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Preface

PQCrypto 2019, the 10th International Workshop on Post-Quantum Cryptography, was
held in Chongqing, China, during May 8–10, 2019.

The aim of the PQCrypto conference series is to serve as a forum for researchers to
present and discuss their work on cryptography in an era with large-scale quantum
computers.

Following the same model as its predecessor, PQCrypto 2019 adopted a two-stage
submission process in which authors registered their paper(s) one week before the final
submission deadline.

The conference received 76 submissions with authors from about 30 countries. Each
paper (that had not been withdrawn by the authors) was reviewed in private by at least
three Program Committee members. The private review phase was followed by an
intensive discussion phase, conducted online. At the end of this process, the Program
Committee selected 22 papers for inclusion in the technical program and publication in
these proceedings. In some cases, a shepherding phase was imposed to ensure that
necessary changes were incorporated by the submitting authors, before the paper was
accepted for inclusion in the program and these proceedings. The accepted papers
cover a broad spectrum of research within the conference’s scope, including both the
design and the analysis of cryptographic systems.

In addition to the 22 contributed technical presentations, the program featured
outstanding invited talks and a presentation on NIST’s ongoing post-quantum cryp-
tography standardization process.

Organizing and running this year’s edition of the PQCrypto conference series was a
team effort, and we are indebted to everyone who helped make PQCrypto 2019 a
success. In particular, we would like to thank all members of the Program Committee
and the external reviewers who were a vital part of compiling the technical program.
Evaluating and discussing the submissions was a labor-intense task, and we truly
appreciate the work that went into this. We also owe a big thank you to Professor Hong
Xiang from Chongqing University, who made sure that all local arrangements fell into
place as needed.

May 2019 Jintai Ding
Rainer Steinwandt
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Lattice-Based Cryptography



Finding Closest Lattice Vectors Using
Approximate Voronoi Cells

Emmanouil Doulgerakis, Thijs Laarhoven(B), and Benne de Weger

Eindhoven University of Technology, Eindhoven, The Netherlands
{e.doulgerakis,b.m.m.d.weger}@tue.nl, mail@thijs.co

Abstract. The two traditional hard problems underlying the security
of lattice-based cryptography are the shortest vector problem (SVP) and
the closest vector problem (CVP). For a long time, lattice enumeration
was considered the fastest method for solving these problems in high
dimensions, but recent work on memory-intensive methods has resulted
in lattice sieving overtaking enumeration both in theory and in practice.
Some of the recent improvements [Ducas, Eurocrypt 2018; Laarhoven–
Mariano, PQCrypto 2018; Albrecht–Ducas–Herold–Kirshanova–Postle-
thwaite–Stevens, 2018] are based on the fact that these methods find
more than just one short lattice vector, and this additional data can be
reused effectively later on to solve other, closely related problems faster.
Similarly, results for the preprocessing version of CVP (CVPP) have
demonstrated that once this initial data has been generated, instances of
CVP can be solved faster than when solving them directly, albeit with
worse memory complexities [Laarhoven, SAC 2016].

In this work we study CVPP in terms of approximate Voronoi cells,
and obtain better time and space complexities using randomized slicing,
which is similar in spirit to using randomized bases in lattice enumer-
ation [Gama–Nguyen–Regev, Eurocrypt 2010]. With this approach, we
improve upon the state-of-the-art complexities for CVPP, both theo-
retically and experimentally, with a practical speedup of several orders
of magnitude compared to non-preprocessed SVP or CVP. Such a fast
CVPP solver may give rise to faster enumeration methods, where the
CVPP solver is used to replace the bottom part of the enumeration tree,
consisting of a batch of CVP instances in the same lattice.

Asymptotically, we further show that we can solve an exponential
number of instances of CVP in a lattice in essentially the same amount of
time and space as the fastest method for solving just one CVP instance.
This is in line with various recent results, showing that perhaps the
biggest strength of memory-intensive methods lies in being able to reuse
the generated data several times. Similar to [Ducas, Eurocrypt 2018],
this further means that we can achieve a “few dimensions for free” for
sieving for SVP or CVP, by doing Θ(d/ log d) levels of enumeration on
top of a CVPP solver based on approximate Voronoi cells.

Keywords: Lattices · Preprocessing · Voronoi cells ·
Sieving algorithms · Shortest vector problem (SVP) ·
Closest vector problem (CVP)

c© Springer Nature Switzerland AG 2019
J. Ding and R. Steinwandt (Eds.): PQCrypto 2019, LNCS 11505, pp. 3–22, 2019.
https://doi.org/10.1007/978-3-030-25510-7_1
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1 Introduction

Lattice Problems. Lattices are discrete subgroups of R
d: given a basis

B = {b1, . . . , bd} ⊂ R
d, the lattice generated by B is defined as L = L(B) :=

{∑d
i=1 λibi : λi ∈ Z}. Given a basis of L, the shortest vector problem (SVP)

is to find a (non-zero) lattice vector s of Euclidean norm ‖s‖ = λ1(L) :=
minv∈L\{0} ‖v‖. Given a basis of a lattice and a target vector t ∈ R

d, the closest
vector problem (CVP) is to find a lattice vector s ∈ L closest to t. The prepro-
cessing variant of CVP (CVPP) asks to preprocess the lattice L such that, when
later given a target vector t, one can quickly find a closest lattice vector to t.

SVP and CVP are fundamental in the study of lattice-based cryptography, as
the security of many schemes is directly related to their hardness. Various other
hard lattice problems, such as Learning With Errors (LWE), are closely related to
SVP and CVP; see, e.g., [63,74,75] for reductions among lattice problems. These
reductions show that understanding the hardness of SVP and CVP is crucial for
accurately estimating the security of lattice-based cryptographic schemes.

1.1 Related Work

Worst-Case SVP/CVP Analyses. Although SVP and CVP are both cen-
tral in the study of lattice-based cryptography, algorithms for SVP have received
somewhat more attention, including a benchmarking website to compare differ-
ent methods [1]. Various SVP algorithms have been studied which can solve
CVP as well, such as the polynomial-space, superexponential-time lattice enu-
meration studied in [14,32,38,40,47,66]. More recently, methods have been pro-
posed which solve SVP/CVP in only single exponential time, but which also
require exponential-sized memory [2,6,64]. By constructing the Voronoi cell of
the lattice [4,25,64,73], Micciancio–Voulgaris showed that SVP and CVP(P) can
provably be solved in time 22d+o(d), and Bonifas–Dadush reduced the complex-
ity for CVPP to only 2d+o(d). In high dimensions the best provable complexities
for SVP and CVP are currently due to discrete Gaussian sampling [2,3], solving
both problems in 2d+o(d) time and space in the worst case on arbitrary lattices.

Average-Case SVP/CVP Algorithms. When considering and comparing
these methods in practice on random lattices, we get a completely different pic-
ture. Currently the fastest heuristic methods for SVP and CVP in high dimen-
sions are based on lattice sieving. After a long series of theoretical works on
constructing efficient heuristic sieving algorithms [18–21,50,53,65,68,78,80] as
well as applied papers studying how to further speed up these algorithms in prac-
tice [28,35,39,46,54,57–61,67,71,72], the best heuristic time complexity for solv-
ing SVP (and CVP [52]) currently stands at 20.292d+o(d) [18,59], using 20.208d+o(d)

memory. The highest records in the SVP challenge [1] were recently obtained
using a BKZ-sieving hybrid [7]. These recent improvements have resulted in a
major shift in security estimates for lattice-based cryptography, from estimating
the hardness of SVP/CVP using the best enumeration methods, to estimating
this hardness based on state-of-the-art sieving results [9,24,26,27,36].



Finding Closest Lattice Vectors Using Approximate Voronoi Cells 5

Hybrid Algorithms and Batch-CVP. In moderate dimensions, enumeration-
based methods dominated for a long time, and the cross-over point with single-
exponential time algorithms like sieving seemed to be far out of reach [66].
Moreover, the exponential memory of, e.g., lattice sieving will ultimately also sig-
nificantly slow down these algorithms due to the large number of random mem-
ory accesses [23], and parallelizing sieving efficiently is less trivial than paralleliz-
ing enumeration [7,23,28,46,59,67,79]. Some previous work focused on obtain-
ing a trade-off between enumeration and sieving, using less memory for sieving
[17,43,44] or using more memory for enumeration [48].

Another well-known direction for a hybrid between memory-intensive meth-
ods and enumeration is to use a fast CVP(P) algorithm as a subroutine within
enumeration. As described in, e.g., [40,66], at any given level in the enumeration
tree, one is attempting to solve a CVP instance in a lower-rank sublattice, where
the target vector is determined by the path from the root to the current node
in the tree. Each node at this level in the tree corresponds to a CVP instance
in the same sublattice, but with a different target. If we can preprocess this
low-dimensional sublattice such that the amortized time complexity of solving
a batch of CVP-instances in this sublattice is small, then this may speed up
processing the bottom part of the enumeration tree.

A first step in this direction was taken in [52], where it was shown that with
a sufficient amount of preprocessing and space, one can achieve better amortized
time complexities for batch-CVP than when solving just one instance. The large
memory requirement (at least 2d/2+o(d) memory is required to improve upon
direct CVP approaches) as well as the large number of CVP instances required
to get a lower amortized complexity made this approach impractical to date.

1.2 Contributions: Approximate Voronoi Cells

In this paper we revisit the preprocessing approach to CVP of [52], as well as the
recent trend of speeding up these algorithms using nearest neighbor searching,
and we show how to obtain significantly improved time and space complexities.
These results can be viewed as a first step towards a practical, heuristic alter-
native to the Voronoi cell approach of Micciancio–Voulgaris [66], where instead
of constructing the exact Voronoi cell, the preprocessing computes an approxi-
mation of it, requiring less time and space to compute and store.

First, our preprocessing step consists of computing a list L of most lattice vec-
tors below a given norm.1 This preprocessing can be done using either enumera-
tion or sieving. The preprocessed data can best be understood as representing an
approximate Voronoi cell VL of the lattice, where the size of L determines how
well VL approximates the true Voronoi cell V of the lattice; see Fig. 1 for an exam-
ple. Using this approximate Voronoi cell, we then attempt to solve CVP instances
by applying the iterative slicing procedure of Sommer–Feder–Shalvi [73], with
nearest neighbor optimizations to reduce the search costs [12,18].
1 Heuristically, finding a large fraction of all lattice vectors below a given norm will

suffice – one does not necessarily need to run a deterministic preprocessing algorithm
to ensure all short lattice vectors are found.
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O

r1

r2

r3

r4

r5

r6

V

(a) A tiling of R2 with exact Voronoi cells
V of a lattice L (red/black points), gener-
ated by the set R = {r1, . . . , r6} of all rel-
evant vectors of L. Here vol(V) = det(L).

O

r1

r2

r4

r5

VL

(b) An overlapping tiling of R2 with ap-
proximate Voronoi cells VL of the same
lattice L, generated by a subset of the
relevant vectors, L = {r1, r2, r4, r5} ⊂ R.

Fig. 1. Exact and approximate Voronoi cells of the same two-dimensional lattice L.
For the exact Voronoi cell V (Fig. 1a), the cells around the lattice points form a tiling
of R

2, covering each point in space exactly once. Given that a point t lies in the
Voronoi cell around s ∈ L, we know that s is the closest lattice point to t. For the
approximate Voronoi cell VL (Fig. 1b), the cells around the lattice points overlap,
and cover a non-empty fraction of the space by multiple cells. Given that a vector t
lies in an approximate Voronoi cell around a lattice point s, we further do not have
the definite guarantee that s is the closest lattice point to t. (Color figure online)

The main difference in our work over [52] lies in generalizing how similar VL

(generated by the list L) needs to be to V. We distinguish two cases below. As
sketched in Fig. 1, a worse approximation leads to a larger approximate Voronoi
cell, so vol(VL) ≥ vol(V) with equality iff V = VL.

Good approximations: If VL is a good approximation of V (i.e., vol(VL) ≈
vol(V)), then with high probability over the randomness of the target vec-
tors, the iterative slicer returns the closest lattice vector to random targets.
To guarantee vol(VL) ≈ vol(V) we need |L| ≥ 2d/2+o(d), where additional
memory can be used to speed up the nearest neighbor part of the iterative
slicer. The resulting query complexities are sketched in red in Fig. 2.

Arbitrary approximations: If the preprocessed list contains fewer than 2d/2

vectors, then vol(VL) � vol(V) and with overwhelming probability the itera-
tive slicer will not return the closest lattice point to a random target vector.
However, similar to [40], the running time of this method is decreased by a
much more significant factor than the success probability. So if we are able
to rerandomize the problem instance and try several times, we may still be
faster (and more memory-efficient) than when using a larger list L.
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1.3 Contributions: Randomized Slicing

To actually find solutions to CVP instances with a “bad” approximation VL to
the real Voronoi cell V, we need to be able to suitably rerandomize the iterative
slicing procedure, so that if the success probability in a single run of the slicer
is small, we can repeat the method several times for a high success probabil-
ity. To do this, we will run the iterative slicer on randomly perturbed vectors
t′ ∼ Dt+L,s, sampled from a discrete Gaussian over the coset t + L. Here the
standard deviation s needs to be sufficiently large to make sampling from Dt+L,s

efficient and the results of the slicer to be almost independent, and s needs to
be sufficiently small to guarantee that the slicer will terminate in a limited num-
ber of steps. Algorithm 1 explicitly describes this procedure, given as input an
approximate Voronoi cell VL (i.e., a list L ⊂ L of short lattice vectors defining
the facets of this approximate Voronoi cell).

Algorithm 1. The randomized heuristic slicer for finding closest vectors
Require: A list L ⊂ L and a target t ∈ R

d

Ensure: The algorithm outputs a closest lattice vector s ∈ L to t
1: s ← 0 � Initial guess s for closest vector to t
2: repeat
3: Sample t′ ∼ Dt+L,s � Randomly shift t by a vector v ∈ L
4: for each r ∈ L do
5: if ‖t′ − r‖ < ‖t′‖ then � New shorter vector t′ ∈ t + L
6: Replace t′ ← t′ − r and restart the for-loop

7: if ‖t′‖ < ‖t − s‖ then
8: s ← t − t′ � New lattice vector s closer to t

9: until s is a closest lattice vector to t
10: return s

Even though this algorithm requires sampling many vectors from the coset
t+L and running the iterative slicer on all of these, the overall time complexity
of this procedure will still be lower, since the iterative slicer needs less time to
complete when the input list L is shorter. To estimate the number of iterations
necessary to guarantee that the algorithm returns the actual closest vector, we
make the following assumption, stating that the probability that the iterative
slicer terminates with a vector t′ ∈ (t + L) ∩ V, given that it must terminate to
some vector t′ ∈ (t+L)∩VL, is proportional to the ratio of the volumes of these
(approximate) Voronoi cells V and VL.

Heuristic assumption 1 (Randomized slicing) For L ⊂ L and large s,

Pr
t′∼Dt+L,s

[
SliceL(t′) ∈ V

]
≈ vol(V)

vol(VL)
. (1)

This is a new and critical assumption to guarantee that the claimed asymptotic
complexities are correct, and we will therefore come back to this assumption
later on, to show that experiments indeed suggest this assumption is justified.
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1.4 Contributions: Improved CVPP Complexities

For the exact closest vector problem with preprocessing, our improved complexi-
ties over [52] mainly come from the aforementioned randomizations. To illustrate
this with a simple example, suppose we run an optimized (GaussSieve-based [65])
LDSieve [18], ultimately resulting in a list of (4/3)d/2+o(d) of the shortest vectors
in the lattice, indexed in a nearest neighbor data structure of size (3/2)d/2+o(d).
Asymptotically, using this list as our approximate Voronoi cell, the iterative slicer
succeeds with probability p = (13/16)d/2+o(d) (as shown in the analysis later on),
while processing a query with this data structure takes time (9/8)d/2+o(d). By
repeating a query 1/p times with rerandomizations of the same CVP instance,
we obtain the following heuristic complexities for CVPP.

Proposition 1 (Standard sieve preprocessing). Using the output of the
LDSieve [18] as the preprocessed list and encompassing data structure, we can
heuristically solve CVPP with the following query space and time complexities:

S = (3/2)d/2+o(d) ≈ 20.292d+o(d), T = (18/13)d/2+o(d) ≈ 20.235d+o(d).

This point (S,T) is highlighted in light blue in Fig. 2.

If we use a more general analysis of the approximate Voronoi cell approach,
varying over both the nearest neighbor parameters and the size of the prepro-
cessed list, we can obtain even better query complexities. For a memory com-
plexity of (3/2)d/2+o(d) ≈ 20.292d+o(d), we can achieve a query time complexity of
approximately 20.220d+o(d) by using a shorter list of lattice vectors, and a more
memory-intensive parameter setting for the nearest neighbor data structure. The
following main result summarizes all the asymptotic time–space trade-offs we can
obtain for heuristically solving CVPP in the average case.

Theorem 1 (Optimized CVPP complexities). Let α ∈ (1.03396,
√

2) and

u ∈ (
√

α2−1
α2 ,

√
α2

α2−1 ). With approximate Voronoi cells we can heuristically solve
CVPP with preprocessing space and time S1 and T1, and query space and time
S2 and T2, where:

S1 = max

{

S2,

(
4
3

)d/2+o(d)
}

, T1 = max

{

S2,

(
3
2

)d/2+o(d)
}

, (2)

S2 =
(

α

α − (α2 − 1)(αu2 − 2u
√

α2 − 1 + α)

)d/2+o(d)

, (3)

T2 =

(
16α4

(
α2 − 1

)

−9α8+64α6−104α4+64α2−16
· α + u

√
α2 − 1

−α3 + α2u
√

α2 − 1 + 2α

)d/2+o(d)

. (4)

The best query complexities (S2,T2) together form the blue curve in Fig. 2.

Compared to [52], we obtain trade-offs for much lower memory complexities,
and we improve upon both the best CVPP complexities of [52] and the best
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Fig. 2. Query complexities for finding closest vectors, directly (CVP) and with prepro-
cessing (CVPP). The leftmost red points/curve show the best asymptotic SVP/CVP
complexities of Becker–Gama–Joux [19], Becker–Ducas–Gama–Laarhoven [18], and
Herold–Kirshanova–Laarhoven [44]. The rightmost red point and curve are the previ-
ous best CVPP complexities of [52]. The blue curve shows our new CVPP complexities.
(Color figure online)

SVP/CVP complexities of [18,44].2 Observe that our trade-off passes below all
the best CVP results, i.e., we can always solve an exponentially large batch of
2εd CVP instances for small ε > 0 in the same amount of time as the current
best complexities for solving just one instance, for any memory bound.

Due to the condition that α > 1.0339 . . . (which follows from the fact that
the denominator in T2 needs to remain positive), the blue curve in Fig. 2 termi-
nates on the left side at a minimum query space complexity of 1.03396d+o(d) ≈
20.0482d+o(d). One might wonder whether we can obtain a continuous trade-off
between the query time and space complexities reaching all the way to 2o(d)

memory and 2ω(d) query time. The lower bound on α might be a consequence of
our analysis, and perhaps a different approach would show this algorithm solves
CVPP in 2O(d) time even with less memory.

As for the other end of the blue curve, as the available space increases, one can
achieve an amortized time complexity for CVP of 2εd+o(d) at the cost of (1/ε)O(d)

preprocessed space for arbitrary ε > 0. For large query space complexities, i.e.,
when a lot of memory and preprocessing power is available for speeding up the
queries, the blue and red curve converge, and the best parameter choice is to set
α ≈ √

2 such that VL ≈ V, as explained in Sect. 1.2.

2 As detailed in [52], by modifying sieve algorithms for SVP, one can also solve CVP
with essentially equivalent heuristic time and space complexities as for SVP.
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Concrete Complexities. Although Theorem1 and Fig. 2 illustrate how well we
expect these methods to scale in high dimensions d, we would like to stress that
Theorem 1 is a purely asymptotic result, with potentially large order terms hid-
den by the o(d) in the exponents for the time and space complexities. To obtain
security estimates for real-world applications, and to assess how fast this algo-
rithm actually solves problems appearing in the cryptanalysis of lattice-based
cryptosystems, it therefore remains necessary to perform extensive experiments,
and to cautiously try to extrapolate from these results what the real attack costs
might be for high dimensions d, necessary to attack actual instantiations of cryp-
tosystems. Later on we will describe some preliminary experiments we performed
to test the practicality of this approach, but further work is still necessary to
assess the impact of these results on the concrete hardness of CVPP.

1.5 High-Level Proof Description

To prove the main results regarding the improved asymptotic CVPP complexities
compared to [52], we first prove that under certain natural heuristic assumptions,
we obtain the following upper bound on the volume of approximate Voronoi cells
generated by the αd+o(d) shortest vectors of a lattice. The preprocessing will
consist of exactly this: generate the αd+o(d) shortest vectors in the lattice, and
store them in a nearest neighbor data structure that allows for fast look-ups of
nearby points in space.

Lemma 1 (Relative volume of approximate Voronoi cells). Let L ⊂ L
consist of the αd+o(d) shortest vectors of a lattice L, with α ∈ (1.03396,

√
2).

Then heuristically,

vol(VL)
vol(V)

≤
(

16α4
(
α2 − 1

)

−9α8 + 64α6 − 104α4 + 64α2 − 16

)d/2+o(d)

. (5)

Using this lemma and the heuristic assumption stated previously, relating the
success probability of the slicer to the volume of the approximate Voronoi cell,
this immediately gives us a (heuristic) lower bound on the success probability
pα of the randomized slicing procedure, given as input a preprocessed list of
the αd+o(d) shortest vectors in the lattice. Then, similar to [52], the complexity
analysis is a matter of combining the costs for the preprocessing phase, the costs
of the nearest neighbor data structure, and the cost of the query phase, where
now we need to repeat the randomized slicing of the order 1/pα times – the
difference in the formulas for the complexities compared to [52] comes exactly
from this additional factor 1/pα ≈ vol(VL)/ vol(V).

To prove the above lemma regarding the volume of approximate Voronoi cells,
we will prove the following statements. First, we show that if the list L contains
the αd+o(d) shortest vectors of a random lattice L, then on input a target vector
t, we heuristically expect the slicer to terminate on a reduced vector t′ ∈ t+L of
norm at most ‖t′‖ ≤ β · λ1(L), where β is determined by the parameter α. The
relation between α and β can be succinctly described by the following relation
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β = α2/
√

4α2 − 4. (6)

More precisely, we show that as long as ‖t′‖ � β · λ1(L), then with high prob-
ability we expect to be able to combine t′ with vectors in L to form a shorter
vector t′′ ∈ t + L with ‖t′′‖ < ‖t′‖. On the other hand, if we have a vector
t′ ∈ t+L of norm less than β ·λ1(L), then we only expect to be able to combine
t′ with a vector in L to form a shorter vector with exponentially small probabil-
ity 2−Θ(d). In other words, reducing to a vector of norm β · λ1(L) can be done
almost “effortlessly”, while after that even making small progress in reducing
the length of t′ comes at an exponential loss in the success probability.

Good Approximations. Next, from the above relation between the size of
the input list, |L| (or α), and the reduced norm of the shifted target vector,
‖t′‖ (or β), the previous result of [52] immediately follows – to achieve t′ ∈ V
we heuristically need β = 1 + o(1). This implies that α =

√
2 is the minimal

parameter that guarantees we will be able to effortlessly reduce to the exact
Voronoi cell, and so L must contain the αd+o(d) = 2d/2+o(d) shortest vectors in
the lattice. In that case the success probability is constant, and the costs of the
query phase are determined by a single reduction of t with the iterative slicer.

Arbitrary Approximations. However, even if α <
√

2 is smaller, and the
corresponding β is therefore larger than 1, the slicer might still succeed with
(exponentially) small probability. To analyze the success probability, note that
from the Gaussian heuristic we may assume that the closest vector to our target
t lies uniformly at random in a ball (or sphere) of radius λ1(L) around t. Then,
also for the reduced vector t′ of norm at most β ·λ1(L), the closest lattice vector
lies in a ball of radius λ1(L) around it. Since our list L contains all vectors of
norm less than α ·λ1(L), we will clearly find the closest lattice vector in the list L
if the closest lattice vector lies in the intersection of two balls of radii λ1(L) (resp.
α ·λ1(L)) around t′ (resp. 0). Estimating the volume of this intersection of balls,
relative to the volume of the ball of radius λ1(L) around t′, then gives us a lower
bound on the success probability of the slicer, and a heuristic upper bound on the
volume of the corresponding approximate Voronoi cell. This analysis ultimately
leads to the aforementioned lemma.

Tightness of the Proof. Note that the above proof technique only gives us a
lower bound on the success probability, and an upper bound on the volume of the
approximate Voronoi cell: when the target vector has been reduced to a vector
of norm at most β · λ1(L), we bound the success probability of the slicer by
the probability that the slicer now terminates successfully in a single iteration.
Since the algorithm might also succeed in more than one additional iteration, the
actual success probability may be higher. A tighter analysis, perhaps showing
that the given heuristic bound can be improved upon, is left for future work.
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1.6 Intermezzo: Another Few Dimensions for Free

Recently, Ducas [35] showed that in practice, one can effectively use the addi-
tional vectors found by lattice sieving to solve a few extra dimensions of SVP
“for free”. More precisely, by running a lattice sieve in a base dimension d, one
can solve SVP in dimension d′ = d + Θ(d/ log d) at little additional cost. This is
done by taking all vectors returned by a d-dimensional lattice sieve, and running
Babai’s nearest plane algorithm [16] on all these vectors in the d′-dimensional
lattice to find short vectors in the full lattice. If d′ is close enough to d, one of
these vectors will then be “rounded” to a shortest vector of the full lattice.

On a high level, Ducas’ approach can be viewed as a sieving/enumeration
hybrid, where the top part of enumeration is replaced with sieving, and the bot-
tom part is done regularly as in enumeration, which is essentially equivalent to
doing Babai rounding [16]. The approach of using a CVPP-solver inside enumer-
ation is in a sense dual to Ducas’ idea, as here the bottom part of the enumeration
tree is replaced with a (sieving-like) CVPP routine. Since our CVPP complex-
ities are strictly better than the best SVP/CVP complexities, we can also gain
up to Θ(d/ log d) dimensions for free as follows:
1. First, we initialize an enumeration tree in the full lattice L of dimension

d′ = d+k, and we process the top k = ε·d/ log d levels as usual in enumeration.
This will result in 2Θ(k log k) = 2Θ(d) target vectors at level k, and this requires
a similar time complexity of 2Θ(d) to generate all these target vectors.

2. Then, we run the CVPP preprocessing on the d-dimensional sublattice of
L corresponding to the bottom part of the enumeration tree. This may for
instance take time 20.292d+o(d) and space 20.208d+o(d) using the sieve of [18].

3. Finally, we take the batch of 2Θ(d) target vectors at level k in the enumeration
tree, and we solve CVP for each of them with our approximate Voronoi cell
and randomized slicing algorithm, with query time 20.220d+o(d) each.

By setting k = ε · d/ log d as above with small, constant ε > 0, the costs for
solving SVP or CVP in dimension d′ are asymptotically dominated by the costs
of the preprocessing step, which is as costly as solving SVP or CVP in dimension
d. So similar to [35], asymptotically we also get Θ(d/ log d) dimensions “for free”.
However, unlike for Ducas’ idea, in practice the dimensions are likely not quite
as free here, as there is more overhead for doing the CVPP-version of sieving
than for Ducas’ additional batch of Babai nearest plane calls.

Even More Dimensions for Free. A natural question one might ask now
is: can both ideas be combined to get even more dimensions “for free”? At first
sight, this seems hard to accomplish, as Ducas’ idea speeds up SVP rather than
CVPP. Furthermore, note that when solving SVP without Ducas’ trick, one gets
20.208d+o(d) short lattice vectors when only one shortest vector is needed, and so
in a sense one might “naturally” hope to gain something by going for only one
short output vector. Here the analysis of the iterative slicer is already based on
the fact that ultimately, we hope to reduce a single target vector to its closest
neighbor in the lattice. There might be a way of combining both ideas to get
even more dimensions for free, but for now this is left as an open problem.
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1.7 Contributions: Experimental Results

Besides the theoretical contributions mentioned above, with improved heuris-
tic time and space complexities compared to [52], for the first time we also
implemented a (sieving-based) CVPP solver using approximate Voronoi cells.
For the preprocessing we used a slight modification of a lattice sieve, return-
ing more vectors than a standard sieve, allowing us to vary the list size in our
experiments. Our implementations serve two purposes: validating the additional
heuristic assumption we make, and to see how well the algorithm performs.

Validation of the Randomization Assumption. To obtain the aforemen-
tioned improved asymptotic complexities for solving CVPP, we required a new
heuristic assumption, stating that if the iterative slicer succeeds with some prob-
ability p on a CVP instance t, then we can repeat it 1/p times with perturbations
t′ ∼ Dt+L,s to achieve a high success probability for the same target t. To ver-
ify this assumption, we implemented our method and tested it on lattices of
dimension 50 with a range of randomly chosen targets to see whether, if the
probability of success is small, repeating the method m times will increase the
success rate by a factor m. Figure 3 shows performance metrics for various num-
bers of repetitions and for varying list sizes. In particular, Fig. 3a illustrates the
increased success probability as the number of repetitions increases, and Fig. 3c
shows that the normalized success probability per trial3 seems independent of
the number of repetitions. Therefore, the “expected time” metric as illustrated
in Fig. 3b appears to be independent of the number of trials.

Experimental Performance. Unlike the success probabilities, the time com-
plexity might vary a lot depending on the underlying nearest neighbor data
structure. For our experiments we used hyperplane LSH [29] as also used in the
HashSieve [50,58], as it is easy to implement, has few parameters to set, and
performs better in low dimensions (d = 50) than the LDSieve [18,59].

To put the complexities of Fig. 3b into perspective, let us compare the nor-
malized time complexities for CVPP with the complexities of sieving for SVP,
which by [52] are comparable to the costs for CVP. First, we note that the
HashSieve algorithm solves SVP in approximately 4 s on the same machine.
This means that in dimension 50, the expected time complexity for CVPP with
the HashSieve (roughly 2 ms) is approximately 2000 times smaller than the time
for solving SVP. To explain this gap, observe that the list size for solving SVP
is approximately 4000, and so the HashSieve algorithm needs to perform in the
order of 4000 reductions of newly sampled vectors with a list of size 4000. For
solving CVPP, we only need to reduce 1 target vector, with a slightly larger list
of 10 000 to 15 000 vectors. So we save a factor 4000 on the number of reduc-
tions, but the searches are more expensive, leading to a speed-up of less than a
factor 4000.
3 As the success prob. q for m trials scales as q = 1−(1−p)m if each trial independently

has success prob. p, we computed the success prob. per trial as p = 1 − (1 − q)1/m.
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Fig. 3. Experimental results for solving CVPP with randomized slicing in dimension
50. Each data point corresponds to 10 000 random target vectors for those parameters.

Predictions and Extrapolations. For solving SVP or CVP, the Hash-
Sieve [50] reports time complexities in dimension d of 20.45d−19 s, corresponding
to 11 s in dimension 50, i.e., a factor 3 slower than here. This is based on doing
n ≈ 20.21d reductions of vectors with the list. If doing only one of these searches
takes a factor 20.21d less time, and we take into account that for SVP the time
complexity is now a factor 3 less than in [50], then we obtain an estimated com-
plexity for CVPP in dimension d of 20.24d−19/3, which for d = 50 corresponds
to approximately 2.6 ms. A rough extrapolation would then lead to a time com-
plexity in dimension 100 of only 11 s. This however seems to be rather optimistic
– preliminary experiments in dimensions 60 and 70 suggest that the overhead of
using a lot of memory may be rather high here, as the list size is usually even
larger than for standard sieving.
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1.8 Contributions: Asymptotics for Variants of CVPP

For easier variants of CVP, such as when the target lies closer to the lattice
than expected or an approximate solution to CVP suffices as a solution, we
obtain considerable gains in both the time and space complexities when using
preprocessing. We explicitly consider two variants of CVPP below.

BDDPδ . For bounded distance decoding with preprocessing (BDDP), we are
given a target vector t and a guarantee that t lies within distance δ · λ1(L) to
the nearest lattice vector, for some parameter δ > 0. By the Gaussian heuristic,
setting δ = 1 makes this problem as hard as general CVPP without a distance
guarantee, while for small δ → 0 polynomial-time algorithms exist [16].

By adjusting the analysis leading up to Theorem1 for BDDP, we obtain the
same result as Theorem 1 with two modifications: T2 is replaced by T(δ)

2 below,
and the range of admissable values α changes to (α0, α1), with α0 the smallest
root larger than 1 of the denominator of the left-most term in T(δ)

2 , and α1 the
smallest value larger than 1 such that the left-most term in T(δ)

2 equals 1. The
resulting optimized trade-offs for various δ ∈ (0, 1) are plotted in Fig. 4a.

T(δ)
2 =

(
16α4

(
α2 − 1

)
δ2

−9α8+8α6(3+5δ2)−8α4(2+9δ2+2δ4)+32α2(δ2+δ4)−16δ4
· [. . . ]

)d/2+o(d)

. (7)

Note that in the limit of δ → 0, our algorithm tries to reduce a target close
to the lattice to the origin. This is similar to reducing a vector to the 0-vector
in the GaussSieve [65], and even with a long list of all short lattice vectors this
does not occur with probability 1. Here also the limiting curve in Fig. 4a shows
that for δ → 0 with suitable parameterization we can do better than just with
sieving, but we do not get polynomial time and space complexities.

CVPPκ . For the approximate version of CVPP, a lattice vector v qualifies as a
solution for t if it lies at most a factor κ further from the real distance of t from
the lattice, for some κ ≥ 1. Heuristically, this is essentially equivalent to looking
for any lattice vector within radius κ ·λ1(L) of the target, and similar to BDDP
the resulting trade-offs can be summarized by Theorem 1 where T2 is replaced
by T(κ)

2 below, and the range of admissable values α again changes to (α0, α1)
as before.

T(κ)
2 =

(
16α4

(
α2 − 1

)

−9α8+8α6(3+5κ2)−8α4(2+9κ2+2κ4)+32α2(κ2+κ4)−16κ4
· [. . . ]

)d/2+o(d)

. (8)

For increasing approximation factors κ → ∞, our algorithm tries to reduce a
target vector to vector of norm less than κ ·λ1(L). For large κ this is increasingly
easy to achieve, and as κ → ∞, both the query time and space complexities in
our analysis converge to zero as expected. Figure 4b highlights this asymptote,
and illustrates the other trade-offs through some examples for small κ > 1.
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Fig. 4. Asymptotics for solving variants of CVP(P) with approximate Voronoi cells:
(a) BDDPδ and (b) CVPPκ. Note that the (tail of the) curve for CVPP√

4/3
overlaps

with the curve for BDDP0.
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1.9 Open Problems

Combination with Other Techniques. The focus of this work was on the
asymptotic complexities we can achieve for high dimensions d, and therefore we
focused only on including techniques from the literature that lead to the best
asymptotics. In practice however, there may be various other techniques that
can help speed up these methods in moderate dimensions. This for instance
includes Ducas’ dimensions for free [35], progressive sieving [35,54], the recent
sieving-BKZ hybrid [7], and faster NNS techniques [7,11]. Incorporating such
techniques will likely affect the experimental performance as well, and future
work may show how well the proposed techniques truly perform in practice
when all the state-of-the-art techniques are combined into one.

Faster Enumeration with Approximate Voronoi Cells. As explained
above, one potential application of our CVPP algorithm is as a subroutine within
enumeration, to speed up the searches in the bottom part of the tree. Such an
algorithm can be viewed as a trade-off between enumeration and sieving, where
the level at which we insert the CVPP oracle determines whether we are closer
to enumeration or to sieving. An open question remains whether this would
lead to faster algorithms in practice, or if the preprocessing/query costs are too
high. Note that depending on at which level of the tree the CVPP oracle is
inserted, and on the amount of pruning in enumeration, the hardness of the
CVP instances at these levels also changes. Optimizing all parameters involved
in such a combination appears to be a complex task, and is left for future work.

Sieving in the Dual Lattice. For the application of CVPP within enumera-
tion, observe that a decisional CVPP oracle, deciding whether a vector lies close
to the lattice or not, may actually be sufficient; most branches of the enumer-
ation tree will not lead to a solution, and therefore in most cases running an
accurate decision-CVPP oracle is enough to determine that this subtree is not
the right subtree. For those few subtrees that potentially do contain a solution,
one could then run a full CVP(P) algorithm at a slightly higher cost. Improving
the complexities for the decision-version of CVPP may therefore be an interest-
ing future direction, and perhaps one approach could be to combine this with
ideas from [5], by running a lattice sieve on the dual lattice to find many short
vectors in the dual lattice, which can then be used to check if a target vector
lies close to the primal lattice or not.

Quantum Complexities. As one of the strengths of lattice-based cryptog-
raphy is its conjectured resistance to quantum attacks [22], it is important to
study the potential impact of quantum improvements to SVP and CVP algo-
rithms, so that the parameters can be chosen to be secure in a post-quantum
world [15,55]. For lattice sieving for solving SVP, the time complexity expo-
nent potentially decreases by approximately 25% [55], and for CVPP we expect
the exponents may decrease by approximately 25% as well. Studying the exact
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quantum asymptotics of solving CVPP with approximate Voronoi cells is left for
future work.

1.10 Outline

Due to space restrictions, the remainder of the paper, including full details on
all claims, is given in the appendix.4 Below we briefly outline the contents of
these appendices for the interested reader.

Appendix A – Preliminaries
This section describes preliminary results and notation for the technical con-
tents, formally states the main hard problems discussed in the paper, formal-
izes the heuristic assumptions made throughout the paper, and describes
existing results on nearest neighbor searching, lattice sieving algorithms,
Voronoi cells, and Voronoi cell algorithms.

Appendix B – Approximate Voronoi cells
In Appendix B we formalize the CVPP approach considered in this paper in
terms of our approximate Voronoi cell framework with randomized slicing,
and we derive our main results regarding improved asymptotic complexities
for exact CVPP. Approximate Voronoi cells are formally introduced, the main
results are stated and proved in terms of this framework, and all corresponding
algorithms are given in pseudocode.

Appendix C – Experimental results
Appendix C describes the experiments we performed with these methods in
more detail, both to verify the (additional) heuristic assumptions we made
for this paper, and to assess the practicality of our CVPP algorithm. Here we
also briefly compare our results to various published complexities for SVP or
CVP(P), to put these numbers into context.

Appendix D – Asymptotics for variants of CVPP
The last appendix finally discusses asymptotic results for variants of CVPP,
namely approximate CVPP and BDDP. This section contains a more formal
statement of the results given in Sect. 1.8, and explains how the analysis
changes compared to the analysis for exact CVPP, and how this leads to
improved complexities for these slightly easier variants of (exact) CVPP.
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Abstract. The speed of NTRU-based Key Encapsulation Mechanisms
(KEMs) in software, especially on embedded software platforms, is lim-
ited by the long execution time of its primary operation, polynomial
multiplication. In this paper, we investigate the potential for speed-
ing up the implementations of four NTRU-based KEMs, using soft-
ware/hardware codesign, when targeting Xilinx Zynq UltraScale+ mul-
tiprocessor system-on-chip (MPSoC). All investigated algorithms com-
pete in Round 1 of the NIST PQC standardization process. They include:
ntru-kem from the NTRUEncrypt submission, Streamlined NTRU Prime
and NTRU LPRime KEMs of the NTRU Prime candidate, and NTRU-
HRSS-KEM from the submission of the same name. The most-time con-
suming operation, polynomial multiplication, is implemented in the Pro-
grammable Logic (PL) of Zynq UltraScale+ (i.e., in hardware) using
constant-time hardware architectures most appropriate for a given algo-
rithm. The remaining operations are executed in the Processing System
(PS) of Zynq, based on the ARM Cortex-A53 Application Processing
Unit. The speed-ups of our software/hardware codesigns vs. purely soft-
ware implementations, running on the same Zynq platform, are deter-
mined experimentally, and analyzed in the paper. Our experiments reveal
substantial differences among the investigated candidates in terms of
their potential to benefit from hardware accelerators, with the special
focus on accelerators aimed at offloading to hardware only the most
time-consuming operation of a given cryptosystems. The demonstrated
speed-ups vs. functionally equivalent purely software implementations
vary between 4.0 and 42.7 for encapsulation, and between 6.4 and 149.7
for decapsulation.
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Post-Quantum Cryptography · NTRU · System on Chip ·
Programmable logic · High-level synthesis ·
Embedded software platforms

1 Introduction

Hardware benchmarking of Post-Quantum Cryptography (PQC) candidates is
extremely challenging due to their high algorithmic complexity, specifications
geared more toward mathematicians than toward engineers, and the lack of
hardware description language libraries containing code of basic building blocks.
As a result, the workload for a single algorithm can easily reach several man-
months. Consequently, due to the Round 1 focus on evaluating security and
software efficiency [20], only a few candidates in the NIST PQC standardization
process have been fully implemented in hardware to date [9,12,15,16,22,24].
To make the matters worse, a substantial number of operations used by PQC
algorithms are both complex and sequential in nature. Porting these operations
to hardware can take a large number of man-hours, and at the same time bring
little benefit in terms of the total execution time.

In this paper, we propose an approach aimed at overcoming these difficul-
ties. This approach is based on the concept of software/hardware codesign. The
majority of the algorithm operations are implemented in software. Only a few
main operations (optimally just one), taking the majority of the execution time,
are offloaded to hardware.

This approach has become very practical in modern embedded systems due
to the emergence of special platforms, integrating the software programmability
of an ARM-based processor with the hardware programmability of FPGA fabric.
Examples include Xilinx Zynq 7000 System on Chip (SoC), Xilinx Zynq Ultra-
Scale+ MPSoC, Intel Arria 10 SoC FPGAs, and Intel Stratix 10 SoC FPGAs.
These devices support hybrid software/hardware codesigns composed of a tra-
ditional C program running on an ARM processor, communicating, using an
efficient interface protocol (such as AMBA AXI4), with a hardware accelerator
described manually using a hardware description language such as VHDL, or
generated automatically, using High-Level Synthesis.

Assuming that an implemented algorithm contains a limited number of oper-
ations, suitable for parallelization, and these operations contribute 91% or more
to the total execution time, then an order of magnitude (or higher) speed-up is
possible, with the amount of development time reduced from months to weeks
or even days.

An additional benefit of this approach is the possibility to easily estimate
the speed-ups that could be achieved by developing and implementing special
instructions of a general-purpose processor (such as ARM) supporting a specific
PQC algorithm or a group of related-algorithms.

Based on extensive software profiling experiments, conducted using both
ARM and AMD64 platforms, we have determined that all NTRU-based NIST
Round 1 KEMs are very suitable for software/hardware codesign. In particular,
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for all of them, no more than three major operations contribute at least 92%
of the total execution time to both encapsulation and decapsulation. Addition-
ally, the most time consuming of these operations, polynomial multiplications in
Zq[x]/P and Z3[x]/P , with P selected as a polynomial of the prime degree n,
are very easily parallelizable and straightforward to implement in constant time
using moderate amount of hardware resources.

In the rest of this paper, we quantify the influence of a dedicated hardware
accelerator on the performance and implementation cost of each of the following
four Round 1 KEMs: NTRUEncrypt [6], NTRU-HRSS [13], Streamlined NTRU
Prime, and NTRU LPRime [5,21]. The speed-ups of the software/hardware code-
signs vs. purely software implementations are measured, and their influence on
the ranking of candidates is determined.

Table 1. Features of round 1 NTRU-based KEMs.

Feature NTRUEncrypt NTRU-HRSS Streamlined NTRU

Prime

NTRU LPRime

Polynomial P xn − 1 Φn = (xn − 1)/(x − 1)

irreducible in Zq [x]

xn − x − 1

irreducible in Zq [x]

xn − x − 1

irreducible in Zq [x]

Degree n∗ Prime Prime Prime Prime

Modulus q 2d 2ceil(3.5+log2(n)) Prime Prime

Weight w Fixed weight for

f and g

N/A Fixed weight for f

and r. 3w ≤ 2n

16w + 1 ≤ q

Fixed weight for b

and a. 3w ≤ 2n

16w + 2δ + 3 ≤ q

Quotient

rings

R/q:

Zq [x]/(xn − 1)

R/q: Zq [x]/(xn − 1)

S/3: Z3[x]/(Φn)

R/q:

Zq [x]/(xn − x − 1)

R/3:

Z3[x]/(xn − x − 1)

R/q:

Zq [x]/(xn − x − 1)

R/3:

Z3[x]/(xn − x − 1)

#Poly Mults

for

encapsulation

1 in R/q 1 in R/q 1 in R/q 2 in R/q

#Poly Mults

for

decapsulation

2 in R/q 2 in R/q

1 in S/3

2 in R/q

1 in R/3

3 in R/q

Private key f

of the form

1+3F

Yes No No No

Invertibility

checks in key

generation

Yes No Yes No

Decryption

failures

Yes No No No

∗ denoted by N in the specification of NTRUEncrypt and by p in the specifications of Streamlined

NTRU Prime and NTRU LPRime

2 Background

Basic features of four investigated Round 1 NTRU-based KEMs are summarized
in Table 1. NTRUEncrypt is the only candidate that uses a reducible polynomial,
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which may potentially increase its attack surface. It is also the only candidate
with a non-zero probability of decryption failure, and one of the two (together
with Streamlined NTRU Prime) requiring invertibility checks in key generation.
All polynomials have a prime degree n. Three features that have primary influ-
ence on the area of a corresponding hardware accelerator include: (a) prime vs.
power-of-two modulus q for operations on polynomial coefficients; (b) require-
ment for operations in additional rings, such as Z3[x]/(Φn) in NTRU-HRSS and
Z3[x]/(xn − x − 1) in Streamlined NTRU Prime; (c) Private key of the form
1 + 3F in NTRUEncrypt.

The execution time of Encapsulation and Decapsulation is affected primarily
by the required number of polynomial multiplications (Poly Mults), which is the
lowest in case of NTRUEncrypt and the highest in case of NTRU LPRime. The
fixed weight of polynomials with small coefficients affects the execution time of
a polynomial multiplication only in case of using a rotator-based multiplier [4,
8,14].

In Table 2, the numerical values of parameters in the implemented variants
of KEMs are summarized. All investigated KEMs use approximately the same
values of the polynomial degree n, which in hardware leads to similar Poly Mult
execution times in terms of the number of clock cycles. NTRUEncrypt and
NTRU-HRSS have an advantage of using a modulus q being a power of two,
which substantially reduces the time of Poly Mult in software, and the area of
the Poly Mult accelerator in hardware. Three out of four KEMs are claimed to
belong to the security category 5, with the number of pre-quantum security bits
estimated to be close to 256. NTRU-HRSS is the only investigated candidate
limited to the security category 1, with the number of pre-quantum security bits
estimated at 136 (i.e., slightly above 128). It should be stressed that no other sets
of parameters, corresponding to any higher security category are provided in the
specification of this KEM. Similarly, no other parameter sets, corresponding to
any lower security levels, are defined in the specifications of Streamlined NTRU
Prime or NTRU LPRime. The public and private key sizes are the smallest for
NTRUEncrypt and the largest for Streamlined NTRU Prime.

3 Previous Work

3.1 Hardware Accelerators for NTRUEncrypt

In 2001, Bailey et al. [4] introduced and implemented a Fast Convolution Algo-
rithm for polynomial multiplication, exploiting the sparsity of polynomials.
In [14], Kamal et al. analyzed several implementation options for traditional
NTRUEncrypt [11] targeting Virtex-E family of FPGAs. In this design, the
polynomial multiplier took advantage of the ternary nature of polynomials in
NTRUEncrypt and utilized an empirically chosen Barrel shifter (rotator). The
results were reported for the parameter set with (n = 251, q = 128). Liu et al.
implemented the truncated polynomial ring multiplier using linear feedback shift
register (LFSR) in 2015 [17] and an extended LFSR [18] in 2016. Both designs
were implemented using Cyclone IV FPGAs. The former paper reported results
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Table 2. Numerical values of parameters in the implemented variants of round 1
NTRU-based KEMs.

Feature NTRUEncrypt NTRU-HRSS Streamlined NTRU

Prime

NTRU LPRime

Parameter

set

NTRU-743 ntruhrss701 sntrup4591761 ntrulpr4591761

Degree n 743 701 761 761

Modulus q 2048 = 211 8192 = 213 212 < 4591 < 213 212 < 4591 < 213

Polynomials

with small

coefficients

Fixed weight 494

for f and g.

Uniform trinary

for r and m

Uniform T+ for f and

g. Uniform trinary for r

and m

Fixed weight 286 for

f and r. Uniform

trinary for g and m

Fixed weight 250 for

b and a.

Expected

failure rates

2−112 0 0 0

Security

category

5 1 5 5

Pre-quantum

security bits

256 136 248 225

Shared key

size in bits

384 256 256 256

Public key

size∗
1023 1140 1218 1047

Secret key

size∗
1173 1422 1600 1238

Ciphertext

size∗
1023 1281 1047 1175

∗ sizes in bytes

for three parameter sets with (n = 251, q = 128), (n = 347, q= 128), and (n = 503,
q = 256). The latter paper reported results for 12 parameter sets specified in
the IEEE Standard NTRUEncrypt SVES [2]. Out of these parameter sets, the
closest one to the cases considered in this paper was the parameter set with
(n = 761, q = 2048). None of the aforementioned designs was made open-source.
In [8], the first full constant-time implementation of the IEEE Standard NTRU-
Encrypt SVES [2] was reported. This implementation supported two parame-
ter sets, with (n = 1499, q = 2048) and (n = 1087, q = 2048), and targeted the
Xilinx Virtex UltraScale FPGA. As described above, the results reported in
these papers concerned different parameter values and/or different (mostly much
older) hardware platforms. Additionally, all aforementioned hardware implemen-
tations other than [17] and [8] were not constant time. As a result, their com-
parison with the results presented in this work is neither practical nor fair.

3.2 Software-Hardware Codesign of PQC Algorithms

Only a few attempts to accelerate software implementations of post-quantum
cryptosystems have been made through software/hardware (SW/HW) codesign.
A coprocessor consisting of the PicoBlaze softcore and several parallel acceler-
ation units for the McEliece cryptosystem was implemented on Spartan-3AN
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FPGAs by Ghosh et al. [10]. No speed-up vs. purely software implementation
using PicoBlaze was reported.

In 2015, Aysu et al. [3] built a high-speed implementation of a lattice-based
digital signature scheme using SW/HW codesign techniques. The paper focused
on the acceleration of signature generation. The design targeted the Cyclone
IV FPGA family and consisted of the NIOS2 soft processor, a hash unit, and
a polynomial multiplier. Compared to the C implementation running on the
NIOS2 processor, the most efficient software/hardware codesign reported in the
paper achieved the speed-up of 26,250x at the expense of the increase in the
number of Logic Elements by a factor of 20.

Migliore et al. [19] presented a hardware/software codesign for the lattice-
based Fan-Vercauteren (FV) homomorphic encryption scheme with the major-
ity of the Karatsuba-based multiplication/relinearization operation performed
in hardware. The platform used for hardware acceleration was Stratix V GX
FPGA. Software ran on a PC, based on Intel i7-4910MQ, with 4 cores operat-
ing at 2.9 GHz, connected with the FPGA-based DE5-450 Terasic board using
PCI Express (PCIe) 3.0, with eight lines, capable of handling transfers with the
throughput up to 250 MB/s per line in full-duplex. The speed-up compared to
the purely software implementation was estimated to be 1.4x.

Wang et al. [23] reported a software/hardware implementation of the PQC
digital signature scheme XMSS. The selected platform was an Intel Cyclone V
SoC, and the software part of the design was implemented using a soft-core
processor RISC-V. Hardware accelerators supported a general-purpose SHA-256
hash function, as well as several XMSS specific operations. The design achieved
the speed-up of 23x for signing and 18x for verification over a purely software
implementation running on RISC-V.

All the aforementioned platforms were substantially different than the plat-
forms used in this work. The algorithms and their parameters were also substan-
tially different. As a result, limited information could be inferred regarding the
optimal software/hardware partitioning, expected speed-up, or expected com-
munication overhead.

4 Methodology

4.1 Platform and Software

The platform selected for our experiments is Xilinx Zynq UltraScale+ MPSoC
XCZU9EG-2FFVB1156E, which is fabricated using a 16 nm technology and
mounted on the ZCU102 Evaluation Kit from Xilinx. This MPSoC is composed of
two major parts sharing the same chip, the PS and PL. The PS (Processing Sys-
tem) includes a quad-core ARM Cortex-A53 Application Processing Unit (APU),
a dual-core ARM Cortex-R5 Real-Time Processing Unit (RPU), Graphics Pro-
cessing Unit, 256 kB On-Chip Memory, and more. Each processor of the APU
and RPU is equipped with a 32 kB instruction cache and a 32 kB data cache. In
our experiments, we use only one processor of the APU (Core 0 of Cortex-A53)
running at the frequency of 1.2 GHz. The PL (Programmable Logic) includes
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a programmable FPGA fabric similar to that of Virtex UltraScale+ FPGAs.
The software used is Xilinx Vivado Design Suite HLx Edition, Xilinx Software
Development Kit (XSDK), and Xilinx Vivado HLS, all with the versions no.
2017.2.

