheme
is existential unforgeable under static chosen message attacks based on the hard-
ness of the SIS problem.
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2.4 Stern-Like Zero-Knowledge Argument Systems

The statistical zero-knowledge argument of knowledge (ZKAoK) presented in this
work are Stern-like [57] protocols. In 1996, Stern [57] suggested a three-move
zero-knowledge protocol for the well-known syndrome decoding (SD) problem.
It was then later adapted to the lattice setting for a restricted version of Inho-
mogeneous Short Integer Solution (ISIS°®) problem by Kawachi et al. [28]. More
recently, Ling et al. [43] generalized the protocol to handle more versatile rela-
tions that find applications in the designs of various lattice-based constructions
(see, e.g., [34-38,51]). Libert et al. [33] put forward an abstraction of Stern’s pro-
tocol to capture a wider range of lattice-based relations, which we now recall.

An abstraction of Stern’s Protocol. Let K,L,q € Z* with L > K and
q > 2, and let VALID C {-1,0,1}L. Given a finite set S, associate every ¢ € S
with a permutation Iy of L elements so that the following conditions hold:

(1)

w € VALID <= I;(w) € VALID,
If w € VALID and ¢ is uniform in S, then I';(w) is uniform in VALID.

The target is to construct a statistical ZKAoK for the abstract relation of the
following form:

Rabstract = { (M, 1), w € ZX*" x ZX x VALID : M- w = umod ¢.}

To obtain the desired ZKAoK protocol, one has to prove that w € VALID and
w satisfies the linear equation M - w = u mod ¢q. To prove the former condition

holds in a ZK manner, the prover chooses ¢ & S and let the verifier check
I'y(w) € VALID. According to the first condition in (1), the verifier should be
convinced that w is indeed from the set VALID. At the same time, the verifier
is not able to learn any extra information about w due to the second condition
in (1). To show in ZK that the linear equation holds, the prover simply chooses

Ty & ZqL as a masking vector and then shows to the verifier that the equation

M:(w+r,)=M-r, +umod ¢ holds instead.

It is proved in [33] that there exists a statistical ZKAoK protocol with perfect
completeness, soundness error 2/3, and communication cost O(Lloggq) for the
relation Rapstract- The system utilizes a statistically hiding and computationally
binding string commitment scheme COM from [28]. Due to space limit, details
are referred to [33] or the full version of this paper.

3 Our Lattice-Based Forward-Secure Group Signature

In the description below, for a binary tree of depth k, we identify each node
at depth j with a binary vector z of length j such that z[1] to z[j] are ordered
from the top to the bottom and a 0 and a 1 indicate the left and right branch
respectively in the order of traversal. Let B € Z*. For an integer 0 < b < B,
denote Bin(b) as the binary representation of b with length [log B].



Forward-Secure Group Signatures from Lattices 53

In our FSGS scheme, lifetime of the scheme is divided into T discrete periods
0,1,---,7 — 1. For simplicity, let T = 2¢ for some d € Z*. Following previous
works [13,42], each time period ¢ is associated with leaf Bin(t).

Following [13], for j = 1,--- ,d+ 1, t € {0,1,--- ,T — 1}, we define a time
period’s “right sibling at depth ;7 as

Ol if j=1and Bin(¢)[j] =0,

ibling(j,£) = (Bin(t)[1],--- ,Bin(t)[j — 1],1)T if 1 < j < d and Bin(t)[j] =0,
L if j<dand Bin(t)[j] =1,
Bin(t) if j=d+1.

Define node set Nodes(;_r_1) to be {sibling(1,%),--- ,sibling(d +1,¢)}. For any
t" > t, one can check that for any non-L 2’ € Nodes_p_1), there exists a
z € Nodes(;_.7_1) such that z is an ancestor of Z.

3.1 Description of the Scheme

Our scheme operates in the Nakanishi et al.’s (static) model [50]. Let T = 24
and N = 2¢. The group public key consists of (i) a Bonsai tree of depth £ + d
specified by a matrix A = [Ao|AJA]---|AD, ,|A}, ] € Z;LX@HMH)m and a
vector u € Zy, which are for issuing certificate; (ii) A public matrix B € Z;*™
of the IBE scheme by Gentry et al. [24], which is for encrypting user identities
when signing messages. The secret key of GM is a trapdoor matrix of the Bonsai
tree while the secret key of the tracing manager is a trapdoor matrix of the IBE
scheme.

Each user id € {0, 1}’ is assigned a node id. To enable periodical key updat-
ing, each user id is associated with a subtree of depth d. In our scheme, all users
are assumed to be valid group members from time 0 to T'— 1. Let z be a binary
string of length d. < d. Define Ajq. = [Ag]AYM |- |AK AT A7l

Zy~ (+d=+1)m, Specifically, the group signing key of user id at time ¢ is {S;q) ., 2 €

Nodes;_7_1)}, which satisfies Ajq. - Siq)- = 0 mod g. Thanks to the basis del-
egation technique [18], users are able to compute the trapdoor matrices for all
the descendent of nodes in the set Nodes;_,r_1) and hence are able to derive
all the subsequent signing keys. We remark that for leaf nodes, it is sufficient to
generate short vectors instead of short bases, since we do not need to perform
further delegations.

Once received the group signing key, each user can issue signatures on behalf
of the group. When signing a message at time ¢, user id first generates a one-
time signature key pair (ovk, osk), and then encrypts his identity id to a cipher-
text ¢ using the IBE scheme with respect to “identity” ovk. Next, he proves in
zero-knowledge that: (i) he is a certified group member; (ii) he has done key
evolution honestly; (iii) ¢ is a correct encryption of id. To prove that facts (i)
and (ii) hold, it is sufficient to prove knowledge of a short vector viq|gin() such
that Ajq|Bin(t) * Vid|Bin(r) = 1 mod g. The protocol is developed from Langlois et
al.’s technique [32] (which was also employed in [20] for designing policy-based
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signatures) and Ling et al.’s technique [43], and is repeated k = w(logn) times to
achieve negligible soundness error, and is made non-interactive via Fiat-Shamir
transform [23] as a triple IT. Finally, the user generates a one-time signature sig
on the pair (c, IT), and outputs the group signature consisting of (ovk, c, IT, sig).
To verify a group signature, one checks the validity of sig under the key ovk
and I1. In case of dispute, TM can decrypt the ciphertext with respect to the
“identity” ovk using his secret key. Details of the scheme are described below.

KeyGen(\, T, N): On inputs security parameter A, total number of time periods

T =

24 for some d € Z, and maximum number of group members N = 2¢

for some £ € ZT, this algorithm does the following:

1.

2.

@

Choose n = O(A), ¢ = poly(n), m = O(nlogq). Let k = £ + d and
k = w(logn).

Run TrapGen(n,m, q) as described in Lemma 2 to obtain Ay € Zy*™ and
So emem

Sample u < Zy, and Ab — Zp*™ for all i € [k] and b € {0, 1}.

Choose a one- tune signature scheme OTS = (OGen, OSign, OVer), and
a statistically hiding and computationally binding commitment scheme
COM from [28] that will be used in our zero-knowledge argument system.

. Let Ho : {0,1}* — ZZXZ and Hy : {0,1}* — {1,2,3}" be collision-

resistant hash functions, which will be modelled as random oracles in the
security analysis.

Let Gaussian parameter s; be O(y/nklogq)" ‘! - w(y/logn)" !, which
will be used to generate short bases or sample short vectors at level ¢ for
ie{ll+1,--- k}.

Choose integer bounds 8 = [sj - logn],B = O(y/n), and let x be a
B-bounded distribution over Z.

Generate a master key pair (B,S) € Zy*™ x Z™*™ for the IBE scheme
by Gentry et al. [24] via the TrapGen(n,m, q) algorithm.

For user ¢ € {0,1,--- ,N — 1}, let id = Bln( ) € {0,1}*. Let node id be
the identifier of user i. Determine the node set Nodesg_7_1).

For z € Nodes(g_.7—1), if z = L, set usko[i][z] = L. Otherwise denote d.
as the length of z with d, < d, compute the matrix

id[1 id[e], A 21 . "
Aiq: = [Ao|A] [ ]| - |A H|Ae£r]1| |AZ+d | ez x (b4+d,+1)

and proceed as follows:
— If zis of length d, i.e., d. = d, it computes a vector viq; € A"(Ajq).)
via
Viq||z « SampleD(ExtBasis(So, Ajq||»), u, 5%)-
Set usko[i][z] = Viq|--

— If z is of length less than d, i.e., 1 < d, < d, it computes a matrix
Sid||z c Z(E+dz+1)m><(2+dz+1)m via,

Siq||z + RandBasis(ExtBasis(So, Aiq||z), S¢4d. )-
Set llSko M [Z] = Side-
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Let uskoi] = {usko[i][z], 2 € Nodesg_r_1)} be the initial secret key of
user ¢.
Let public parameter be pp, group public key be gpk, secret key of GM be msk,
secret key of TM be mosk and initial secret key be uskg, which are defined
as follows:

pp = {n,q,m, ¢, d, k,k, 0TS, COM, Ho, H1, S¢, - - -, Sk, 3, B},
gpk = {pp, Ag, AV, A{,...,A) A} u, B},
msk = Sy, mosk = S,
usky = {usk[0], uskg[1], ..., uskg[N — 1]}.

KeyUpdate(gpk, usk;[i], i, t + 1): Compute the identifier of user ¢ as id = Bin(i),
parse usk;[i] = {usk[i][z], 2 € Nodes_r_1)}, and determine the node set
NOdeS(t+1_,T_1).

For 2 € Nodes(;417_1, if 2/ = L, set usk1[i][z'] = L. Otherwise, there
exists exactly one z € Nodes(;_,r_1) as its prefix, i.e., 2’ = z||y for some suffix
y. Consider the following two cases.
1. If 2/ = z, let usky41[i][2'] = usk;[i][2].
2. If 2/ = z||y for some non-empty y, then usk.[i][z] = Siq).. Consider the
following two subcases.
— If 2’ is of length d, Tun

Vid||» < SampleD(ExtBasis(Siq) -, Aiq|-/), U, 5&),

and set usk; 1 [i][2] = Viq)zr-
— If 2’ is of length less than d, run

Siq||. + RandBasis(ExtBasis(Siq)., Aid||2/), St+d., ),

and set usk; 1 [i][2'] = Siq).r-
Output updated key as usk;;1[i] = {usk;1[i][2'], 2’ € Nodes(;417-1)}.
Sign(gpk, usk.[i],i,t, M): Compute the identifier id = Bin(¢). By the structure
of the node set Nodes(;_,p_1), there exists some z € Nodes(;_,p_1) such that
z = Bin(t) is of length d and usk;[i][z] = viq) .

To sign a message M € {0,1}*, the signer then performs the following steps.

1. First, generate a one-time signature key pair (ovk,osk) «— OGen(n),
and then encrypt id with respect to “identity” ovk as follows. Let
G = Ho(ovk) € Z2**. Sample s <= X", e1 «— X", e2 — x*, and compute
ciphertext (ci, co) € ZI" x ZY as

(c; =B -s+ey, CQZGT'S+92+I_%J'id). (2)
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Second, compute the matrix Ajq), and generate a NIZKAoK II to demon-
strate the possession of a valid tuple

5 = (idvsaelaeQavide) (3)

such that

(a) Ajq). - Vigjz =u mod g, and [|viq)z[lec < B.

(b) Equations in (2) hold with ||s]|e < B, |le1]lcc < B and ||ez2]|s < B.
This is done by running our argument system described in Sect. 4.2 with
public input

Y= (onA(l)vAia e 7A2,A]1€,U,B, Gaclac27t)

and witness tuple £ as above. The protocol is repeated k£ = w(logn) times
to obtain negligible soundness error and made non-interactive via the
Fiat-Shamir heuristic [23] as a triple I = ((CMT;)%_,, CH, (RSP;)%_,)
with CH = Hl (M, (CMTZ)f:h C1,Co, t)

. Third, compute a one-time signature sig = OSign(osk; c1, ca, IT) and out-

put the signature as X' = (ovk, ¢y, co, IT, sig).

Verify(gpk, t, M, X): This algorithm proceeds as follows:

1.

2.

3.

4.

Parse X' as X = (ovk, c1, co, I1,sig). If OVer(ovk;sig;cy,ca, IT) = 0, then
return 0.

Parse IT as IT = ((CMT;)f_,,(Chy,...,Ch,), (RSP;)f ;).

If (Chy,---,Chy) # H1(M, (CMT;)5_,, c1,c2,t), then return 0.

For ¢ € [k], run the verification step of the underlying argument protocol
to check the validity of RSP; with respect to CMT; and Ch;. If any of
the conditions does not hold, then return 0.

Return 1.

Open(gpk, mosk, t, M, X): If Verify(gpk, t, M, X) = 0, abort. Otherwise, let mosk
be S € Z™*™ and parse X as X = (ovk,cy,co, I],sig). Then it decrypts
(c1,c2) as follows:

1.

Compute G = Ho(ovk) = [g1]---|g¢] € Z™**. Then use S to compute
a small norm matrix Foy € Z™*¢ such that B - Foux = G mod ¢. This
is done by computing f; « SampleD(B, S, g;, s;) for all ¢ € [¢] and let
Fou = [f1] - - - [fe].

. Use Fouk to decrypt (c1,c2) by computing

T
Co — Fovk - Cqp

= 1T

] € {0,1}".

Return id" € {0,1}*.

3.2 Analysis of the Scheme

EFrFICIENCY. We first analyze the complexity of the scheme described in
Sect. 3.1, with respect to security parameter A and parameters £ = log N and
d=logT. Recall k =/{+d.
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— The group public key gpk has bit-size O(A2 - k).

— The user secret key usk;[i] has at most d + 1 trapdoor matrices, and has
bit-size O(A2 - k2d).

— The size of signature X' is dominated by that of the Stern-like NIZKAoK IT,
which is O(|¢] - log q) - w(log A\), where |£| denotes the bit-size of the witness-
tuple £. Overall, X has bit-size O(\ - k).

CORRECTNESS. The correctness of the above scheme follows from the following
facts: (i) the underlying argument system is perfectly complete; (ii) the under-
lying encryption scheme obtained by transforming the IBE scheme in [24] via
CHK transformation [17] is correct.

Specifically, for an honest user, when he signs a message at time period ¢,
he is able to demonstrate the possession of a valid tuple £ of the form (3).
Therefore, with probability 1, the resulting signature IT will be accepted by the
Verify algorithm, implied by the perfect completeness of the underlying argument
system. As for the correctness of the Open algorithm, note that

co—Fl, - c1=G" .s+e+ ng d—Fl, - (BT -s+e))

ovk °

= LgJ ~id+e27F;,k~e1

where |le;|| < B, [lea]loe < B, and ||f]|cc < [s¢ - logm] = O(v/n - k), which is
implied by Lemma 1. Recall that ¢ = poly(n), m = O(nlogq) and B = O(y/n).
Hence

lez = Foy - e1lloc < B+m-B-O(Vn-k) = O(n?).

As long as we choose sufficiently large g, with probability 1, the Open algorithm
will recover id and correctness of the Open algorithm holds.

SECURITY. In Theorem 1, we prove that our scheme satisfies the security require-
ments put forward by Nakanishi et al. [50].

Theorem 1. In the random oracle model, the forward-secure group signature
described in Sect. 3.1 satisfies full anonymity and forward-secure traceability
requirements under the LWE and SIS assumptions.

The proof of Theorem 1 is deferred to the full version of this paper.

4 The Underlying Zero-Knowledge Argument System

In Sect. 4.1, we recall the extension, decomposition, and permutation techniques
from [32,43]. Then we describe in Sect. 4.2 our statistical ZKAoK protocol that
will be used in generating group signatures.
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4.1 Extension, Decomposition, and Permutation

EXTENSIONS. For m € Z, let Bay, be the set of all vectors in {—1,0, 1}*™ having
exactly m coordinates —1, m coordinates 1, and m coordinates 0 and S, be the
set of all permutations on m elements. Let & be the addition operation modulo 2.
Define the following functions

— extz: {—1,0,1}™ — Bgy, that transforms a vector v = (vy,...,vm) " to vector
(v[|(=1)m=m-1]jo™="o|[1™"1) T where n; is the number of element j in the
vector v for j € {—1,0,1}.

— ency: {0,1}™ — {0,1}2™ that transforms a vector v = (vy,...,vn) " to vector
(v1,1 =1, .,V 1 — )T

DECOMPOSITIONS AND PERMUTATIONS. We now recall the integer decompo-

sition technique. For any B € Z*, define pp = |log B] + 1 and the sequence
By,...,B,, as B; = LB+22]-171J for each j € [pg]. As observed in [43], it satis-
fies 3272, B; = B and any integer v € [B] can be decomposed to idecp(v) =
(v, .. o®e))T € {0,1}P5 such that > By v = u. This decomposition
procedure is described in a deterministic manner as follows:

1. v:i=v
2. For j =1 to pp do:
(i) If v’ > B; then vV := 1, else vV := 0;
(i) v :=v' — B; -0\,
3. Output idecg(v) = (v, ..., v@PE)T,
Next, for any positive integers m, B, we define the function vdec, p that trans-
forms a vector w = (w1, ..., wy) ' € [~B, B]™ to a vector of the following form:

w' = (o(w1) -idecp(jwi])[| -+ - [lo(wm) - idecp(jwm|)) € {-1,0,1}™7,
where Vj € [m]: o(w;) =0if w; = 0; o(w;) = —1if w; < 0; o(w;) =1if w; > 0.
B,....B,,

Define the matrix Hy, p = € Z™*™PB and

Bi,...,B,,

its extension Hy p = [Hy g|0™*2™PE] € Z™3™P5 . Let W = ext3(W) € Bampys

then one can see that Hy p - W = w and for any ¢ € Ssmp,, the following
equivalence holds:

w e B3mp3 = w(vAv) S B3mp3~ (4)
Define the following permutation.

— For any e = (e1,...,em)" € {0,1}™, define [T, : Z*™ — Z>™ that maps a
vector v = (v9, v}, ..., 00, vl)T to (v§,v1 ¢, L v wloem) T

One can see that, for any z,e € {0,1}™, the following equivalence holds:

v =ency(z) & Il.(v) =enca(z @ e). (5)
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4.2 The Underlying Zero-Knowledge Argument System

We now describe a statistical ZKAoK that will be invoked by the signer when gen-

erating group signatures. The protocol is developed from Stern-like techniques

proposed by Ling et al. [43] and Langlois et al. [32].

Public input v: Ay € Z;*™, A? € Zy*™ for (b,j) € {0,1} x [k], u € Zy,
B ez, GeZ*, (c1,¢0) € Z7 x Z, t € {0,1,--- , T — 1}

Secret input & id € {0,1}/, s € X", e1 € X™, e € X, viq), € ZEFHD™ with
z = Bin(t).

Prover’s goal:

Ajg)z - Via): = umod g, |[Vigzlleo < 55
c;=B" .s+e modg, c2c=G" -s+ey+[2] idmod g; (6)
Isllec < B, [le1llsc < B, [le2]loc < B.

We first rearrange the above conditions. Let A’ = [AJAY|A}|---|AYA}] €

ZEI™ Mg = [Ag| AT AT € ZETY™ and A7 = AN A7) €
ZI™. Then A, = [AulA”] € ZYTV™ Let via = (volvill---[lve),
wo = (Vegi| -+ [|[Verq) with each v; € Z™. Then viq. = (Via||wz). Therefore

Ajq)- - Vig)>: = umod q is equivalent to
Aiq-vig+A” -wy =umod gq. (7)

Since id is part of secret input, Ajq should not be explicitly given. We note
that Langlois et al. [32] already addressed this problem. The idea is as follows:
they first added ¢ suitable zero-blocks of size m to vector viq and then obtained

the extended vector wi = (vol[v{|[vi| - [[V0|v}) € ZZ+D™ where the added
zero-blocks are Vi_ld[l], . ,vt}_ldm and v;d[l] =v;,Vi € [{]. Now one can check

that Eq. (7) is equivalent to

A" -w; + A" wy =umod q. (8)
BT Im 0m><2 " _ Omxﬁ
GT Oéxm IZ ) LQ/QJ IZ

Z"+tm+t Then one can check that ¢; = BT -s+e; mod ¢,co = GT -s + ey +

|2] -id mod g is equivalent to

B’ -w; +B” -id = (c4|c2) mod g. (9)

Let B’ = [ } and w3 = (s|lei]|e2) €

Using basic algebra, we can transform Eqgs. (8) and (9) into one equation of the
following form:
My -wp=uy mod g,

where My, ug are built from A’, A”,B’,B” and u, (c;]||cz), respectively, and
wo = (w1 wz|[wsllid).

Now we can use the decomposition and extension techniques described in
Sect.4.1 to handle our secret vectors. Let Ly = 3(2¢ + 1)mpg, Lo = 3dmpg,
L3 =3(n+m+{)pp, and L = L1+ Lo+ Lg+ 2¢. We transform our secret vector
wo to vector w = (W ||WaWsllid) € {—1,0,1}¥ of the following form:
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— W1 = (Vol[¥Y¥E| - I99)IW)) € {—1,0,1}11 with ¥y = exts(vdec,, 5(vo)) €
Bampa: Vi € 0], 9,7 il _ g3mps and v A‘dm — extg(vdec,, 5(v:'M)) € By,

- Wg = eXt3(VdeCdm’g(W2)) S BSdmpg»

- ‘/A\/3 = eXt3(VdeCn+m+€,B(W3)) € BB(n+m+€)pB;

~ id = ency(id) € {0,1}2".
Using basic algebra, we can form public matrix M such that
M.-w = M- wy=ug mod q.

Up to this point, we have transformed the considered relations into equation
of the desired form M - w = umod q. We now specify the set VALID that
contains the secret vector w, the set S and permutations {I, : ¢ € S} such that
the conditions in (1) hold.

Define VALID to be the set of vectors of the form z = (z1]|z2||z3]|z4) €
{—1,0,1}* such that there exists x € {0,1}*

—z1 = (yollylyil - I¥0lly}) € {fl,(), 1}3@HDmPs with yo € Bapy, and for
each i € [{], yl1 xli = 03mps, yZ‘m € Bamps;

—Z2 € BSdmpg and z3 € BS(n+m+£)pB;
— z4 = ency(x) € {0, 1}

Clearly, our vector w belongs to the tailored set VALID.
Now, let S = (ngpﬁ)%+1 X S3dmps X S3(ntm+0)ps X 10, 1}*. For any

¢: (1#071#?71/}%,-~-7¢g>1/}5}a77277737e) 687 e = (617"‘765)T7

define the permutation I : 7' — 7 as follows. When applied to a vector

z = (yollyillyill - Iy?llyzllz=lzsllza) € Z*

where the first 2¢ + 1 blocks are of size 3mpg and the last three blocks are of
size 3dmpg, 3(n+m+{£)pp and 2¢, respectively; it transforms z to vector I'4(z)
of the following form:

(L leT Gl ™ g (g ) g™ (v~ )l
112(22)||13(23) || e (24) )-

Based on the equivalences observed in (4) and (5), it can be checked that if
z € VALID for some x € {0, 1}, then I';(z) € VALID for some x®e € {0,1}*. In
other words, the conditions in (1) hold, and therefore, we can obtain the desired
statistical ZKAoK protocol.
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Abstract. The majority of submissions to NIST’s recent call for Post-
Quantum Cryptography are encryption schemes or key encapsulation
mechanisms. Signature schemes constitute a much smaller group of sub-
missions with only 21 proposals. In this work, we analyze the practica-
bility of one of the latter category — the signature scheme Falcon with
respect to its suitability for embedded microcontroller platforms.

Falcon has a security proof in the QROM in combination with small-
est public key and signature sizes among all lattice-based signature
scheme submissions with decent performance on common x86 computing
architectures. One of the specific downsides of the scheme is, however,
that according to its specification it is “non-trivial to understand and
delicate to implement”.

This work aims to provide some new insights on the realization of
Falcon by presenting an optimized implementation for the ARM Cortex-
MA4F platform. This includes a revision of its memory layout as this is
the limiting factor on such constrained platforms. We managed to reduce
the dynamic memory consumption of Falcon by 43% in comparison to
the reference implementation. Summarizing, our implementation requires
682 ms for key generation, 479 ms for signing, and only 3.2 ms for verifi-
cation for the n = 512 parameter set.

Keywords: Ideal lattices + Falcon - Cortex-M + Microcontroller -
NIST PQC

1 Introduction

With the progress on quantum computing that has been made in recent years,
the possibility of a powerful quantum computer being build in the coming years
seems as likely as never before. The impact of the sheer existence of such a
machine to current real world cryptography would be disastrous. Of special sig-
nificance in that regard is Shor’s algorithm for prime factorization and discrete
logarithms [32], which, given a powerful quantum computer, allows for polyno-
mial time attacks on almost all public-key algorithms that are in use today.
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As a result, research in the area of post-quantum cryptography has signifi-
cantly picked up in speed for the last couple of years. A lot of work is currently
being put into the construction of quantum-secure cryptographic schemes that
one day could replace today’s most widely distributed algorithms. This effort cul-
minated in the NISTs call for post-quantum cryptographic algorithms [27] that
ended in November 2017. While most of the first round submissions focus on key
exchange or key encapsulation schemes (KEMs), a few are dealing with the prob-
lem of generating cryptographically sound digital signatures. These include the
lattice-based schemes pgNTRUsign [10], gTESLA [7], Dilithium [12], DRS [28], and
Falcon [15], but also hash-based algorithms such as SPHINCS™ [21] or schemes
based on multivariate quadratics.

There are two competing approaches to realize lattice-based signature
schemes. While the majority of them is constructed by applying the Fiat-Shamir
transform to an authentication scheme, Falcon is based on the so-called hash-
and-sign approach. The major difference is that while Fiat-Shamir schemes in
general have a better performance, hash-and-sign ones can be proven to be secure
in the Random Oracle Model (ROM) and even the Quantum Random Oracle
Model (QROM). Another advantage of hash-and-sign signatures is that it is pos-
sible to construct identity-based encryption schemes out of a signature scheme
like Falcon [13].

In particular in IoT infrastructures with critical requirements for long-term
security, it is important to identify solutions that can still be deployed on con-
temporary small devices. Embedded systems found in automotive, consumer,
or medical applications, for instance, demand an alternative solution that can
withstand future attacks in the long run. With the implementation presented in
this work, we show that Falcon can be a solution in this context.

1.1 Related Work

The majority of practical work on lattice-based NIST PQC candidates for
embedded devices focuses on encryption schemes or key encapsulation mech-
anisms. An implementation of Saber [11] for ARM Cortex-M microcontroller
platforms by Karmakar et al. [23] has been published in TCHES’18 and has
since then been further optimized by Kannwischer et al. in [22]. There is also
a microcontroller and FPGA implementation of Frodo [3] by Howe et al. [20].
Albrecht et al. developed an implementation of Kyber [5] that exploits existing
RSA co-processors [2]. Finally, there is a Cortex-M4 implementation of Round5
[6], a scheme that resulted from the merger of Round2 [17] and HILAS5 [30], by
Saarinen et al. [31].

A detailed list of publications related to microcontroller implementations of
NIST PQC candidates is available at the PQCzoo [19]. The most comprehen-
sive collection of ARM Cortex-M4 implementations can be found in the pgm4
[1] library. Most of these implementations are rather straight-forward portings
of their respective reference implementations, but it also features implementa-
tions that are described in dedicated publications. The library pgm4 contains
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ten KEMs and only three signature schemes, namely Dilithium, qTESLA, and
SPHINCS™. Falcon has not been included in pgm4.

1.2 Contribution

The Falcon web page [16] mentions that the comparatively low memory con-
sumption of Falcon is one of the highlights of the algorithm and states that
“Falcon is compatible with small, memory-constrained embedded devices”. The
reference implementation of the Falcon submission however paints a different
picture as it uses 210kB of dynamic RAM memory during the signing step.
In this work, we want to verify the claim of the Falcon submission to be well
suited for memory-constrained embedded devices by presenting the first embed-
ded microcontroller implementation of the signature scheme Falcon.

To do so, we apply a number of memory-saving techniques to reduce the
dynamic memory consumption in comparison to the reference implementation
by 43%. Our implementation on an ARM Cortex-M4 requires 64 kB of RAM and
has a runtime of 682 ms for key generation, 479 ms for signing, and only 3.2 ms
for verification using Falcon-512.

In its Call for Proposals [27] NIST explicitly states that the flexibility of a pro-
posed scheme is one major evaluation criterion for the standardization process.
The document furthermore defines flexibility to include that “algorithms can
be implemented securely and efficiently on a wide variety of platforms, includ-
ing constrained environments”. In our work, we show that Falcon fulfills this
requirement to some extent and also highlight the limitations of the scheme
regarding its implementation on embedded platforms.

2 Preliminaries

In this chapter, we discuss the mathematical background that is crucial for the
understanding of this paper.

2.1 Notation

We follow the notation of the Falcon specification [15]. Matrices are written
as bold uppercase letter, vectors as bold lowercase letter, and scalars and poly-
nomials as italic letters. An asterisk marks the component-wise adjoint of the
transpose of a matrix. Sampling a value a from a Gaussian distribution is written
as a <+ Dy, » where x denotes the center of the distribution and o denotes its
standard deviation.

2.2 The Falcon Signature Scheme

Due to the complexity of Falcon, a detailed description of all its components
is out of the scope of this work. In the following we will broadly describe the
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key generation, signing, and verification procedures of Falcon and refer to the
official specification [15] for more details.

Key generation, as shown in Algorithm 1, can be separated into two distinct
parts. First, it generates polynomials f, g, F, G € Z[x]/(¢) that fulfill the NTRU
equation fG — gF = ¢ mod ¢ using the algorithm NTRUGen. The second part
deals with the construction of the Falcon tree T using the LDL* decomposition
of the matrix G = BB”*. Since our optimizations strongly depend on the tree
generation algorlthm it can be found in Appendix A. Keygen then returns a
public key pk = h = gf ! mod ¢ and a secret key sk = (B T).

Algorithm 1. Keygen(¢, q)

Require: A monic polynomial ¢ € Z[z], a modulus ¢
Ensure: A secret key sk, a public key pk
1: f,9,F,G,~v NTRUGen(¢, q) > Solving the NTRU equation

2:B<—{g —f

G|-F
B~ FFT(B)
G —BxB*
T «— ffLDL*(G) > Computing the LDL" tree
if ¢ is binary then
o« 1.55,/q
else if ¢ is ternary then
9 o< 13224

10: for each leaf leaf of T do > Normalization step
11: leaf.value « o /+/leaf.value

12: sk — (B, T)

13: h+ gf ! modgq

14: pk «— h

15: return sk, pk

For signature generation, Algorithm 2 summarizes the required steps. First it
computes a hash value ¢ € Z4[z]/(¢) of the message m and a salt r. It then uses
the secret key sk to compute short values s1, so such that s; + ssh = ¢ mod ¢ by
leveraging its knowledge of f, g, F, G. This is done using the ffSampling algorithm,
which is also given in Appendix A. Since s; can be reconstructed from s, the
hash ¢, and public key h, it suffices to output a compressed version of s, as the
signature, which also includes the random seed r.
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Algorithm 2. Sign(m, sk, 3)
Require: A message m, a secret key sk, a bound 3
Ensure: A signature sig of m
r < {0, 1}*?° uniformly
¢ < HashToPoint(r||m)
t — (FFT(c), FFT(0)) - B!
do
z « ffSampling,, (t, T)
s=(t—z)B
while |s| > 3
(s1,82) < invFFT(s)
s « Compress(s2)
: return sig = (r,s)

=

Signature verification as shown in Algorithm 3 is rather straightforward and
starts by hashing m and r into the hash value ¢ again. Next, s is recomputed
and the algorithm checks whether ||(s1,s2)|| < 3 is satisfied with 8 being some
predefined acceptance bound. Only if that bound holds for the given signature,
it is accepted as valid.