A high-level block diagram of the experimental software/hardware codesign
platform is shown in Fig. 1. The hardware accelerator, implementing the Poly-
nomial Multiplier unit, is denoted as Poly Mult. This accelerator is extended
with the Input and Output FIFOs, as well as AXI DMA, for high-speed com-
munication with the Processing System. The details of the Input and Output
FIFO interfaces are shown in Fig. 2. Timing measurements are performed using
an AXI Timer, capable of measuring time in clock cycles of the 200 MHz system
clock. The Poly Mult unit can operate at a variable frequency different than that
of DMA. This frequency can be changed at run time using the Clocking Wizard,
controlled from software. As a result, the Input and Output FIFOs use different
clocks for their read and write operations.

Output FIFOInput FIFO Poly Mult

Zynq Processing System

AXI DMA

FIFO 
Interface
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Interface

AXI Stream
Interface

AXI Stream
Interface
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Fig. 1. High-level block diagram of the experimental SW/HW co-design platform.

4.2 Design of Hardware Using the RTL Methodology

The Register-Transfer Level (RTL) designs of hardware accelerators for NTRU-
based KEMs follow closely the block diagrams shown in Figs. 3, 4, 5 and 6.
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Fig. 2. The input and output FIFO interface.
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The Zq LFSR, used in all KEMs, is initialized with the value of a polynomial
a(x) with large coefficients. In each subsequent iteration, the output from LFSR
contains the value a(x) · xi mod P . In a single clock cycle, a simple multipli-
cation by x, namely a(x) · xi+1 mod P= a(x) · xi · x mod P , is performed. For
P = xn − 1, this multiplication is equivalent to rotation. For P = xn − x − 1, an
extra addition mod q, marked in Fig. 3a with the blue background is required.
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Fig. 4. Block diagram of the Poly Mult unit for NTRUEncrypt.

The multiplication in the ring S/3 for NTRU-HRSS and R/3 for Streamlined
NTRU Prime is performed using the Z3 LFSR, shown Fig. 3b. This circuit oper-
ates using the same principle as Zq LFSR, except all polynomial coefficients are
reduced mod 3.

The entire Poly Mult unit for NTRUEncrypt is shown in Fig. 4. The multi-
plication of a polynomial a(x) with large coefficients by a polynomial b(x) with
small coefficients (limited to −1, 0, and 1), involves calculating a(x) · xi mod P ,
multiplying it by bi, and adding it to the partial sum. The multiplication of each
coefficient by −1 is accomplished by calculating their one’s complement (using
an XOR with c0v, obtained by replicating c0 11 times) and the addition of c0
as carry-in to the following adder, represented by a square with +.

Coefficients of the public key h, are preloaded to the NTRUEncrypt Zq LFSR
before an encapsulation starts. All of these coefficients can be stored in Reg h,
and loaded back to Zq LFSR in a single clock cycle, in case this LFSR is used
in-between for any operation not involving h. Similarly, coefficients of the private
key f are preloaded to the asymmetric f RAM, visible at the input as a 32x64
RAM, and at the output as a 1024x2 RAM, before the decryption starts.
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The partial and final results are stored in the Zq PISO (Parallel-In Serial-
Out) unit, with the parallel input of the width of 11 · n bits, the parallel output
of the same width (used to enable the accumulation of intermediate products),
and the serial output of the width of 11 bits used to read out the final result to
the output FIFO.

The multiplication t = r ∗h, performed during encapsulation and the second
part of decapsulation, takes n = 743 clock cycles. The multiplication m′ =
f ∗ c = (1 + 3 · F ) ∗ c, performed during the first part of decapsulation, requires
two additional clock cycles, used respectively for the calculation of F ∗c+2 ·F ∗c
(with the multiplication of each coefficient of F ∗c by 2 accomplished using a shift
to the left by one, denoted in the diagram as << 1) and c+3·F ∗c. In this paper,
a ∗ b denotes polynomial multiplication, and a · b denotes regular multiplication,
i.e., a multiplication of a polynomial and a constant, or a multiplication of two
polynomial terms.

The Controller is responsible for generating suitable select and enable signals,
communication with the Input and Output FIFOs, interpreting the input headers
with instructions sent by the respective driver, and generating the output header
containing the status and error codes that are sent back to the driver.

A block diagram of the hardware accelerator for NTRU-HRSS is shown in
Fig. 5. The new part, marked using the blue background, is responsible for opera-
tions in the ring S/3. Compared to NTRUEncrypt, the size of all large coefficients
increases from 11 to 13 bits. The portion of the circuit responsible for performing
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Fig. 6. Block diagram of the Poly Mult units for Streamlined NTRU Prime and NTRU
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multiplication by f = (1 + 3 · F ) is removed. Other than that, the operation of
the circuit remains almost identical.

A block diagram of the hardware accelerators for Streamlined NTRU Prime
and NTRU LPRime is shown in Fig. 6. The operations in R/3 are necessary
only in case of Streamlined NTRU Prime and are similar to operations in S/3
for NTRU-HRSS. Compared to NTRU-HRSS, the main difference is the need
for reduction of partial sums, involving large coefficients, mod q. Since now, q is
a 13-bit prime, a conditional subtraction is necessary. An additional register A
is required for NTRU LPRime only, increasing the number of required flip-flops.

4.3 Design of Hardware Using the HLS Methodology

The reference implementation of NTRUEncrypt in C, for n = 743, is based on
the grade school algorithm for multiplication (also known as schoolbook, paper-
and-pencil, etc.). Only for n equal to a power of 2, the fully recursive Karatsuba
multiplication is used. When the grade school implementation of Poly Mult
in C was provided at the input of Vivado HLS, the resulting circuit required
tens of thousands of clock cycles to complete a single multiplication (even after
inserting multiple Vivado HLS directives in the form of pragmas). The similar
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results were obtained by using an earlier C implementation of Poly Mult, based
on the concept of Rotation, developed by OnBoard Security [1].

As a result, the decision was made to treat C like a hardware description
language, and implement Poly Mult from scratch, in such a way to infer the
circuit from Fig. 4. This attempt appeared to be successful, which was indicated
by reaching almost exactly the same number of clock cycles as that required by
the RTL implementation. The same approach was then applied to the remaining
three candidates.

The HLS-ready C code was first verified using a C testbench, based on the
reference software implementation used as a source of test vectors. The resulting
HDL code was then verified using exactly the same VHDL testbench which
was used to verify the RTL implementation. The implementation phase (logic
synthesis, mapping, placing, and routing) was identical for both RTL and HLS
approaches. In the HLS flow, the first result estimates, in terms of the number of
clock cycles, maximum clock frequency, and resource utilization, were generated
in the form of reports by Vivado HLS. However, except for the number of clock
cycles (which was accurate), the remaining numbers did not match the final
post-place & route results.

5 Results

The results of profiling for the purely software implementations, running on a
single core of ARM Cortex-A53, at the frequency of 1.2 GHz, are presented in
the left portion of Table 3. For each of the four investigated algorithms and each
major operation (Encapsulation and Decapsulation), four most time-consuming
functions are identified. In each of the investigated cases, the most time consum-
ing function is poly mult(), responsible for performing polynomial multiplication
in R/q. The contribution of this function varies between 78.2% in case of the
NTRUEncrypt encapsulation, up to 99.5% in case of the Streamlined NTRU
Prime decapsulation. poly mult() is the only function listed among the four most
time-consuming functions for all 8 investigated operations. It is also a function
with a well-known potential for vast parallelization (and thus a very substan-
tial speed-up) in hardware. As a result, poly mult() was a natural candidate
for offloading to hardware, and no other function listed in Table 3 could offer
a clear potential for delivering an additional speed-up, especially for multiple
algorithms.

The number of clock cycles required by Poly Mult, the maximum clock fre-
quency, and the resource utilization obtained using the RTL and HLS approaches
are summarized in Table 4. In both cases, the number of clock cycles is deter-
mined using simulation. The maximum clock frequency is obtained by using
Vivado in combination with the automated hardware optimization tool called
Minerva [7]. The obtained values correspond to the static timing analysis results
after placing and routing, and have been confirmed experimentally using our
setup shown in Fig. 1. The resource utilization is based on the post-place and
route reports of Vivado. Only resources used to implement Poly Mult are listed in
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Table 3. Profiling results for the software and software/hardware implementations
targeting Zynq UltraScale+ MPSoC. (SW) and (HW) indicate whether poly mult() is
executed in software or in hardware. x2 means that a given function is called twice.

Function Time [us] Time [%] Function Time [us] Time [%]

Software Software/Hardware

NTRUEncrypt - Encaps

1. poly mult (SW) 743.510 78.177 1. generate r 91.665 38.286

2. generate r 91.665 9.638 2. mask m 40.960 17.108

3. mask m 40.960 4.307 3. poly mult (HW) 32.115 13.414

4. crypto hash sha512 x2 17.650 1.856 4. crypto hash sha512 x2 17.650 7.372

NTRUEncrypt - Decaps

1. poly mult (SW) x2 1492.870 87.800 1. generate r 79.890 29.999

2. generate r 79.890 4.699 2. poly mult (HW) x2 55.966 21.015

3. unmask m 40.865 2.403 3. unmask m 40.865 15.345

4. unpack secret key CCA 17.975 1.057 4. unpack secret key CCA 17.975 6.750

NTRU-HRSS - Encaps

1. poly mult (SW) 3091.550 97.585 1. poly Rq frommsg 31.570 28.138

2. poly Rq frommsg 31.570 0.997 2. poly mult (HW) 31.521 28.094

3. owcpa samplemsg 11.445 0.361 3. owcpa samplemsg 11.445 10.201

4. poly Rq getnoise 10.595 0.334 4. poly Rq getnoise 10.595 9.443

NTRU-HRSS - Decaps

1. poly mult (SW) x2 9302.780 99.211 1. poly mult (HW) x2 51.333 39.678

2. poly Rq frommsg 30.460 0.325 2. poly Rq frommsg 30.460 23.544

3. unpack sk 10.315 0.110 3. unpack sk 10.315 7.973

4. poly Rq getnoise 9.975 0.106 4. poly Rq getnoise 9.975 7.710

Streamlined NTRU Prime - Encaps

1. poly mult (SW) 11, 846.950 92.702 1. small random weightw 766.025 77.933

2. small random weightw 766.025 5.994 2. FIPS202 SHA3 512 155.080 15.777

3. FIPS202 SHA3 512 155.080 1.214 3. poly mult (HW) 34.003 3.459

4. rq decode 10.165 0.080 4. rq decode 10.165 1.034

Streamlined NTRU Prime - Decaps

1. poly mult (SW) x2 35, 546.140 99.489 1. FIPS202 SHA3 512 154.535 64.734

2. FIPS202 SHA3 512 154.535 0.433 2. poly mult (HW) x2 52.428 21.962

3. rq decode 10.145 0.028 3. rq decode 10.145 4.250

4. rq round3 9.045 0.025 4. rq round3 9.045 3.789

NTRU LPRime - Encaps

1. poly mult (SW) x2 23, 693.840 97.908 1. small seeded weightw 327.195 57.686

2. small seeded weightw 327.195 1.352 2. FIPS202 SHA3 512 x2 106.355 18.751

3. FIPS202 SHA3 512 x2 106.355 0.439 3. poly mult (HW) x2 53.663 9.461

4. rq fromseed 28.995 0.120 4. rq fromseed 28.995 5.112

NTRU LPRime - Decaps

1. poly mult (SW) x2 35, 540.750 98.598 1. small seeded weightw 339.285 58.920

2. small seeded weightw 339.285 0.941 2. FIPS202 SHA3 512 x2 102.960 17.880

3. FIPS202 SHA3 512 x2 102.960 0.286 3. poly mult (HW) x2 68.484 11.893

4. rq fromseed 29.000 0.080 4. rq fromseed 29.000 5.036
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Table 4. Differences in results obtained using the RTL and HLS approaches.

Metric RTL HLS HLS/RTL

NTRUEncrypt

#cycles for Poly Mult in Encaps 744 743 0.999

#cycles for Poly Mult in Decaps 1, 491 1, 488 0.971

Maximum Clk Freq [MHz] 330 251 0.761

#LUTs 27, 912 42, 667 1.529

#Slices 4, 431 6, 268 1.415

#FFs 24, 697 24, 756 1.002

#BRAMs 4 3 0.750

NTRU-HRSS

#cycles for Poly Mult in Encaps 702 703 1.001

#cycles for Poly Mult in Decaps 2, 111 2, 110 0.999

Maximum Clk Freq [MHz] 300 295 0.983

#LUTs 33, 230 32, 196 0.969

#Slices 5, 476 6, 622 1.209

#FFs 32, 327 48, 792 1.609

#BRAMs 6 4 0.667

Streamlined NTRU prime

#cycles for Poly Mult in Encaps 762 761 0.998

#cycles for Poly Mult in Decaps 2, 291 2, 291 1.000

Maximum Clk Freq [MHz] 255 155 0.608

#LUTs 65, 207 88, 678 1.360

#Slices 9, 699 13, 690 1.411

#FFs 32, 929 31, 764 0.965

#BRAMs 6 4 0.667

NTRU LPRime

#cycles for Poly Mult in Encaps 1, 524 1, 522 0.998

#cycles for Poly Mult in Decaps 2, 287 2, 283 0.998

Maximum Clk Freq [MHz] 255 158 0.620

#LUTs 52, 297 77, 385 1.480

#Slices 8, 483 12, 215 1.440

#FFs 39, 730 39, 832 1.002

#BRAMs 4 3 0.750
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Table 4. Additional logic implemented in hardware, shown in Fig. 1, such as AXI
DMA, Input FIFO, Output FIFO, Clocking Wizard, and AXI Timer, requires
additional 7,858 LUTs, 1,593 Slices, 8,794 flip-flops, and 11 BRAMs.

Overall, the HLS-based implementations match very well (or even outper-
form) manually developed RTL implementations in terms of the number of
clock cycles and the number of storage elements (flip-flops and BRAMs). The
only exception is NTRU-HRSS, where the number of flip-flops is about 61%
larger in case of using HLS. However, the HLS-based implementations require
between 36% and 53% of more LUTs, and between 41% and 44% of more Slices.
Once again the only exception is NTRU-HRSS, where the number of LUTs is
comparable, at the expense of the substantial increase in the number of flip-
flops. Additionally, the maximum clock frequency of the HLS-generated designs
reached between 61% and 98% of the frequency of the manually-generated RTL
designs. The development time was comparable because of the additional learn-
ing curve and more frequent trial-and-error tests necessary to develop an optimal
HLS-ready C code.

Overall, the RTL approach was demonstrated to be superior, although not
by a high margin. This approach is also more mature and more trusted by the
cryptographic engineering community. As a result, in the rest of this paper, only
results obtained using the RTL approach are reported and analyzed.

In Table 5, area overhead caused by special operations specific to particular
KEMs is listed. Overall, Streamlined NTRUPrime and NTRU LPRime pay quite
substantial price in terms of both maximum clock frequency and area compared
to NTRUEncrypt and NTRU-HRSS. For example, replacing q = 213 by the 13-
bit prime q = 4591 between NTRU-HRSS and Streamlined NTRU Prime, results
in the 15% decrease in the maximum clock frequency, and increase in the number
of LUTs by approximately a factor of two. The number of storage elements, flip-
flops and BRAMs, remains approximately the same. Supporting operations in
S/3 for NTRU-HRSS and R/3 for Streamlined NTRU Prime requires 26.4%

Table 5. Area overhead of special operations of NTRU-based KEMs.

Operations LUTs FFs

NTRUEncrypt

Logic supporting multiplication by 1+3F 12.0% 0%

NTRU-HRSS

Logic supporting operations in S/3 26.4% 16.4%

Streamlined NTRU Prime

Logic supporting operations in R/3 8.4% 9.3%

Logic supporting mod q 38.0% 0%

NTRU LPRime

Logic supporting mod q 53.2% 0%

Logic for register A 0% 24.9%
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and 8.4% of the total number of accelerator LUTs, respectively. The percentage
is larger in NTRU-HRSS primarily because of the smaller total area required
by this KEM. The resource utilization in absolute area units (LUTs, FFs) is
comparable. Supporting special multiplication by 1+3F in NTRUEncrypt costs
about 12% of the total number of LUTs, and the special register A in NTRU
LPRime requires about 25% more flip-flops.

Table 6. Timing results.

Algorithm Total

SW [ms]

Total SW/

HW [ms]

Total

speed-up

Poly Mul

SW [ms]

Poly Mul

HW [ms]

Poly Mul

speed-up

SW part

Sped up

by HW [%]

Encapsulation

NTRUEncrypt 0.951 0.239 4.0 0.744 0.032 23.2 78.18

NTRU-HRSS 3.168 0.112 28.2 3.092 0.032 98.1 97.58

Strl NTRU Prime 12.780 0.983 13.0 11.847 0.034 348.4 92.70

NTRU LPRime 24.200 0.567 42.7 23.694 0.054 441.5 97.91

Decapsulation

NTRUEncrypt 1.700 0.266 6.4 1.493 0.056 26.7 87.80

NTRU-HRSS 9.377 0.129 72.5 9.303 0.051 181.2 98.95

Strl NTRU Prime 35.729 0.239 149.7 35.546 0.052 678.0 99.49

NTRU LPRime 36.046 0.576 62.6 35.541 0.068 519.0 98.60

Timing results are summarized in Table 6. For each investigated KEM and
each major operation (Encapsulation and Decapsulation), we list the total exe-
cution time in software (for the reference software implementations in C running
on ARM Cortex-A53 of Zynq UltraScale+ MPSoC), the total execution time in
software and hardware (after offloading polynomial multiplications to hardware),
and the obtained speed-up. The ARM processor runs at 1.2 GHz, DMA for the
communication between the processor and the hardware accelerator at 200 MHz,
and the hardware accelerators at the maximum frequencies, specific for the RTL
implementations of each algorithm, listed in Table 4. All execution times were
obtained through experimental measurements using the setup shown in Fig. 1.

The total speed-up varies from 4.0 for encapsulation in NTRUEncrypt to
149.7 for decapsulation in the Streamlined NTRU Prime. The main reason for
such big differences is the percentage of time spent by the respective software
implementation for operations offloaded to hardware. For the aforementioned
two operations, this percentage varies from 78.18% to 99.49%.

The time required for the polynomial multiplication in hardware is similar for
all algorithms, to the large extant because a significant percentage of that time
is spent for the DMA initialization and data transfer, and only a small percent-
age on actual computations. The software/hardware communication overhead is
quantified in Table 7. It is defined as the percentage of the total number of clock
cycles used for the DMA initialization and the input/output data transfer vs.
the total number of clock cycles used by the hardware accelerator. As shown in
the respective rows of Table 7, this overhead varies between 78% and 89%.
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Table 7. Software/hardware communication overhead.

Feature NTRU
Encrypt

NTRU-
HRSS

Streamlined
NTRU Prime

NTRU
LPRime

Encapsulation

#cycles for transfer
(input + output)

25 + 744 23 + 702 25 + 762 25 + 1523

#cycles for Poly Muls 746 702 765 1,531

#cycles for DMA init 4,908 4,877 5,249 7,654

Total #cycles 6,423 6,304 6,801 10,733

Transfer overhead % 88.39 88.86 88.75 85.74

Decapsulation

#cycles for transfer
(input + output)

769 + 1488 725 + 725 763 + 787 787 + 2285

#cycles for Poly Muls 1,494 2,111 2,296 2,295

#cycles for DMA init 7,442 6,706 6,640 8,330

Total #cycles 11,193 10,267 10,486 13,697

Transfer overhead % 86.65 79.44 78.10 83.24

Table 8. Actual speed-up for Zynq UltraScale+ MPSoC (with Proc. Clk =1.2 GHz,
Comm. Clk = 200 MHz, Accel. Clk = Max. Clk Freq from Table 3) vs. estimated speed-
up for the case of Special Instructions (SI) of ARM Cortex A53 (Proc. Clk = Comm.
Clk = Accel. Clk = 1.2 GHz).

Feature NTRU
Encrypt

NTRU-
HRSS

Streamlined
NTRU Prime

NTRU
LPRime

Encapsulation

Poly Mul speed-up act 24.56 101.92 349.98 444.03

Poly Mul speed-up SI 471.14 2,079.81 7,328.01 7,387.49

Ratio SI/Actual 19.19 20.41 20.94 16.64

Total speed-up act 3.97 28.24 13.00 42.67

Total speed-up SI 4.51 38.01 13.44 46.80

Ratio SI/A 1.14 1.35 1.03 1.10

Decapsulation

Poly Mul speed-up act 29.03 192.35 682.91 522.98

Poly Mul speed-up SI 382.07 2,507.91 8,872.67 6,357.21

Ratio SI/Actual 13.16 13.04 12.99 12.16

Total speed-up actual 6.38 72.48 149.67 62.60

Total speed-up SI 7.77 110.68 187.38 70.20

Ratio SI/A 1.22 1.53 1.25 1.12



40 F. Farahmand et al.

In spite of this communication penalty, the speed-up for the polynomial mul-
tiplication itself is very high. For all KEMs other than NTRUEncrypt, this speed-
up exceeds 98. For NTRUEncrypt, it is about 23 for encapsulation and 27 for
decapsulation. This lower speed-up can be attributed primarily to the faster
software implementation (due to the use of q = 211).

Overall, offloading polynomial multiplication to hardware has substantially
changed the ranking of investigated KEMs. In pure software, NTRUEncrypt was
by far the most efficient, followed by NTRU-HRSS, and trailed by Streamlined
NTRU Prime and NTRU LPRime. In the software/hardware implementation,
NTRU-HRSS was the fastest for both basic operations. For encapsulation it was
followed by NTRUEncrypt, NTRU LPRime, and Streamlined NTRU Prime, and
for decapsulation, by Streamlined NTRU Prime, NTRUEncrypt, and NTRU
LPRime. However, when analyzing these results, one needs to keep in mind
that NTRU-HRSS provides much lower security level compared to all remaining
KEMs (the security strength category 1 vs. 5), and the specifications of these
KEMs do not support comparing all of them at the same security level.

Using the actual results for the existing modern embedded systems platform,
Zynq UltraScale+ MPSoC, we can also estimate the results for a hypothetical
future platform, an ARM processor, equipped with special instructions capable
of executing polynomial multiplication. We assume that in such platform, the
number of clock cycles required for computations and input/output transfer will
remain the same. However, both the Poly Mult and the transfer of data will be
performed at the same frequency as the frequency of the processor itself (e.g.,
1.2 GHz). We also assume that the DMA initialization is not any longer required.

The speed-ups calculated under such assumptions are referred to as speed-ups
for the case of Special Instructions (SI). These speed-ups are summarized and
compared with the actual speed-ups (obtained for Zynq UltraScale+ MPSoC)
in Table 8. The SI speed-ups for Poly Mult itself exceed the actual speed ups by
a factor varying between 16.64 and 20.94 for encapsulation, and between 12.16
and 13.16 for decapsulation. At the same time, the total speed-ups improve for
the case of special instructions by much smaller factor, varying between 1.03 and
1.35 for encapsulation, and between 1.12 and 1.53 for decapsulation. As a result,
our study can be used as a relatively accurate predictor of the improvements
possible by extending a modern ARM processor with special instructions capable
of performing the respective variants of Poly Mult.

On the other hand, our current study cannot be used to predict the perfor-
mance and ranking of the investigated candidates when implemented entirely in
hardware. Such implementations can benefit from elimination of the communi-
cation overhead between a processor and a hardware accelerator. They may also
take advantage of an ability to parallelize some additional operations, other than
Poly Mult. At the same time for many auxiliary operations, which are sequential
in nature, moving from a processor to reconfigurable fabric, operating at much
lower clock frequency, may have either negative or at least negligible effect on the
overall performance. As a result, the actual full hardware implementations are
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required to properly rank candidates in terms of their performance in FPGAs
and ASICs.

When it comes to alternative software/hardware implementations, the right
side of Table 3, may serve as a starting point for future work. This side, presents
the results of profiling for our software/hardware implementations. Only for
the NTRU-HRSS decapsulation, Poly Mult remains the most time-consuming
operation. For all remaining algorithms it moves to the second or third position
in the ranking. The new most time consuming functions, such as generate r
for NTRUEncrypt, small random weightw for the Streamlined NTRU Prime -
Encapsulation, and small seeded weightw for NTRU LPRime are likely to be
parallalizable and thus suitable for offloading to hardware. On the other hand,
FIPS202 SHA3 512 is mostly sequential, and thus it is likely to offer a lower
performance gain when implemented in hardware. Additional factors, such as
the development effort, the total size of inputs and outputs of a given function,
as well as the area/memory requirements may need to be taken into account
when investigating any alternative software/hardware partitioning schemes.

6 Conclusions

Using SW/HW codesign allows the implementers of candidates for new crypto-
graphic standards (such as NIST PQC standards) to substantially reduce the
development time compared to the use of purely hardware implementations.
The implementers avoid reproducing in hardware the cumbersome and mostly
sequential operations required for input/output, as well as multiple auxiliary
operations that have a negligible influence on the total execution time. Instead,
they can focus on major and most time consuming operations, which can easily
contribute about 90% to the total execution time, and are suitable for paralleliza-
tion. In this study, we have clearly demonstrated the viability of this approach
in case of four Round 1 NIST PQC candidates and their major operation, Poly
Mult. The obtained results shed a light on the correct ranking of the investigated
four NTRU-based KEMs when offloading the most time consuming operations
to hardware is a design option.
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Abstract. Group signature is a fundamental cryptographic primitive,
aiming to protect anonymity and ensure accountability of users. It allows
group members to anonymously sign messages on behalf of the whole
group, while incorporating a tracing mechanism to identify the signer of
any suspected signature. Most of the existing group signature schemes,
however, do not guarantee security once secret keys are exposed. To
reduce potential damages caused by key exposure attacks, Song (ACM-
CCS 2001) put forward the concept of forward-secure group signature
(FSGS), which prevents attackers from forging group signatures pertain-
ing to past time periods even if a secret group signing key is revealed at
the current time period. For the time being, however, all known secure
FSGS schemes are based on number-theoretic assumptions, and are vul-
nerable against quantum computers.

In this work, we construct the first lattice-based FSGS scheme. Our
scheme is proven secure under the Short Integer Solution and Learning
With Errors assumptions. At the heart of our construction is a scal-
able lattice-based key evolving mechanism, allowing users to periodically
update their secret keys and to efficiently prove in zero-knowledge that
key evolution process is done correctly. To realize this essential building
block, we first employ the Bonsai tree structure by Cash et al. (EURO-
CRYPT 2010) to handle the key evolution process, and then develop
Langlois et al.’s construction (PKC 2014) to design its supporting zero-
knowledge protocol.

Keywords: Group signatures · Key exposure · Forward-security ·
Lattice-based cryptography · Zero-knowledge proofs

1 Introduction

Group signatures. Initially suggested by Chaum and van Heyst [19], group
signature (GS) allows users of a group controlled by a manager to sign mes-
sages anonymously in the name of the group (anonymity). Nevertheless, there
is a tracing manager to identify the signer of any signature should the user
abuse the anonymity (traceability). These seemingly contractive features, how-
ever, allow group signatures to find applications in various real-life scenarios
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such as e-commence systems and anonymous online communications. Unfortu-
nately, the exposure of group signing keys renders almost all the existing schemes
unsatisfactory in practice. Indeed, in the traditional models of group signatures,
e.g., [6,8,10,29,30,55], the security of the scheme is no longer guaranteed when
the key exposure arises. So now let us look closely at the key exposure problem
and the countermeasures to it.

Exposure of Group Signing Keys and Forward-Secure Group Signa-

tures. Exposure of users’ secret keys is one of the greatest dangers to many cryp-
tographic protocols in practice [56]. Forward-secure mechanisms first introduced
by Anderson [4], aim to minimize the damages caused by secret key exposures.
More precisely, forward-security protects past uses of private keys in earlier time
periods even if a break-in occurs currently. Afterwards, many forward-secure
schemes were constructed, such as forward-secure signatures [1,7,26], forward-
secure public key encryption systems [9,16,22], and forward-secure signatures
with un-trusted update [13,40,41]. At the heart of these schemes is a key evolv-
ing technique that operates as follows. It divides the lifetime of the scheme into
discrete T time periods. Upon entering a new time period, a subsequent secret
key is computed from the current one via a one-way key evolution algorithm.
Meanwhile, the preceding key is deleted promptly. Due to the one-wayness of the
updating algorithm, the security of the previous keys is preserved even though
the current one is compromised. Therefore, by carefully choosing a secure scheme
that operates well with a key evolving mechanism, forward-security of the scheme
can be guaranteed.

As investigated by Song [56], secret key exposure in group signatures is much
more damaging than in ordinary digital signatures. In group signatures, if one
group member’s signing key is disclosed to the attacker, then the latter can sign
arbitrary messages. In this situation, if the underlying group signature scheme
is not secure against exposure of group signing keys, then the whole system
has to be re-initialized, which is obviously inefficient in practice. Besides its
inefficiency, this solution is also unsatisfactory. Once there is a break-in of the
system, all previously signed group signatures become invalid since we do not
have a mechanism to distinguish whether a signature is generated by a legitimate
group member or by the attacker. What is worse, one of the easiest way for a
misbehaving member Eve to attack the system and/or to repudiate her illegally
signed signatures is to reveal her group signing key secretly in the Internet and
then claim to be a victim of the key exposure problem [26]. Now the users who
had accepted signatures before Eve’s group signing key is exposed are now at
the mercy of all the group members, some of whom (e.g., Eve) would not reissue
the signatures with the new key.

The aforementioned problems induced by the exposure of group signing keys
motivated Song [56] to put forward the notion of forward-secure group signature
(FSGS), in which group members are able to update their group signing keys at
each time period via a one-way key evolution algorithm. Therefore, when some
group member’s singing key is disclosed, all the signatures generated during
past periods remain valid, which then prevents dishonest group members from
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repudiating signatures by simply exposing keys. Later, Nakanishi, Hira, Fun-
abiki [50] defined a rigourous security model of FSGS for static groups, where
users are fixed throughout the scheme, and demonstrated a pairing-based con-
struction. Subsequently, Libert and Yung [42] extended Nakanishi et al.’s work
to capture the setting of the dynamically growing groups. However, all these
schemes are constructions based on number-theoretic assumptions and are frag-
ile in the presence of quantum adversaries. In order not to put all eggs in one
basket, it is imperative to consider instantiations based on alternative, post-
quantum foundations, e.g., lattice assumptions. In view of this, let us now look
at the topic of lattice-based group signatures.

Lattice-based group signatures. In 2010, Gordon et al. [25] introduced the
first lattice-based instantiation of GS. Since then, numerous schemes have been
put forward with various improvements on security, efficiency, and functionality.
While many of them [11,15,21,31,36,44,52] aim to provide enhancement on
security and efficiency, they are solely designed for the static groups and often
fall too short for specific needs of real-life applications. With regard to advanced
features, there have been proposed several schemes [32,33,39,45–47] and they are
still behind their counterparts in the number-theoretic setting. Specifically, [32,
33,45,47] deal with dynamic user enrollments and/or revocations of misbehaving
users while [39,46] attempt to restrict the power of the tracing manager or keep
his actions accountable. For the time being, the problem of making GS secure
against the key exposure problem is still open in the context of lattices. Taking
into account the great threat of key exposure to GS and the vulnerability of
GS from number-theoretic assumptions in front of quantum computers, it would
be tempting to investigate lattice-based instantiations of FSGS. Furthermore, it
would be desirable to achieve it with reasonable overhead, e.g., with complexity
at most poly-logarithmic in T .

Our Contributions. We introduce the first FSGS scheme in the context of
lattices. The scheme satisfies the security requirements put forward by Nakan-
ishi et al. [50] in the random oracle model. Assuming the hardness of the Short
Integer Solution (SIS) problem and the Learning With Errors (LWE) problem,
our scheme achieves full anonymity and a stronger notion of traceability named
forward-secure traceability, which captures the traceability in the setting of key
exposure problems. Let λ be the security parameter, N be the expected number
of group members, and T be total time periods, our construction achieves sig-
nature size ˜O(λ(log N + log T )), group public key size ˜O(λ2(log N + log T )),
and secret key size ˜O(λ2(log N + log T )2 log T ). In particular, forward secu-
rity is achieved with a reasonable cost: the size of keys and signatures are at
most O(log3 T ) larger than those of the basic GS scheme [32] upon which we
build ours.

Overview of Our Techniques. Typically, designing secure GS requires a
combination of digital signature, encryption scheme and zero-knowledge (ZK)
protocol. Let us first consider an ordinary GS scheme similar to the template
proposed by Bellare et al. [6]. In the scheme, each user is assigned an � bit
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string id as identity, where � = log N . The user’s signing key is a signature
on his identifier id, generated by the group manager. Specifically, we let the
signing key be a short vector vid satisfying Aid · vid = u mod q for some public
vector u. When signing a message, the user first encrypts his identity id to a
ciphertext c and proves that he possesses a valid signature on his identity that
is also correctly encrypted to c. To achieve forward-security, we would need a
mechanism to update the group signing key periodically and a ZK protocol to
prove that the key updating procedure is done honestly.

Inspired by the HIBE-like key evolving technique from Nakanishi et al. [50]
and Libert and Yung [42], which in turn follows from [9,13,16], we exploit the
hierarchical structure of the Bonsai tree [18] to enable periodical key updating.
To the best of our knowledge, this is the only lattice-based HIBE in the stan-
dard model with supporting (Stern-like [57]) ZK proofs by Langlois et al. [32],
which seems to be the right stepping stone towards our goal. Let T = 2d be
the total number of time periods. To enable key updating, each user id is asso-
ciated with a subtree of depth d, where the leaves of the tree correspond to
successive time periods in the apparent way. Let the subtree be identified by
matrices Aid,A0

�+1,A
1
�+1, . . . ,A

0
�+d,A

1
�+d and z = Bin(t) be the binary repre-

sentation of t. In order to show the key evolution is done correctly, we observe
that it suffices to prove possession of a (short) Bonsai signature vid‖z satisfy-
ing [Aid|Az[1]

�+1| · · · |A
z[d]
�+d] · vid‖z = u mod q. However, proving knowledge of the

Bonsai signature departs from the protocol presented in [32]. The matrix Aid

should be secret and the binary string z should be public in our case while it is
the other way around in [32]. Nevertheless, analyzing the above equation care-
fully, it actually reduces to proving knowledge of short vectors w1 and w2 and a
binary string id such that Aid ·w1 +A′′ ·w2 = u mod q, where vid‖z = (w1‖w2)
and A′′ is built from some public matrices. To prove knowledge of w2, we can
employ the decomposition/extension/permutation techniques by Ling et al. [43]
that operate in Stern’s framework [57]. Regarding the ZK protocol for proving
knowledge of w1 and id, it indeed depends on the signature scheme used by the
group manager to certify users. For simplicity, we employ the Bonsai tree signa-
ture [18] as well. Then, by utilizing the ZK protocol in [32], we are able to prove
knowledge of w1 and id and manage to obtain the desired ZK protocol for prov-
ing possession of vid‖z. It is worth mentioning that, besides the Bonsai signature,
the Boyen signature [12] is also a plausible candidate, for which a ZK protocol
showing the possession of a valid message-signature pair was known [44].

In the above, we have discussed the (Stern-like) ZK protocol showing knowl-
edge of correctly updated signing key vid‖Bin(t), the main technical building
block in achieving our FSGS scheme. The next question is then how should
the user derive vid‖Bin(t) for all possible t using his group signing key vid. To
this end, we make a minor but significant change to the group signing key.
Observe that for the Bonsai tree signature, once a trapdoor matrix Sid satisfy-
ing Aid · Sid = 0 mod q is known, the user id is able to generate vid‖Bin(t) for all
possible t. Therefore, we let the user’s signing key be Sid instead. Nevertheless,
we then observe user id should not hold Sid at all times, as the adversary could
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also generate all possible vid‖Bin(t) once Sid is known to him. One trivial method
is to generate all possible vid‖Bin(t) and then delete all the previous ones upon
entering a new period. However, this will incur linear dependency on T , which
is undesirable for efficiency purpose.

To achieve logarithmic overhead, we should think of a way to employ the
structure of the Bonsai tree. Let Nodes(t→T−1) be the set of nodes such that
it has size at most log T and contains exactly one ancestor of each leaf or the
leaf itself between t and T − 11. Now we let the signing key of user id at time
t be trapdoor matrices Sid‖z for all z ∈ Nodes(t→T−1). The user is then able to
produce all possible vid‖Bin(t) by employing Sid‖z if z is an ancestor of Bin(t).
More importantly, for each z′ ∈ Nodes(t+1→T−1), there exists a unique ancestor
z ∈ Nodes(t→T−1), which enables the evolving of the signing key from time t to
t + 1, thanks to the basis delegation algorithm of the Bonsai signature.

As discussed so far, we have shown how to update the key periodically and
identified the ZK protocol for the honest behaviour of update. The thing that
remains is to find a public key encryption (PKE) scheme that is compatible
with the above ingredients. Furthermore, to achieve full anonymity, it typically
requires the PKE scheme to be CCA-secure. To this end, we apply the CHK
transform [17] to the identity-based encryption scheme [24]. For the obtained
PKE scheme, we observe that there exists a Stern-like ZK protocol (see [44]) for
proving knowledge of the plaintext, which is compatible in our setting.

To summarize, we have obtained a lattice-based FSGS scheme by developing
several technical building blocks from previous works in a non-trivial way. Our
scheme satisfies full anonymity due to the facts that the underlying encryption
scheme is CCA-secure and that the underlying ZK protocol is statistically zero-
knowledge, and achieves forward-secure traceability due to the security of the
Bonsai tree signature [18]. We believe that, our construction - while not being
truly novel - would certainly help to enrich the area of lattice-based GS.

Related Work. Recently, Kansal, Dutta and Mukhopadhyay [27] proposed a
lattice-based FSGS scheme that operates in the model of Libert and Yung [42].
Unfortunately, it can be observed that their construction does not satisfy the
correctness and security requirements of [42]. (For details, see full version of this
paper.)

2 Preliminaries

Throughout the paper, all vectors are column vectors. When concatenating two
matrices of form A ∈ R

n×m and B ∈ R
n×k, we use the notion [A|B] ∈ R

n×(m+k)

while we denote (x‖y) ∈ R
m+k as the concatenation of two vectors of form

x ∈ R
m and y ∈ R

k. Let [m] be the set {1, 2, · · · ,m}.

1 This set can be determined by the Nodeselect algorithm presented by Libert and
Yung [42].
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2.1 Forward-Secure Group Signatures

We now recall the syntax and security requirements of forward-secure group sig-
nature (FSGS), as formalized by Nakanishi et al. [50]. An FSGS scheme consists
of the following polynomial-time algorithms.

KeyGen: This algorithm takes the tuple (λ, T,N) as input, with λ being secu-
rity parameter, T being total number of time periods, and N being maxi-
mum number of group members. It then returns group public key gpk, secret
key msk of group manager (GM), secret key mosk of tracing manager (TM),
initial user secret keys usk0. usk0 is an array of initial N secret signing
key {usk0[0],usk0[1], · · · ,usk0[N − 1]}, with usk0[i] being the initial key of
user i.

KeyUpdate: On inputs gpk, uskt[i], i, and t + 1, with uskt[i] being the secret
signing key of user i at time t, this randomized algorithm outputs the secret
signing key uskt+1[i] of user i at time t + 1.

Sign: On inputs gpk, uskt[i], user i, time period t, and message M , this random-
ized algorithm generates a signature Σ on message M .

Verify: It takes as inputs gpk, time period t, message M and signature Σ, and
returns 1/0 indicating the validity of the signature.

Open: On inputs gpk, mosk, t, M and Σ, this deterministic algorithm returns an
index i or ⊥.

Correctness. For all λ, T,N , (gpk,msk,mosk,usk0) ← KeyGen(λ, T,N), ∀i ∈
{0, 1, · · · , N − 1}, all M ∈ {0, 1}∗, all uskt[i] ← KeyUpdate(gpk,uskt−1[i], i, t)
for all t ∈ {0, 1, · · · T − 1}, the following equations hold:

Verify(gpk, t,M,Sign(gpk,uskt[i], t,M)) = 1,

Open(gpk,mosk, t,M,Sign(gpk,uskt[i], t,M)) = i.

Forward-Secure Traceability. This requirement demands that any PPT adver-
sary, even if it can corrupt the tracing manager and some (or all) group members,
is not able to produce a valid signature (i) that is opened to some non-corrupted
user or (ii) that is traced to some corrupted user, but the signature is signed at
time period preceding the secret key query of this corrupted user. Note that (i)
captures the standard traceability requirement as in [6] while (ii) deals with the
new requirement in the context of forward-security.
Full Anonymity. This requirement demands that any PPT adversary is infeasible
to figure out which of two signers of its choice signed the challenged message of
its choice at time period t of its choice. Details are referred to [50] or the full
version of this paper.

2.2 Some Background on Lattices

Let n ∈ Z
+ and Λ be a lattice of dimension n over R

n. Let S = {s1, · · · , sn} ⊂
R

n be a basis of Λ. For simplicity, we write S = [s1| · · · |sn] ∈ R
n×n. Define
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‖S‖ = Maxi‖si‖. Let ˜S = [̃s1| · · · |̃sn] be the Gram-Schmidt orthogonalization of
S. We refer to ‖˜S‖ as the Gram-Schmidt norm of S. For any c ∈ R

n and σ ∈ R
+,

define the following: ρσ,c(x) = exp(−π ‖x−c‖2

σ2 ) and ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x) for
any x ∈ Λ. Define the discrete Gaussian distribution over the lattice Λ with
parameter σ and center c to be DΛ,σ,c(x) = ρσ,c(x)/ρσ,c(Λ) for any x ∈ Λ. We
often omit c if it is 0.

Let n,m, q ∈ Z
+ with q ≥ 2. For A ∈ Z

n×m
q and u ∈ Z

n
q that admits a

solution to the equation A · x = u mod q, define

Λ⊥(A) = {e ∈ Z
m : Ae = 0 mod q}, Λu(A) = {e ∈ Z

m : Ae = u mod q}.

Define discrete Gaussian distribution over the set Λu(A) in the following way:
DΛu(A),σ,c(x) = ρσ,c(x)/ρσ,c(Λu(A)) for x ∈ Λu(A).

Lemma 1 ([24,53]). Let n,m, q ∈ Z
+ with q ≥ 2 and m ≥ 2n log q. Let σ ∈ R

such that σ ≥ ω(
√

log m).

– Then for all but a 2q−n fraction of all A ∈ Z
n×m
q , the distribution of the syn-

drome u = A · e mod q is within negligible statistical distance from uniform
over Z

n
q for e ←↩ DZm,σ. Besides, given A · e = u mod q, the conditional

distribution of e ←↩ DZm,σ is DΛu(A),σ.
– Let x ←↩ DZ,σ, t = log n, and β = 
σ · t�. Then the probability of |x| ≤ β is

overwhelming.
– The distribution DZm,σ has min-entropy at least m − 1.

We next present two hard average-case problems: the Short Integer Solution
(SIS) problem (in the �∞ norm) and the Learning With Errors (LWE) problem.

Definition 1 ([2,24,49], SIS∞
n,m,q,β). Given A $←− Z

n×m
q , find a vector e ∈ Z

m

so that A · e = 0 mod q and 0 < ‖e‖∞ ≤ β.

Let q > β
√

n be an integer and m,β be polynomials in n, then solving the
SIS∞

n,m,q,β problem (in the �∞ norm) is no easier than solving the SIVPγ problem
in the worst-case for some γ = β · ˜O(

√
nm) (see [24,48]).

Definition 2 ([54], LWEn,q,χ). For s ∈ Z
n
q , define a distribution As,χ over Zn

q ×
Zq as follows: it samples a uniform vector a over Zn

q and an element e according
to χ, and outputs the pair (a,a
 ·s+e). Then the goal of the LWEn,q,χ problem is
to distinguish m = poly(n) samples chosen according to the distribution As,χ for
some secret s ∈ Z

n
q from m samples chosen according to the uniform distribution

over Z
n
q × Zq.

Let B = ˜O(
√

n) and χ be an efficiently samplable distribution over Z that out-
puts samples e ∈ Z with |e| ≤ B with all but negligible probability in n. If
q ≥ 2 is an arbitrary modulus, then the LWEn,q,χ problem is at least as hard as
the worst-case problem SIVPγ with γ = ˜O(n · q/B) through an efficient quan-
tum reduction [14,54]. Additionally, it is showed that the hardness of the LWE
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problem is maintained when the secret s is chosen from the error distribution χ
(see [5]).

Now let us recall some algorithms from previous works that will be used
extensively in this work.

Lemma 2 ([3]). Let n,m, q ∈ Z
+ with q ≥ 2 and m = O(n log q). There is a

PPT algorithm TrapGen(n,m, q) which returns a tuple (A,S) such that

– A is within negligible statistical distance from uniform over Z
n×m
q ,

– S is a basis for Λ⊥(A), i.e., A · S = 0 mod q, and ‖˜S‖ ≤ O(
√

n log q).

Lemma 3 ([24]). Let S ∈ Z
m×m be a basis of Λ⊥(A) for some A ∈ Z

n×m
q

whose columns expand the entire group Z
n
q . Let u be a vector over Z

n
q and s ≥

ω(
√

log n) · ‖˜S‖. There is a PPT algorithm SampleD(A,S,u, s) which returns a
vector v ∈ Λu(A) from a distribution that is within negligible statistical distance
from DΛu(A),s.

We also need the following two algorithms to securely delegate basis.

Lemma 4 ([18]). Let S ∈ Z
m×m be a basis of Λ⊥(A) for some A ∈ Z

n×m
q

whose columns generate the entire group Z
n
q . Let A′ ∈ Z

n×m′
q be any matrix

containing A as a submatrix. There is a deterministic polynomial-time algorithm
ExtBasis(S,A′) which returns a basis S′ ∈ Z

m′×m′
of Λ⊥(A′) with ‖ ˜S′‖ = ‖˜S‖.

Lemma 5 ([18]). Let S be a basis of an m-dimensional integer lattice Λ and
a parameter s ≥ ω(

√
log n) · ‖˜S‖. There is a PPT algorithm RandBasis(S, s)

that outputs a new basis S′ of Λ with ‖S′‖ ≤ s · √
m. Moreover, for any two

bases S0,S1 of Λ and any s ≥ max{‖˜S0‖, ‖˜S1‖} · ω(
√

log n), the outputs of
RandBasis(S0, s) and RandBasis(S1, s) are statistically close.

2.3 The Bonsai Tree Signature Scheme

Our construction builds on the Bonsai tree signature scheme [18]. Now we
describe it briefly. The scheme takes the following parameters: λ is the secu-
rity parameter and n = O(λ), � is the message length, integer q = poly(n)
is sufficiently large, m = O(n log q), ˜L = O(

√
n log q), s = ω(

√
log n) · ˜L, and

β = 
s·log n�. The verification key is the tuple (A0,A0
1,A

1
1, . . . ,A

0
� ,A

1
� ,u) while

the signing key is S0, where (A0,S0) is generated by the TrapGen(n,m, q) algo-
rithm as described in Lemma 2 and matrices A0

1,A
1
1, . . . ,A

0
� ,A

1
� and vector u

are all uniformly random and independent over Z
n×m
q and Z

n
q , respectively.

To sign a binary message id ∈ {0, 1}�, the signer first computes the
matrix Aid := [A0|Aid[1]

1 | · · · |Aid[�]
� ] ∈ Z

n×(�+1)m
q , and then outputs a vector

v ∈ Λu(Aid) via the algorithm SampleD(ExtBasis(S0,Aid),u, s). To verify the
validity of v on message id, the verifier computes Aid as above and checks if
Aid ·v = u mod q and ‖v‖∞ ≤ β hold. They proved that this signature scheme
is existential unforgeable under static chosen message attacks based on the hard-
ness of the SIS problem.
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2.4 Stern-Like Zero-Knowledge Argument Systems

The statistical zero-knowledge argument of knowledge (ZKAoK) presented in this
work are Stern-like [57] protocols. In 1996, Stern [57] suggested a three-move
zero-knowledge protocol for the well-known syndrome decoding (SD) problem.
It was then later adapted to the lattice setting for a restricted version of Inho-
mogeneous Short Integer Solution (ISIS∞) problem by Kawachi et al. [28]. More
recently, Ling et al. [43] generalized the protocol to handle more versatile rela-
tions that find applications in the designs of various lattice-based constructions
(see, e.g., [34–38,51]). Libert et al. [33] put forward an abstraction of Stern’s pro-
tocol to capture a wider range of lattice-based relations, which we now recall.

An abstraction of Stern’s Protocol. Let K,L, q ∈ Z
+ with L ≥ K and

q ≥ 2, and let VALID ⊂ {−1, 0, 1}L. Given a finite set S, associate every φ ∈ S
with a permutation Γφ of L elements so that the following conditions hold:

{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.
(1)

The target is to construct a statistical ZKAoK for the abstract relation of the
following form:

Rabstract =
{

(M,u),w ∈ Z
K×L
q × Z

K
q × VALID : M · w = u mod q.

}

To obtain the desired ZKAoK protocol, one has to prove that w ∈ VALID and
w satisfies the linear equation M · w = u mod q. To prove the former condition
holds in a ZK manner, the prover chooses φ

$←− S and let the verifier check
Γφ(w) ∈ VALID. According to the first condition in (1), the verifier should be
convinced that w is indeed from the set VALID. At the same time, the verifier
is not able to learn any extra information about w due to the second condition
in (1). To show in ZK that the linear equation holds, the prover simply chooses

rw
$←− Z

L
q as a masking vector and then shows to the verifier that the equation

M · (w + rw) = M · rw + u mod q holds instead.
It is proved in [33] that there exists a statistical ZKAoK protocol with perfect

completeness, soundness error 2/3, and communication cost O(L log q) for the
relation Rabstract. The system utilizes a statistically hiding and computationally
binding string commitment scheme COM from [28]. Due to space limit, details
are referred to [33] or the full version of this paper.

3 Our Lattice-Based Forward-Secure Group Signature

In the description below, for a binary tree of depth k, we identify each node
at depth j with a binary vector z of length j such that z[1] to z[j] are ordered
from the top to the bottom and a 0 and a 1 indicate the left and right branch
respectively in the order of traversal. Let B ∈ Z

+. For an integer 0 ≤ b ≤ B,
denote Bin(b) as the binary representation of b with length 
log B�.
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In our FSGS scheme, lifetime of the scheme is divided into T discrete periods
0, 1, · · · , T − 1. For simplicity, let T = 2d for some d ∈ Z

+. Following previous
works [13,42], each time period t is associated with leaf Bin(t).

Following [13], for j = 1, · · · , d + 1, t ∈ {0, 1, · · · , T − 1}, we define a time
period’s “right sibling at depth j” as

sibling(j, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1)� if j = 1 and Bin(t)[j] = 0,

(Bin(t)[1], · · · ,Bin(t)[j − 1], 1)� if 1 < j ≤ d and Bin(t)[j] = 0,

⊥ if j ≤ d and Bin(t)[j] = 1,

Bin(t) if j = d + 1.

Define node set Nodes(t→T−1) to be {sibling(1, t), · · · , sibling(d + 1, t)}. For any
t′ > t, one can check that for any non-⊥ z′ ∈ Nodes(t′→T−1), there exists a
z ∈ Nodes(t→T−1) such that z is an ancestor of z′.

3.1 Description of the Scheme

Our scheme operates in the Nakanishi et al.’s (static) model [50]. Let T = 2d

and N = 2�. The group public key consists of (i) a Bonsai tree of depth � + d

specified by a matrix A = [A0|A0
1|A1

1 · · · |A0
�+d|A1

�+d] ∈ Z
n×(2�+2d+1)m
q and a

vector u ∈ Z
n
q , which are for issuing certificate; (ii) A public matrix B ∈ Z

n×m
q

of the IBE scheme by Gentry et al. [24], which is for encrypting user identities
when signing messages. The secret key of GM is a trapdoor matrix of the Bonsai
tree while the secret key of the tracing manager is a trapdoor matrix of the IBE
scheme.

Each user id ∈ {0, 1}� is assigned a node id. To enable periodical key updat-
ing, each user id is associated with a subtree of depth d. In our scheme, all users
are assumed to be valid group members from time 0 to T − 1. Let z be a binary
string of length dz ≤ d. Define Aid‖z = [A0|Aid[1]

1 | · · · |Aid[�]
� |Az[1]

�+1| · · · |A
z[dz ]
�+dz

] ∈
Z

n×(�+dz+1)m
q . Specifically, the group signing key of user id at time t is {Sid‖z, z ∈

Nodes(t→T−1)}, which satisfies Aid‖z ·Sid‖z = 0 mod q. Thanks to the basis del-
egation technique [18], users are able to compute the trapdoor matrices for all
the descendent of nodes in the set Nodes(t→T−1) and hence are able to derive
all the subsequent signing keys. We remark that for leaf nodes, it is sufficient to
generate short vectors instead of short bases, since we do not need to perform
further delegations.