Algorithm 3. Verify(m,sig, pk, )
Require: A message m, a signature sig = (r,s), a public key pk = h € Z,[z]/(¢), a
bound

Ensure: Accept or reject

1: ¢ < HashToPoint(r||m, ¢, n)

2: sy < Decompress(s)

3: 81 < c— s2h mod q

4: if ||(s1,s2)|| < 3 then

5.

6

7

accept
: else
reject

3 Microcontroller Implementation

This section deals with two approaches to implement the Falcon signature
scheme on our target architecture. The first one combines the tree generation
with the fast Fourier sampler to reduce memory requirements, while the sec-
ond one excludes the key generation from the microcontroller entirely and uses
precomputed keys instead.

3.1 Target Platform

The STM32F4DISCOVERY board serves as a constrained target platform for
our implementation. Its microcontroller has an 32-bit ARM Cortex-M4F core
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that runs with a clock frequency of up to 168 MHz. The board offers 192 kB of
RAM as well as 1 MB of flash memory. Furthermore, it features a true random
number generator (TRNG) based on analog circuitry and a floating-point unit
(FPU). But as the FPU only works with single-precision floating point values,
we cannot employ it for our implementation.

3.2 Analysis of the Reference Implementation

The analysis of the reference implementation from the Falcon submission pack-
age is our starting point for the development of our optimized ARM Cortex-M4
implementation. We first measured the dynamic memory consumption of the
reference implementation in terms of stack and heap usage. We determine the
stack usage with the help of stack canaries. To employ this technique, we start
by filling the stack with a magic number before the operation to be measured is
executed. Afterwards we check up to which point the magic numbers have been
overwritten and therefrom conclude the stack usage. We determine the heap
usage by counting the malloc() calls in the reference implementation manually
as there are only a few of them in the source code.

The resulting dynamic memory consumption of the reference implementation
can be seen in Table 1. The first point to note is that 210kB are required for the
signing operation for n = 1024 what clearly would not fit into the 192kB RAM
of our STM32F4DISCOVERY development board. Another issue is that in most
use cases cryptographic algorithms are subcomponents of a main application on
the microcontroller that employes the security functions to securely transmit,
receive, or store data. As a result it is not sufficient to make the implementation
barely fit the memory of our target platform, but we also need to reserve space
for the main application that will be also placed the microcontroller.

Table 1. Dynamic memory usage of the reference implementation in bytes for n = 512
and n = 1024.

Operation Stack memory | Heap memory | Total memory
n =512

Key generation | 18,624 14,777 33,401

Sign 22,632 94,040 116,672

Verify 13,456 2,464 15,920

n = 1024

Key generation | 24,200 29,113 53,313

Sign 28,696 181,080 209,776

Verify 19,080 2,464 21,544

We identify the large Falcon tree used in the fast Fourier sampler during
signature generation as the memory bottleneck. Considering the case n = 1024,
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that tree takes up 90kB of the RAM. To execute Falcon on the target archi-
tecture, we present two possible solutions: We can either adapt the algorithm
in a way that is more memory-conserving, or we may implement only the sig-
nature generation and verification while using those algorithms in combination
with precomputed keys, which include the Falcon tree. The keys can then be
stored in Flash memory to unburden the RAM. The latter approach is rather
straightforward since one only needs to precompute the keys and load them onto
the device. However, for many use cases this is not a satisfiable solution, as we
may want to generate new keys over time. Therefore we focus on algorithmic
changes for the remainder of this section.

To reduce the memory footprint, our implementation will merge the tree
generation and the fast Fourier sampling (cf. Appendix A) into a single algorithm
ffSampling), that is described in Algorithm 4. Referring to signature generation as
shown in Algorithm 2, we then replace ffSampling,, with ffSampling.. The Falcon
tree is therefore no longer part of the secret key sk and is instead computed on-
the-fly during sampling. As the matrix G is required for the computation of
the tree, we additionally need to compute it prior to the sampling step. We can
therefore exclude the computation of G from key generation, since it has no use
in that algorithm anymore. That way we only need to keep a small subtree in
memory, which is generated whenever the respective part of the tree is required.
As a consequence of this memory tradeoff we have to recompute the entire tree
for each signature generation with a negative impact on the overall performance.
Finally, our embedded implementation natively only supports Falcon-512 and
Falcon-1024, though the same concepts can be directly applied for Falcon-768
as well.

3.3 Memory Optimizations

Our fast Fourier sampler with integrated tree generation is the most expensive
operation in terms of memory requirements during the signing procedure. We
optimized our implementation such that it only needs 8 kB of temporary space
(i.e. n double elements), as the in- and outputs alone already take up 56 kB
of RAM for n = 1024. The flowchart in Fig.1 shows that it is not possible
to perform this operation in-place without overriding the inputs. For the sake
of simplicity, the flowchart does not include splitting and merging operations.
After the first call to ffSampling), the first output is already calculated and
we therefore cannot use its memory to store intermediate results. Hence we
leverage the memory, which in the end will contain the second output, to keep
the intermediate results in the meantime. However, we still need to store Lqg
as output of the LDL* somewhere. Therefore it is inevitable to use temporary
memory within the sampler without major algorithmic changes.

3.4 Timing Analysis

Timing attacks are a fundamental threat to every cryptographic operation
involving secret values [25]. With a timing attack an adversary obtains informa-
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Algorithm 4. ffSampling) (t, G)

Require: t = (to,t1) € FFT(Q[z](z™ + 1))? and a full-rank Gram matrix G €
FFT(Q[z](2z™ + 1))**?, 0 « 1.55\/q
Ensure: z = (z0,21) € FFT(Z[z](z" + 1))?
: if (n=1) then
o' — ov/Goo

1

2

3 z20 DZ,to,o"
4: z1 < Dz,1y 00
5: return z = (zo, 21)
6

7

8

1 ‘0 Doo‘ 0
: (L,D LDL*(G >L = D= |—1-—
(L.D) — LDL*(G) o= o]
¢ dio, d11 < splittffty(D11) > Handle right child

¢ty splittffty (1)

. dio |dn
9 G Lcdu\dm]
10: z1 «— fFSampIingn/Q(tl,Gl)
11: z1 <« mergeffty(z1)
12: ty « to + (t1 — 21) © L1o > Handle left child
13: doo,dm — Sp|ittfft2(D00)
14: to « splittfft, (t;)
15: Go — {M]

xdo1 | doo

16: zo < ffSampling,, ;5 (to, Go)
17: zo < mergeffty(zo)
18: return z = (zo, 21)

G, G
LDL" .
l
Lo Dy
ffSampling’]
ffSampling”
! \
ZO Zl

Fig.1. Flowchart of our fast Fourier sampler with integrated tree generation
ffSampling, .
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tion about the secret key by observing the execution time of the secret key oper-
ation, i.e., the signing operation in signature schemes. Timing attacks even work
remotely over networks as shown in [8]. The most basic countermeasure against
these attacks is to make sure that the execution time of an implementation is
completely independent of the secret key, typically referred to as a constant-
time implementation. Our implementation is currently designed for being not
constant-time for two reasons. First, many embedded use-cases only require the
verification of signatures (e.g., for the verification of authentic firmware updates
or other applications where the embedded device is used as authenticated mes-
sage sink only). Hence, constant time is not an issue for those embedded imple-
mentations for which only public data (i.e., the public key) is used. Second, there
are particular components in the design of Falcon that make a constant-time
implementation of the signature generation challenging:

1. Falcon requires to draw samples according to some Gaussian distribution.
A lot of research has been focused on developing efficient algorithms for
Gaussian sampling [9,14,24,26]. One major difference in comparison to other
lattice-based schemes, like KEMs based on the Learning with Errors (LWE)
problem, is that in Falcon the standard deviation of the Gaussian distribution
varies between 1.2 and 1.9 with a precision of 53 bits. Therefore we cannot
use constant-time table-based approaches like [24] as a sampling algorithm.
Because of the required precision of the sampler, it is also not possible to use
the constant-time binomial approach that is utilized in many lattice-based
KEMs. The authors of Falcon propose to employ a rejection-based approach
that is rather inefficient but has an execution time that is independent of the
output.

2. Another, more critical obstacle in achieving a constant-time implementation
is the use of floating-point arithmetic in Falcon. We cannot make use of
the floating point unit build into the ARM Cortex-M4F to perform these
floating-point operations of Falcon as it only works with single precision,
while Falcon requires double precision operations. Therefore floating point
calculations are handled by C runtime library functions, which in turn are
usually not constant-time, especially in the case of division or square root
operations that are also present in Falcon. There are attempts to realize
constant-time floating point arithmetic for x86 processors at USENIX’16 [29]
and CCS’18 [4]. These works however report a massive performance penalty
when their constant-time floating point libraries are utilized resulting in the
software being up to one order of magnitude slower than the standard C
library functions. However, we are not aware of such libraries for microcon-
troller platforms and therefore this timing behavior of Falcon is one major
challenge for its deployment in embedded applications.

4 Results and Comparison

In this section, we discuss the results of our implementation and compare it with
others.
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4.1 Evaluation Methodology

We evaluate our work by using the OpenSTMS32 System Workbench (version 2.6),
which is based on the development environment Eclipse and has specifically
been designed to support the development for ARM-based STM32 boards. The
IDE uses the GNU ARM Embedded Toolchain (version 7.2) and we set the
optimization level to -03. Determining the performance of our implementation
is done by using the cycle count register DWT_CYCCNT of the Data Watchpoint and
Trace unit that the Cortex-M4F offers. We assess dynamic RAM consumption
by making use of stack canaries as described in Sect. 3.2.

4.2 Results

Table 2 summarizes the cycle counts of our implementations. We can see from
the table that the Falcon verification is two orders of magnitude faster than
the signing operation or the key generation. For comparability with the pqm4
library [1] the measurements were obtained at 24 MHz. Translated to 168 MHz,
verification would take only 3.2 ms while signing takes 479 ms for n = 512 with-
out precomputed keys. Key generation even exceeds the signing operation and
requires 682 ms to complete. The cost of the signing operation is dominated by
the cost of the fast Fourier sampler as this component accounts for 92% of its
total cycle count. In turn, the cost of the fast Fourier sampler heavily depends
on the performance of the Gaussian sampler that is executed 2n times during
the fast Fourier sampling. The 2n calls to the Gaussian sampler account for 73%
of the cycle count of the entire signature generation.

The Gaussian sampler is therefore the main bottleneck in terms of cycle
count of the scheme. Using fixed keys increases the performance of the sign-
ing by approximately 10%. This is mainly because we do not have to compute
the Falcon tree in this case. However, fixed keys do not impact the verifica-
tion. Another observation is that the FFT, which operates on complex double-
precision floating point numbers and is required only during signing and key
generation, is one order of magnitude more expensive than the NTT that works
on plain integers. Nonetheless, the cost of the FF'T is still negligible in compar-
ison to the fast Fourier sampling.

In Table 3 we furthermore present the dynamic memory consumption of our
implementations. The signing operation has the highest memory consumption
and therefore the total memory consumption of the scheme is equal to the mem-
ory requirements of the signing operation. In contrast to the reference imple-
mentation we do not allocate memory on the heap and the dynamic memory
consumption is therefore entirely determined by the stack usage of the implemen-
tation. We reduce the memory requirements of the scheme by 43% for n = 1024
in comparison to the reference implementation. Using fixed keys further increases
the RAM savings to a total of 55% in comparison to the reference implementa-
tion as the keys are stored in Flash memory instead.
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Table 2. Clock cycle counts for our ARM implementations of Falcon at 24 MHz. All
results are averaged over 100 runs. The fast Fourier sampling cycle counts marked with
T include the generation of the Falcon tree.

Operation Falcon Falcon with fixed keys
n =512 n = 1024 n =512 n = 1024

Key generation 114,546,135 | 365,950,978 | - -

Sign 80,503,242 | 165,800,855 | 72,261,930 | 147,330,702

Verify 530,900 1,046,700 | 529,900 1,083,100

solveNTRU 65,240,266 | 209,500,594 | - -

Fast Fourier sampling | 74,433, 097" | 148,600, 140" | 64,354,464 | 130,468,405

2n Gaussian samples 58,541,540 | 116,768,948 | 57,947,926 | 115,855,189

Compute G 583,800 1,131,800 |- -

FFT 772,200 1,716,300 | 772,800 1,645,100

NTT 75,900 157,700 | 75,900 159,700

Table 3. Dynamic memory usage in bytes for our ARM Cortex-M4 implementations
in comparison with the reference implementation. For our ARM implementations, we
only use the stack. We do not allocate extra memory on the heap.

Operation | Reference M4 Fixed keys M4
n=>512|n=1024 |n=512|n=1024|n =512 | n = 1024

Key Gen | 33,401 | 53,313 |40,560 51,704 |- -

Sign 116,672 | 209,776 |63,652 |120,596 |50,508 |94,260

Verify 15,920 | 21,544 6,261 11,893 5,364 | 10,100

4.3 Comparison

In Table 4 we compare our work with ARM Cortex-M4 implementations of other
post-quantum schemes that were either taken from the pqm4 library [1] or the work
of Oder et al. [18]. The security level is given according to the NIST classifications
in the Call for Proposals [27]. In this comparison Falcon has the lowest execution
time for the verification. Even the high-security n = 1024 instantiation of Falcon
verifies signed messages in about the same time as qTESLA instantiated at a lower
security level. Dilithium and qTESLA both have a faster signing and key genera-
tion. The major advantage of Falcon over these schemes however is that Falcon
comes with a security proof in the ROM and QROM while Dilithium does not
have such a proof. qTESLA can be instantiated with “provably-secure” parameters
or “heuristic” parameters. The numbers in Table 4 refer to the heuristic instan-
tiation. The minimal security assumptions of SPHINCS' make it the most con-
servative choice. The implementation of SPHINCS™ is also the only one from the
table that has a data-independent execution time. The signing performance how-
ever is four orders of magnitude worse than the signing performance of qTESLA at
the same security level. We therefore consider Falcon to be a reasonable trade-off
between performance and security.



76 T. Oder et al.

Table 4. Comparison of our implementation with ARM implementations of other
schemes. The given security levels refer to the security categories defined by NIST [27].
For our work, a security level of 1 means that n = 512 and level 5 translates to n = 1024.
The stack memory is given in bytes. The runtime of the key generation, signing, and
verification is given in cycles. Our fixed-key implementations are marked by .

Impl. Sec. Stack | Key Gen Sign | Verify
This work Level 1| 63,652 | 114,546,135 80,503, 242 530,900
Level 5 | 120,596 | 365,950,978 165,800,855 | 1,046,700
This work' Level 1| 50,508 | - 72,261,930 529,900
Level 5| 94,260 | - 147,330,702 | 1,083,100
Dilithium [12] | Level 2| 86,568 | 2,320,362 8,348,349 | 2,342,191
qTESLA [1] Level 1| 29,336 | 17,545,901 6,317,445 | 1,059,370
Level 3| 58,112 30,720,411 11,987,079 | 2,225,296
SPHINCS™ [1] |Level 1| 10,768 | 4,439,815,208 61, 665,898,904 | 72,326,283

5 Conclusion

In this work, we presented a microcontroller implementation of the lattice-based
signature scheme Falcon. Our implementation is memory-efficient and, in con-
trast to the reference implementation, does fit into the memory of our target
platform. We also show that the implementation can be further optimized in
terms of performance and memory consumption if the use case does not require
to generate a key pair on the device itself. The extremely high performance of
the verification makes Falcon a suitable scheme for use cases in which the target
device does not have to generate a signature, e.g., for the verification of software
updates. For future work, optimizations of the Gaussian sampler may result in
a huge performance gain during signature generation. One obstacle however is
that the signing operation cannot easily be realized in constant-time due to the
required floating-point operations.

Acknowledgement. We would also like to thank the anonymous reviewers for their
very valuable and helpful feedback. The research in this work was supported in part by
the European Unions Horizon 2020 program under project number 644729 SAFEcrypto
and 780701 PROMETHEUS.

A Algorithms

A.1 The Falcon Tree

Please note that there is a typo in the Falcon specification [15] in Algorithm
15, Line 3. The description in Algorithm 5 in this section correctly states n = 2
instead of n = 1.
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Algorithm 5. fiLDL*(G)

Require: A full-rank Gram matrix G € FFT(Q[z]/(z™ + 1))?*?
Ensure: A binary tree T

10:

11:
12:
13:

(L,D) «— LDL*(G)

T.value «— L

10

if (n =2) then
T.leftchild <+ Dgg
T.rightchild < D1,
return T

doo, do1 — Splittfft2 (Doo)

dlo, di1 — Splittfft2 (Dn)

doo
zdo1

dio
xdi1

Go<—{

G «—

i
doo

di1
dio

T leftchild « fALDL* (Go)
T.rightchild — fLDL*(G)

return T

A.2 Fast Fourier Sampling

The description can be found in Algorithm 6.

Algorithm 6. ffSampling,,(t, T)

Require: t = (to,t1) € FFT(Q[z]/(z™ + 1))? and a Falcon tree T
Ensure: z = (z0,21) € FFT(Z[z]/(z" + 1))?
if (n =1) then

o’ «— T.value

20 DZ,to,r}'/

21 DZ,tl,o/

return z

= (20, 21)

(To, T1) « (T.leftchild, T.rightchild)
t1 « splittfft, (¢1)

z1 « ffSampl

ingn/Q(tl, Tl)

z1 < mergeffty(z1)

: t6 — to + (tl
: to «— splittfft, (¢0)
: zo «— ffSampl
: 20 — mergefft,(zo)

: return z = (20, 21)

— 21) © T.value

ing,,/2(to, To)
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Abstract. We present the ring-based configuration of the NIST sub-
mission Round5, a Ring Learning with Rounding (RLWR)- based IND-
CPA secure public-key encryption scheme. It combines elements of the
NIST candidates Round2 (use of RLWR as underlying problem, having
1+ 2z +...4+ 2" with n + 1 prime as reduction polynomial, allowing for
a large design space) and HILA5 (the constant-time error-correction code
XEf). Round5 performs part of encryption, and decryption via multiplica-
tionin Z,[x] /(™1 —1), and uses secret-key polynomials that have a factor
(z — 1). This technique reduces the failure probability and makes correla-
tion in the decryption error negligibly low. The latter allows the effective
application of error correction through XEf to further reduce the failure
rate and shrink parameters, improving both security and performance.

We argue for the security of Round5, both formal and concrete. We
further analyze the decryption error, and give analytical as well as exper-
imental results arguing that the decryption failure rate is lower than in
Round2, with negligible correlation in errors.

IND-CCA secure parameters constructed using Round5 and offering
more than 232 and 256 bits of quantum and classical security respectively,
under the conservative core sieving model, require only 2144 B of band-
width. For comparison, similar, competing proposals require over 30%
more bandwidth. Furthermore, the high flexilibity of Round5’s design
allows choosing finely tuned parameters fitting the needs of diverse appli-
cations — ranging from the IoT to high-security levels.

Keywords: Lattice cryptography - Learning with Rounding -
Prime cyclotomic ring - Public-key encryption + IND-CPA -
Error correction

1 Introduction

®

Check for
updates

Standardization bodies such as NIST [30] and ETSI [17,18] are currently in
the process of evaluating and standardizing post-quantum cryptography (PQC),
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alternative solutions to RSA and elliptic curve cryptography that are secure
against quantum computers. Lattice-based cryptography is a prominent branch
of post-quantum cryptography that is based on well-studied problems and offers
very good performance characteristics.

Motivation. The choice of the underlying polynomial ring greatly affects the per-
formance of schemes based on ideal lattices, i.e., those based on the Ring Learn-
ing with Errors (RLWE) [28] and the Ring Learning with Rounding (RLWR) [6]
problems. A common choice [3,10] of the polynomial ring to instantiate an RLWE
or RLWR problem is Zg4[z]/®P2y,(x) where n is a power of 2. Proposals such
as [3,9,11,24] using this ring enjoy lower decryption failure rates due to the
sparse nature of the @y, (z) leading to lesser noise propagation. However, requir-
ing that n be a power of 2 restricts the choice of n. Proposals such as [5,35]
choose instead the Z[z]/®@,+1(x) where @, 11 () = 2" +2" 1 +...+1for n+1
a prime, thus offering a much denser design space. However, due to the worse
noise propagation in this polynomial, the decryption failure rate of such schemes
suffers.

Error correction has been shown to improve the security and performance of
ideal lattice based cryptosystems in [19], and has been practically demonstrated
in schemes such as [20,34]. We observe that error correction, when Z,[x]/ P2y, ()
is used, can bring limited reduction in bandwidth requirements if n is limited
to powers of two. On the other hand, applying error correction in schemes
using Zg[z]/Ppn11(x) can bring major improvements since, if failure probabil-
ity is improved, then it is relatively easy to find slightly smaller n values that
directly reduce bandwidth requirements. However, as we will see, multiplications
in Zy[x]/Pn+1(z) lead to correlated decryption errors that limit the application
of error correction.

Contributions. In this paper, we present the ring version of the Roundb
cryptosystem submitted to NIST. Round5 builds upon the rounding-based
Round2 [5] scheme, that is constructed based on the prime-order cyclotomic
ring, and XEY, the constant-time error correction code in HILA5 [34]. Round2
can finely tune its parameter n for each targeted security level, which in combi-
nation with rounding and its characteristically small key-sizes leads to efficient
performance. However, having a design based on the @,,1(x) polynomial, oper-
ational correctness in Round2 suffers from the above mentioned drawbacks.
Our contributions in this work are as follows:

1. We present the RLWR-based Round5 cryptosystem (Sect. 3), that combines
the dense parameter space offered by the prime-order @,,1(x) cyclotomic
polynomial (n+1 a prime), with the low decryption failure rates typical of the
power-of-two @, (x) polynomial (n a power of two), such as in NewHope [3]
and Kyber [9].

Round5 does this by computing public-keys modulo @,,41(x), such that n+ 1
is a prime (allowing a wide choice for this security parameter), yet computing
part of the ciphertext modulo N, 41 (x) = 2"*! — 1 and requiring that secret-
keys are polynomials having a factor (z — 1). The latter two ensure that an
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additional term originating from reductions modulo @,1(x) in the public-
keys vanishes during reduction modulo N,, 41 () in encryption and decryption,
leading to a decryption error term that has a noise propagation as low as in
the case of the @, (z) polynomial.

2. We present detailed analytical and experimental results on the decryption
error in Round5, especially the occurrence and behavior of correlated errors
occurring due to reductions modulo @, ;(x). Our experimental simulations
support the claim that the dependence between errors when performing
encryption and decryption modulo N, 11(z), although still existent, is neg-
ligible; these results are of independent interest and apply also to schemes
defined based on the power-of-two Py, (x) polynomial.

3. Based on our above results on independent bit errors when using the N, 1 ()
polynomial, we extend the design of Round2 further in Round5 by incorpo-
rating the error correction code XEf, originally due to [34]. Our choice of this
code is motivated by the following.

Firstly, XEf is designed to easily implement constant-time correction of up to
f errors, where f is arbitrary, in practice between 2 and 5, and can be chosen
based upon the usage scenario. This flexibility of XEf fits the overall design
goals of Round5. In comparison, the only other NIST [30] post-quantum can-
didate utilizing constant-time error correction is ThreeBears [20], however
its Melas code can correct only (up to) 2 errors. Another NIST candidate,
LAC [27] uses BCH error correction, for which no obvious constant-time
implementation exists [26].

Secondly, operations in XEf are based on Boolean logic only, and are therefore
simple and fast. XEf’s performance is therefore at least at par with, if not
better, than the constant-time Melas error correction of the ThreeBears [20]
submission, which involves multiplication operations in Fy9. However, we note
that the performance overhead of error correction is in general, negligible
compared to other, more significant overheads in ideal lattice based cryp-
tosystems, such as polynomial ring multiplications.

Thus, XEf allows Round5 to further drop its decryption failure rate signif-
icantly, shrink parameters, and in the process improve security and perfor-
mance, while remaining flexible enough to optimize its performance when
targeting different applications.

2 Background

For each positive integer a, we denote the set {0,1,...,a — 1} by Z,. For a set

A, we denote by a & A that o is drawn uniformly at random from A. For z € Q,
we denote by |z] and |x] rounding downwards to the next smaller integer and
rounding to the closest integer (with rounding up in case of a tie) respectively.
Let n+1 be prime. The (n+1)-th cyclotomic polynomial &,,11(z) then equals
2" 42" 1+ ..+ 2+ 1. We denote the polynomial ring Z[z]/®,,+1(z) by R,,. We
denote by N,,1(x) the polynomial 2" —1 = &,, .1 (z)(x — 1). For each positive
integer a, we write R, , for the set of polynomials of degree less than n with
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all coefficients in Z,. We call a polynomial in R,, ternary if all its coefficients
are 0, 1 or —1. Throughout this document, regular font letters denote elements
from R,,. For each v € R,,, the Hamming weight of v is defined as its number
of non-zero coefficients. We denote with H,,(h) the set of ternary polynomials of
degree less than n, with Hamming weight h.

Roundb as presented in this paper relies on the same underlying problem as
in [5] tailored to the ring case. Like [5], Round5 as submitted to NIST relies on
the General Learning with Rounding problem.

Definition 1 (Ring Learning with Rounding (RLWR)). Let n,p, q be pos-
itive integers such that ¢ > p > 2. Let Ry 4 be a polynomial ring, and let D,
be a probability distribution on R,. The search version of the RLWR problem

SRLWRy, 1 q.p(Ds) is as follows: given m samples of the form <{§<as>q—‘> with
P

a € Ry,q and a fized s < Dy, recover s.
The decision version of the RLWR problem dRLWR, , q.p(Ds) is to distin-
guish between the uniform distribution on Ry q X Rnp and the distribution

<ai, b; = <L§<as>q—‘ >p> with a & Rn,q and a fizred s < D;.

We note that the original decisional RLWR assumption [6] is to distinguish from
Rn,g X (Ruq),. We simplify it to the uniform case since p|q in our setting.

Round5 uses XEf, an f-bit majority logic error correcting block code, to
decrease the decryption failure rate. The code is built using the same strategy as
codes used by TRUNCS [33] (2-bit correction) and HILAS [34] (5-bit correction).
The XEf code is described by 2f “registers” r; of size |r;| = I; withi =0,...,2f—
1. We view the -bits payload block m as a binary polynomial m,_1z"~ ! +
--+ 4+ mqpx + mg of length k. Registers are defined via cyclic reduction r; =
m mod z' — 1. A transmitted message consists of the payload m concatenated
with register set r (a total of u = k + xe bits, where ze = > 1;).

Upon receiving a message (m’ | ') one computes the register set r” corre-
sponding to m’ and compares it to the received register set ' — that may also
have errors. Errors are in coefficients mj, where there are parity disagreements
for multitude of registers r;. We use a majority rule and flip bit mj, if

2f—1
D (il = 7 [(k)i]) mod 2) > f +1 (1)
i=0

where the sum is taken as the number of disagreeing register parity bits at k.

3 Round5

The core of Round5 is r5_cpa_pke, an IND-CPA secure public-key encryption
scheme based on the Ring Learning with Rounding (RLWR) problem. r5_cpa_pke
is constructed as a noisy El Gamal encryption scheme similar to the works in [25]
and [4]. Public keys are noisy RLWR samples in Z[z]/®,+1(z), computed via a
lossy rounding down to a smaller modulus.
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Algorithm 1. r5_cpa_pke_keygen() Algorithm 2. r5_cpa_pke_encrypt(pk, m)
1 a< Ry 1< H,(h)

2 s < M, (h) 2 u=([% (@, 0+ M)]),

3 b= <L§ (<a5>(pn+1<z> + hl)J>p 3 0= <[f (Sample“(br)é(m) + hl)J+

4 return (pk = (a,b), sk = s) Lxef_compute,, 5 (m)
> t

4 return ct = (u,v)

Algorithm 3. r5_cpa_pke_decrypt(sk, ct)

1 v, ="

2 y= <{% (’Up - Sampleu<su>§(@ T hz)J >2

3 1 = xef_correct,, (y)
4 return m

Round5 and its core r5_cpa_pke builds on Round?2 [5], specifically the building
block CPA-PKE. r5_cpa_pke is thus described in Algorithms 1, 2 and 3, which
it inherits from the ring variant of CPA-PKE, along with the cryptosystem
parameters, positive integers n, h, p, q, t, i, f, 7, and a security parameter k.
The moduli ¢, p, t are powers of 2, such that ¢|p|q. It is required that p? > gt (see
Sect. 5.1), p < n and p > k. h is the Hamming weight of secret polynomials.
r5_cpa_pke also defines a generic polynomial {(z) € {N,41(x), Pry1(x)}, which
is used to reduce the result of polynomial multiplication during encryption and
decryption. In this paper, we discuss performance (in the form of decryption
failure behavior) and security trade-offs and requirements for the cases that
E(@) = Nuy(w) and £(x) = By (7).

Algorithm 1 first samples a public polynomial a with coefficients in Z,, a
secret-key polynomial s and computes the public-key polynomial b by rounding
its coefficients (to the closest integer) to a smaller modulus p < ¢. Here, rounding
is described in terms of rounding downwards, and addition of a rounding constant
hi = q/2p. In Algorithm 2, the encryptor samples an ephemeral secret encryption
randomness r and uses it along with a to compute the first ciphertext component
u similar to b. The second ciphertext component v is computed using the public-
key b and r to obtain a RLWR sample, which is then used as a one-time pad
to encrypt the message (which is additionally encoded using an error correction
code). Finally, the decryptor in Algorithm3 computes (su)¢(,) & (br)(,) and
recovers the message. The rounding constant hy = p/2t+p/4—q/2p is used here
to remove bias in the decryption error.

Since not all coefficients of v are needed to encrypt a x bit message, encryption
uses the function Sample,, : ¢ € R, , — ZI, whose output corresponds to the
lowest order polynomial coefficients of ¢: ¢co + cix + -+ + cu,lx“_l. The use of
Sample,, makes encryption and decryption more efficient since only u coefficients
need to be computed in the ciphertext instead of all n. This also improves the
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failure probability since the encryptor and decryptor need to agree on fewer
symbols. Further, this also requires sending fewer symbols, reducing bandwidth
required.