Once received the group signing key, each user can issue signatures on behalf
of the group. When signing a message at time t, user id first generates a one-
time signature key pair (ovk, osk), and then encrypts his identity id to a cipher-
text c using the IBE scheme with respect to “identity” ovk. Next, he proves in
zero-knowledge that: (i) he is a certified group member; (ii) he has done key
evolution honestly; (iii) c is a correct encryption of id. To prove that facts (i)
and (ii) hold, it is sufficient to prove knowledge of a short vector vid‖Bin(t) such
that Aid‖Bin(t) · vid‖Bin(t) = u mod q. The protocol is developed from Langlois et
al.’s technique [32] (which was also employed in [20] for designing policy-based
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signatures) and Ling et al.’s technique [43], and is repeated κ = ω(log n) times to
achieve negligible soundness error, and is made non-interactive via Fiat-Shamir
transform [23] as a triple Π. Finally, the user generates a one-time signature sig
on the pair (c,Π), and outputs the group signature consisting of (ovk, c,Π, sig).

To verify a group signature, one checks the validity of sig under the key ovk
and Π. In case of dispute, TM can decrypt the ciphertext with respect to the
“identity” ovk using his secret key. Details of the scheme are described below.

KeyGen(λ, T,N): On inputs security parameter λ, total number of time periods
T = 2d for some d ∈ Z+ and maximum number of group members N = 2�

for some � ∈ Z
+, this algorithm does the following:

1. Choose n = O(λ), q = poly(n), m = O(n log q). Let k = � + d and
κ = ω(log n).

2. Run TrapGen(n,m, q) as described in Lemma 2 to obtain A0 ∈ Z
n×m
q and

S0 ∈ Z
m×m.

3. Sample u $←− Z
n
q , and Ab

i
$←− Z

n×m
q for all i ∈ [k] and b ∈ {0, 1}.

4. Choose a one-time signature scheme OT S = (OGen,OSign,OVer), and
a statistically hiding and computationally binding commitment scheme
COM from [28] that will be used in our zero-knowledge argument system.

5. Let H0 : {0, 1}∗ → Z
n×�
q and H1 : {0, 1}∗ → {1, 2, 3}κ be collision-

resistant hash functions, which will be modelled as random oracles in the
security analysis.

6. Let Gaussian parameter si be O(
√

nk log q)i−�+1 · ω(
√

log n)i−�+1, which
will be used to generate short bases or sample short vectors at level i for
i ∈ {�, � + 1, · · · , k}.

7. Choose integer bounds β = 
sk · log n�, B = ˜O(
√

n), and let χ be a
B-bounded distribution over Z.

8. Generate a master key pair (B,S) ∈ Z
n×m
q × Z

m×m for the IBE scheme
by Gentry et al. [24] via the TrapGen(n,m, q) algorithm.

9. For user i ∈ {0, 1, · · · , N − 1}, let id = Bin(i) ∈ {0, 1}�. Let node id be
the identifier of user i. Determine the node set Nodes(0→T−1).
For z ∈ Nodes(0→T−1), if z = ⊥, set usk0[i][z] = ⊥. Otherwise denote dz

as the length of z with dz ≤ d, compute the matrix

Aid‖z = [A0|Aid[1]
1 | · · · |Aid[�]

� |Az[1]
�+1| · · · |A

z[dz ]
�+dz

] ∈ Z
n×(�+dz+1)m
q .

and proceed as follows:
– If z is of length d, i.e., dz = d, it computes a vector vid‖z ∈ Λu(Aid‖z)

via
vid‖z ← SampleD(ExtBasis(S0,Aid‖z),u, sk).

Set usk0[i][z] = vid‖z.
– If z is of length less than d, i.e., 1 ≤ dz < d, it computes a matrix
Sid‖z ∈ Z

(�+dz+1)m×(�+dz+1)m via

Sid‖z ← RandBasis(ExtBasis(S0,Aid‖z), s�+dz
).

Set usk0[i][z] = Sid‖z.
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Let usk0[i] = {usk0[i][z], z ∈ Nodes(0→T−1)} be the initial secret key of
user i.

Let public parameter be pp, group public key be gpk, secret key of GM be msk,
secret key of TM be mosk and initial secret key be usk0, which are defined
as follows:

pp = {n, q,m, �, d, k, κ,OT S,COM,H0,H1, s�, . . . , sk, β,B},

gpk = {pp,A0,A0
1,A

1
1, . . . ,A

0
k,A1

k,u,B},

msk = S0, mosk = S,

usk0 = {usk0[0], usk0[1], . . . , usk0[N − 1]}.

KeyUpdate(gpk,uskt[i], i, t + 1): Compute the identifier of user i as id = Bin(i),
parse uskt[i] = {uskt[i][z], z ∈ Nodes(t→T−1)}, and determine the node set
Nodes(t+1→T−1).
For z′ ∈ Nodes(t+1→T−1), if z′ = ⊥, set uskt+1[i][z′] = ⊥. Otherwise, there
exists exactly one z ∈ Nodes(t→T−1) as its prefix, i.e., z′ = z‖y for some suffix
y. Consider the following two cases.
1. If z′ = z, let uskt+1[i][z′] = uskt[i][z].
2. If z′ = z‖y for some non-empty y, then uskt[i][z] = Sid‖z. Consider the

following two subcases.
– If z′ is of length d, run

vid‖z′ ← SampleD(ExtBasis(Sid‖z,Aid‖z′),u, sk),

and set uskt+1[i][z′] = vid‖z′ .
– If z′ is of length less than d, run

Sid‖z′ ← RandBasis(ExtBasis(Sid‖z,Aid‖z′), s�+dz′ ),

and set uskt+1[i][z′] = Sid‖z′ .
Output updated key as uskt+1[i] = {uskt+1[i][z′], z′ ∈ Nodes(t+1→T−1)}.

Sign(gpk,uskt[i], i, t,M): Compute the identifier id = Bin(i). By the structure
of the node set Nodes(t→T−1), there exists some z ∈ Nodes(t→T−1) such that
z = Bin(t) is of length d and uskt[i][z] = vid‖z.

To sign a message M ∈ {0, 1}∗, the signer then performs the following steps.
1. First, generate a one-time signature key pair (ovk, osk) ← OGen(n),

and then encrypt id with respect to “identity” ovk as follows. Let
G = H0(ovk) ∈ Z

n×�
q . Sample s ←↩ χn, e1 ←↩ χm, e2 ←↩ χ�, and compute

ciphertext (c1, c2) ∈ Z
m
q × Z

�
q as

(c1 = B
 · s + e1, c2 = G
 · s + e2 + �q

2
� · id). (2)
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2. Second, compute the matrix Aid‖z and generate a NIZKAoK Π to demon-
strate the possession of a valid tuple

ξ = (id, s, e1, e2,vid‖z) (3)

such that
(a) Aid‖z · vid‖z = u mod q, and ‖vid‖z‖∞ ≤ β.
(b) Equations in (2) hold with ‖s‖∞ ≤ B, ‖e1‖∞ ≤ B and ‖e2‖∞ ≤ B.
This is done by running our argument system described in Sect. 4.2 with
public input

γ = (A0,A0
1,A

1
1, . . . ,A

0
k,A1

k,u,B,G, c1, c2, t)

and witness tuple ξ as above. The protocol is repeated κ = ω(log n) times
to obtain negligible soundness error and made non-interactive via the
Fiat-Shamir heuristic [23] as a triple Π = ((CMTi)κ

i=1,CH, (RSPi)κ
i=1)

with CH = H1(M, (CMTi)κ
i=1, c1, c2, t).

3. Third, compute a one-time signature sig = OSign(osk; c1, c2,Π) and out-
put the signature as Σ = (ovk, c1, c2,Π, sig).

Verify(gpk, t,M,Σ): This algorithm proceeds as follows:
1. Parse Σ as Σ = (ovk, c1, c2,Π, sig). If OVer(ovk; sig; c1, c2,Π) = 0, then

return 0.
2. Parse Π as Π = ((CMTi)κ

i=1, (Ch1, . . . ,Chκ), (RSPi)κ
i=1).

If (Ch1, · · · ,Chκ) �= H1(M, (CMTi)κ
i=1, c1, c2, t), then return 0.

3. For i ∈ [κ], run the verification step of the underlying argument protocol
to check the validity of RSPi with respect to CMTi and Chi. If any of
the conditions does not hold, then return 0.

4. Return 1.
Open(gpk,mosk, t,M,Σ): If Verify(gpk, t,M,Σ) = 0, abort. Otherwise, let mosk

be S ∈ Z
m×m and parse Σ as Σ = (ovk, c1, c2,Π, sig). Then it decrypts

(c1, c2) as follows:
1. Compute G = H0(ovk) = [g1| · · · |g�] ∈ Z

n×�. Then use S to compute
a small norm matrix Fovk ∈ Z

m×� such that B · Fovk = G mod q. This
is done by computing fi ← SampleD(B,S,gi, s�) for all i ∈ [�] and let
Fovk = [f1| · · · |f�].

2. Use Fovk to decrypt (c1, c2) by computing

id′ =
⌊c2 − F


ovk · c1
�q/2�

⌉

∈ {0, 1}�.

3. Return id′ ∈ {0, 1}�.

3.2 Analysis of the Scheme

Efficiency. We first analyze the complexity of the scheme described in
Sect. 3.1, with respect to security parameter λ and parameters � = log N and
d = log T . Recall k = � + d.
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– The group public key gpk has bit-size ˜O(λ2 · k).
– The user secret key uskt[i] has at most d + 1 trapdoor matrices, and has

bit-size ˜O(λ2 · k2d).
– The size of signature Σ is dominated by that of the Stern-like NIZKAoK Π,

which is ˜O(|ξ| · log q) · ω(log λ), where |ξ| denotes the bit-size of the witness-
tuple ξ. Overall, Σ has bit-size ˜O(λ · k).

Correctness. The correctness of the above scheme follows from the following
facts: (i) the underlying argument system is perfectly complete; (ii) the under-
lying encryption scheme obtained by transforming the IBE scheme in [24] via
CHK transformation [17] is correct.

Specifically, for an honest user, when he signs a message at time period t,
he is able to demonstrate the possession of a valid tuple ξ of the form (3).
Therefore, with probability 1, the resulting signature Π will be accepted by the
Verify algorithm, implied by the perfect completeness of the underlying argument
system. As for the correctness of the Open algorithm, note that

c2 − F

ovk · c1 = G
 · s + e2 +

⌊q

2
⌋

· id − F

ovk · (B
 · s + e1)

=
⌊q

2
⌋

· id + e2 − F

ovk · e1

where ‖e1‖ ≤ B, ‖e2‖∞ ≤ B, and ‖fi‖∞ ≤ 
s� · log m� = ˜O(
√

n · k), which is
implied by Lemma 1. Recall that q = poly(n), m = O(n log q) and B = ˜O(

√
n).

Hence
‖e2 − F


ovk · e1‖∞ ≤ B + m · B · ˜O(
√

n · k) = ˜O(n2).

As long as we choose sufficiently large q, with probability 1, the Open algorithm
will recover id and correctness of the Open algorithm holds.

Security. In Theorem 1, we prove that our scheme satisfies the security require-
ments put forward by Nakanishi et al. [50].

Theorem 1. In the random oracle model, the forward-secure group signature
described in Sect. 3.1 satisfies full anonymity and forward-secure traceability
requirements under the LWE and SIS assumptions.

The proof of Theorem 1 is deferred to the full version of this paper.

4 The Underlying Zero-Knowledge Argument System

In Sect. 4.1, we recall the extension, decomposition, and permutation techniques
from [32,43]. Then we describe in Sect. 4.2 our statistical ZKAoK protocol that
will be used in generating group signatures.
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4.1 Extension, Decomposition, and Permutation

Extensions. For m ∈ Z, let B3m be the set of all vectors in {−1, 0, 1}3m having
exactly m coordinates −1, m coordinates 1, and m coordinates 0 and Sm be the
set of all permutations on m elements. Let ⊕ be the addition operation modulo 2.
Define the following functions

– ext3: {−1, 0, 1}m → B3m that transforms a vector v = (v1, . . . , vm)
 to vector
(v‖(−1)m−n−1‖0m−n0‖1m−n1)
, where nj is the number of element j in the
vector v for j ∈ {−1, 0, 1}.

– enc2: {0, 1}m → {0, 1}2m that transforms a vector v = (v1, . . . , vm)
 to vector
(v1, 1 − v1, . . . , vm, 1 − vm)
.

Decompositions and Permutations. We now recall the integer decompo-
sition technique. For any B ∈ Z

+, define pB = �log B� + 1 and the sequence
B1, . . . , BpB

as Bj = �B+2j−1

2j � for each j ∈ [pB ]. As observed in [43], it satis-
fies

∑pB

j=1 Bj = B and any integer v ∈ [B] can be decomposed to idecB(v) =
(v(1), . . . , v(pB))
 ∈ {0, 1}pB such that

∑pB

j=1 Bj · v(j) = v. This decomposition
procedure is described in a deterministic manner as follows:

1. v′ := v
2. For j = 1 to pB do:

(i) If v′ ≥ Bj then v(j) := 1, else v(j) := 0;
(ii) v′ := v′ − Bj · v(j).

3. Output idecB(v) = (v(1), . . . , v(pB))
.

Next, for any positive integers m, B, we define the function vdecm,B that trans-
forms a vector w = (w1, . . . , wm)
 ∈ [−B,B]m to a vector of the following form:

w′ = (σ(w1) · idecB(|w1|)‖ · · · ‖σ(wm) · idecB(|wm|)) ∈ {−1, 0, 1}mpB ,

where ∀j ∈ [m]: σ(wj) = 0 if wj = 0; σ(wj) = −1 if wj < 0; σ(wj) = 1 if wj > 0.

Define the matrix Hm,B =

⎡

⎢

⎣

B1, . . . , BpB

. . .
B1, . . . , BpB

⎤

⎥

⎦
∈ Z

m×mpB and

its extension ̂Hm,B = [Hm,B |0m×2mpB ] ∈ Z
m×3mpB . Let ŵ = ext3(w′) ∈ B3mpB

,
then one can see that ̂Hm,B · ŵ = w and for any ψ ∈ S3mpB

, the following
equivalence holds:

ŵ ∈ B3mpB
⇔ ψ(ŵ) ∈ B3mpB

. (4)

Define the following permutation.

– For any e = (e1, . . . , em)
 ∈ {0, 1}m, define Πe : Z2m → Z
2m that maps a

vector v = (v0
1 , v

1
1 , . . . , v

0
m, v1

m)
 to (ve1
1 , v1−e1

1 , . . . , vem
m , v1−em

m )
.

One can see that, for any z, e ∈ {0, 1}m, the following equivalence holds:

v = enc2(z) ⇔ Πe(v) = enc2(z ⊕ e). (5)
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4.2 The Underlying Zero-Knowledge Argument System

We now describe a statistical ZKAoK that will be invoked by the signer when gen-
erating group signatures. The protocol is developed from Stern-like techniques
proposed by Ling et al. [43] and Langlois et al. [32].

Public input γ: A0 ∈ Z
n×m
q , Ab

j ∈ Z
n×m
q for (b, j) ∈ {0, 1} × [k], u ∈ Z

n
q ,

B ∈ Z
n×m
q , G ∈ Z

n×�
q , (c1, c2) ∈ Z

m
q × Z

�
q, t ∈ {0, 1, · · · , T − 1}.

Secret input ξ: id ∈ {0, 1}�, s ∈ χn, e1 ∈ χm, e2 ∈ χ�, vid‖z ∈ Z
(�+d+1)m with

z = Bin(t).
Prover’s goal:

⎧

⎪

⎨

⎪

⎩

Aid‖z · vid‖z = u mod q, ‖vid‖z‖∞ ≤ β;
c1 = B
 · s + e1 mod q, c2 = G
 · s + e2 +

⌊

q
2

⌋

· id mod q;
‖s‖∞ ≤ B, ‖e1‖∞ ≤ B, ‖e2‖∞ ≤ B.

(6)

We first rearrange the above conditions. Let A′ = [A|A0
1|A1

1| · · · |A0
� |A1

� ] ∈
Z
(2�+1)m
q , Aid = [A0|Aid[1]

1 | · · · |Aid[�]
1 ] ∈ Z

(�+1)m
q and A′′ = Az[1]

�+1| · · · |A
z[d]
�+1] ∈

Z
dm
q . Then Aid‖z = [Aid|A′′] ∈ Z

(�+d+1)m
q . Let vid = (v0‖v1‖ · · · ‖v�),

w2 = (v�+1‖ · · · ‖v�+d) with each vi ∈ Z
m. Then vid‖z = (vid‖w2). Therefore

Aid‖z · vid‖z = u mod q is equivalent to

Aid · vid + A′′ · w2 = u mod q. (7)

Since id is part of secret input, Aid should not be explicitly given. We note
that Langlois et al. [32] already addressed this problem. The idea is as follows:
they first added � suitable zero-blocks of size m to vector vid and then obtained
the extended vector w1 = (v0‖v0

1‖v1
1‖ · · · ‖v0

�‖v1
� ) ∈ Z

(2�+1)m, where the added
zero-blocks are v1−id[1]

1 , . . . ,v1−id[�]
� and vid[i]

i = vi,∀i ∈ [�]. Now one can check
that Eq. (7) is equivalent to

A′ · w1 + A′′ · w2 = u mod q. (8)

Let B′ =
[

B
 Im 0m×�

G
 0�×m I�

]

, B′′ =
[

0m×�

�q/2�I�

]

, and w3 = (s‖e1‖e2) ∈

Z
n+m+�. Then one can check that c1 = B
 · s + e1 mod q, c2 = G
 · s + e2 +

⌊

q
2

⌋

· id mod q is equivalent to

B′ · w3 + B′′ · id = (c1‖c2) mod q. (9)

Using basic algebra, we can transform Eqs. (8) and (9) into one equation of the
following form:

M0 · w0 = u0 mod q,

where M0, u0 are built from A′,A′′,B′,B′′ and u, (c1‖c2), respectively, and
w0 = (w1‖w2‖w3‖id).

Now we can use the decomposition and extension techniques described in
Sect. 4.1 to handle our secret vectors. Let L1 = 3(2� + 1)mpβ , L2 = 3dmpβ ,
L3 = 3(n+m+�)pB , and L = L1 +L2 +L3 +2�. We transform our secret vector
w0 to vector w = (ŵ1‖ŵ2‖ŵ3‖̂id) ∈ {−1, 0, 1}L of the following form:
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– ŵ1 = (v̂0‖v̂0
1‖v̂1

1‖ · · · ‖v̂0
�‖v̂1

� ) ∈ {−1, 0, 1}L1 with v̂0 = ext3(vdecm,β(v0)) ∈
B3mpβ

, ∀i ∈ [�], v̂1−id[i]
i = 03mpβ and v̂id[i]

i = ext3(vdecm,β(vid[i]
i )) ∈ B3mpβ

;
– ŵ2 = ext3(vdecdm,β(w2)) ∈ B3dmpβ

;
– ŵ3 = ext3(vdecn+m+�,B(w3)) ∈ B3(n+m+�)pB

;
– ̂id = enc2(id) ∈ {0, 1}2�.

Using basic algebra, we can form public matrix M such that

M · w = M0 · w0 = u0 mod q.

Up to this point, we have transformed the considered relations into equation
of the desired form M · w = u mod q. We now specify the set VALID that
contains the secret vector w, the set S and permutations {Γφ : φ ∈ S} such that
the conditions in (1) hold.

Define VALID to be the set of vectors of the form z = (z1‖z2‖z3‖z4) ∈
{−1, 0, 1}L such that there exists x ∈ {0, 1}�

– z1 = (y0‖y0
1‖y1

1‖ · · · ‖y0
�‖y1

� ) ∈ {−1, 0, 1}3(2�+1)mpβ with y0 ∈ B3mpβ
and for

each i ∈ [�], y1−x[i]
i = 03mpβ , yx[i]

i ∈ B3mpβ
;

– z2 ∈ B3dmpβ
and z3 ∈ B3(n+m+�)pB

;
– z4 = enc2(x) ∈ {0, 1}2�.

Clearly, our vector w belongs to the tailored set VALID.
Now, let S = (S3mpβ

)2�+1 × S3dmpβ
× S3(n+m+�)pB

× {0, 1}�. For any

φ = (ψ0, ψ
0
1 , ψ

1
1 , . . . , ψ

0
� , ψ1

� , η2, η3, e) ∈ S, e = (e1, . . . , e�)
,

define the permutation Γφ : ZL → Z
L as follows. When applied to a vector

z = (y0‖y0
1‖y1

1‖ · · · ‖y0
�‖y1

�‖z2‖z3‖z4) ∈ Z
L

where the first 2� + 1 blocks are of size 3mpβ and the last three blocks are of
size 3dmpβ , 3(n+m+ �)pB and 2�, respectively; it transforms z to vector Γφ(z)
of the following form:

(ψ(y0)‖ψe1
1 (ye1

1 )‖ψ1−e1
1 (y1−e1

1 )‖ · · · ‖ψe�

� (ye�

� )‖ψ1−e�

� (y1−e�

� )‖
η2(z2)‖η3(z3)‖Πe(z4) ).

Based on the equivalences observed in (4) and (5), it can be checked that if
z ∈ VALID for some x ∈ {0, 1}�, then Γφ(z) ∈ VALID for some x⊕e ∈ {0, 1}�. In
other words, the conditions in (1) hold, and therefore, we can obtain the desired
statistical ZKAoK protocol.
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Abstract. The majority of submissions to NIST’s recent call for Post-
Quantum Cryptography are encryption schemes or key encapsulation
mechanisms. Signature schemes constitute a much smaller group of sub-
missions with only 21 proposals. In this work, we analyze the practica-
bility of one of the latter category – the signature scheme Falcon with
respect to its suitability for embedded microcontroller platforms.

Falcon has a security proof in the QROM in combination with small-
est public key and signature sizes among all lattice-based signature
scheme submissions with decent performance on common x86 computing
architectures. One of the specific downsides of the scheme is, however,
that according to its specification it is “non-trivial to understand and
delicate to implement”.

This work aims to provide some new insights on the realization of
Falcon by presenting an optimized implementation for the ARM Cortex-
M4F platform. This includes a revision of its memory layout as this is
the limiting factor on such constrained platforms. We managed to reduce
the dynamic memory consumption of Falcon by 43% in comparison to
the reference implementation. Summarizing, our implementation requires
682 ms for key generation, 479 ms for signing, and only 3.2 ms for verifi-
cation for the n = 512 parameter set.

Keywords: Ideal lattices · Falcon · Cortex-M · Microcontroller ·
NIST PQC

1 Introduction

With the progress on quantum computing that has been made in recent years,
the possibility of a powerful quantum computer being build in the coming years
seems as likely as never before. The impact of the sheer existence of such a
machine to current real world cryptography would be disastrous. Of special sig-
nificance in that regard is Shor’s algorithm for prime factorization and discrete
logarithms [32], which, given a powerful quantum computer, allows for polyno-
mial time attacks on almost all public-key algorithms that are in use today.
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As a result, research in the area of post-quantum cryptography has signifi-
cantly picked up in speed for the last couple of years. A lot of work is currently
being put into the construction of quantum-secure cryptographic schemes that
one day could replace today’s most widely distributed algorithms. This effort cul-
minated in the NISTs call for post-quantum cryptographic algorithms [27] that
ended in November 2017. While most of the first round submissions focus on key
exchange or key encapsulation schemes (KEMs), a few are dealing with the prob-
lem of generating cryptographically sound digital signatures. These include the
lattice-based schemes pqNTRUsign [10], qTESLA [7], Dilithium [12], DRS [28], and
Falcon [15], but also hash-based algorithms such as SPHINCS+ [21] or schemes
based on multivariate quadratics.

There are two competing approaches to realize lattice-based signature
schemes. While the majority of them is constructed by applying the Fiat-Shamir
transform to an authentication scheme, Falcon is based on the so-called hash-
and-sign approach. The major difference is that while Fiat-Shamir schemes in
general have a better performance, hash-and-sign ones can be proven to be secure
in the Random Oracle Model (ROM) and even the Quantum Random Oracle
Model (QROM). Another advantage of hash-and-sign signatures is that it is pos-
sible to construct identity-based encryption schemes out of a signature scheme
like Falcon [13].

In particular in IoT infrastructures with critical requirements for long-term
security, it is important to identify solutions that can still be deployed on con-
temporary small devices. Embedded systems found in automotive, consumer,
or medical applications, for instance, demand an alternative solution that can
withstand future attacks in the long run. With the implementation presented in
this work, we show that Falcon can be a solution in this context.

1.1 Related Work

The majority of practical work on lattice-based NIST PQC candidates for
embedded devices focuses on encryption schemes or key encapsulation mech-
anisms. An implementation of Saber [11] for ARM Cortex-M microcontroller
platforms by Karmakar et al. [23] has been published in TCHES’18 and has
since then been further optimized by Kannwischer et al. in [22]. There is also
a microcontroller and FPGA implementation of Frodo [3] by Howe et al. [20].
Albrecht et al. developed an implementation of Kyber [5] that exploits existing
RSA co-processors [2]. Finally, there is a Cortex-M4 implementation of Round5
[6], a scheme that resulted from the merger of Round2 [17] and HILA5 [30], by
Saarinen et al. [31].

A detailed list of publications related to microcontroller implementations of
NIST PQC candidates is available at the PQCzoo [19]. The most comprehen-
sive collection of ARM Cortex-M4 implementations can be found in the pqm4
[1] library. Most of these implementations are rather straight-forward portings
of their respective reference implementations, but it also features implementa-
tions that are described in dedicated publications. The library pqm4 contains
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ten KEMs and only three signature schemes, namely Dilithium, qTESLA, and
SPHINCS+. Falcon has not been included in pqm4.

1.2 Contribution

The Falcon web page [16] mentions that the comparatively low memory con-
sumption of Falcon is one of the highlights of the algorithm and states that
“Falcon is compatible with small, memory-constrained embedded devices”. The
reference implementation of the Falcon submission however paints a different
picture as it uses 210 kB of dynamic RAM memory during the signing step.
In this work, we want to verify the claim of the Falcon submission to be well
suited for memory-constrained embedded devices by presenting the first embed-
ded microcontroller implementation of the signature scheme Falcon.

To do so, we apply a number of memory-saving techniques to reduce the
dynamic memory consumption in comparison to the reference implementation
by 43%. Our implementation on an ARM Cortex-M4 requires 64 kB of RAM and
has a runtime of 682 ms for key generation, 479 ms for signing, and only 3.2 ms
for verification using Falcon-512.

In its Call for Proposals [27] NIST explicitly states that the flexibility of a pro-
posed scheme is one major evaluation criterion for the standardization process.
The document furthermore defines flexibility to include that “algorithms can
be implemented securely and efficiently on a wide variety of platforms, includ-
ing constrained environments”. In our work, we show that Falcon fulfills this
requirement to some extent and also highlight the limitations of the scheme
regarding its implementation on embedded platforms.

2 Preliminaries

In this chapter, we discuss the mathematical background that is crucial for the
understanding of this paper.

2.1 Notation

We follow the notation of the Falcon specification [15]. Matrices are written
as bold uppercase letter, vectors as bold lowercase letter, and scalars and poly-
nomials as italic letters. An asterisk marks the component-wise adjoint of the
transpose of a matrix. Sampling a value a from a Gaussian distribution is written
as a ← DZ,x,σ where x denotes the center of the distribution and σ denotes its
standard deviation.

2.2 The Falcon Signature Scheme

Due to the complexity of Falcon, a detailed description of all its components
is out of the scope of this work. In the following we will broadly describe the
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key generation, signing, and verification procedures of Falcon and refer to the
official specification [15] for more details.

Key generation, as shown in Algorithm 1, can be separated into two distinct
parts. First, it generates polynomials f, g, F,G ∈ Z[x]/(φ) that fulfill the NTRU
equation fG − gF = q mod φ using the algorithm NTRUGen. The second part
deals with the construction of the Falcon tree T using the LDL∗ decomposition
of the matrix G = BB∗. Since our optimizations strongly depend on the tree
generation algorithm, it can be found in Appendix A. Keygen then returns a
public key pk = h = gf−1 mod q and a secret key sk = (B̂,T).

Algorithm 1. Keygen(φ, q)
Require: A monic polynomial φ ∈ Z[x], a modulus q
Ensure: A secret key sk, a public key pk
1: f, g, F, G, γ ← NTRUGen(φ, q) � Solving the NTRU equation

2: B ←
[

g −f

G −F

]

3: B̂ ← FFT(B)
4: G ← B̂ × B̂∗

5: T ← ffLDL∗(G) � Computing the LDL∗ tree
6: if φ is binary then
7: σ ← 1.55

√
q

8: else if φ is ternary then
9: σ ← 1.32 · 21/4√q

10: for each leaf leaf of T do � Normalization step
11: leaf.value ← σ/

√
leaf.value

12: sk ← (B̂, T)
13: h ← gf−1 mod q
14: pk ← h
15: return sk, pk

For signature generation, Algorithm 2 summarizes the required steps. First it
computes a hash value c ∈ Zq[x]/(φ) of the message m and a salt r. It then uses
the secret key sk to compute short values s1, s2 such that s1 + s2h = c mod q by
leveraging its knowledge of f, g, F,G. This is done using the ffSampling algorithm,
which is also given in Appendix A. Since s1 can be reconstructed from s2, the
hash c, and public key h, it suffices to output a compressed version of s2 as the
signature, which also includes the random seed r.
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Algorithm 2. Sign(m, sk, β)
Require: A message m, a secret key sk, a bound β
Ensure: A signature sig of m
1: r ← {0, 1}320 uniformly
2: c ← HashToPoint(r‖m)
3: t ← (FFT(c), FFT(0)) · B̂−1

4: do
5: z ← ffSamplingn(t, T)
6: s = (t − z)B̂
7: while ‖s‖ > β
8: (s1, s2) ← invFFT(s)
9: s ← Compress(s2)

10: return sig = (r, s)

Signature verification as shown in Algorithm 3 is rather straightforward and
starts by hashing m and r into the hash value c again. Next, s1 is recomputed
and the algorithm checks whether ||(s1, s2)|| ≤ β is satisfied with β being some
predefined acceptance bound. Only if that bound holds for the given signature,
it is accepted as valid.

Algorithm 3. Verify(m, sig, pk, β)
Require: A message m, a signature sig = (r, s), a public key pk = h ∈ Zq[x]/(φ), a

bound β
Ensure: Accept or reject
1: c ← HashToPoint(r‖m, q, n)
2: s2 ← Decompress(s)
3: s1 ← c − s2h mod q
4: if ‖(s1, s2)‖ ≤ β then
5: accept
6: else
7: reject

3 Microcontroller Implementation

This section deals with two approaches to implement the Falcon signature
scheme on our target architecture. The first one combines the tree generation
with the fast Fourier sampler to reduce memory requirements, while the sec-
ond one excludes the key generation from the microcontroller entirely and uses
precomputed keys instead.

3.1 Target Platform

The STM32F4DISCOVERY board serves as a constrained target platform for
our implementation. Its microcontroller has an 32-bit ARM Cortex-M4F core



70 T. Oder et al.

that runs with a clock frequency of up to 168 MHz. The board offers 192 kB of
RAM as well as 1 MB of flash memory. Furthermore, it features a true random
number generator (TRNG) based on analog circuitry and a floating-point unit
(FPU). But as the FPU only works with single-precision floating point values,
we cannot employ it for our implementation.

3.2 Analysis of the Reference Implementation

The analysis of the reference implementation from the Falcon submission pack-
age is our starting point for the development of our optimized ARM Cortex-M4
implementation. We first measured the dynamic memory consumption of the
reference implementation in terms of stack and heap usage. We determine the
stack usage with the help of stack canaries. To employ this technique, we start
by filling the stack with a magic number before the operation to be measured is
executed. Afterwards we check up to which point the magic numbers have been
overwritten and therefrom conclude the stack usage. We determine the heap
usage by counting the malloc() calls in the reference implementation manually
as there are only a few of them in the source code.

The resulting dynamic memory consumption of the reference implementation
can be seen in Table 1. The first point to note is that 210 kB are required for the
signing operation for n = 1024 what clearly would not fit into the 192 kB RAM
of our STM32F4DISCOVERY development board. Another issue is that in most
use cases cryptographic algorithms are subcomponents of a main application on
the microcontroller that employes the security functions to securely transmit,
receive, or store data. As a result it is not sufficient to make the implementation
barely fit the memory of our target platform, but we also need to reserve space
for the main application that will be also placed the microcontroller.

Table 1. Dynamic memory usage of the reference implementation in bytes for n = 512
and n = 1024.

Operation Stack memory Heap memory Total memory

n = 512

Key generation 18,624 14,777 33,401

Sign 22,632 94,040 116,672

Verify 13,456 2,464 15,920

n = 1024

Key generation 24,200 29,113 53,313

Sign 28,696 181,080 209,776

Verify 19,080 2,464 21,544

We identify the large Falcon tree used in the fast Fourier sampler during
signature generation as the memory bottleneck. Considering the case n = 1024,



Towards Practical Microcontroller Implementation 71

that tree takes up 90 kB of the RAM. To execute Falcon on the target archi-
tecture, we present two possible solutions: We can either adapt the algorithm
in a way that is more memory-conserving, or we may implement only the sig-
nature generation and verification while using those algorithms in combination
with precomputed keys, which include the Falcon tree. The keys can then be
stored in Flash memory to unburden the RAM. The latter approach is rather
straightforward since one only needs to precompute the keys and load them onto
the device. However, for many use cases this is not a satisfiable solution, as we
may want to generate new keys over time. Therefore we focus on algorithmic
changes for the remainder of this section.

To reduce the memory footprint, our implementation will merge the tree
generation and the fast Fourier sampling (cf. Appendix A) into a single algorithm
ffSampling∗

n that is described in Algorithm 4. Referring to signature generation as
shown in Algorithm 2, we then replace ffSamplingn with ffSampling∗

n. The Falcon
tree is therefore no longer part of the secret key sk and is instead computed on-
the-fly during sampling. As the matrix G is required for the computation of
the tree, we additionally need to compute it prior to the sampling step. We can
therefore exclude the computation of G from key generation, since it has no use
in that algorithm anymore. That way we only need to keep a small subtree in
memory, which is generated whenever the respective part of the tree is required.
As a consequence of this memory tradeoff we have to recompute the entire tree
for each signature generation with a negative impact on the overall performance.
Finally, our embedded implementation natively only supports Falcon-512 and
Falcon-1024, though the same concepts can be directly applied for Falcon-768
as well.

3.3 Memory Optimizations

Our fast Fourier sampler with integrated tree generation is the most expensive
operation in terms of memory requirements during the signing procedure. We
optimized our implementation such that it only needs 8 kB of temporary space
(i.e. n double elements), as the in- and outputs alone already take up 56 kB
of RAM for n = 1024. The flowchart in Fig. 1 shows that it is not possible
to perform this operation in-place without overriding the inputs. For the sake
of simplicity, the flowchart does not include splitting and merging operations.
After the first call to ffSampling∗

n, the first output is already calculated and
we therefore cannot use its memory to store intermediate results. Hence we
leverage the memory, which in the end will contain the second output, to keep
the intermediate results in the meantime. However, we still need to store L10

as output of the LDL∗ somewhere. Therefore it is inevitable to use temporary
memory within the sampler without major algorithmic changes.

3.4 Timing Analysis

Timing attacks are a fundamental threat to every cryptographic operation
involving secret values [25]. With a timing attack an adversary obtains informa-



72 T. Oder et al.

Algorithm 4. ffSampling∗
n(t,G)

Require: t = (t0, t1) ∈ FFT(Q[x](xn + 1))2 and a full-rank Gram matrix G ∈
FFT(Q[x](xn + 1))2×2, σ ← 1.55

√
q

Ensure: z = (z0, z1) ∈ FFT(Z[x](xn + 1))2

1: if (n = 1) then
2: σ′ ← σ

√
G00

3: z0 ← DZ,t0,σ′

4: z1 ← DZ,t1,σ′

5: return z = (z0, z1)

6: (L,D) ← LDL∗(G) � L =

[
1 0

L10 1

]
,D =

[
D00 0

0 D11

]

7: d10, d11 ← splittfft2(D11) � Handle right child
8: t1 ← splittfft2(t1)

9: G1 ←
[

d10 d11

xd11 d10

]

10: z1 ← ffSamplingn/2(t1,G1)
11: z1 ← mergefft2(z1)
12: t′

0 ← t0 + (t1 − z1) � L10 � Handle left child
13: d00, d01 ← splittfft2(D00)
14: t0 ← splittfft2(t

′
0)

15: G0 ←
[

d00 d01

xd01 d00

]

16: z0 ← ffSamplingn/2(t0,G0)
17: z0 ← mergefft2(z0)
18: return z = (z0, z1)

Fig. 1. Flowchart of our fast Fourier sampler with integrated tree generation
ffSampling∗

n.
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tion about the secret key by observing the execution time of the secret key oper-
ation, i.e., the signing operation in signature schemes. Timing attacks even work
remotely over networks as shown in [8]. The most basic countermeasure against
these attacks is to make sure that the execution time of an implementation is
completely independent of the secret key, typically referred to as a constant-
time implementation. Our implementation is currently designed for being not
constant-time for two reasons. First, many embedded use-cases only require the
verification of signatures (e.g., for the verification of authentic firmware updates
or other applications where the embedded device is used as authenticated mes-
sage sink only). Hence, constant time is not an issue for those embedded imple-
mentations for which only public data (i.e., the public key) is used. Second, there
are particular components in the design of Falcon that make a constant-time
implementation of the signature generation challenging:

1. Falcon requires to draw samples according to some Gaussian distribution.
A lot of research has been focused on developing efficient algorithms for
Gaussian sampling [9,14,24,26]. One major difference in comparison to other
lattice-based schemes, like KEMs based on the Learning with Errors (LWE)
problem, is that in Falcon the standard deviation of the Gaussian distribution
varies between 1.2 and 1.9 with a precision of 53 bits. Therefore we cannot
use constant-time table-based approaches like [24] as a sampling algorithm.
Because of the required precision of the sampler, it is also not possible to use
the constant-time binomial approach that is utilized in many lattice-based
KEMs. The authors of Falcon propose to employ a rejection-based approach
that is rather inefficient but has an execution time that is independent of the
output.

2. Another, more critical obstacle in achieving a constant-time implementation
is the use of floating-point arithmetic in Falcon. We cannot make use of
the floating point unit build into the ARM Cortex-M4F to perform these
floating-point operations of Falcon as it only works with single precision,
while Falcon requires double precision operations. Therefore floating point
calculations are handled by C runtime library functions, which in turn are
usually not constant-time, especially in the case of division or square root
operations that are also present in Falcon. There are attempts to realize
constant-time floating point arithmetic for x86 processors at USENIX’16 [29]
and CCS’18 [4]. These works however report a massive performance penalty
when their constant-time floating point libraries are utilized resulting in the
software being up to one order of magnitude slower than the standard C
library functions. However, we are not aware of such libraries for microcon-
troller platforms and therefore this timing behavior of Falcon is one major
challenge for its deployment in embedded applications.

4 Results and Comparison

In this section, we discuss the results of our implementation and compare it with
others.
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4.1 Evaluation Methodology

We evaluate our work by using the OpenSTM32 System Workbench (version 2.6),
which is based on the development environment Eclipse and has specifically
been designed to support the development for ARM-based STM32 boards. The
IDE uses the GNU ARM Embedded Toolchain (version 7.2) and we set the
optimization level to -O3. Determining the performance of our implementation
is done by using the cycle count register DWT_CYCCNT of the Data Watchpoint and
Trace unit that the Cortex-M4F offers. We assess dynamic RAM consumption
by making use of stack canaries as described in Sect. 3.2.

4.2 Results

Table 2 summarizes the cycle counts of our implementations. We can see from
the table that the Falcon verification is two orders of magnitude faster than
the signing operation or the key generation. For comparability with the pqm4
library [1] the measurements were obtained at 24 MHz. Translated to 168 MHz,
verification would take only 3.2 ms while signing takes 479 ms for n = 512 with-
out precomputed keys. Key generation even exceeds the signing operation and
requires 682 ms to complete. The cost of the signing operation is dominated by
the cost of the fast Fourier sampler as this component accounts for 92% of its
total cycle count. In turn, the cost of the fast Fourier sampler heavily depends
on the performance of the Gaussian sampler that is executed 2n times during
the fast Fourier sampling. The 2n calls to the Gaussian sampler account for 73%
of the cycle count of the entire signature generation.

The Gaussian sampler is therefore the main bottleneck in terms of cycle
count of the scheme. Using fixed keys increases the performance of the sign-
ing by approximately 10%. This is mainly because we do not have to compute
the Falcon tree in this case. However, fixed keys do not impact the verifica-
tion. Another observation is that the FFT, which operates on complex double-
precision floating point numbers and is required only during signing and key
generation, is one order of magnitude more expensive than the NTT that works
on plain integers. Nonetheless, the cost of the FFT is still negligible in compar-
ison to the fast Fourier sampling.

In Table 3 we furthermore present the dynamic memory consumption of our
implementations. The signing operation has the highest memory consumption
and therefore the total memory consumption of the scheme is equal to the mem-
ory requirements of the signing operation. In contrast to the reference imple-
mentation we do not allocate memory on the heap and the dynamic memory
consumption is therefore entirely determined by the stack usage of the implemen-
tation. We reduce the memory requirements of the scheme by 43% for n = 1024
in comparison to the reference implementation. Using fixed keys further increases
the RAM savings to a total of 55% in comparison to the reference implementa-
tion as the keys are stored in Flash memory instead.
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Table 2. Clock cycle counts for our ARM implementations of Falcon at 24 MHz. All
results are averaged over 100 runs. The fast Fourier sampling cycle counts marked with
† include the generation of the Falcon tree.

Operation Falcon Falcon with fixed keys

n = 512 n = 1024 n = 512 n = 1024

Key generation 114,546,135 365,950,978 - -

Sign 80,503,242 165,800,855 72,261,930 147,330,702

Verify 530,900 1,046,700 529,900 1,083,100

solveNTRU 65,240,266 209,500,594 - -

Fast Fourier sampling 74, 433, 097† 148, 600, 140† 64,354,464 130,468,405

2n Gaussian samples 58,541,540 116,768,948 57,947,926 115,855,189

Compute G 583,800 1,131,800 - -

FFT 772,200 1,716,300 772,800 1,645,100

NTT 75,900 157,700 75,900 159,700

Table 3. Dynamic memory usage in bytes for our ARM Cortex-M4 implementations
in comparison with the reference implementation. For our ARM implementations, we
only use the stack. We do not allocate extra memory on the heap.

Operation Reference M4 Fixed keys M4

n = 512 n = 1024 n = 512 n = 1024 n = 512 n = 1024

Key Gen 33,401 53,313 40,560 51,704 - -

Sign 116,672 209,776 63,652 120,596 50,508 94,260

Verify 15,920 21,544 6,261 11,893 5,364 10,100

4.3 Comparison

In Table 4 we compare our work with ARM Cortex-M4 implementations of other
post-quantum schemes that were either taken from the pqm4 library [1] or the work
of Oder et al. [18]. The security level is given according to the NIST classifications
in the Call for Proposals [27]. In this comparison Falcon has the lowest execution
time for the verification. Even the high-security n = 1024 instantiation of Falcon
verifies signed messages in about the same time as qTESLA instantiated at a lower
security level. Dilithium and qTESLA both have a faster signing and key genera-
tion. The major advantage of Falcon over these schemes however is that Falcon
comes with a security proof in the ROM and QROM while Dilithium does not
have such a proof. qTESLA can be instantiated with “provably-secure” parameters
or “heuristic” parameters. The numbers in Table 4 refer to the heuristic instan-
tiation. The minimal security assumptions of SPHINCS+ make it the most con-
servative choice. The implementation of SPHINCS+ is also the only one from the
table that has a data-independent execution time. The signing performance how-
ever is four orders of magnitude worse than the signing performance of qTESLA at
the same security level. We therefore consider Falcon to be a reasonable trade-off
between performance and security.
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Table 4. Comparison of our implementation with ARM implementations of other
schemes. The given security levels refer to the security categories defined by NIST [27].
For our work, a security level of 1 means that n = 512 and level 5 translates to n = 1024.
The stack memory is given in bytes. The runtime of the key generation, signing, and
verification is given in cycles. Our fixed-key implementations are marked by †.

Impl. Sec. Stack Key Gen Sign Verify

This work Level 1 63,652 114,546,135 80, 503, 242 530,900

Level 5 120,596 365,950,978 165, 800, 855 1,046,700

This work† Level 1 50,508 - 72, 261, 930 529,900

Level 5 94,260 - 147, 330, 702 1,083,100

Dilithium [12] Level 2 86,568 2,320,362 8, 348, 349 2,342,191

qTESLA [1] Level 1 29,336 17,545,901 6, 317, 445 1,059,370

Level 3 58,112 30,720,411 11, 987, 079 2,225,296

SPHINCS+ [1] Level 1 10,768 4,439,815,208 61, 665, 898, 904 72,326,283

5 Conclusion

In this work, we presented a microcontroller implementation of the lattice-based
signature scheme Falcon. Our implementation is memory-efficient and, in con-
trast to the reference implementation, does fit into the memory of our target
platform. We also show that the implementation can be further optimized in
terms of performance and memory consumption if the use case does not require
to generate a key pair on the device itself. The extremely high performance of
the verification makes Falcon a suitable scheme for use cases in which the target
device does not have to generate a signature, e.g., for the verification of software
updates. For future work, optimizations of the Gaussian sampler may result in
a huge performance gain during signature generation. One obstacle however is
that the signing operation cannot easily be realized in constant-time due to the
required floating-point operations.
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the European Unions Horizon 2020 program under project number 644729 SAFEcrypto
and 780701 PROMETHEUS.

A Algorithms

A.1 The Falcon Tree

Please note that there is a typo in the Falcon specification [15] in Algorithm
15, Line 3. The description in Algorithm 5 in this section correctly states n = 2
instead of n = 1.
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Algorithm 5. ffLDL∗(G)
Require: A full-rank Gram matrix G ∈ FFT(Q[x]/(xn + 1))2×2

Ensure: A binary tree T

1: (L,D) ← LDL∗(G) � L =

[
1 0

L10 1

]
,D =

[
D00 0

0 D11

]

2: T.value ← L10

3: if (n = 2) then
4: T.leftchild ← D00

5: T.rightchild ← D11

6: return T
7: d00, d01 ← splittfft2(D00)
8: d10, d11 ← splittfft2(D11)

9: G0 ←
[

d00 d01

xd01 d00

]

10: G1 ←
[

d10 d11

xd11 d10

]

11: T.leftchild ← ffLDL∗(G0)
12: T.rightchild ← ffLDL∗(G1)
13: return T

A.2 Fast Fourier Sampling

The description can be found in Algorithm 6.

Algorithm 6. ffSamplingn(t,T)
Require: t = (t0, t1) ∈ FFT(Q[x]/(xn + 1))2 and a Falcon tree T
Ensure: z = (z0, z1) ∈ FFT(Z[x]/(xn + 1))2

1: if (n = 1) then
2: σ′ ← T.value
3: z0 ← DZ,t0,σ′

4: z1 ← DZ,t1,σ′

5: return z = (z0, z1)

6: (T0, T1) ← (T.leftchild, T.rightchild)
7: t1 ← splittfft2(t1)
8: z1 ← ffSamplingn/2(t1, T1)
9: z1 ← mergefft2(z1)

10: t′
0 ← t0 + (t1 − z1) � T.value

11: t0 ← splittfft2(t
′
0)

12: z0 ← ffSamplingn/2(t0, T0)
13: z0 ← mergefft2(z0)
14: return z = (z0, z1)
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4. Andrysco, M., Nötzli, A., Brown, F., Jhala, R., Stefan, D.: Towards verified,
constant-time floating point operations. In: Lie, D., Mannan, M., Backes, M.,
Wang, X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October
2018, pp. 1369–1382. ACM (2018). https://doi.org/10.1145/3243734.3243766

5. Avanzi, R., et al.: CRYSTALS-kyber. https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/round-1/submissions/
CRYSTALS Kyber.zip. Accessed 30 Nov 2018

6. Bhattacharya, S., et al.: Round5: compact and fast post-quantum public-key
encryption. IACR Cryptology ePrint Archive 2018/725 (2018). https://eprint.iacr.
org/2018/725

7. Bindel, N., et al.: Submission to NIST’s post-quantum project: lattice-based digi-
tal signature scheme qTESLA. https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/round-1/submissions/qTESLA.zip. Accessed
26 Nov 2018

8. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005). https://doi.org/10.1016/j.comnet.2005.01.010
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Abstract. We present the ring-based configuration of the NIST sub-
mission Round5, a Ring Learning with Rounding (RLWR)- based IND-
CPA secure public-key encryption scheme. It combines elements of the
NIST candidates Round2 (use of RLWR as underlying problem, having
1 + x + . . . + xn with n + 1 prime as reduction polynomial, allowing for
a large design space) and HILA5 (the constant-time error-correction code
XEf). Round5 performs part of encryption, and decryption via multiplica-
tion inZp[x]/(xn+1−1), and uses secret-key polynomials that have a factor
(x − 1). This technique reduces the failure probability and makes correla-
tion in the decryption error negligibly low. The latter allows the effective
application of error correction through XEf to further reduce the failure
rate and shrink parameters, improving both security and performance.

We argue for the security of Round5, both formal and concrete. We
further analyze the decryption error, and give analytical as well as exper-
imental results arguing that the decryption failure rate is lower than in
Round2, with negligible correlation in errors.

IND-CCA secure parameters constructed using Round5 and offering
more than 232 and 256 bits of quantum and classical security respectively,
under the conservative core sieving model, require only 2144 B of band-
width. For comparison, similar, competing proposals require over 30%
more bandwidth. Furthermore, the high flexilibity of Round5’s design
allows choosing finely tuned parameters fitting the needs of diverse appli-
cations – ranging from the IoT to high-security levels.

Keywords: Lattice cryptography · Learning with Rounding ·
Prime cyclotomic ring · Public-key encryption · IND-CPA ·
Error correction

1 Introduction

Standardization bodies such as NIST [30] and ETSI [17,18] are currently in
the process of evaluating and standardizing post-quantum cryptography (PQC),
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alternative solutions to RSA and elliptic curve cryptography that are secure
against quantum computers. Lattice-based cryptography is a prominent branch
of post-quantum cryptography that is based on well-studied problems and offers
very good performance characteristics.

Motivation. The choice of the underlying polynomial ring greatly affects the per-
formance of schemes based on ideal lattices, i.e., those based on the Ring Learn-
ing with Errors (RLWE) [28] and the Ring Learning with Rounding (RLWR) [6]
problems. A common choice [3,10] of the polynomial ring to instantiate an RLWE
or RLWR problem is Zq[x]/Φ2n(x) where n is a power of 2. Proposals such
as [3,9,11,24] using this ring enjoy lower decryption failure rates due to the
sparse nature of the Φ2n(x) leading to lesser noise propagation. However, requir-
ing that n be a power of 2 restricts the choice of n. Proposals such as [5,35]
choose instead the Zq[x]/Φn+1(x) where Φn+1(x) = xn +xn−1 + . . .+1 for n+1
a prime, thus offering a much denser design space. However, due to the worse
noise propagation in this polynomial, the decryption failure rate of such schemes
suffers.

Error correction has been shown to improve the security and performance of
ideal lattice based cryptosystems in [19], and has been practically demonstrated
in schemes such as [20,34]. We observe that error correction, when Zq[x]/Φ2n(x)
is used, can bring limited reduction in bandwidth requirements if n is limited
to powers of two. On the other hand, applying error correction in schemes
using Zq[x]/Φn+1(x) can bring major improvements since, if failure probabil-
ity is improved, then it is relatively easy to find slightly smaller n values that
directly reduce bandwidth requirements. However, as we will see, multiplications
in Zq[x]/Φn+1(x) lead to correlated decryption errors that limit the application
of error correction.

Contributions. In this paper, we present the ring version of the Round5
cryptosystem submitted to NIST. Round5 builds upon the rounding-based
Round2 [5] scheme, that is constructed based on the prime-order cyclotomic
ring, and XEf, the constant-time error correction code in HILA5 [34]. Round2
can finely tune its parameter n for each targeted security level, which in combi-
nation with rounding and its characteristically small key-sizes leads to efficient
performance. However, having a design based on the Φn+1(x) polynomial, oper-
ational correctness in Round2 suffers from the above mentioned drawbacks.

Our contributions in this work are as follows:

1. We present the RLWR-based Round5 cryptosystem (Sect. 3), that combines
the dense parameter space offered by the prime-order Φn+1(x) cyclotomic
polynomial (n+1 a prime), with the low decryption failure rates typical of the
power-of-two Φ2n(x) polynomial (n a power of two), such as in NewHope [3]
and Kyber [9].
Round5 does this by computing public-keys modulo Φn+1(x), such that n+1
is a prime (allowing a wide choice for this security parameter), yet computing
part of the ciphertext modulo Nn+1(x) = xn+1 − 1 and requiring that secret-
keys are polynomials having a factor (x − 1). The latter two ensure that an
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additional term originating from reductions modulo Φn+1(x) in the public-
keys vanishes during reduction modulo Nn+1(x) in encryption and decryption,
leading to a decryption error term that has a noise propagation as low as in
the case of the Φ2n(x) polynomial.

2. We present detailed analytical and experimental results on the decryption
error in Round5, especially the occurrence and behavior of correlated errors
occurring due to reductions modulo Φn+1(x). Our experimental simulations
support the claim that the dependence between errors when performing
encryption and decryption modulo Nn+1(x), although still existent, is neg-
ligible; these results are of independent interest and apply also to schemes
defined based on the power-of-two Φ2n(x) polynomial.