The integer f denotes the error-correction capability of a code Xef. s C
Z4. We have an encoding function xef_compute, , : {0,1}" — Xef, s and a
decodlng function xef _correct, s : Z5 — {0,1}" such that for each m € {0, 1}"
and each error e = (eq,...,€,—-1) w1th at most f bits equal to 1

xef_correct,, (xef_compute, ;(m)+e) =m. (2)

Secret-keys in Round5 are sparse, ternary and balanced, i.e., they are poly-
nomials of degree at most (n — 1), exactly h/2 coefficients of which are +1, h/2
are —1, and the rest zero. Having a fixed weight (sparse) reduces probability
of decryption failure and makes computations faster. The latter is also helped
by the fact that non-zero components are either +1 or —1 (ternary), implying
that multiplications can be accomplished using only additions and subtractions.
Finally, having an equal number of +1’s and —1’s (balanced) ensures that the
secret-keys have a factor (x—1). Section 4 analyzes how this ensures that decryp-
tion errors are not correlated, allowing error correction to be used in Round5.
As an additional benefit, the decryption failure rate remains low and at the level
of 22" +1 cyclotomic polynomials, despite using reductions modulo @,,41(z) to
compute public-keys.

As a final note, the NIST submission Lizard [11,12] also uses sparse, ternary
secret-keys, and similar to our proposal enjoys the resulting benefits in decryp-
tion failure probability and computational efficiency. However, Lizard (specifi-
cally, its ring-based instantiation RLizard) uses @3, (for n a power of 2) as the
reduction polynomial. It thus does not require balanced secret-keys and our tech-
nique for reducing error correlations; however, its ring choice limits its parameter
choices and design space.

4 Correctness Analysis

In this section, the decryption failure behavior of r5_cpa_pke is analyzed. We
first present a sufficient condition for correct decryption. We then analyze the
probability of this condition not being satisfied and describe how we evaluated
this decryption failure probability.

Sufficient Condition for Correctness. Let A = (hy +h2)1,, —i, +Sample,, ({(br —
su))¢), where %iv (x) represents the error introduced in the ciphertext component
v(z) due to rounding downwards; each coefficient of i,(x) is in Z,;, and 1, is
the polynomial of degree a — 1 with all coefficients equal to 1. As shown in
Appendix A, if the i-th coefficient of the polynomial y in decryption and the
i-th coefficient of xef_compute, ,(m) do not agree, then

(13) <[t 1)
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Decryption Failure Probability. The probability of decryption failure in coeffi-
cient i before error correction is thus at most the probability that (3) is satisfied.
We write b = §(<a5>¢n+1 + h11,,) —ip with all coefficients of 4, in [0, 1). We thus
have that 1b = (as)s,,, + j» (mod ¢) with all coefficients of j, = h1l, — iy in
I = (=4, 351N Z. Similarly, fu = (ar)s, ., + ju (mod ¢) with all components
of j, in 1. We thus can write

g(br —su) = (sa)g, 7 — s{ar)e, ., + jor — sju  (mod q). (4)

Obviously, if & = @,,41, then (sa)p, 7 — s{ar)s,., = 0 (mod &). The same is
true if £ = N,,11 and r and s both are multiples of (x — 1). This is so as there
are g, \, € Z[x] such that (as)g, 7 — s(ar)e,., = APni1(x)r(z) — APy,
As (xz — 1) divides s and r, both @, 17 and s®,,41 are divisible by N, ;1. As a
result, for & € {@p, 41, Npy1} we have that

A= ju o+ Sample, (Gor = sju)e)  (mod q) (5)

In our analysis below, the coefficients of j, and j, are drawn independently
and uniformly from I, and the coefficients of j, are drawn independently and

distributed as %y with y uniform on (—27, Z] N Z.

4.1 Computing Failure Probability When § = ¢,

We now combine (3) and (5) for the case that { = @,,41. As Ny, 11 (z) is a multiple

of @,11(x), we have that (f)a,., = ((f)N)s, - Moreover, if g(x) = 371 gia’,
then (9)¢,., = 9 — 9nPn+1. In particular, for all polynomials s, e,

n n—1
if (seyn = ch(s,e)xk, then (se)s, ., = Z(ck(s,e) — (s, €))z”, (6)
k=0 k=0
Hence, if the ¢-th bit is not retrieved correctly, then
((Go(@))s + ci(Go, ) — en(Go, ) — ci(8, Ju) + cn (s, Ju))q € [%, q— g] . (7)

Assuming independence, and taking into account that r and s contain h/2 ones
and h/2 minus ones, ¢x(jp,7) — cn(Jo,T) — k(S Ju) + (8, ju) is distributed as
the difference of 2h independent random variables on I, minus the sum of 2h
independent random variables on I. The probability that (7) is satisfied thus can
be computed explicitly. By the union bound, the probability that at least one of
the p symbols is not retrieved correctly is at most p times the probability that
(7) is satisfied.

4.2 Correlation in Decryption Errors When § = &,, 4

A basic requirement for using XEf error correction code is that the errors it aims
to correct are independent. However, the condition in (7) for a decryption error
in position ¢ shows terms ¢, (j, ) and ¢, (s, j.) that are common to all positions
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Failure rate (logs)

— Probability of at least 1 error, reduction polynomial ®, ., (x)
Probability of at least 2 errors, reduction polynomial ... 1(z)

— Probability of at least 1 error, reduction polynomial X, , \(z)
Probability of at least 2 errors, reduction polynomial ., (z)

Fig. 1. Probabilities of at least one (continuous lines) and at least two errors (dot-
ted lines) in Round5 ring parameters, plotted against the Hamming weight of secrets
(X-axis), for the reduction polynomials ®,11(z) and N,+1(z). Diamonds represent
corresponding probabilities computed from actual Round5 simulations for the same
parameters. Scripts for analyzing and reproducing these results can be found at www.
roundb.org.

i. Figure 1l shows the effect of this dependency, by comparing the estimated
probabilities of at least one error and that of at least two errors occurring, when
the reduction polynomial £ = N,,+1 (as in r5_cpa_pke) and when & = @, ; (as
in Round2 [5]), respectively. It can be seen that due to correlated errors, the
probability of at least two errors occurring when the reduction polynomial is
& = @11 is much larger than in the case of the N, 1(z) reduction polynomial.
As a consequence, the XEf code cannot be directly employed with the reduction
polynomial £ = @, 11 as used in Round?2.

For any a, (6) can be used to compute p(i | a), the probability that bit 7 is not
retrieved correctly, given that —c,, (b, 7)+¢n (s, ju) = @ (mod ¢). We assume that
having a bit error in position ¢, given that ¢, (s, j,) —cn (Jp, ) = a, is independent
of having a bit error in another position j, given that ¢, (s, ju) — ¢n(Jb,7) = a.
The probability of having exactly k bit errors, given that ¢, (s, ju) —cn(jp, ) = a,
then equals (1) (p(0 | a)*(1 —p(0 | a))*~*. By summing these probabilities over
a, weighted with the probability that ¢, (s, j.) — ¢n(Js, 7) = a, the probability of
having exactly k bit errors is obtained. In Fig. 1, the result of application of this
method is also compared with simulations of scaled-down Round5 parameters;
Sect. 4.4 contains details.

4.3 Computing Failure Probability When £ = N,, 44

Combination of (3) and (5) for & = N,4; implies that if an error occurs in
position i, then

(o (@)): + € Gosm) = eils,))g € [0 =] - (8)

Note that in order that (8) can be used, it is required that s and r both are
multiples of (z — 1), as is the case with Round5.
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Assuming independence, and assuming that r and s contain h/2 ones and
h/2 minus ones, ¢;(jy,r) — (8, ju) is distributed as the sum of h independent
uniform random variables on I, minus the sum of h independent uniform ran-
dom variables on I. The probability that (8) is satisfied thus can be computed
explicitly.

Now let the error-correcting code be capable of correcting f symbol errors.
Assuming that ¢;(s,e) and ¢;(s,e) are independent whenever ¢ # j, the proba-
bility of not decoding correctly is at most Zezf+1 (‘:)pfl(l — pp)HTE.

4.4 Correlation and Error Correction: Experimental Results

Figure 1 compares the estimated probabilities of at least one error occurring
and that of at least two errors occurring, when & = N,,11 (as in r5_cpa_pke) and
when £ = &,,11 (as in Round?2 [5]), respectively. These estimates are computed by
explicitly convolving probability distributions. Parameters are simulated without
error correction, and are n = 800, ¢ = 2, p =27, t = 24, 4 = Kk = 128, while
the Hamming weight varies between 100 and 750 in order to show its effect on
both the bit failure rate and error correlation. The influence of the highest-order
coefficients ¢, (s, e) common to all coefficients in the @, case is accounted for
as explained in Sect.4.2. Clearly, the probability of at least two errors is much
higher when multiplications are done modulo @, instead of N, 11, and in the
latter case, this probability is significantly lower than the probability of at least
one error. Figurel also shows corresponding probabilities of at least one and
at least two errors, obtained from simulations of actual, scaled-down r5_cpa_pke
parameters, showing that the actual behavior closely matches estimates.

To conclude, the effect of dependency due to polynomial multiplication mod-
ulo @,,11 as in Round2 is made negligible by the combined use of polynomial
multiplication modulo N, ;1 and balanced secrets in Round5, allowing the use
of forward error correction, resulting in better security and performance.

5 Security Analysis

In Sect.5.1, we show that if £ = &, 41, then r5_cpa_pke is IND-CPA secure.
Section 5.2 details how Round2’s use of the function Sample, prevents known
distinguishing attacks such as the “FEvaluate at 1”7 attack [21]. Next, Sect.5.3
extends the IND-CPA security proof in Sect.5.1 to a RLWE-variant of
r5_cpa_pke, which gives strong confidence in Round5’s design. Finally, in Sect. 5.4
it is discussed why this proof does not directly translate to an RLWR-based
design and a simple design change in Round5 that would make it apply, but
which is not introduced since it does not bring major benefits from a concrete
security viewpoint.

5.1 IND-CPA Security of r5_cpa_pke When § = &,, 4

When the reduction polynomial £(x) in Round5 equals @,,11(x), then r5_cpa_pke
is an IND-CPA secure public-key encryption scheme, under the assumption that
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the decision Ring Learning with Rounding (RLWR) problem with sparse-ternary
secrets (dRLWRgpt ) is hard for the polynomial ring Z[z]/®p+1(x). [6, Theorem 3.2]
proves that the RLWR problem for any distribution on the secrets is hard assum-
ing that the RLWE problem is hard for the same distribution, for a super-
polynomial modulus ¢. This gives confidence in the asymptotic hardness of our
scheme’s underlying problem.

The below theorem (informal) gives a tight, classical reduction against clas-
sical or quantum adversaries in the standard model:

Theorem 1. For every adversary A against r5_cpa_pke, there exist distinguish-
ers B and C such that, for z = max(p,tq/p),

_CPA GRLWRgpt dRLWR,
Advﬁf{\igpa,gke(ézén_'_l)("él) S Advn,l,q,zz;r(B) + Advn,2,q,§t(c)' (9)

The proof of the above theorem follows a similar approach as [14] to equalize the
noise ratios ¢/p and p/t in (the coefficients of) the two ciphertext components
u and v, allowing them to be expressed as two RLWR samples with a common
secret and noise distribution (with noise ratio ¢/z). This technique however does
not apply if the reduction polynomial £ in Round5 is N, 1, as is required for
the secure usage of (XEf) error correction in Roundb (see Sect. 4.3).

5.2 Distinguishing Attack at © = 1 for { = N, 41

When £ = N, 41 and p = n+ 1, a distinguisher can be built from the evaluation
of the ciphertext component v(z) in Algorithm 2 in z = 1. This is based on the
fact that (z — 1) divides both r(z) and N,4+1(x). The attack does not apply if
i < n as in Round5, as the sum of the coefficients of v(x) hidden by Sample,, is
uniformly distributed. Further details can be found in Appendix B.

5.3 IND-CPA Security of r5_cpa_pke with £ = N, 4; and
Independent Noise

A variant of r5_cpa_pke where the noise is independently sampled from a
given distribution instead of being generated via rounding, is an IND-CPA
secure public-key encryption scheme, if the decision Ring LWE problem for
Z|x]/®Ppy1(x) is hard; this results gives confidence in Round5’s RLWR-based
design.

Theorem 2. For every adversary A against a variant r5_cpa_pke’ of r5_cpa_pke
where the noise is independently sampled, there exist distinguishers C and € such
that

Ad”fév,?ﬁaci};fe'(ganH)(A) < Advﬁgzq[w]/%ﬂ(w))(c) +Advﬁfzz(zq[x]/é"“(w))((5).)
10

where m denotes the number of RLWE samples available to each distinguisher.

A more detailed version of the above theorem and its proof can be found in
Appendix C. The proof uses elements of [8, Sect. E1].



Round5: Compact and Fast Post-quantum Public-Key Encryption 93

Algorithm 4. round_to_root(a, g, p)
1 b« EaJ

fori<— 0ton—1do

2
3 ‘ e; — (idx:iEZ, valz%a— HaJ EQ)
4 Sort e in descending order of e.val.
LIEON
5 k—p [ . -‘ b(1)
6 fori—0tok—1do
7 ‘ bei.idx — bei.idx + 1
8 return b

5.4 IND-CPA Security of r5_cpa_pke with £ = N,,; and Rounding
Noise

The proof of IND-CPA security for a RLWE variant of r5_cpa_pke in Sect. 5.3
requires both the secrets and also the noise polynomials to be multiples of (z —
1) (this is used in an essential step of the proof, see Appendix C). This last
requirement is the reason why this proof does not apply to Round5 with &(z) =
2" — 1 using RLWR defined as component-wise rounding. This deterministic
component-wise rounding does not allow enforcing that the noisy “rounding”
polynomials are multiples of (x — 1).

Roundb’s design can be adapted to use a slightly different type of rounding
informally named as “rounding to the root lattice” [15,16,29] — that allows
the IND-CPA proof to work. This alternate rounding technique is described in
Algorithm 4, that takes as input an a € Zy[x], integer moduli ¢, p where p < ¢
and returns a b € Zp[z] satisfying b(1) = 0 (mod p).

Rounded noise introduced in b using Algorithm4 is a polynomial whose
coefficients sum to zero, so that a direct translation of the IND-CPA proof in
Sect. 5.3 to the RLWR case is possible. However, this modification — going from
component-wise rounding to rounding to the root lattice — would introduce addi-
tional complexity with no clear concrete security benefits. First, Sample,, gets
rid of n + 1 — p coeflicients so that knowing k is irrelevant. Second, concrete
security attacks use the norm of the noise that hardly changes here. Because of
these two reasons, we argue that the current Round5 design (and the rounding
used in it) is sound and secure, and further modifications are not required.

6 Parameters, Performance and Comparison

Round5 has a large design space, adding to the parameters available in Round2,
namely n, h, g, p, t, also f. If f > 0, then £(z) = N(z). By searching over the
design space, we obtain parameters that minimize bandwidth requirements given
a minimum targeted security level and failure probability. The failure probability
analysis is done as in Sect.4. Concrete security is analyzed in the standard
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manner [5], the primal [4], dual [1], hybrid [23], and sparse secret attacks [1,5]
are considered, under both sieving [7] and enumeration [2] cost models. Details
are not included due to space limits. A script to verify computations is available
at www.roundb.org.

Table 1. Parameters: “C” denotes security level against classical adversaries, while
“Q” denotes that against quantum ones. Bandwidth is in bytes.

Name Set Parameters Failure rate | Sieving Enumeration Bandwidth
(n, hyq,p, t, f) (C/Q) (C/Q) (pk/ct)

R5ND_1KEM_5¢ 490,162,210, 27 23 5 | 2788 128/122 170/135 445 4 549
R5ND_1KEM_Oc 618,104,211, 28 24 o0 | 2765 128/122 160/133 634 + 682
R5ND_1KEM_41ongkey 490,162,210, 27 23 4 | 2=71 128/122 170/135 453 4 563
RSND_1PKE_5¢ 508, 136,210, 27 24 5 | 2—142 128/122 166,/134 461 + 636
RSND_SPKE_5¢ 040, 414,212 28 23 2 | 2144 256/232 390/307 972 + 1172
RSND_OKEM_2iot 372,178,211 27 23 9 | 241 96,/90 129/96 342 4 394
NewHopel024-CCA- | N/A 2216 257/233 - 1824 + 2208
KEM [32]

Kyber1024 [9] N/A 2169 241/218 - 1440 + 1504
FireSaber-KEM [24] | N/A 2165 270/245 - 1312 4 1472

Table1 includes a number of exemplary Round5 parameter sets. Also
shown are a number of similar proposals for comparison. REND_1KEM_5¢ and
R5ND_1KEM_Oc both target NIST security category 1 as IND-CPA secure KEMs.
However, the second requires around 33% more bandwidth since it does not use
error correction (f = 0). This demonstrates the benefit of error correction.

REND_1KEM 4longkey also targets NIST security category 1 as an IND-CPA
secure KEM. However, it uses the flexibility of Sample, to encapsulate a longer
key (192 bits instead of 128) so that the (quantum) hardness of attacking the
shared secret is as much as (quantum) attacking the underlying lattice problem.

REND_1KEM_5c¢ and REND_1PKE 5c differ in the target failure probability. The
latter is constructed by applying the Fujisaki-Okamoto transform [22] on r5_cpa-
_pke in a standard manner and combining with a secure (one-time) data encap-
sulation scheme (e.g., AES256); its failure rate is much lower to achieve the IND-
CCA security required of public-key encryption (PKE). Comparing the above
two parameter sets shows that a more relaxed failure probability target leads to
bandwidth savings of more than 100 B.

R5ND_5PKE 5c¢ targets NIST security category 5 as an IND-CCA secure PKE.
It requires 2144 B of bandwidth. Among existing proposals targeting the same
security category, NewHopel024-CCA-KEM [32] requires 88% more bandwidth,
FireSaber [13] requires 30% more, and Kyber1024 requires 37% more. Round5’s
compact keys fit easily in protocols with a limited (1500 B) MTU.

Finally, parameter set REND_OKEM_2iot shows that Round5’s design flexibility
makes it easy to obtain parameters that offer a reasonable security level, but
require relatively little bandwidth enabling security in more resource constrained
applications such as IoT.
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7 Conclusions and Future Work

In this work, we introduced Round5, a lattice-based cryptosystem consisting
of a public-key encryption scheme that uses rounding both to introduce noise
(for security) and at the same time reduce the key-size, improving performance.
Public-keys are computed via ring multiplications in Z[z]/®,11(z), thus offer-
ing a wide variety of choices for the security parameter n, in turn allowing to
finely tune the parameters and performance of Round5. A novel contribution
of this work is to compute part of the ciphertext, on the other hand, via ring
multiplications in Z[x]/N,1(x); this, in combination with the fact that Round5

secret-keys are polynomials with a factor (z — 1), allows to have low decryption

failure rates similar to schemes constructed using the 22" +1 cyclotomic polyno-

mial, while still allowing to have the above mentioned benefit of the Z[z]/®,, 11 (x)
polynomial ring.

Further, this leads to very low dependencies between coefficients and inde-
pendent bit failures, so that error correction can be used to further improve
failure rates, performance (since parameters can be shrunk) and security (since
more noise can be added). For the latter, r5_cpa_pke uses the XEf f-bit error
correcting code originally introduced in the HILA5 scheme [34]. The main advan-
tage of XEf codes is that they avoid table look-ups and conditions altogether
and are therefore resistant to timing attacks.

An interesting open question is to investigate a variant of Round5 where
component-wise rounding is replaced by the alternate rounding technique
described in Algorithm 4 and investigate implications on the resulting scheme’s
concrete security and decryption failure behavior.

Acknowledgements. We thank Mike Hamburg for helpful discussions on combin-
ing features from the prime-order cyclotomic and power-of-two cyclotomic polynomial
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thank our anonymous reviewers for their helpful comments that led to improving the
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A Probability of Decryption Failures in Round5

In decryption, the polynomial y = (L%§J>2 is computed, where ¢ = (v —
Sample,, ((su))¢) + h2l,))p, where 1, is the polynomial of degree p — 1 with all
coefficients equal to 1. First, a sufficient condition is derived so that y and
n = xef_compute, ;(m) agree in a given coefficient. We have that

v= <;Sampleu(<br>g + hil,) — %zv> + %7] (mod t),
P

where %iv is the error introduced by the rounding downwards, with each com-
ponent of 4, in Z, ;. As a result,

=P

= 217+A (mod p) with A = (h1 4 h2)1,, — 4, 4+ Sample, ((br — su+ haj)e). (11)
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Asy = L%C — 3], it holds that y = n + L%A -3l =n+ L%{A - 21,},]
(mod 2). Here {w}, denotes the integer in (—p/2,p/2] that is equivalent to w
modulo p. As a consequence, y; = 1; whenever [{A; — §},| < §. We infer that

y; = n; whenever
|{gAi_g} <2 (12)
q

Equivalently, as %Ai has integer components, if y; # 7;, then

(1), € [$o-4 »

In order to analyze this probability, we work out %A — 43, using (11). We
write j, = %((hl + ho)1, — iy, — §1,). The definitions of h; and hy imply that
Jo = %(%h —iy). Each coefficient of 4, is in Z,,/;. The value of hy thus ensures
that the absolute value of each coefficient of % — 1, IS at most %.

We now analyze I (br — su))e. Similarly to the expression for v, we write

b= <Z ((as>¢n+1 + hlln) - zib> and u = <Z(<ar>¢n+l + hil,) — zlu> ,

P P
with all components of 4, and i, in Z, /p- We thus have
(or = su) = (sa)a,.,,7 = s(ar)a, ., +jor = sju (mod g) (14)
where j, = h11, —ip and j, = h11l, — iy. (15)

As hy = 5L, all entries of j, and of j, are from the set I := (=g, L] NZ.
Obviously, if {(z) = @p41(x), then (sa)s,,,r — s(ar)e,,, = 0 (mod ). The
same is true if £ = N, 11 and r and s both are multiple of (x — 1). Indeed, there
are \s, A, € Z[z] such that (sa)g,,, = sa+X\Ppy1 and (ar)g, ., = ar —AsPpy1.
As a consequence, (as)e, 7 — s(ar)e, , = AsPpy17 — s\ Ppyp1. As (x — 1)
divides s and r, both @, 17 and s®,41 are divisible by N,,+1. As a result, for

5 S {¢n+17Nn+1}
%A = j» + Sample, ({(jor — sju)e) (mod q). (16)

The probability of a decryption failure in position ¢ before error correction is at
most the probability that (13) is satisfied.

In our analysis of (13) combined with (16), the coefficients of j, and j, are
drawn independently and uniformly from I = (— %, %]QZ, and the coefficients of

Jjv are drawn independently and distributed as %y with y uniform on (—£;, £ ]NZ.

B Distinguishing Attack at * = lor £ = N, 13
The “Evaluate at = 1”7 distinguishing attack [21] applies against schemes using

the ring Z[z]/Ny+1(z). We argue that this attack cannot be applied in Round5
if u <n.



Round5: Compact and Fast Post-quantum Public-Key Encryption 97

Consider a pair of polynomials (b(z), v(z)) with b(z) uniformly distributed on
Zplx])/ (2"t —1) and v(z) = <Sample#(L£ (b(@)r(x)) N(z) +h1)]) + Em(z)), with
r(x) drawn independently and uniformly from the ternary polynomials of degree
at most n—1 satisfying r(1) = 0, and m(z) drawn according to some distribution
on Zs[x]/(x" —1). We then have that v(x) = LSampleu(%((b(x)r(x))N(z) +h1) )+

Im(z) (mod t), and so w(z) = Luv(z) satisfies

w(z) = Sample, ((b(2)r(x)) N (2)) - hy Zx - fe )+ gm( z) (mod p).

where e(x) is the result of rounding downwards, so all components of Le(x) are
in [0, 2)NZ. As (z —1) divides both r(z) and N( ), it follows that x — 1 divides
(b(m)r(w))N , and so if 4 =n + 1, then

% €+ gm(l) (mod p).
i=0

w(l)==-hi-(n+1)—

SalllaS]

For large n, the value of 237" ¢; is close to its average i.e., close to nd;. As a
result, w(1 ) has maxima at values 2hy(n+1) —nd; + 5k for k: € {0,1}. So w(1)
can serve as a distinguisher between the above distribution and the uniform one.

Now assume that p© < n 4+ 1. We take y = n, which is the case glvmg most
information to the attacker. Writing f(z) = (b(x)r(z)) N(z) = >_rg fix', it holds
that

me ha-n—Pe(1)+ Em(1)  (mod p).

As shown above, f(1) = 0, and so Z?:ol fi = — fn- Hence, under the assumption
that f, is distributed uniformly modulo p, also w(1) is distributed uniformly
modulo p. The latter assumption is supported by [31].

C  Proof of IND-CPA Security of r5_cpa_pke RLWE
Variant

We present the proof of IND-CPA security for an RLWE variant of r5_cpa_pke.
The proof uses elements of [8, Sect. E1]. The following notation will be used.
We write ¢(z) =1+ 2+ ...+ 2", and N(z) = 2" — 1, where n + 1 is prime.
Moreover, Ry = Z,4|z]/¢(x), and

x) = Zflgcz € Zglz] | ZfZ =0 (mod q)} (17)
i=0

=0

As N(z) = (z — 1)¢(x), it holds that ((z — 1)f(z))n() = (x — 1){(f(2)) () for
any f € Z[z]. As aresult, f(z) — (x — 1)f(x) is a bijection from Ry to Rp.
In the proof, the following lemma will be used.
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Lemma 1. Let q and n+ 1 be relatively prime, and let (n + 1)~1 be the multi-
plicative inverse of n 41 in Zq. The mapping F defined as

f:(ifi Zfzx—nﬂ (Zf)
=0

is a bijection from Ry to Ry.

Proof. It is easy to see that F maps R4 to Rg. To show that F is a bijection,

let g(z) = Y"1 5 gix’ € Ry, and let f(z) =Y i (gi — gn)qx’. Clearly, f € Z,[z]
has degree at most n — 1, and by direct computation, F(f(z)) = g(x).

In the description below, S denotes a set of secrets such that

Sc{f( Zmez Zfzfo (mod q)}, (18)

Moreover, M denotes a message space, and ECC_Enc and ECC_Dec are error
correcting encoding and decoding algorithms such that

{ECC_Enc(m) | me M} C{f(z Zflgc € Zslx Zfi =0 (mod 2)}.
i=0

(19)
Moreover, x denotes a probability distribution on R.
For understanding Algorithm 7, note that as (z —1)|s(z), we have that su’ =
sa’'r + se; (mod N), and, as (z — 1)|r(z), that rb’ = ra’s + reg (mod N). As a
consequence,

(=v—su gECC,Enc(m) + (z—1)ea +reg — se; (mod N), whence

2 2
Laﬂ = ECC_Enc(m) + Lg((x —1)es +reg — se1)]  (mod N).
We are now in a position to prove the following result.

Theorem 3. For every IND-CPA adversary A with advantage A, there exist
algorithms C and E such that

A < Advy(C) + Adus(E). (20)

Here Adv, refers to the advantage of distinguishing between the uniform distri-
bution on (Z4[x]/¢(z))? and the R-LWE distribution

(a’',b = (a's + eg)y) with a’ & Ry, s &S ep—x (21)

Similarly, Advs refers to the advantage of distinguishing between the uniform
distribution on (Z4[x]/¢(z))* and the distribution of two R-LWE samples with
a common secret, given by

(', b ! ) with a0 & Zy[2]/b(x),u = (a'r + 1)y, (22)

v={(b"r+e2)y with r & S, e1, €5 «— X (23)
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Algorithm 5. CPA-PKE.Keygen()

1 a'ﬁR@si&e(w—x
2 b =(a's+eo)y

3 pk = (a',V")

4 sk=s

5 return (pk, sk)

Algorithm 6. CPA-PKE.Enc(pk = (a/,b'),m € M)

1ir ﬁS,el,eg ix

u = {a'r+e1)e

v = ($ECC_Enc(m) +b'r + (z — 1)e2)n
4 c= (u,v)

5 return c

w N

Algorithm 7. CPA-PKE.Dec(sk, c)

1 ¢=(v—su)n

A 2<
2 = ECC_Dec(| > 1)2)
3 return m

Proof. We prove the theorem using a sequence of IND-CPA games. We denote
by S; the event that the output of game 7 equals 1.

Game G is the original IND-CPA game. In Game G, the public key (a’, b’)
is replaced by a pair (a’, V') uniformly drawn from Ri. It can be shown that there
exists an algorithm C for distinguishing between the uniform distribution on Ri

and the R-LWE distribution of pairs (a’, ") with o’ & Ry, b = (as’ +eg)y with
s < S and ep < x such that
Advy(C) = |Pr(Sp) — Pr(S1)].

In Game Gy, the values v’ = (a’'r +e1)y and 0 = (V'r + (z — 1)e2) y used in the
generation of v are simultaneously substituted with uniform random variables
from Ry and Ry, respectively. It can be shown that there exists an adversary D
with the same running time as that of .4 such that

Advs(D) = [Pr(S)) — Pr(Ss)].

Here Advs refers to the advantage of distinguishing between the uniform distri-
bution on Ri X Ro and the distribution

(@', b u',v) = (a0, {(a'r+er)e, (V'r+(x—1)e2)n) with o', b & Ry,r & S,e1, e & X.
(24)

Because of (19), the value of the ciphertext v in Game G3 is independent of bit

b, and therefore Pr(S;) = 1/2. As a final step, we define ¥ : Rg; x Ry — Ré as

V(d (x),V (x),u'(z),v(z)) = (d'(z),b"(z),u (x),v' (x)) with (25)
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F(b'(2))

r—1

(@)

rz—1

b (x) = () = (26)

As F is a bijection from Ry to Ry (see Lemma 1) and f(z) — f(_l) is a bijection
from Ry to Ry, it follows that ¥ is a bijection. Writing b(z) = F(b'(z)), we infer
that

b(a)r(z) = b (2)r(z) — (n+1)7'0' (1)g(2)r(z) = V' (x)r(z) (mod N(z)),
where the latter equivalence holds as r(z) is a multiple of (z — 1), and so
(@) = ' (@)r(x) + (z = Dez(z))y = (b(z)r(z) + (z - Dez(2))n-
As r(z) is a multiple of z — 1, it follows that v(z) € Ry and that

V() = D = 1 (@)r(a) + eala))y where b (x) =

b(z)
z—1

As a result, the advantage of £ = ¥ o D in distinguishing between the uniform
distribution on Rj and the distribution

(a',b",u',v") with a,b” & Ry, v/ (z) = (a'r + e1)y and o' = (b"'r + €2,

is equal to Adva(D). Note that (a,u’) and (b”,v") are two R-LWE samples with
common secret 7(z) € S, with a/,b” chosen uniformly in R4 and independent
noise polynomialb e1(x) and es(x).

As Pr(S3) = 5, we conclude that
1

Adv(A) = |Pr(Sp) — Pr(Sp)| < > [Pr Pr(Sit1)] = Advi(C) 4+ Advy(E).
=0
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Abstract. Current estimation techniques for the probability of decryp-
tion failures in Ring/Mod-LWE/LWR based schemes assume indepen-
dence of the failures in individual bits of the transmitted message to
calculate the full failure rate of the scheme. In this paper we disprove
this assumption both theoretically and practically for schemes based
on Ring/Mod-Learning with Errors/Rounding. We provide a method
to estimate the decryption failure probability, taking into account the
bit failure dependency. We show that the independence assumption is
suitable for schemes without error correction, but that it might lead to
underestimating the failure probability of algorithms using error correct-
ing codes. In the worst case, for LAC-128, the failure rate is 248 times big-
ger than estimated under the assumption of independence. This higher-
than-expected failure rate could lead to more efficient cryptanalysis of
the scheme through decryption failure attacks.

Keywords: Lattice cryptography + Ring-LWE -
Error correcting codes - Decryption failures

1 Introduction

Due to the recent developments in quantum computing and its threat to current
asymmetric key schemes, the cryptographic community has increased its efforts
towards the development of post-quantum cryptography, resulting in the NIST
Post-Quantum Standardization Process. Several submissions to this process are
built on top of the Learning with Errors (LWE) hard problem. These are fre-
quently combined with the usage of polynomial matrix elements, resulting in
Ring-LWE or Mod-LWE schemes such as New Hope [1], LAC [15], LIMA [17],
R. Emblem [16] and Kyber [2]. Some schemes further reduce their communica-
tion bandwidth by replacing the pseudorandomly generated errors terms with
rounding errors, resulting in Ring-LWR and Mod-LWR schemes as in Round2
[9] and Saber [3] respectively.

For most of the above encryption schemes there is a small probability of
a decryption failure, in which the decryption of the encoded message returns
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a faulty result, where one or more message bits are flipped. As these failure
events depend on the secret key, they might compromise the security of the
scheme. Therefore, most candidates of the Post-Quantum Standardization Pro-
cess aim for a failure probability around 27128, To reduce the failure rate, some
schemes utilize error correcting codes (ECC) to make the decryption resilient
against a certain number of errors. The NIST candidate LAC [15] relies on
extensive error correction, and Fritzmann et al. [7] made a study on the pos-
itive impact of the usage of ECC’s on the security and bandwidth of lattice-
based schemes. Another possibility is to eliminate decryption failures altogether
and thus eliminate attacks that exploit them, by selecting the parameter of the
scheme accordingly. This comes at the price of a higher bandwidth and compu-
tational complexity. Comparing the communication cost, defined as the number
of bytes in the public key and the ciphertext, we have 2080 bytes for the origi-
nal Saber and 3488 bytes for Saber with the same estimated core security level
but without decryption failures [4]. However, as most submissions to the NIST
Post-Quantum Process have a small decryption failure probability, an analysis
of the impact of decryption failures is essential.

A chosen ciphertext attack against Ring-Learning with Errors (Ring-LWE)
schemes exploiting decryption failures was reported by Fluhrer [6]. This attack
uses knowledge of failing ciphertexts to retrieve the secret. D’Anvers et al. [5]
analyzed a decryption failure attack on (Ring/Mod)-LWE/LWR, schemes that
have protection against chosen ciphertext attacks. The security risk of decryption
failures is also reflected in the post-quantum versions [12,13] of the Fujisaki-
Okamoto transformation [8], which converts a chosen plaintext secure encryption
scheme in a chosen ciphertext secure key encapsulation mechanism (KEM). The
security bound of these transformations contains a term considering decryption
failures. As this term is quadratic in the failure rate of the underlying scheme,
it has an important effect on the security bound.

Consequently, the failure probability is an important factor in the security
of these schemes and should be determined precisely. The common approach
for computing this probability is calculating the failure rate for one bit of the
message, from which the full failure rate is determined assuming the failures
between the individual bits are independent. Jin and Zhao [14] proved that for
some schemes the failures in individual bits are asymptotically independent if
the number of bits goes to infinity. Hamburg [10] did an analysis of the indepen-
dence of the bits for the NIST Post-Quantum Standardization Process submis-
sion ThreeBears [11], which is based on the Integer Module Learning with Errors
problem. He identified three sources of correlation: the norm of the secret, the
norm of the ciphertext and the correlation between the failures of the individual
bits due to the ring structure.

In this paper, we examine the independence assumption for Ring/Mod-
LWE/LWR based schemes. First we show both theoretically as well as exper-
imentally that this assumption is not correct. Then, we develop a method to
handle the dependency issue in the failure rate calculation. We calculate the
failure rate for variants of LAC and validate our method using experimental
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datal. Finally, we discuss the implications of the dependency in different scenar-
ios: for schemes without error correcting codes, we reason that the assumption of
independence leads to a slight overestimation of the failure probability. Looking
into schemes using error correcting codes to reduce the failure rate, we show that
the independence assumption can lead to an underestimation of the failure rate,
and thus an overestimation of the security of the underlying scheme. In the most
extreme case for LAC-128, the failure rate is overestimated by a factor 248.

2 Preliminaries

2.1 Notation

Let Z, denote the ring of integers modulo ¢, let R, represent the ring
Z¢[X]/(X™ 4+ 1) and let R**!2 designate the ring of 1 X Iy matrices over Rg.
Polynomials will be written using lowercase letters, vectors with bold lowercase,
and matrices with bold uppercase. The ly-norm of a polynomial x is defined
as ||z|l2 = \/>_; 7 and the ly-norm of a vector z as [|z|2 = />, [|z:[|3. The
rounding operation |x]q_., for z € Zg, is calculated as |p/q-x] € Z,. The abs()
function takes the absolute value of its input. These operations are extended
coefficient-wise for polynomials and vectors. Let a;, with a € R, denote the i*}
coefficient of a, and denote with a; for a € RL*! the (i mod I)* coefficient of
the |i/1]*™® polynomial of a.

Let z < x(R,) indicate sampling the coefficients of x € R, according to dis-
tribution x. The sampling operation is extended coefficient-wise for vectors & €
Rt asx — x(RL'). Let Binom(k,n, p) be the cumulative binomial distribution

with n draws and probability p, so that Binom(k,n,p) = ZUCJ (Mp'(1 —p)~*
and let hypergeom(k, N, K,n) be the hypergeometric distribution with popula-
tion size IV, success states K and draws n as defined by:

SN R
where: (Z) = b'(a“lb)' (2)

2.2 Ring/Mod-LWE/LWR Based Encryption

A general framework for Ring/Mod-LWE-LWR based encryption schemes is pro-
vided in Algorithms 1, 2 and 3. The algorithm uses the function gen to generate
the pseudorandom matrix A from a seed seedy, the function enc to encode

! The software is available at https://github.com/KULeuven-COSIC/PQCRYPTO-
decryption-failures.
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Algorithm 1. PKE.KeyGen()
seeda — U({0,1}2%9)

A « gen(seeda) € RL!

54— Xs(Ry"),ea — xe(Rg)

4 b= \_ASA +6Awqﬁp

5 return (pk := (b, seeda), sk :=84)

w N =

Algorithm 2. PKE.Enc(pk = (b, seeds), m,r)

A «— gen(seeds) € RL!

85— xs(Ry), €5 — xe(RY)
e — Xe (Rq)

b, = l_b—‘ P—q

b = LATSZB +eplo—p

Mece = ecc_enc(m)

v’ = |blsly + e + enc(mece)] gt

return c = (v/,b')

0 N O Uk W N

the message m into an element of R, and the inverse function dec to decode
a polynomial back into a message bitstring. The latter decodes coefficients of
the polynomial correctly if the deviation from the initial encoded polynomial
coefficient is at most +q/4. If error correcting codes are used in the scheme,
the function ecc_enc adds extra redundancy to the bitstring m to enable error
correction, while ecc_dec recovers the original message if the number of flipped
bits between me.. and m/,.. is less than a threshold d, which depends on the
chosen error correcting code (ECC). When no error correcting codes are used,
the functions ecc_enc and ecc_dec act as the identity and return their input.
The encryption algorithm PKE.Enc uses the seed r to pseudorandomly generate
sz, e and €’f.

By choosing I = 1, one obtains a Ring based scheme, while a bigger value of [
indicates a module (Mod) based scheme. In Mod/Ring-LWE based schemes, the
error distribution Y. is nonzero, in contrast to Mod/Ring-LWR based schemes
where x. = 0. In the latter case, parameters p and ¢ are smaller than g, so that the
rounding operations | -], and |-]4— introduce the errors necessary for security.
The rounding additionally compresses the ciphertexts. The rounding operations
|-]p—q and |-]¢—4 decompress the input back to approximately the original value.
The error introduced by these rounding and reconstruction operations will be
denoted as follows:

w
=

quAsA—i-eA—b,«, (

/ T o/ / /
UB:A SB+eB_br7 (

W
S—

uf = bfs% + €5 + enc(Mmeee) — V... (

ot
~
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Algorithm 3. PKE.Dec(sk =s4,c= (v/,b))
b'/r = l_b/-|p—>q

vy = [V ]i—g

v = b;TsA

mfecc = dec(vi - ’U)

m’ = ecc_dec(mL..)

return m’

o Uk W N

As a first step in determining the error probability of the encryption scheme,
we can calculate the value of v/ — v as follows:

v, —v = (b} s + € + |g/2]enc(meee) + up) — b s (6)
= |q/2]enc(mecc) + (€a +'U:A)TSIB — (ez +'UIIB)T$A + (s +e%)  (7)

The distribution of one coefficient of —(e; +u'z) s+ (ea +ua)T sy + (W} +e%)
can be calculated exhaustively. For the sake of convenience, we will rewrite this
as ¢’'s + g, where s is the vector constructed as the concatenation of —s4 and
(ea +u4), where ¢ is constructed similarly as the concatenation of (ez + u'z)
and s';, and where g = v/} + €’4:

— —Sa _ e/E3'~_lulB . "
8_<6A+’U:A>7 C—( s , g=up+ep. (8)

A coefficient of the polynomial v/. — v decodes correctly if the absolute value
of the corresponding coefficient of the error term ¢’'s + g is smaller than q/4. A
higher value results in a flipped bit after decoding, which will be called a bit error
and will be denoted with F; with ¢ the position of the bit in the message. If the
number of bit errors exceeds the threshold for error correction d, a decryption
failure occurs, which we will denote with the symbol F. A correct decryption
will be denoted with S, so that by definition P[S] =1 — P[F].

In Table 1, the parameters for LAC-128 and LAC-256 [15] are given. These
schemes are used throughout this paper to validate our methodology, as their
high failure rate and significant error correction causes their failure rate calcula-
tion to be more sensitive to error dependencies. Due to the choices of the moduli
g, p and ¢, the rounding errors u 4, uz equal the zero vector and u/; is the zero
polynomial.

Table 1. Parameters for LAC

q P t n l|d
LAC-128 | 251251251 512|129
LAC-256 |251 251|251 /1024|155
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2.3 Key Encapsulation Mechanism

From an IND-CPA secure encryption scheme, an IND-CCA secure Key Encapsu-
lation Mechanism (KEM) can be constructed using a post-quantum version [12]
of the Fujisaki-Okamoto transformation. The key generation phase is the same
as Algorithm 1 and the Encapsulation and Decapsulation functions are defined
in Algorithms4 and 5 respectively, with G and H hash functions that model
Random Oracles.

Algorithm 4. KEM.Encaps(pk)

m — U({0,1}*°)
r=g(m)

¢ = PKE.Enc(pk, m, 1)
K =™H(r)

return (c, K)

S N

Algorithm 5. KEM.Decaps(sk,pk)

1 m' = PKE.Dec(sk, c)

2 7' =G(m)

3 ¢/ = PKE.Enc(pk,m’,r")
4 if ¢ = then

5 | return K =H(r)
6 else

7 ‘ return K =1

3 Error Dependency

The typical method to calculate the failure rate, is to determine the error prob-
ability of a single bit of m/,_,, calculated as p, = P[|(¢"s + g);| > ¢/4], and then
assume independence to extend this error probability to the full failure rate.
For a scheme that does not use any error correction, this can be expressed as
1—(1—py)lm or 1 —Binom(0, l,,,ps), with [,,, the length of the encoded message
Mece. For schemes that deploy error correcting codes with a correction capability
of d errors, the failure rate amounts to 1 — Binom(d, l,,, pp).

However, this assumption of independence is not correct. In this section we
will show both theoretically and experimentally that there is a positive correla-
tion between the errors of the bits in m.,.. Intuitively, one can make the following
reasoning: (¢’'s + g) with high norm for s and ¢ is more likely to produce bit
errors, and conversely, bit errors are also more likely to stem from high norm s
and e¢. Therefore, a bit error at a certain location, increases the expected norm
of s and ¢, therefore increasing the bit error probabilities at other locations. In

conclusion, bit errors are expected to be positively correlated.
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Fig. 1. The probability of a certain number of errors in m_..
In Fig. 1, the probability of various number of bit errors in m... is plot-

ted for LAC-256, both experimentally by running the protocol for approx-
imately 23! times, and theoretically under the independence assumption as
1 —Binom(0, l,,, pp), where py, is determined experimentally. The choice for LAC
stems from the fact that the error probability of a bit of m/,. is large compared
to other schemes, making it possible to experimentally obtain enough errors to
get accurate estimations. In Fig. 1, one can see that the errors are clustered:
there are more messages without errors and more messages with a high number
of errors than predicted by the theoretical model, which confirms our hypothesis
that the bit errors are positively correlated. Note that the error probability of
a single bit is the same for the model and the experimental data, and that the
errors are just more clustered compared to the prediction of the model.

3.1 Handling the Dependency

In this section, we will develop a methodology to calculate the failure rate taking
into account the dependency between the errors in the bits of m/__.. For the sake

ecc*

of simplicity, we will first assume that there is no error correcting code.

1 - P[F] = P[S]
= P[Sy---

9)

Shl (10)
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Under the independence assumption, one can derive the formulas of the previous
section as follows:

FJ = HP[SJ (11)
= (1= P[Fo])" (12)

However step (11) is not valid if this assumption does not hold. To work around
this issue, we involve conditional information in the form of s,¢ and g:

=D PlSo-Sals.c.g]P[s,c.g] (13)

8,¢,9

As the S;’s are fully determined conditioned on s,¢ and g, the error or success
of other bits does not convey any extra information. Therefore, the bit successes
S; are independent conditioned on the extra information, so we can write:

1_P[F]:ZH [Si|s,c,g]) Pls,c,g] (14)
= Z (1- P[Fy|s.c.g))" Pls,c.g] (15)

Unfortunately, this expression is not efficiently computable.

Note that the e/; term of g; does not add any information to S; if j # ¢ and
that its coefficients are independent. We will assume that this is also the case
for u'y, so we can write:

P[Si|svcv g] ~ P[Si|svca gz] (16)

From this result we can see that ¢ has little or no contribution to the depen-
dency between the S;. As discussed in Sect. 3, the norm of s and ¢ is an important
cause of dependency. For rings of the form Z[X]/(X™+ 1) we could assume that
this is the main cause of correlation, as different coefficients of ¢'s are calculated
with different combinations of elements of ¢ and s, which can be formalized as
follows:

Assumption 1. For s,c¢ and g as described in Eq.(8), where g and the coef-
ficients of s and ¢ are elements of the ring Z|X]/(X™ + 1), we can approxi-
mate Sy - - Sy to be independent conditioned on |82, |l¢||2, which is equivalent

to P[So---Sn||sll2; [lell2] = IT; PLS: | lIsll2, llell2]-
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Using this assumption we write:

L= P[F]= Y P[So---Sulllsll2 llell2] Plls]l2, llell2] (17)

lIsll2;llell2

~ Y TL(PiSilllsliz, llellz)) Pllisllz, llellz] (18)

lsll2:llell2 ¢

~ > (P[Solllsll2, llell2])" Pllisll2] Plllell2] (19)
lIs]l2llell2

~ > (1=P[Ey|[lsll2, llcll2)" Pllsll2] Pllle]l2] (20)
lIsll2;llell2

Using a similar derivation, the failure rate for schemes with error correction
under Assumption 1 can be calculated as:

1-P[Fl~ Y (1—Binon(d, m,ps)) Plls]2] Pllc]l2] (21)
Isll2,llell=
where: py = P[Fy | |ls]l, [l (22)

To conclude, one has to calculate the failure rate for every value of ||s||2 and
lle||2, after which the failure rate can be found by taking a weighted average.
The model from Eq.(20) can be seen as an intermediate between the model
from Eq.(12) that was constructed using the independence assumption, and
the exact but incalculable model from Eq. (15). In this intermediate model, the
main source of correlation between the S;, following Assumption 1, is taken into
account. In the next section we will experimentally assess our intermediate model
and observe that it closely represents the experimental data, thus validating our
assumption.

3.2 Experiments

To validate the developed methodology, we ran LAC-256 approximately 23! times
to get experimental data on the probability of a certain number of failures in
m.... We calculated the same probability using the assumption of independence
and our dependency aware model.

In general P[Fy | ||s]2, |le]|2] can be calculated using a Gaussian assumption
on the distribution of ¢’'s + g as described in [5]. For our calculations of LAC
we use a more exact algorithm using the fact that the elements of ¢,s and ¢
are ternary. Intuitively, we first calculate the probability that a certain number
[ of nonzero coefficients of ¢ and s coincide during the multiplication, expressed
as P[(abs(c)Tabs(s))g =[] | s|l2, |lc]|2]- Then, we assume the term (¢’'s)q given
(abs(c)abs(s))p = [ to be a sum of | elements randomly picked as plus or
minus 1. The full derivation can be expressed as follows:
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Py = Plabs(c”s + g)o > a/4| |2, el (23)
Z( sbe(¢Ts 4 )o > /4] (abe(eTabe(s)o =1 ||s||2,||c|2]-) =

abs(c)Tabs(s))o = 1|||s]l2, [le]|2]

) < [abs(c s+g)o>Q/4|(abS() abs<s>>o:l]'> (25)

abs )Tabs(s))o = 1| ||s]l2, [lc]|2]

_ ZZ < [abs(e s+g)0 > q/4| (abs(c)"abs(s))o = l,go]-) (26)

(abs(c)"abs(s))o = 1| s]l2 llell2] - Plgo]

We can model P[(cTs)y > q/4 — go|(abs(e)Tabs(s))g = [,go] as the
survival function of a binomial distribution, which can be calculated as
Binom(l_q/#,l,lﬂ). Similarly, P[(cTs)g < —q/4 — go|(abs(c)Tabs(s))y =
l,go] can be modelled as Binom(l*q/#,l,lﬂ), so that Plabs(cls + g)o >
q/4| (abs(c)Tabs(s))o = I, go] is the sum of both probabilities. The distribution
P[(abs(c)Tabs(s))o = 1| ||s]l2, lc||2] can be seen as a hypergeometric distribution
hypergeon(l, n, [|([2, [lc]|2)-

The probability of a decryption failure is plotted for various error correction
capabilities of the ECC in Fig.2. We can see that our new dependency aware
model outputs a much better estimate of the probabilities of a certain maximum
number of errors. Another observation to be made is that the independency
based model deviates further from the experimental data as the number of errors
increases, which is the case for codes with higher error correction capabilities.
This makes the dependency issue especially important for schemes with extensive
error correction.

—=-- independency model
2-3 | —— dependency model
® experimental data

probability

0 5 10 15 20 25 30
maximum number of flipped bits in the message

Fig. 2. Probability of failure for various error correction capabilities of ecc_enc
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4 Implications

As seen in previous sections, the errors in m/, . are positively correlated, meaning

that an error at a certain position is more likely to happen if another error is
present. The inverse is also true: a correct bit of m._.. enlarges the probability
of other bits in m/,,. to be correct. Therefore, due to the dependency, there will
be more fully correct messages than one would expect under the assumption of
independence. However, as one can see in Fig. 2, the impact of the dependency
is small for schemes without error correction. To conclude, an estimate using the
assumption of independence will slightly overestimate the failure rate, and thus
underestimate the security of the scheme with a small margin. As a result, the
approximation using an assumption of independence is legitimate for schemes
without an error correction step.

Table 2. The failure rate of different versions of LAC under the different models

LAC-128 | LAC-256
Independency model | 27233 g~ 14
Dependency model o185 292
Overestimation factor | 28 222

In the case of schemes with error correction, one has to be more careful. As
can be seen in Fig. 2, the independence model gives an underestimation of the
failure rate, which corresponds to an overestimation of the security of the scheme.
This overestimation grows as d, the error correction capability of the ECC,
becomes larger. In Table 2, the estimated failure rate of different versions of LAC
is compared under both models. The discrepancy between both models reaches
a factor 2%8 in case of LAC-128. Therefore, the assumption of independence is
not valid for schemes with error correction, and that it could lead to a serious
overestimation of the security of the underlying algorithm.

More specifically, a higher failure probability suggests that the scheme might
be more vulnerable to a decryption failure attack similar to the attack described
by D’Anvers et al. [5], where the secrets are estimated statistically based on
failing ciphertexts. Moreover, an attacker can reduce the failure probability by
performing a precomputation for weak ciphertexts with higher failure probabil-
ity. As LAC does not have any security against multi-target attacks that exploit
decryption failures, this precomputation only needs to be performed once.

5 Conclusions

In this paper, we challenged the independency assumption of bit errors in mes-
sages encrypted with (Ring/Mod)-(LWE/LWR) based schemes. We showed both
theoretically and experimentally that the occurrence of errors is positively cor-
related. Then we devised a method to calculate the failure rate of a scheme,
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taking into account the dependency of failures. Finally, we showed that the
assumption of independence is appropriate for schemes without error correcting
codes, but that it might lead to a substantial underestimation of the failure rate
for schemes with error correcting codes. This underestimation attains a factor
of 248 for LAC-128. A higher-than-expected failure rate could have a serious
impact on the security of the scheme through a decryption failure attack.
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Abstract. We present a particularly simple and efficient CCA-secure
public-key encapsulation scheme without random oracles or costly sam-
pling. The construction is direct in the sense that it eschews generic trans-
formations via one-time signatures or MACs typically found in standard-
model constructions. This gives us a compact, conceptually simpler, and
computationally efficient operation, that in particular does not require
any Gaussian sampling. Nevertheless, security is based on the hardness of
the plain learning-with-errors (LWE) problem with polynomial modulus-
to-noise ratio.

Of further interest, we also show how to obtain CCA-secure deter-
mianistic public-key encryption (for high-entropy messages), that is more
compact and efficient than existing constructions.

1 Introduction

Public-key encryption (PKE) is a central cryptographic primitive to provide
secure communication over insecure networks without prior secret-key agree-
ment. In practice, due to its relative inefficiency, it is almost always used in
conjunction with a secret-key cipher, where the former encrypts a random ses-
sion key for the latter, which then encrypts the actual data. This flow is the
motivation for “hybrid encryption” [8], which consists of a (public-)key encapsu-
lation mechanism (KEM) and a data encapsulation mechanism (DEM). In terms
of security, it is well known [8] that if both KEM and DEM are CCA-secure,
then the hybrid encryption scheme is CCA-secure, which is the standard notion
for security of PKE against active attacks. While DEMs are readily obtained
from suitable symmetric-key modes of operation, in the case of KEMs substan-
tial optimisations are to be gained by specialising them to work with random
plaintexts only.

Constructing CCA-secure KEMs is easy in principle. Applying the Fujisaki-
Okamoto transformations [10] to PKE/KEM schemes with weaker security
guarantees (e.g., chosen-plaintext security) results in CCA-secure PKE/KEM
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schemes in the random oracle model. While this approach often leads to practical
constructions, one can only make heuristic security arguments for them. More-
over, when it comes to post-quantum security, these heuristic security arguments
need to be made in quantum random-oracle models [6] which are not very well
understood. For these reasons, designing an efficient and practical post-quantum
KEM in the standard model (without random oracles) is already desirable and
well motivated.

There are two somewhat generic ways to construct CCA-secure PKE/KEM
from lattices in the standard model. The first one is via lossy trapdoor functions
[19] (e.g., the constructions from [16,19,21]) and the second one is via the BCHK
trasformation [5] from tag-based or identity-based encryption (IBE) (e.g. the
constructions from [15]). Both of them require strongly unforgeable one-time
signatures or message authentication codes (MACs) as building blocks. This
introduces noticeable extra overheads, making the schemes less efficient and less
compact.

In this paper, we primarily focus on constructing a KEM that is both con-
ceptually very simple and computationally efficient, but without compromising
its provable security. Specifically, we rely on a standard lattice problem (plain
learning with errors, a.k.a. LWE [17,20]) in the standard model.!

1.1 Owur Contributions

Our main contribution is a simple, compact, computationally efficient KEM
scheme without random oracles. The construction makes use of identity-
based/tag-based lattice trapdoor techniques [1,15]. The public key of our scheme
includes two matrices A € Zg*™ and Ay € Zy*", where w = n[logq], and a
target-collision-resistant compression or hash function f : Zy — {0, 1}*, where
) is the security parameter. The private key is a low norm matrix R € Z™*%
such that A; = AR (mod ¢). The ciphertext of our scheme contains two parts.
The first part is t = f(s) where s € Z; is the randomness of the encapsulation
algorithm. The second part is a vector ¢” = |(p/q)-s" - [A|A1 + p(t)G]| where
¢ Zy — Zy*™ is a full-rank difference encoding [1] (here t is encoded as a vec-
tor in Z7) and G € Zj*" is the gadget matrix [15]. The session key is obtained
by applying a randomness extractor to s. When t is non-zero (which happens
with overwhelming probability), the lattice trapdoor (R, G) allows recovering s
and, thus, reproducing the session key. The key idea of our construction is to
make the identity/tag the hash value of the secret random vector s rather than
a verification key or a commitment in the BCHK transformation. In terms of
security, by using the LWE problem to (computationally) switch the rounding
function |(p/q)-s' - [A]A1 + ¢(t)G]] to the so-called “lossy mode” [2], the ran-

! We note that our approach here departs significantly from the recent NIST Post-
Quantum KEM competition, wherein most submitters chose to embrace random
oracles and stronger hardness assumptions (e.g., many variants of ring-LWE), to
address its rather idiosyncratic rules and success criteria.
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dom vector s retains sufficient min-entropy (even conditioned on ¢ and t) that
the session key would be random.

Our construction can be seen as a “direct” CCA-secure PKE/KEM con-
struction from identity-based/tag-based encryption in the sense that it does not
employ generic transformations. Such kind of direct constructions from pairing-
based IBE are known, e.g., [7,13,14]. From a high level idea, our KEM construc-
tion also has similarities to the CCA-secure PKE scheme from a lossy trapdoor
function (LTF) and all-but-one lossy trapdoor function (ABO-LTF) from [19].
In [19], the encryption is roughly done by evaluating a LTF and an ABO-LTF
(both are invertible) on the randomness. The well-formness of the ciphertext is
guaranteed by signing theses two evaluations with a one-time signature scheme
(the verification key also serves as the tag for the ABO-LTF). Our construction
“shrinks” this further by using only one (ABO) LTF plus a compression hash
function. For our KEM construction, the hash function, which is much lighter
than an LTF, is already lossy and enough to ensure that the ciphertext is well-
formed. One should also note that our construction is for CCA-secure KEM
which is a more specialised primitive than CCA-secure PKE studied in certain
earlier constructions.

Our KEM construction is of good computational efficiency. First, the encryp-
tion process essentially involves a vector-matrix multiplication, a rounding oper-
ation and a target-collision-resistant hash function. In particular, discrete Gaus-
sian sampling is avoided. Second, the decryption can be done efficiently in a
parallel fashion by using the so-called “gadget” trapdoor inversion first proposed
in [15].

In terms of space efficiency, since our KEM scheme is based on a relatively
stronger LWE assumption (but still with polynomial modulus-to-noise ratio),
compared to the most efficient existing CCA-secure lattice PKE/KEM construc-
tions in the standard model, e.g., [15], our construction would need relatively
larger matrix dimensions (to provide sufficient hardness for the LWE problem).
However, since our KEM ciphertext only consists of a single vector over a small
field and a small hash value (whose bit-size is the security parameter, e.g., 128),
and since our KEM private key is a low-norm matrix with very small entries (—1
and 1), the impact of requiring larger dimensions is rather limited.

As a by-product of our KEM scheme and its structure, we also give a
CCA-secure deterministic lattice PKE system. Deterministic PKE has useful
direct and indirect applications such as efficient searchable encryption and de-
duplication of encrypted databases. Our construction is efficient and compact
than what one would get through generic transformations (e.g., [4]). One draw-
back of our deterministic PKE is that it requires an LWE hardness assumption
here with super-polynomial modulus-to-noise ratio, which is stronger than what
we need in the (randomised) KEM scheme.

2 Preliminaries

Notation. We denote the security parameter by A. We use bold lowercase letters
(e.g. a) to denote vectors and bold capital letters (e.g. A) to denote matrices. For
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a positive integer ¢ > 2, let Z, be the ring of integers modulo g. We denote the
group of n x m matrices in Z, by Zy*™. Vectors are treated as column vectors.

The transpose of a vector a is denoted by a'. For A € Zy*™ and B € ngm/,

let [A|B] € ZZXWH_W) be the concatenation of A and B. We denote by z «— X
the process of sampling = according to the distribution X. We denote s «g S
the process that of sampling element z uniformly from the set .S.

For z € Z,, define Transform,(z) = [(¢/p)-z]. For x € Z,, define the rounding
function |z |, = [(p/q)-x]. The functions Transform,(-) and |- |, naturally extend
to vectors by applying them component-wise.

For a security parameter A, a function negl(\) is negligible in A if it is smaller
than all polynomial fractions for a sufficiently large A.

Definition 1 (Bounded Distribution, [2]). For a distribution x over the
reals, and a bound B, we say that x is B-bounded if the average absolute value of
x — x 18 less than B, i.e., if E[lz|] < S.

Lemma 1. Let x be a B-bounded distribution over Z. Let ¢ > p- (2B +1)-n~()
be a prime. For e «— x, u «—g Z,, we have |u + €], # |ul, with probability
< (2B +1) - p/q which is negligible in n.

We recall the notion of full-rank-difference encodings (FRD). Agrawal et al.
[1] gave an explicit construction of FRD, which we adapt in our construction.

Definition 2. Let n > 1 be an integer and q be a prime. We say that a function
¢ 1 Ly — Zy*" is an encoding with full-rank differences (FRD) if:

1. ¢ is computable in polynomial time;
2. for all distinct u,v € Zy, p(u) — @(v) € Zg*" is full rank (or invertible).

Definition 3. Let A be a security parameter, n = n(A), £ = £(X) and S be
a distribution over D. A set of functions F = {f : D — R} is a family of
compression hash functions if (1) There exists a p.p.t algorithm that takes as
input a security parameter 1* and uniformly samples a function f from F; (2)
Given f, x € D, the computation of f(x) can be done in p.p.t; (3) log|R| <
log|D|. We say F is second pre-image resistant if for all p.p.t algorithm A, the
advantage

- B ,T?éfﬁ* f(_]:7l-*<—S
AVEAN =1 d F@) = f(2) x<—$A(1A,f7ﬂc*)

< negl(}\)
We say F is e-hard-to-invert w.r.t S if for all p.p.t algorithm A,
PrlA(f(z).f)=z) : s Fx S <e

A collection of compression hash functions is collision-resistant if it is second
pre-image resistant and negl(\)-hard-to-invert.
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2.1 Public-Key Encapsulation

A public-key encapsulation (KEM) scheme IT = (KeyGen, Encap, Decap) with
key space Iy consists of three polynomial-time algorithms. The key generation
algorithm KeyGen(1*) generates a public key Pk and private key Sk. The ran-
domised key encapsulation algorithm Encap(Pk) generates a session key K € Iy
and a ciphertext Ct. The decapsulation algorithm Decap(Pk, Sk, Ct) returns the
session key K or the error symbol L. The correctness of a KEM scheme requires
that for all A € N, and all (K, Ct) — Encap(Pk),

Pr[Decap(Pk, Sk, Ct) = K] > 1 — negl())

where the probability is taken over the choice of (Pk, Sk) « KeyGen(1*) and the
random coins of Encap and Decap.