3. Based on our above results on independent bit errors when using the Nn+1(x)
polynomial, we extend the design of Round2 further in Round5 by incorpo-
rating the error correction code XEf, originally due to [34]. Our choice of this
code is motivated by the following.
Firstly, XEf is designed to easily implement constant-time correction of up to
f errors, where f is arbitrary, in practice between 2 and 5, and can be chosen
based upon the usage scenario. This flexibility of XEf fits the overall design
goals of Round5. In comparison, the only other NIST [30] post-quantum can-
didate utilizing constant-time error correction is ThreeBears [20], however
its Melas code can correct only (up to) 2 errors. Another NIST candidate,
LAC [27] uses BCH error correction, for which no obvious constant-time
implementation exists [26].
Secondly, operations in XEf are based on Boolean logic only, and are therefore
simple and fast. XEf’s performance is therefore at least at par with, if not
better, than the constant-time Melas error correction of the ThreeBears [20]
submission, which involves multiplication operations in F29 . However, we note
that the performance overhead of error correction is in general, negligible
compared to other, more significant overheads in ideal lattice based cryp-
tosystems, such as polynomial ring multiplications.
Thus, XEf allows Round5 to further drop its decryption failure rate signif-
icantly, shrink parameters, and in the process improve security and perfor-
mance, while remaining flexible enough to optimize its performance when
targeting different applications.

2 Background

For each positive integer a, we denote the set {0, 1, . . . , a − 1} by Za. For a set

A, we denote by a
$←− A that a is drawn uniformly at random from A. For x ∈ Q,

we denote by �x� and �x� rounding downwards to the next smaller integer and
rounding to the closest integer (with rounding up in case of a tie) respectively.

Let n+1 be prime. The (n+1)-th cyclotomic polynomial Φn+1(x) then equals
xn +xn−1 + · · ·+x+1. We denote the polynomial ring Z[x]/Φn+1(x) by Rn. We
denote by Nn+1(x) the polynomial xn+1 −1 = Φn+1(x)(x−1). For each positive
integer a, we write Rn,a for the set of polynomials of degree less than n with
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all coefficients in Za. We call a polynomial in Rn ternary if all its coefficients
are 0, 1 or −1. Throughout this document, regular font letters denote elements
from Rn. For each v ∈ Rn, the Hamming weight of v is defined as its number
of non-zero coefficients. We denote with Hn(h) the set of ternary polynomials of
degree less than n, with Hamming weight h.

Round5 as presented in this paper relies on the same underlying problem as
in [5] tailored to the ring case. Like [5], Round5 as submitted to NIST relies on
the General Learning with Rounding problem.

Definition 1 (Ring Learning with Rounding (RLWR)). Let n, p, q be pos-
itive integers such that q ≥ p ≥ 2. Let Rn,q be a polynomial ring, and let Ds

be a probability distribution on Rn. The search version of the RLWR problem
sRLWRn,m,q,p(Ds) is as follows: given m samples of the form

〈⌊
p
q 〈as〉q

⌉〉
p

with

a ∈ Rn,q and a fixed s ← Ds, recover s.
The decision version of the RLWR problem dRLWRn,m,q,p(Ds) is to distin-

guish between the uniform distribution on Rn,q × Rn,p and the distribution(
ai, bi =

〈⌊
p
q 〈as〉q

⌉〉
p

)
with a

$←− Rn,q and a fixed s ← Ds.

We note that the original decisional RLWR assumption [6] is to distinguish from
Rn,q × 〈Rn,q〉p. We simplify it to the uniform case since p|q in our setting.

Round5 uses XEf, an f -bit majority logic error correcting block code, to
decrease the decryption failure rate. The code is built using the same strategy as
codes used by TRUNC8 [33] (2-bit correction) and HILA5 [34] (5-bit correction).
The XEf code is described by 2f “registers” ri of size |ri| = li with i = 0, . . . , 2f−
1. We view the κ-bits payload block m as a binary polynomial mκ−1x

κ−1 +
· · · + m1x + m0 of length κ. Registers are defined via cyclic reduction ri =
m mod xli − 1. A transmitted message consists of the payload m concatenated
with register set r (a total of μ = κ + xe bits, where xe =

∑
li).

Upon receiving a message (m′ | r′) one computes the register set r′′ corre-
sponding to m′ and compares it to the received register set r′ – that may also
have errors. Errors are in coefficients m′

k where there are parity disagreements
for multitude of registers ri. We use a majority rule and flip bit m′

k if

2f−1∑
i=0

((r′
i[〈k〉li ] − r′′

i [〈k〉li ]) mod 2) ≥ f + 1 (1)

where the sum is taken as the number of disagreeing register parity bits at k.

3 Round5

The core of Round5 is r5 cpa pke, an IND-CPA secure public-key encryption
scheme based on the Ring Learning with Rounding (RLWR) problem. r5 cpa pke
is constructed as a noisy El Gamal encryption scheme similar to the works in [25]
and [4]. Public keys are noisy RLWR samples in Z[x]/Φn+1(x), computed via a
lossy rounding down to a smaller modulus.
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Algorithm 1. r5 cpa pke keygen()

1 a
$←− Rn,q

2 s
$←− Hn(h)

3 b =
〈⌊

p
q

(
〈as〉Φn+1(x) + h1

)⌋〉
p

4 return (pk = (a, b), sk = s)

Algorithm 2. r5 cpa pke encrypt(pk, m)

1 r
$←− Hn(h)

2 u =
〈⌊

p
q

(
〈ar〉Φn+1(x) + h1

)⌋〉
p

3 v =
〈⌊

t
p

(
Sampleμ〈br〉ξ(x) + h1

)⌋
+

t
2 xef computeκ,f (m)

〉
t

4 return ct = (u, v)

Algorithm 3. r5 cpa pke decrypt(sk, ct)
1 vp = p

t
v

2 y =
〈⌊

2
p

(
vp − Sampleμ〈su〉ξ(x) + h2

)⌋〉
2

3 m̂ = xef correctκ,f (y)
4 return m̂

Round5 and its core r5 cpa pke builds on Round2 [5], specifically the building
block CPA-PKE. r5 cpa pke is thus described in Algorithms 1, 2 and 3, which
it inherits from the ring variant of CPA-PKE, along with the cryptosystem
parameters, positive integers n, h, p, q, t, μ, f , τ , and a security parameter κ.
The moduli q, p, t are powers of 2, such that t|p|q. It is required that p2 ≥ qt (see
Sect. 5.1), μ ≤ n and μ ≥ κ. h is the Hamming weight of secret polynomials.
r5 cpa pke also defines a generic polynomial ξ(x) ∈ {Nn+1(x), Φn+1(x)}, which
is used to reduce the result of polynomial multiplication during encryption and
decryption. In this paper, we discuss performance (in the form of decryption
failure behavior) and security trade-offs and requirements for the cases that
ξ(x) = Nn+1(x) and ξ(x) = Φn+1(x).

Algorithm 1 first samples a public polynomial a with coefficients in Zq, a
secret-key polynomial s and computes the public-key polynomial b by rounding
its coefficients (to the closest integer) to a smaller modulus p < q. Here, rounding
is described in terms of rounding downwards, and addition of a rounding constant
h1 = q/2p. In Algorithm 2, the encryptor samples an ephemeral secret encryption
randomness r and uses it along with a to compute the first ciphertext component
u similar to b. The second ciphertext component v is computed using the public-
key b and r to obtain a RLWR sample, which is then used as a one-time pad
to encrypt the message (which is additionally encoded using an error correction
code). Finally, the decryptor in Algorithm3 computes 〈su〉ξ(x) ≈ 〈br〉ξ(x) and
recovers the message. The rounding constant h2 = p/2t+p/4−q/2p is used here
to remove bias in the decryption error.

Since not all coefficients of v are needed to encrypt a κ bit message, encryption
uses the function Sampleμ : c ∈ Rn,p → Z

μ
p , whose output corresponds to the μ

lowest order polynomial coefficients of c: c0 + c1x + · · · + cμ−1x
μ−1. The use of

Sampleμ makes encryption and decryption more efficient since only μ coefficients
need to be computed in the ciphertext instead of all n. This also improves the
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failure probability since the encryptor and decryptor need to agree on fewer
symbols. Further, this also requires sending fewer symbols, reducing bandwidth
required.

The integer f denotes the error-correction capability of a code Xefκ,f ⊂
Z

μ
2 . We have an encoding function xef computeκ,f : {0, 1}κ → Xefκ,f and a

decoding function xef correctκ,f : Zμ
2 → {0, 1}κ such that for each m ∈ {0, 1}κ

and each error e = (e0, . . . , eμ−1) with at most f bits equal to 1

xef correctκ,f (xef computeκ,f (m) + e) = m. (2)

Secret-keys in Round5 are sparse, ternary and balanced, i.e., they are poly-
nomials of degree at most (n − 1), exactly h/2 coefficients of which are +1, h/2
are −1, and the rest zero. Having a fixed weight (sparse) reduces probability
of decryption failure and makes computations faster. The latter is also helped
by the fact that non-zero components are either +1 or −1 (ternary), implying
that multiplications can be accomplished using only additions and subtractions.
Finally, having an equal number of +1’s and −1’s (balanced) ensures that the
secret-keys have a factor (x−1). Section 4 analyzes how this ensures that decryp-
tion errors are not correlated, allowing error correction to be used in Round5.
As an additional benefit, the decryption failure rate remains low and at the level
of x2k

+ 1 cyclotomic polynomials, despite using reductions modulo Φn+1(x) to
compute public-keys.

As a final note, the NIST submission Lizard [11,12] also uses sparse, ternary
secret-keys, and similar to our proposal enjoys the resulting benefits in decryp-
tion failure probability and computational efficiency. However, Lizard (specifi-
cally, its ring-based instantiation RLizard) uses Φ2n (for n a power of 2) as the
reduction polynomial. It thus does not require balanced secret-keys and our tech-
nique for reducing error correlations; however, its ring choice limits its parameter
choices and design space.

4 Correctness Analysis

In this section, the decryption failure behavior of r5 cpa pke is analyzed. We
first present a sufficient condition for correct decryption. We then analyze the
probability of this condition not being satisfied and describe how we evaluated
this decryption failure probability.

Sufficient Condition for Correctness. Let Δ = (h1+h2)1μ − iv +Sampleμ(〈(br−
su)〉ξ), where t

p iv(x) represents the error introduced in the ciphertext component
v(x) due to rounding downwards; each coefficient of iv(x) is in Zp/t, and 1a is
the polynomial of degree a − 1 with all coefficients equal to 1. As shown in
Appendix A, if the i-th coefficient of the polynomial y in decryption and the
i-th coefficient of xef computeκ,f (m) do not agree, then

〈
q

p
Δi

〉

q

∈
[q

4
, q − q

4

]
. (3)
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Decryption Failure Probability. The probability of decryption failure in coeffi-
cient i before error correction is thus at most the probability that (3) is satisfied.
We write b ≡ p

q (〈as〉Φn+1 + h11n) − ib with all coefficients of ib in [0, 1). We thus
have that q

pb ≡ 〈as〉Φn+1 + jb (mod q) with all coefficients of jb = h11n − ib in
I = (− q

2p , q
2p ] ∩ Z. Similarly, q

pu ≡ 〈ar〉Φn+1 + ju (mod q) with all components
of ju in I. We thus can write

q

p
(br − su) ≡ 〈sa〉Φn+1r − s〈ar〉Φn+1 + jbr − sju (mod q). (4)

Obviously, if ξ = Φn+1, then 〈sa〉Φn+1r − s〈ar〉Φn+1 ≡ 0 (mod ξ). The same is
true if ξ = Nn+1 and r and s both are multiples of (x − 1). This is so as there
are λs, λr ∈ Z[x] such that 〈as〉Φn+1r − s〈ar〉Φn+1 = λsΦn+1(x)r(x) − sλrΦn+1.
As (x − 1) divides s and r, both Φn+1r and sΦn+1 are divisible by Nn+1. As a
result, for ξ ∈ {Φn+1, Nn+1} we have that

q

p
Δ ≡ jv + Sampleμ (〈jbr − sju〉ξ) (mod q). (5)

In our analysis below, the coefficients of jb and ju are drawn independently
and uniformly from I, and the coefficients of jv are drawn independently and
distributed as q

py with y uniform on (− p
2t ,

p
2t ] ∩ Z.

4.1 Computing Failure Probability When ξ = Φn+1

We now combine (3) and (5) for the case that ξ = Φn+1. As Nn+1(x) is a multiple
of Φn+1(x), we have that 〈f〉Φn+1 = 〈〈f〉N 〉Φn+1 . Moreover, if g(x) =

∑n
i=0 gix

i,
then 〈g〉Φn+1 = g − gnΦn+1. In particular, for all polynomials s, e,

if 〈se〉N =

n∑
k=0

ck(s, e)xk, then 〈se〉Φn+1 =

n−1∑
k=0

(ck(s, e) − cn(s, e))xk, (6)

Hence, if the i-th bit is not retrieved correctly, then

〈(jv(x))i + ci(jb, r) − cn(jb, r) − ci(s, ju) + cn(s, ju)〉q ∈
[ q

4
, q − q

4

]
. (7)

Assuming independence, and taking into account that r and s contain h/2 ones
and h/2 minus ones, ck(jb, r) − cn(jb, r) − ck(s, ju) + cn(s, ju) is distributed as
the difference of 2h independent random variables on I, minus the sum of 2h
independent random variables on I. The probability that (7) is satisfied thus can
be computed explicitly. By the union bound, the probability that at least one of
the μ symbols is not retrieved correctly is at most μ times the probability that
(7) is satisfied.

4.2 Correlation in Decryption Errors When ξ = Φn+1

A basic requirement for using XEf error correction code is that the errors it aims
to correct are independent. However, the condition in (7) for a decryption error
in position i shows terms cn(jb, r) and cn(s, ju) that are common to all positions
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Fig. 1. Probabilities of at least one (continuous lines) and at least two errors (dot-
ted lines) in Round5 ring parameters, plotted against the Hamming weight of secrets
(X-axis), for the reduction polynomials Φn+1(x) and Nn+1(x). Diamonds represent
corresponding probabilities computed from actual Round5 simulations for the same
parameters. Scripts for analyzing and reproducing these results can be found at www.
round5.org.

i. Figure 1 shows the effect of this dependency, by comparing the estimated
probabilities of at least one error and that of at least two errors occurring, when
the reduction polynomial ξ = Nn+1 (as in r5 cpa pke) and when ξ = Φn+1 (as
in Round2 [5]), respectively. It can be seen that due to correlated errors, the
probability of at least two errors occurring when the reduction polynomial is
ξ = Φn+1 is much larger than in the case of the Nn+1(x) reduction polynomial.
As a consequence, the XEf code cannot be directly employed with the reduction
polynomial ξ = Φn+1 as used in Round2.

For any a, (6) can be used to compute p(i | a), the probability that bit i is not
retrieved correctly, given that −cn(jb, r)+cn(s, ju) ≡ a (mod q). We assume that
having a bit error in position i, given that cn(s, ju)−cn(jb, r) ≡ a, is independent
of having a bit error in another position j, given that cn(s, ju) − cn(jb, r) ≡ a.
The probability of having exactly k bit errors, given that cn(s, ju)−cn(jb, r) ≡ a,
then equals

(
μ
k

)
(p(0 | a)k(1 − p(0 | a))μ−k. By summing these probabilities over

a, weighted with the probability that cn(s, ju) − cn(jb, r) ≡ a, the probability of
having exactly k bit errors is obtained. In Fig. 1, the result of application of this
method is also compared with simulations of scaled-down Round5 parameters;
Sect. 4.4 contains details.

4.3 Computing Failure Probability When ξ = Nn+1

Combination of (3) and (5) for ξ = Nn+1 implies that if an error occurs in
position i, then

〈(jv(x))i + ci(jb, r) − ci(s, ju)〉q ∈
[q

4
, q − q

4

]
. (8)

Note that in order that (8) can be used, it is required that s and r both are
multiples of (x − 1), as is the case with Round5.

www.round5.org
www.round5.org
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Assuming independence, and assuming that r and s contain h/2 ones and
h/2 minus ones, ci(jb, r) − ci(s, ju) is distributed as the sum of h independent
uniform random variables on I, minus the sum of h independent uniform ran-
dom variables on I. The probability that (8) is satisfied thus can be computed
explicitly.

Now let the error-correcting code be capable of correcting f symbol errors.
Assuming that ci(s, e) and cj(s, e) are independent whenever i �= j, the proba-
bility of not decoding correctly is at most

∑
e≥f+1

(
μ
e

)
pe

n(1 − pn)μ−e.

4.4 Correlation and Error Correction: Experimental Results

Figure 1 compares the estimated probabilities of at least one error occurring
and that of at least two errors occurring, when ξ = Nn+1 (as in r5 cpa pke) and
when ξ = Φn+1 (as in Round2 [5]), respectively. These estimates are computed by
explicitly convolving probability distributions. Parameters are simulated without
error correction, and are n = 800, q = 211, p = 27, t = 24, μ = κ = 128, while
the Hamming weight varies between 100 and 750 in order to show its effect on
both the bit failure rate and error correlation. The influence of the highest-order
coefficients cn(s, e) common to all coefficients in the Φn+1 case is accounted for
as explained in Sect. 4.2. Clearly, the probability of at least two errors is much
higher when multiplications are done modulo Φn+1 instead of Nn+1, and in the
latter case, this probability is significantly lower than the probability of at least
one error. Figure 1 also shows corresponding probabilities of at least one and
at least two errors, obtained from simulations of actual, scaled-down r5 cpa pke
parameters, showing that the actual behavior closely matches estimates.

To conclude, the effect of dependency due to polynomial multiplication mod-
ulo Φn+1 as in Round2 is made negligible by the combined use of polynomial
multiplication modulo Nn+1 and balanced secrets in Round5, allowing the use
of forward error correction, resulting in better security and performance.

5 Security Analysis

In Sect. 5.1, we show that if ξ = Φn+1, then r5 cpa pke is IND-CPA secure.
Section 5.2 details how Round2’s use of the function Sampleμ prevents known
distinguishing attacks such as the “Evaluate at 1” attack [21]. Next, Sect. 5.3
extends the IND-CPA security proof in Sect. 5.1 to a RLWE-variant of
r5 cpa pke, which gives strong confidence in Round5’s design. Finally, in Sect. 5.4
it is discussed why this proof does not directly translate to an RLWR-based
design and a simple design change in Round5 that would make it apply, but
which is not introduced since it does not bring major benefits from a concrete
security viewpoint.

5.1 IND-CPA Security of r5 cpa pke When ξ = Φn+1

When the reduction polynomial ξ(x) in Round5 equals Φn+1(x), then r5 cpa pke
is an IND-CPA secure public-key encryption scheme, under the assumption that
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the decision Ring Learning with Rounding (RLWR) problem with sparse-ternary
secrets (dRLWRspt) is hard for the polynomial ring Z[x]/Φn+1(x). [6, Theorem 3.2]
proves that the RLWR problem for any distribution on the secrets is hard assum-
ing that the RLWE problem is hard for the same distribution, for a super-
polynomial modulus q. This gives confidence in the asymptotic hardness of our
scheme’s underlying problem.

The below theorem (informal) gives a tight, classical reduction against clas-
sical or quantum adversaries in the standard model:

Theorem 1. For every adversary A against r5 cpa pke, there exist distinguish-
ers B and C such that, for z = max(p, tq/p),

AdvIND-CPA
r5 cpa pke(ξ=Φn+1)

(A) ≤ AdvdRLWRsptn,1,q,p (B) + AdvdRLWRsptn,2,q,z (C). (9)

The proof of the above theorem follows a similar approach as [14] to equalize the
noise ratios q/p and p/t in (the coefficients of) the two ciphertext components
u and v, allowing them to be expressed as two RLWR samples with a common
secret and noise distribution (with noise ratio q/z). This technique however does
not apply if the reduction polynomial ξ in Round5 is Nn+1, as is required for
the secure usage of (XEf) error correction in Round5 (see Sect. 4.3).

5.2 Distinguishing Attack at x = 1 for ξ = Nn+1

When ξ = Nn+1 and μ = n + 1, a distinguisher can be built from the evaluation
of the ciphertext component v(x) in Algorithm 2 in x = 1. This is based on the
fact that (x − 1) divides both r(x) and Nn+1(x). The attack does not apply if
μ ≤ n as in Round5, as the sum of the coefficients of v(x) hidden by Sampleμ is
uniformly distributed. Further details can be found in Appendix B.

5.3 IND-CPA Security of r5 cpa pke with ξ = Nn+1 and
Independent Noise

A variant of r5 cpa pke where the noise is independently sampled from a
given distribution instead of being generated via rounding, is an IND-CPA
secure public-key encryption scheme, if the decision Ring LWE problem for
Z[x]/Φn+1(x) is hard; this results gives confidence in Round5’s RLWR-based
design.

Theorem 2. For every adversary A against a variant r5 cpa pke′ of r5 cpa pke
where the noise is independently sampled, there exist distinguishers C and E such
that

AdvIND-CPA
r5 cpa pke′(ξ=Nn+1)(A) ≤ AdvRLWE(Zq [x]/Φn+1(x))

m=1 (C) + AdvRLWE(Zq [x]/Φn+1(x))
m=2 (E).

(10)
where m denotes the number of RLWE samples available to each distinguisher.

A more detailed version of the above theorem and its proof can be found in
Appendix C. The proof uses elements of [8, Sect. E1].



Round5: Compact and Fast Post-quantum Public-Key Encryption 93

Algorithm 4. round to root(a, q, p)

1 b ←
⌊

p
q
a
⌋

2 for i ← 0 to n − 1 do

3 ei ←
(
idx = i ∈ Z, val = p

q
a −

⌊
p
q
a
⌋

∈ Q

)

4 Sort e in descending order of e.val.

5 k ← p
⌈

b(1)
p

⌉
− b(1)

6 for i ← 0 to k − 1 do
7 bei.idx ← bei.idx + 1
8 return b

5.4 IND-CPA Security of r5 cpa pke with ξ = Nn+1 and Rounding
Noise

The proof of IND-CPA security for a RLWE variant of r5 cpa pke in Sect. 5.3
requires both the secrets and also the noise polynomials to be multiples of (x −
1) (this is used in an essential step of the proof, see Appendix C). This last
requirement is the reason why this proof does not apply to Round5 with ξ(x) =
xn+1 − 1 using RLWR defined as component-wise rounding. This deterministic
component-wise rounding does not allow enforcing that the noisy “rounding”
polynomials are multiples of (x − 1).

Round5’s design can be adapted to use a slightly different type of rounding
informally named as “rounding to the root lattice” [15,16,29] – that allows
the IND-CPA proof to work. This alternate rounding technique is described in
Algorithm 4, that takes as input an a ∈ Zq[x], integer moduli q, p where p < q
and returns a b ∈ Zp[x] satisfying b(1) ≡ 0 (mod p).

Rounded noise introduced in b using Algorithm 4 is a polynomial whose
coefficients sum to zero, so that a direct translation of the IND-CPA proof in
Sect. 5.3 to the RLWR case is possible. However, this modification – going from
component-wise rounding to rounding to the root lattice – would introduce addi-
tional complexity with no clear concrete security benefits. First, Sampleμ gets
rid of n + 1 − μ coefficients so that knowing k is irrelevant. Second, concrete
security attacks use the norm of the noise that hardly changes here. Because of
these two reasons, we argue that the current Round5 design (and the rounding
used in it) is sound and secure, and further modifications are not required.

6 Parameters, Performance and Comparison

Round5 has a large design space, adding to the parameters available in Round2,
namely n, h, q, p, t, also f . If f > 0, then ξ(x) = N(x). By searching over the
design space, we obtain parameters that minimize bandwidth requirements given
a minimum targeted security level and failure probability. The failure probability
analysis is done as in Sect. 4. Concrete security is analyzed in the standard
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manner [5], the primal [4], dual [1], hybrid [23], and sparse secret attacks [1,5]
are considered, under both sieving [7] and enumeration [2] cost models. Details
are not included due to space limits. A script to verify computations is available
at www.round5.org.

Table 1. Parameters: “C” denotes security level against classical adversaries, while
“Q” denotes that against quantum ones. Bandwidth is in bytes.

Name Set Parameters

(n, h, q, p, t, f)

Failure rate Sieving

(C/Q)

Enumeration

(C/Q)

Bandwidth

(pk/ct)

R5ND 1KEM 5c 490, 162, 210, 27, 23, 5 2−88 128/122 170/135 445 + 549

R5ND 1KEM 0c 618, 104, 211, 28, 24, 0 2−65 128/122 160/133 634 + 682

R5ND 1KEM 4longkey 490, 162, 210, 27, 23, 4 2−71 128/122 170/135 453 + 563

R5ND 1PKE 5c 508, 136, 210, 27, 24, 5 2−142 128/122 166/134 461 + 636

R5ND 5PKE 5c 940, 414, 212, 28, 23, 2 2−144 256/232 390/307 972 + 1172

R5ND 0KEM 2iot 372, 178, 211, 27, 23, 2 2−41 96/90 129/96 342 + 394

NewHope1024-CCA-

KEM [32]

N/A 2−216 257/233 - 1824 + 2208

Kyber1024 [9] N/A 2−169 241/218 - 1440 + 1504

FireSaber-KEM [24] N/A 2−165 270/245 - 1312 + 1472

Table 1 includes a number of exemplary Round5 parameter sets. Also
shown are a number of similar proposals for comparison. R5ND 1KEM 5c and
R5ND 1KEM 0c both target NIST security category 1 as IND-CPA secure KEMs.
However, the second requires around 33% more bandwidth since it does not use
error correction (f = 0). This demonstrates the benefit of error correction.

R5ND 1KEM 4longkey also targets NIST security category 1 as an IND-CPA
secure KEM. However, it uses the flexibility of Sampleμ to encapsulate a longer
key (192 bits instead of 128) so that the (quantum) hardness of attacking the
shared secret is as much as (quantum) attacking the underlying lattice problem.

R5ND 1KEM 5c and R5ND 1PKE 5c differ in the target failure probability. The
latter is constructed by applying the Fujisaki-Okamoto transform [22] on r5 cpa-
pke in a standard manner and combining with a secure (one-time) data encap-
sulation scheme (e.g., AES256); its failure rate is much lower to achieve the IND-
CCA security required of public-key encryption (PKE). Comparing the above
two parameter sets shows that a more relaxed failure probability target leads to
bandwidth savings of more than 100 B.

R5ND 5PKE 5c targets NIST security category 5 as an IND-CCA secure PKE.
It requires 2144 B of bandwidth. Among existing proposals targeting the same
security category, NewHope1024-CCA-KEM [32] requires 88% more bandwidth,
FireSaber [13] requires 30% more, and Kyber1024 requires 37% more. Round5’s
compact keys fit easily in protocols with a limited (1500 B) MTU.

Finally, parameter set R5ND 0KEM 2iot shows that Round5’s design flexibility
makes it easy to obtain parameters that offer a reasonable security level, but
require relatively little bandwidth enabling security in more resource constrained
applications such as IoT.

http://www.round5.org
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7 Conclusions and Future Work

In this work, we introduced Round5, a lattice-based cryptosystem consisting
of a public-key encryption scheme that uses rounding both to introduce noise
(for security) and at the same time reduce the key-size, improving performance.
Public-keys are computed via ring multiplications in Z[x]/Φn+1(x), thus offer-
ing a wide variety of choices for the security parameter n, in turn allowing to
finely tune the parameters and performance of Round5. A novel contribution
of this work is to compute part of the ciphertext, on the other hand, via ring
multiplications in Z[x]/Nn+1(x); this, in combination with the fact that Round5
secret-keys are polynomials with a factor (x − 1), allows to have low decryption
failure rates similar to schemes constructed using the x2k

+1 cyclotomic polyno-
mial, while still allowing to have the above mentioned benefit of the Z[x]/Φn+1(x)
polynomial ring.

Further, this leads to very low dependencies between coefficients and inde-
pendent bit failures, so that error correction can be used to further improve
failure rates, performance (since parameters can be shrunk) and security (since
more noise can be added). For the latter, r5 cpa pke uses the XEf f -bit error
correcting code originally introduced in the HILA5 scheme [34]. The main advan-
tage of XEf codes is that they avoid table look-ups and conditions altogether
and are therefore resistant to timing attacks.

An interesting open question is to investigate a variant of Round5 where
component-wise rounding is replaced by the alternate rounding technique
described in Algorithm 4 and investigate implications on the resulting scheme’s
concrete security and decryption failure behavior.

Acknowledgements. We thank Mike Hamburg for helpful discussions on combin-
ing features from the prime-order cyclotomic and power-of-two cyclotomic polynomial
rings in a lattice based cryptosystem. We thank Léo Ducas for helpful discussions on
rounding to the root lattice, and techniques required for proving IND-CPA security
for a rounding-based scheme using Nn+1 as reduction polynomial. Finally, we wish to
thank our anonymous reviewers for their helpful comments that led to improving the
content and readability of the paper.

A Probability of Decryption Failures in Round5

In decryption, the polynomial y = 〈� 2
pζ�〉2 is computed, where ζ = 〈p

t v −
Sampleμ(〈su)〉ξ) + h21μ)〉p, where 1μ is the polynomial of degree μ − 1 with all
coefficients equal to 1. First, a sufficient condition is derived so that y and
η = xef computeκ,f (m) agree in a given coefficient. We have that

v ≡
〈

t

p
Sampleμ(〈br〉ξ + h11n) − t

p
iv

〉

p

+
t

2
η (mod t),

where t
p iv is the error introduced by the rounding downwards, with each com-

ponent of iv in Zp/t. As a result,

ζ ≡ p

2
η + Δ (mod p) with Δ = (h1 + h2)1μ − iv + Sampleμ(〈br − su + h4j〉ξ). (11)
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As y = � 2
pζ − 1

2�, it holds that y ≡ η + � 2
pΔ − 1

21n� ≡ η + � 2
p{Δ − p

41n}p�
(mod 2). Here {w}p denotes the integer in (−p/2, p/2] that is equivalent to w
modulo p. As a consequence, yi = ηi whenever |{Δi − p

4}p| < p
4 . We infer that

yi = ηi whenever

|
{

q

p
Δi − q

4

}

q

|< q

4
(12)

Equivalently, as q
pΔi has integer components, if yi �= ηi, then

〈
q

p
Δi

〉

q

∈
[q

4
, q − q

4

]
(13)

In order to analyze this probability, we work out q
pΔ − q

4j, using (11). We
write jv = q

p ((h1 + h2)1μ − iv − p
41μ). The definitions of h1 and h2 imply that

jv = q
p ( p

2t1μ − iv). Each coefficient of iv is in Zp/t. The value of h2 thus ensures
that the absolute value of each coefficient of p

2t − iv is at most p
2t .

We now analyze q
p 〈br − su)〉ξ. Similarly to the expression for v, we write

b =
〈

p

q

(〈as〉Φn+1 + h11n

) − p

q
ib

〉

p

and u =
〈

p

q
(〈ar〉Φn+1 + h11n) − p

q
iu

〉

p

,

with all components of ib and iu in Zq/p. We thus have

q

p
(br − su) ≡ 〈sa〉Φn+1r − s〈ar〉Φn+1 + jbr − sju (mod q) (14)

where jb = h11n − ib and ju = h11n − iu. (15)

As h1 = q
2p , all entries of jb and of ju are from the set I := (− q

2p , q
2p ] ∩ Z.

Obviously, if ξ(x) = Φn+1(x), then 〈sa〉Φn+1r − s〈ar〉Φn+1 ≡ 0 (mod ξ). The
same is true if ξ = Nn+1 and r and s both are multiple of (x − 1). Indeed, there
are λs, λr ∈ Z[x] such that 〈sa〉Φn+1 = sa+λrΦn+1 and 〈ar〉Φn+1 = ar−λsΦn+1.
As a consequence, 〈as〉Φn+1r − s〈ar〉Φn+1 = λsΦn+1r − sλrΦn+1. As (x − 1)
divides s and r, both Φn+1r and sΦn+1 are divisible by Nn+1. As a result, for
ξ ∈ {Φn+1, Nn+1}

q

p
Δ ≡ jv + Sampleμ (〈jbr − sju〉ξ) (mod q). (16)

The probability of a decryption failure in position i before error correction is at
most the probability that (13) is satisfied.

In our analysis of (13) combined with (16), the coefficients of jb and ju are
drawn independently and uniformly from I = (− q

2p , q
2p ]∩Z, and the coefficients of

jv are drawn independently and distributed as q
py with y uniform on (− p

2t ,
p
2t ]∩Z.

B Distinguishing Attack at x = 1or ξ = Nn+1

The “Evaluate at x = 1” distinguishing attack [21] applies against schemes using
the ring Z[x]/Nn+1(x). We argue that this attack cannot be applied in Round5
if μ ≤ n.
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Consider a pair of polynomials (b(x), v(x)) with b(x) uniformly distributed on
Zp[x]/(xn+1−1) and v(x) = 〈Sampleμ(� t

p (〈b(x)r(x)〉N(x)+h1)�)+ t
2m(x)〉t with

r(x) drawn independently and uniformly from the ternary polynomials of degree
at most n−1 satisfying r(1) = 0, and m(x) drawn according to some distribution
on Z2[x]/(xμ−1). We then have that v(x) ≡ �Sampleμ( t

p (〈b(x)r(x)〉N(x)+h1)�)+
t
2m(x) (mod t), and so w(x) = p

t v(x) satisfies

w(x) ≡ Sampleμ(〈b(x)r(x)〉N(x)) +
p

t
· h1

μ−1∑
i=0

xi − p

t
ε(x) +

p

2
m(x) (mod p).

where ε(x) is the result of rounding downwards, so all components of p
t ε(x) are

in [0, p
t )∩Z. As (x− 1) divides both r(x) and N(x), it follows that x− 1 divides

〈b(x)r(x)〉N(x), and so if μ = n + 1, then

w(1) ≡ p

t
· h1 · (n + 1) − p

t

n∑
i=0

εi +
p

2
m(1) (mod p).

For large n, the value of p
t

∑n
i=0 εi is close to its average, i.e., close to n p

2t . As a
result, w(1) has maxima at values p

t h1(n + 1) − n p
2t + p

2k for k ∈ {0, 1}. So w(1)
can serve as a distinguisher between the above distribution and the uniform one.

Now assume that μ < n + 1. We take μ = n, which is the case giving most
information to the attacker. Writing f(x) = 〈b(x)r(x)〉N(x) =

∑n
i=0 fix

i, it holds
that

w(1) ≡
n−1∑
i=0

fi +
p

t
· h1 · n − p

t
ε(1) +

p

2
m(1) (mod p).

As shown above, f(1) = 0, and so
∑n−1

i=0 fi = −fn. Hence, under the assumption
that fn is distributed uniformly modulo p, also w(1) is distributed uniformly
modulo p. The latter assumption is supported by [31].

C Proof of IND-CPA Security of r5 cpa pke RLWE
Variant

We present the proof of IND-CPA security for an RLWE variant of r5 cpa pke.
The proof uses elements of [8, Sect. E1]. The following notation will be used.
We write φ(x) = 1 + x + . . . + xn, and N(x) = xn+1 − 1, where n + 1 is prime.
Moreover, Rφ = Zq[x]/φ(x), and

R0 = {f(x) =
n∑

i=0

fix
i ∈ Zq[x] |

n∑
i=0

fi ≡ 0 (mod q)} (17)

As N(x) = (x − 1)φ(x), it holds that 〈(x − 1)f(x)〉N(x) = (x − 1)〈f(x)〉φ(x) for
any f ∈ Z[x]. As a result, f(x) �→ (x − 1)f(x) is a bijection from Rφ to R0.

In the proof, the following lemma will be used.
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Lemma 1. Let q and n + 1 be relatively prime, and let (n + 1)−1 be the multi-
plicative inverse of n + 1 in Zq. The mapping F defined as

F : (
n−1∑
i=0

fix
i) �→

n−1∑
i=0

fix
i − (n + 1)−1 ·

(
n−1∑
i=0

fi

)
· φ(x)

is a bijection from Rφ to R0.

Proof. It is easy to see that F maps Rφ to R0. To show that F is a bijection,
let g(x) =

∑n
i=0 gix

i ∈ R0, and let f(x) =
∑n

i=0〈gi − gn〉qx
i. Clearly, f ∈ Zq[x]

has degree at most n − 1, and by direct computation, F(f(x)) = g(x).

In the description below, S denotes a set of secrets such that

S ⊂ {f(x) =
n−1∑
i=0

fix
i ∈ Zq[x] |

n−1∑
i=0

fi ≡ 0 (mod q)}, (18)

Moreover, M denotes a message space, and ECC Enc and ECC Dec are error
correcting encoding and decoding algorithms such that

{ECC Enc(m) | m ∈ M} ⊂ {f(x) =
n∑

i=0

fix
i ∈ Z2[x] |

n∑
i=0

fi ≡ 0 (mod 2)}.

(19)
Moreover, χ denotes a probability distribution on Rφ.

For understanding Algorithm 7, note that as (x−1)|s(x), we have that su′ ≡
sa′r + se1 (mod N), and, as (x − 1)|r(x), that rb′ ≡ ra′s + re0 (mod N). As a
consequence,

ζ ≡ v − su′ ≡ q

2
ECC Enc(m) + (x − 1)e2 + re0 − se1 (mod N), whence

�2
q
ζ� ≡ ECC Enc(m) + �2

q
((x − 1)e2 + re0 − se1)� (mod N).

We are now in a position to prove the following result.

Theorem 3. For every IND-CPA adversary A with advantage A, there exist
algorithms C and E such that

A ≤ Adv1(C) + Adv3(E). (20)

Here Adv1 refers to the advantage of distinguishing between the uniform distri-
bution on (Zq[x]/φ(x))2 and the R-LWE distribution

(a′, b′ = 〈a′s + e0〉φ) with a′ $← Rφ, s
$← S, e0 ← χ (21)

Similarly, Adv3 refers to the advantage of distinguishing between the uniform
distribution on (Zq[x]/φ(x))4 and the distribution of two R-LWE samples with
a common secret, given by

(a′, b′′, u′, v′) with a′, b′′ $← Zq[x]/φ(x), u = 〈a′r + e1〉φ, (22)

v = 〈b′′r + e2〉φ with r
$← S, e1, e2 ← χ (23)
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Algorithm 5. CPA-PKE.Keygen()

1 a′ $← Rφ, s
$← S, e0 ← χ

2 b′ = 〈a′s + e0〉φ

3 pk = (a′, b′)
4 sk = s
5 return (pk, sk)

Algorithm 6. CPA-PKE.Enc(pk = (a′, b′),m ∈ M)

1 r
$← S, e1, e2

$← χ
2 u′ = 〈a′r + e1〉φ

3 v = 〈 q
2
ECC Enc(m) + b′r + (x − 1)e2〉N

4 c = (u′, v)
5 return c

Algorithm 7. CPA-PKE.Dec(sk, c)
1 ζ = 〈v − su′〉N

2 m̂ = ECC Dec〈� 2ζ
q

�〉2)
3 return m̂

Proof. We prove the theorem using a sequence of IND-CPA games. We denote
by Si the event that the output of game i equals 1.

Game G0 is the original IND-CPA game. In Game G1, the public key (a′, b′)
is replaced by a pair (a′, b′) uniformly drawn from R2

φ. It can be shown that there
exists an algorithm C for distinguishing between the uniform distribution on R2

φ

and the R-LWE distribution of pairs (a′, b′) with a′ $←− Rφ, b′ = 〈as′ + e0〉φ with

s
$←− S and e0 ← χ such that

Adv1(C) = |Pr(S0) − Pr(S1)|.
In Game G2, the values u′ = 〈a′r + e1〉φ and v̂ = 〈b′r + (x − 1)e2〉N used in the
generation of v are simultaneously substituted with uniform random variables
from Rφ and R0, respectively. It can be shown that there exists an adversary D
with the same running time as that of A such that

Adv2(D) = |Pr(S1) − Pr(S2)|.
Here Adv2 refers to the advantage of distinguishing between the uniform distri-
bution on R3

φ × R0 and the distribution

(a′, b′, u′, v) = (a′, b′, 〈a′r+e1〉φ, 〈b′r+(x−1)e2〉N ) with a′, b′ $← Rφ, r
$← S, e1, e2

$← χ.
(24)

Because of (19), the value of the ciphertext v in Game G2 is independent of bit
b, and therefore Pr(S2) = 1/2. As a final step, we define Ψ : R3

φ × R0 → R4
φ as

Ψ(a′(x), b′(x), u′(x), v(x)) = (a′(x), b′′(x), u′(x), v′(x)) with (25)
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b′′(x) =
F(b′(x))

x − 1
, v′(x) =

v(x)
x − 1

(26)

As F is a bijection from Rφ to R0 (see Lemma 1) and f(x) �→ f(x)
x−1 is a bijection

from R0 to Rφ, it follows that Ψ is a bijection. Writing b(x) = F(b′(x)), we infer
that

b(x)r(x) = b′(x)r(x) − (n + 1)−1b′(1)φ(x)r(x) ≡ b′(x)r(x) (mod N(x)),

where the latter equivalence holds as r(x) is a multiple of (x − 1), and so

v(x) = 〈b′(x)r(x) + (x − 1)e2(x)〉N = 〈b(x)r(x) + (x − 1)e2(x)〉N .

As r(x) is a multiple of x − 1, it follows that v(x) ∈ R0 and that

v′(x) =
v(x)
x − 1

≡ 〈b′′(x)r(x) + e2(x)〉φ where b′′(x) =
b(x)
x − 1

.

As a result, the advantage of E = Ψ ◦ D in distinguishing between the uniform
distribution on R4

Φ and the distribution

(a′, b′′, u′, v′) with a, b′′ $← Rφ, u′(x) = 〈a′r + e1〉φ and v′ = 〈b′′r + e2〉φ

is equal to Adv2(D). Note that (a, u′) and (b′′, v′) are two R-LWE samples with
common secret r(x) ∈ S, with a′, b′′ chosen uniformly in Rφ and independent
noise polynomials e1(x) and e2(x).
As Pr(S2) = 1

2 , we conclude that

Adv(A) = |Pr(S0) − Pr(S2)| ≤
1∑

i=0

|Pr(Si) − Pr(Si+1)| = Adv1(C) + Adv2(E).
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Abstract. Current estimation techniques for the probability of decryp-
tion failures in Ring/Mod-LWE/LWR based schemes assume indepen-
dence of the failures in individual bits of the transmitted message to
calculate the full failure rate of the scheme. In this paper we disprove
this assumption both theoretically and practically for schemes based
on Ring/Mod-Learning with Errors/Rounding. We provide a method
to estimate the decryption failure probability, taking into account the
bit failure dependency. We show that the independence assumption is
suitable for schemes without error correction, but that it might lead to
underestimating the failure probability of algorithms using error correct-
ing codes. In the worst case, for LAC-128, the failure rate is 248 times big-
ger than estimated under the assumption of independence. This higher-
than-expected failure rate could lead to more efficient cryptanalysis of
the scheme through decryption failure attacks.

Keywords: Lattice cryptography · Ring-LWE ·
Error correcting codes · Decryption failures

1 Introduction

Due to the recent developments in quantum computing and its threat to current
asymmetric key schemes, the cryptographic community has increased its efforts
towards the development of post-quantum cryptography, resulting in the NIST
Post-Quantum Standardization Process. Several submissions to this process are
built on top of the Learning with Errors (LWE) hard problem. These are fre-
quently combined with the usage of polynomial matrix elements, resulting in
Ring-LWE or Mod-LWE schemes such as New Hope [1], LAC [15], LIMA [17],
R. Emblem [16] and Kyber [2]. Some schemes further reduce their communica-
tion bandwidth by replacing the pseudorandomly generated errors terms with
rounding errors, resulting in Ring-LWR and Mod-LWR schemes as in Round2
[9] and Saber [3] respectively.

For most of the above encryption schemes there is a small probability of
a decryption failure, in which the decryption of the encoded message returns
c© Springer Nature Switzerland AG 2019
J. Ding and R. Steinwandt (Eds.): PQCrypto 2019, LNCS 11505, pp. 103–115, 2019.
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a faulty result, where one or more message bits are flipped. As these failure
events depend on the secret key, they might compromise the security of the
scheme. Therefore, most candidates of the Post-Quantum Standardization Pro-
cess aim for a failure probability around 2−128. To reduce the failure rate, some
schemes utilize error correcting codes (ECC) to make the decryption resilient
against a certain number of errors. The NIST candidate LAC [15] relies on
extensive error correction, and Fritzmann et al. [7] made a study on the pos-
itive impact of the usage of ECC’s on the security and bandwidth of lattice-
based schemes. Another possibility is to eliminate decryption failures altogether
and thus eliminate attacks that exploit them, by selecting the parameter of the
scheme accordingly. This comes at the price of a higher bandwidth and compu-
tational complexity. Comparing the communication cost, defined as the number
of bytes in the public key and the ciphertext, we have 2080 bytes for the origi-
nal Saber and 3488 bytes for Saber with the same estimated core security level
but without decryption failures [4]. However, as most submissions to the NIST
Post-Quantum Process have a small decryption failure probability, an analysis
of the impact of decryption failures is essential.

A chosen ciphertext attack against Ring-Learning with Errors (Ring-LWE)
schemes exploiting decryption failures was reported by Fluhrer [6]. This attack
uses knowledge of failing ciphertexts to retrieve the secret. D’Anvers et al. [5]
analyzed a decryption failure attack on (Ring/Mod)-LWE/LWR schemes that
have protection against chosen ciphertext attacks. The security risk of decryption
failures is also reflected in the post-quantum versions [12,13] of the Fujisaki-
Okamoto transformation [8], which converts a chosen plaintext secure encryption
scheme in a chosen ciphertext secure key encapsulation mechanism (KEM). The
security bound of these transformations contains a term considering decryption
failures. As this term is quadratic in the failure rate of the underlying scheme,
it has an important effect on the security bound.

Consequently, the failure probability is an important factor in the security
of these schemes and should be determined precisely. The common approach
for computing this probability is calculating the failure rate for one bit of the
message, from which the full failure rate is determined assuming the failures
between the individual bits are independent. Jin and Zhao [14] proved that for
some schemes the failures in individual bits are asymptotically independent if
the number of bits goes to infinity. Hamburg [10] did an analysis of the indepen-
dence of the bits for the NIST Post-Quantum Standardization Process submis-
sion ThreeBears [11], which is based on the Integer Module Learning with Errors
problem. He identified three sources of correlation: the norm of the secret, the
norm of the ciphertext and the correlation between the failures of the individual
bits due to the ring structure.

In this paper, we examine the independence assumption for Ring/Mod-
LWE/LWR based schemes. First we show both theoretically as well as exper-
imentally that this assumption is not correct. Then, we develop a method to
handle the dependency issue in the failure rate calculation. We calculate the
failure rate for variants of LAC and validate our method using experimental
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data1. Finally, we discuss the implications of the dependency in different scenar-
ios: for schemes without error correcting codes, we reason that the assumption of
independence leads to a slight overestimation of the failure probability. Looking
into schemes using error correcting codes to reduce the failure rate, we show that
the independence assumption can lead to an underestimation of the failure rate,
and thus an overestimation of the security of the underlying scheme. In the most
extreme case for LAC-128, the failure rate is overestimated by a factor 248.

2 Preliminaries

2.1 Notation

Let Zq denote the ring of integers modulo q, let Rq represent the ring
Zq[X]/(Xn + 1) and let Rl1×l2

q designate the ring of l1 × l2 matrices over Rq.
Polynomials will be written using lowercase letters, vectors with bold lowercase,
and matrices with bold uppercase. The l2-norm of a polynomial x is defined
as ‖x‖2 =

√∑
i x

2
i and the l2-norm of a vector xxx as ‖xxx‖2 =

√∑
i ‖xi‖22. The

rounding operation �x�q→p for x ∈ Zq, is calculated as �p/q ·x� ∈ Zp. The abs()
function takes the absolute value of its input. These operations are extended
coefficient-wise for polynomials and vectors. Let ai, with a ∈ Rq denote the ith

coefficient of a, and denote with aaai for aaa ∈ Rl×1
q the (i mod l)th coefficient of

the �i/l�th polynomial of aaa.
Let x ← χ(Rq) indicate sampling the coefficients of x ∈ Rq according to dis-

tribution χ. The sampling operation is extended coefficient-wise for vectors xxx ∈
Rl×1

q as xxx ← χ(Rl×1
q ). Let Binom(k, n, p) be the cumulative binomial distribution

with n draws and probability p, so that Binom(k, n, p) =
∑�k�

i=0

(
n
i

)
pi(1 − p)n−i

and let hypergeom(k,N,K, n) be the hypergeometric distribution with popula-
tion size N , success states K and draws n as defined by:

hypergeom(k,N,K, n) =

(
K
k

)(
N − K
n − k

)

(
N
n

) , (1)

where:
(

a
b

)
=

a!
b!(a − b)!

. (2)

2.2 Ring/Mod-LWE/LWR Based Encryption

A general framework for Ring/Mod-LWE-LWR based encryption schemes is pro-
vided in Algorithms 1, 2 and 3. The algorithm uses the function gen to generate
the pseudorandom matrix AAA from a seed seedAAA, the function enc to encode

1 The software is available at https://github.com/KULeuven-COSIC/PQCRYPTO-
decryption-failures.

https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures
https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures
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Algorithm 1. PKE.KeyGen()

1 seedAAA ← U({0, 1}256)

2 AAA ← gen(seedAAA) ∈ Rl×l
q

3 sssA ← χs(R
l×1
q ), eeeA ← χe(R

l×1
q )

4 bbb = �AAAsssA + eeeA�q→p

5 return (pk := (bbb, seedAAA), sk := sssA)

Algorithm 2. PKE.Enc(pk = (bbb, seedAAA),m, r)

1 AAA ← gen(seedAAA) ∈ Rl×l
q

2 sss′
B ← χs(R

l×1
q ), eee′

B ← χe(R
l×1
q )

3 e′′
B ← χe(Rq)

4 bbbr = �bbb�p→q

5 bbb′ = �AAATsss′
B + eee′

B�q→p

6 mecc = ecc enc(m)

7 v′ = �bbbTr sss′
B + e′′

B + enc(mecc)�q→t

8 return c = (v′, b′b′b′)

the message m into an element of Rq and the inverse function dec to decode
a polynomial back into a message bitstring. The latter decodes coefficients of
the polynomial correctly if the deviation from the initial encoded polynomial
coefficient is at most ±q/4. If error correcting codes are used in the scheme,
the function ecc enc adds extra redundancy to the bitstring m to enable error
correction, while ecc dec recovers the original message if the number of flipped
bits between mecc and m′

ecc is less than a threshold d, which depends on the
chosen error correcting code (ECC). When no error correcting codes are used,
the functions ecc enc and ecc dec act as the identity and return their input.
The encryption algorithm PKE.Enc uses the seed r to pseudorandomly generate
sss′
B , eee′

B and e′′
B .

By choosing l = 1, one obtains a Ring based scheme, while a bigger value of l
indicates a module (Mod) based scheme. In Mod/Ring-LWE based schemes, the
error distribution χe is nonzero, in contrast to Mod/Ring-LWR based schemes
where χe = 0. In the latter case, parameters p and t are smaller than q, so that the
rounding operations �·�q→p and �·�q→t introduce the errors necessary for security.
The rounding additionally compresses the ciphertexts. The rounding operations
�·�p→q and �·�t→q decompress the input back to approximately the original value.
The error introduced by these rounding and reconstruction operations will be
denoted as follows:

uuuA = AAAsssA + eeeA − bbbr, (3)

uuu′
B = AAATsss′

B + eee′
B − bbb′

r, (4)

u′′
B = bbbTr sss′

B + e′′
B + enc(mecc) − v′

r. (5)



The Impact of Error Dependencies on Ring/Mod-LWE/LWR Based Schemes 107

Algorithm 3. PKE.Dec(sk = sssA, c = (v′, b′b′b′))

1 bbb′
r = �bbb′�p→q

2 v′
r = �v′�t→q

3 v = bbb′T
r sssA

4 m′
ecc = dec(v′

r − v)
5 m′ = ecc dec(m′

ecc)
6 return m′

As a first step in determining the error probability of the encryption scheme,
we can calculate the value of v′

r − v as follows:

v′
r − v = (bbbTr sss′

B + e′′
B + �q/2�enc(mecc) + u′′

B) − bbb′T
r sssA (6)

= �q/2�enc(mecc) + (eeeA + uuuA)Tsss′
B − (eee′

B + uuu′
B)TsssA + (u′′

B + e′′
B) (7)

The distribution of one coefficient of −(eee′
B +uuu′

B)TsssA+(eeeA+uuuA)Tsss′
B +(u′′

B +e′′
B)

can be calculated exhaustively. For the sake of convenience, we will rewrite this
as cccTsss + g, where sss is the vector constructed as the concatenation of −sssA and
(eeeA + uuuA), where ccc is constructed similarly as the concatenation of (eee′

B + uuu′
B)

and sss′
B , and where g = u′′

B + e′′
B :

sss =
( −sssA

eeeA + uuuA

)
, ccc =

(
eee′
B + uuu′

B

sss′
B

)
, g = u′′

B + e′′
B . (8)

A coefficient of the polynomial v′
r − v decodes correctly if the absolute value

of the corresponding coefficient of the error term cccTsss + g is smaller than q/4. A
higher value results in a flipped bit after decoding, which will be called a bit error
and will be denoted with Fi with i the position of the bit in the message. If the
number of bit errors exceeds the threshold for error correction d, a decryption
failure occurs, which we will denote with the symbol F . A correct decryption
will be denoted with S, so that by definition P [S] = 1 − P [F ].