We recall the chosen-ciphertext security of KEM. The IND-CCA security of
a KEM scheme IT with session key space Ky is defined by the following security
game. The challenger C runs (Pk,Sk) « KeyGen(1%), chooses a random coin
g {0,1}, samples K «—g Ky, and computes (K7, Ct*) < Encap(Pk). Then C
passes (Pk, K, Ct™) to the adversary. The adversary launches adaptive chosen-
ciphertext attacks: It repeatedly chooses any Ct # Ct* and sends it over to C, to
which C returns Decap(Pk, Sk, Ct). Finally, A outputs p’ and wins if u’ = u. We
define A’s advantage in the above security game as

AdV'? (V) = [Prlp’ = p] — 1/2].

We say II is IND-CCA-secure if Advi:{jﬁca(/\) is negligible in A.

2.2 Randomness Extraction

The statistical distance between two random variables X and Y over a finite
set S is SD(X,Y) = £ > .o |Pr[X = s] — Pr[Y = s]|. For any € > 0, we say
X and Y are e-close if SD(X,Y) < e. The min-entropy of a random variable
X is Hyo(X) = —log(maxses Pr[X = s]). The average-case conditional min-
entropy of X given Y is Hoo (X]Y) = —log (E,y [max, Pr[X = z|Y =y]]). A
distribution (or a random variable) X is called k-source if Hoo (X) > k.

Lemma 2 ([9], Lemma 2.2). Let X, Y and Z be random variables where Z
has at most 2* positive-probability values. Then Hoo(X|Y, Z) > Hoo(X[Y) — A,
and in particular Hoo (X |Z) > Hoo (X) — A

Definition 4. A collection of functions H = {h : D — R} is universal if for
any 1,2 € D such that 1 # x4 it holds that Pry_w[H (x1) = H(x2)] = 1/|R].

Lemma 3. Let X, Y be random variables such that X € {0,1}", and Ho (X]Y)
> k. Let H be a collection of universal hash functions from {0,1}" to {0,1}*
where £ < k — 2log(1/€). It holds that for h «g H, and r «—g {0,1},

SD((h,h(X),Y),(h,rY)) <e
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Lemma 4 ([1], Lemma 4). Suppose that m > (n+1)logq+w(logn) and that
q > 2 is prime. Let R be an m x k matriz chosen uniformly in {1, —1}m>F
mod g where k = k(n) is polynomial in n. Let A and B be matrices chosen
uniformly in Zy=™ and ZZX’“ respectively. Then the distribution (A, AR) is
statistically close to the distribution (A,B).

2.3 Computational Assumptions
We recall the LWE problem that was introduced by Regev [20].

Definition 5. Let A be the security parameter, n = n(\), m = m(\), ¢ = q(\)
be integers and x = x(X) be a distribution over Zq. The LWE,, 1, q. problem asks
for distinguishing the following two distributions:

Real=(A,s"A+e") and Rand= (A,c')

where A «—g Zy*™, s < Zy, € < X", and ¢ «—g Z;. We define the advantage

that an adversary A has in solving the LWE problem by
AdvyYErmax (3) = | Pr[A(1%, Real) = 1] — Pr[A(1*, Rand)]).

We say the LWE assumption holds if for every p.p.t. algorithm A,
Adv.LAWE""'”"”X (N) is negligible in .

Usually, the distribution x is the discrete Gaussian distribution Dz o4 where
the parameter « € (0,1) and ag > /n. We refer to [11] for details on discrete
Gaussian distributions and [17] for the recent result on the hardness of LWE.

In our construction, we consider the amortised LWE problem that asks to
distinguish between distributions (B, CB +F) and (B, A) where B «—g Z:*™,
C —g ZZL”, F «— x"*™ and A « Zy*™. It was shown, e.g., in [18] (Lemma 7.3),
that a p.p.t. algorithm that distinguishes the two distributions of the amortised
LWE problem with probability € can be efficiently turned into a p.p.t. algorithm
that breaks the LWEy ., 4., problem (per Definition 5) with advantage €/n.

We recall the following Lemma, first proven by Goldwasser et al. [12], and
used by Xie et al. [22]. It says that, for certain parameters, the LWE problem
remains hard even if the secret is chosen from an arbitrary distribution with
sufficient min-entropy in the presence of hard-to-invert auxiliary input.

Lemma 5. Let k > logqg and F = {f : {0,1}" — {0,1}*} be a family of
one-way functions that are 27% hard to invert with respect to distribution S
over {0,1}"™. For any super-polynomial ¢ = q(\) and any m = poly(n), any
B,7v € (0,1) such that v/3 = negl(n), the distributions

(A,s"A+e’, f(s) and (A,c", f(s))

are computationally indistinguishable where A «—g Zy*™, s « S, ¢ «g Z",

m

e — Dy'g,, assuming the LWE; ., gD, ., assumption holds where { > k—w(ogn)

log q
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2.4 Lattice Trapdoors

Let n > 1, ¢ > 2 and p < gq. Set k = [logq] and w = nk, and define the n-by-w
gadget matrix G =1, ®[1,2,4,...,28 "1 € Zy**. We recall the following lemma
that applies the gadget trapdoor [15] to invert the LWE and LWR, functions.
The lemma stems from Lemma 7.2 of [2] (the algorithm Biglnvert). Here we
use the fact that the gadget matrix G has a (publicly known) trapdoor matrix
T € Z**% st. GT = 0mod g and ||T|| < v/5. (See [15], Proposition 4.2 for
details).

Lemma 6 ([3] Lemma 7.2). Letn > 1, ¢ > 2, w = nllogq] and m =
m+w. Set, m > (n+ 1)logqg + w(logn). Let F = [A|AR + HG]| where A €
Zy<™, R g {=1, 1} and H € Z3*™ be an invertible matriz. We have
for ¢ = |s"F|, where s € Zy, p > O(my/nlogq), there is a p.p.t algorithm
Invert( Transformy(c), F, H,R) that outputs s.

The following lemma is derived from Lemma 3.3 and Theorem 7.3 of [3].

Lemma 7. Let A be the security parameter. Let n,m,{,p,~y be positive integers,
X be a B-bounded distribution, w = n[logq], and ¢ > mpByn(m~+w)p be a prime.
Then it holds that for s «g Z!, A = CB+F € Z;*™, R ¢ {—1,1}™*"

oo (s| [s"[AJAR]] ) > nlog(2y) — (£ + A) logg

ox ¢ 7
where B «g Z,™, C g Zy*" and F « x"*™.

3 The KEM Scheme

Let A be the security parameter. The scheme uses a full-rank difference encoding
function ¢ : Zj — Zy*™ which can be instatiated by the construction given by
Agrawal et al. [1]. The scheme also employs a family of hash functions F = {f :
Zy — {0,1}*} that is second pre-image resistant, and a family of universal hash
functions H = {h : Z7 — {0,1}*} for which efficient constructions are known.
Let x be a B-bounded distribution over Z,. Given the lattice dimension ¢ > A
for LWE problem, we set the parameters for our KEM scheme as follows.

Let § > 0 be a constant. Set the matrix dimension n large enough such that

n—4A > ¢ for Lemma 7 (ensuing that s sufficient leftover min-entropy).
n

149 to ensure that Lemma 4 applies. Here we

— Set the matrix dimension m = n
assume n’ = 2log q.

— The rounding parameter p = 3m!-® for Lemma.6.

— The parameter v = 1 for Lemma 7

— Set 3 = \/{ as required by the hardness of LWE problem.

— The LWE modulus ¢ = 12m° that satisfies Lemma 7.

KeyGen(1*): On input the security parameter ), the key generation algorithm
does:
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1. Choose A g Z7*™ R g {—1,1}™*"; Set A; = AR mod q.
2. Randomly sample a hash function f «—g F and a universal hash function
h «—g H.
3. Set Pk = (A, Ay, f,h) and Sk = R.
Encap(Pk): On input the public key Pk, the encapsulation algorithm does:
1. Select s «—g Zy and compute t < f(s).
2. Encode t as a vector in Z7 and compute ¢” = [s” - [A|A; + ¢(t)G]|
3. Set K < h(s) and Ct = (c,t).
Decap(Pk, Sk, Ct): On input the private key Sk and a ciphertext Ct = (c, t), the
decapsulation algorithm does:
1. Runs Invert(Transform,(c), [A[A; + ¢(t)G], R) to get ' € Z7.
2. Compute t’' = f(s’) and return L if t’ # t.
3. Return K « h(s').
The decryption correctness can be checked by the correctness of Invert as
stated in Lemma 6.

P

Theorem 1. If the family of hash functions F is second pre-image resistant and
the LWEy s q. assumption holds, then the KEM scheme is IND-CCA-secure.
More specifically, let X be the security parameter. Given a p.p.t adversary A
that breaks the KEM scheme II with advantage Ad\/]}f’jca()\), there exist a p.p.t
algorithm By that breaks the second pre-image resistance of F with advantage
AdviE's (A) and a p.p.t algorithm By that breaks LWEyp, q, with advantage

Advig 4™t (X), such that AdVEEER(N) < AdviE, (A)+Advy, ™" (X)+negl(\)
where negl(\) is negligible in .

Proof. We proceed with the proof as a sequence of games. For i = {0, 1,2, 3,4},
we denote the i-th game by Game;. We denote by Game; = 1 the event that
the adversary wins the security game, i.e., it outputs p’ such that p' = pu.

The first game Gameg is the same as the IND-CCA security game. That
is, the adversary A receives a public key Pk = (A, Ay, f,h) and a challenge
ciphertext Ct* = (c*, t*), where

€ =f) 5 =[5 [AlA+p(t))C |
P

for some s* «g Z;/, and a session key K}j, which is either a random value from

{0,1}* or h(s*), from the challenger B. Then A adaptively issues decryption

queries Ct = (c,t) # Ct* and B runs the real decryption algorithm to return

the answers. Finally, A outputs a bit value y’ indicating that Ct* encapsulates

a real session key or a random session key. According to the definition, we have

Pr[Gamey = 1] = Pr[p/ = p] = Advi{‘{'jca()\) +1/2

In Game;, we make a change in the way of answering decryption queries: L
is returned if for the given decryption query Ct = (c,t), t = t*; otherwise, Ct
is processed with the real decapsulation algorithm as in Gamey. We argue that



124 X. Boyen and Q. Li

unless the adversary breaks the second pre-image resistant property of the hash
function f, this change is not noticeable.

First of all, we must have ¢ # c¢* (otherwise the decryption query is invalid as
it is the challenge ciphertext itself). To make the decryption oracle not to output
L, there must be a unique s # s* such that ¢” = [s” - [A|A; + <p(t*)GHp (and
such an s can be found by the algorithm Invert since the private key R is known).
Therefore we must have f(s) = f(s*) = t* which makes s a valid second pre-
image for t*. So, we have

| Pr[Game; = 1] — Pr[Gamey = 1]| < AdviE 5 (A)

for some proper adversary B;.

In Games, we make the following changes on generating the matrix A; from
the public key Pk. Firstly, we pick s* < Zj and set t* = f(s*). Then we
sample R «g {—1,1}™*% and set A; +— AR — ¢(t*)G mod g. s* is also used
to construct the challenge ciphertext:

t*— f(s*) T {S*T -[AJA; + <p(t*)G]J
P
The decryption oracle is implemented as in Game;.

We argue that the adversary’s views in Games and Game; are statistically
close. First, by Lemma4, the distributions of A; in these two games are sta-
tistically close. This means that Pk generated in these two games are statisti-
cally indistinguishable for .A. Then we note that the decryption queries will be
answered properly. This is because by the standard technique of Agrawal et al.
[1], knowledge of the binary matrix R lets us transform the trapdoor for G into
a trapdoor for the whole matrix, as long as H is invertible. The simulator can
thus answer in the same way as the previous games, except for the ciphertexts
Ct = (c,t*), which however, are already excluded:

[AlA1 4+ ¢(t)G] = [A[AR + (¢(t) — ¢(t7))G]
= [AJAR + HG]

where, by the property of FRD, H € Zj*" is invertible. So we have
| Pr[Games = 1] — Pr[Game; = 1]| < negly (\)

for some negligible statistical error negl; (A).

In Games we change the way that the matrix A is constructed. In particular,
we obtain A «+— CB + F where B g ngm, C «—yg ngg and F « x"*™ By
the LWE assumption (amortised version) we immediately have

Pr[Games = 1] — Pr[Games = 1] < Advyg, ™ (\)

for some proper adversary Bs.
In Game,, we change the way of generating the challenge session key. In par-
ticular, K7 is chosen randomly from {0,1}* (recall that K is chosen uniformly
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random from {0,1}* in all previous games). We argue that Games and Game,
are statistically indistinguishable. First of all, t* in the challenge ciphertext has
at most 2* values. Second, by the construction of the matrix A and c*, we have

T = LS*T [AlA; + ga(t*)G]Jp

- {S*T - [AJAR + (p(t*) — w(t*))G]JP

- {S*T : [A|AR]JP

By Lemma 2,
Hoo (s*[c*,t*) > Hoo (s*|c*) — A
> nlog(2y) — (A+4)logg — A
>n—20logqg— A
=n—{-n’—\
>4AN— A
=3\
Let e = 27*. So, we have Hy, (s*|c*,t*) > 2log(1/€) + A. Applying Lemma 3
€

results in SD ((c*,t*, h, h(s*), (c*,t*, h, K7)) < € = 27 where K; « {0,1}*.
We therefore obtain

| Pr[Gamey = 1] — Pr[Games = 1]] < 272

Additionally, In Gamey, Kj and K7 are all random strings chosen from {0, 1}*.
So the adversary A has exactly probability 1/2 of correctly guessing pu, i.e.,

Pr[Games = 1] =1/2

Combining the above steps gives us

AdVITEER(0) < AdVIE 5, (A) + Advig, o™ (X) + negl(A)
where negl()\) = negl;(\) + 277 is negligible. This completes the proof. O

4 CCA-Secure Deterministic Public-Key Encryption

In this section, we show a construction of CCA-secure deterministic public-key
encryption (D-PKE) in the standard model. Deterministic public-key encryption
only makes sense for high-min-entropy plaintexts, to preclude the obvious guess-
and-encrypt attack, but for such messages it has practical applications ranging
from encrypted keyword search to encrypted cloud storage with deduplication.

Our CCA-secure D-PKE has a similar structure as our KEM. We consider
the so-called PRIV-CCA security notion for single hard-to-guess message as in
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[4].2 The security of our construction is again based on the hardness of the
LWE problem with high-min-entropy secret in the presence of hard-to-invert
auxiliary inputs, which is as hard as the standard form of LWE with certain
parameters [12]. Our construction is more efficient than the generic constructions
by Boldyreva et al. [4] which requires double encryption (e.g., using two lossy
trapdoor functions when instantiated with lattice-based primitives).

A D-PKE scheme consists of three algorithms. On input a security param-
eter 1, the randomised key generation algorithm KeyGen(1%) outputs a pair
of public and private keys (Pk,Sk). The deterministic encryption algorithm
Enc(Pk,m) returns a ciphertext Ct. The decryption algorithm Dec(Pk, Sk, Ct)
returns the message m or L. The correctness is required that for all m,
(Pk, Sk) « KeyGen(1?),

Pr[Dec(Pk, Sk, Enc(Pk, m)) = m] > 1 — negl(}\).

We recall the indistinguishability-based security definition of D-PKE for sin-
gle high-min-entropy messages. Here we consider a stronger version where we
require ciphertext pseudorandomness, i.e., that ciphertexts be computationally
indistinguishable from random strings. The security game with a D-PKE scheme
IT is defined as follows. The adversary A outputs a distribution M over the
message space. Where Hoo (M) > k (i.e., M is a k-source). The challenger B
runs (Pk,Sk) < KeyGen(1*). It flips a coin p «g {0,1}. If g = 0 it computes
Ct* < Enc(Pk,m*) where m* «— M. Otherwise it chooses Ct* uniformly at
random from the ciphertext space. B returns (Pk,Ct*) to A. A then launches
adaptive decryption queries Ct # Ct* to which B returns Dec(Pk, Sk, Ct). Finally,
A outputs p/ and wins if g/ = p. We define A’s advantage in the security game
as

AP (N) = [ Prfp’ = ] — 1/2].

We say a D-PKE scheme 1T is PRIV-CCA-secure w.r.t. a k-source single message
if for every p.p.t. adversary A, the advantage is negligible in \.

Construction. Our construction uses a full-rank difference encoding function
¢ Zy — Zy*™" as in our construction of KEM. The construction also uses a
family of second pre-image resistant functions F = {f : {0, 1} — {0, 1}?*} that
is universal and 2~*-hard-to-invert with respect to a k-source M over {0,1}".
Such a family of functions can be built from the standard Short Integer Solution
(SIS) problem.

The security of the construction is based on the hardness of LWEy 4 m D, .,
where we need, for Lemmab, ¢ > %;qg"), v € (0,1) such that v/3 = negl(n).
We set the parameters for decryption correctness and security as follows.

— Set the LWE modulus ¢ = n*(") and parameter 8 = \/Z/q for the LWE
hardness results of, e.g. [17,20].

2 Tt was shown in [4] that such a security notion is equevalent to the PRIV-CCA
security notion for multiple messages that form a block source. See [4] for details.
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— Set the dimension m = n'*® where n’ = O(log q) for Lemma4.
— The rounding parameter p = 3m!?, to ensure that Lemma 6 applies.
— Finally, 8 = 1/(2pv/nm) - n=“®) for applying Lemma 1.

KeyGen(1*): On input the security parameter ), the algorithm does:
1. Choose A g Z7*™ R «g {—1,1}™*"; Set A; = AR mod q.
2. Sample a wuniversal, second pre-image resistant, 2-hard-to-invert hash
function f «g¢ F.
3. Set Pk = (A, A, f) and Sk = R.
Enc(Pk,m): On input the public key Pk and message m € {0,1}" which comes
from some k-source, the algorithm does:
1. Compute t « f(m) and encode t as a vector in Zj.
2. Compute ¢ = |mT - [A|A; + go(t)GHp.
3. Set Ct = (c,t).
Dec(Sk,Ct): On input the private key Sk and a ciphertext Ct = (c,t), the
decryption algorithm does:
1. Runs Invert(Transform,(c), [A]A; + ¢(t)G],R) to get m’ € {0,1}".
2. Compute t' = f(m’). Return m’ if ' =t or return L otherwise.

Security Proof. Now we give the security proof.

Theorem 2. Let k > 2log(1/n=“M) + \. If the family of functions F is uni-
versal, 27 -hard-to-invert, second pre-image resistant, and Lemma 5 holds, the
above construction of D-PKE scheme is PRIV-CCA-secure for k-source single
message.

Proof. We proceed the proof by a sequence of games. For i = {0,1,2,3,4}, we
denote the i-th game by Game;. We denote by Game; = 1 the event that the
adversary wins the security game, i.e., it outputs ' such that u’ = p.

The first game Gameg is the original PRIV-CCA security game. That is,
the adversary A generates a k-source distribution M. The challenger samples a
challenge message m* « M and a fair coin p «—g {0, 1}. It then returns the public
key (A, Ay, f) and the challnege ciphertext Ct, to A, where Ct; < Enc(Pk, m*)
and Ct] is uniformly chosen from the ciphertext space. A then launches adaptive
chosen-ciphertext queries Ct subject to the condition that Ct # Ct*. Finally, A
outputs p’ and it wins if g’ = p. By definition we have

| Pr[Gamey = 1] — 1/2| = Advi*3 2 (N).

In the second game Game;, we slightly change the way of answering the
decryption query: Let the challenge ciphertext Ct: = (c*,t*). A decryption
query Ct = (c,t) is rejected if t = t*. First, we must have Ct # Ct; by
security definition. Second, if ¢ # c¢*, there is a m’ € {0,1}" such that
c = [m'T[AJA; + go(t*)Hp. (In the case that Ct; was returned, we must have
m’ # m*.) Therefore, m’ is a valid second pre-image of t* on f, and m’ can be
recovered efficiently through the decryption procedure. So a p.p.t distinguisher
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between Gamey and Game; leads to a second-pre-image inversion algorithm for
F and we have

| Pr[Game; = 1] — Pr[Gamey = 1]| < negl; (V).

In Gamey we set A; — AR — o(t*)G. By making this change we have
challenge ciphertext Ctj = (t* = f(m*), ¢** = |m*'[A|]AR]],). By Lemma4,
A; is distributed properly except for a negligible statistical error negl; A. So we
have

| Pr[Games = 1] — Pr[Game; = 1]| < negly(N).

In Games, we make changes on computing the challenge ciphertext Ctg.
Specifically, given the challenge message m* «— M, we sample e «— D’” and
compute

T = Lm*T[mA1 +o(t)G] + [eT|eTR]J

p

- [m*T[A\AR] + [eT\eTR]J

p

where R is chosen as in the key generation phase. Since m* is a sample from the
distribution M which is chosen independent of A and AR, so m* ' [A|AR] is a
random sample from the uniform distribution over ZT‘H" (Recall A is randomly
chosen and AR statistically close to uniform as per Lemma4). By Lemma 1 and
the fact that |le R/ < Bgv/nm, with all but negligible probability negls()),

T = {m*T[A|AR}JP

as produced in Games. This shows that
| Pr[Games = 1] — Pr[Games = 1]| < neglg(A).

In Games, we set Cty = (t* = f(m*), ¢* = [[b"|b'R]], where b —¢ Z"
and m* « M. by Lemma 5, the distributions (A, b", f(m*)) and (A, m*" A +
e’ f(m*)) are computationally indistinguishable under the LWEg 4,0, .,
assumption, where m* is from an arbitrary k-source distribution over Zg,
e — DI ‘5, and 27 k_hard-to-invert function f, and b « Zm So the challenge
c1phertext Ct; in Gamey is indistinguishable from

(£m*). LI T A +eT|(m*TA+eT)R],)
= (#(m"). |m*T[A|AR] + [e|eR]], )
= (Fm"), [m*T[AJAL + o(6)G] + TR, )

which is the challenge ciphertext Ct; produced in Gamez. We have
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LWE¢, 4,05 4

Pr[Gamey = 1] — Pr[Games = 1] < Advg (A\) + negls(N)

for some LWE adversary B.

Furthermore, since the challenge message m*, a k-source sample, is indepen-

dent of c*, t* = f(m*) is distributed uniformly over {0,1}?* except for the
negligible probability A=) (by the fact that k& > 2log(1/A~*M)) + X, the uni-
versality of f, and Lemma3). Since b is chosen uniformly at random from Z",
by Lemma4, ¢c* = |[b"|b"R], is statistically close to the uniform distribution
over Zy " with up to a negligible distance p/q = negl,()). This shows that Ct;
in Games is statistically close to a random ciphertext, e.g., Ct]. We have

| Pr[Gamey = 1] — 1/2] < A7) 4 negl, (N).

To sum up, we have

- LWE¢ m.q,

AP () < Advg PPN + negl(N)
where negl(\) accounts for the sum of all negligible terms appeared in the proof.
This completes the proof. a
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Abstract. We present a key recovery attack against Y. Wang’s Random
Linear Code Encryption (RLCE) scheme recently submitted to the NIST
call for post-quantum cryptography. The public key of this code based
encryption scheme is a generator matrix of a generalised Reed Solomon
code whose columns are mixed in a certain manner with purely random
columns. In this paper, we show that it is possible to recover the under-
lying structure when there are not enough random columns. The attack
reposes on a distinguisher on the dimension of the square code. This
process allows to recover the secret key for all the short key parameters
proposed by the author in O(n®) operations. Our analysis explains also
why RLCE long keys stay out of reach of our attack.

Keywords: Code based cryptography - McEliece scheme - RLCE -
Distinguisher - Key recovery attack -
Generalised Reed Solomon codes - Schur product of codes

1 Introduction

The McEliece encryption scheme dates back to the late 70’s [14] and lies among
the possible post-quantum alternatives to number theory based schemes using
integer factorisation or discrete logarithm. However, the main drawback of
McEliece’s original scheme is the large size of its keys. Indeed, the classic instan-
tiation of McEliece using binary Goppa codes requires public keys of several hun-
dreds of kilobytes to assert a security of 128 bits. For example, the recent NIST
submission Classic McEliece [4] proposes public keys of 1.1 to 1.3 megabytes to
assert 256 bits security (with a classical computer).

To reduce the size of the keys, two general trends appear in the literature : the
first one consists in considering codes with a non trivial automorphism group, the
second one in using codes with a higher decoding capacity for encryption. In the
last decade, the second trend led to many proposals involving generalised Reed
Solomon (GRS) codes, which are well-known to have a large minimum distance
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together with efficient decoding algorithms correcting up to half the minimum
distance. On the other hand, the raw use of GRS codes has been proved to be
insecure by Sidelnikov and Shestakov [15]. Subsequently, some variations have
been proposed as a counter-measure of Sidelnikov and Shestakov’s attack. Berger
and Loidreau [3] suggested to replace a GRS code by a random subcode of small
codimension, Wieschebrink [18] proposed to join random columns in a generator
matrix of a GRS code and Baldi et al. [1] suggested to mask the structure of
the code by right multiplying a generator matrix of a GRS code by the sum of
a low rank matrix and a sparse matrix. It turns out that all of these proposals
have been subject to efficient polynomial time attacks [8,11,19].

A more recent proposal by Yongge Wang [16] suggests another way of hiding
the structure of GRS codes. The outline of Wang’s construction is the following:
start from a k x n generator matrix of a GRS code of length n and dimension
k over a field F,, add w additional random columns to the matrix, and mix
the columns in a particular manner. The design of this scheme is detailed in
Sect. 3.1. This approach entails a significant expansion of the public key size but
may resist above-mentioned attacks such as distinguisher and filtration attacks
[8,10]. This public key encryption primitive is the core of Wang’s recent NIST
submission “RLCE-KEM” [17].

Our Contribution: In the present article we give a polynomial time key recovery
attack against RLCE. For an [n, k] code with w additional random columns, our
attack breaks the system in O(wk?n?) operations, when w < n — k. This allows
us to break half the parameter sets proposed in [17].

2 Notation and Prerequisites

2.1 Generalised Reed Solomon Codes

Notation 1. Let g be a power of prime and k a positive integer. We denote by
Fq[X]<k the vector space of polynomials over Fq whose degree is strictly bounded
from above by k.

Definition 1 (Generalised Reed Solomon codes). Let © € Fy be a vector
whose entries are pairwise distinct and y € Fy be a vector whose entries are
all nonzero. The generalised Reed Solomon (GRS) code with support x and
multiplier y of dimension k is defined as

GRSy (z,y) & {(y1f (1), ., ynf(xn)) | [ € Fyla]ar}.

2.2  Schur Product of Codes and Square Codes Distinguisher
Notation 2. The component-wise product of two vectors a and b in Fy is
denoted by : a x b def (a1b1,...,anby). This definition extends to the product
of codes where the Schur product of two codes &/ and 2 C Fy is defined as

o * B d:efSpanFq {axb|ac, be B}
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In particular, &/*? denotes the square code of a code of : o/ *> s

We recall the following result on the generic behaviour of random codes with
respect to this operation.

Proposition 1 ([6, Theorem 2.3|, informal). For a linear code % chosen at
random over F, of dimension k and length n, the dimension of %#*? is typically
min(n, (kgl))

This provides a distinguisher between random codes and algebraically struc-
tured codes such as generalised Reed Solomon codes [8,19], Reed Muller codes [7],
polar codes [2] some Goppa codes [10,12] or algebraic geometry codes [9]. For
instance, in the case of GRS codes, we have the following result.

Proposition 2. Let n, k,x,y be as in Definition 1. Then,
(GRSi(x,y))*? = GRSyi_1(z,y ).
In particular, if k < n/2, then dim (GRS (z,y))** = 2k — 1.

Thus, compared to a random code &Z whose square has a dimension quadratic
in dim Z, the square of a GRS code € has a dimension which is linear in dim €.
This criterion allows to distinguish GRS codes of appropriate dimension from
random codes.

2.3 Punctured and Shortened Codes

The notions of puncturing and shortening are classical ways to build new codes
from existing ones. These constructions will be useful for the attack. We recall
here their definition. For a codeword ¢ € Fy, we denote (ci, ..., cy) its entries.

Definition 2 (punctured and restricted codes). Let ¢ C Fy and £ C
[1,n]. The puncturing of € at L is defined as the code

Pr(€) dZEf{(Ci)ie[[l,n]]\L st. c€ ¢}

The restriction of € to L is defined as the code Ry (€) & Prnpc (€).

Definition 3 (shortened code). Let ¥ C Fy and L C [1,n]. The shortening
of € at L is defined as the code

S (@)Y P ({ce@st.VieLl, ¢;=0}).

Shortening a code is equivalent to puncturing the dual code, as explained by
the following proposition, whose proof can be found in [13, Theorem 1.5.7].

Proposition 3. Let ¢ be a linear code over Fy and £ C [1,n]. Then,
Sc (€F) = (Pe (€))7t and (S (€)= P (€7),
where o/ denotes the dual of the code <7 .
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Notation 3. Throughout the document, the indexes of the columns (or positions
of the codewords) will always refer to the indexes in the original code, although the
code has been punctured or shortened. For instance, consider a code € of length
5 where every word ¢ € € is indexed ¢ = (c1,ca,c3,¢4,5). If we puncture € in
{1,3}, a codeword ¢’ € Py 33 (€) will be indexed (cy, cy, c5) and not (c, ch, c3).

3 The RLCE Scheme

3.1 Presentation of the Scheme

The RLCE encryption scheme is a code based cryptosystem, inspired by the
McEliece scheme. It has been introduced by Wang in [16] and a proposal called
“RLCE-KEM?” has recently been submitted as a response for the NIST’s call for
post-quantum cryptosystems [17].

For a message m € ]qu“, the cipher text is ¢ = mG + e where e € ]Fg“"” is a

random error vector of small weight ¢ and G € IF{; X(ntw) g generator matrix

defined as follows, for given parameters n, k and w.

1. Let @,y € Fj be respectively a support and a multiplier (as in Definition 1).

2. Let Gy denote a random k x n generator matrix of the generalised Reed
Solomon code GRSy (x, y) of length n and dimension k. Denote by ¢1,. .., gn
the columns of Gy.

3. Let rq,...,7ry be column vectors chosen uniformly at random in IF’; . Denote
by G; the matrix obtained by inserting the random columns between GRS
columns at the end of G as follows:

def
Gl = [gla---7gn7wagn7w+1a7ala~-~7gn»rw] S F];XUH—w)'

4. Let Ay,..., A, be 2 x 2 matrices chosen uniformly at random in GLy(F,).
Let A be the block—diagonal non singular matrix

I (0)

A
A def 1 c F((In+w)x(n+w).

0 A,

5. Let m € 6,44 be a randomly chosen permutation of [1,n + w] and P the
corresponding (n + w) X (n + w) permutation matrix.

6. The public key is the matrix G def G1 AP and the private key is (z,y, A, P).

Remark 1. This presentation of the scheme is not exactly the same as in the orig-
inal specifications of RLCE [17]. It is however equivalent. Indeed, the differences
with the original scheme are listed below.
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. The original specifications of RLCE propose as a public key a matrix
G =SG,AP,

where S is a k X k non singular matrix. But, since we chose Gy to be a
random generator matrix of the GRS code to which we included random
columns, left multiplication by a random nonsingular matrix does not change
the probability distribution of the public keys.

. In [17], the matrix Gy is called G and is a generator matrix of a GRS code
but its columns are permuted using a permutation matrix P; before includ-
ing random columns. Actually, if we chose arbitrary supports and multipliers,
applying a permutation on the columns does not change the probability dis-
tribution of the public keys.

3.2 Suggested Sets of Parameters

In [17] the author proposes 2 groups of 3 sets of parameters. The first group
(referred to as odd ID parameters) corresponds to parameters such that w €
[0.6(n — k),0.7(n — k)], whereas in the second group (even ID parameters) the
parameters satisfy w = n — k. The parameters of these two groups are listed in

Tables 1 and 2.

The attack of the present paper recovers in polynomial time any secret key
when parameters lie in the first group.

Table 1. Set of parameters for the first group: w € [0.6(n — k),0.7(n — k)].

Security level (bits) | Name in [17] | n k |t |w |q |Public key size (kB)
128 D1 532376 |78 | 96| 2'°| 118
192 1D 3 846 | 618|114 | 144 | 2'°| 287
256 ID 5 1160 | 700 | 230 | 311 | 2'* | 742

Table 2. Set of parameters for the second group: w =n — k.

Security level (bits) | Name in [17] | n k |t |w |q |Public key size (kB)
128 1D 0 630 470 | 80160 | 2'°| 188
192 D 2 1000 | 764 | 118 1236 | 2'° | 450
256 ID 4 1360 | 800 | 280 | 560 | 2'* | 1232

4 Distinguishing by Shortening and Squaring

We will show here that it is possible to distinguish some public keys from random
codes by computing the square of some shortening of the public code. More
precisely, here is our main result.
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Theorem 4. Let € be a code over Fy of length n + w and dimension k with
generator matriz G which is the public key of an RLCE scheme that is based on
a GRS code of length n and dimension k. Let L C [1,n + w]. Then,

dim (Sz (%)) < min(n +w — |£|, 2(k +w — |£]) — 1).

Remark 2. Actually, according to computer experiments, the inequality estab-
lished in Theorem 4 seems to be an equality with a probability close to 1 when
we are not in the degenerate case described in Sect. 6.7. See Remark 4 for further
details.

To prove Theorem4 we can assume that P is the identity matrix. This is
because of the following lemma.

Lemma 1. For any permutation o of the code positions [1,n + w] we have
dim (Sz (%)) = dim (Sz- (€7))*?,

where €7 is the set of codewords in € permuted by o, that is €° = {c¢” : c € €}

where ¢ % (Co(i))ie[tntw) and L7 = {o(i):i € L}.

Therefore, for the analysis of the distinguisher, we can make the following
assumption which we will use several times the rest of the section, especially
to simplify the notation. The general case will follow by using Lemma 1.

Assumption 5. The permutation matriz P is the identity matriz.

4.1 Analysis of the Different Kinds of Columns

Notation and Terminology. Before proving the result, let us introduce some
notation and terminology. The set of positions [[1,n 4+ w] splits in a natural way
into four sets, whose definitions are given in the sequel

[1,n +w] = Zgrs U ZErs UZr U Zpr. (1)

Definition 4. The set of GRS positions of the first kind, denoted Il g, cor-
responds to GRS columns which have not been associated to a random column.
This set has cardinality n —w and s given by

Thps Z i€ [Ln+w]|771(6) < n—w}. 2)

Under Assumption 5, this becomes: Tlipg aef [1,7 —w].

This set is called this way, because at a position i € Z} g, any codeword
v € ¥ has an entry of the form

vy = ylf(xl) (3)

As we will see later, there might be other code positions that are of this form.
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Definition 5. The set of twin positions, denoted Zt, corresponds to columns
that result in a mix of a random column and a GRS one. This set has cardinality
2w and is equal to:

Ir YiieLn+w] |7 106) > n—w}

Under Assumption 5, this becomes: It 1/ [n—w+1,n+w].

The set Zt can be divided in several subsets as follows.

Definition 6. Fach position in Zt has a unique corresponding twin position
which is the position of the column with which it was mized. For all s € [1,w],
m(n—w+2s—1) and m(n —w + 2s) are twin positions. Under Assumption 5,
the positions n —w + 2s — 1 and n — w + 2s are twins for all s in [1,w].

For convenience, we introduce the following notation.
Notation 6. The twin of a position i € It is denoted by 7(3).

To any twin pair {i,7(i)} = {n(n —w +2s — 1), 7(n —w + 2s)} with s €
{1,...,w} is associated a unique linear form ¢ : Fy[z]<r — F, and a non-
singular matrix A such that for any codeword v € €, we have

v = asy; f(z;) + css(f)
vry = bsy;f(25) + dstps(f), (4)

(t) -4 ®

The linear form 1), is the form whose evaluations provides the random column
added on the right of the (n — w + s)-th column during the construction process
of G (see Sect.3.1, Step 3). From (4), we see that we may obtain more GRS
positions: indeed v; = a,y; f(x;) if ¢s = 0 or vy = bsy; f(x;) if ds = 0. On the
other hand if csds # 0 the twin pairs are correlated in the sense that they behave
in a non-trivial way after shortening: Lemma 3 shows that if one shortens the
code in such a position its twin becomes a GRS position. We therefore call such
a twin pair a pseudo-random twin pair and the set of pseudo-random twin pairs
forms what we call the set of pseudo-random positions.

where j =n —w + s and

Definition 7. The set of pseudo-random positions (PR in short), denoted Ipg,
18 given by

Ipr aef U {m(n —w+2s—1),m(n —w+ 2s)}. (6)
se[l,w] s.t. csds7#0

Under Assumption 5, this becomes:

Ipr = U {n—w+2s—1,n—w+ 2s}. (7)
s€[l,w] s.t. ceds#0
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If csds = 0, then a twin pair splits into a GRS position of the second kind
and a random position. The GRS position of the second kind is 7(n —w+2s—1)
if cs=0o0r m(n—w+2s) if dg =0 (¢s and dg can not both be equal to 0 since
A, is invertible).

Definition 8. The set GRS positions of the second kind, denoted Z¢rg, is
defined as

T2hs Yintn—w+2s—1)]cs =0 U{n(n—w+2s)|ds =0}.  (8)
Under Assumption 5, this becomes:
Térs={n—w+2s—1|c, =0y U{n—w+2s|d, =0}. (9)
Definition 9. The set of random positions, denoted I, is defined as
Tn Y inn—w+2s—1)|ds =0} U{m(n —w+2s)|cs =0}.  (10)
Under Assumption 5, this becomes:
In={n—w+2s—1|ds =0} U{n —w+2s|cs; =0}. (11)

We also define the GRS positions to be the GRS positions of the first or the
second kind.

Definition 10. The set of GRS positions, denoted Zgrs, is defined as
Tors = Thps UT2gs. (12)
We finish this subsection with a lemma.
Lemma 2. |[Z¢gs| = |Zr| and |Zpr| = 2(w — |Zr]).
Proof. Using (7), (9) and (11) we see that, under Assumption 5,
[n—w+1,n+w] =Tpr UTérs UTr (13)

and the above union is disjoint. Next, there is a one-to-one correspondence relat-
ing Z¢rg and Zg. Indeed, still under Assumption 5, if ¢5 = 0 for some s € [1,w],
thenn—w+2s—1¢ I(Q;RS and n — w + 2s € Zg and conversely if d; = 0. This
proves that |Z&rs| = |Zr|, which, together with (13) yields the result. O

4.2 Intermediate Results

Before proceeding to the proof of Theorem4, let us state and prove some inter-
mediate results. We will start by Lemmas 3 and 4, that will be useful to prove
Proposition 4 on the structure of shortened RLCE codes, by induction on the
number of shortened positions. This proposition will be the core of the proof of
Theorem 4. Then, we will prove a general result on modified GRS codes with
additional random columns.
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Two Useful Lemmas. The first lemma explains that, after shortening a PR
position, its twin will behave like a GRS position. This is actually a crucial
lemma that explains why PR columns in G do not really behave like random
columns after shortening the code at the corresponding position.

Lemma 3. Leti be a PR position and L a set of positions that neither contains

i nor 7(i). Let €’ o Sc (€). The position T(i) behaves like a GRS position in

the code Sy (€7). That is, the 7(i)-th column of a generator matriz of Sg;y (¢”)
has entries of the form
b5 f(x;)

for some j in [n —w+1,n] and g; in F,.

Proof. Let us assume that i =n —w + 2s — 1 for some s € {1,...,w}. The case
i = n — w+ 2s can be proved in a similar way. At position ¢, for any ¢ € ¢,
from (4), we have

¢i = ay; f(x;) + cs(f),

where j = n — w + s. By shortening, we restrict our space of polynomials to the
subspace of polynomials in F,[z]<j satisfying ¢; = 0. Since 7 is a PR position,
¢ # 0 and therefore

bs(f) = = tay; f(a;).

Therefore, at the twin position 7(i) = n — w + 2s and for any ¢ € S (¢7), we
have

cr(iy = by, f(z5) + d;(f)
= y;(b — dac™ ) f(x;).

O

Remark 3. This lemma does not hold for a random position, since the proof
requires that ¢ # 0. It is precisely because of this that we have to make a
distinction between twin pairs, i.e. pairs for which the associated matrix A, is
such that csds # 0 and pairs for which it is not the case.

This lemma allows us to get some insight on the structure of the shortened
code S (¥). Before giving the relevant statement let us first recall the following
result.

Lemma 4. Consider a linear code o/ over F, whose restriction to a subset L
is a subcode of a k-dimensional GRS code. Let i be an element of L. Then the
restriction of Sg;y (<) to L\{i} is a subcode of a (k—1)-dimensional GRS code.

Proof. By definition, the restriction &/’ to L is a code of the form

o f(@))ee fELY,
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where the y;’s are nonzero elements of F,, the x;’s are distinct elements of F,
and L is a subspace of Fy[X] . Clearly the restriction .&7” of Sy (&) to L\ {i}
can be written as

" = {(yjf(xj))jel:\{i} cfeL, flz)= 0}.

The polynomials f(X) in L such that f(z;) = 0 can be written as f(X) =
(X —2;)g(X) where deg g = deg f — 1 and g ranges in this case over a subspace
L’ of polynomials of degree < k — 1. We can therefore write

A" = {(yj(mj —20)9(5))je vy 19 € L/}'

This implies our lemma. a

The Key Proposition. Using Lemmas3 and 4, we can prove the following
result by induction. This result is the key proposition for proving Theorem 4.

Proposition 4. Let £ be a subset of [1,n + w] and let Lo, L1, Lo be subsets of
L defined as

— Ly the set of GRS positions (see (2), (8) and (12) for a definition) of L:

Lo £NTers;
— Ly the set of PR positions (see (6)) of L that do not have their twin in L:

LY e Lnpr|rl) ¢ L)

— Lo the set of PR positions of L whose twin position is also included in L:

2—{ZE£QIPR|T()€E}

Let €' be the restriction of Sg (€) to (Zars \ Lo) UT(L1). Then, €' is a subcode
of a GRS code of length |Zars| — |Lo| + |£1] and dimension k — |Lo| — |£2

Proof. Let us prove by induction on ¢ = |£] that €” is a subcode of a GRS code
of length |Zgrs| — |Lo| 4+ |£1] and dimension k — |Lo| — ‘52

This statement is clearly true if £ = 0, i.e. if £ is the empty set. Assume that
the result is true for all £ up to some size ¢ > 0. Consider now a set L of size
£+ 1. We can write £ = L' U {i} where L' is of size £.

Let Lo, L1, L2 be subsets of L as defined in the statement and L(, £, £ be
the subsets of £’ obtained by replacing in the statement £ by £’. There are now
several cases to consider for 7.

Case 1: i € Ly. In this case, Lo = LU {i}, L1 = L] and Lo = L5,
We can apply Lemma4 with &7 = S/ (€) because by the induction hypoth-
esis, its restriction to £ (Zars \ £4) U T(L)) is a subcode of a GRS code
of length |Zars| — [£h| + [£}] and dimension k — [£| — £zl
Therefore the restriction of the shortened code Sg(¢) = Sg) (&) to
L'\ {i} = (Zgrs \ Lo) U T(Ly) is a subcode of a GRS code of length

Zanrs| — |£o| + |£1] and dimension k — [£p] — £2l —1 =k — | £o| — 2.
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Case 2: i € £;. In this case, Lo = L{, L1 = L] U{i} and Lo = L). This implies
that £ does not contain ¢ nor 7(4).
We can therefore apply Lemma3 with 4’ = Sg/ (¢). Lemma3 states that
the position 7(i) behaves like a GRS position in Sg;; (¢7) = Sg (¥). By
induction hypothesis, the restriction of the code ¢’ to (Zgrs \ £4) U 7(L£})
is a subcode of a GRS code of length |Zgrs| — |£4| + |£]] and dimension
k=1L — 2 =k — || - &2
Therefore the restriction of S{ y (€7) = Sc(€) to (Zars \ Lo) UT(L1) =
(Zars \ L) UT(LY) U{7(¢)} is a subcode of a GRS code of dimension k —
o — 2L and length [Zars| — |£h| + [£1] + 1 = [Zars| — Lol + | £4]-

Case 3: i € Lo. In this case, Lo = L)), L1 = LI\ {7(#)} and Lo = LLU{i,7(9)}.
In fact, this case can only happen if £ > 1 and we will rather consider the
induction with respect to the set £ = £\ {i, T(Z)} of size £ — 1 and the sets

0, LY, LY such that L = Lo, L) = L4, L5 = L2\ {i,7(4)}.

By 1nduct10n hypothesis on £, the restrlctlon of ¢ < S (%) to (Zgrs \

L) UT(LY) is a subcode of a GRS code of length |Zgrs| — |£G| + |£]| =
|Zars| — |Lo| + |£1] and dimension k — |L£{] — l%‘ =k—|Lo| — ‘LQ‘ +1.
Following Assumption5, we can write without loss of generahty that ¢ =
n—w-+2s—1for some s € {1,...,w}. The case i = n—w+2s can be proved
in a similar way.

b . . )
Denote Ag = CCL d) the non-singular matrix and j = n — w + s. For any

c € %', at positions ¢ and 7(i) we have

ci = ay;f(z;) + cps(f),
r(iy = by f () + ds(f)-

Shortening € at {i,7(i)} has the effect of requiring to consider only the
polynomials f for which f(z;) = 1¥s(f) = 0. Therefore the restriction of
Stiri)y (€)= Sc () at (Zars \ L) UT(LY) is a subcode of a GRS code of
length |Zgrs|—|Lo|+|L1]| and dimension k’—\ﬁd—%—i—l—l = k—\£0|—‘£—22|~
Case 4: i € Ig. In this case Ly = L{, £1 = L] and L3 = £}. Using the induction
hypothesis yields directly that & = S,/ (%) is a subcode of a GRS code of
length |Zars|—|L6|+IL1| = |Zars|—|Lo|+|L£1] and dimension k‘—|£6|—‘£2—2‘ =
—|Lo| — lﬁ;'- This is also clearly the case for Sp (7') = Sy (#).

This proves that the induction hypothesis also holds for |£| = £+ 1 and finishes
the proof of the proposition. a

A General Result on Modified GRS Codes. Finally, we need a very general
result concerning modified GRS codes where some arbitrary columns have been
joined to the generator matrix. A very similar lemma is already proved in [8,
Lemma 9]. Its proof is repeated below for convenience and in order to provide
further details about the equality case.



144 A. Couvreur et al.

Lemma 5. Consider a linear code o/ over Fy with generator matriz of the form
G = (GSCGRS Grand) P of size k x (n+ r) where Gscagrs s a k X n gener-
ator matriz of a subcode of a GRS code of dimension kgrs over Fy, Grand 15
an arbitrary matrixz in F’;XT and P is the permutation matriz of an arbitrary
permutation o € S,4,. We have

dim %*2 < QkGRS -1+
Moreover, if the equality holds, then for every i € [n+ 1,n + w] we have:
dim Pyo )y (427*2) = dim &*? — 1.

Proof. Without loss of generality, we may assume that P is the identity matrix
since the dimension of the square code is invariant by permuting the code posi-
tions (see Lemma 1). Let % be the code with generator matrix (GSCGRS kar),
where O, is the zero matrix of size k x r. We also define the code %’ generated
by the generator matrix (Oan G’rand). We obviously have

g CHB+H.
Therefore

(%)*2 g ((@+%/)*2
CH?+ (B + BB
C B2 + (33/)*2’
where the last inclusion comes from the fact that % x %’ is the zero subspace
since % and %’ have disjoint supports. The code %*2 has dimension < 2kgrs—1

whereas dim (2')** <r.
Next, if dim o2 = 2kars — 1 + 7, then

A =B o (#A)? and dim(ZB)2 =7

Since %' has length r, this means that (%')*? = [, and hence, any word of
weight 1 supported by the r rightmost positions is contained in 27*2. Therefore,
puncturing this position will decrease the dimension. a

4.3 Proof of Theorem 4

Proof. By using Proposition 4, we know that the restriction of Sz (%) to (Zars \
Lo)UT(Ly) is a subcode of a GRS code of length |Zgrs| — | Lol + |£1] =n—w +

|Z&rs| — |Lo| + |£1]| and dimension kgrs Lefg |Lo| — |£22|, where:

-~ Lo % Tgrs N L;
— L4 is the set of PR positions of £ that do not have their twin in £;
— Lo is the union of all twin PR positions that are both included in L.
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We also denote by L3 the set Zg N L. We can then apply Lemmab to Sy (%)
and derive from it the following upper bound:

dim (S (%)) < 2kgrs — 1+ |[Zpr \ (LU T(L1))| + [Zr \ L3].  (14)

Next, using Lemma 2, we get

dim (S¢ (€)™
L
<2 (k o] - '2) 14 2(w— [Tal) — 2181 — | Lo| + [ Tr| — |Cs]
<2(k+w—|Lo| — |L1] = |L2] — |L3]) = 14+ (|L3] — |TRr]) (15)
<2(k+w—|L]) 1. (16)

The other upper bound on dim (Sz. (%))** which is dim (S (%)) < n+w—|L]|
follows from the fact that the dimension of this code is bounded by its length.
Putting both bounds together yields the theorem. O

Remark 4. We ran the following simulations using ID 1 parameters (see Table 1):
for three hundred random independent public keys, we computed dim (Sz (€))*?
for |£| ranging over [lmin, émax], as defined in (21). For more than 99% of the
cases, inequality (14) is an equality. In particular, this means that the inequality
of Theorem 4 is almost always an equality whenever Zy is the empty set, i.e.
when we are not in the degenerate case defined in Sect.6.7.

5 Reaching the Range of the Distinguisher

For this distinguisher to work we need to shorten the code enough so that its
square does not fill in the ambient space, but not too much since the square of the
shortened code should have a dimension strictly less than the typical dimension
of the square of a random code given by Proposition 1. Namely, we need to have:

* k 1- . *
dim (8. (¢))** < ( + ) ":') and  dim (S; () <n+w—|L]. (17)
Thanks to Theorem 4, we know that (17) is satisfied as soon as
k+1-—
2k+w—IL])-1< ( * 5 |£|) and 2(k+w—|L])—1<n+w—|L]. (18)

We will now find the values |£] for which the inequalities of (18) are satisfied.

First Inequality. In order to determine when the first inequality of (18) is verified,
let us denote et
E<k—|L].
Inequality (18) becomes 4k’ — 2 + 4w < k' + k', or equivalently k2 — 3k’ —
4w 4 2 > 0, which after a resolution leads to k' > 3+v16w+l V126w+1~

Hence, we have:
34+ V16w +1

L] < k— 5

(19)
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Second Inequality. The second inequality of (18) is equivalent to
I£] = w+ 2k — n. (20)

Conditions to Verify Both Inequalities. Putting inequalities (19) and (20)
together gives that |£| should satisfy

3+ V16w +1

w+2k-—n<|L<k-— 5

We can therefore find an appropriate £ if and only if

3+ V16w +1
2 )

w+2k—n<k-—

which is equivalent to

3+vVI6w+1

5 w + O(Vw).

n—k>w+
In other words, the distinguisher works up to values of w that are close to the
second choice n — k = w. From now on, we set

def def {k_?)—i-\/lﬁw-i-l_l-‘_
2

bopin = W+ 2k —n and Unax = (21)

Practical Results. We have run experiments using MAGMA [5] and SAGE. For
the parameters of Table 1, here are the intervals of possible values of |£| so that

the code S (%) has a non generic dimension:

~ID 1: n =532,k = 376,w = 96, || € [316, 354];
— ID 3: n = 846, k = 618,w = 144, |£| € [534, 592];
— ID 5: n = 1160, k = 700, w = 311, |£| € [551, 663].

The interval always coincides with the theoretical interval [€min, fmax]-

6 The Attack

In this section we will show how to find an equivalent private key (x,y, A, P)
defining the same code.

as by
cs dg
the scheme in Subsect. 3.1 are such that cs;ds # 0. We explain in Sect. 6.7 how to
deal with the special case csds; = 0. Note that this corresponds to a case where
Ir =0 and Z&zg = 0.

We assume that all the matrices Ay = appearing in the definition of

Remark 5. In the present section where we the goal is to recover the permuta-
tion, we no longer work under Assumption 5.
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6.1 Outline of the Attack
In summary, the attack works as follows.

1. Compute the interval [lmin, fmax] of the distinguisher and choose ¢ in the
middle of the distinguisher interval. Ensure £ < £ax.

2. For several sets of indices £ C [1,n + w] such that |£] = ¢, compute S. (€)
and identify pairs of twin positions contained in [1, n+w]. Repeat this process
until identifying all pairs of twin positions, as detailed in Sect. 6.2.

3. Puncture the twin positions in order to get a GRS code and recover its struc-
ture using the Sidelnikov Shestakov attack [15].

4. For each pair of twin positions, recover the corresponding 2 X 2 non-singular
matrix A;, as explained in Sect. 6.6.

5. Finish to recover the structure of the underlying GRS code.

6.2 Identifying Pairs of Twin Positions

Let £ C [1,n+ w] be such that both |£| and |£|+ 1 are contained in the distin-
guisher interval. We compare the dimension of (S (€))*?
(Ppiy (Sc (‘5)))*2 for all positions ¢ in [1,n + w] \ L.

with the dimension of

— If ¢ € Zgrs (see (2), (8) and (12) for the definition), puncturing does not

affect the dimension of the square code:
dim (S¢ (%)) = dim (Pgyy (Sz (4))) .

— If i € Zpg (see (6) for a definition) and 7(i) € £, then according to Lemma 3,
the position ¢ is “derandomised” in S (%) and hence behaves like a GRS
position in the shortened code. Therefore, very similarly to the previous case,
the dimension does not change.

—Ifi € Ipg and 7(4) € L, in Sz (€), the two corresponding columns behave
like random ones. Assuming that the inequality of Theorem 4 is an equality,
which almost always holds when no pair of twin positions is degenerate (see
Sect. 6.7 and Remark 4), then, according to Lemma 5, puncturing S, (%)*2 at
i (resp. 7(7)) reduces its dimension. Therefore,

dim ('P{i} (SL (%)))*2 = dim (P{T(i)} (Sg ((5)))*2 = dim (85 (%))*2 —1.

If some pair of twin positions is degenerate, the non-degenerate ones can be
identified in the same way.

This provides a way to identify any position in [1,n + w] \ £ having a twin
which also lies in [1,n + w] \ £: by searching zero columns in a parity-check
matrix of Sy (4)*?, we obtain the set 7z C [1,n + w] \ £ of even cardinality of
all the positions having their twin in [[1,n + w] \ £L:

775 S IR (1))

{i,7(3)}C[1,n+w]\L
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Once these positions are identified, we can associate each such position to its
twin. This can be done as follows. Take i € 7, and consider the code Sy (€)).

The column corresponding to the twin position 7(i) has been derandomised and

hence will not give a zero column in a parity-check matrix of (Szu iy (‘6))*2, S0

puncturing the corresponding column will not affect the dimension.

This process can be iterated by using various shortening sets £ until obtaining
w pairs of twin positions. It is readily seen that considering O(1) such sets is
enough to recover all pairs with very large probability.

6.3 Recovering the Remainder of the Code

As soon as all the pairs of twin positions are identified, consider the code
P (¢) punctured at Zpg. Since the randomised positions have been punc-
tured this code is nothing but a GRS code and, applying the Sidelnikov Shes-
takov attack [15], we recover a pair a, b such that Pz, (¢) = GRSg(a,b).

6.4 Joining a Pair of Twin Positions : The Code ¢

To recover the remaining part of the code we will consider iteratively the pairs
of twin positions. We recall that Zpg corresponds to the set of positions having
a twin. Let {i,7(¢)} be a pair of twin positions and consider the code

;) def
¢ = Pl @orsutir ) (€).-

In this code, any position is GRS but positions i and 7(i). Hence, for any
codeword ¢ € € we have:

ci = ay; f(x;) + e (f)
Cr(iy = by;f(x;) + dip(f) (22)

for some integer j € [n —w + 1,n], where ¢; and A = (a b) are defined as in

cd

(4) and (5).

Note that we do not need to recover exactly (x,y, A, P). We need to recover
a 4-tuple (z’,y’, A’, P') which describes the same code. Thus, without loss of
generality, after possibly replacing a by ay; and b by by;, one can suppose that
y; = 1. Moreover, after possibly replacing 1; by di;, one can suppose that d = 1.
Recall that in this section we suppose that cd # 0.

Thanks to these simplifying choices, (22) becomes

¢i = af(x;) + cp;(f)
ey = bf () +¥;(f).
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6.5 Shortening ) at the Last Position to Recover T;

If we shorten € at the 7(i)-th position, according to Lemma 3, it will “deran-
domise” the i-th position (it implies v;(f) = —bf(z;)) and any ¢ € Sg, (i)} (€9)
verifies

¢ = (a—bo)f (xy).

Since the support z; and multiplier y; are known at all the positions of AL
but the two PR ones, for any codeword ¢ € Siriyn (‘g(i)), one can find the
polynomial f € F,[z]<; whose evaluation provides c. Therefore, by collecting a
basis of codewords in S¢. ()} (‘K(i)) and the corresponding polynomials, we can
recover the values of z; and a — bc.

6.6 Recovering the 2 x 2 Matrix

Once we have x; we need to recover the matrix

ab
A= < 1) .
Note that, its determinant det A = a — bc has already been obtained in the pre-

vious section. First, one can guess b as follows. Let G bea generator matrix of
€. As in the previous section, by interpolation, one can compute the polyno-

mials f1, ..., fr whose evaluations provide the rows of G, Consider the column
vector
fi(z;)
def .
v = :
fr(x;)

and denote by v; and v,(; the columns of G corresponding to positions c¢;
and ¢

afi(z;) + c;(fr)
v; = : and Vo) =

afi(z;) J'FC?/fj(fk) bfi(zy) .Jr?/)j(fk)

Next, search A € F; such that v; — Av,(;) is collinear to v. This relation of
collinearity can be expressed in terms of cancellation of some 2 x 2 determinants
which are polynomials of degree 1 in A. Their common root is nothing but c.

Finally, we can find the pair (a,b) by searching the pairs (A, i) such that

bfi(zj) +;(f1)

(i) A —cu =det A;
(ii) v; — Av and v, ;) — pw are collinear.

Here the relation of collinearity will be expressed as the cancellation of 2 x 2
determinants which are linear combinations of A, 4 and Ay and elementary elim-
ination process provides us with the value of the pair (a, b).
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6.7 How to Treat the Case of Degenerate Twin Positions?

Recall that a pair of twin positions 4, 7(i) is such that any codeword ¢ € € has
i-th and 7(7)-th entries of the form:

ci = ay; f(z;) + by;(f) cry = cy; f(xg) +dips(f).

This pair is said to be degenerate if either b or d is zero. In such a situation,
some of the steps of the attack cannot be applied. In what follows, we explain
how this rather rare issue can be addressed.

If either b or d is zero, then one of the positions is actually a pure GRS
position while the other one is PR but the process explained in the article does
not manage to associate the two twin columns.

Suppose without loss of generality that b = 0. In the first part if the attack,
when we collect pairs of twin positions, the position 7(7) will be identified as PR
with no twin sister a priori. To find its twin sister, we can proceed as follows.
For any GRS position j replace the j-th column v; of a generator matrix G
of € by an arbitrary linear combination of v; and the 7(i)-th column, this will
“pseudo—randomise” this column and if the j-th column is the twin of the 7(i)-th
one, this will be detected by the process of shortening, squaring and searching
zero columns in the parity check matrix.

7 Complexity of the Attack

The most expensive part of the attack is the step consisting in identifying pairs
of twin positions. Recall that, from [8], the computation of the square of a code
of length n and dimension & costs O(k*n?) operations in F,. We need to compute
the square of a code O(w) times, because there are w pairs of twin positions.
Hence this step has a total complexity of O(wn?k?) operations in F,. Note that
the actual dimension of the shortened codes is significantly less than k£ and hence
the previous estimate is overestimated.

The cost of the Sidelnikov Shestakov attack is that of a Gaussian elimination,
namely O(nk?) operations in F, which is negligible compared to the previous
step. The cost of the final part is also negligible compared to the computation of
the squares of shortened codes. This provides an overall complexity in O(wn?k?)
operations in [Fy.

Conclusion

We presented a polynomial time key-recovery attack based on a square code
distinguisher against the public key encryption scheme RLCE. This attack allows
us to break all the so-called odd ID parameters suggested in [17]. Namely, the
attack breaks the parameter sets for which the number w of random columns was
strictly less than n — k. Our analysis suggests that, for this kind of distinguisher
by squaring shortenings of the code, the case w = n — k is the critical one. The
even ID parameters of [17], for which the relation w = n—k always holds, remain
out of the reach of our attack.
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Abstract. In ASTACCS 2015, Nunez, Agudo, and Lopez proposed a
proxy re-encryption scheme, NTRUReEncrypt, based on NTRU, which
allows a proxy to translate ciphertext under the delegator’s public key
into a re-encrypted ciphertext that can be decrypted correctly by del-
egatee’s private key. In addition to its potential resistance to quantum
algorithm, the scheme was also considered to be efficient. However, in
this paper we point out that the re-encryption process will increase the
decryption error, and the increased decryption error will lead to a reac-
tion attack that enables the proxy to recover the private key of the
delegator and the delegatee. Moreover, we also propose a second attack
which enables the delegatee to recover the private key of the delegator
when he collects enough re-encrypted ciphertexts from a same message.
We reevaluate the security of NTRUReEncrypt, and also give suggestions
and discussions on potential mitigation methods.