In Table 1, the parameters for LAC-128 and LAC-256 [15] are given. These
schemes are used throughout this paper to validate our methodology, as their
high failure rate and significant error correction causes their failure rate calcula-
tion to be more sensitive to error dependencies. Due to the choices of the moduli
q, p and t, the rounding errors uuuA, uuu′

B equal the zero vector and u′′
B is the zero

polynomial.

Table 1. Parameters for LAC

q p t n l d

LAC-128 251 251 251 512 1 29

LAC-256 251 251 251 1024 1 55
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2.3 Key Encapsulation Mechanism

From an IND-CPA secure encryption scheme, an IND-CCA secure Key Encapsu-
lation Mechanism (KEM) can be constructed using a post-quantum version [12]
of the Fujisaki-Okamoto transformation. The key generation phase is the same
as Algorithm 1 and the Encapsulation and Decapsulation functions are defined
in Algorithms 4 and 5 respectively, with G and H hash functions that model
Random Oracles.

Algorithm 4. KEM.Encaps(pk)

1 m ← U({0, 1}256)
2 r = G(m)
3 c = PKE.Enc(pk, m, r)
4 K = H(r)
5 return (c, K)

Algorithm 5. KEM.Decaps(sk, pk)

1 m′ = PKE.Dec(sk, c)
2 r′ = G(m′)
3 c′ = PKE.Enc(pk, m′, r′)
4 if c = c′ then
5 return K = H(r)
6 else
7 return K =⊥

3 Error Dependency

The typical method to calculate the failure rate, is to determine the error prob-
ability of a single bit of m′

ecc, calculated as pb = P [|(cccTsss + g)i| > q/4], and then
assume independence to extend this error probability to the full failure rate.
For a scheme that does not use any error correction, this can be expressed as
1− (1− pb)lm or 1− Binom(0, lm, pb), with lm the length of the encoded message
mecc. For schemes that deploy error correcting codes with a correction capability
of d errors, the failure rate amounts to 1 − Binom(d, lm, pb).

However, this assumption of independence is not correct. In this section we
will show both theoretically and experimentally that there is a positive correla-
tion between the errors of the bits in m′

ecc. Intuitively, one can make the following
reasoning: (cccTsss + g) with high norm for sss and ccc is more likely to produce bit
errors, and conversely, bit errors are also more likely to stem from high norm sss
and ccc. Therefore, a bit error at a certain location, increases the expected norm
of sss and ccc, therefore increasing the bit error probabilities at other locations. In
conclusion, bit errors are expected to be positively correlated.
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Fig. 1. The probability of a certain number of errors in m′
ecc

In Fig. 1, the probability of various number of bit errors in m′
ecc is plot-

ted for LAC-256, both experimentally by running the protocol for approx-
imately 231 times, and theoretically under the independence assumption as
1 − Binom(0, lm, pb), where pb is determined experimentally. The choice for LAC
stems from the fact that the error probability of a bit of m′

ecc is large compared
to other schemes, making it possible to experimentally obtain enough errors to
get accurate estimations. In Fig. 1, one can see that the errors are clustered:
there are more messages without errors and more messages with a high number
of errors than predicted by the theoretical model, which confirms our hypothesis
that the bit errors are positively correlated. Note that the error probability of
a single bit is the same for the model and the experimental data, and that the
errors are just more clustered compared to the prediction of the model.

3.1 Handling the Dependency

In this section, we will develop a methodology to calculate the failure rate taking
into account the dependency between the errors in the bits of m′

ecc. For the sake
of simplicity, we will first assume that there is no error correcting code.

1 − P [F ] = P [S] (9)
= P [S0 · · · Sn] (10)
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Under the independence assumption, one can derive the formulas of the previous
section as follows:

1 − P [F ] =
∏

i

P [Si] (11)

= (1 − P [F0])n (12)

However step (11) is not valid if this assumption does not hold. To work around
this issue, we involve conditional information in the form of sss, ccc and g:

1 − P [F ] =
∑

sss,ccc,g

P [S0 · · · Sn |sss, ccc, g]P [sss, ccc, g] (13)

As the Si’s are fully determined conditioned on sss, ccc and g, the error or success
of other bits does not convey any extra information. Therefore, the bit successes
Si are independent conditioned on the extra information, so we can write:

1 − P [F ] =
∑

sss,ccc,g

∏

i

(P [Si |sss, ccc, g]) P [sss, ccc, g] (14)

=
∑

sss,ccc,g

(1 − P [F0 |sss, ccc, g])n P [sss, ccc, g] (15)

Unfortunately, this expression is not efficiently computable.
Note that the e′′

B term of gj does not add any information to Si if j �= i and
that its coefficients are independent. We will assume that this is also the case
for u′′

B , so we can write:

P [Si|sss, ccc, g] ≈ P [Si|sss, ccc, gi] (16)

From this result we can see that g has little or no contribution to the depen-
dency between the Si. As discussed in Sect. 3, the norm of sss and ccc is an important
cause of dependency. For rings of the form Z[X]/(Xn +1) we could assume that
this is the main cause of correlation, as different coefficients of cccTsss are calculated
with different combinations of elements of ccc and sss, which can be formalized as
follows:

Assumption 1. For sss, ccc and g as described in Eq. (8), where g and the coef-
ficients of sss and ccc are elements of the ring Z[X]/(Xn + 1), we can approxi-
mate S0 · · · Sn to be independent conditioned on ‖sss‖2, ‖ccc‖2, which is equivalent
to P [S0 · · · Sn | ‖sss‖2, ‖ccc‖2] ≈ ∏

i P [Si | ‖sss‖2, ‖ccc‖2].
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Using this assumption we write:

1 − P [F ] =
∑

‖sss‖2,‖ccc‖2

P [S0 · · · Sn | ‖sss‖2, ‖ccc‖2]P [‖sss‖2, ‖ccc‖2] (17)

≈
∑

‖sss‖2,‖ccc‖2

∏

i

(P [Si | ‖sss‖2, ‖ccc‖2]) P [‖sss‖2, ‖ccc‖2] (18)

≈
∑

‖sss‖2,‖ccc‖2

(P [S0 | ‖sss‖2, ‖ccc‖2])n P [‖sss‖2]P [‖ccc‖2] (19)

≈
∑

‖sss‖2,‖ccc‖2

(1 − P [F0 | ‖sss‖2, ‖ccc‖2])n P [‖sss‖2]P [‖ccc‖2] (20)

Using a similar derivation, the failure rate for schemes with error correction
under Assumption 1 can be calculated as:

1 − P [F ] ≈
∑

‖sss‖2,‖ccc‖2

(1 − Binom(d, lm, pb)) P [‖sss‖2]P [‖ccc‖2] (21)

where: pb = P [F0 | ‖sss‖2, ‖ccc‖2] (22)

To conclude, one has to calculate the failure rate for every value of ‖sss‖2 and
‖ccc‖2, after which the failure rate can be found by taking a weighted average.
The model from Eq. (20) can be seen as an intermediate between the model
from Eq. (12) that was constructed using the independence assumption, and
the exact but incalculable model from Eq. (15). In this intermediate model, the
main source of correlation between the Si, following Assumption 1, is taken into
account. In the next section we will experimentally assess our intermediate model
and observe that it closely represents the experimental data, thus validating our
assumption.

3.2 Experiments

To validate the developed methodology, we ran LAC-256 approximately 231 times
to get experimental data on the probability of a certain number of failures in
m′

ecc. We calculated the same probability using the assumption of independence
and our dependency aware model.

In general P [F0 | ‖sss‖2, ‖ccc‖2] can be calculated using a Gaussian assumption
on the distribution of cccTsss + g as described in [5]. For our calculations of LAC
we use a more exact algorithm using the fact that the elements of ccc,sss and g
are ternary. Intuitively, we first calculate the probability that a certain number
l of nonzero coefficients of ccc and sss coincide during the multiplication, expressed
as P [(abs(ccc)T abs(sss))0 = l | ‖sss‖2, ‖ccc‖2]. Then, we assume the term (cccTsss)0 given
(abs(ccc)T abs(sss))0 = l to be a sum of l elements randomly picked as plus or
minus 1. The full derivation can be expressed as follows:
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pb = P [abs(cccTsss + g)0 > q/4 | ‖sss‖2, ‖ccc‖2] (23)

=
∑

l

(
P [abs(cccTsss + g)0 > q/4 | (abs(ccc)T abs(sss))0 = l, ‖sss‖2, ‖ccc‖2]·
P [(abs(ccc)Tabs(sss))0 = l | ‖sss‖2, ‖ccc‖2]

)
(24)

=
∑

l

(
P [abs(cccTsss + g)0 > q/4 | (abs(ccc)T abs(sss))0 = l]·
P [(abs(ccc)Tabs(sss))0 = l | ‖sss‖2, ‖ccc‖2]

)
(25)

=
∑

l

∑

g0

(
P [abs(cccTsss + g)0 > q/4 | (abs(ccc)T abs(sss))0 = l, g0]·
P [(abs(ccc)T abs(sss))0 = l | ‖sss‖2, ‖ccc‖2] · P [g0]

)
(26)

We can model P [(cccTsss)0 > q/4 − g0 | (abs(ccc)T abs(sss))0 = l, g0] as the
survival function of a binomial distribution, which can be calculated as
Binom( l−q/4+g0

2 , l, 1/2). Similarly, P [(cccTsss)0 < −q/4 − g0 | (abs(ccc)T abs(sss))0 =
l, g0] can be modelled as Binom( l−q/4−g0

2 , l, 1/2), so that P [abs(cccTsss + g)0 >
q/4 | (abs(ccc)T abs(sss))0 = l, g0] is the sum of both probabilities. The distribution
P [(abs(ccc)T abs(sss))0 = l | ‖sss‖2, ‖ccc‖2] can be seen as a hypergeometric distribution
hypergeom(l, n, ‖sss‖2, ‖ccc‖2).

The probability of a decryption failure is plotted for various error correction
capabilities of the ECC in Fig. 2. We can see that our new dependency aware
model outputs a much better estimate of the probabilities of a certain maximum
number of errors. Another observation to be made is that the independency
based model deviates further from the experimental data as the number of errors
increases, which is the case for codes with higher error correction capabilities.
This makes the dependency issue especially important for schemes with extensive
error correction.

Fig. 2. Probability of failure for various error correction capabilities of ecc enc
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4 Implications

As seen in previous sections, the errors in m′
ecc are positively correlated, meaning

that an error at a certain position is more likely to happen if another error is
present. The inverse is also true: a correct bit of m′

ecc enlarges the probability
of other bits in m′

ecc to be correct. Therefore, due to the dependency, there will
be more fully correct messages than one would expect under the assumption of
independence. However, as one can see in Fig. 2, the impact of the dependency
is small for schemes without error correction. To conclude, an estimate using the
assumption of independence will slightly overestimate the failure rate, and thus
underestimate the security of the scheme with a small margin. As a result, the
approximation using an assumption of independence is legitimate for schemes
without an error correction step.

Table 2. The failure rate of different versions of LAC under the different models

LAC-128 LAC-256

Independency model 2−233 2−114

Dependency model 2−185 2−92

Overestimation factor 248 222

In the case of schemes with error correction, one has to be more careful. As
can be seen in Fig. 2, the independence model gives an underestimation of the
failure rate, which corresponds to an overestimation of the security of the scheme.
This overestimation grows as d, the error correction capability of the ECC,
becomes larger. In Table 2, the estimated failure rate of different versions of LAC
is compared under both models. The discrepancy between both models reaches
a factor 248 in case of LAC-128. Therefore, the assumption of independence is
not valid for schemes with error correction, and that it could lead to a serious
overestimation of the security of the underlying algorithm.

More specifically, a higher failure probability suggests that the scheme might
be more vulnerable to a decryption failure attack similar to the attack described
by D’Anvers et al. [5], where the secrets are estimated statistically based on
failing ciphertexts. Moreover, an attacker can reduce the failure probability by
performing a precomputation for weak ciphertexts with higher failure probabil-
ity. As LAC does not have any security against multi-target attacks that exploit
decryption failures, this precomputation only needs to be performed once.

5 Conclusions

In this paper, we challenged the independency assumption of bit errors in mes-
sages encrypted with (Ring/Mod)-(LWE/LWR) based schemes. We showed both
theoretically and experimentally that the occurrence of errors is positively cor-
related. Then we devised a method to calculate the failure rate of a scheme,
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taking into account the dependency of failures. Finally, we showed that the
assumption of independence is appropriate for schemes without error correcting
codes, but that it might lead to a substantial underestimation of the failure rate
for schemes with error correcting codes. This underestimation attains a factor
of 248 for LAC-128. A higher-than-expected failure rate could have a serious
impact on the security of the scheme through a decryption failure attack.
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Abstract. We present a particularly simple and efficient CCA-secure
public-key encapsulation scheme without random oracles or costly sam-
pling. The construction is direct in the sense that it eschews generic trans-
formations via one-time signatures or MACs typically found in standard-
model constructions. This gives us a compact, conceptually simpler, and
computationally efficient operation, that in particular does not require
any Gaussian sampling. Nevertheless, security is based on the hardness of
the plain learning-with-errors (LWE) problem with polynomial modulus-
to-noise ratio.

Of further interest, we also show how to obtain CCA-secure deter-
ministic public-key encryption (for high-entropy messages), that is more
compact and efficient than existing constructions.

1 Introduction

Public-key encryption (PKE) is a central cryptographic primitive to provide
secure communication over insecure networks without prior secret-key agree-
ment. In practice, due to its relative inefficiency, it is almost always used in
conjunction with a secret-key cipher, where the former encrypts a random ses-
sion key for the latter, which then encrypts the actual data. This flow is the
motivation for “hybrid encryption” [8], which consists of a (public-)key encapsu-
lation mechanism (KEM) and a data encapsulation mechanism (DEM). In terms
of security, it is well known [8] that if both KEM and DEM are CCA-secure,
then the hybrid encryption scheme is CCA-secure, which is the standard notion
for security of PKE against active attacks. While DEMs are readily obtained
from suitable symmetric-key modes of operation, in the case of KEMs substan-
tial optimisations are to be gained by specialising them to work with random
plaintexts only.

Constructing CCA-secure KEMs is easy in principle. Applying the Fujisaki-
Okamoto transformations [10] to PKE/KEM schemes with weaker security
guarantees (e.g., chosen-plaintext security) results in CCA-secure PKE/KEM
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schemes in the random oracle model. While this approach often leads to practical
constructions, one can only make heuristic security arguments for them. More-
over, when it comes to post-quantum security, these heuristic security arguments
need to be made in quantum random-oracle models [6] which are not very well
understood. For these reasons, designing an efficient and practical post-quantum
KEM in the standard model (without random oracles) is already desirable and
well motivated.

There are two somewhat generic ways to construct CCA-secure PKE/KEM
from lattices in the standard model. The first one is via lossy trapdoor functions
[19] (e.g., the constructions from [16,19,21]) and the second one is via the BCHK
trasformation [5] from tag-based or identity-based encryption (IBE) (e.g. the
constructions from [15]). Both of them require strongly unforgeable one-time
signatures or message authentication codes (MACs) as building blocks. This
introduces noticeable extra overheads, making the schemes less efficient and less
compact.

In this paper, we primarily focus on constructing a KEM that is both con-
ceptually very simple and computationally efficient, but without compromising
its provable security. Specifically, we rely on a standard lattice problem (plain
learning with errors, a.k.a. LWE [17,20]) in the standard model.1

1.1 Our Contributions

Our main contribution is a simple, compact, computationally efficient KEM
scheme without random oracles. The construction makes use of identity-
based/tag-based lattice trapdoor techniques [1,15]. The public key of our scheme
includes two matrices A ∈ Z

n×m
q and A1 ∈ Z

n×w
q , where w = n�log q�, and a

target-collision-resistant compression or hash function f : Zn
q → {0, 1}λ, where

λ is the security parameter. The private key is a low norm matrix R ∈ Z
m×w

such that A1 = AR (mod q). The ciphertext of our scheme contains two parts.
The first part is t = f(s) where s ∈ Z

n
q is the randomness of the encapsulation

algorithm. The second part is a vector c� = �(p/q) · s� · [A|A1 +ϕ(t)G]� where
ϕ : Zn

q → Z
n×n
q is a full-rank difference encoding [1] (here t is encoded as a vec-

tor in Z
n
q ) and G ∈ Z

n×w
q is the gadget matrix [15]. The session key is obtained

by applying a randomness extractor to s. When t is non-zero (which happens
with overwhelming probability), the lattice trapdoor (R,G) allows recovering s
and, thus, reproducing the session key. The key idea of our construction is to
make the identity/tag the hash value of the secret random vector s rather than
a verification key or a commitment in the BCHK transformation. In terms of
security, by using the LWE problem to (computationally) switch the rounding
function �(p/q) · s� · [A|A1 +ϕ(t)G]� to the so-called “lossy mode” [2], the ran-

1 We note that our approach here departs significantly from the recent NIST Post-
Quantum KEM competition, wherein most submitters chose to embrace random
oracles and stronger hardness assumptions (e.g., many variants of ring-LWE), to
address its rather idiosyncratic rules and success criteria.
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dom vector s retains sufficient min-entropy (even conditioned on c and t) that
the session key would be random.

Our construction can be seen as a “direct” CCA-secure PKE/KEM con-
struction from identity-based/tag-based encryption in the sense that it does not
employ generic transformations. Such kind of direct constructions from pairing-
based IBE are known, e.g., [7,13,14]. From a high level idea, our KEM construc-
tion also has similarities to the CCA-secure PKE scheme from a lossy trapdoor
function (LTF) and all-but-one lossy trapdoor function (ABO-LTF) from [19].
In [19], the encryption is roughly done by evaluating a LTF and an ABO-LTF
(both are invertible) on the randomness. The well-formness of the ciphertext is
guaranteed by signing theses two evaluations with a one-time signature scheme
(the verification key also serves as the tag for the ABO-LTF). Our construction
“shrinks” this further by using only one (ABO) LTF plus a compression hash
function. For our KEM construction, the hash function, which is much lighter
than an LTF, is already lossy and enough to ensure that the ciphertext is well-
formed. One should also note that our construction is for CCA-secure KEM
which is a more specialised primitive than CCA-secure PKE studied in certain
earlier constructions.

Our KEM construction is of good computational efficiency. First, the encryp-
tion process essentially involves a vector-matrix multiplication, a rounding oper-
ation and a target-collision-resistant hash function. In particular, discrete Gaus-
sian sampling is avoided. Second, the decryption can be done efficiently in a
parallel fashion by using the so-called “gadget” trapdoor inversion first proposed
in [15].

In terms of space efficiency, since our KEM scheme is based on a relatively
stronger LWE assumption (but still with polynomial modulus-to-noise ratio),
compared to the most efficient existing CCA-secure lattice PKE/KEM construc-
tions in the standard model, e.g., [15], our construction would need relatively
larger matrix dimensions (to provide sufficient hardness for the LWE problem).
However, since our KEM ciphertext only consists of a single vector over a small
field and a small hash value (whose bit-size is the security parameter, e.g., 128),
and since our KEM private key is a low-norm matrix with very small entries (−1
and 1), the impact of requiring larger dimensions is rather limited.

As a by-product of our KEM scheme and its structure, we also give a
CCA-secure deterministic lattice PKE system. Deterministic PKE has useful
direct and indirect applications such as efficient searchable encryption and de-
duplication of encrypted databases. Our construction is efficient and compact
than what one would get through generic transformations (e.g., [4]). One draw-
back of our deterministic PKE is that it requires an LWE hardness assumption
here with super-polynomial modulus-to-noise ratio, which is stronger than what
we need in the (randomised) KEM scheme.

2 Preliminaries

Notation. We denote the security parameter by λ. We use bold lowercase letters
(e.g. a) to denote vectors and bold capital letters (e.g. A) to denote matrices. For
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a positive integer q ≥ 2, let Zq be the ring of integers modulo q. We denote the
group of n × m matrices in Zq by Z

n×m
q . Vectors are treated as column vectors.

The transpose of a vector a is denoted by a�. For A ∈ Z
n×m
q and B ∈ Z

n×m′
q ,

let [A|B] ∈ Z
n×(m+m′)
q be the concatenation of A and B. We denote by x ← X

the process of sampling x according to the distribution X. We denote s ←$ S
the process that of sampling element x uniformly from the set S.

For x ∈ Zp, define Transformq(x) = �(q/p)·x�. For x ∈ Zq, define the rounding
function �x�p = �(p/q)·x�. The functions Transformq(·) and �·�p naturally extend
to vectors by applying them component-wise.

For a security parameter λ, a function negl(λ) is negligible in λ if it is smaller
than all polynomial fractions for a sufficiently large λ.

Definition 1 (Bounded Distribution, [2]). For a distribution χ over the
reals, and a bound β, we say that χ is β-bounded if the average absolute value of
x ← χ is less than β, i.e., if E[|x|] ≤ β.

Lemma 1. Let χ be a B-bounded distribution over Z. Let q ≥ p · (2B +1) ·nω(1)

be a prime. For e ← χ, u ←$ Zq, we have �u + e�p �= �u�p with probability
≤ (2B + 1) · p/q which is negligible in n.

We recall the notion of full-rank-difference encodings (FRD). Agrawal et al.
[1] gave an explicit construction of FRD, which we adapt in our construction.

Definition 2. Let n ≥ 1 be an integer and q be a prime. We say that a function
ϕ : Zn

q → Z
n×n
q is an encoding with full-rank differences (FRD) if:

1. ϕ is computable in polynomial time;
2. for all distinct u,v ∈ Z

n
q , ϕ(u) − ϕ(v) ∈ Z

n×n
q is full rank (or invertible).

Definition 3. Let λ be a security parameter, n = n(λ), � = �(λ) and S be
a distribution over D. A set of functions F = {f : D → R} is a family of
compression hash functions if (1) There exists a p.p.t algorithm that takes as
input a security parameter 1λ and uniformly samples a function f from F ; (2)
Given f , x ∈ D, the computation of f(x) can be done in p.p.t; (3) log |R| <
log |D|. We say F is second pre-image resistant if for all p.p.t algorithm A, the
advantage

AdvtcrF,A(λ) =
[

x �= x∗

and f(x∗) = f(x) :
f ←$ F ; x∗ ← S
x ← A(1λ, f, x∗)

]
≤ negl(λ)

We say F is ε-hard-to-invert w.r.t S if for all p.p.t algorithm A,

Pr[A(f(x), f) = x) : f ←$ F , x ← S] ≤ ε.

A collection of compression hash functions is collision-resistant if it is second
pre-image resistant and negl(λ)-hard-to-invert.
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2.1 Public-Key Encapsulation

A public-key encapsulation (KEM) scheme Π = (KeyGen,Encap,Decap) with
key space Kλ consists of three polynomial-time algorithms. The key generation
algorithm KeyGen(1λ) generates a public key Pk and private key Sk. The ran-
domised key encapsulation algorithm Encap(Pk) generates a session key K ∈ Kλ

and a ciphertext Ct. The decapsulation algorithm Decap(Pk,Sk,Ct) returns the
session key K or the error symbol ⊥. The correctness of a KEM scheme requires
that for all λ ∈ N, and all (K,Ct) ← Encap(Pk),

Pr[Decap(Pk,Sk,Ct) = K] ≥ 1 − negl(λ)

where the probability is taken over the choice of (Pk,Sk) ← KeyGen(1λ) and the
random coins of Encap and Decap.

We recall the chosen-ciphertext security of KEM. The IND-CCA security of
a KEM scheme Π with session key space Kλ is defined by the following security
game. The challenger C runs (Pk,Sk) ← KeyGen(1λ), chooses a random coin
μ ←$ {0, 1}, samples K∗

0 ←$ Kλ, and computes (K∗
1 ,Ct∗) ← Encap(Pk). Then C

passes (Pk,K∗
μ,Ct∗) to the adversary. The adversary launches adaptive chosen-

ciphertext attacks: It repeatedly chooses any Ct �= Ct∗ and sends it over to C, to
which C returns Decap(Pk,Sk,Ct). Finally, A outputs μ′ and wins if μ′ = μ. We
define A’s advantage in the above security game as

Advind-ccaA,Π (λ) = |Pr[μ′ = μ] − 1/2|.

We say Π is IND-CCA-secure if Advind-ccaA,Π (λ) is negligible in λ.

2.2 Randomness Extraction

The statistical distance between two random variables X and Y over a finite
set S is SD(X,Y ) = 1

2

∑
s∈S |Pr[X = s] − Pr[Y = s]|. For any ε > 0, we say

X and Y are ε-close if SD(X,Y ) ≤ ε. The min-entropy of a random variable
X is H∞(X) = − log(maxs∈S Pr[X = s]). The average-case conditional min-
entropy of X given Y is H̃∞(X|Y ) = − log (Ey←Y [maxx Pr[X = x|Y = y]]). A
distribution (or a random variable) X is called k-source if H∞(X) ≥ k.

Lemma 2 ([9], Lemma 2.2). Let X, Y and Z be random variables where Z
has at most 2λ positive-probability values. Then H̃∞(X|Y,Z) ≥ H̃∞(X|Y ) − λ,
and in particular H̃∞(X|Z) ≥ H∞(X) − λ.

Definition 4. A collection of functions H = {h : D → R} is universal if for
any x1, x2 ∈ D such that x1 �= x2 it holds that PrH←H[H(x1) = H(x2)] = 1/|R|.
Lemma 3. Let X, Y be random variables such that X ∈ {0, 1}n, and H̃∞(X|Y )
≥ k. Let H be a collection of universal hash functions from {0, 1}n to {0, 1}�

where � ≤ k − 2 log(1/ε). It holds that for h ←$ H, and r ←$ {0, 1}�,

SD ((h, h(X), Y ), (h, r, Y )) ≤ ε
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Lemma 4 ([1], Lemma 4). Suppose that m > (n+1) log q +ω(log n) and that
q > 2 is prime. Let R be an m × k matrix chosen uniformly in {1,−1}m × k

mod q where k = k(n) is polynomial in n. Let A and B be matrices chosen
uniformly in Z

n×m
q and Z

n×k
q respectively. Then the distribution (A,AR) is

statistically close to the distribution (A,B).

2.3 Computational Assumptions

We recall the LWE problem that was introduced by Regev [20].

Definition 5. Let λ be the security parameter, n = n(λ), m = m(λ), q = q(λ)
be integers and χ = χ(λ) be a distribution over Zq. The LWEn,m,q,χ problem asks
for distinguishing the following two distributions:

Real = (A, s�A + e�) and Rand = (A, c�)

where A ←$ Z
n×m
q , s ←$ Z

n
q , e ← χm, and c ←$ Z

n
q . We define the advantage

that an adversary A has in solving the LWE problem by

Adv
LWEn,m,q,χ

A (λ) = |Pr[A(1λ,Real) = 1] − Pr[A(1λ,Rand)]|.
We say the LWE assumption holds if for every p.p.t. algorithm A,
Adv

LWEn,m,q,χ

A (λ) is negligible in λ.

Usually, the distribution χ is the discrete Gaussian distribution DZ,αq where
the parameter α ∈ (0, 1) and αq ≥ √

n. We refer to [11] for details on discrete
Gaussian distributions and [17] for the recent result on the hardness of LWE.

In our construction, we consider the amortised LWE problem that asks to
distinguish between distributions (B,CB + F) and (B,A) where B ←$ Z

�×m
q ,

C ←$ Z
n×�
q , F ← χn×m and A ← Z

n×m
q . It was shown, e.g., in [18] (Lemma 7.3),

that a p.p.t. algorithm that distinguishes the two distributions of the amortised
LWE problem with probability ε can be efficiently turned into a p.p.t. algorithm
that breaks the LWE�,m,q,χ problem (per Definition 5) with advantage ε/n.

We recall the following Lemma, first proven by Goldwasser et al. [12], and
used by Xie et al. [22]. It says that, for certain parameters, the LWE problem
remains hard even if the secret is chosen from an arbitrary distribution with
sufficient min-entropy in the presence of hard-to-invert auxiliary input.

Lemma 5. Let k ≥ log q and F = {f : {0, 1}n → {0, 1}∗} be a family of
one-way functions that are 2−k hard to invert with respect to distribution S
over {0, 1}n. For any super-polynomial q = q(λ) and any m = poly(n), any
β, γ ∈ (0, 1) such that γ/β = negl(n), the distributions

(
A, s�A + e�, f(s)

)
and

(
A, c�, f(s)

)
are computationally indistinguishable where A ←$ Z

n×m
q , s ← S, c ←$ Z

m
q ,

e ← Dm
Z,βq, assuming the LWE�.m,q,DZ,γq

assumption holds where � ≥ k−ω(log n)
log q .
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2.4 Lattice Trapdoors

Let n ≥ 1, q ≥ 2 and p ≤ q. Set k = �log q� and w = nk, and define the n-by-w
gadget matrix G = In ⊗ [1, 2, 4, ..., 2k−1] ∈ Z

n×w
q . We recall the following lemma

that applies the gadget trapdoor [15] to invert the LWE and LWR functions.
The lemma stems from Lemma 7.2 of [2] (the algorithm BigInvert). Here we
use the fact that the gadget matrix G has a (publicly known) trapdoor matrix
T ∈ Z

w×w s.t. GT = 0 mod q and ‖T‖ ≤ √
5. (See [15], Proposition 4.2 for

details).

Lemma 6 ([3] Lemma 7.2). Let n ≥ 1, q ≥ 2, w = n�log q� and m =
m̄ + w. Set, m̄ > (n + 1) log q + ω(log n). Let F = [A|AR + HG] where A ∈
Z

n×m̄
q , R ←$ {−1, 1}m̄×w and H ∈ Z

n×n
q be an invertible matrix. We have

for c� = �s�F�p where s ∈ Z
n
q , p ≥ O(m̄

√
n log q), there is a p.p.t algorithm

Invert(Transformq(c),F,H,R) that outputs s.

The following lemma is derived from Lemma 3.3 and Theorem 7.3 of [3].

Lemma 7. Let λ be the security parameter. Let n,m, �, p, γ be positive integers,
χ be a β-bounded distribution, w = n�log q�, and q ≥ m̄βγn(m̄+w)p be a prime.
Then it holds that for s ←$ Z

n
q , A = CB + F ∈ Z

n×m̄
q , R ←$ {−1, 1}m̄×w

H̃∞(s| ⌊s�[A|AR]
⌋

p
) ≥ n log(2γ) − (� + λ) log q

where B ←$ Z
�×m̄
q , C ←$ Z

n×�
q and F ← χn×m̄.

3 The KEM Scheme

Let λ be the security parameter. The scheme uses a full-rank difference encoding
function ϕ : Zn

q → Z
n×n
q which can be instatiated by the construction given by

Agrawal et al. [1]. The scheme also employs a family of hash functions F = {f :
Z

n
q → {0, 1}λ} that is second pre-image resistant, and a family of universal hash

functions H = {h : Zn
q → {0, 1}λ} for which efficient constructions are known.

Let χ be a β-bounded distribution over Zq. Given the lattice dimension � ≥ λ
for LWE problem, we set the parameters for our KEM scheme as follows.

– Let δ > 0 be a constant. Set the matrix dimension n large enough such that
n−4λ

nδ ≥ � for Lemma 7 (ensuing that s sufficient leftover min-entropy).
– Set the matrix dimension m̄ = n1+δ to ensure that Lemma 4 applies. Here we

assume nδ = 2 log q.
– The rounding parameter p = 3m̄1.5 for Lemma 6.
– The parameter γ = 1 for Lemma 7
– Set β =

√
� as required by the hardness of LWE problem.

– The LWE modulus q = 12m̄5 that satisfies Lemma 7.

KeyGen(1λ): On input the security parameter λ, the key generation algorithm
does:
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1. Choose A ←$ Z
n×m̄
q , R ←$ {−1, 1}m̄×w; Set A1 = AR mod q.

2. Randomly sample a hash function f ←$ F and a universal hash function
h ←$ H.

3. Set Pk = (A,A1, f, h) and Sk = R.
Encap(Pk): On input the public key Pk, the encapsulation algorithm does:

1. Select s ←$ Z
n
q and compute t ← f(s).

2. Encode t as a vector in Z
n
q and compute c� =

⌊
s� · [A|A1 + ϕ(t)G]

⌋
p
.

3. Set K ← h(s) and Ct = (c, t).
Decap(Pk,Sk,Ct): On input the private key Sk and a ciphertext Ct = (c, t), the

decapsulation algorithm does:
1. Runs Invert(Transformq(c), [A|A1 + ϕ(t)G],R) to get s′ ∈ Z

n
q .

2. Compute t′ = f(s′) and return ⊥ if t′ �= t.
3. Return K ← h(s′).

The decryption correctness can be checked by the correctness of Invert as
stated in Lemma 6.

Theorem 1. If the family of hash functions F is second pre-image resistant and
the LWE�,m̄,q,χ assumption holds, then the KEM scheme is IND-CCA-secure.
More specifically, let λ be the security parameter. Given a p.p.t adversary A
that breaks the KEM scheme Π with advantage Advind-ccaΠ,A (λ), there exist a p.p.t
algorithm B1 that breaks the second pre-image resistance of F with advantage
AdvtcrF,B1

(λ) and a p.p.t algorithm B2 that breaks LWE�,m̄,q,χ with advantage
Adv

LWE�,m̄,q,χ

B2
(λ), such that Advind-ccaΠ,A (λ) ≤ AdvtcrF,B1

(λ)+Adv
LWE�,m̄,q,χ

B2
(λ)+negl(λ)

where negl(λ) is negligible in λ.

Proof. We proceed with the proof as a sequence of games. For i = {0, 1, 2, 3, 4},
we denote the i-th game by Gamei. We denote by Gamei ⇒ 1 the event that
the adversary wins the security game, i.e., it outputs μ′ such that μ′ = μ.

The first game Game0 is the same as the IND-CCA security game. That
is, the adversary A receives a public key Pk = (A,A1, f, h) and a challenge
ciphertext Ct∗ = (c∗, t∗), where

t∗ = f(s∗) ; c∗� =
⌊
s∗� · [A|A1 + ϕ(t∗)G]

⌋
p

for some s∗ ←$ Z
n
q , and a session key K∗

μ, which is either a random value from
{0, 1}λ or h(s∗), from the challenger B. Then A adaptively issues decryption
queries Ct = (c, t) �= Ct∗ and B runs the real decryption algorithm to return
the answers. Finally, A outputs a bit value μ′ indicating that Ct∗ encapsulates
a real session key or a random session key. According to the definition, we have

Pr[Game0 ⇒ 1] = Pr[μ′ = μ] = Advind-ccaΠ,A (λ) + 1/2

In Game1, we make a change in the way of answering decryption queries: ⊥
is returned if for the given decryption query Ct = (c, t), t = t∗; otherwise, Ct
is processed with the real decapsulation algorithm as in Game0. We argue that



124 X. Boyen and Q. Li

unless the adversary breaks the second pre-image resistant property of the hash
function f , this change is not noticeable.

First of all, we must have c �= c∗ (otherwise the decryption query is invalid as
it is the challenge ciphertext itself). To make the decryption oracle not to output
⊥, there must be a unique s �= s∗ such that c� =

⌊
s� · [A|A1 + ϕ(t∗)G]

⌋
p

(and
such an s can be found by the algorithm Invert since the private key R is known).
Therefore we must have f(s) = f(s∗) = t∗ which makes s a valid second pre-
image for t∗. So, we have

|Pr[Game1 ⇒ 1] − Pr[Game0 ⇒ 1]| ≤ AdvtcrF,B1
(λ)

for some proper adversary B1.
In Game2, we make the following changes on generating the matrix A1 from

the public key Pk. Firstly, we pick s∗ ←$ Z
n
q and set t∗ = f(s∗). Then we

sample R ←$ {−1, 1}m̄×w and set A1 ← AR − ϕ(t∗)G mod q. s∗ is also used
to construct the challenge ciphertext:

t∗ ← f(s∗) ; c∗� ←
⌊
s∗� · [A|A1 + ϕ(t∗)G]

⌋
p

The decryption oracle is implemented as in Game1.
We argue that the adversary’s views in Game2 and Game1 are statistically

close. First, by Lemma 4, the distributions of A1 in these two games are sta-
tistically close. This means that Pk generated in these two games are statisti-
cally indistinguishable for A. Then we note that the decryption queries will be
answered properly. This is because by the standard technique of Agrawal et al.
[1], knowledge of the binary matrix R lets us transform the trapdoor for G into
a trapdoor for the whole matrix, as long as H is invertible. The simulator can
thus answer in the same way as the previous games, except for the ciphertexts
Ct = (c, t∗), which however, are already excluded:

[A|A1 + ϕ(t)G] = [A|AR + (ϕ(t) − ϕ(t∗))G]
= [A|AR + HG]

where, by the property of FRD, H ∈ Z
n×n
q is invertible. So we have

|Pr[Game2 ⇒ 1] − Pr[Game1 ⇒ 1]| ≤ negl1(λ)

for some negligible statistical error negl1(λ).
In Game3 we change the way that the matrix A is constructed. In particular,

we obtain A ← CB + F where B ←$ Z
�×m̄
q , C ←$ Z

n×�
q and F ← χn×m̄. By

the LWE assumption (amortised version) we immediately have

Pr[Game3 ⇒ 1] − Pr[Game2 ⇒ 1] ≤ Adv
LWE�,m̄,q,χ

B2
(λ)

for some proper adversary B2.
In Game4, we change the way of generating the challenge session key. In par-

ticular, K∗
1 is chosen randomly from {0, 1}λ (recall that K∗

0 is chosen uniformly
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random from {0, 1}λ in all previous games). We argue that Game3 and Game4
are statistically indistinguishable. First of all, t∗ in the challenge ciphertext has
at most 2λ values. Second, by the construction of the matrix A and c∗, we have

c∗� =
⌊
s∗� · [A|A1 + ϕ(t∗)G]

⌋
p

=
⌊
s∗� · [A|AR + (ϕ(t∗) − ϕ(t∗))G]

⌋
p

=
⌊
s∗� · [A|AR]

⌋
p

By Lemma 2,

H̃∞ (s∗|c∗, t∗) ≥ H̃∞ (s∗|c∗) − λ

≥ n log(2γ) − (λ + �) log q − λ

≥ n − 2� log q − λ

= n − � · nδ − λ

≥ 4λ − λ

= 3λ

Let ε = 2−λ. So, we have H̃∞ (s∗|c∗, t∗) ≥ 2 log(1/ε) + λ. Applying Lemma3
results in SD ((c∗, t∗, h, h(s∗), (c∗, t∗, h,K∗

1 )) ≤ ε = 2−λ where K∗
1 ← {0, 1}λ.

We therefore obtain

|Pr[Game4 ⇒ 1] − Pr[Game3 ⇒ 1]| ≤ 2−λ

Additionally, In Game4, K∗
0 and K∗

1 are all random strings chosen from {0, 1}λ.
So the adversary A has exactly probability 1/2 of correctly guessing μ, i.e.,

Pr[Game4 ⇒ 1] = 1/2

Combining the above steps gives us

Advind-ccaΠ,A (λ) ≤ AdvtcrF,B1
(λ) + Adv

LWE�,m̄,q,χ

B2
(λ) + negl(λ)

where negl(λ) = negl1(λ) + 2−λ is negligible. This completes the proof. ��

4 CCA-Secure Deterministic Public-Key Encryption

In this section, we show a construction of CCA-secure deterministic public-key
encryption (D-PKE) in the standard model. Deterministic public-key encryption
only makes sense for high-min-entropy plaintexts, to preclude the obvious guess-
and-encrypt attack, but for such messages it has practical applications ranging
from encrypted keyword search to encrypted cloud storage with deduplication.

Our CCA-secure D-PKE has a similar structure as our KEM. We consider
the so-called PRIV-CCA security notion for single hard-to-guess message as in
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[4].2 The security of our construction is again based on the hardness of the
LWE problem with high-min-entropy secret in the presence of hard-to-invert
auxiliary inputs, which is as hard as the standard form of LWE with certain
parameters [12]. Our construction is more efficient than the generic constructions
by Boldyreva et al. [4] which requires double encryption (e.g., using two lossy
trapdoor functions when instantiated with lattice-based primitives).

A D-PKE scheme consists of three algorithms. On input a security param-
eter 1λ, the randomised key generation algorithm KeyGen(1λ) outputs a pair
of public and private keys (Pk,Sk). The deterministic encryption algorithm
Enc(Pk,m) returns a ciphertext Ct. The decryption algorithm Dec(Pk,Sk,Ct)
returns the message m or ⊥. The correctness is required that for all m,
(Pk,Sk) ← KeyGen(1λ),

Pr[Dec(Pk,Sk,Enc(Pk,m)) = m] ≥ 1 − negl(λ).

We recall the indistinguishability-based security definition of D-PKE for sin-
gle high-min-entropy messages. Here we consider a stronger version where we
require ciphertext pseudorandomness, i.e., that ciphertexts be computationally
indistinguishable from random strings. The security game with a D-PKE scheme
Π is defined as follows. The adversary A outputs a distribution M over the
message space. Where H∞(M) ≥ k (i.e., M is a k-source). The challenger B
runs (Pk,Sk) ← KeyGen(1λ). It flips a coin μ ←$ {0, 1}. If μ = 0 it computes
Ct∗ ← Enc(Pk,m∗) where m∗ ← M . Otherwise it chooses Ct∗ uniformly at
random from the ciphertext space. B returns (Pk,Ct∗) to A. A then launches
adaptive decryption queries Ct �= Ct∗ to which B returns Dec(Pk,Sk,Ct). Finally,
A outputs μ′ and wins if μ′ = μ. We define A’s advantage in the security game
as

Advpriv1-ccaΠ,A (λ) = |Pr[μ′ = μ] − 1/2|.
We say a D-PKE scheme Π is PRIV-CCA-secure w.r.t. a k-source single message
if for every p.p.t. adversary A, the advantage is negligible in λ.

Construction. Our construction uses a full-rank difference encoding function
ϕ : Zn

q → Z
n×n
q as in our construction of KEM. The construction also uses a

family of second pre-image resistant functions F = {f : {0, 1}n → {0, 1}2λ} that
is universal and 2−k-hard-to-invert with respect to a k-source M over {0, 1}n.
Such a family of functions can be built from the standard Short Integer Solution
(SIS) problem.

The security of the construction is based on the hardness of LWE�,q,m̄,DZ,γq

where we need, for Lemma 5, � ≥ k−ω(log n)
log q , γ ∈ (0, 1) such that γ/β = negl(n).

We set the parameters for decryption correctness and security as follows.

– Set the LWE modulus q = nω(1) and parameter β =
√

�/q for the LWE
hardness results of, e.g. [17,20].

2 It was shown in [4] that such a security notion is equevalent to the PRIV-CCA
security notion for multiple messages that form a block source. See [4] for details.
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– Set the dimension m̄ = n1+δ where nδ = O(log q) for Lemma 4.
– The rounding parameter p = 3m̄1.5, to ensure that Lemma 6 applies.
– Finally, β = 1/(2p

√
nm̄) · n−ω(1) for applying Lemma1.

KeyGen(1λ): On input the security parameter λ, the algorithm does:
1. Choose A ←$ Z

n×m̄
q , R ←$ {−1, 1}m̄×w; Set A1 = AR mod q.

2. Sample a universal, second pre-image resistant, 2k-hard-to-invert hash
function f ←$ F .

3. Set Pk = (A,A1, f) and Sk = R.
Enc(Pk,m): On input the public key Pk and message m ∈ {0, 1}n which comes

from some k-source, the algorithm does:
1. Compute t ← f(m) and encode t as a vector in Z

n
q .

2. Compute c� =
⌊
m� · [A|A1 + ϕ(t)G]

⌋
p
.

3. Set Ct = (c, t).
Dec(Sk,Ct): On input the private key Sk and a ciphertext Ct = (c, t), the

decryption algorithm does:
1. Runs Invert(Transformq(c), [A|A1 + ϕ(t)G],R) to get m′ ∈ {0, 1}n.
2. Compute t′ = f(m′). Return m′ if t′ = t or return ⊥ otherwise.

Security Proof. Now we give the security proof.

Theorem 2. Let k ≥ 2 log(1/n−ω(1)) + λ. If the family of functions F is uni-
versal, 2−k-hard-to-invert, second pre-image resistant, and Lemma5 holds, the
above construction of D-PKE scheme is PRIV-CCA-secure for k-source single
message.

Proof. We proceed the proof by a sequence of games. For i = {0, 1, 2, 3, 4}, we
denote the i-th game by Gamei. We denote by Gamei ⇒ 1 the event that the
adversary wins the security game, i.e., it outputs μ′ such that μ′ = μ.

The first game Game0 is the original PRIV-CCA security game. That is,
the adversary A generates a k-source distribution M . The challenger samples a
challenge message m∗ ← M and a fair coin μ ←$ {0, 1}. It then returns the public
key (A,A1, f) and the challnege ciphertext Ct∗μ to A, where Ct∗0 ← Enc(Pk,m∗)
and Ct∗1 is uniformly chosen from the ciphertext space. A then launches adaptive
chosen-ciphertext queries Ct subject to the condition that Ct �= Ct∗. Finally, A
outputs μ′ and it wins if μ′ = μ. By definition we have

|Pr[Game0 ⇒ 1] − 1/2| = Advpriv1-ccaΠ,A (λ).

In the second game Game1, we slightly change the way of answering the
decryption query: Let the challenge ciphertext Ct∗μ = (c∗, t∗). A decryption
query Ct = (c, t) is rejected if t = t∗. First, we must have Ct �= Ct∗μ by
security definition. Second, if c �= c∗, there is a m′ ∈ {0, 1}n such that
c� =

⌊
m′�[A|A1 + ϕ(t∗)]

⌋
p
. (In the case that Ct∗0 was returned, we must have

m′ �= m∗.) Therefore, m′ is a valid second pre-image of t∗ on f , and m′ can be
recovered efficiently through the decryption procedure. So a p.p.t distinguisher
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between Game0 and Game1 leads to a second-pre-image inversion algorithm for
F and we have

|Pr[Game1 ⇒ 1] − Pr[Game0 ⇒ 1]| ≤ negl1(λ).

In Game2 we set A1 ← AR − ϕ(t∗)G. By making this change we have
challenge ciphertext Ct∗0 = (t∗ = f(m∗), c∗T = �m∗�[A|AR]�p). By Lemma 4,
A1 is distributed properly except for a negligible statistical error negl1λ. So we
have

|Pr[Game2 ⇒ 1] − Pr[Game1 ⇒ 1]| ≤ negl2(λ).

In Game3, we make changes on computing the challenge ciphertext Ct∗0.
Specifically, given the challenge message m∗ ← M , we sample e ← Dm̄

Z,βq and
compute

c∗� =
⌊
m∗�[A|A1 + ϕ(t∗)G] + [e�|e�R]

⌋
p

=
⌊
m∗�[A|AR] + [e�|e�R]

⌋
p

where R is chosen as in the key generation phase. Since m∗ is a sample from the
distribution M which is chosen independent of A and AR, so m∗�[A|AR] is a
random sample from the uniform distribution over Zm̄+w

q (Recall A is randomly
chosen and AR statistically close to uniform as per Lemma 4). By Lemma 1 and
the fact that ‖e�R‖∞ ≤ βq

√
nm̄, with all but negligible probability negl3(λ),

c∗� =
⌊
m∗�[A|AR]

⌋
p

as produced in Game2. This shows that

|Pr[Game3 ⇒ 1] − Pr[Game2 ⇒ 1]| ≤ negl3(λ).

In Game4, we set Ct∗0 = (t∗ = f(m∗), c∗ = �[b�|b�R]�p where b ←$ Z
m̄
q

and m∗ ← M . by Lemma 5, the distributions (A,b�, f(m∗)) and (A,m∗�A +
e�, f(m∗)) are computationally indistinguishable under the LWE�,m̄,q,DZ,γq

assumption, where m∗ is from an arbitrary k-source distribution over Z
n
q ,

e ← Dm̄
Z,βq and 2−k-hard-to-invert function f , and b ← Z

m̄
q . So the challenge

ciphertext Ct∗0 in Game4 is indistinguishable from
(
f(m∗), �[m∗�A + e�|(m∗�A + e�)R]�p

)

=
(
f(m∗), �m∗�[A|AR] + [e�|e�R]�p

)

=
(
f(m∗), �m∗�[A|A1 + ϕ(t∗)G] + [e�|e�R]�p

)

which is the challenge ciphertext Ct∗0 produced in Game3. We have
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Pr[Game4 ⇒ 1] − Pr[Game3 ⇒ 1] ≤ Adv
LWE�,m̄,q,D

Z,γq

B (λ) + negl3(λ)

for some LWE adversary B.
Furthermore, since the challenge message m∗, a k-source sample, is indepen-

dent of c∗, t∗ = f(m∗) is distributed uniformly over {0, 1}2λ except for the
negligible probability λ−ω(1) (by the fact that k ≥ 2 log(1/λ−ω(1)) + λ, the uni-
versality of f , and Lemma 3). Since b is chosen uniformly at random from Z

m̄
q ,

by Lemma 4, c∗ = �[b�|b�R]�p is statistically close to the uniform distribution
over Zm̄+w

q with up to a negligible distance p/q = negl4(λ). This shows that Ct∗0
in Game5 is statistically close to a random ciphertext, e.g., Ct∗1. We have

|Pr[Game4 ⇒ 1] − 1/2| ≤ λ−ω(1) + negl4(λ).

To sum up, we have

Advpriv1-ccaΠ,A (λ) ≤ Adv
LWE�,m̄,q,D

Z,γq

B (λ) + negl(λ)

where negl(λ) accounts for the sum of all negligible terms appeared in the proof.
This completes the proof. ��
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Abstract. We present a key recovery attack against Y. Wang’s Random
Linear Code Encryption (RLCE) scheme recently submitted to the NIST
call for post-quantum cryptography. The public key of this code based
encryption scheme is a generator matrix of a generalised Reed Solomon
code whose columns are mixed in a certain manner with purely random
columns. In this paper, we show that it is possible to recover the under-
lying structure when there are not enough random columns. The attack
reposes on a distinguisher on the dimension of the square code. This
process allows to recover the secret key for all the short key parameters
proposed by the author in O(n5) operations. Our analysis explains also
why RLCE long keys stay out of reach of our attack.

Keywords: Code based cryptography · McEliece scheme · RLCE ·
Distinguisher · Key recovery attack ·
Generalised Reed Solomon codes · Schur product of codes

1 Introduction

The McEliece encryption scheme dates back to the late 70’s [14] and lies among
the possible post-quantum alternatives to number theory based schemes using
integer factorisation or discrete logarithm. However, the main drawback of
McEliece’s original scheme is the large size of its keys. Indeed, the classic instan-
tiation of McEliece using binary Goppa codes requires public keys of several hun-
dreds of kilobytes to assert a security of 128 bits. For example, the recent NIST
submission Classic McEliece [4] proposes public keys of 1.1 to 1.3 megabytes to
assert 256 bits security (with a classical computer).

To reduce the size of the keys, two general trends appear in the literature : the
first one consists in considering codes with a non trivial automorphism group, the
second one in using codes with a higher decoding capacity for encryption. In the
last decade, the second trend led to many proposals involving generalised Reed
Solomon (GRS) codes, which are well-known to have a large minimum distance
c© Springer Nature Switzerland AG 2019
J. Ding and R. Steinwandt (Eds.): PQCrypto 2019, LNCS 11505, pp. 133–152, 2019.
https://doi.org/10.1007/978-3-030-25510-7_8
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together with efficient decoding algorithms correcting up to half the minimum
distance. On the other hand, the raw use of GRS codes has been proved to be
insecure by Sidelnikov and Shestakov [15]. Subsequently, some variations have
been proposed as a counter-measure of Sidelnikov and Shestakov’s attack. Berger
and Loidreau [3] suggested to replace a GRS code by a random subcode of small
codimension, Wieschebrink [18] proposed to join random columns in a generator
matrix of a GRS code and Baldi et al. [1] suggested to mask the structure of
the code by right multiplying a generator matrix of a GRS code by the sum of
a low rank matrix and a sparse matrix. It turns out that all of these proposals
have been subject to efficient polynomial time attacks [8,11,19].

A more recent proposal by Yongge Wang [16] suggests another way of hiding
the structure of GRS codes. The outline of Wang’s construction is the following:
start from a k × n generator matrix of a GRS code of length n and dimension
k over a field Fq, add w additional random columns to the matrix, and mix
the columns in a particular manner. The design of this scheme is detailed in
Sect. 3.1. This approach entails a significant expansion of the public key size but
may resist above-mentioned attacks such as distinguisher and filtration attacks
[8,10]. This public key encryption primitive is the core of Wang’s recent NIST
submission “RLCE-KEM” [17].

Our Contribution: In the present article we give a polynomial time key recovery
attack against RLCE. For an [n, k] code with w additional random columns, our
attack breaks the system in O(wk2n2) operations, when w < n − k. This allows
us to break half the parameter sets proposed in [17].

2 Notation and Prerequisites

2.1 Generalised Reed Solomon Codes

Notation 1. Let q be a power of prime and k a positive integer. We denote by
Fq[X]<k the vector space of polynomials over Fq whose degree is strictly bounded
from above by k.

Definition 1 (Generalised Reed Solomon codes). Let x ∈ F
n
q be a vector

whose entries are pairwise distinct and y ∈ F
n
q be a vector whose entries are

all nonzero. The generalised Reed Solomon (GRS) code with support x and
multiplier y of dimension k is defined as

GRSk(x,y)
def
= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[x]<k}.

2.2 Schur Product of Codes and Square Codes Distinguisher

Notation 2. The component-wise product of two vectors a and b in F
n
q is

denoted by : a � b
def
= (a1b1, . . . , anbn). This definition extends to the product

of codes where the Schur product of two codes A and B ⊆ F
n
q is defined as

A � B
def
= Span

Fq
{a � b | a ∈ A , b ∈ B}.
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In particular, A �2 denotes the square code of a code A : A �2 def
= A � A .

We recall the following result on the generic behaviour of random codes with
respect to this operation.

Proposition 1 ( [6, Theorem 2.3], informal). For a linear code R chosen at
random over Fq of dimension k and length n, the dimension of R�2 is typically
min(n,

(
k+1
2

)
).

This provides a distinguisher between random codes and algebraically struc-
tured codes such as generalised Reed Solomon codes [8,19], Reed Muller codes [7],
polar codes [2] some Goppa codes [10,12] or algebraic geometry codes [9]. For
instance, in the case of GRS codes, we have the following result.

Proposition 2. Let n, k,x,y be as in Definition 1. Then,

(GRSk(x,y))�2 = GRS2k−1(x,y � y).

In particular, if k < n/2, then dim (GRSk(x,y))�2 = 2k − 1.

Thus, compared to a random code R whose square has a dimension quadratic
in dimR, the square of a GRS code C has a dimension which is linear in dimC .
This criterion allows to distinguish GRS codes of appropriate dimension from
random codes.

2.3 Punctured and Shortened Codes

The notions of puncturing and shortening are classical ways to build new codes
from existing ones. These constructions will be useful for the attack. We recall
here their definition. For a codeword c ∈ F

n
q , we denote (c1, . . . , cn) its entries.

Definition 2 (punctured and restricted codes). Let C ⊆ F
n
q and L ⊆

�1, n�. The puncturing of C at L is defined as the code

PL (C )
def
= {(ci)i∈�1,n�\L s.t. c ∈ C }.

The restriction of C to L is defined as the code RL (C )
def
= P�1,n�\L (C ) .

Definition 3 (shortened code). Let C ⊆ F
n
q and L ⊆ �1, n�. The shortening

of C at L is defined as the code

SL (C )
def
= PL ({c ∈ C s.t. ∀i ∈ L, ci = 0}).

Shortening a code is equivalent to puncturing the dual code, as explained by
the following proposition, whose proof can be found in [13, Theorem 1.5.7].

Proposition 3. Let C be a linear code over F
n
q and L ⊆ �1, n�. Then,

SL
(
C⊥)

= (PL (C ))⊥ and (SL (C ))⊥ = PL
(
C⊥)

,

where A ⊥ denotes the dual of the code A .
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Notation 3. Throughout the document, the indexes of the columns (or positions
of the codewords) will always refer to the indexes in the original code, although the
code has been punctured or shortened. For instance, consider a code C of length
5 where every word c ∈ C is indexed c = (c1, c2, c3, c4, c5). If we puncture C in
{1, 3}, a codeword c′ ∈ P{1,3} (C ) will be indexed (c′

2, c
′
4, c

′
5) and not (c′

1, c
′
2, c

′
3).

3 The RLCE Scheme

3.1 Presentation of the Scheme

The RLCE encryption scheme is a code based cryptosystem, inspired by the
McEliece scheme. It has been introduced by Wang in [16] and a proposal called
“RLCE-KEM” has recently been submitted as a response for the NIST’s call for
post-quantum cryptosystems [17].

For a message m ∈ F
k
q , the cipher text is c = mG + e where e ∈ F

n+w
q is a

random error vector of small weight t and G ∈ F
k×(n+w)
q is a generator matrix

defined as follows, for given parameters n, k and w.

1. Let x,y ∈ F
n
q be respectively a support and a multiplier (as in Definition 1).

2. Let G0 denote a random k × n generator matrix of the generalised Reed
Solomon code GRSk(x,y) of length n and dimension k. Denote by g1, . . . , gn

the columns of G0.
3. Let r1, . . . , rw be column vectors chosen uniformly at random in F

k
q . Denote

by G1 the matrix obtained by inserting the random columns between GRS
columns at the end of G0 as follows:

G1
def= [g1, . . . , gn−w, gn−w+1, r1, . . . , gn, rw] ∈ F

k×(n+w)
q .

4. Let A1, . . . ,Aw be 2 × 2 matrices chosen uniformly at random in GL2(Fq).
Let A be the block–diagonal non singular matrix

A
def=

⎛

⎜
⎜
⎜
⎝

In−w (0)
A1

. . .
(0) Aw

⎞

⎟
⎟
⎟
⎠

∈ F
(n+w)×(n+w)
q .

5. Let π ∈ Sn+w be a randomly chosen permutation of �1, n + w� and P the
corresponding (n + w) × (n + w) permutation matrix.

6. The public key is the matrix G
def= G1AP and the private key is (x,y,A,P ).

Remark 1. This presentation of the scheme is not exactly the same as in the orig-
inal specifications of RLCE [17]. It is however equivalent. Indeed, the differences
with the original scheme are listed below.
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1. The original specifications of RLCE propose as a public key a matrix

G = SG1AP ,

where S is a k × k non singular matrix. But, since we chose G0 to be a
random generator matrix of the GRS code to which we included random
columns, left multiplication by a random nonsingular matrix does not change
the probability distribution of the public keys.

2. In [17], the matrix G0 is called Gs and is a generator matrix of a GRS code
but its columns are permuted using a permutation matrix P 1 before includ-
ing random columns. Actually, if we chose arbitrary supports and multipliers,
applying a permutation on the columns does not change the probability dis-
tribution of the public keys.

3.2 Suggested Sets of Parameters

In [17] the author proposes 2 groups of 3 sets of parameters. The first group
(referred to as odd ID parameters) corresponds to parameters such that w ∈
[0.6(n − k), 0.7(n − k)], whereas in the second group (even ID parameters) the
parameters satisfy w = n − k. The parameters of these two groups are listed in
Tables 1 and 2.

The attack of the present paper recovers in polynomial time any secret key
when parameters lie in the first group.

Table 1. Set of parameters for the first group: w ∈ [0.6(n − k), 0.7(n − k)].

Security level (bits) Name in [17] n k t w q Public key size (kB)

128 ID 1 532 376 78 96 210 118

192 ID 3 846 618 114 144 210 287

256 ID 5 1160 700 230 311 211 742

Table 2. Set of parameters for the second group: w = n − k.

Security level (bits) Name in [17] n k t w q Public key size (kB)

128 ID 0 630 470 80 160 210 188

192 ID 2 1000 764 118 236 210 450

256 ID 4 1360 800 280 560 211 1232

4 Distinguishing by Shortening and Squaring

We will show here that it is possible to distinguish some public keys from random
codes by computing the square of some shortening of the public code. More
precisely, here is our main result.
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Theorem 4. Let C be a code over Fq of length n + w and dimension k with
generator matrix G which is the public key of an RLCE scheme that is based on
a GRS code of length n and dimension k. Let L ⊂ �1, n + w�. Then,

dim (SL (C ))�2 � min(n + w − |L|, 2(k + w − |L|) − 1).

Remark 2. Actually, according to computer experiments, the inequality estab-
lished in Theorem 4 seems to be an equality with a probability close to 1 when
we are not in the degenerate case described in Sect. 6.7. See Remark 4 for further
details.

To prove Theorem 4 we can assume that P is the identity matrix. This is
because of the following lemma.

Lemma 1. For any permutation σ of the code positions �1, n + w� we have

dim (SL (C ))�2 = dim (SLσ (C σ))�2
,

where C σ is the set of codewords in C permuted by σ, that is C σ = {cσ : c ∈ C }
where cσ def

= (cσ(i))i∈�1,n+w� and Lσ def
= {σ(i) : i ∈ L}.

Therefore, for the analysis of the distinguisher, we can make the following
assumption which we will use several times the rest of the section, especially
to simplify the notation. The general case will follow by using Lemma1.

Assumption 5. The permutation matrix P is the identity matrix.

4.1 Analysis of the Different Kinds of Columns

Notation and Terminology. Before proving the result, let us introduce some
notation and terminology. The set of positions �1, n + w� splits in a natural way
into four sets, whose definitions are given in the sequel

�1, n + w� = I1
GRS ∪ I2

GRS ∪ IR ∪ IPR. (1)

Definition 4. The set of GRS positions of the first kind, denoted I1
GRS, cor-

responds to GRS columns which have not been associated to a random column.
This set has cardinality n − w and is given by

I1
GRS

def
= {i ∈ �1, n + w� |π−1(i) � n − w}. (2)

Under Assumption 5, this becomes: I1
GRS

def
= �1, n − w�.

This set is called this way, because at a position i ∈ I1
GRS, any codeword

v ∈ C has an entry of the form

vi = yif(xi). (3)

As we will see later, there might be other code positions that are of this form.
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Definition 5. The set of twin positions, denoted IT, corresponds to columns
that result in a mix of a random column and a GRS one. This set has cardinality
2w and is equal to:

IT
def
= {i ∈ �1, n + w� |π−1(i) > n − w}.

Under Assumption 5, this becomes: IT
def
= �n − w + 1, n + w�.

The set IT can be divided in several subsets as follows.

Definition 6. Each position in IT has a unique corresponding twin position
which is the position of the column with which it was mixed. For all s ∈ �1, w�,
π(n − w + 2s − 1) and π(n − w + 2s) are twin positions. Under Assumption 5,
the positions n − w + 2s − 1 and n − w + 2s are twins for all s in �1, w�.

For convenience, we introduce the following notation.

Notation 6. The twin of a position i ∈ IT is denoted by τ(i).

To any twin pair {i, τ(i)} = {π(n − w + 2s − 1), π(n − w + 2s)} with s ∈
{1, . . . , w} is associated a unique linear form ψs : Fq[x]<k → Fq and a non-
singular matrix As such that for any codeword v ∈ C , we have

vi = asyjf(xj) + csψs(f)
vτ(i) = bsyjf(xj) + dsψs(f), (4)

where j = n − w + s and (
as bs

cs ds

)
= As. (5)

The linear form ψs is the form whose evaluations provides the random column
added on the right of the (n−w + s)-th column during the construction process
of G (see Sect. 3.1, Step 3). From (4), we see that we may obtain more GRS
positions: indeed vi = asyjf(xj) if cs = 0 or vτ(i) = bsyjf(xj) if ds = 0. On the
other hand if csds �= 0 the twin pairs are correlated in the sense that they behave
in a non-trivial way after shortening: Lemma3 shows that if one shortens the
code in such a position its twin becomes a GRS position. We therefore call such
a twin pair a pseudo-random twin pair and the set of pseudo-random twin pairs
forms what we call the set of pseudo-random positions.

Definition 7. The set of pseudo-random positions (PR in short), denoted IPR,
is given by

IPR
def
=

⋃

s∈�1,w� s.t. csds �=0

{π(n − w + 2s − 1), π(n − w + 2s)}. (6)

Under Assumption 5, this becomes:

IPR =
⋃

s∈�1,w� s.t. csds �=0

{n − w + 2s − 1, n − w + 2s}. (7)
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If csds = 0, then a twin pair splits into a GRS position of the second kind
and a random position. The GRS position of the second kind is π(n−w+2s−1)
if cs = 0 or π(n − w + 2s) if ds = 0 (cs and ds can not both be equal to 0 since
As is invertible).

Definition 8. The set GRS positions of the second kind, denoted I2
GRS, is

defined as

I2
GRS

def
= {π(n − w + 2s − 1) | cs = 0} ∪ {π(n − w + 2s) | ds = 0}. (8)

Under Assumption 5, this becomes:

I2
GRS = {n − w + 2s − 1 | cs = 0} ∪ {n − w + 2s | ds = 0}. (9)

Definition 9. The set of random positions, denoted IR, is defined as

IR
def
= {π(n − w + 2s − 1) | ds = 0} ∪ {π(n − w + 2s) | cs = 0}. (10)

Under Assumption 5, this becomes:

IR = {n − w + 2s − 1 | ds = 0} ∪ {n − w + 2s | cs = 0}. (11)

We also define the GRS positions to be the GRS positions of the first or the
second kind.

Definition 10. The set of GRS positions, denoted IGRS, is defined as

IGRS
def
= I1

GRS ∪ I2
GRS. (12)

We finish this subsection with a lemma.

Lemma 2. |I2
GRS| = |IR| and |IPR| = 2(w − |IR|).

Proof. Using (7), (9) and (11) we see that, under Assumption 5,

�n − w + 1, n + w� = IPR ∪ I2
GRS ∪ IR (13)

and the above union is disjoint. Next, there is a one-to-one correspondence relat-
ing I2

GRS and IR. Indeed, still under Assumption 5, if cs = 0 for some s ∈ �1, w�,
then n − w + 2s − 1 ∈ I2

GRS and n − w + 2s ∈ IR and conversely if ds = 0. This
proves that |I2

GRS| = |IR|, which, together with (13) yields the result. 	


4.2 Intermediate Results

Before proceeding to the proof of Theorem4, let us state and prove some inter-
mediate results. We will start by Lemmas 3 and 4, that will be useful to prove
Proposition 4 on the structure of shortened RLCE codes, by induction on the
number of shortened positions. This proposition will be the core of the proof of
Theorem 4. Then, we will prove a general result on modified GRS codes with
additional random columns.
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Two Useful Lemmas. The first lemma explains that, after shortening a PR
position, its twin will behave like a GRS position. This is actually a crucial
lemma that explains why PR columns in G do not really behave like random
columns after shortening the code at the corresponding position.

Lemma 3. Let i be a PR position and L a set of positions that neither contains
i nor τ(i). Let C ′ def

= SL (C ). The position τ(i) behaves like a GRS position in
the code S{i} (C ′). That is, the τ(i)-th column of a generator matrix of S{i} (C ′)
has entries of the form

ỹjf(xj)

for some j in �n − w + 1, n� and ỹj in Fq.

Proof. Let us assume that i = n − w + 2s − 1 for some s ∈ {1, . . . , w}. The case
i = n − w + 2s can be proved in a similar way. At position i, for any c ∈ C ′,
from (4), we have

ci = ayjf(xj) + cψs(f),

where j = n − w + s. By shortening, we restrict our space of polynomials to the
subspace of polynomials in Fq[x]<k satisfying ci = 0. Since i is a PR position,
c �= 0 and therefore

ψs(f) = −c−1ayjf(xj).

Therefore, at the twin position τ(i) = n − w + 2s and for any c ∈ S{i} (C ′), we
have

cτ(i) = byjf(xj) + dψj(f)

= yj(b − dac−1)f(xj).

	


Remark 3. This lemma does not hold for a random position, since the proof
requires that c �= 0. It is precisely because of this that we have to make a
distinction between twin pairs, i.e. pairs for which the associated matrix As is
such that csds �= 0 and pairs for which it is not the case.

This lemma allows us to get some insight on the structure of the shortened
code SL (C ). Before giving the relevant statement let us first recall the following
result.

Lemma 4. Consider a linear code A over Fq whose restriction to a subset L
is a subcode of a k-dimensional GRS code. Let i be an element of L. Then the
restriction of S{i} (A ) to L\{i} is a subcode of a (k−1)-dimensional GRS code.

Proof. By definition, the restriction A ′ to L is a code of the form

A ′ def=
{

(yjf(xj))j∈L : f ∈ L
}

,
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where the yj ’s are nonzero elements of Fq, the xj ’s are distinct elements of Fq

and L is a subspace of Fq[X]<k. Clearly the restriction A ′′ of S{i} (A ) to L\{i}
can be written as

A ′′ =
{

(yjf(xj))j∈L\{i} : f ∈ L, f(xi) = 0
}

.

The polynomials f(X) in L such that f(xi) = 0 can be written as f(X) =
(X − xi)g(X) where deg g = deg f − 1 and g ranges in this case over a subspace
L′ of polynomials of degree < k − 1. We can therefore write

A ′′ =
{

(yj(xj − xi)g(xj))j∈L\{i} : g ∈ L′
}

.

This implies our lemma. 	


The Key Proposition. Using Lemmas 3 and 4, we can prove the following
result by induction. This result is the key proposition for proving Theorem4.

Proposition 4. Let L be a subset of �1, n + w� and let L0,L1,L2 be subsets of
L defined as

– L0 the set of GRS positions (see (2), (8) and (12) for a definition) of L:

L0
def
= L ∩ IGRS;

– L1 the set of PR positions (see (6)) of L that do not have their twin in L:

L1
def
= {i ∈ L ∩ IPR | τ(i) �∈ L};

– L2 the set of PR positions of L whose twin position is also included in L:

L2
def
= {i ∈ L ∩ IPR | τ(i) ∈ L}.

Let C ′ be the restriction of SL (C ) to (IGRS \L0)∪ τ(L1). Then, C ′ is a subcode
of a GRS code of length |IGRS| − |L0| + |L1| and dimension k − |L0| − |L2|

2 ·
Proof. Let us prove by induction on � = |L| that C ′ is a subcode of a GRS code
of length |IGRS| − |L0| + |L1| and dimension k − |L0| − |L2|

2 ·
This statement is clearly true if � = 0, i.e. if L is the empty set. Assume that

the result is true for all L up to some size � � 0. Consider now a set L of size
� + 1. We can write L = L′ ∪ {i} where L′ is of size �.

Let L0,L1,L2 be subsets of L as defined in the statement and L′
0,L′

1,L′
2 be

the subsets of L′ obtained by replacing in the statement L by L′. There are now
several cases to consider for i.

Case 1: i ∈ L0. In this case, L0 = L′
0 ∪ {i}, L1 = L′

1 and L2 = L′
2.

We can apply Lemma 4 with A = SL′ (C ) because by the induction hypoth-
esis, its restriction to L′′ def= (IGRS \ L′

0) ∪ τ(L′
1) is a subcode of a GRS code

of length |IGRS| − |L′
0| + |L′

1| and dimension k − |L′
0| − |L′

2|
2 ·

Therefore the restriction of the shortened code SL (C ) = S{i} (A ) to
L′′ \ {i} = (IGRS \ L0) ∪ τ(L1) is a subcode of a GRS code of length
|IGRS| − |L0| + |L1| and dimension k − |L′

0| − |L′
2|
2 − 1 = k − |L0| − |L2|

2 ·
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Case 2: i ∈ L1. In this case, L0 = L′
0,L1 = L′

1 ∪ {i} and L2 = L′
2. This implies

that L′ does not contain i nor τ(i).
We can therefore apply Lemma 3 with C ′ = SL′ (C ). Lemma 3 states that
the position τ(i) behaves like a GRS position in S{i} (C ′) = SL (C ). By
induction hypothesis, the restriction of the code C ′ to (IGRS \ L′

0) ∪ τ(L′
1)

is a subcode of a GRS code of length |IGRS| − |L′
0| + |L′

1| and dimension
k − |L′

0| − |L′
2|
2 = k − |L0| − |L2|

2 ·
Therefore the restriction of S{i} (C ′) = SL (C ) to (IGRS \ L0) ∪ τ(L1) =
(IGRS \ L′

0) ∪ τ(L′
1) ∪ {τ(i)} is a subcode of a GRS code of dimension k −

|L0| − |L2|
2 and length |IGRS| − |L′

0| + |L′
1| + 1 = |IGRS| − |L0| + |L1|.

Case 3: i ∈ L2. In this case, L0 = L′
0,L1 = L′

1 \ {τ(i)} and L2 = L′
2 ∪ {i, τ(i)}.

In fact, this case can only happen if � � 1 and we will rather consider the
induction with respect to the set L′′ = L \ {i, τ(i)} of size � − 1 and the sets
L′′
0 ,L′′

1 ,L′′
2 such that L′′

0 = L0,L′′
1 = L1,L′′

2 = L2 \ {i, τ(i)}.
By induction hypothesis on L′′, the restriction of C ′′ def= SL′′ (C ) to (IGRS \
L′′
0) ∪ τ(L′′

1) is a subcode of a GRS code of length |IGRS| − |L′′
0 | + |L′′

1 | =
|IGRS| − |L0| + |L1| and dimension k − |L′′

0 | − |L′′
2 |
2 = k − |L0| − |L2|

2 + 1.
Following Assumption 5, we can write without loss of generality that i =
n−w+2s−1 for some s ∈ {1, . . . , w}. The case i = n−w+2s can be proved
in a similar way.

Denote As =
(

a b
c d

)
the non-singular matrix and j = n − w + s. For any

c ∈ C ′, at positions i and τ(i) we have

ci = ayjf(xj) + cψs(f),
cτ(i) = byjf(xj) + dψs(f).

Shortening C ′′ at {i, τ(i)} has the effect of requiring to consider only the
polynomials f for which f(xj) = ψs(f) = 0. Therefore the restriction of
S{i,τ(i)} (C ′′) = SL (C ) at (IGRS \ L′′

0) ∪ τ(L′′
1) is a subcode of a GRS code of

length |IGRS|−|L0|+|L1| and dimension k−|L0|− |L2|
2 +1−1 = k−|L0|− |L2|

2 ·
Case 4: i ∈ IR. In this case L0 = L′

0,L1 = L′
1 and L2 = L′

2. Using the induction
hypothesis yields directly that A = SL′ (C ) is a subcode of a GRS code of
length |IGRS|−|L′

0|+|L′
1| = |IGRS|−|L0|+|L1| and dimension k−|L′

0|−
|L′

2|
2 =

k − |L0| − |L2|
2 · This is also clearly the case for SL (C ) = S{i} (A ).

This proves that the induction hypothesis also holds for |L| = � + 1 and finishes
the proof of the proposition. 	


A General Result on Modified GRS Codes. Finally, we need a very general
result concerning modified GRS codes where some arbitrary columns have been
joined to the generator matrix. A very similar lemma is already proved in [8,
Lemma 9]. Its proof is repeated below for convenience and in order to provide
further details about the equality case.



144 A. Couvreur et al.

Lemma 5. Consider a linear code A over Fq with generator matrix of the form
G =

(
GSCGRS Grand

)
P of size k × (n + r) where GSCGRS is a k × n gener-

ator matrix of a subcode of a GRS code of dimension kGRS over Fq, Grand is
an arbitrary matrix in F

k×r
q and P is the permutation matrix of an arbitrary

permutation σ ∈ Sn+r. We have

dimA �2 � 2kGRS − 1 + r.

Moreover, if the equality holds, then for every i ∈ �n + 1, n + w� we have:

dim P{σ(i)}
(
A �2

)
= dimA �2 − 1.

Proof. Without loss of generality, we may assume that P is the identity matrix
since the dimension of the square code is invariant by permuting the code posi-
tions (see Lemma 1). Let B be the code with generator matrix

(
GSCGRS 0k×r

)
,

where 0k×r is the zero matrix of size k×r. We also define the code B′ generated
by the generator matrix

(
0k×n Grand

)
. We obviously have

A ⊆ B + B′.

Therefore

(A )�2 ⊆ (B + B′)�2

⊆ B�2 + (B′)�2 + B � B′

⊆ B�2 + (B′)�2
,

where the last inclusion comes from the fact that B � B′ is the zero subspace
since B and B′ have disjoint supports. The code B�2 has dimension � 2kGRS−1
whereas dim (B′)�2 � r.

Next, if dimA �2 = 2kGRS − 1 + r, then

A �2 = B�2 ⊕ (B′)�2 and dim(B′)�2 = r.

Since B′ has length r, this means that (B′)�2 = F
r
q and hence, any word of

weight 1 supported by the r rightmost positions is contained in A �2. Therefore,
puncturing this position will decrease the dimension. 	


4.3 Proof of Theorem 4

Proof. By using Proposition 4, we know that the restriction of SL (C ) to (IGRS \
L0)∪ τ(L1) is a subcode of a GRS code of length |IGRS| − |L0|+ |L1| = n−w +
|I2

GRS| − |L0| + |L1| and dimension kGRS
def= k − |L0| − |L2|

2 , where:

– L0
def= IGRS ∩ L;

– L1 is the set of PR positions of L that do not have their twin in L;
– L2 is the union of all twin PR positions that are both included in L.
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We also denote by L3 the set IR ∩ L. We can then apply Lemma 5 to SL (C )
and derive from it the following upper bound:

dim (SL (C ))�2 � 2kGRS − 1 + |IPR \ (L ∪ τ(L1))| + |IR \ L3|. (14)

Next, using Lemma 2, we get

dim (SL (C ))�2

� 2
(

k − |L0| − |L2|
2

)
− 1 + 2 (w − |IR|) − 2|L1| − |L2| + |IR| − |L3|

� 2 (k + w − |L0| − |L1| − |L2| − |L3|) − 1 + (|L3| − |IR|) (15)
� 2 (k + w − |L|) − 1. (16)

The other upper bound on dim (SL (C ))�2 which is dim (SL (C ))�2 � n+w−|L|
follows from the fact that the dimension of this code is bounded by its length.
Putting both bounds together yields the theorem. 	

Remark 4. We ran the following simulations using ID 1 parameters (see Table 1):
for three hundred random independent public keys, we computed dim (SL (C ))�2

for |L| ranging over ��min, �max�, as defined in (21). For more than 99% of the
cases, inequality (14) is an equality. In particular, this means that the inequality
of Theorem 4 is almost always an equality whenever IR is the empty set, i.e.
when we are not in the degenerate case defined in Sect. 6.7.

5 Reaching the Range of the Distinguisher

For this distinguisher to work we need to shorten the code enough so that its
square does not fill in the ambient space, but not too much since the square of the
shortened code should have a dimension strictly less than the typical dimension
of the square of a random code given by Proposition 1. Namely, we need to have:

dim (SL (C ))�2
<

(
k + 1 − |L|

2

)
and dim (SL (C ))�2

< n + w − |L|. (17)

Thanks to Theorem 4, we know that (17) is satisfied as soon as

2(k+w−|L|)−1 <

(
k + 1 − |L|

2

)
and 2(k+w−|L|)−1 < n+w−|L|. (18)

We will now find the values |L| for which the inequalities of (18) are satisfied.

First Inequality. In order to determine when the first inequality of (18) is verified,
let us denote

k′ def= k − |L|.
Inequality (18) becomes 4k′ − 2 + 4w < k′2 + k′, or equivalently k′2 − 3k′ −

4w + 2 > 0, which after a resolution leads to k′ > 3+
√
16w+1
2 ·

Hence, we have:

|L| < k − 3 +
√

16w + 1
2

· (19)
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Second Inequality. The second inequality of (18) is equivalent to

|L| � w + 2k − n. (20)

Conditions to Verify Both Inequalities. Putting inequalities (19) and (20)
together gives that |L| should satisfy

w + 2k − n � |L| < k − 3 +
√

16w + 1
2

·

We can therefore find an appropriate L if and only if

w + 2k − n < k − 3 +
√

16w + 1
2

,

which is equivalent to

n − k > w +
3 +

√
16w + 1
2

= w + O(
√

w).

In other words, the distinguisher works up to values of w that are close to the
second choice n − k = w. From now on, we set

�min
def= w + 2k − n and �max

def=
⌈
k − 3 +

√
16w + 1
2

− 1
⌉

· (21)

Practical Results. We have run experiments using Magma [5] and Sage. For
the parameters of Table 1, here are the intervals of possible values of |L| so that
the code SL (C )�2 has a non generic dimension:

– ID 1: n = 532, k = 376, w = 96, |L| ∈ �316, 354�;
– ID 3: n = 846, k = 618, w = 144, |L| ∈ �534, 592�;
– ID 5: n = 1160, k = 700, w = 311, |L| ∈ �551, 663�.

The interval always coincides with the theoretical interval ��min, �max�.

6 The Attack

In this section we will show how to find an equivalent private key (x,y,A,P )
defining the same code.

We assume that all the matrices As =
(

as bs

cs ds

)
appearing in the definition of

the scheme in Subsect. 3.1 are such that csds �= 0. We explain in Sect. 6.7 how to
deal with the special case csds = 0. Note that this corresponds to a case where
IR = ∅ and I2

GRS = ∅.

Remark 5. In the present section where we the goal is to recover the permuta-
tion, we no longer work under Assumption 5.
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6.1 Outline of the Attack

In summary, the attack works as follows.

1. Compute the interval ��min, �max� of the distinguisher and choose � in the
middle of the distinguisher interval. Ensure � < �max.

2. For several sets of indices L ⊆ �1, n + w� such that |L| = �, compute SL (C )
and identify pairs of twin positions contained in �1, n+w�. Repeat this process
until identifying all pairs of twin positions, as detailed in Sect. 6.2.

3. Puncture the twin positions in order to get a GRS code and recover its struc-
ture using the Sidelnikov Shestakov attack [15].

4. For each pair of twin positions, recover the corresponding 2 × 2 non-singular
matrix Ai, as explained in Sect. 6.6.

5. Finish to recover the structure of the underlying GRS code.

6.2 Identifying Pairs of Twin Positions

Let L ⊆ �1, n+w� be such that both |L| and |L|+ 1 are contained in the distin-
guisher interval. We compare the dimension of (SL (C ))�2 with the dimension of(
P{i} (SL (C ))

)�2 for all positions i in �1, n + w� \ L.

– If i ∈ IGRS (see (2), (8) and (12) for the definition), puncturing does not
affect the dimension of the square code:

dim (SL (C ))�2 = dim
(
P{i} (SL (C ))

)�2
.

– If i ∈ IPR (see (6) for a definition) and τ(i) ∈ L, then according to Lemma 3,
the position i is “derandomised” in SL (C ) and hence behaves like a GRS
position in the shortened code. Therefore, very similarly to the previous case,
the dimension does not change.

– If i ∈ IPR and τ(i) �∈ L, in SL (C ), the two corresponding columns behave
like random ones. Assuming that the inequality of Theorem4 is an equality,
which almost always holds when no pair of twin positions is degenerate (see
Sect. 6.7 and Remark 4), then, according to Lemma 5, puncturing SL (C )�2 at
i (resp. τ(i)) reduces its dimension. Therefore,

dim
(
P{i} (SL (C ))

)�2 = dim
(
P{τ(i)} (SL (C ))

)�2 = dim (SL (C ))�2 − 1.

If some pair of twin positions is degenerate, the non-degenerate ones can be
identified in the same way.

This provides a way to identify any position in �1, n + w� \ L having a twin
which also lies in �1, n + w� \ L: by searching zero columns in a parity-check
matrix of SL (C )�2, we obtain the set TL ⊂ �1, n + w� \ L of even cardinality of
all the positions having their twin in �1, n + w� \ L:

TL
def=

⋃

{i,τ(i)}⊆�1,n+w�\L
{i, τ(i)}.
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Once these positions are identified, we can associate each such position to its
twin. This can be done as follows. Take i ∈ TL and consider the code SL∪{i} (C ).
The column corresponding to the twin position τ(i) has been derandomised and
hence will not give a zero column in a parity-check matrix of

(
SL∪{i} (C )

)�2, so
puncturing the corresponding column will not affect the dimension.

This process can be iterated by using various shortening sets L until obtaining
w pairs of twin positions. It is readily seen that considering O(1) such sets is
enough to recover all pairs with very large probability.

6.3 Recovering the Remainder of the Code

As soon as all the pairs of twin positions are identified, consider the code
PIPR (C ) punctured at IPR. Since the randomised positions have been punc-
tured this code is nothing but a GRS code and, applying the Sidelnikov Shes-
takov attack [15], we recover a pair a, b such that PIPR (C ) = GRSk(a, b).

6.4 Joining a Pair of Twin Positions : The Code C (i)

To recover the remaining part of the code we will consider iteratively the pairs
of twin positions. We recall that IPR corresponds to the set of positions having
a twin. Let {i, τ(i)} be a pair of twin positions and consider the code

C (i) def= P�1,n�\(IGRS∪{i,τ(i)}) (C ) .

In this code, any position is GRS but positions i and τ(i). Hence, for any
codeword c ∈ C (i) we have:

ci = ayjf(xj) + cψj(f)
cτ(i) = byjf(xj) + dψj(f) (22)

for some integer j ∈ �n − w + 1, n�, where ψj and A =
(

a b
c d

)
are defined as in

(4) and (5).
Note that we do not need to recover exactly (x,y,A,P ). We need to recover

a 4-tuple (x′,y′,A′,P ′) which describes the same code. Thus, without loss of
generality, after possibly replacing a by ayj and b by byj , one can suppose that
yj = 1. Moreover, after possibly replacing ψj by dψj , one can suppose that d = 1.
Recall that in this section we suppose that cd �= 0.

Thanks to these simplifying choices, (22) becomes

ci = af(xj) + cψj(f)
cτ(i) = bf(xj) + ψj(f).
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6.5 Shortening C (i) at the Last Position to Recover xj

If we shorten C (i) at the τ(i)-th position, according to Lemma 3, it will “deran-
domise” the i-th position (it implies ψj(f) = −bf(xj)) and any c ∈ S{τ(i)}

(
C (i)

)

verifies
ci = (a − bc)f(xj).

Since the support xj and multiplier yj are known at all the positions of C (i)

but the two PR ones, for any codeword c ∈ S{τ(i)}
(
C (i)

)
, one can find the

polynomial f ∈ Fq[x]<k whose evaluation provides c. Therefore, by collecting a
basis of codewords in S{τ(i)}

(
C (i)

)
and the corresponding polynomials, we can

recover the values of xj and a − bc.

6.6 Recovering the 2 × 2 Matrix

Once we have xj we need to recover the matrix

A =
(

a b
c 1

)
.

Note that, its determinant detA = a − bc has already been obtained in the pre-
vious section. First, one can guess b as follows. Let G(i) be a generator matrix of
C (i). As in the previous section, by interpolation, one can compute the polyno-
mials f1, . . . , fk whose evaluations provide the rows of G(i). Consider the column
vector

v
def=

⎛

⎜
⎝

f1(xj)
...

fk(xj)

⎞

⎟
⎠

and denote by vi and vτ(i) the columns of G(i) corresponding to positions ci

and cτ(i):

vi =

⎛

⎜
⎝

af1(xj) + cψj(f1)
...

afk(xj) + cψj(fk)

⎞

⎟
⎠ and vτ(i) =

⎛

⎜
⎝

bf1(xj) + ψj(f1)
...

bfk(xj) + ψj(fk)

⎞

⎟
⎠ .

Next, search λ ∈ Fq such that vi − λvτ(i) is collinear to v. This relation of
collinearity can be expressed in terms of cancellation of some 2 × 2 determinants
which are polynomials of degree 1 in λ. Their common root is nothing but c.

Finally, we can find the pair (a, b) by searching the pairs (λ, μ) such that

(i) λ − cμ = detA;
(ii) vi − λv and vτ(i) − μv are collinear.

Here the relation of collinearity will be expressed as the cancellation of 2 × 2
determinants which are linear combinations of λ, μ and λμ and elementary elim-
ination process provides us with the value of the pair (a, b).
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6.7 How to Treat the Case of Degenerate Twin Positions?

Recall that a pair of twin positions i, τ(i) is such that any codeword c ∈ C has
i-th and τ(i)-th entries of the form:

ci = ayjf(xj) + bψj(f) cτ(i) = cyjf(xj) + dψj(f).

This pair is said to be degenerate if either b or d is zero. In such a situation,
some of the steps of the attack cannot be applied. In what follows, we explain
how this rather rare issue can be addressed.

If either b or d is zero, then one of the positions is actually a pure GRS
position while the other one is PR but the process explained in the article does
not manage to associate the two twin columns.

Suppose without loss of generality that b = 0. In the first part if the attack,
when we collect pairs of twin positions, the position τ(i) will be identified as PR
with no twin sister a priori. To find its twin sister, we can proceed as follows.
For any GRS position j replace the j-th column vj of a generator matrix G
of C by an arbitrary linear combination of vj and the τ(i)-th column, this will
“pseudo–randomise” this column and if the j-th column is the twin of the τ(i)-th
one, this will be detected by the process of shortening, squaring and searching
zero columns in the parity check matrix.

7 Complexity of the Attack

The most expensive part of the attack is the step consisting in identifying pairs
of twin positions. Recall that, from [8], the computation of the square of a code
of length n and dimension k costs O(k2n2) operations in Fq. We need to compute
the square of a code O(w) times, because there are w pairs of twin positions.
Hence this step has a total complexity of O(wn2k2) operations in Fq. Note that
the actual dimension of the shortened codes is significantly less than k and hence
the previous estimate is overestimated.

The cost of the Sidelnikov Shestakov attack is that of a Gaussian elimination,
namely O(nk2) operations in Fq which is negligible compared to the previous
step. The cost of the final part is also negligible compared to the computation of
the squares of shortened codes. This provides an overall complexity in O(wn2k2)
operations in Fq.

Conclusion

We presented a polynomial time key-recovery attack based on a square code
distinguisher against the public key encryption scheme RLCE. This attack allows
us to break all the so-called odd ID parameters suggested in [17]. Namely, the
attack breaks the parameter sets for which the number w of random columns was
strictly less than n− k. Our analysis suggests that, for this kind of distinguisher
by squaring shortenings of the code, the case w = n − k is the critical one. The
even ID parameters of [17], for which the relation w = n−k always holds, remain
out of the reach of our attack.
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Abstract. In ASIACCS 2015, Nuñez, Agudo, and Lopez proposed a
proxy re-encryption scheme, NTRUReEncrypt, based on NTRU, which
allows a proxy to translate ciphertext under the delegator’s public key
into a re-encrypted ciphertext that can be decrypted correctly by del-
egatee’s private key. In addition to its potential resistance to quantum
algorithm, the scheme was also considered to be efficient. However, in
this paper we point out that the re-encryption process will increase the
decryption error, and the increased decryption error will lead to a reac-
tion attack that enables the proxy to recover the private key of the
delegator and the delegatee. Moreover, we also propose a second attack
which enables the delegatee to recover the private key of the delegator
when he collects enough re-encrypted ciphertexts from a same message.
We reevaluate the security of NTRUReEncrypt, and also give suggestions
and discussions on potential mitigation methods.

Keywords: NTRUReEncrypt · NTRU · Decryption failure ·
Reaction attack · Key recovery

1 Introduction

The concept of proxy re-encryption (PRE) scheme was proposed by Blaze,
Bleumer and Strauss in 1998 [5]. A re-encryption scheme allows a proxy to
translate ciphertext under the delegator’s public key into a ciphertext of the
same message that can be decrypted correctly by the delegatee’s private key,
whereas the proxy is given just a re-encryption key and learns nothing about
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the message. A PRE scheme can be seen as an extension of public-key encryp-
tion. It uses same fundamental algorithms as a traditional public key encryption
scheme. Additionally, it also requires algorithms to generate re-encryption keys
and to re-encrypt ciphertexts.

In the literature, there exit a number of proxy re-encryption schemes, based
on number theoretic problems such as the discrete logarithm problem [6]. How-
ever, due to Shor’s quantum algorithm, the integer factorization problem and the
discrete logarithm problem can be solved efficiently [17,18]. It is crucial to have
alternatives that are robust against quantum computers. In 2017, NIST [1,7]
started a standardization process on post-quantum cryptography. Among all can-
didate proposals, lattice based solutions are ones of most promising. Although
NIST considers only public key encryption and signature schemes at this stage,
it is also important to identify lattice based candidate for proxy re-encryption
schemes, for examples [3,20].

At AsiaCCS 2015, Nuñez, Agudo and Lopez [16] proposed a new proxy re-
encryption scheme, NTRUReEncrypt, based on a well-established lattice-based
public-key encryption scheme NTRU. Here the encryption and decryption mes-
sages are identical to the classical NTRUEncrypt scheme. With an additional
re-encryption mechanism, they achieved an efficient post-quantum PRE scheme.

NTRU [12], introduced by Hoffstein, Pipher and Silverman in 1996, has been
standardized by IEEE 1363.1 [19] and ANSI X9.98 [2]. It features high effi-
ciency and low memory requirement. After 20 years of development, there are
three mainstreams of the NTRU algorithms. The IEEE standardized version,
NTRUEncrypt was later on submitted to NIST-PQC process as [21]. The param-
eters follow the design principals outlined in [11]. The other two NTRU based
submissions are NTRU-prime [4] and NTRU-HRSS [15] schemes.

Similar to other lattice based cryptosystems, the NTRU scheme may admit
decryption errors. When a decryption failure occurs, information on private keys
may be (partially) leaked. In 2003, Howgrave et al. [14] successfully demon-
strated an attack that employs large number of queries to a weak decryption
oracle. Unlike a classical decryption oracle, a weak decryption oracle will only
tell whether a valid ciphertext was decrypted correctly or not (see [13]). This
attack is later known as the reaction attack, and becomes common to lattice
based cryptography [8,22]. In practice, to address this attack one may choose
optimized parameters so that the decryption error is negligible in security param-
eter, for example, NTRUEncrypt [11]; or less optimized ones that eliminate the
decryption errors, for example, NTRU-HRSS [15].

In NTRUReEncrypt, the delegator first chooses a small polynomial s, and
encrypts the message m as CA = hA ∗ s + m, where delegator’s private key is
(fA, gA) and delegator’s public key is hA = p ∗ gA ∗ f−1

A . After receiving CA, the
proxy chooses small polynomial e and sends CB = CA ∗ rkA→B + p ∗ e to the
delegatee, where rkA→B = fA ∗ f−1

B is the re-encrypted key of the proxy and
fB is the private key of the delegatee. Finally, the delegatee computes CB ∗ fB

modulo q and reduces it modulo p to recover the message m.
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Our first contribution is to analyze the NTRUReEncrypt scheme using the
aforementioned reaction attack. Note that the NTRUReEncrypt scheme follows
the parameter sets in [11,19,21]. The probability of decryption failure was set to
be negligible in the security parameter for a public key encryption scheme. How-
ever, the re-encryption process of NTRUReEncrypt significantly increases decryp-
tion error1. We give a detailed analyze the probability of decryption failure in
Table 1, and show how to use a reaction attack to recover private keys, given
sufficient many decryption failures. We also note that one can simply mitigate
this attack by increasing the modulus (and also the dimensions accordingly to
ensure the lattice problem is still hard in practice) so that decryption failure
probability becomes negligible again.

Table 1. The probabilities of decryption failure after encryption and re-encryption

Parameter sets log2(Pdec(c)) log2(Pdec(c
′))

ees1087ep1 −219 −92

ees1171ep1 −245 −117

ees1499ep1 −323 −200

ntru-443 −217 −35

ntru-743 −122 −16

Our other contribution is a new attack in which a curious delegatee receiving
a large re-encrypted ciphertexts from a single message can recover the private key
of a delegator. Roughly speaking, note that the intermediate polynomial during
the delegatee’s decryption has the form of CBi

∗fB = p∗gA∗si+m∗fA+p∗ei∗fB .
Once the delegatee collects enough (denoted by l) intermediate polynomials for
a same message m, he can average them to obtain p ∗ gA ∗ ∑l

i=1 si/l + m ∗ fA +
p ∗ fB ∗ ∑l

i=1 ei/l = fB ∗ ∑l
i=1 CBi

/l. Since si, ei are randomly chosen small
polynomials, for sufficiently large l, the coefficients of p ∗ gA ∗ ∑l

i=1 si/l and
p ∗ fB ∗ ∑l

i=1 ei/l will be very small. Hence, with overwhelming probability, the
equation m ∗ fA = Round(

∑l
i=1 fB ∗CBi

/l) holds, from which we can efficiently
recover the private key fA. To resist such an attack, some randomized padding
scheme should be added carefully (Table 2).

Our second attack indeed bases on the fact that each re-encrypted messages
leaks partial information of the secret key. Our attack is a simple illustration
of such a leakage. In lattice based signatures schemes, transcript leakages are
usually fixed with rejection sampling methods. It is not trivial to apply this
method to an re-encryption scheme. We leave secure instantiation of NTRU
based re-encryption schemes to future work.
1 Indeed, even if the NTRUReEncrypt adopts NTRU-HRSS parameter sets that don’t

have decryption errors by design, the re-encryption process will introduce decryption
errors.
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Table 2. The approximate number of required re-encrypted ciphertexts

Parameter sets Number of ciphertexts

ees1087ep1 258.5

ees1171ep1 258.7

ees1499ep1 259.7

ntru-443 253.5

ntru-743 257.3

Roadmap. The remainder of the paper is organized as follows. In Sect. 2,
we recall the original NTRU encryption and explain its decryption failures. In
Sect. 3, we present the proxy re-encryption scheme NTRUReEncrypt. In Sect. 4,
we give our first attack against NTRUReEncryptand analyze the decryption fail-
ure probability. In Sect. 5, we give our second attack against NTRUReEncrypt.
Finally, we give a short conclusion in Sect. 6.

2 Notations and Preliminaries

2.1 Notations and Definitions

Let R denote the ring Z[X]/(XN − 1), where N is prime. Let + and ∗ denote
addition and multiplication in R, respectively. For integer p, q, gcd(p, q) = 1 and
p � q. Let Rq be the ring Zq[X]/(XN −1) and Rp be the ring Zp[X]/(XN −1).
We use ‖.‖∞ to denote the infinite norm and ‖.‖ to denote the Euclidean norm.

A polynomial a(x) = a0 + a1x + · · · + aN−1x
N−1 is identified with its vector

of coefficients a = [a0, a1, · · · , aN−1]. The maximum and minimum coefficients
of polynomial or vector are denoted by

Max(a(x)) = max
0≤i≤N−1

{ai} and Min(a(x)) = min
0≤i≤N−1

{ai}.

The width of a polynomial a(X) is the difference between its largest and smallest
coefficients

Width(a(x)) = Max(a(x)) − Min(a(x)).

The reversal polynomial ā(x) of a polynomial a(x) in R is defined to be
ā(x) = a(x−1). If a = (a0, a1, · · · , aN−1), then ā = (a0, aN−1, aN−2, · · · , a1).

Let â(x) = a(x) ∗ ā(x) in R, a coefficient âi of â(x) is the dot products of a

with its successive rotations xi ∗ a. We have â0 =
∑N−1

i=0 a2
i = ‖a‖2.

For positive integers d1, d2, We set the notation:

T(d1,d2) =

{
trinary polynomials of R with d1 entries

equal to 1 and d2 entries equal to − 1

}

.
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2.2 Overview of NTRU

We now briefly present the basic NTRU encryption scheme, for more details see
[12]. The polynomials used in NTRU are selected from four sets Lf ,Lg,Ls,Lm,
where Lf = {f : f ∈ T(df ,df−1)}, Lg = {g : g ∈ T(dg,dg)}, Ls = {s : s ∈ T(ds,ds)},
and Lm={m ∈ R : every coefficient of m lies between p−1

2 and p−1
2 }.

– KeyGen(1k): On input security parameter k, the key generation algorithm
KenGen first chooses f ∈ Lf , such that f has inverse f−1

q in Rq and f−1
p in

Rp, g ∈ Lg, then computes h = p ∗ g ∗ f−1
q mod q and outputs public key

pk = h and private key sk = (f, g).

– Enc(pk,m): On input the public key pk and a message m ∈ Lm, the encryp-
tion algorithm Enc chooses s ∈ Ls and outputs the ciphertext c = h ∗ s + m
mod q.

– Dec(sk, c): On input the private key sk and the ciphertext c, the decryption
algorithm Dec computes a = c ∗ f mod q, and place the coefficient of a in
the interval (−q/2, q/2]. Outputs m = a ∗ f−1

p mod p.

2.3 Decryption Failures

When decrypting a ciphertext c, one caluates

a = c ∗ f = p ∗ g ∗ s + m ∗ f mod q. (1)

Since the polynomials f , g, s and m are small, the coefficients of polynomial
p ∗ g ∗ s + m ∗ f lie in (−q/2, q/2] with high probability. If the equality mod q in
Eq. (1) also holds over Z. Then, we have

a ∗ f−1
p = p ∗ g ∗ s ∗ f−1

p + m ∗ f ∗ f−1
p = m mod p.

Hence decryption works if Eq. (1) also holds over Z. A warp failure occurs if
‖p ∗ g ∗ s + m ∗ f‖∞ ≥ q/2 and a gap failure occurs if the width of p∗g∗s+m∗f
is greater than or equal to q.

Howgrave et al. [14] presented the attack based on decryption failure. The
attacker selected (m, si) with fixed m, such that ‖p ∗ g ∗ si + m ∗ f‖∞ ≥ q/2.
Once the attacker collected sufficiently large (m, si), the attacker can recover
the private key (g, f).

3 NTRUReEncrypt

3.1 Presentation of the Scheme

In [16], Nuñez et al. proposed a proxy re-encryption scheme NTRUReEncrypt
based on NTRU, where a proxy is given re-encryption key rkA→B that allows
him to translate a message m encrypted under Alice’s public key pkA into a
re-encrypted ciphertext of the same message m decryptable by Bob’s private
key skB .
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The NTRUReEncrypt scheme consists of five algorithms:

– KeyGen(1k): On input the security parameter k, the output of key genera-
tion algorithm for Alice is (skA, pkA), where skA = (fA, gA) and pkA = hA.
Let f−1

A denote the inverse of fA in the ring Rq.

– ReKeyGen(skA, skB): On input the secret key skA and the secret key
skB , the re-encryption algorithm ReKeyGen computes the re-encryption key
between Alice and Bob as rkA→B = fA ∗ f−1

B mod q. The re-encryption key
can be computed by a simple three-party protocol originally proposed in [6],
is as follows: Alice selects r ∈ Rq and sends r ∗ fA mod q to Bob and r to
the proxy, then Bob sends r ∗ fA ∗ f−1

B mod q to the proxy, so the proxy can
compute rkA→B = fA ∗ f−1

B mod q.

– Enc(pkA,m): On input the public key pkA and the message m, the encryp-
tion algorithm Enc generates s ∈ Tds,ds

, and outputs CA = hA ∗ s + m
mod q.

– ReEnc(rkA→B , CA): On input a re-encryption key rkA→B and a ciphertext
CA, the re-encryption algorithm ReEnc generates e ∈ Tds,ds

and outputs
CB = CA ∗ rkA→B + p ∗ e mod q.

– Dec(skA, CA): On input the secret key skA and the ciphertext CA, the
decryption algorithm computes CA

′ = CA ∗ fA mod q and outputs m = CA
′

mod p.

Next, We would like to point out that

– In order to decrypt the re-encrypted ciphertext correctly, the private polyno-
mial fB has to be congruent to 1 modulo p. So the difference between NTRU
and NTRUReEncrypt of the key generation is that the private key f has the
form of 1 + p ∗ F , where F ∈ T(df ,df ).

– In practical, the message m is padded with random bits and masked according
to a hamming weight restriction, which means message representatives are
trinary polynomials with the number of +1s, −1s, and 0s each be greater
than dm. So for simplicity, m satisfies the hamming weight restriction in this
paper.

– The error term e is chosen randomly from the ring R during the re-encryption
in [16], which is unreasonable. In fact, e should be small, we therefore assume
that e is sampled from the same set as s.

For the correctness of Bob’s decryption, when Bob gets the re-encryption cipher-
text CB , he first computes

CB ∗ fB = (CA ∗ fA ∗ f−1
B + p ∗ e) ∗ fB

= (hA ∗ s + m) ∗ fA + p ∗ e ∗ fB

= p ∗ gA ∗ s + m ∗ fA + p ∗ e ∗ fB mod q.

(2)
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If the last part of Eq. (2) also holds over Z, then we have C ′
B = p ∗ gA ∗ s + m ∗

fA + p ∗ e ∗ fB . After taking modulo p, Bob can obtain the original message m.

Remark 1. The scheme is also bidirectional and multihop, namely it’s trivial
to obtain rkB→A from rkA→B and the re-encryption process can be repeated
multiple times.

3.2 Parameter Sets

The author of [16] implemented NTRUReEncrypt scheme on ees439ep1,
ees1087ep1, ees1171ep1, ees1499ep1 parameter sets following the IEEE P1363.1
standards [19]. They also used the product form polynomials for optimization of
each set. However, some specific parameters are not clear in [16], so we only list
ees1087ep1, ees1171ep1, ees1499ep1 in Table 3.

Note that the NTRU project has proposed new parameter sets ntru-443 and
ntru-743, which are submitted to NIST PQC competition [21]. For completeness,
we also list them in Table 3 to analyze the security of the scheme.

For ees1087ep1, ees1171ep1, ees1499ep1, ntru-443, ntru-743, the private key is
(f, g) = (1+p∗F ) with F ∈ T(df ,df ) and g ∈ T(dg,dg), the polynomial s ∈ T(ds,ds).

Table 3. Some instances of trinary polynomials

Instance N p q dg df=ds=dm

ees1087ep1 1087 3 2048 362 120

ees1171ep1 1171 3 2048 390 106

ees1499ep1 1499 3 2048 499 79

ntru-443 443 3 2048 143 143

ntru-743 743 3 2048 247 247

4 Reaction Attack Against NTRUReEncrypt

Recall that in Bob’s decryption, the intermediate polynomial is p ∗ gA ∗ s + m ∗
fA + p ∗ e ∗ fB and the additional term p ∗ e ∗ fB produces an increased error.
Hence, the decryption failure probability is expected to significantly increase. On
the other hand, the attacks based on the decryption failures has been studied
well in [14]. Therefore, we employ their attack to analyze the security of the
NTRUReEncrypt scheme.