Keywords: NTRUReEncrypt - NTRU - Decryption failure -
Reaction attack - Key recovery

1 Introduction

The concept of proxy re-encryption (PRE) scheme was proposed by Blaze,
Bleumer and Strauss in 1998 [5]. A re-encryption scheme allows a proxy to
translate ciphertext under the delegator’s public key into a ciphertext of the
same message that can be decrypted correctly by the delegatee’s private key,
whereas the proxy is given just a re-encryption key and learns nothing about
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the message. A PRE scheme can be seen as an extension of public-key encryp-
tion. It uses same fundamental algorithms as a traditional public key encryption
scheme. Additionally, it also requires algorithms to generate re-encryption keys
and to re-encrypt ciphertexts.

In the literature, there exit a number of proxy re-encryption schemes, based
on number theoretic problems such as the discrete logarithm problem [6]. How-
ever, due to Shor’s quantum algorithm, the integer factorization problem and the
discrete logarithm problem can be solved efficiently [17,18]. It is crucial to have
alternatives that are robust against quantum computers. In 2017, NIST [1,7]
started a standardization process on post-quantum cryptography. Among all can-
didate proposals, lattice based solutions are ones of most promising. Although
NIST considers only public key encryption and signature schemes at this stage,
it is also important to identify lattice based candidate for proxy re-encryption
schemes, for examples [3,20].

At AsiaCCS 2015, Nufiez, Agudo and Lopez [16] proposed a new proxy re-
encryption scheme, NTRUReEncrypt, based on a well-established lattice-based
public-key encryption scheme NTRU. Here the encryption and decryption mes-
sages are identical to the classical NTRUEncrypt scheme. With an additional
re-encryption mechanism, they achieved an efficient post-quantum PRE scheme.

NTRU [12], introduced by Hoffstein, Pipher and Silverman in 1996, has been
standardized by IEEE 1363.1 [19] and ANSI X9.98 [2]. It features high effi-
ciency and low memory requirement. After 20 years of development, there are
three mainstreams of the NTRU algorithms. The IEEE standardized version,
NTRUEncrypt was later on submitted to NIST-PQC process as [21]. The param-
eters follow the design principals outlined in [11]. The other two NTRU based
submissions are NTRU-prime [4] and NTRU-HRSS [15] schemes.

Similar to other lattice based cryptosystems, the NTRU scheme may admit
decryption errors. When a decryption failure occurs, information on private keys
may be (partially) leaked. In 2003, Howgrave et al. [14] successfully demon-
strated an attack that employs large number of queries to a weak decryption
oracle. Unlike a classical decryption oracle, a weak decryption oracle will only
tell whether a valid ciphertext was decrypted correctly or not (see [13]). This
attack is later known as the reaction attack, and becomes common to lattice
based cryptography [8,22]. In practice, to address this attack one may choose
optimized parameters so that the decryption error is negligible in security param-
eter, for example, NTRUEncrypt [11]; or less optimized ones that eliminate the
decryption errors, for example, NTRU-HRSS [15].

In NTRUReEncrypt, the delegator first chooses a small polynomial s, and
encrypts the message m as Cy4 = hag * s + m, where delegator’s private key is
(fa,94) and delegator’s public key is hq = p* ga * f;l. After receiving Cy4, the
proxy chooses small polynomial e and sends Cp = Cy * rka_.p + p x e to the
delegatee, where rka_p = fa * fg5 ! is the re-encrypted key of the proxy and
fB is the private key of the delegatee. Finally, the delegatee computes Cp * f5
modulo ¢ and reduces it modulo p to recover the message m.
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Our first contribution is to analyze the NTRUReEncrypt scheme using the
aforementioned reaction attack. Note that the NTRUReEncrypt scheme follows
the parameter sets in [11,19,21]. The probability of decryption failure was set to
be negligible in the security parameter for a public key encryption scheme. How-
ever, the re-encryption process of NTRUReEncrypt significantly increases decryp-
tion error!. We give a detailed analyze the probability of decryption failure in
Table 1, and show how to use a reaction attack to recover private keys, given
sufficient many decryption failures. We also note that one can simply mitigate
this attack by increasing the modulus (and also the dimensions accordingly to
ensure the lattice problem is still hard in practice) so that decryption failure
probability becomes negligible again.

Table 1. The probabilities of decryption failure after encryption and re-encryption

Parameter sets | [0ga(Pacc(c)) | loga(Paec(c))
ees1087epl —219 —-92
eesll7lepl —245 —117
ees1499%epl —323 —200
ntru-443 —217 -35

ntru-743 —122 —16

Our other contribution is a new attack in which a curious delegatee receiving
a large re-encrypted ciphertexts from a single message can recover the private key
of a delegator. Roughly speaking, note that the intermediate polynomial during
the delegatee’s decryption has the form of Cp, * fp = p*ga*s;+mx* fa+p*e;x fp.
Once the delegatee collects enough (denoted by 1) intermediate polynomials for
a same message m, he can average them to obtain p* ga * Zi’:1 sifl+mx fa+
p* fp * 22:1 ei/l = B * 22:1 Cp,/l. Since s;, e; are randomly chosen small
polynomials, for sufficiently large [, the coefficients of p x g4 * 22:1 s;/1 and
p* fp * 25121 e;/l will be very small. Hence, with overwhelming probability, the
equation m* fa4 = Round(Z:i:1 fB*Cp,/l) holds, from which we can efficiently
recover the private key f4. To resist such an attack, some randomized padding
scheme should be added carefully (Table 2).

Our second attack indeed bases on the fact that each re-encrypted messages
leaks partial information of the secret key. Our attack is a simple illustration
of such a leakage. In lattice based signatures schemes, transcript leakages are
usually fixed with rejection sampling methods. It is not trivial to apply this
method to an re-encryption scheme. We leave secure instantiation of NTRU
based re-encryption schemes to future work.

! Indeed, even if the NTRUReEncrypt adopts NTRU-HRSS parameter sets that don’t
have decryption errors by design, the re-encryption process will introduce decryption
errors.
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Table 2. The approximate number of required re-encrypted ciphertexts

Parameter sets | Number of ciphertexts
ees1087epl 2°8:5
ees1171lepl 2587
ees1499epl 259-7
ntru-443 2535
ntru-743 2573

Roadmap. The remainder of the paper is organized as follows. In Sect. 2,
we recall the original NTRU encryption and explain its decryption failures. In
Sect. 3, we present the proxy re-encryption scheme NTRUReEncrypt. In Sect. 4,
we give our first attack against NTRUReEncryptand analyze the decryption fail-
ure probability. In Sect.5, we give our second attack against NTRUReEncrypt.
Finally, we give a short conclusion in Sect. 6.

2 Notations and Preliminaries

2.1 Notations and Definitions

Let R denote the ring Z[X]/(XY — 1), where N is prime. Let + and * denote
addition and multiplication in R, respectively. For integer p, ¢, ged(p, q) = 1 and
p < q. Let R, be the ring Z,[X]/(XY —1) and R, be the ring Z,[X]/(XY —1).
We use ||.||, to denote the infinite norm and ||.|| to denote the Euclidean norm.

A polynomial a(z) = ag +ayz + - -+ +ay_12V ! is identified with its vector
of coefficients a = [ag, a1, -+ ,an—1]. The maximum and minimum coefficients
of polynomial or vector are denoted by

Mazx(a(z)) = Ogr%%(_l{ai} and Min(a(z)) = og?guz{/lq{ai}'

The width of a polynomial a(X) is the difference between its largest and smallest

coeflicients
Width(a(z)) = Maz(a(x)) — Min(a(z)).

The reversal polynomial a(x) of a polynomial a(z) in R is defined to be
a(z) = a(z™t). If a = (ag,a1, -+ ,an_1), then @ = (ag,an_1,an_2, - ,a).

Let a(x) = a(z) * a(z) in R, a coefficient a@; of a(z) is the dot products of a
with its successive rotations z¢ ¥ a. We have @y = Y2 o' a? = [l

For positive integers dy, do, We set the notation:

T trinary polynomials of R with d; entries
(d1,d2) = equal to 1 and dy entries equal to — 1 [
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2.2 Overview of NTRU

We now briefly present the basic NTRU encryption scheme, for more details see
[12]. The polynomials used in NTRU are selected from four sets L£7,L4,L5,Lm,
where Ly ={f: f € ’T(df,df_l)}, Lo={g:9¢€ 7'(,197%)}, Le={s:5€Tq, a,)}
and L,,={m € R : every coefficient of m lies between % and 172;1}

~ KeyGen(1¥): On input security parameter k, the key generation algorithm
KenGen first chooses f € Ly, such that f has inverse f~ Vin R, and Iy Lin
R,, g € Ly, then computes h = p * g * fq_1 mod ¢ and outputs public key
pk = h and private key sk = (f, g).

— Enc(pk, m): On input the public key pk and a message m € L,,, the encryp-
tion algorithm Enc chooses s € L4 and outputs the ciphertext ¢ = h*x s+ m
mod gq.

— Dec(sk, ¢): On input the private key sk and the ciphertext ¢, the decryption
algorithm Dec computes a = ¢* f mod ¢, and place the coefficient of a in
the interval (—q/2,¢/2]. Outputs m = a x f,;' mod p.

2.3 Decryption Failures

When decrypting a ciphertext ¢, one caluates
a=cxf=pxgxs+mx*f modq. (1)

Since the polynomials f, g, s and m are small, the coefficients of polynomial
p*xg*s+mx* fliein (—q/2,q/2] with high probability. If the equality mod ¢ in
Eq. (1) also holds over Z. Then, we have

a*fljl:p*g*s*f;l—km*f*f;l:m mod p.

Hence decryption works if Eq. (1) also holds over Z. A warp failure occurs if
lp*g*s+m=xf| . > q/2and agap failure occurs if the width of pxg*s+mx* f
is greater than or equal to q.

Howgrave et al. [14] presented the attack based on decryption failure. The
attacker selected (m,s;) with fixed m, such that |[p*g*s, +m=* f|| . > ¢/2.
Once the attacker collected sufficiently large (m,s;), the attacker can recover
the private key (g, f).

3 NTRUReEncrypt

3.1 Presentation of the Scheme

In [16], Nufez et al. proposed a proxy re-encryption scheme NTRUReEncrypt
based on NTRU, where a proxy is given re-encryption key rk4_.p that allows
him to translate a message m encrypted under Alice’s public key pka into a
re-encrypted ciphertext of the same message m decryptable by Bob’s private
key skp.
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The NTRUReEncrypt scheme consists of five algorithms:

~ KeyGen(1%): On input the security parameter k, the output of key genera-
tion algorithm for Alice is (ska, pka), where ska = (fa,94) and pka = ha.
Let f;l denote the inverse of f4 in the ring R,.

— ReKeyGen(ska, skg): On input the secret key sks and the secret key
skp, the re-encryption algorithm ReKeyGen computes the re-encryption key
between Alice and Bob as rka_.p = fa % flgl mod q. The re-encryption key
can be computed by a simple three-party protocol originally proposed in [6],
is as follows: Alice selects r € R, and sends r * f4 mod ¢ to Bob and r to
the proxy, then Bob sends 7 * fa * fz 1 mod ¢ to the proxy, so the proxy can
compute rka_.g = fa * fgl mod gq.

— Enc(pka,m): On input the public key pks and the message m, the encryp-
tion algorithm Enc generates s € 74, 4., and outputs C4 = ha * s + m
mod q.

— ReEnc(rka—p,C4): On input a re-encryption key rk4_,p and a ciphertext
Ca, the re-encryption algorithm ReEnc generates e € 7y, 4, and outputs
Cg=Cyxrka_p+p*xe modgq.

— Dec(ska,C4): On input the secret key ska and the ciphertext C4, the
decryption algorithm computes C4" = C4 * f4 mod ¢ and outputs m = C4’
mod p.

Next, We would like to point out that

— In order to decrypt the re-encrypted ciphertext correctly, the private polyno-
mial fp has to be congruent to 1 modulo p. So the difference between NTRU
and NTRUReEncrypt of the key generation is that the private key f has the
form of 1+ p« F', where F' € T4, 4,)-

— In practical, the message m is padded with random bits and masked according
to a hamming weight restriction, which means message representatives are
trinary polynomials with the number of +1s, —1s, and 0s each be greater
than d,,. So for simplicity, m satisfies the hamming weight restriction in this
paper.

— The error term e is chosen randomly from the ring R during the re-encryption
in [16], which is unreasonable. In fact, e should be small, we therefore assume
that e is sampled from the same set as s.

For the correctness of Bob’s decryption, when Bob gets the re-encryption cipher-
text C'g, he first computes

Cp*fp=(Caxfaxfz'+pxe)*fp

=(haxs+m)xfat+pxexfp (2)
=pxga*xs+mx*fa+prexfp modg.
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If the last part of Eq. (2) also holds over Z, then we have Cz = p* g4 * s+ m*
fa+pxex fg. After taking modulo p, Bob can obtain the original message m.

Remark 1. The scheme is also bidirectional and multihop, namely it’s trivial
to obtain rkp_a from rka_p and the re-encryption process can be repeated
multiple times.

3.2 Parameter Sets

The author of [16] implemented NTRUReEncrypt scheme on ees439epl,
ees1087epl, ees1171lepl, ees1499epl parameter sets following the IEEE P1363.1
standards [19]. They also used the product form polynomials for optimization of
each set. However, some specific parameters are not clear in [16], so we only list
ees1087epl, ees1171lepl, ees1499epl in Table 3.

Note that the NTRU project has proposed new parameter sets ntru-443 and
ntru-743, which are submitted to NIST PQC competition [21]. For completeness,
we also list them in Table 3 to analyze the security of the scheme.

For ees1087epl, ees1171lepl, ees1499epl, ntru-443, ntru-743, the private key is
(f,9) = (1+p*F) with F' € T(4, 4,y and g € T(44,4g), the polynomial s € 7(g, 4,)-

Table 3. Some instances of trinary polynomials

Instance N

ees1087epl | 1087
eesll71lepl | 1171
ees1499epl | 1499
ntru-443 443
ntru-743 743

q dg | df=ds=dm
2048 | 362 | 120
2048 | 390 | 106
2048 1499 | 79
2048 | 143 | 143
2048 | 247 | 247

WlWw| w|w|w|o

4 Reaction Attack Against NTRUReEncrypt

Recall that in Bob’s decryption, the intermediate polynomial is p * g4 * s + m *
fa+px*xex fp and the additional term p * e * fg produces an increased error.
Hence, the decryption failure probability is expected to significantly increase. On
the other hand, the attacks based on the decryption failures has been studied
well in [14]. Therefore, we employ their attack to analyze the security of the
NTRUReEncrypt scheme.

More precisely, it is assume that the attacker has access to an oracle to
determine whether a validly created ciphertext can be decrypted correctly or
not. The attack takes as follows. The first stage is that the attacker uses the
oracle to collect (m,s,e), which generates the re-encrypted ciphertext Cp that
can not be decrypted correctly. The second stage is that the attacker fixes (m, )
and randomly searches e;, where (m, s, e;) causes decryption failure. The final
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stage is that the attacker uses those ¢€; correlated with E to determine the
private key fp. Note that the proxy can create C4, by encrypting random m,
with random s; and Cp, by re-encrypting C4, with random e;, we therefore
assume that a corrupt proxy can act as an attacker.

Before explaining our attack, we first show that the decryption failure prob-
ability of NTRUReEncrypt significantly increases for Bob.

4.1 Estimating Decryption Failure Probability of Cy4

We use the method introduced in [10] to estimate the decryption failure proba-
bility. Recall that in Alice’s decryption, she computes

Cal =pxga*xs+ faxm
=p*xga*xs+pxFaxm+m mod g,

Decryption works, if
1CA"||. = P (ga % s+ Faxm)+ml <q/2.

Therefore, the decryption failure probability Py.. can be bounded by the prob-
ability that one or more coefficients of ga * s + F)4 * m has an absolute value
greater than ¢ = (¢ — 2)/(2p). So we have

Pyec(c) = Pr{|lga x s+ Faxml| > c].

For trinary Fa € T(a;,a;)s 94 € T(a,,d,)» 5 € T(d,.,d,)- Let X; denote a cofficient
of ga * s + Fa * m, then X; has the form

(gaxs+Faxm)j = (sxga)j + (Fa*xm);j,

and each term in the sum is a sum of either 2d; or 2d; coefficients of g4 or m.
Note that each term in the sum has mean 0.
For instance, let £() € {1,—1} and a(%) represents index, we have

2d

(s%94); = > _e(i)(ga)a(i)-

i=1

We assume that the coeflicients of g4 are independent random variables taking
the value 1 with probability %, —1 with probability dﬁf’ and 0 with probability

N-2d, : 2 ; .
—=2. Hence, the variance o7 of (ga * s); is computed as:

4dd
of = E((s*ga)} ZE ((9a)2 -

Recall that the message m is sampled uniformly from the set of trinary
polynomials, which restrains that the number of non-zero coefficients can not
exceed N — d,,,. We also assume that the coefficient of m is chosen as +1 with
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the probability & jvdm and 0 with the probability %. Similarly, the variance o3
of (Fa*m); is
N —dn,

N
Suppose 2d;, 2d, are large, the central limit theorem suggests that the distribu-
tion of X; has the normal distribution with mean 0 and variance o

Ug = E((Fa * m)?) = 2dy -

4dsdy +2ds - (N — dy,
0% = 0% 402 = g+ ;v( )

With complementary error function erfc(-), the probability that a coefficient X
has absolute value exceeds c is given by

Pr[|X;| > ¢] = erfc(c/V20).
After applying the union bound, the probability Py..(c) is bounded by
Pdec(c) =N- erfc(c/\/ia),

where

erfc(c/V20) = % . / - e da.
c/V20

4.2 Estimating Decryption Failure Probability of Cp

When Bob receives the re-encrypt ciphertext C'g, the intermediate process is to
compute
Cp' =pxgaxs+mxfa+pxex fp,

and the failure occurs if
[p-(gax*s+Faxm+px*Fpxe)+pe+m| > q/2

Similarly, for trinary Fp € 7(4; 4,), we get the probability
Pec() = N - erfe(c /v20"),

where

and
d=c—1.

We estimate decryption failure probabilities with the parameters specified in
Sect. 3.2 and list them below (Table4).

As we can see, the probability that the re-encrypted ciphertext Cp fails to
decrypt is much greater than that of C4. What’s more, the decryption failures
lead to reaction attack.
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Table 4. The probabilities of decryption failure during encryption and re-encryption

Instance o® |0 |10g2(Paec(c)) | loga(Pace(c))
ees1087epl | 373 | 850 | —219 —92
eesll7lepl | 334 | 679 | —245 —117
ees1499epl | 255 | 405 | —323 —200
ntru-443 378 12040 | —217 —-35

ntru-743 658 | 3614 | —122 —16

4.3 Description of the Attack

For completeness, we simply describe the attack as below. See [14] for more
details about the reaction attack based on the decryption failure.

— Stage 1: The attacker first collects (m,s,e), which will generate the re-
encrypted ciphertext C'g that can not be decrypted correctly. Moreover, the
triplet (m, s, e) should satisfy two conditions: there must be a coefficient of
p*ga*s+ m* faq that is both abnormally far from its expected value and
further from the expected value than any other coefficient, and the distances
between the two coefficients of px g4 * s+ m* f4 furthest from their expected
value, which is known as the gap of pxga xs+m=x f 4, should be large enough.

— Stage 2: For fixed (m,s) found in Stage 1, the attacker randomly chooses
e; and collects (m, s, e;) that causes decryption failure for Bob. Suppose the
i—th coefficient of p *x g4 * s + m * f4 is abnormally far from its expected
value, then it is most likely that the absolute value of the i—th coefficient of
prgaxs+mxfa+pxe; x fp exceeds ¢/2. The strength of this bias towards
the i—th coefficient of the p*x ga * s+ m* fa +p*e; x fp will depend on the
gap of p*xga xs+mx* fq. What’s more, it suggests that e; is correlated with
;Ei* f5. Since the reversal of 2 * fg equals to ™% * fg, & is corrected with

B

— Stage 3: For sufficiently large k, the value of f;; can be derived from the

average of the polynomials é1,é3, - - -,€,. Furthermore, fg can be recovered
from J/f; according to the algorithm introduced in [9].
Since the proxy has the re-encryption key rka_.p = fa * fgl mod ¢ and the
public key of Alice is hq = p*xga * fgl mod ¢. Once the attaker recovers the
private key fg, fa can be found by computing f4 = rks_p* fg mod ¢ and
ga can be found by computing g4 = p*ga * ha mod q.

5 Key Recovery Attack Against NTRUReEncrypt

In this section, we show that curious Bob can recover Alice’s secret keys f4 when
collecting enough ciphertexts from a single message.
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5.1 Key Idea of Recovering f4 for Bob

For simplicity, suppose a message m could be encrypted [ times using the same
public key fa of Alice, and the ciphertexts are computed as

CAi:hA*Si—i-m ’i=1,-~~7l.

When Bob receives Cp, corresponding to Cy,, he can first computes the following
relation
IB*xCp, =pxgaxsi+pxfp*xe;,+mx fa.

Next, Bob obtains

l

fB*ZCBi:p*gA>k(Zsi)—i—p*fB*(Zei)—l—l*m*fA.

i=1 =1 i=1

Note that p, ga, s;, fB, and e; are small. We can expect that for sufficiently large
l p*gA*Zﬁzl si/k and px* fp *Zﬁzl e;/k are small enough. Since the coefficients
of m x f4 are integer, the following equation holds with high probability,

1
mx* fa = Round(z fB*xCg,/0).
i=1

where Round(-) is a rounding function.
Since Bob can decrypt correctly to obtain the message m, so the unknown
private key fa will be recovered by solving the above linear equations.

5.2 Analyze the Size of |

For the attack, we need [ that satisfies

< <

1
47

!
pxfp*Y el
i=1

l
1
proas s/l <7
i=1

oo o0

to ensure m * f4 = Round(Zézl fB*Cg,/1).
For any s; € 74, 4,), let X = 22:1 si/l = (Xo,+ -+ ,Xn-1). For sufficiently
large [, the central limit theorem states that X has the N dimension normal

distribution N (0, X), where the diagonal elements of X' are %7\,5 and the rest are
—2d,
IN(N-1)"
We define || 2|, = max Zjvzl |oi;|, where 0;; is the component of X. Now
(]

we have || 2|, = 7%. Let A denote the maximal eigenvalue of X, then we have

A< |8 = 3.

On the other hand, there exists Y = (Yy, Y1, -+ ,Yn_1) and an orthogonal
matrix D, such that

X =YD,
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where Yy, ---, Yy_1 are independent variables and the covariance matrix of Y
is a diagonal matrix in which the elements on the diagonal are the eigenvalues
of the covariance matrix X' of X. Hence, let Var(Y;) denote the variance of Yj,
we know

A= mjaxVar(Yj) < lef\;

To estimate the probability Pr [Hp * gA * Zli:1 Sl/lH < ﬂ , we can consider
oo

the probability Pr [ﬂ;\;l |X;] < e], where € satifies

1
1

p*gA*(lei/l) §2dgpe§1.
Since Xp, ---, Xny—1 are not independent, we can consider the probability
Pr [m;vz1 IY;| < G/N} instead, where

N N-—1

Pr| (il <e/N| = J] Prjl < e/N).
Jj=1 i=0

By the Chebyshev inequality, we know that

Var(Y;
Pe(y)l < e/N) 21— TU)
Finally we obtain
Al A 4d,N
Pri( ;| <e/N 2(1_W) 2(1—?) :

Jj=1

Recall that e; has the same distribution, a similar analysis applies. So, for

simplicity, we compute the value of [ that makes 47;21\/ as small as possible by

setting € = 81’#. We roughly give the [ needed to recover the private key with
9

overwhelming probability (0.8 for the following table) in ees1087epl, ees1171lepl,
ees1499epl, ntru-443 and ntru-743 (Table5).

Table 5. The approximate number of received re-encrypted ciphertexts

Instance l
ees1087epl | 4.06 - 10*7
ees1171epl | 4.83 - 107
ees1499epl | 9.67 - 1017
ntru-443 | 1.26 - 106
ntru-743 | 1.82- 107
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6 Conclusion

In this paper, we presented two key recovery attacks against NTRUReEncrypt
to show the weakness of the scheme.

— The first one is based on the attack introduced in [14]. The attacker has access
to an oracle that can detect whether the valid ciphertext can be decrypted
correctly or not. The countermeasures to mitigate this attack is by tuning
the parameters to ensure that the decryption failure probability is negligible,
ie., < 27128,

The second one is based on the fact that Bob knows the original message m,
so he can compute an equation in the form of p*ga * 22:1 sifl+mx* fa+p*
fB * 22:1 e/l = fpx* 22:1 Cp, /1. For sufficiently large I, p * g4 * Ei:l si/l
and p x fp * Zi.zl e;/l converge to 0. Hence f4 can be recovered by solving
m* fa = Round(fp * Zé:l Cg, /).

Acknowledgement. The authors would like to thank David Nufiez for his helpful
discussions.
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Abstract. The Minrank (MR) problem is a computational problem
closely related to attacks on code- and multivariate-based schemes. In
this paper we revisit the so-called Kipnis-Shamir (KS) approach to this
problem. We extend previous complexity analysis by exposing non-trivial
syzygies through the analysis of the Jacobian of the resulting system,
with respect to a group of variables. We focus on a particular set of
instances that yield a very overdetermined system which we refer to as
“superdetermined”. We provide a tighter complexity estimate for such
instances and discuss its implications for the key recovery attack on
some multivariate schemes. For example, in HFE the speedup is roughly
a square root.

Keywords: Minrank problem - Multivariate - Cryptanalysis - HFE

1 Introduction

The post-quantum cryptography initiative emerges in response to Shor’s factor-
ing algorithm [25], to identify quantum hard problems to support cryptographic
constructions. This major endeavor has come to a climax in recent years with
NIST’s ongoing post-quantum “competition.”

One central problem is the Minrank problem (MR). Its decisional version is,
given m matrices My, Ma, ..., My, € M,x,(F), and a target rank r, to deter-
mine whether there exists a linear combination of these matrices with rank at
most r. It is important both in multivariate public key cryptography [4,21,23,26],
and in code-based cryptography [19]. Buss et al. first introduced the MR problem
and proved it NP-complete [3]. In the context of cryptography, MR first appeared
as part of an attack against the HFE cryptosystem by Kipnis and Shamir [21].
There are three well known approaches to solve the Minrank problem, namely,
Kipnis-Shamir (KS), minors [16], and linear algebra search [20].

The complexity of the minors approach and of the linear algebra search are
well understood. However, the complexity of the KS approach is not so clear. In

© Springer Nature Switzerland AG 2019
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[16], the authors assume that a generic instance of KS yields a “generic enough”
bilinear system (see Sect.2.2), and under this assumption, using the results in
[17], they estimate the solving degree at d = min(m,r(n — 7)) + 1 and so the

1o} (err(nfdr)erf 1) w

complexity of KS as ), with 2 < w < 3. Experimental

evidence shows that this estimate wildly overestimates the true solving degree
[4].

An important technical contribution of this paper is to show that the assump-
tion that the KS system is generic bilinear is unrealistic. The system is indeed
bilinear in two sets of variables that we call the linear variables and the kernel
variables. However, we expose the structure in the system beyond bilinearity.
It can be seen as having a sequence of generic bilinear blocks. Such a structure
implies that the Jacobians with respect to the linear and kernel variables have
particular forms. This is important because left kernel vectors of the Jacobian
are syzygies. Thus, through the Jacobian with respect to the linear variables,
we show how to construct some non-trivial syzygies, yielding non-trivial degree
falls.

The degree of these syzygies suggests a crucial distinction between two cases
of the MR problem. If m > nr, these syzygies typically have degree r + 2.
However, if m < nr, we can construct a number of lower degree syzygies. We
refer to instances where m < nr as “superdetermined.” This property applies
to several multivariate schemes and it is in contrast to instances of the minrank
problem that occur in other contexts, like rank-based cryptography.

The exposed structure of the KS system leads to tighter complexity estimates
for the superdetermined MR instances. Using the XL algorithm and multiplying
only by monomials from kernel variables, the complexity of solving uniformly
random instances of KS systems is O ((rx)(xs¥2)«) where 2 < w < 3,

sz:min{d| [(2)n>(dil)m}71§d§r—l},

_m_
n—r’

and k can be chosen so that max { dks + 1} < k < n—r. This is much lower

than previous estimates. For example, if m = n and r < \/n, then dxs < r/2+1,
and we can choose k = 1/n, so that, rx < n, and hence, our complexity estimate
is O(n("/2%) compared to O(n™) from previous estimates, c.f. [1].

Since a key recovery attack based on the MR problem can be performed on
several multivariate schemes, we revise the complexity of the KS method for
some multivariate schemes such as HFE, ZHFE, and HFEv-. The speedup in
each case depends on the ratio of m to n and on the relation between n and r.
For example, in HFE the speedup is roughly a square root.

The paper is organized as follows. In Sect. 2 we present background material.
In Sect. 3 we describe the structure of the KS system. In Sect. 4 we provide the
main results of the paper, including the construction of the syzygies. In Sect. 5
we revise the complexity of the KS method based on the new findings. In Sect. 6
we provide some experimental data supporting the theoretical results. Finally, in
Sect. 7 we discuss the implications of our findings for some multivariate schemes.
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2 Preliminaries

2.1 Solving Multivariate Systems of Equations

Let F be a finite field, and consider the polynomial system F' = a, where a is
an element in the image of F' = (f1,..., fim) : F™ — F™, and the f;’s are multi-
variate polynomials in the unknowns x1, ..., z,, with coefficients in F. The first
effective algorithm for solving nonlinear multivariate systems did so by comput-
ing a Grébner basis for the ideal generated by the equations [2]. Since the late
90s, however, far superior algorithms have been developed such as Faugere’s F4
and F5 [14,15], and the XL family of algorithms inspired by [22] and popularized
in [6,21].

The XL algorithm simply computes an echelon form of the Macaulay matrix
in degree d of F' for high enough d. This is the matrix whose columns represent
the monomials of degree at most d with rows representing each polynomial of
degree less than or equal to d of the £ f;, where t is a monomial. It can be shown
that there exists some degree d such that this echelon form is a Grébner basis of
the ideal. The algorithms F4 and F5 are similar but more efficient in removing
redundant rows a priori. The first fall degree dg is the smallest degree such
that some polynomial drops in degree after echelonizing the Macaulay matrix.
It is widely accepted that dg is a good parameter to measure the complexity of
solving polynomial systems [10-13]. The reason is that often the solving degree
is not much larger than the first fall degree. Our experiments confirm this is the
case for KS systems, as shown below in Sect. 6.

2.2 Bilinear Systems

Consider two tuples of unknows x = (21, x2,...,%,,) and y = (y1,Y2,- -+, Yn,)-
Let F[x,y| denote the ring of multivariate polynomials with coefficients in F
and variables x1,Zo,...,Tny, Y1,Y2, - -, Yny. A bilinear polynomial f(x,y) is a

quadratic polynomial in F[x, y] which is affine in each set of variables. If we can
write f(x,y) = x' Ay for some A € M., xn,(F), we say f is a homogeneous
bilinear polynomial.