More precisely, it is assume that the attacker has access to an oracle to
determine whether a validly created ciphertext can be decrypted correctly or
not. The attack takes as follows. The first stage is that the attacker uses the
oracle to collect (m, s, e), which generates the re-encrypted ciphertext CB that
can not be decrypted correctly. The second stage is that the attacker fixes (m, s)
and randomly searches ei, where (m, s, ei) causes decryption failure. The final
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stage is that the attacker uses those êi correlated with f̂B to determine the
private key fB . Note that the proxy can create CAi

by encrypting random mi

with random si and CBi
by re-encrypting CAi

with random ei, we therefore
assume that a corrupt proxy can act as an attacker.

Before explaining our attack, we first show that the decryption failure prob-
ability of NTRUReEncrypt significantly increases for Bob.

4.1 Estimating Decryption Failure Probability of CA

We use the method introduced in [10] to estimate the decryption failure proba-
bility. Recall that in Alice’s decryption, she computes

CA
′ = p ∗ gA ∗ s + fA ∗ m

= p ∗ gA ∗ s + p ∗ FA ∗ m + m mod q,

Decryption works, if
∥
∥CA

′∥∥
∞ = ‖p ∗ (gA ∗ s + FA ∗ m) + m‖∞ < q/2.

Therefore, the decryption failure probability Pdec can be bounded by the prob-
ability that one or more coefficients of gA ∗ s + FA ∗ m has an absolute value
greater than c = (q − 2)/(2p). So we have

Pdec(c) = Pr[‖gA ∗ s + FA ∗ m‖∞ ≥ c] .

For trinary FA ∈ T(df ,df ), gA ∈ T(dg,dg), s ∈ T(ds,ds). Let Xj denote a cofficient
of gA ∗ s + FA ∗ m, then Xj has the form

(gA ∗ s + FA ∗ m)j = (s ∗ gA)j + (FA ∗ m)j ,

and each term in the sum is a sum of either 2ds or 2df coefficients of gA or m.
Note that each term in the sum has mean 0.

For instance, let ε(i) ∈ {1,−1} and a(i) represents index, we have

(s ∗ gA)j =
2ds∑

i=1

ε(i)(gA)a(i).

We assume that the coefficients of gA are independent random variables taking
the value 1 with probability dg

N , −1 with probability dg

N and 0 with probability
N−2dg

N . Hence, the variance σ2
1 of (gA ∗ s)j is computed as:

σ2
1 = E((s ∗ gA)2j ) =

2ds∑

i=1

E((gA)2a(i)) =
4dsdg

N
.

Recall that the message m is sampled uniformly from the set of trinary
polynomials, which restrains that the number of non-zero coefficients can not
exceed N − dm. We also assume that the coefficient of m is chosen as ±1 with
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the probability N−dm

N and 0 with the probability dm

N . Similarly, the variance σ2
2

of (FA ∗ m)j is

σ2
2 = E((FA ∗ m)2j ) = 2df · N − dm

N
.

Suppose 2ds, 2dg are large, the central limit theorem suggests that the distribu-
tion of Xj has the normal distribution with mean 0 and variance σ2:

σ2 = σ2
1 + σ2

2 =
4dsdg + 2df · (N − dm)

N

With complementary error function erfc(·), the probability that a coefficient Xj

has absolute value exceeds c is given by

Pr[|Xj | ≥ c] = erfc(c/
√

2σ).

After applying the union bound, the probability Pdec(c) is bounded by

Pdec(c) = N · erfc(c/
√

2σ),

where
erfc(c/

√
2σ) =

2√
π

·
∫ ∞

c/
√
2σ

e−x2
dx.

4.2 Estimating Decryption Failure Probability of CB

When Bob receives the re-encrypt ciphertext CB , the intermediate process is to
compute

CB
′ = p ∗ gA ∗ s + m ∗ fA + p ∗ e ∗ fB ,

and the failure occurs if

‖p · (gA ∗ s + FA ∗ m + p ∗ FB ∗ e) + pe + m‖∞ ≥ q/2.

Similarly, for trinary FB ∈ T(df ,df ), we get the probability

Pdec(c′) = N · erfc(c′/
√

2σ′),

where

σ′2 = σ2 +
p2 · 4dsdf

N
,

and
c′ = c − 1.

We estimate decryption failure probabilities with the parameters specified in
Sect. 3.2 and list them below (Table 4).

As we can see, the probability that the re-encrypted ciphertext CB fails to
decrypt is much greater than that of CA. What’s more, the decryption failures
lead to reaction attack.
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Table 4. The probabilities of decryption failure during encryption and re-encryption

Instance σ2 σ′2 log2(Pdec(c)) log2(Pdec(c
′))

ees1087ep1 373 850 −219 −92

ees1171ep1 334 679 −245 −117

ees1499ep1 255 405 −323 −200

ntru-443 378 2040 −217 −35

ntru-743 658 3614 −122 −16

4.3 Description of the Attack

For completeness, we simply describe the attack as below. See [14] for more
details about the reaction attack based on the decryption failure.

– Stage 1: The attacker first collects (m, s, e), which will generate the re-
encrypted ciphertext CB that can not be decrypted correctly. Moreover, the
triplet (m, s, e) should satisfy two conditions: there must be a coefficient of
p ∗ gA ∗ s + m ∗ fA that is both abnormally far from its expected value and
further from the expected value than any other coefficient, and the distances
between the two coefficients of p∗gA ∗s+m∗fA furthest from their expected
value, which is known as the gap of p∗gA ∗s+m∗fA, should be large enough.

– Stage 2: For fixed (m, s) found in Stage 1, the attacker randomly chooses
ei and collects (m, s, ei) that causes decryption failure for Bob. Suppose the
i−th coefficient of p ∗ gA ∗ s + m ∗ fA is abnormally far from its expected
value, then it is most likely that the absolute value of the i−th coefficient of
p ∗ gA ∗ s + m ∗ fA + p ∗ ei ∗ fB exceeds q/2. The strength of this bias towards
the i−th coefficient of the p ∗ gA ∗ s + m ∗ fA + p ∗ ei ∗ fB will depend on the
gap of p ∗ gA ∗ s + m ∗ fA. What’s more, it suggests that ei is correlated with
xi ∗ fB . Since the reversal of xi ∗ fB equals to x−i ∗ fB , êi is corrected with
f̂B .

– Stage 3: For sufficiently large k, the value of f̂B can be derived from the
average of the polynomials ê1,ê2, · · · ,êk. Furthermore, fB can be recovered
from f̂B according to the algorithm introduced in [9].
Since the proxy has the re-encryption key rkA→B = fA ∗ f−1

B mod q and the
public key of Alice is hA = p∗gA ∗f−1

A mod q. Once the attaker recovers the
private key fB , fA can be found by computing fA = rkA→B ∗ fB mod q and
gA can be found by computing gA = p ∗ gA ∗ hA mod q.

5 Key Recovery Attack Against NTRUReEncrypt

In this section, we show that curious Bob can recover Alice’s secret keys fA when
collecting enough ciphertexts from a single message.



Cryptanalysis of an NTRUReEncrypt from ASIACCS’15 163

5.1 Key Idea of Recovering fA for Bob

For simplicity, suppose a message m could be encrypted l times using the same
public key fA of Alice, and the ciphertexts are computed as

CAi
= hA ∗ si + m i = 1, · · · , l.

When Bob receives CBi
corresponding to CAi

, he can first computes the following
relation

fB ∗ CBi
= p ∗ gA ∗ si + p ∗ fB ∗ ei + m ∗ fA.

Next, Bob obtains

fB ∗
l∑

i=1

CBi
= p ∗ gA ∗ (

l∑

i=1

si) + p ∗ fB ∗ (
l∑

i=1

ei) + l ∗ m ∗ fA.

Note that p, gA, si, fB , and ei are small. We can expect that for sufficiently large
l, p∗gA∗∑l

i=1 si/k and p∗fB ∗∑l
i=1 ei/k are small enough. Since the coefficients

of m ∗ fA are integer, the following equation holds with high probability,

m ∗ fA = Round(
l∑

i=1

fB ∗ CBi
/l).

where Round(·) is a rounding function.
Since Bob can decrypt correctly to obtain the message m, so the unknown

private key fA will be recovered by solving the above linear equations.

5.2 Analyze the Size of l

For the attack, we need l that satisfies
∥
∥
∥
∥
∥
p ∗ gA ∗

l∑

i=1

si/l

∥
∥
∥
∥
∥

∞
≤ 1

4
,

∥
∥
∥
∥
∥
p ∗ fB ∗

l∑

i=1

ei/l

∥
∥
∥
∥
∥

∞
≤ 1

4
,

to ensure m ∗ fA = Round(
∑l

i=1 fB ∗ CBi
/l).

For any si ∈ T(ds,ds), let X =
∑l

i=1 si/l = (X0, · · · ,XN−1). For sufficiently
large l, the central limit theorem states that X has the N dimension normal
distribution N (0, Σ), where the diagonal elements of Σ are 2ds

lN and the rest are
−2ds

lN(N−1) .

We define ‖Σ‖∞ = max
i

∑N
j=1 |σij |, where σij is the component of Σ. Now

we have ‖Σ‖∞ = 4ds

lN . Let λ denote the maximal eigenvalue of Σ, then we have
λ ≤ ‖Σ‖∞ = 4ds

lN .
On the other hand, there exists Y = (Y0, Y1, · · · , YN−1) and an orthogonal

matrix D, such that
X = Y D,



164 Z. Liu et al.

where Y0, · · · , YN−1 are independent variables and the covariance matrix of Y
is a diagonal matrix in which the elements on the diagonal are the eigenvalues
of the covariance matrix Σ of X. Hence, let V ar(Yj) denote the variance of Yj ,
we know

λ = max
j

V ar(Yj) ≤ 4ds

lN
.

To estimate the probability Pr
[∥
∥
∥p ∗ gA ∗ ∑l

i=1 si/l
∥
∥
∥

∞
≤ 1

4

]
, we can consider

the probability Pr
[⋂N

j=1 |Xj | ≤ ε
]
, where ε satifies

∥
∥
∥
∥
∥
p ∗ gA ∗ (

l∑

i=1

si/l)

∥
∥
∥
∥
∥

∞
≤ 2dgpε ≤ 1

4
.

Since X0, · · · , XN−1 are not independent, we can consider the probability
Pr

[⋂N
j=1 |Yj | ≤ ε/N

]
instead, where

Pr

⎡

⎣
N⋂

j=1

|Yj | ≤ ε/N

⎤

⎦ =
N−1∏

i=0

Pr[|Yj | ≤ ε/N ] .

By the Chebyshev inequality, we know that

Pr[|Yj | ≤ ε/N ] ≥ 1 − V ar(Yj)
(ε/N)2

.

Finally we obtain

Pr

⎡

⎣
N⋂

j=1

|Yj | ≤ ε/N

⎤

⎦ ≥ (1 − λ

(ε/N)2
)N ≥ (1 − 4dsN

lε2
)N .

Recall that ei has the same distribution, a similar analysis applies. So, for
simplicity, we compute the value of l that makes 4dsN

lε2 as small as possible by
setting ε = 1

8pdg
. We roughly give the l needed to recover the private key with

overwhelming probability (0.8 for the following table) in ees1087ep1, ees1171ep1,
ees1499ep1, ntru-443 and ntru-743 (Table 5).

Table 5. The approximate number of received re-encrypted ciphertexts

Instance l

ees1087ep1 4.06 · 1017

ees1171ep1 4.83 · 1017

ees1499ep1 9.67 · 1017

ntru-443 1.26 · 1016

ntru-743 1.82 · 1017
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6 Conclusion

In this paper, we presented two key recovery attacks against NTRUReEncrypt
to show the weakness of the scheme.

– The first one is based on the attack introduced in [14]. The attacker has access
to an oracle that can detect whether the valid ciphertext can be decrypted
correctly or not. The countermeasures to mitigate this attack is by tuning
the parameters to ensure that the decryption failure probability is negligible,
i.e., < 2−128.

– The second one is based on the fact that Bob knows the original message m,
so he can compute an equation in the form of p∗ gA ∗∑l

i=1 si/l+m∗fA +p∗
fB ∗ ∑l

i=1 ei/l = fB ∗ ∑l
i=1 CBi

/l. For sufficiently large l, p ∗ gA ∗ ∑l
i=1 si/l

and p ∗ fB ∗ ∑l
i=1 ei/l converge to 0. Hence fA can be recovered by solving

m ∗ fA = Round(fB ∗ ∑l
i=1 CBi

/l).
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Abstract. The Minrank (MR) problem is a computational problem
closely related to attacks on code- and multivariate-based schemes. In
this paper we revisit the so-called Kipnis-Shamir (KS) approach to this
problem. We extend previous complexity analysis by exposing non-trivial
syzygies through the analysis of the Jacobian of the resulting system,
with respect to a group of variables. We focus on a particular set of
instances that yield a very overdetermined system which we refer to as
“superdetermined”. We provide a tighter complexity estimate for such
instances and discuss its implications for the key recovery attack on
some multivariate schemes. For example, in HFE the speedup is roughly
a square root.

Keywords: Minrank problem · Multivariate · Cryptanalysis · HFE

1 Introduction

The post-quantum cryptography initiative emerges in response to Shor’s factor-
ing algorithm [25], to identify quantum hard problems to support cryptographic
constructions. This major endeavor has come to a climax in recent years with
NIST’s ongoing post-quantum “competition.”

One central problem is the Minrank problem (MR). Its decisional version is,
given m matrices M1,M2, . . . ,Mm ∈ Mn×n(F), and a target rank r, to deter-
mine whether there exists a linear combination of these matrices with rank at
most r. It is important both in multivariate public key cryptography [4,21,23,26],
and in code-based cryptography [19]. Buss et al. first introduced the MR problem
and proved it NP-complete [3]. In the context of cryptography, MR first appeared
as part of an attack against the HFE cryptosystem by Kipnis and Shamir [21].
There are three well known approaches to solve the Minrank problem, namely,
Kipnis-Shamir (KS), minors [16], and linear algebra search [20].

The complexity of the minors approach and of the linear algebra search are
well understood. However, the complexity of the KS approach is not so clear. In
c© Springer Nature Switzerland AG 2019
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[16], the authors assume that a generic instance of KS yields a “generic enough”
bilinear system (see Sect. 2.2), and under this assumption, using the results in
[17], they estimate the solving degree at d = min(m, r(n − r)) + 1 and so the
complexity of KS as O

((
m+r(n−r)+d−1

d

)ω)
, with 2 ≤ ω ≤ 3. Experimental

evidence shows that this estimate wildly overestimates the true solving degree
[4].

An important technical contribution of this paper is to show that the assump-
tion that the KS system is generic bilinear is unrealistic. The system is indeed
bilinear in two sets of variables that we call the linear variables and the kernel
variables. However, we expose the structure in the system beyond bilinearity.
It can be seen as having a sequence of generic bilinear blocks. Such a structure
implies that the Jacobians with respect to the linear and kernel variables have
particular forms. This is important because left kernel vectors of the Jacobian
are syzygies. Thus, through the Jacobian with respect to the linear variables,
we show how to construct some non-trivial syzygies, yielding non-trivial degree
falls.

The degree of these syzygies suggests a crucial distinction between two cases
of the MR problem. If m > nr, these syzygies typically have degree r + 2.
However, if m < nr, we can construct a number of lower degree syzygies. We
refer to instances where m < nr as “superdetermined.” This property applies
to several multivariate schemes and it is in contrast to instances of the minrank
problem that occur in other contexts, like rank-based cryptography.

The exposed structure of the KS system leads to tighter complexity estimates
for the superdetermined MR instances. Using the XL algorithm and multiplying
only by monomials from kernel variables, the complexity of solving uniformly
random instances of KS systems is O

(
(rκ)(dKS+2)ω

)
, where 2 < ω ≤ 3,

dKS = min
{

d |
[(

r

d

)
n >

(
r

d + 1

)
m

]
, 1 ≤ d ≤ r − 1

}
,

and κ can be chosen so that max
{

m
n−r , dKS + 1

}
≤ κ ≤ n−r. This is much lower

than previous estimates. For example, if m = n and r <
√

n, then dKS ≤ r/2+1,
and we can choose κ =

√
n, so that, rκ < n, and hence, our complexity estimate

is O(n(r/2)ω), compared to O(nrω) from previous estimates, c.f. [1].
Since a key recovery attack based on the MR problem can be performed on

several multivariate schemes, we revise the complexity of the KS method for
some multivariate schemes such as HFE, ZHFE, and HFEv-. The speedup in
each case depends on the ratio of m to n and on the relation between n and r.
For example, in HFE the speedup is roughly a square root.

The paper is organized as follows. In Sect. 2 we present background material.
In Sect. 3 we describe the structure of the KS system. In Sect. 4 we provide the
main results of the paper, including the construction of the syzygies. In Sect. 5
we revise the complexity of the KS method based on the new findings. In Sect. 6
we provide some experimental data supporting the theoretical results. Finally, in
Sect. 7 we discuss the implications of our findings for some multivariate schemes.
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2 Preliminaries

2.1 Solving Multivariate Systems of Equations

Let F be a finite field, and consider the polynomial system F = a, where a is
an element in the image of F = (f1, . . . , fm) : Fn → F

m, and the fi’s are multi-
variate polynomials in the unknowns x1, . . . , xn, with coefficients in F. The first
effective algorithm for solving nonlinear multivariate systems did so by comput-
ing a Gröbner basis for the ideal generated by the equations [2]. Since the late
90s, however, far superior algorithms have been developed such as Faugère’s F4
and F5 [14,15], and the XL family of algorithms inspired by [22] and popularized
in [6,21].

The XL algorithm simply computes an echelon form of the Macaulay matrix
in degree d of F for high enough d. This is the matrix whose columns represent
the monomials of degree at most d with rows representing each polynomial of
degree less than or equal to d of the tfi, where t is a monomial. It can be shown
that there exists some degree d such that this echelon form is a Gröbner basis of
the ideal. The algorithms F4 and F5 are similar but more efficient in removing
redundant rows a priori. The first fall degree dff is the smallest degree such
that some polynomial drops in degree after echelonizing the Macaulay matrix.
It is widely accepted that dff is a good parameter to measure the complexity of
solving polynomial systems [10–13]. The reason is that often the solving degree
is not much larger than the first fall degree. Our experiments confirm this is the
case for KS systems, as shown below in Sect. 6.

2.2 Bilinear Systems

Consider two tuples of unknows x = (x1, x2, . . . , xn1) and y = (y1, y2, . . . , yn2).
Let F[x,y] denote the ring of multivariate polynomials with coefficients in F

and variables x1, x2, . . . , xn1 , y1, y2, . . . , yn2 . A bilinear polynomial f(x,y) is a
quadratic polynomial in F[x,y] which is affine in each set of variables. If we can
write f(x,y) = x�Ay for some A ∈ Mn1×n2(F), we say f is a homogeneous
bilinear polynomial.

Throughout this work, sequences of polynomials are considered as column
vectors of polynomials. Suppose fi ∈ F[x,y] is a bilinear polynomial for i =
1, 2, . . . ,m. The sequence F = (f1, f2, . . . , fm) is called a bilinear sequence on
F[x,y]. In the particular case when each fi is also homogeneous, we say F is a
homogeneous bilinear sequence on F[x,y].

Definition 1. Given a sequence F = (f1, f2, . . . , fm) on F[x,y], the Jacobian of
F with respect to the set x, is given by jacx(F) =

[
∂fi

∂xj

]
1≤i≤m,1≤j≤n1

. Likewise

we define jacy(F), the Jacobian of F with respect to the set y.

When F is a bilinear sequence, each entry of jacx(F) (resp. jacy(F)) is
a linear form in the y (resp. x) variables. A syzygy of F is a sequence
G = (g1, g2, . . . , gm) ∈ F[x,y]m such that

∑m
i=1 gifi = 0.
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Proposition 1. Let F = (f1, f2, . . . , fm) be a homogeneous bilinear sequence
on F[x,y]. Suppose G = (g1, g2, . . . , gm) is a sequence on F[y], then

m∑
i=1

gifi = 0 (1)

if and only if G� belongs to the left-kernel of jacx(F).

Proposition 2. Suppose that F is a homogeneous bilinear sequence on F[x,y].
If a sequence G on F [x] is a syzygy of F , then G is not a trivial syzygy1.

2.3 Minrank Problem

One complexity theoretic problem related to the hardness of solving certain
multivariate systems is the MinRank (MR) problem. The computational MR
problem can be stated as follows.

Problem 1 (MinRank (Search Version)). Given a positive integer r, and
m matrices M1,M2, . . . ,Mm ∈ Ms×t(F), find x1, x2, . . . , xm ∈ F such that
Rank (

∑m
�=1 x�M�) ≤ r.

The decisional version of the MR problem is known to be NP -complete even
if we insist that s = t = n, see [3], and seems difficult in practice. There are
three main methods in the literature for solving the MR problem, Kipnis-Shamir
modeling, minors modeling [1] and linear algebra search [20].

Introduced by Kipnis and Shamir in [21], the KS method stands on the
following fact: if p < n, M ∈ Mn×n(F), K ′ ∈ Mn×p(F) has rank p and MK ′ =
0, then Rank(M) ≤ n − p. Thus, the MR problem can be solved by finding
x1, . . . , xm, k1, . . . , kr(n−r) ∈ F such that

(
m∑

�=1

x�M�

)[
In−r

K�

]
= 0, (2)

where

K =

⎡
⎢⎣

k1 k2 · · · kr

...
...

. . .
...

kr(n−r−1)+1 kr(n−r−1)+2 · · · kr(n−r)

⎤
⎥⎦ (3)

and In−r is the identity matrix of size n − r. If there exists a matrix in the
span of the Mi’s such that its column space is generated by its r rightmost
columns, then the system (2) has a solution. This system is bilinear in the
variables x = (x1, . . . , xm) and the unknown entries k = (k1, k2, . . . , kr(n−r)) of
K. Throughout this work we will refer to the first group as the linear variables,
and to the second one as the kernel variables. Therefore, (2) can be seen as a
bilinear system of n(n − r) equations in m + r(n − r) variables. The complexity
1 For a formal definition of a trivial syzygy see [13].
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of solving this kind of system has been studied by Faugère et al. in [16,17]. They
upper bound the complexity of KS modeling by that of solving a generic bilinear
system with n(n − r) equations, where one group of variables has m elements
and the other has r(n − r) elements. In that case, the given bound is

O

((
m + r(n − r) + min(m, r(n − r)) + 1

min(m, r(n − r)) + 1

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant.

3 The Structure of the KS System

In this section we describe the basic structure of the system given in (2). First,
in Sect. 3.1, we show that such a matrix equation can be seen as a set of n − r
chained bilinear subsystems, where each subsystem has generic quadratic part
and linear part involving only the x variables. Then, in Sect. 3.2, we describe the
Jacobian of the system with respect to the kernel variables. We show that if a
KS instance F is chosen uniformly at random, then, with high probability, the
syzygies of F that only involve linear variables have degree at least r.

3.1 KS and Bilinear System

Set M =
∑m

�=1 x�M�, where each M� ∈ Mn×n(F). Let M(i,j) and M�,(i,j) denote
the (i, j) entry of the matrices M and M�, respectively. Under this setting, the
(i, j) entry of M ·

[
In−r K

]� is given by the polynomial

f
(i)
j =

r∑
t=1

M(i,n−r+t) · k(t−1)r+j + M(i,j) ∈ F[x,k], (4)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n − r, and k(t−1)r+j is located at the (t, j) entry of
K. The sequence F formed by the n(n − r) polynomials given in (4) is called a
KS sequence with parameters n,m, r. The sequence F is bilinear in the sets of
unknowns x = (x1, . . . , xm) and k = (k1, k2, . . . , kr(n−r)). Recall that we refer
to x and k as the linear and kernel variables, respectively. We also denote as
KS(n,m, r) the set of KS sequences with parameters n,m, r. A KS system is a
system of the form F = 0, where F is a KS sequence.

Even though a sequence F ∈ KS(n,m, r) is bilinear, it is not a generic one.
Notice that each polynomial f

(i)
j only involves r variables of the set k and its

linear part only contains variables from x. For t = 1, 2, . . . , n−r, let Ft denote the
subsequence of F given by Ft = (f (1)

t , f
(2)
t , . . . , f

(n)
t ). This sequence is bilinear in

the set of variables x and k(t) = (k(t−1)r+1, k(t−1)r+2, . . . , ktr). Notice that the
coefficient of every quadratic monomial in F can be any element in F. On the
contrary, the linear part of the polynomials in F only contains linear variables,
so the coefficients of the kernel variables in the linear part of the polynomials
in F are forced to be zero. Thus, a sequence F ∈ KS(n,m, r) can be seen as
F = (F1,F2, . . . ,Fn−r), where the quadratic part of Ft is generic (no restrictions
at all) and the linear part is a generic linear form in the linear variables.
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3.2 Jacobian with Respect to Kernel Variables

Let us begin by showing the structure of the Jacobian with respect to the kernel
variables for KS sequences. Here we set Ft = (f (1)

t , f
(2)
t , . . . , f

(n)
t ), f

(i)
t , M as in

Sect. 3.1 and ⊗ will denote the Kronecker product.

Lemma 1. Suppose F = (F1,F2, . . . ,Fn−r) ∈ KS(n,m, r). Let In−r be the
identity matrix of size n − r. Then for j ∈ {1, 2, . . . , n − r}, we have that
jack(1) (F1) = jack(j) (Fj), and jack(F) = In−r ⊗ jack(1) (F1) .

Remark 1. Assume F denotes the quadratic part of a sequence in KS(n,m, r).
By Proposition 1 and Lemma 1, F has a degree d syzygy G ∈ F[x]n(n−r) if and
only if F1 has a degree d syzygy G1 ∈ F[x]n. Explicitly, each syzygy G of F can
be written as (G1,G2, . . . ,Gn−r), where each Gj is a syzygy of F1.

Now suppose that the matrices M1,M2, . . . ,Mm ∈ Mn×n(F) are chosen uni-
formly at random. Each entry of the matrix M =

∑m
i=1 xiMi is a uniformly

chosen linear form in the linear variables. In particular, its r rightmost columns
are the Jacobian of a uniformly chosen homogeneous bilinear sequence. This is
a bilinear sequence with m + r variables and n equations. Assume F1 is under-
determined (n < m + r) and that r < n. If Conjecture 1 in Sect. 4.2 of [17] is
true, with high probability the left kernel of jack(1)(F1) is generated by

Ker :=
{(

minor(M̃T , 1),−minor(M̃T , 2), . . . , (−1)nminor(M̃T , n)
)

| T ∈ T
}

,

where M̃T =
[
M̃ T

]
with M̃ = jack(1)(F1), minor(M̃T , j) denotes the determi-

nant of M̃T after removing its j-th row, and T is the set of n × (n − r − 1)
matrices such that

– each column of T has exactly a 1 and the rest of its entries are 0,
– each row of T has at most a 1 and the remaining entries 0,
– if ij denotes the number of the row containing the only 1 of the j−th column

and if j < t, then ij < it.

Notice that Ker has
(

n
r+1

)
elements. Each of them has exactly r + 1 nonzero

components and every nonzero component is a different minor of M̃ of size r.
Since each entry of M̃ is a homogeneous linear polynomial in the x variables,
Ker ⊂ F[x]nr

2. Consequently, if Conjecture 1 in [17] is true, then we do not
expect to find an element in Ker having degree less than r.

The following theorem summarizes these results. We include a proof for com-
pleteness.

Theorem 1. Suppose Conjecture 1 in [17] is true, F ∈ KS(n,m, r) is chosen
uniformly at random. Then, using only monomials in the linear variables in the
XL algorithm, with high probability the first fall degree is r + 2.
2
F[x]r denotes the vector space formed by the degree d homogeneous polynomials in
F[x].
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Proof. By Proposition 1 and Lemma 1, we only need to prove that with high
probability there is not G1 ∈ F[x]n having degree less than r and G�

1 jack(1)(F1) =
0. Assuming that Conjecture 1 in [17] is true, if F ∈ KS(n,m, r) is chosen
uniformly at random, then with high probability Ker generates the left kernel of
jack(1)(F1). Therefore, with high probability, each syzygy of F1, only involving
x variables, has degree at least r + 2.

4 Jacobian with Respect to the Linear Variables

The Jacobian of a KS system with respect to the linear variables deserves a
section of its own. We provide a detailed description here and describe non-
trivial syzygies that arise from this structure. We show that if m < nr non-trivial
syzygies of the quadratic part of F can be explicitly built, having degree less
than r. In Sect. 4.1 we use a small example to motivate the notation thereafter.
We then provide a general construction in Sect. 4.2 for square matrices, and
further generalize in Sect. 4.3 to non-square matrices and fewer kernel vectors.

Let us consider an MR instance with m matrices M1, . . . ,Mm ∈ Mn×n(F)
and target rank r. Recall that the KS system is given by (

∑m
i=1 xiMi) K ′ = 0,

where the kernel matrix is K ′ =
[
In−r K

]� with K as in (3). The Jacobian with
respect to the linear variables of the corresponding sequence F ∈ KS(n,m, r)
can be written as jacx(F) = (In ⊗ K) L + C, where C ∈ Mn(n−r)×m(F), L
is an nr × m matrix whose rows L1, L2, . . . , Lrn are given by the expression
Lr(i−1)+j =

[
M1,(i,n−r+j) M2,(i,n−r+j) . . . Mm,(i,n−r+j)

]
for i = 1, 2, . . . , n and

j = 1, 2, . . . , r.
The approach we follow here to find syzygies of a KS sequence F is the

same used in Sect. 3.2, i.e., we find elements in the left-kernel of the Jacobian
of the quadratic part of F , but now with respect to the linear variables. By
Proposition 1, those kernel elements correspond to syzygies of the quadratic
part of F . In order to simplify the notation, throughout this section, we assume
that the sequence F ∈ KS(n,m, r) only contains its quadratic part. Under such
assumption, the Jacobian with respect to the x variables of the sequence F is
given by jacx(F) = (In ⊗ K) L.

From now on kerl(B) will denote the left-kernel of a matrix B. A näıve way
to find elements in kerl(jacx(F)) is by finding elements in kerl(In ⊗ K). Those
kernel elements have degree r and can be built analogously as we did in Sect. 3.2
for jack(F). A natural question is whether it is possible to get degree falls at a
smaller degree from jacx(F). The answer to this question is affirmative under
certain conditions. In Sect. 4.2 we show how it can be done for general sequences
in KS(n,m, r), with m < nr. We now show a small example to introduce the
general process.

4.1 A Small Example n = 4, M = 4 and r = 2

Here we show how to build degree one syzygies of a sequence F ∈ KS(4, 4, 2),
which involve only the kernel variables. In this particular case, the Jacobian
jacx(F) is given by
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jacx(F) =

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦⊗

[
k1 k2

k3 k4

]
⎞
⎟⎟⎠ · L.

Suppose (a1, a2, . . . , a8) ∈ kerl(L), v0 = (a2, a4, a6, a8) ⊗ (−k3, k1) and v1 =
(a1, a3, a5, a7) ⊗ (k4,−k2). Then v0 (I4 ⊗ K) = det(K) [(0, 1) ⊗ (a2, a4, a6, a8)]
and v1 (I4 ⊗ K) = det(K) [(1, 0) ⊗ (a1, a3, a5, a7)]. Thus

(v0 + v1)jacx(F) = det(K)(a1, a2, . . . , a8) · L = 0,

and v0 + v1 is a syzygy of F of degree one.
We just saw how to build a syzygy of degree one, namely v0 + v1. If we

consider b ∈ kerl(L), linearly independent with a = (a1, . . . , a8), and repeat
the process described above, then we end up with a degree one syzygy ṽ0 + ṽ1

linearly independent with v0 + v1. Indeed, since v0,v1 do not share monomials
componentwise, neither do ṽ0 and ṽ1. Thus, we have that

x(v0 + v1) + y(ṽ0 + ṽ1) = 0 if and only if xv0 + yṽ0 = 0 and xv1 + yṽ1 = 0,

and the right-hand implication happens if and only if xa+yb = 0. Consequently,
v1 + v2 and ṽ1 + ṽ2 are linearly independent if and only if a and b are.

As a consequence of the previous analysis, we can build a set of linearly
independent degree one syzygies in F [k] with as many elements as the dimension
of kerl(L). Thus, if F ∈ KS(4, 4, 2) is chosen uniformly at random, so are the
matrices M1,M2,M3,M4 used to build F . In particular, L is a uniformly random
matrix of size 8 × 4, so with high probability, the left kernel of L has dimension
4, which is the maximum number of linearly independent syzygies of degree one
that we can construct as above.

4.2 First Degree Fall for Any n, m, r, with m < rn

We now describe a general method to find syzygies of degree dKS of a sequence
F ∈ KS(n,m, r), where dKS is some particular integer less than r.

Let us begin by introducing the notation using throughout this section. Here
k1, k2, . . . , kr(n−r) are the entries of the matrix K, as shown in (3). Given two
vectors of integers l = (l1 + 1, . . . , l� + 1) and c = (c1, . . . , c�), where 1 ≤ ci ≤ r
and 1 ≤ li + 1 ≤ n − r for i = 1, . . . , r, we define Kl,c as

Kl,c =

∣∣∣∣∣∣∣∣∣

krl1+c1 krl1+c2 · · · krl1+c�

krl2+c1 krl2+c2 · · · krl2+c�

...
...

. . .
...

krl�+c1 krl�+c2 · · · krl�+c�

∣∣∣∣∣∣∣∣∣
.

Let d be an integer such that 0 < d + 1 ≤ min{n − r, r}. We set Cd =
{(t1, . . . , td) | tk ∈ N, 1 ≤ tk < tk+1 ≤ r} and Rd = {(j1 + 1, . . . , jd+1 + 1) | jk ∈
N, 0 ≤ jk < jk+1 ≤ n − r − 1}. The sets Cd, Rd represent, respectively, all
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possible sets of d columns and sets of d + 1 rows of K in ascending order. For
any t = (t1, . . . , td) ∈ Cd and j = (j1 + 1, . . . , jd+1 + 1) ∈ Rd, let js denote the
vector resulting from removing the s-th entry from j, and V t

j denote the column
vector in F[k]n−r which has values (−1)1Kj1,t, . . . , (−1)d+1Kjd+1,t in positions
numbered by j1 + 1, . . . , jd+1 + 1, respectively, and zeros elsewhere. More pre-
cisely, V t

j =
∑d+1

i=1 (−1)iKji,t eji+1, where ei denotes the i-th standard basis
vector of Fn−r. Notice that if ê1, ê2, . . . , êr are the canonical vectors in F

r, then
it can be shown that

(
V t
j

)�
K =

∑
s∈St

Kj,(t,s) ê
�
s , (5)

where St := {s ∈ N | 1 ≤ s ≤ r, s is not an entry of t}. For t ∈ Cd and j ∈ Rd,
let Ej,t be the subspace of F[k]n(n−r)

d spanned by
{
ẽ1 ⊗ V t

j , . . . , ẽn ⊗ V t
j

}
, where

ẽi denotes the i-th standard vector basis of Fn. It can be shown that if j �= j′ or
t �= t′ then Ej,t ∩ Ej′,t′ = {0}.

Lemma 2. Suppose j, j′ ∈ Rd, and t, t′ ∈ Cd. If j �= j′ or t �= t′ then Ej,t ∩
Ej′,t′ = {0}.

Proof. First of all, note that if e′
� denotes the �-th vector in the standard basis

of Fn(n−r), then the following set is a basis for the F-vector space F[k]n(n−r)
d

B = {m e′
� | m ∈ F[k]d a monomial and � = 1, . . . , n(n − r)} .

In particular, any basis element ẽs ⊗ V t
j of Ej,t can be seen as an F-linear

combination of elements in B. Notice that if j = (j1 + 1, j2 + 2, . . . , jd+1 + 2), by
definition we have V t

j =
∑d+1

i=1 (−1)iKji,t eji+1, hence

ẽs ⊗ V t
j =

d+1∑
i=1

(−1)iKji,t (ẽs ⊗ eji+1)

=
d+1∑
i=1

(−1)iKji,t e
′
(s−1)(n−r)+ji+1.

Let us set

Bs
j,t := {m e′

(s−1)(n−r)+ji+1 | m is a monomial of Kji,t and i = 1, . . . , d + 1},

i.e., Bs
j,t contains the basis vectors from B whose F-linear combination produces

ẽs ⊗ V t
j . For this reason

Ej,t ⊂ Span
F

{
n⋃

s=1

Bs
j,t

}
.
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Finally we show that in any case, t �= t′ or j �= j′, we have
{

n⋃
s=1

Bs
j,t

}
∩
{

n⋃
s=1

Bs
j′,t′

}
= ∅. (6)

In the first case, there is some integer t which is a component of t, but not a
component of t′. Because of the structure of K, it is clear that each monomial
in the polynomial Kji,t has a factor of the form k2j+t. Since t does not appear
as a component in t′, no monomial in Kj′i,t′has a factor of the form k2j′+t.
Consequently, Eq. (6) holds.

In the other case, j �= j’, there is at least one index i for which ji + 1 is a
component of j and it is not a component of j′. So each element in

⋃n
s=1 Bs

j,t

has as a factor either a monomial of the form mk2ji+t, for some t, or the vec-
tor e′

(s−1)(n−r)+ji+1 for some s, and no element with such factors belongs to⋃n
s=1 Bs

j′,t′ . Consequently, Eq. (6) holds.

Fix t = (t1, . . . , td) ∈ Cd and s ∈ St. Let i be the only integer satisfying
ti < s < ti+1 and σ the permutation that sends (t1, . . . , ti, s, ti+1, . . . , td) to
(t1, . . . , td, s). For each s ∈ {1, 2, . . . , r} define sgn(t, s) to be sgn(σ) if s ∈ St

and zero otherwise3. Notice that, if t̃ := (t1, . . . , ti, s, ti+1, . . . , td), then Kj,t̃ is a
minor of K of size d+1. Moreover, for any j ∈ Rd it holds that sgn(t, s) ·Kj,(t,s)

is equal to Kj,t̃ if s ∈ St, or equal to 0 otherwise.
We now address the main theorem of this section. For some fixed j ∈ Rd

we establish a one-to-one correspondence between elements in the left-kernel of
certain matrix B̃j and certain elements in the left-kernel of (In ⊗ K)L, where K
is as in (3) and L ∈ Mrn×m(F), see Theorem 2 below.

Before stating the mentioned theorem, let us describe the matrix B̃j for
a given j ∈ Rd. This is a column block matrix of size

(
r
d

)
n ×

(
r

d+1

)
m, with

blocks Bt1 , Bt2 , . . . , Bt�
, where � =

(
r
d

)
and each Bti

is an n ×
(

r
d+1

)
m matrix

over F. To define each block Bti
, we introduce one more notation. We denote

by MINORSd+1(K(j)) the set of minors of size d + 1 of the matrix K(j),
which is simply the matrix whose rows are the rows of K with indexes in j.
Let us fix an enumeration on that set of minors, say MINORSd+1(K(j)) =
{m1,m2, . . . ,m�′}, with �′ =

(
r

d+1

)
. For each ti ∈ Cd, the block Bti

is also
a block matrix of the form Bti

=
[
Bti,1 Bti,2 · · · Bti,�′

]
, where Bti,k is a

matrix of size n × m, for k = 1, 2, . . . , �′. A particular Bti,k is given by

Bti,k := sgn(ti, s)
(
L�

s L�
r+s · · · L�

r(n−1)+s

)�
, where L1, L2, . . . , Lrn are the

rows of L, if s is the unique integer such that sgn(ti, s)Kj,(ti,s) = mk. Otherwise,
Bti,s is the n × m zero matrix.

From now on we set Cd = {t1, t2, . . . , t�}.

Theorem 2. Let F be a field, L ∈ Mrn×m(F), d be an integer such that 0 <
d + 1 ≤ min{n − r, r}, j ∈ Rd, and a ∈ F

�n. If at1 ,at2 , . . . ,at� ∈ F
n are

3 sgn(σ) denotes the sign of the permutation σ.
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such that a = (at1 ,at2 , . . . ,at�), then a ∈ kerl(B̃j) if and only if
∑�

k=1 atk ⊗
V tk
j ∈ kerl [(In ⊗ K)L]. Moreover, assume A = {a1, . . . ,ah} for some 1 ≤ h ≤

n|Cd| and ai := (ai
t1 , . . . ,a

i
t�

), with ai
tk

∈ F
n for i = 1, . . . , h. Then, S̃j :={∑�

k=1 a
i
tk

⊗ V tk
j | i = 1, . . . , h

}
is F-linearly independent if and only if A is F-

linearly independent.

Proof. For each t ∈ Cd, we set at = (a1,t, . . . , an,t) ∈ F
n. So that at =∑n

i=1 ai,t ẽi, where ẽi denotes the i-th element in the standard basis of F
n.

By Eq. (5) we have
∑
t∈Cd

(
at ⊗ V t

j

)�
(In ⊗ K) L =

∑
t∈Cd

(
a�
t ⊗ (V t

j )�K
)
L

=
∑
t∈Cd

(
a�
t ⊗

[∑
s∈St

Kj,(t,s) ê
�
s

])
L

=
∑
t∈Cd

[∑
s∈St

Kj,(t,s)

n∑
i=1

ait (ẽi ⊗ ês)
�

L

]

=
∑
t∈Cd
s∈St

sgn(t, s)

⎡
⎢⎢⎢⎣a

�
t

⎛
⎜⎜⎜⎝

Ls

Lr+s

...
Lr(n−1)+s

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ sgn(t, s)Kj,(t,s),

where L1, . . . , Lrn are the rows of L. For each mk ∈ MINORSd+1(K(j)) let
(t̃1, s1), (t̃2, s2), . . . , (t̃e, se) be the sequence of (d + 1)-tuples with t̃i ∈ Cd and
si ∈ St̃i

such that sgn(t̃j , sj)K(t̃j ,sj)
= mk for j = 1, 2, . . . , e. Thus

∑
t∈Cd

(
at ⊗ V t

j

)�
(In ⊗ K) L =

�′∑
k=1

⎡
⎢⎢⎢⎣

e∑
j=1

sgn(t̃j , sj)a�
t̃j

⎛
⎜⎜⎜⎝

Lsj

Lr+sj

...
Lr(n−1)+sj

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦mk

=
�′∑

k=1

(∑
t∈Cd

atBt,k

)
mk.

The last equality holds because any t ∈ Cd −{t̃1, t̃2, . . . , t̃e} leads to a Bt,k = 0.
Since the minors of K do not have monomials in common, a = (at1 , . . . ,at�

) is

a vector such that
∑�

i=1

(
ati

⊗ V ti

j

)�
∈ kerl [(In ⊗ K)L] if and only if we have

that
∑�

i=1 ati
Bti,k = 0 for each minor mk. Equivalently, if and only if

�∑
i=1

ati

[
Bti,1 Bti,2 · · · Bti,�′

]
= 0,

�∑
i=1

atiBti = 0,

(at1 ,at2 , . . . ,at�
)
[
B�

t1 B�
t2 · · · B�

t�

]�
= 0, and aB̃j = 0.
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Now we prove the last statement of the theorem. Suppose a1,a2, . . . ,ah ∈ F
�n

are linearly independent and ai = (ai
t1 ,a

i
t2 , . . . ,a

i
t�

), for each i = 1, 2, . . . , h.

Assume x1, x2, . . . , xh ∈ F are such that
∑h

i=1 xi

(∑�
j=1 a

i
tj

⊗ V
tj

j

)
= 0. Since

each ai
tj

⊗ V
tj

j ∈ Ej,tj
, so does every

∑h
i=1 xi

(
ai
tj

⊗ V
tj

j

)
. By Lemma 2 the

previous equation holds if and only if
∑h

i=1 xi

(
ai
tj

⊗ V
tj

j

)
= 0, for each j =

1, 2, . . . , �. Equivalently,
∑h

i=1 xiai
tj

= 0 for each j. That is,
∑h

i=1 xiai = 0.

Remember that we are only considering the quadratic part of sequences F ∈
KS(n,m, r), so that jacx(F) = (In ⊗ K) L, where K is given in (3). Consequently,
the previous theorem shows a way to build syzygies of F (see Proposition 1).
For a fixed j ∈ Rd, Theorem 2 also says that we can build as many syzygies as
the dimension of the left-kernel of the matrix B̃j. For a matrix L ∈ Mrn×m(F)
chosen uniformly at random, we conjecture that the probability that B̃j is full
rank is very high and it depends on the size of F.

Conjecture 1. Suppose
(

r
d

)
n >

(
r

d+1

)
m, d + 1 ≤ min{n − r, r}, m ≤ rn, and j ∈

Rd. If L ∈ Mrn×m(F) is chosen uniformly at random, then with overwhelming
probability in the size of F, the rank of B̃j is

(
r

d+1

)
m.

We experimentally tested this conjecture for values of 20 ≤ n ≤ 25, n − 3 ≤
m ≤ 2n, 6 ≤ r ≤ 10 and |F| = 13; and for 8 ≤ n ≤ 16, 2 ≤ r ≤ 8, n−4 ≤ m ≤ rn
and |F| = 2. Assuming that Conjecture 1 is true, we have the following corollary.

Corollary 1. Suppose
(

r
d

)
n >

(
r

d+1

)
m, d + 1 ≤ min{n − r, r}, m < rn, and j ∈

Rd. If F ∈ KS(n,m, r) is chosen uniformly at random, and assuming Conjecture
1 holds, then with overwhelming probability, there is a set S̃j of

(
r
d

)
n −

(
r

d+1

)
m

syzygies of F of degree d. Moreover, S̃j is F-linearly independent.

Proof. Suppose F ∈ KS(n,m, r) is chosen uniformly at random. Recall that
jacx(F) = (In ⊗ K)L, so L ∈ Mrn×m(F) can be seen as chosen uniformly at
random as well. Let us set A = {a1,a2, . . . ,ah} and define S̃j and B̃j as in
Theorem 2. By this theorem, A ⊂ kerl(B̃j) is F-linearly independent if and
only if S̃j ⊂ kerl [(In ⊗ K)L] is linearly independent. By Conjecture 1, with
overwhelming probability the dimension of kerl(B̃j) is

(
r
d

)
n −

(
r

d+1

)
m. Finally,

by Proposition 1, each element in S̃j is a syzygy of F .

It can be shown that for different j, j′ ∈ Rd, S̃j ∪ S̃ ′
j is a linearly independent

set of syzygies of F .

Proposition 3. Suppose j, j’ ∈ Rd are distinct and that L ∈ Mrn×m(F). Let
A = {a1, . . . ,a�1} and B = {b1, . . . , b�2} be two sets not necessarily different,
with ai = (ai

t1 ,a
i
t2 , . . . ,a

i
t�′ ) and bi = (bi

t1 , b
i
t2 , . . . , b

i
t�

) as described in Theorem
2. If we set

S̃j =

⎧
⎨
⎩

�∑
j=1

ai
tj ⊗ V

tj
j | i = 1, . . . , �1

⎫
⎬
⎭ , S̃j ′ =

⎧
⎨
⎩

�∑
j=1

bi
tj ⊗ V

tj
j ′ | i = 1, . . . , �2

⎫
⎬
⎭ ,
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then Sj ∪ Sj′ is a set of linearly independent vectors in kerl [(In ⊗ K)L] if and
only if A and B are both linearly independent in kerl(L).

Proof. By Theorem 2 we have that A,B ⊂ kerl(B̃j) and are F-linearly indepen-
dent if and only if Sj,Sj ′ ⊂ kerl [(In ⊗ K)L] and are both F-linearly independent.
Suppose there are x1, x2, . . . , x�1 , y1, y2, . . . , y�2 ∈ F such that

�1∑
i=1

xi

⎛
⎝

�∑
j=1

ai
tj

⊗ V
tj

j

⎞
⎠+

�2∑
i=1

yi

⎛
⎝

�∑
j=1

bi
tj

⊗ V
tj

j′

⎞
⎠ = 0, i.e.,

�∑
j=1

[
�1∑

i=1

xi

(
ai
tj

⊗ V
tj

j

)
+

�2∑
i=1

yi

(
bi
tj

⊗ V
tj

j′

)]
= 0.

Notice that each of the 2� sums in the previous equation belongs to a different
Ej,t subspace. By Lemma 2, those subspaces have trivial intersection pairwise.
Consequently, last equation holds if and only if each of those sums is zero, that
is, for j = 1, 2, . . . , �,

�1∑
i=1

xi

(
ai
tj

⊗ V
tj

j

)
= 0 and

�2∑
i=1

yi

(
bi
tj

⊗ V
tj

j′

)
= 0,

which is true if and only if

�1∑
i=1

xiai = 0 and
�2∑

i=1

yibi = 0.

As a consequence and assuming that Conjecture 1 is true, we can calculate
a number of degree falls that we know for sure will happen at degree d + 2, for
a particular d < r.

Corollary 2. Suppose Conjecture 1 is true,
(

r
d

)
n >

(
r

d+1

)
m, d + 1 ≤ min{n −

r, r} and m < rn. If F ∈ KS(n,m, r) is chosen uniformly at random, then with
overwhelming probability there is a set of

(
n − r

d + 1

)[(
r

d

)
n −

(
r

d + 1

)
m

]

linearly independent syzygies of F of degree d.

4.3 Analysis for Non-square MR and κ Kernel Vectors

In this part we adapt the analysis performed in Sect. 4.2 to MR instances with
non-square matrices. We also see how the results of that section are affected if
we consider a KS system with only κ kernel vectors.

Suppose p, q,m, r, κ are integers such that m < rp and m
p−r < κ ≤ q − r. We

can consider an MR instance with matrices M1,M2, . . . ,Mm ∈ Mp×q(F) and
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target rank r. When we say that we are considering κ kernel vectors in the KS
modeling, what we mean is that we are dealing with the system

(
m∑

i=1

xiMi

)
K ′

κ = 0p×κ, (7)

where K ′
κ is the matrix consisting of the first κ columns of K ′, that is, K ′

κ =[
Ĩκ Kκ

]�
, Ĩκ is formed by the first κ rows of the identity matrix Iq−r and

Kκ =

⎡
⎢⎢⎢⎣

k1 k2 · · · kr

kr+1 kr+2 · · · k2r

...
...

. . .
...

kr(κ−1)+1 kr(κ−1)+2 · · · krκ

⎤
⎥⎥⎥⎦ .

Let us set k = (k1, k2, . . . , krκ), and let KSκ(p × q,m, r) be the set of all
sequences in F[x,k] that are formed by the entries of any matrix that has the
shape of the one on the left-hand side of (7). For each F ∈ KSκ(p × q,m, r) its
Jacobian is given by

jacx(F) = (Ip ⊗ Kκ) L + C, (8)

where C ∈ Mpκ×m(F), L is an rp × m matrix with rows L1, L2, . . . , Lrp and
Lr(i−1)+j =

[
M1,(i,p−r+j) M2,(i,p−r+j) . . . Mm,(i,p−r+j)

]
for i = 1, 2, . . . , p and

j = 1, 2, . . . , r.
Let Cd be like in Sect. 4.2 and Rκ,d := {(j1 + 1, . . . , jd+1 + 1) | jk ∈ N, 0 ≤

jk < jk+1 ≤ κ − 1}. Provided an integer d, with 0 ≤ d ≤ min{κ − 1, r − 1},
and j ∈ Rκ,d, the matrix B̃j is now of size

(
r
d

)
p ×

(
r

d+1

)
m. Such a matrix is

constructed as in the square MR case, but setting n = p. The polynomial vector
V t
j is defined like in the full kernel vector case, with the only difference that now

it has length κ instead of q − r. The proof of the following theorem is analogous
to the proof of Theorem 2.

Theorem 3. Let F be a field, L ∈ Mrp×m(F), d be an integer such that 0 <
d + 1 ≤ min{κ, r}, j ∈ Rκ,d, and a ∈ F

�p. If at1 ,at2 , . . . ,at� ∈ F
p are such

that a = (at1 ,at2 , . . . ,at�), then a ∈ kerl(B̃j) if and only if
∑�

k=1 a
i
tk

⊗ V tk
j ∈

kerl [(Ip ⊗ K)L]. Moreover, if A = {a1, . . . ,ah} for some 1 ≤ h ≤ n|Cd| and
ai := (ai

t1 ,a
i
t2 , . . . ,a

i
t�

), with ai
tk

∈ F
p for i = 1, . . . , h, then

S̃j :=

{
�∑

k=1

ai
tk

⊗ V tk
j | i = 1, . . . , h

}

is F- linearly independent if and only if A is F- linearly independent.

If Conjecture 1 is true, we have the following two corollaries.

Corollary 3. Suppose Conjecture 1 is true,
(

r
d

)
p >

(
r

d+1

)
m, d + 1 ≤ min{κ, r},

m < rp, and j ∈ Rκ,d. If F ∈ KSκ(p × q,m, r) is chosen uniformly at random,
then with overwhelming probability the rank of B̃j is

(
r

d+1

)
m.
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Proof. Given j ∈ Rκ,d ⊂ Rd, if Conjecture 1 is true, with high probability the
rank of B̃j is

(
r

d+1

)
m.