Throughout this work, sequences of polynomials are considered as column
vectors of polynomials. Suppose f; € F[x,y] is a bilinear polynomial for i =
1,2,...,m. The sequence F = (f1, fa,..., fm) is called a bilinear sequence on
F[x,y]. In the particular case when each f; is also homogeneous, we say F is a
homogeneous bilinear sequence on F[x,y].

Definition 1. Given a sequence F = (f1, fo,..., fm) on Flax, y|, the Jacobian of

— |9fs

F with respect to the set x, is given by jac,(F) = [azj . Likewise

] 1<i<m,1<j<n
we define jac,(F), the Jacobian of F with respect to the set y.

When F is a bilinear sequence, each entry of jac,(F) (resp. jac,(F)) is
a linear form in the y (resp. x) variables. A syzygy of F is a sequence

G =(91.92:---,9m) € Flx,y]™ such that 31" g; fi = 0.
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Proposition 1. Let F = (f1, fa,..., fm) be a homogeneous bilinear sequence
on F[x, y]. Suppose G = (g1,92,---,9m) S a sequence on F[y], then

Zgifi =0 (1)
i=1

if and only if GT belongs to the left-kernel of jac,(F).

Proposition 2. Suppose that F is a homogeneous bilinear sequence on F[z, y.
If a sequence G on Fz] is a syzygy of F, then G is not a trivial syzygy".

2.3 Minrank Problem

One complexity theoretic problem related to the hardness of solving certain
multivariate systems is the MinRank (MR) problem. The computational MR
problem can be stated as follows.

Problem 1 (MinRank (Search Version)). Given a positive integer r, and
m matrices My, Ms, ..., M,, € Mg (F), find z1,22,...,2, € F such that
Rank (32,%, weMy) <.

The decisional version of the MR problem is known to be N P-complete even
if we insist that s = ¢ = n, see [3], and seems difficult in practice. There are
three main methods in the literature for solving the MR problem, Kipnis-Shamir
modeling, minors modeling [1] and linear algebra search [20].

Introduced by Kipnis and Shamir in [21], the KS method stands on the
following fact: if p < n, M € Myun(F), K’ € M,,»,(F) has rank p and MK’ =
0, then Rank(M) < n — p. Thus, the MR problem can be solved by finding
X1,y Ty K1y - oy kp(n—p) € F such that

(g $4M6> | =o 2)

where
k1 ko sk

K=| S (3)
kr(nfrfl)Jrl kr(n7r71)+2 o kr(nfr)

and I,_, is the identity matrix of size n — r. If there exists a matrix in the
span of the M;’s such that its column space is generated by its r rightmost
columns, then the system (2) has a solution. This system is bilinear in the
variables x = (z1,...,%n) and the unknown entries k = (k1, k2, ..., ky(n—r)) of
K. Throughout this work we will refer to the first group as the linear variables,
and to the second one as the kernel variables. Therefore, (2) can be seen as a
bilinear system of n(n — r) equations in m + r(n — r) variables. The complexity

! For a formal definition of a trivial syzygy see [13].
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of solving this kind of system has been studied by Faugere et al. in [16,17]. They
upper bound the complexity of KS modeling by that of solving a generic bilinear
system with n(n — r) equations, where one group of variables has m elements
and the other has r(n — r) elements. In that case, the given bound is

m+r(n—r)+min(m,r(n —r)) + 1\
°(( ))

min(m,r(n —r)) + 1

where 2 < w < 3 is the linear algebra constant.

3 The Structure of the KS System

In this section we describe the basic structure of the system given in (2). First,
in Sect. 3.1, we show that such a matrix equation can be seen as a set of n — r
chained bilinear subsystems, where each subsystem has generic quadratic part
and linear part involving only the x variables. Then, in Sect. 3.2, we describe the
Jacobian of the system with respect to the kernel variables. We show that if a
KS instance F is chosen uniformly at random, then, with high probability, the
syzygies of F that only involve linear variables have degree at least r.

3.1 KS and Bilinear System

Set M = Z;’;l x¢My, where each My € My, (F). Let M(; jy and My (; ;) denote
the (4,7) entry of the matrices M and M,, respectively. Under this setting, the

(i,7) entry of M - [I,,_, K] Tis given by the polynomial
fj(l) = Z M(i,n—r+t) ’ k(t—l)H—j + M(ivj) € F[X’ k]’ (4)
t=1

where 1 <i <n,1<j <n-—r,and ky_1),4; is located at the (t,7) entry of
K. The sequence F formed by the n(n — r) polynomials given in (4) is called a
KS sequence with parameters n, m,r. The sequence F is bilinear in the sets of
unknowns x = (x1,...,2y,) and k = (ki,k2,...,ky(n—p)). Recall that we refer
to x and k as the linear and kernel variables, respectively. We also denote as
KS(n,m,r) the set of KS sequences with parameters n,m,r. A KS system is a
system of the form F = 0, where F is a KS sequence.

Even though a sequence F € KS(n,m,r) is bilinear, it is not a generic one.
Notice that each polynomial fj@ only involves r variables of the set k and its
linear part only contains variables from x. Fort = 1,2, ..., n—r, let F; denote the
subsequence of F given by F; = ( ft(l), ft(Z), cee t(n)). This sequence is bilinear in
the set of variables x and k") = (kt—1)r41> K(¢—1)r+2; - - - , kr). Notice that the
coefficient of every quadratic monomial in F can be any element in F. On the
contrary, the linear part of the polynomials in F only contains linear variables,
so the coefficients of the kernel variables in the linear part of the polynomials
in F are forced to be zero. Thus, a sequence F € KS(n,m,r) can be seen as
F = (F1,Fa,...,Fn_r), where the quadratic part of F; is generic (no restrictions
at all) and the linear part is a generic linear form in the linear variables.
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3.2 Jacobian with Respect to Kernel Variables

Let us begin by showing the structure of the Jacobian with respect to the kernel
variables for KS sequences. Here we set F; = (ft(l), t(z)’ e ft(”))7 ft(l), M as in
Sect. 3.1 and ® will denote the Kronecker product.

Lemma 1. Suppose F = (F1,Fa,...,Fn_r) € KS(n,m,r). Let I,_, be the
identity matriz of size n — r. Then for j € {1,2,...,n — r}, we have that
Jacy (Fi) = jacyy (F;), and jacy,(F) = I,—, @ jacya) (Fi).

Remark 1. Assume F denotes the quadratic part of a sequence in KS(n,m,r).
By Proposition 1 and Lemma 1, F has a degree d syzygy G € F[x]™("~") if and
only if 77 has a degree d syzygy Gy € F[x]™. Explicitly, each syzygy G of F can
be written as (G1,Ga, . ..,Gn_r), where each G; is a syzygy of Fi.

Now suppose that the matrices My, Ma, ..., My, € M, xn(F) are chosen uni-
formly at random. Each entry of the matrix M = >, x;M; is a uniformly
chosen linear form in the linear variables. In particular, its r rightmost columns
are the Jacobian of a uniformly chosen homogeneous bilinear sequence. This is
a bilinear sequence with m + r variables and n equations. Assume F; is under-
determined (n < m + r) and that » < n. If Conjecture 1 in Sect.4.2 of [17] is
true, with high probability the left kernel of jac, o) (F1) is generated by

Ker := { (minor(MT, 1), —minor(Mrp, 2),. .., (—1)”minor(MT, n)) | T e T} ,

where My = [M T} with M = jaca (F1), minor(MT,j) denotes the determi-

nant of My after removing its j-th row, and 7 is the set of n x (n —r — 1)
matrices such that

— each column of T has exactly a 1 and the rest of its entries are 0,

— each row of T has at most a 1 and the remaining entries 0,

— if ¢; denotes the number of the row containing the only 1 of the j—th column
and if j <t, then i; <.

Notice that Ker has (ril)

components and every nonzero component is a different minor of M of size r.
Since each entry of M is a homogeneous linear polynomial in the x variables,
Ker C F[x]|* 2. Consequently, if Conjecture 1 in [17] is true, then we do not
expect to find an element in Ker having degree less than r.

The following theorem summarizes these results. We include a proof for com-
pleteness.

elements. Each of them has exactly r + 1 nonzero

Theorem 1. Suppose Conjecture 1 in [17] is true, F € KS(n,m,r) is chosen
uniformly at random. Then, using only monomials in the linear variables in the
XL algorithm, with high probability the first fall degree is r + 2.

2 F[x], denotes the vector space formed by the degree d homogeneous polynomials in
Fx].
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Proof. By Proposition 1 and Lemma 1, we only need to prove that with high
probability there is not G; € F[x]|™ having degree less than r and G;' jac, ) (Fy) =
0. Assuming that Conjecture 1 in [17] is true, if F € KS(n,m,r) is chosen
uniformly at random, then with high probability Ker generates the left kernel of
jack (F1). Therefore, with high probability, each syzygy of Fi, only involving
x variables, has degree at least r + 2.

4 Jacobian with Respect to the Linear Variables

The Jacobian of a KS system with respect to the linear variables deserves a
section of its own. We provide a detailed description here and describe non-
trivial syzygies that arise from this structure. We show that if m < nr non-trivial
syzygies of the quadratic part of F can be explicitly built, having degree less
than 7. In Sect. 4.1 we use a small example to motivate the notation thereafter.
We then provide a general construction in Sect.4.2 for square matrices, and
further generalize in Sect. 4.3 to non-square matrices and fewer kernel vectors.

Let us consider an MR instance with m matrices My, ..., M,, € My xn(F)
and target rank r. Recall that the KS system is given by (-1, z;M;) K’ = 0,
where the kernel matrix is K’ = [I,,—, K| " with K as in (3). The Jacobian with
respect to the linear variables of the corresponding sequence F € KS(n,m,r)
can be written as jac, (F) = (I, ® K) L 4+ C, where C € My(n_r)xm(F), L
is an mr X m matrix whose rows Lq, Lo,..., L., are given by the expression
L’r(i—l)-ﬁ—j = [Ml,(i,n—r—‘,-j) MQ,(i,n—T+j) ‘e Mm,(i,n—r-‘,—j)} for i = 1,2, o5 n and
i=12 ...

The approach we follow here to find syzygies of a KS sequence F is the
same used in Sect. 3.2, i.e., we find elements in the left-kernel of the Jacobian
of the quadratic part of F, but now with respect to the linear variables. By
Proposition 1, those kernel elements correspond to syzygies of the quadratic
part of F. In order to simplify the notation, throughout this section, we assume
that the sequence F € KS(n,m,r) only contains its quadratic part. Under such
assumption, the Jacobian with respect to the x variables of the sequence F is
given by jac, (F) = (I, ® K) L.

From now on ker;(B) will denote the left-kernel of a matrix B. A naive way
to find elements in ker;(jac, (F)) is by finding elements in ker;(I,, ® K). Those
kernel elements have degree r and can be built analogously as we did in Sect. 3.2
for jac (F). A natural question is whether it is possible to get degree falls at a
smaller degree from jac, (F). The answer to this question is affirmative under
certain conditions. In Sect. 4.2 we show how it can be done for general sequences
in KS(n,m,r), with m < nr. We now show a small example to introduce the
general process.

4.1 A Small Example n =4, M =4 and r = 2

Here we show how to build degree one syzygies of a sequence F € KS(4,4,2),
which involve only the kernel variables. In this particular case, the Jacobian
jac, (F) is given by
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1000
. | loro00| [k ke
jac (F) = 0010 ® Lfi% l@;] - L.
0001
Suppose (a1,as,...,as) € ker;(L), vo = (a2, a4,a6,a8) @ (—ks, k1) and v; =

(a1, as, as, a7) ® (k4, —kg). Then vy (I4 ® K) = det(K) [(O, 1) ® (a27a4,a67a8)]
and v; (I4 ® K) = det(K) [(1,0) ® (a1, a3, as,ar)]. Thus

(vo + v1)jacy (F) = det(K)(aq,aq,...,as) - L =0,

and vg + vy is a syzygy of F of degree one.

We just saw how to build a syzygy of degree one, namely vg + vi. If we
consider b € ker;(L), linearly independent with a = (aq,...,as), and repeat
the process described above, then we end up with a degree one syzygy vg + v1
linearly independent with vy + v;. Indeed, since vg, vy do not share monomials
componentwise, neither do vy and v;. Thus, we have that

x(vo+ v1) +y(Vo + V1) =0 if and only if zvg+ yVvo =0 and zvy + yv; =0,

and the right-hand implication happens if and only if za+4yb = 0. Consequently,
vi + vo and v 4 Vo are linearly independent if and only if a and b are.

As a consequence of the previous analysis, we can build a set of linearly
independent degree one syzygies in F[k| with as many elements as the dimension
of ker;(L). Thus, if F € KS(4,4,2) is chosen uniformly at random, so are the
matrices My, My, M3, My used to build F. In particular, L is a uniformly random
matrix of size 8 X 4, so with high probability, the left kernel of L has dimension
4, which is the maximum number of linearly independent syzygies of degree one
that we can construct as above.

4.2 First Degree Fall for Any n,m,r, with m < rn

We now describe a general method to find syzygies of degree dks of a sequence
F € KS(n,m,r), where dkg is some particular integer less than r.
Let us begin by introducing the notation using throughout this section. Here

ki,ka, ..., kp(n—r) are the entries of the matrix K, as shown in (3). Given two
vectors of integers 1 = (I1 +1,...,l;+ 1) and ¢ = (¢1,...,¢¢), where 1 < ¢; <7r
and 1 <l;+1<n—rfori=1,...,r, we define K. as

leH-Cl kT‘ll+C2 lel-i-Cz

krngrcl krl2+02 e lez+Cé
Kl,c = . .

krlz+61 k?’lz+62 krlz-i—Cz

Let d be an integer such that 0 < d 4+ 1 < min{n — r,r}. We set Cgy =
{(t1, .. ta) [tk €N, 1 <ty <tppy <rtand Rg={(j1+1,...,5a01+1) | ji €
N, 0 < ji < jrkt+1 < n —r — 1}. The sets C4, Ry represent, respectively, all
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possible sets of d columns and sets of d + 1 rows of K in ascending order. For
any t = (t1,...,tq) € Cqand j = (j1 + 1,...,Jar1 + 1) € Ry, let j, denote the
vector resulting from removing the s-th entry from j, and Vjt denote the column

vector in F[k]"~" which has values (—1)'Kj ¢,...,(—1)" K, ¢ in positions

Ja+
numbered by j; + 1,...,j4+1 + 1, respectively, and zeros elsewhere. More pre-
cisely, Vi = Zf;rll(—l)ini,t €j,+1, where e; denotes the i-th standard basis
vector of F”~". Notice that if €;, €2, ..., &, are the canonical vectors in F", then

it can be shown that

ty | AT
(V) K =) Kiws el (5)
SESy
where Sg :={s €N |1<s<r sisnotanentry of t}. For t € C; and j € Ry,
let Ej ¢ be the subspace of ]F[k]g("_r) spanned by {él ® Vjt, e ® V}t}, where

é; denotes the i-th standard vector basis of F”. It can be shown that if j # j' or
t # t’ then E;¢ N Ej’,t’ = {0}

Lemma 2. Suppose j, j € Ra, and t,¥ € Cq. If j # § or t # ¥ then E; N
Ej/,t’ == {0}

Proof. First of all, note that if €}, denotes the ¢-th vector in the standard basis

n(n—r)

of F»=7)_ then the following set is a basis for the F-vector space F[k]/,
B={me),|meFk]; amonomial and £ =1,...,n(n—1)}.

In particular, any basis element €; ® V}t of Ejt can be seen as an F-linear
combination of elements in B. Notice that if j = (j1+1,jo +2,...,ja+1 +2), by
definition we have V;* = SN (-1)'K;, 4 €j,41, hence

d+1
&V =Y (1)K ¢+ (8 ®ej41)
=1

d+1
= Z(_l)lijt e/(s—l)(n—r)-&-ji—i-l .
=1

Let us set

B :={me(,_1)(y_r)4ji11 | M is a monomial of Kj, ¢ and i = 1,...,d + 1},

Le., Bj ¢ contains the basis vectors from 5 whose F-linear combination produces
e, ® Vjt. For this reason

E;+ C Spang { U Bit} .

s=1
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Finally we show that in any case, t # t’ or j # j', we have

(O (2] -

In the first case, there is some integer ¢ which is a component of t, but not a
component of t’. Because of the structure of K, it is clear that each monomial
in the polynomial Kj, + has a factor of the form ko; ;. Since ¢ does not appear
as a component in t’, no monomial in Kj;7t/has a factor of the form koj/is.
Consequently, Eq. (6) holds.

In the other case, j # j’, there is at least one index 4 for which j; + 1 is a
component of j and it is not a component of j'. So each element in [J_, B;,
has as a factor either a monomial of the form mks;, ¢, for some ¢, or the vec-
tor e'(sfl)(nfr)ﬂ»i+1 for some s, and no element with such factors belongs to

Uiy B§ - Consequently, Eq. (6) holds.

Fix t = (t1,...,tq) € C4 and s € S;. Let i be the only integer satisfying

t; < s < tip1 and o the permutation that sends (¢1,...,t;,8,tit1,...,t4) toO
(t1,...,tq,8). For each s € {1,2,...,r} define sgn(t,s) to be sgn(o) if s € S
and zero otherwise®. Notice that, if t := (t1,...,t;,8,ti11,...,tq), then K;;isa

minor of K of size d+ 1. Moreover, for any j € Rq it holds that sgn(t, s) - Kj (¢ )
is equal to Kj if s € S¢, or equal to 0 otherwise.

We now address the main theorem of this section. For some fixed j € Ry
we establish a one-to-one correspondence between elements in the left-kernel of
certain matrix Bj and certain elements in the left-kernel of (I,, ® K)L, where K
is as in (3) and L € M,pxm(F), see Theorem 2 below.

Before stating the mentioned theorem, let us describe the matrix Bj for
a given j € Rq. This is a column block matrix of size ()n x (dil)m7 with
blocks By, , Bt,, ..., Bt,, where { = (2) and each By, is an n x (dil)m matrix
over F. To define each block Bg,, we introduce one more notation. We denote
by MINORS411(K(j)) the set of minors of size d + 1 of the matrix K(j),
which is simply the matrix whose rows are the rows of K with indexes in j.
Let us fix an enumeration on that set of minors, say MINORS;41(K(j)) =
{mi,mg,... ,mp}, with ¢/ = (dil). For each t; € C4, the block By, is also
a block matrix of the form By, = [Bti,l B, o - Bti,gr}, where By, 5 is a
matrix of size n x m, for k = 1,2,...,¢. A particular By, is given by

-
By, = sgn(ti,s) (L;— L:—Jrs L;r(nfl)JrS) , where Ly,Ls,...,L,, are the

rows of L, if s is the unique integer such that sgn(t;, s) Kj (¢, s) = my. Otherwise,
By, s is the n x m zero matrix.
From now on we set Cg = {t1,t2,...,ts}.

Theorem 2. Let F be a field, L € Mypxm(F), d be an integer such that 0 <
d+1 < min{n —r,r}, j € Rg, and a € F. If ay,, a,,...,a;, € F" are

3 sgn(0) denotes the sign of the permutation o.
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such that a = (ay,, as,, ..., as,), then a € kery(B;) zf and only if Zk 1@ @
Vt’c € ker; [(I, ® K)L]. Moreover, assume A = {a',...,a"} for some 1 < h <

n|C’d| and a' = (d} ,...,a}), with @ € F" for i = 1,..., h. Then, Sj =
{Zizl aj, ® Vjtk li=1,..., h} is F-linearly independent if and only if A is F-
linearly independent.

Proof. For each t € Cq4, we set ay = (a1t,-..,0nt) € F". So that a; =

i a4 €, where & denotes the i-th element in the standard basis of F™.
By Eq. (5) we have

> (eV) LhoK)L=3" (a © () K)L

teCy teCy
-3 (e | T mena] )
teCq SESt

_Z[ZK t,s) Zazt e1®eé L

teCy LseSt
L
Lr+s
= sgn(t,s) |a] : sgn(t, s) K t.s),
teCy :
SES Lytn—1)+s

where Li,..., Ly, are the rows of L. For each m; € MINORSy;1(K(j)) let
(t1,51), (t2,82),..., (te, se) be the sequence of (d + 1)- tuples with t; € C4 and
s; € 8§, such that sgn(tj,s])K(t s;) =my for j=1,2,... e Thus

L.
Lr—‘—]si
Z(at@)V) (I, ®K) L Z ngn tj,s5)a o mj,
teCy k=1 | j=1 :
Lr(nfl)JrsJ-

_ Z (Z acBe k) .

teCy

The last equality holds because any t € C4 — {t1,t2,...,t.} leads to a By = 0.
Since the minors of K do not have monomials in common, a = (ag,,...,at,) is

T
a vector such that Zle (ati ® VJt) € ker; [(I,, ® K)L] if and only if we have
that Zle a¢, By, = 0 for each minor my. Equivalently, if and only if

4 l
Zati [th‘,,l Bti72 Btz‘l/] =0, ZatiBti =0,

T ~
(atl,atz,...,at()[BtT1 BLBtTZ] =0, andaB;=0.
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Now we prove the last statement of the theorem. Suppose a',a?, ..., a" ¢ F"
are linearly independent and a' = (ay ,ai,,...,a;,), for each i = 1,2,... h.

Assume 1, 29,...,x, € F are such that Z?:l Z; (Zﬁzl aij ® V}tj) = 0. Since
t.

each a'éj ® V.’

i’ € Ejg,, so does every 2?21 x; (agj ® Vjtf)_ By Lemma 2 the

previous equation holds if and only if Z?Zl x; (aij ® Vjtj) = 0, for each j =
1,2,...,£¢. Equivalently, 2?21 xia};j = 0 for each j. That is, 2?21 xz;at = 0.

Remember that we are only considering the quadratic part of sequences F €
KS(n,m,r), so that jac, (F) = (I, ® K) L, where K is given in (3). Consequently,
the previous theorem shows a way to build syzygies of F (see Proposition 1).
For a fixed j € Ry, Theorem 2 also says that we can build as many syzygies as
the dimension of the left-kernel of the matrix Bj. For a matrix L € My xm(F)
chosen uniformly at random, we conjecture that the probability that Bj is full
rank is very high and it depends on the size of F.

Conjecture 1. Suppose (;)n > (dll)m, d+1 <min{n—r,r}, m <rn,and j €
Ra. If L € Mypxm(F) is chosen uniformly at random, then with overwhelming
probability in the size of IF, the rank of Bj is (dil)m.

We experimentally tested this conjecture for values of 20 < n <25, n—3 <
m<2n,6<r<10and |[F|=13;and for 8 <n <16,2<r <8 n—-4<m<rn
and |F| = 2. Assuming that Conjecture 1 is true, we have the following corollary.

T

Corollary 1. Suppose (d)n > (d_TH)m, d+1<min{n—rr}, m<rn, and j€
Ra. If F € KS(n,m,r) is chosen uniformly at random, and assuming Congecture
1 holds, then with overwhelming probability, there is a set S; of (Z)n — (dil)m

syzygies of F of degree d. Moreover, Sj is F-linearly independent.

Proof. Suppose F € KS(n,m,r) is chosen uniformly at random. Recall that
jac, (F) = (In® K)L, so L € Mypxm(F) can be seen as chosen uniformly at
random as well. Let us set A = {a',a% ... a"} and define S; and Bj as in
Theorem 2. By this theorem, A C kerl(Bj) is F-linearly independent if and
only if Sj C ker; [(I, ® K)L] is linearly independent. By Conjecture 1, with
overwhelming probability the dimension of ker,(B;) is (n —( dil)m. Finally,

by Proposition 1, each element in Sj is a syzygy of F.

It can be shown that for different j,j € Rq, Sj U SJ’ is a linearly independent
set of syzygies of F.

Proposition 3. Suppose j,j’ € Ry are distinct and that L € My xm(F). Let
A={al,...,a"} and B = {bl, e bf’f} be two sets not necessarily different,
with @ = (@}, ay,,...,a;,) and b = (b, , by, ..., by,) as described in Theorem
2. If we set

4 L
;=Y a @Vili=1,... 1y, S=0> bpoVili=1.. by,
j=1 j=1
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then S; U Sy is a set of linearly independent vectors in ker; [(I, ® K)L] if and
only if A and B are both linearly independent in ker;(L).

Proof. By Theorem 2 we have that A, B C ker;(Bj) and are F-linearly indepen-
dent if and only if S;, S5/ C ker; [(I,, ® K)L] and are both F-linearly independent.
Suppose there are 1, x2,..., 2, Y1,Y2,-- ., Y, € F such that

dom | A, @V |+ wi [ Dby, @V | =0, e,
i=1 j=1 i=1 j=1

=0.

3 RICEIDES AT
i=1

i=1 Li

Notice that each of the 2¢ sums in the previous equation belongs to a different
Ej+ subspace. By Lemma 2, those subspaces have trivial intersection pairwise.
Consequently, last equation holds if and only if each of those sums is zero, that
is, for j =1,2,...,¢,

£y

Lo
Zmi (aij ® Vjtj) =0 and Zyi (bij ® let:]) =0,

=1 i=1

which is true if and only if

Zl e2 .
Z::UiaZ =0 and X:yibZ =0.
i=1 i=1

As a consequence and assuming that Conjecture 1 is true, we can calculate
a number of degree falls that we know for sure will happen at degree d + 2, for
a particular d < r.

Corollary 2. Suppose Conjecture 1 is true, (})n > (dil)m, d+1 < min{n —
r,r} and m < rn. If F € KS(n,m,r) is chosen uniformly at random, then with
overwhelming probability there is a set of

n—r r r
d+1) [\a)"  \a+1)"
linearly independent syzygies of F of degree d.

4.3 Analysis for Non-square MR and k Kernel Vectors

In this part we adapt the analysis performed in Sect.4.2 to MR instances with
non-square matrices. We also see how the results of that section are affected if
we consider a KS system with only x kernel vectors.

Suppose p, q, m, T,k are integers such that m < rp and pTT <Kk<qg—r. We
can consider an MR instance with matrices My, Mo, ..., M,, € Mpy,(F) and
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target rank r. When we say that we are considering x kernel vectors in the KS
modeling, what we mean is that we are dealing with the system

(Z xM) K. = 0pxr, (7)
=1

where K/ is the matrix consisting of the first £ columns of K', that is, K| =

[I} KK]T, I,. is formed by the first & rows of the identity matrix I, and

ky ky - K,

i T
Kf-c = . .

kr(m—l)—i—l kr(n—l)-{-? e kwc

Let us set k = (k1,ka,..., k), and let KS;(p x g, m,r) be the set of all
sequences in F[x, k] that are formed by the entries of any matrix that has the
shape of the one on the left-hand side of (7). For each F € KSx(p x ¢, m,r) its
Jacobian is given by

jac (F) = (I, ® K;) L+ C, (8)
where C' € Mpexm(F), L is an rp x m matrix with rows L1, Lo, ..., L, and
Lr(ifl)jtj = [Ml,(i,p—r-‘rj) M2,(i,p—r+j) e Mm,(i,p—r—i—j)] for i = 1, 2, Y and
j=12,...,r.

Let Cq be like in Sect. 4.2 and Ry g :={(j1+1,...,Ja+1 +1) | jr € N, 0 <
Jk < jr+1 < &k — 1}. Provided an integer d, with 0 < d < min{x — 1,7 — 1},
and j € Ry 4, the matrix Bj is now of size (Z)p X (dil)m. Such a matrix is
constructed as in the square MR case, but setting n = p. The polynomial vector
VJ.t is defined like in the full kernel vector case, with the only difference that now
it has length k instead of ¢ — r. The proof of the following theorem is analogous
to the proof of Theorem 2.

Theorem 3. Let F be a field, L € Mypxm(F), d be an integer such that 0 <
d+1 < min{k,7}, j € Rua, and a € F?. If ay,, ay,,...,a;, € FP are such
that @ = (ay,, @y, - . ., az,), then a € ker)(B;) if and only if 22:1 a; ® Vjt’c €
ker; (I, ® K)L]. Moreover, if A = {a',...,a"} for some 1 < h < n|Cq| and
L= (a,al,...,a}), with ai €F? fori=1,... h, then

a
~ e .
Sji= {Za;k@ovjk |i:1,...,h}
k=1

18 F- linearly independent if and only if A is F- linearly independent.
If Conjecture 1 is true, we have the following two corollaries.

Corollary 3. Suppose Conjecture 1 is true, (;)p > (d:_l)m, d+1 < min{k,r},
m < rp, and j € Ry q. If F € KS.(p X g,m,r) is chosen uniformly at random,
then with overwhelming probability the rank of B; is (dil)m.
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Proof. Given j € Ry g C Ry, if Conjecture 1 is true, with high probability the
rank of Bj is (dil)m.
Corollary 4. Suppose Conjecture 1 is true, (g)p > (d:_l)m, d+1 < min{k,r},
m < rp, and j € Ry q. If F € KS.(p X g, m,r) is chosen uniformly at random,
then with high probability there is a set Sj of (Z)p — (dll)m syzygies of F of
degree d. Moreover, 3]' is F-linearly independent.

Proposition 4. Let j,j’ be two different elements in Ry q and L € Mypxm (F).
Let A = {a',...,a""}, B = {b',..., b}, S; and Sj+ be as in Proposition 3.
Then, Sj U Sj/ is a set of linearly independent vectors in ker; [(I, ® K)L] if and
only if A and B are both linearly independent in ker;(L).

Similarly to the square case and full kernel case, we expect to have the
following result.

Corollary 5. Suppose Conjecture 1 is true, (;)p > (dil)m, d+1 < min{k,r}
and m < rp. If F € KS.(p X q,m,r) is chosen uniformly at random, then with
high probability there is a set with

(dil) K:z)p_ (dil)m}

linearly independent syzygies of F of degree d.

5 Complexity of the KS Modeling Revisited

Proposition 4 and Corollary 5 (Corollary 2 for square matrices) naturally lead
to a new algorithm to solve systems of the form F = 0, where F is randomly
chosen in KS,(p x ¢, m,r), and m < rp. Let p,q,m,r be positive integers. The
following number

ses=winfa) [(Jo> (0 o] 120t}

is well defined if m < rp. Assuming dgs + 1 < k, by Corollary 5, with high
probability we can build degree drops from dkg + 2 to dks + 1, for a randomly
given F € KS,(p x ¢, m,r). By Proposition 2, such degree falls are not produced
by trivial syzygies. Thus Dks := dks + 2 is an upper bound for the first fall
degree Dg. Then, we construct the Macaulay matrix at degree dks + 1, append
the degree falls, and row reduce this augmented matrix. If there are not enough
polynomials to solve, we continue the XL algorithm up to degree dxs + 2, dxs +
3,... until we solve the system.

Based on these observations, we now estimate the complexity of solving such
a system, by means of the first fall degree Dg of the system, which is the smallest
degree needed so that the Macaulay matrix of the system of that degree exhibits
a degree fall when reduced [9].
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We can further improve the complexity by multiplying only by monomials
from kernel variables k in the XL algorithm. It can be proved that for this par-
ticular kind of equations, the XL algorithm restricted in this manner, still finds
a solution. This follows from the facts that the ideal generated by F is radical
[18], that the system F = 0 has a unique solution, and that each polynomial in
F has only linear variables in its linear part.

Consequently, usi