Corollary 4. Suppose Conjecture 1 is true,
(

r
d

)
p >

(
r

d+1

)
m, d + 1 ≤ min{κ, r},

m < rp, and j ∈ Rκ,d. If F ∈ KSκ(p × q,m, r) is chosen uniformly at random,
then with high probability there is a set S̃j of

(
r
d

)
p −

(
r

d+1

)
m syzygies of F of

degree d. Moreover, S̃j is F-linearly independent.

Proposition 4. Let j, j’ be two different elements in Rκ,d and L ∈ Mrp×m(F).
Let A = {a1, . . . ,a�1}, B = {b1, . . . , b�2}, S̃j and S̃j ′ be as in Proposition 3.
Then, S̃j ∪ S̃j′ is a set of linearly independent vectors in kerl [(Ip ⊗ K)L] if and
only if A and B are both linearly independent in kerl(L).

Similarly to the square case and full kernel case, we expect to have the
following result.

Corollary 5. Suppose Conjecture 1 is true,
(

r
d

)
p >

(
r

d+1

)
m, d + 1 ≤ min{κ, r}

and m < rp. If F ∈ KSκ(p × q,m, r) is chosen uniformly at random, then with
high probability there is a set with

(
κ

d + 1

)[(
r

d

)
p −
(

r

d + 1

)
m

]

linearly independent syzygies of F of degree d.

5 Complexity of the KS Modeling Revisited

Proposition 4 and Corollary 5 (Corollary 2 for square matrices) naturally lead
to a new algorithm to solve systems of the form F = 0, where F is randomly
chosen in KSκ(p × q,m, r), and m < rp. Let p, q,m, r be positive integers. The
following number

dKS = min
{

d |
[(

r

d

)
p >

(
r

d + 1

)
m

]
, 1 ≤ d ≤ r − 1

}
(9)

is well defined if m < rp. Assuming dKS + 1 ≤ κ, by Corollary 5, with high
probability we can build degree drops from dKS + 2 to dKS + 1, for a randomly
given F ∈ KSκ(p× q,m, r). By Proposition 2, such degree falls are not produced
by trivial syzygies. Thus DKS := dKS + 2 is an upper bound for the first fall
degree Dff. Then, we construct the Macaulay matrix at degree dKS + 1, append
the degree falls, and row reduce this augmented matrix. If there are not enough
polynomials to solve, we continue the XL algorithm up to degree dKS + 2, dKS +
3, . . . until we solve the system.

Based on these observations, we now estimate the complexity of solving such
a system, by means of the first fall degree Dff of the system, which is the smallest
degree needed so that the Macaulay matrix of the system of that degree exhibits
a degree fall when reduced [9].
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We can further improve the complexity by multiplying only by monomials
from kernel variables k in the XL algorithm. It can be proved that for this par-
ticular kind of equations, the XL algorithm restricted in this manner, still finds
a solution. This follows from the facts that the ideal generated by F is radical
[18], that the system F = 0 has a unique solution, and that each polynomial in
F has only linear variables in its linear part.

Consequently, using the XL algorithm and multiplying only by monomials
from kernel variables, the complexity of solving instances of KS that are chosen
uniformly at random is

O

((
rκ + dKS + 1

dKS + 2

)w)
= O

((
rκ + DKS − 1

DKS

)w)
= O

(
(rκ)DKSw

)
,

where 2 < ω ≤ 3 and κ is the number of kernel vectors that we choose in order
to keep the system overdetermined, that is, κ ≥ m

p−r .
This is much lower than previous estimates. For example, if m = p = q = n

and r <
√

n, then dKS ≤ r/2 + 1, and we can choose κ =
√

n, so that, rκ < n,
and hence, our complexity estimate is O(n(r/2)ω), compared to O(nrω) from
previous estimates, c.f. [1].

6 Experimental Results

In this section we present some experimental data to confront our theoretical
findings. The results are summarized in Tables 1 and 2.

Table 1 shows that for F ∈ KS(n × n,m, r), and different values of r, DKS =
dKS +2 is a tight bound on the first fall degree. It also shows that DKS is not far
from the solving degree, which the maximum degree reached during the Gröbner
basis computation. The solving degree was exactly DKS in most cases, and it
was DKS + 1 in the worst case. Also, in Table 1 we can see that the KS system
can be solved by using the XL algorithm multiplying only by kernel variables.
This leads to much smaller matrices.

Table 2 addresses the question of how to choose κ. In Sect. 4.3, we showed
that as long as dKS + 1 ≤ κ, we would find nontrivial relations for a sequence
F ∈ KSκ(n×n,m, r) at degree dKS +2. We also saw that if κ ≥ m

n−r , the system
is overdetermined, so we do not expect spurious solutions. In all the experiments
presented in Table 2, we indeed obtained only true solutions. However, choosing
the smallest possible κ is not necessarily the best choice, because for very small
κ the solving degree increases. The experiments suggest there is an optimal κ
around dKS + 2. In Table 2, dKS + 2 = 5 for r = 6 or r = 5, and dKS + 2 = 4
when r = 4.

7 Implications in Multivariate Cryptography

A key recovery attack can be performed on several multivariate schemes by
solving some MR problem instances [4,7,21,23,26]. In this section, we review
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Table 1. Experimental result for KS method on uniformly chosen MR instances over
GF (13). For different values of r, a sequence F ∈ KS(10 × 10, 10, r) is chosen consid-
ering n− r kernel vectors. In each case F4 and a version of the XL algorithm, in which
we only multiply by kernel variables, are run over F . Measures of the first fall degree
Dff, the solving degree Dslv and size of the largest matrix L.matrix. For each r in the
first column shows the F4 data and in the second one the XL data.

r 2 3 4 5 6

DKS 3 4 4 5 5

F4 XL F4 XL F4 XL F4 XL F4 XL

Dff 3 3 4 4 4 4 5 5

Dslv 3 3 4 4 4 5

L.matrix 2217 1530 24582 20240 38586 341495 >2035458

Table 2. Experimental results for the KS method on uniformly chosen MR instances
over GF (13). A sequence F ∈ KS(12 × 12, 12, r) is chosen considering κ kernel vectors.
The variable x1 is set to 1 in F . F4 is used to find the variety of the resulting system.
Measures of the first fall degree Dff, the solving degree Dslv, time and memory are
presented.

r κ Dff Dslv Time [s] Mem [MB] r κ Dff Dslv Time [s] Mem [MB]

6 6 4 5 20079 25547 4 8 4 4 58 194

5 4 5 42858 20928 7 4 4 38 128

4 4 5 95768 34573 6 4 4 21 107

5 7 4 4 756 1984 5 4 4 13 104

6 4 4 367 1199 4 4 4 11 64

5 4 4 377 758 3 4 4 6 64

4 4 4 108 352 2 4 5 14 160

3 5 5 795 1648

the complexity of the KS method for some of the most common multivariate
schemes. We are not including Rainbow in this analysis, since the improvement
that we are proposing for KS is still way slower than the linear algebra techniques
used to perform the MR attack against this particular signature scheme [8].

HFE: A key recovery attack on the HFE encryption scheme with parameters
(n,D, |F|) can be performed by solving a KS system F = 0, where F ∈ KS(n ×
n, n, r) and r = log|F| D�. In this case, dKS =

⌈
r−1
2

⌉
or dKS = r−1

2 +1, depending
on whether r −1 is odd or even. The complexity of solving an MR instance with
parameters n × n, n, r, using κ kernel vectors is

O

((
rκ + dKS + 1

dKS + 2

)w)
,
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where dKS =
⌈

r−1
2

⌉
or r−1

2 + 1.
For example, for the parameters n = 128,D = 192, |F| = 2 analyzed in [1],

we have r = 8, and dKS = 4. Using κ = 10 kernel vectors, we need to deal with a
KS system of nκ = 1280 equations in n+ rκ = 208 variables. Assuming ω = 2.4,
the complexity of solving such a system is 269, which is way better than the 2108

complexity of the minors method approach estimated in [1] .

ZHFE: To perform a key recovery attack on the ZHFE encryption scheme
with parameters (n,D, |F|), we need to solve a KS instance F = 0, where F ∈
KS(n × n, 2n, r) and r = log|F| D� +1, see [4]. In this case dKS is either

⌈
2r−1

3

⌉
or 2r−1

3 + 1.
For the proposed parameters n = 55, D = 105, |F| = 7 [24], we have that

r = 4 and dKS = 3. Thus, by considering κ = 14 kernel vectors, the estimated
complexity is then 263, with ω = 2.8. This is better than the estimated 276 with
ω = 2.8 provided in [4] based on the minors method.

HFEv-: In HFEv- with parameters (|F|, n,D, a, v) the system to solve is F = 0,
where F ∈ KS((n + v) × (n + v), n − a, r + a + v)4 and r = log|F| D�
[23]. The parameter for complexity dKS is given by

⌈
(r+a+v)(n−a)−(n+v)

2n+v−a

⌉
or

(r+a+v)(n−a)−(n+v)
2n+v−a + 1, depending if the value inside ·� is even or odd.

GeMMS and Gui: GeMMS and Gui are HFEv- based multivariate signature
schemes proposed in the NIST’s ongoing post-quantum “competition” [5,23].
A key recovery attack to GeMMS or Gui with parameters (|F|, n,D, a, v, k)
reduces to a key recovery attack to the underlying HFEv- instances with param-
eters (|F|, n,D, a, v). We use the sets of parameters proposed for the NIST’s
competition to analyze the complexity of such an attack and set ω = 2.3,
which is the one used in the Gui submission. The main improvement in the key
recovery attack is derived from reducing the number of kernel vectors. For the
parameter sets Gui-184(2,184,33,16,16,2), Gui-312(2,312,129,24,20,2) and Gui-
448(2,448,513,32,28,2) we may set κ = 18, κ = 25 and κ = 34, respectively,
producing key recovery complexities of 2281, 2429 and 2598 steps, respectively.
For comparison, the estimates provided in [23] via minors modeling were 2323,
2480 and 2665, respectively. A similar effect applies to the GeMMS security esti-
mates as well.
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ramiento de los programas curriculares”.

4 When r + v + a is odd the target rank is r + a + v − 1.
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Abstract. Group key-exchange protocols allow a set of N parties to
agree on a shared, secret key by communicating over a public network.
A number of solutions to this problem have been proposed over the years,
mostly based on variants of Diffie-Hellman (two-party) key exchange. To
the best of our knowledge, however, there has been almost no work look-
ing at candidate post-quantum group key-exchange protocols.

Here, we propose a constant-round protocol for unauthenticated group
key exchange (i.e., with security against a passive eavesdropper) based on
the hardness of the Ring-LWE problem. By applying the Katz-Yung com-
piler using any post-quantum signature scheme, we obtain a (scalable)
protocol for authenticated group key exchange with post-quantum secu-
rity. Our protocol is constructed by generalizing the Burmester-Desmedt
protocol to the Ring-LWE setting, which requires addressing several tech-
nical challenges.

Keywords: Ring learning with errors · Post-quantum cryptography ·
Group key exchange

1 Introduction

Protocols for (authenticated) key exchange are among the most fundamental and
widely used cryptographic primitives. They allow parties communicating over an
insecure public network to establish a common secret key, called a session key,
permitting the subsequent use of symmetric-key cryptography for encryption
and authentication of sensitive data. They can be used to instantiate so-called
“secure channels” upon which higher-level cryptographic protocols often depend.

Most work on key exchange, beginning with the classical paper of Diffie and
Hellman, has focused on two-party key exchange. However, many works have also
explored extensions to the group setting [1,2,5,6,8,9,11–17,21,22,24,25,29–31]
in which N parties wish to agree on a common session key that they can each
then use for encrypted/authenticated communication with the rest of the group.

The recent effort by NIST to evaluate and standardize one or more quantum-
resistant public-key cryptosystems is entirely focused on digital signatures and
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two-party key encapsulation/key exchange,1 and there has been an extensive
amount of research over the past decade focused on designing such schemes. In
contrast, we are aware of almost no2 work on group key-exchange protocols with
post-quantum security beyond the observation that a post-quantum group key-
exchange protocol can be constructed from any post-quantum two-party protocol
by having a designated group manager run independent two-party protocols with
the N − 1 other parties, and then send a session key of its choice to the other
parties encrypted/authenticated using each of the resulting keys. Such a solution
is often considered unacceptable since it is highly asymmetric, requires additional
coordination, is not contributory, and puts a heavy load on a single party who
becomes a central point of failure.

1.1 Our Contributions

In this work, we propose a constant-round group key-exchange protocol based
on the hardness of the Ring-LWE problem [27], and hence with (plausible) post-
quantum security. We focus on constructing an unauthenticated protocol—i.e.,
one secure against a passive eavesdropper—since known techniques such as the
Katz-Yung compiler [24] can then be applied to obtain an authenticated protocol
secure against an active attacker.

The starting point for our work is the two-round group key-exchange pro-
tocol by Burmester and Desmedt [15,16,24], which is based on the decisional
Diffie-Hellman assumption. Assume a group G of prime order q and a generator
g ∈ G are fixed and public. The Burmester-Desmedt protocol run by parties
P0, . . . , PN−1 then works as follows:

1. In the first round, each party Pi chooses uniform ri ∈ Zq and broadcasts
zi = gri to all other parties.

2. In the second round, each party Pi broadcasts Xi = (zi+1/zi−i)ri (where the
parties’ indices are taken modulo N).

Each party Pi can then compute its session key ski as

ski = (zi−1)Nri · XN−1
i · XN−2

i+1 · · · Xi+N−2.

One can check that all the keys are equal to the same value gr0r1+···+rN−1r0 .
In attempting to adapt their protocol to the Ring-LWE setting, we could fix

a ring Rq and a uniform element a ∈ Rq. Then:

1. In the first round, each party Pi chooses “small” secret value si ∈ Rq and
“small” noise term ei ∈ Rq (with the exact distribution being unimportant
in the present discussion), and broadcasts zi = asi + ei to the other parties.

1 Note that CPA-secure key encapsulation is equivalent to two-round key-exchange
(with passive security).

2 The protocol of Ding et al. [19] has no security proof; the work of Boneh et al. [10]
shows a framework for constructing a group key-exchange protocol with plausible
post-quantum security but without a concrete instantiation.
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2. In the second round, each party Pi chooses a second “small” noise term e′
i ∈

Rq and broadcasts Xi = (zi+1 − zi−i) · si + e′
i.

Each party can then compute a session key bi as

bi = N · si · zi−1 + (N − 1) · Xi + (N − 2) · Xi+1 + · · · + Xi+N−2.

The problem, of course, is that (due to the noise terms) these session keys com-
puted by the parties will not be equal. They will, however, be “close” to each
other if the {si, ei, e

′
i} are all sufficiently small, so we can add an additional

reconciliation step to ensure that all parties agree on a common key k.
This gives a protocol that is correct, but proving security (even for a pas-

sive eavesdropper) is more difficult than in the case of the Burmester-Desmedt
protocol. Here we informally outline the main difficulties and how we address
them. First, we note that trying to prove security by direct analogy to the proof
of security for the Burmester-Desmedt protocol (cf. [24]) fails; in the latter case,
it is possible to use the fact that, for example,

(z2/z0)r1 = zr2−r0
1 ,

whereas in our setting the analogous relation does not hold. In general, the
natural proof strategy here is to switch all the {zi} values to uniform elements
of Rq, and similarly to switch the {Xi} values to uniform subject to the constraint
that their sum is approximately 0 (i.e., subject to the constraint that

∑
i Xi ≈ 0).

Unfortunately this cannot be done by simply invoking the Ring-LWE assumption
O(N) times; in particular, the first time we try to invoke the assumption, say
on the pair (z1 = as1 + e1, X1 = (z2 − z0) · s1 + e′

1), we need z2 − z0 to be
uniform—which, in contrast to the analogous requirement in the Burmester-
Desmedt protocol (for the value z2/z0), is not the case here. Thus, we must
somehow break the circularity in the mutual dependence of the {zi,Xi} values.

Toward this end, let us look more carefully at the distribution of
∑

i Xi. We
may write ∑

i Xi =
∑

i(ei+1si − ei−1si) +
∑

i e′
i.

Consider now changing the way X0 is chosen: that is, instead of choosing X0 =
(z1 − zN−1)s0 + e′

0 as in the protocol, we instead set X0 = −∑N−1
i=1 Xi + e′

0

(where e′
0 is from the same distribution as before). Intuitively, as long as the

standard deviation of e′
0 is large enough, these two distributions of X0 should

be “close” (as they both satisfy
∑

i Xi ≈ 0). This, in particular, means that we
need the distribution of e′

0 to be different from the distribution of the {e′
i}i>0,

as the standard deviation of the former needs to be larger than the latter.
We can indeed show that when we choose e′

0 from an appropriate distribution
then the Rényi divergence between the two distributions of X0, above, is bounded
by a polynomial. With this switch in the distribution of X0, we have broken the
circularity and can now use the Ring-LWE assumption to switch the distribution
of z0 to uniform, followed by the remaining {zi,Xi} values.

Unfortunately, bounded Rényi divergence does not imply statistical closeness.
However, polynomially bounded Rényi divergence does imply that any event
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occurring with negligible probability when X0 is chosen according to the second
distribution also occurs with negligible probability when X0 is chosen according
to the first distribution. For these reasons, we change our security goal from an
“indistinguishability-based” one (namely, requiring that, given the transcript,
the real session key is indistinguishable from uniform) to an “unpredictability-
based” one (namely, given the transcript, it should be infeasible to compute the
real session key). In the end, though, once the parties agree on an unpredictable
value k they can hash it to obtain the final session key sk = H(k); this final value
sk will be indistinguishable from uniform if H is modeled as a random oracle.

2 Preliminaries

2.1 Notation

Let Z be the ring of integers, and let [N ] = {0, 1, . . . , N −1}. If χ is a probability
distribution over some set S, then x0, x1, . . . , x�−1 ← χ denotes independently
sampling each xi from distribution χ. We let Supp(χ) = {x : χ(x) �= 0}. Given
an event E, we use E to denote its complement. Let χ(E) denote the probability
that event E occurs under distribution χ. Given a polynomial pi, let (pi)j denote
the jth coefficient of pi. Let log(X) denote log2(X), and exp(X) denote eX .

2.2 Ring Learning with Errors

Informally, the (decisional) version of the Ring Learning with Errors (Ring-LWE)
problem is: for some secret ring element s, distinguish many random “noisy ring
products” with s from elements drawn uniform from the ring. More precisely,
the Ring-LWE problem is parameterized by (R, q, χ, �) as follows:

1. R is a ring, typically written as a polynomial quotient ring R = Z[X]/(f(X))
for some irreducible polynomial f(X) in the indeterminate X. In this paper,
we restrict to the case of that f(X) = Xn + 1 where n is a power of 2. In
later sections, we let R be parameterized by n.

2. q is a modulus defining the quotient ring Rq := R/qR = Zq[X]/(f(X)). We
restrict to the case that q is prime and q = 1 mod 2n.

3. χ = (χs, χe) is a pair of noise distributions over Rq (with χs the secret key
distribution and χe the error distribution) that are concentrated on “short”
elements, for an appropriate definition of “short” (e.g., the Euclidean distance
metric on the integer-coefficients of the polynomials s or e drawn from Rq);
and

4. � is the number of samples provided to the adversary.

Formally, the Ring-LWE problem is to distinguish between � samples inde-
pendently drawn from one of two distributions. The first distribution is generated
by fixing a random secret s ← χs then outputting

(ai, bi = s · ai + ei) ∈ Rq × Rq,
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for i ∈ [�], where each ai ∈ Rq is drawn uniformly at random and each ei ← χe

is drawn from the error distribution. For the second distribution, each sample
(ai, bi) ∈ Rq × Rq is simply drawn uniformly at random.

Let An,q,χs,χe
be the distribution that outputs the Ring-LWE sample (ai, bi =

s · ai + ei) as above. We denote by AdvRLWE
n,q,χs,χe,�(B) the advantage of algorithm

B in distinguishing distributions A�
n,q,χs,χe

and U�(R2
q).

We define AdvRLWE
n,q,χs,χe,�(t) to be the maximum advantage of any adversary

running in time t. Note that in later sections, we write as Advn,q,χ,� when χ =
χs = χe for simplicity.

The Ring-LWE Noise Distribution. The noise distribution χ (here we
assume χs = χe, though this is not necessary) is usually a discrete Gaussian
distribution on R∨

q or in our case Rq (see [18] for details of the distinction, espe-
cially for concrete implementation purposes). Formally, in case of power of two
cyclotomic rings, the discrete Gaussian distribution can be sampled by drawing
each coefficient independently from the 1-dimensional discrete Gaussian distribu-
tion over Z with parameter σ, which is supported on {x ∈ Z : −q/2 ≤ x ≤ q/2}
and has density function

DZq,σ(x) =
e

−πx2

σ2

∑∞
x=−∞ e

−πx2

σ2

.

2.3 Rényi Divergence

The Rényi divergence (RD) is a measure of closeness of two probability dis-
tributions. For any two discrete probability distributions P and Q such that
Supp(P ) ⊆ Supp(Q), we define the Rényi divergence of order 2 as

RD2(P ||Q) =
∑

x∈Supp(P )

P (x)2

Q(x)
.

Rényi divergence has a probability preservation property that can be consid-
ered the multiplicative analogues of statistical distance.

Proposition 1. Given discrete distributions P and Q with Supp(P ) ⊆
Supp(Q), let E ∈ Supp(Q) be an arbitrary event. We have

Q(E) ≥ P (E)2/RD2(P ||Q).

This property implies that as long as RD2(P ||Q) is bounded by poly(λ), any
event E that occurs with negligible probability Q(E) under distribution Q also
occurs with negligible probability P (E) under distribution P . We refer to [26,27]
for the formal proof.
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Theorem 2.1 ([7]). Fix m, q ∈ Z, a bound B, and the 1-dimensional discrete
Gaussian distribution DZq,σ with parameter σ such that B < σ < q. Moreover,
let e ∈ Z be such that |e| ≤ B. If σ = Ω(B

√
m/ log λ), then

RD2((e + DZq,σ)m||Dm
Zq,σ) ≤ exp(2πm(B/σ)2) = poly(λ),

where Xm denotes m independent samples from X.

2.4 Generic Key Reconciliation Mechanism

In this subsection, we define a generic, one round, two-party key reconciliation
mechanism which allows both parties to derive the same key from an approxi-
mately agreed upon ring element. A key reconciliation mechanism KeyRec con-
sists of two algorithms recMsg and recKey, parameterized by security parameter
1λ as well as βRec. In this context, Alice and Bob hold “close” keys – bA and bB ,
respectively – and wish to generate a shared key k so that k = kA = kB . The
abstract mechanism KeyRec is defined as follows:

1. Bob computes (K, kB) = recMsg(bB) and sends the reconciliation message K
to Alice.

2. Once receiving K, Alice computes kA = recKey(bA,K) ∈ {0, 1}λ.

Correctness. Given bA, bB ∈ Rq, if each coefficient of bB − bA is bounded by
βRec – namely, |bB − bA| ≤ βRec – then it is guaranteed that kA = kB .

Security. A key reconciliation mechanism KeyRec is secure if the subsequent
two distribution ensembles are computationally indistinguishable. (First, we
describe a simple, helper distribution).

ExeKeyRec(λ): A draw from this helper distribution is performed by initiating the
key reconciliation protocol among two honest parties and outputting (K, kB);
i.e. the reconciliation message K and (Bob’s) key kB of the protocol execution.

We denote by AdvKeyRec(B) the advantage of adversary B distinguishing the
distributions below.

{(K, kB) : bB ← U(Rq), (K, kB) ← ExeKeyRec(λ, bB)}λ∈N
,

{(K, k′) : bB ← U(Rq), (K, kB) ← ExeKeyRec(λ, bB), k′ ← Uλ}λ∈N
,

where Uλ denotes the uniform distribution over λ bits.
We define AdvKeyRec(t) to be the maximum advantage of any adversary run-

ning in time t.

Key Reconciliation Mechanisms from the Literature. The notion of key
reconciliation was first introduced by Ding et al. [19]. in his work on two-party,
lattice-based key exchange. It was later used in several important works on two-
party key exchange, including [4,28,32].

In the key reconciliation mechanisms of Peikert [28], Zhang et al. [32] and
Alkim et al. [4], the initiating party sends a small amount of information about
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its secret, bB , to the other party. This information is enough to allow the two
parties to agree upon the same key k = kA = kB , while revealing no information
about k to an eavesdropper. When instantiating our GKE protocol with this
type of key reconciliation (specifically, one of [4,28,32]), our final GKE proto-
col is “contributory,” in the sense that all parties contribute entropy towards
determining the final key.

Another method for the two parties to agree upon the same joint key k =
kA = kB , given that they start with keys bA, bB that are “close,” was first
introduced in [3] (we refer to their technique as a key reconciliation mechanism,
although it is technically not referred to as such in the literature). Here, the
initiating party uses its private input to generate a Regev-style encryption of a
random bit string kB of its choice under secret key bB . and then sends to the
other party, who decrypts with its approximate secret key bA to obtain kA. Due to
the inherent robustness to noise of Regev-style encryption, it is guaranteed that
k = kA = kB with all but negligible probability. Instantiating our GKE protocol
with this type of key reconciliation (specifically, that in [3]) is also possible, but
does not lead to the preferred “contributory GKE,” since the initiating party’s
entropy completely determines the final group key.

3 Group Key Exchange Security Model

A group key-exchange protocol allows a session key to be established among
N > 2 parties. Following prior work [12–14,23], we will use the term group key
exchange (GKE) to denote a protocol secure against a passive (eavesdropping)
adversary and will use the term authenticated group key exchange (GAKE) to
denote a protocol secure against an active adversary, who controls all commu-
nication channels. Fortunately, the work of Katz and Yung [23] presents a com-
piler that takes any GKE protocol and transforms it into a GAKE protocol. The
underlying tool required for this transform is any digital signature scheme which
is strongly unforgeable under adaptive chosen message attack (EUF-CMA). We
may thus focus our attention on achieving GKE in the remainder of this work.

In GKE, the adversary gets to see a single transcript generated by an execu-
tion of the GKE protocol. Given the transcript, the adversary must distinguish
the real key from a fake key that is generated uniformly at random and inde-
pendently of the transcript.

Formally, for security parameter λ ∈ N, we define the following distribution:

ExecuteOH

Π (λ): A draw from this distribution is performed by sampling a clas-
sical random oracle H from distribution OH , initiating the GKE protocol Π
among N honest parties with security parameter λ relative to H, and outputting
(trans, sk)—the transcript trans and key sk of the protocol execution.

Consider the following distributions:

{(trans, sk) : (trans, sk) ← ExecuteOH

Π (λ)}λ∈N,

{(trans, sk′) : (trans, sk) ← ExecuteOH

Π (λ), sk′ ← Uλ}λ∈N,
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where Uλ denotes the uniform distribution over λ bits. Let AdvGKE,OH (A) denote
the advantage of adversary A, with classical access to the sampled oracle H,
distinguishing the distributions above.

To enable a concrete security analysis, we define AdvGKE,OH (t, qOH
) to be the

maximum advantage of any adversary running in time t and making at most qOH

queries to the random oracle. Security holds even if the adversary sees multiple
executions by a hybrid argument.

In the next section we will define our GKE scheme and prove that it satisfies
the notion of GKE.

4 A Group Key-Exchange Protocol

In this section, we present our group key exchange construction, GKE, which runs
key reconciliation protocol KeyRec as a subroutine. Let KeyRec be parametrized
by βRec. The protocol has two security parameters λ and ρ. λ is the computa-
tional security parameter, which is used in the security proof. ρ is the statistical
security parameter, which is used in the correctness proof. σ1, σ2 are parameters
of discrete Gaussian distributions. In this setting, N players P0, . . . , PN−1 plan
to generate a shared session key. The players’ indices are taken modulo N .

The structure of the protocol is as follows: All parties agree on “close” keys
b0 ≈ · · · ≈ bN−1 after the second round. Player N − 1 then initiates a key
reconciliation protocol to allow all users to agree on the same key k = k0 =
· · · = kN−1. Since we are only able to prove that k is difficult to compute for an
eavesdropping adversary (but may not be indistinguishable from random), we
hash k using random oracle H to get the final shared key sk.

Public parameter: Rq = Zq[x]/(xn + 1), a ← U(Rq).

Round 1: Each player Pi samples si, ei ← χσ1 and broadcasts zi = asi + ei.
Round 2: Player P0 samples e′

0 ← χσ2 and each of the other players Pi samples
e′
i ← χσ1 , broadcasts Xi = (zi+1 − zi−1)si + e′

i.
Round 3: Player PN−1 proceeds as follows:
1. Samples e′′

N−1 ← χσ1 and computes bN−1 = zN−2NsN−1+e′′
N−1+XN−1 ·

(N − 1) + X0 · (N − 2) + · · · + XN−3.
2. Computes (KN−1, kN−1) = recMsg(bN−1) and broadcasts KN−1.
3. Obtains session key skN−1 = H(kN−1).

Key Computation: Each player Pi (except PN−1) proceeds as follows:
1. Computes bi = zi−1Nsi + Xi · (N − 1) + Xi+1 · (N − 2) + · · · + Xi+N−2.
2. Computes ki = recKey(bi,KN−1), and obtains session key ski = H(ki).

4.1 Correctness

The following claim states that each party derives the same session key ski,
with all but negligible probability, as long as χσ1 , χσ2 satisfy the constraint
(N2 + 2N) · √

nρ3/2σ2
1 + (N2

2 + 1)σ1 + (N − 2)σ2 ≤ βRec, where βRec is the
parameter from the KeyRec protocol.
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Theorem 4.1. Given βRec as the parameter of KeyRec protocol, N,n, ρ, σ1, σ2

as parameters of GKE protocol Π, as long as (N2 + 2N) · √
nρ3/2σ2

1 + (N2

2 +
1)σ1 + (N − 2)σ2 ≤ βRec is satisfied, if all players honestly execute the group
key exchange protocol described above, then each player derives the same key as
input of H with probability 1 − 2 · 2−ρ.

Proof. We refer to Sect. A of Appendix for the detailed proof.

5 Security Proof

The following theorem shows that protocol Π is a passively secure group key-
exchange protocol. We remark that we prove security of the protocol for a classi-
cal attacker only; in particular, we allow the attacker only classical access to H.
We believe the protocol can be proven secure even against attackers that are
allowed to make quantum queries to H, but leave proving this to future work.

Theorem 5.1. If the parameters in the group key exchange protocol Π satisfy
the constraints 2N

√
nλ3/2σ2

1 + (N − 1)σ1 ≤ βRényi and σ2 = Ω(βRényi

√
n/ log λ),

and if H is modeled as a random oracle, then for any algorithm A running in
time t, making at most q queries to the random oracle, we have:

AdvGKE,OH

Π (t, q) ≤ 2−λ+1

+

√
√
√
√(

N · AdvRLWE
n,q,χσ1 ,3(t1) + AdvKeyRec(t2) +

q

2λ

)
·
exp

(
2πn (βRényi/σ2)

2
)

1 − 2−λ+1
,

where t1 = t + O(N) · tring, t2 = t + O(N) · tring and where tring is defined as the
(maximum) time required to perform operations in Rq.

Proof. Consider the joint distribution of (T, sk), where T = ({zi}, {Xi},Kk−1) is
the transcript of an execution of the protocol Π, and k is the final shared session
key. The distribution of (T, sk) is denoted as Real. Proceeding via a sequence of
experiments, we will show that under the Ring-LWE assumption, if an efficient
adversary queries the random oracle on input kN−1 in the Ideal experiment (to
be formally defined) with at most negligible probability, then it also queries the
random oracle on input kN−1 in the Real experiment with at most negligible
probability.

Furthermore, in Ideal, the input kN−1 to the random oracle is uniform ran-
dom, which means that the adversary has negl(λ) probability of guessing kN−1

in Ideal when q = poly(λ). Finally, we argue that the above is sufficient to prove
the GKE security of the scheme, because in the random oracle model, the out-
put of the random oracle on kN−1 – i.e. the agreed upon key – looks uniformly
random to an adversary who does not query kN−1. We now proceed with the
formal proof.

Let Query be the event that kN−1 is among the adversary A’s random oracle
queries and denote by Pri[Query] the probability that event Query happens in
Experiment i. Note that we let e′

0 = ê0 in order to distinguish this from the other
e′
i’s sampled from a different distribution.
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Experiment 0. This is the original experiment. In this experiment, the distri-
bution of (T, sk) is as follows, denoted Real:

Real :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ← Rq; s0, s1, . . . , sN−1, e0, e1, . . . , eN−1 ← χ;

z0 = as0 + e0, z1 = as1 + e1, . . . , zN−1 = asN−1 + eN−1;

e′
1, . . . , e

′
N−1 ← χσ1 ; ê0 ← χσ2 ;

X0 = (z1 − zN−1)s0 + ê0, X1 = (z2 − z0)s1 + e′
1, . . . ,

XN−1 = (z0 − zN−2)sN−1 + e′
N−1; e

′′
N−1 ← χσ1 ; : (T, sk)

bN−1 = zN−2NsN−1 + e′′
N−1 + XN−1 · (N − 1)+

X0 · (N − 2) + · · · + XN−3;

(KN−1, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, KN−1).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Since Pr[Asucceeds] = 1
2 +AdvGKE,OH

Π (t, q) = Pr0[Query] · 1 + Pr0(Query) · 1
2 , we

have

AdvGKE,OH

Π (t, q) ≤ Pr0[Query]. (1)

In the remainder of the proof, we focus on bounding Pr0[Query].

Experiment 1. In this experiment, X0 is replaced by X ′
0 = −∑N−1

i=1 Xi + ê0.
The remainder of the experiment is exactly the same as Experiment 0. The
corresponding distribution of (T, sk) is as follows, denoted Dist1:

Dist1 :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ← U(Rq); s0, s1, . . . , sN−1, e0, e1, . . . , eN−1 ← χσ1 ;

z0 = as0 + e0, z1 = as1 + e1, . . . , zN−1 = asN−1 + eN−1;

e′
0, e

′
1, . . . , e

′
N−1 ← χσ1 ; ê0 ← χσ2

X ′
0 = −

N−1∑

i=1

Xi + ê0, X1 = (z2 − z0)s1 + e′
1, . . . ,

XN−1 = (z0 − zN−2)sN−1 + e′
N−1; e

′′
N−1 ← χσ1 ; : (T, sk)

bN−1 = zN−2NsN−1 + e′′
N−1 + XN−1 · (N − 1)+

X0 · (N − 2) + · · · + XN−3;

(KN−1, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, KN−1).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Claim. Given a ← U(Rq), s0, s1, . . . , sN−1, e0, e1, . . . , eN−1, e
′
1, . . . , e

′
N−1 ← χσ1 ,

ê0 ← χσ2 , X0 = (z1 − zN−1)s0 + ê0, X ′
0 = −∑N−1

i=1 Xi + ê0, where Rq, χσ1 , χσ2 ,
z1, zN−1,X1, . . . , XN−1 are defined as above, and the constraint 2N

√
nλ3/2σ2

1 +
(N − 1)σ1 ≤ βRényi is satisfied, we have

Pr0[Query] ≤
√

Pr1[Query] · exp(2πn(βRényi/σ2)2)
1 − 2−λ+1

+ 2−λ+1. (2)
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Proof. Let Error =
∑N−1

i=0 (siei+1 + siei−1) +
∑N−1

i=1 e′
i. We begin by showing

that the absolute value of each coefficient of Error is bounded by βRényi with all
but negligible probability. Then by adding a “bigger” error ê0 ← χσ2 , the small
difference between distributions Error + χσ2 (corresponding to Experiment 0)
and χσ2 (corresponding to Experiment 1) can be “washed” away by applying
Theorem 2.1.

For all coefficient indices j, note that |Errorj | = |(∑N−1
i=0 (siei+1 + siei−1) +

∑N−1
i=1 e′

i)j |. Let boundλ denote the event that for all i and all coordinate indices
j, |(si)j | ≤ cσ1, |(ei)j | ≤ cσ1, |(e′

i)j | ≤ cσ1, |(e′′
N−1)j | ≤ cσ1, and |(ê0)j | ≤ cσ2,

where c =
√

2λ
π log e . By replacing ρ with λ in Lemmas A.1 and A.2 and by a

union bound, we have – conditioned on boundλ – that |Errorj | ≤ 2N
√

nλ3/2σ2
1 +

(N − 1)σ1 for all j, with probability at least 1 − 2N · 2n2−2λ. Since, under the
assumption that 4Nn ≤ 2λ, we have that Pr[boundλ] ≥ 1 − 2−λ, we conclude
that

Pr[|Errorj | ≤ βRényi,∀j] ≥ 1 − 2−λ+1. (3)

For a fixed Error ∈ Rq, we denote by D1 the distribution of Error+χσ2 and note
that D1, χσ2 are n-dimension distributions.

Since σ2 = Ω(βRényi

√
n/ log λ), assuming that for all j, |Errorj | ≤ βRényi, by

Theorem 2.1, we have

RD2(D1||χσ2) ≤ exp(2πn(βRényi/σ2)2) = poly(λ). (4)

Then it is straightforward to verify that the distribution of X0 in Experiment 0
is (

as1s0 − asN−1s0 −
N−1∑

i=0

(ei+1si + ei−1si) −
N−1∑

i=1

e′
i

)

+ D1,

and the distribution of X ′
0 in Experiment 1 is

(

as1s0 − asN−1s0 −
N−1∑

i=0

(ei+1si + ei−1si) −
N−1∑

i=1

e′
i

)

+ χσ2 .

In addition, the remaining part of Dist1 is identical to Real. Therefore we may
view Real in Experiment 0 as a function of a random variable sampled from
D1 and take Dist1 in Experiment 1 as a function of a random variable sampled
from χσ2 .

Recall that Query is the event that kN−1 is contained in the set of ran-
dom oracle queries issued by adversary A. We denote by Xbound the event that
|Errorj | ≤ βRényi,∀j. Note that computation of Errorj is available in both Exper-
iment 0 and Experiment 1. We denote by Pr0[Xbound] (resp. Pr1[Xbound]) the
probability that event Xbound occurs in Experiment 0 (resp. Experiment 1 ) and
define Pr0[Xbound],Pr1[Xbound] analogously. Let Real′ (resp. Dist′1) denote the
random variable Real (resp. Dist1), conditioned on the event Xbound. Therefore,
we have
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Pr0[Query]=Pr0[Query|Xbound] · Pr0[Xbound]+Pr0[Query|Xbound] · Pr0[Xbound]

≤ Pr0[Query|Xbound] + Pr0[Xbound]

≤ Pr0[Query|Xbound] + 2−λ+1

≤
√

Pr1[Query|Xbound] · RD2(Real′||Dist′1) + 2−λ+1

≤
√

Pr1[Query|Xbound] · RD2(D1||χσ2) + 2−λ+1

≤
√

Pr1[Query|Xbound] · exp(2πn(βRényi/σ2)2) + 2−λ+1

≤
√

Pr1[Query · exp(2πn(βRényi/σ2)2)
Pr1[Xbound]

+ 2−λ+1

≤
√

Pr1[Query] · exp(2πn(βRényi/σ2)2)
1 − 2−λ+1

+ 2−λ+1,

where the second and last inequalities follow from (3), the third inequality follows
from Proposition 1 and the fifth inequality follows from (4).

Due to page restriction, we defer the proof of showing

Pr1[Query] ≤
(
N · AdvRLWE

n,q,χσ1 ,3(t1) + AdvKeyRec(t2) +
q

2λ

)
,

to the full version.

5.1 Parameter Constraints

Beyond the parameter settings recommended for instantiating Ring-LWE with
security parameter λ, parameters N,n, σ1, σ2, λ, ρ of the protocol above are also
required to satisfy the following inequalities:

(N2 + 2N) · √nρ3/2σ2
1 + (

N2

2
+ 1)σ1 + (N − 2)σ2 ≤ βRec (Correctness) (5)

2N
√

nλ3/2σ2
1 + (N − 1)σ1 ≤ βRényi (Security) (6)

σ2 = Ω(βRényi

√
n/ log λ) (Security) (7)

We comment that once the ring, the noise distributions, and the security param-
eters λ, ρ are fixed, the maximum number of parties is fixed.
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A Correctness of the Group Key-Exchange Protocol

Theorem 4.1. Given βRec as parameter of KeyRec protocol, N,n, ρ, σ1, σ2 as
parameters of GKE protocol Π, (N2+2N)·√nρ3/2σ2

1+(N2

2 +1)σ1+(N −2)σ2 ≤
βRec is satisfied, if all players honestly execute the group key exchange protocol
as described above, then each player derive the same key as input of H with
probability 1 − 2 · 2−ρ.

Proof. Given si, ei, e
′
i, e

′′
N−1 ← χσ1 , ê0 ← χσ2 for all i as specified in protocol Π,

we begin by introducing the following lemmas to analyze probabilities that each
coordinate of si, ei, e

′
i, e

′′
N−1, ê0 are “short” for all i, and conditioned on the first

event, siei are “short”.

Lemma A.1. Given si, ei, e
′
i, e

′′
N−1, ê0 for all i as defined above, let bound

denote the event that for all i and all coordinate indices j, |(si)j | ≤ cσ1,
|(ei)j | ≤ cσ1, |(e′

i)j | ≤ cσ1, |(e′′
N−1)j | ≤ cσ1, and |(ê0)j | ≤ cσ2, where

c =
√

2ρ
π log e , we have Pr[bound] ≥ 1 − 2−ρ.

Proof. Using the fact that complementary error function erfc(x) =
2√
π

∫ ∞
x

e−t2dt ≤ e−x2
, we obtain

Pr[|v| ≥ cσ + 1; v ← DZq,σ] ≤ 2
∞∑

x=�cσ+1	
DZq,σ(x) ≤ 2

σ

∫ ∞

cσ

e− πx2

σ2 dx

=
2√
π

∫ ∞
√

π
σ (cσ)

e−t2dt ≤ e−c2π.

Note that there are 3nN number of coordinates sampled from distribution
DZq,σ1 , and n number of coordinates sampled from distribution DZq,σ2 in total.
Assume 3nN + n ≤ ec2π/2, since all the coordinates are sampled independently,
we bound Pr[bound] as follow:

Pr[bound] =
(
1 − Pr[|v| ≥ cσ1 + 1; v ← DZq,σ1 ]

)3nN

· (
1 − Pr[|ê0| ≥ cσ2 + 1; ê0 ← DZq,σ2 ]

)n

≥ 1 − (3nN + n)e−c2π ≥ 1 − e−c2π/2 ≥ 1 − 2−ρ.

The last inequality follows as c =
√

2ρ
π log e .

Lemma A.2. Given si, ei, e
′
i, e

′′
N−1, ê0 for all i as defined above, and bound as

defined in LemmaA.1, let productsi,ej denote the event that, for all coefficient
indices v, |(siej)v| ≤ √

nρ3/2σ2
1. we have

Pr[productsi,ej |bound] ≥ 1 − 2n · 2−2ρ.
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Proof. For t ∈ {0, . . . , n − 1}, Let (si)t denote the tth coefficient of si ∈ Rq,
namely, si =

∑n−1
t=0 (si)tX

i. (ej)t is defined analogously. Since we have Xn +1 as
modulo of R, it is easy to see that (siej)v = cvXv, where cv =

∑n−1
u=0(si)u(ej)∗

v−u,
and (ej)∗

v−u = (ej)v−u if v − u ≥ 0, (ej)∗
v−u = −(ej)v−u+n, otherwise. Thus,

conditioned on |(si)t| ≤ cσ1 and |(ej)t| ≤ cσ1 (for all i, j, t) where c =
√

2ρ
π log e ,

by Hoeffding’s Inequality [20], we derive

Pr[|(siej)v| ≥ δ] = Pr

[∣
∣
∣
∣
∣

n−1∑

u=0

(si)u(ej)∗
v−u

∣
∣
∣
∣
∣
≥ δ

]

≤ 2 exp
( −2δ2

n(2c2σ2
1)2

)

,

as each product (si)u(ej)∗
v−u in the sum is an independent random variable with

mean 0 in the range [−c2σ2
1 , c

2σ2
1 ]. By setting δ =

√
nρ3/2σ2

1 , we obtain

Pr[|(suev)i| ≥ √
nρ3/2σ2

1 ] ≤ 2−2ρ+1. (8)

Finally, by Union Bound,

Pr[productsi,ej |bound] = Pr[|(siej)v| ≤ √
nρ3/2σ2

1 ,∀v] ≥ 1 − 2n · 2−2ρ. (9)

Now we begin analyzing the chance that not all parties agree on the same
final key. The correctness of KeyRec guarantees that this group key exchange
protocol has agreed session key among all parties ∀i, ki = kN−1, if ∀j, the jth

coefficient of |bN−1 − bi| ≤ βRec.
For better illustration, we first write X0, . . . , XN−1 in form of linear system

as follows. X = [X0 X1 X2 · · · XN−1]T

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 . . . 0 −1
−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

. . .
...

0 0 0 0 . . . −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
M

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

as0s1
as1s2
as2s3
as3s4

...
asN−2sN−1

asN−1s0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
S

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s0e1 − s0eN−1 + e′
0

s1e2 − s1e0 + e′
1

s2e3 − s2e1 + e′
2

s3e4 − s3e2 + e′
3

...
sN−2eN−3 − sN−2eN−3 + e′

N−2

sN−1e0 − sN−1eN−2 + e′
N−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
E

.

(10)

We denote the matrices above by M ,S,E from left to right and have the linear
system as X = MS+E. By setting Bi = [i−1 i−2 · · · 0 N −1 N −2 · · · i]
as a N-dimensional vector, we can then write bi as Bi ·X+N(asisi−1+siei−1) =
BiMS+BiE+N(asisi−1+siei−1), for i �= N−1 and write bN−1 as BN−1MS+
BN−1E+N(asN−1sN−2 + sN−1eN−2)+ e′′

N−1. It is straightforward to see that,
entries of MS and Nasisi−1 are eliminated through the process of computing
bN−1 − bi. Thus we get
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bN−1 − bi = (BN−1 − Bi)E + N(sN−1eN−2 − siei−1) + e′′
N−1

= (N − i − 1) ·

⎛

⎜
⎜
⎝

∑

j∈Z∩[0,i−1]
andj=N−1

sjej+1 − sjej−1 + e′
j

⎞

⎟
⎟
⎠ + e′′

N−1

+ (−i − 1)

⎛

⎝
N−2∑

j=i

sjej+1 − sjej−1 + e′
j

⎞

⎠ + N(sN−1eN−2 − siei−1)

Observe that for an arbitrary i ∈ [N ], there are at most (N2 + 2N) terms in
form of suev, at most N2/2 terms in form of e′

w where e′
w ← χσ1 , at most N − 2

terms of e′
0, where e′

0 ← χσ2 , and one term in form of e′′
N−1 in any coordinate

of the sum above. Let productALL denote the event that for all the terms in form
of suev observed above, each coefficient of such term is bounded by

√
nρ3/2σ2

1 .
By Union Bound and by assuming 2n(N2 + 2N) ≤ 2ρ, it is straightforward to
see Pr[productALL|bound] ≤ (N2 + 2N) · 2n2−2ρ ≤ 2−ρ.

Let bad be the event that not all parties agree on the same final key. Given
the constraint (N2 + 2N) · √nρ3/2σ2

1 + (N2

2 + 1)σ1 + (N − 2)σ2 ≤ βRec satisfied,
we have

Pr[bad] = Pr[bad|bound] · Pr[bound] + Pr[bad|bound] · Pr[bound] (11)

≤ Pr[productALL] · 1 + 1 · Pr[bound] ≤ 2 · 2−ρ, (12)

which completes the proof.

References

1. Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-based group
key exchange in a constant number of rounds. In: Yung, M., Dodis, Y., Kiayias, A.,
Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg
(2006). https://doi.org/10.1007/11745853 28

2. Abdalla, M., Pointcheval, D.: A scalable password-based group key exchange pro-
tocol in the standard model. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 332–347. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935230 22
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Abstract. Concerns about the impact of quantum computers on cur-
rently deployed public key cryptography have instigated research into not
only quantum-resistant cryptographic primitives but also how to tran-
sition applications from classical to quantum-resistant solutions. One
approach to mitigate the risk of quantum attacks and to preserve com-
mon security guarantees are hybrid schemes, which combine classically
secure and quantum-resistant schemes. Various academic and industry
experiments and draft standards related to the Transport Layer Security
(TLS) protocol already use some form of hybrid key exchange; however
sound theoretical approaches to substantiate the design and security of
such hybrid key exchange protocols are missing so far.

We initiate the modeling of hybrid authenticated key exchange pro-
tocols, considering security against adversaries with varying levels of
quantum power over time, such as adversaries who may become quan-
tum in the future or are quantum in the present. We reach our goal
using a three-step approach: First, we introduce security notions for key
encapsulation mechanisms (KEMs) that enable a fine-grained distinction
between different quantum scenarios. Second, we propose several com-
biners for constructing hybrid KEMs that correspond closely to recently
proposed Internet-Drafts for hybrid key exchange in TLS 1.3. Finally, we
present a provably sound design for hybrid key exchange using KEMs as
building blocks.

Keywords: Key exchange · Hybrid key exchange · Combiners · KEMs

1 Introduction

The construction of cryptographic algorithms that could resist attacks by quan-
tum computers is a significant field of current research. However, even after
new (quantum-resistant)algorithms have been agreed upon, history shows that
transitioning applications and protocols to use new algorithms can be a long and
difficult process: backwards compatibility has to be maintained without introduc-
ing the risk of downgrade attacks, and the adoption rate of new versions is very
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slow. An additional obstacle for the post-quantum transition is the uncertainty
about the hardness of post-quantum assumptions due to their relative novelty.
Parameter choices for post-quantum schemes are not yet reliable (cf. e.g. [2])
and evolving cryptanalysis may yet show them to be vulnerable even against
classical attacks. So we find ourselves in a predicament: the demand to protect
today’s communication from the potential threat posed by quantum computers
and the expected lengthy time frame to complete widespread deployment of new
algorithms, call for beginning the transition sooner rather than later; but we are
not sufficiently confident in the concrete security of post-quantum schemes for
immediate deployment.

Hybrid Schemes and Robust Combiners. So-called hybrid schemes offer a solu-
tion for the dilemma: they combine two or more algorithms of the same kind
such that the combined scheme is secure as long as one of the two components
remains secure. The study of such schemes in the symmetric setting dates back
to work by Even and Goldreich [25]. In the public key setting, work by Zhang
et al. [42] and Dodis and Katz [24] examined the security of using multiple public
key encryption schemes. Harnik et al. [27] defined the term robust combiner to
formalize such combinations, and the case of combiners for oblivious transfer,
with a sketch of a combiner for key agreement. Combiners for other primitives
have since followed, including hybrid digital signatures by Bindel et al. [12].
Most relevant to our setting of key exchange and KEMs is the work by Giacon
et al. [26] which considers various KEM combiners. While this work on KEM
combiners is an important first step towards constructing hybrid KEMs, their
solutions focus solely on classical adversaries. Since the advent of quantum com-
puting and thus the introduction of more powerful adversaries is an important
motivation for investigating hybrid key exchange, quantum security analyses of
hybrid schemes is not to be neglected; in particular because most of the con-
structions of [26] use idealized assumptions such as random oracles that might
not immediately transfer to the quantum setting [13]. Moreover, the (quantum)
security of hybrid authenticated key exchange remains unresolved in [26]. An
alternative recent approach to model security of protocols in which a component
fails is the breakdown-resilience model of Brendel, Fischlin, and Günther [20].

There is appetite in academia [16,17] and industry for hybrid key exchange in
particular. In 2016 Google temporarily tested a hybrid key exchange ciphersuite
“CECPQ1” combining elliptic curve Diffie–Hellman (ECDH) and ring-LWE key
exchange (specifically, NewHope [3]) in the Transport Layer Security (TLS) stack
of an experimental build of its Chrome browser [19,33]. Microsoft Research [23]
and Cloudflare [38] have also expressed interest in hybrid key exchange, and
several Internet-Drafts have been submitted to the IETF’s TLS working group
on hybrid key exchange [37,40].

Quantum Security. Designing quantum-resistant cryptographic schemes requires
not only quantum-hard mathematical assumptions, but also appropriate secu-
rity definitions and proofs. Boneh et al. [13] initiated the study of the security
of classical public key primitives in the quantum random oracle model, where
the locally quantum adversary can access the random oracle in superposition.
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A line of subsequent work [14,15,41] extends security definitions of various cryp-
tographic primitives to the case of fully quantum adversaries, i.e., where the
adversary’s interaction with any oracle (e.g., the decryption oracle for indistin-
guishability under chosen-ciphertext-attacks of public key encryption, the sign-
ing oracle for unforgeability of digital signatures) can also be in superposition.
Bindel et al. [12] give a hierarchy of intermediate security notions, where the
adversary may be classical during some parts of the security experiment, and
quantum in others, to capture the transition from classical to fully quantum
security.

Our Contributions. We observe that, despite the strong interest by industry
in hybrid key exchange, there has been little academic investigation of the design
and security of such schemes. Since early prototypes often become de facto stan-
dards, it is important to develop solid theoretical foundations for hybrid key
exchange and KEMs at an early stage, especially considering the presence of
quantum adversaries. Our work bridges the gap for quantum-resistant hybrid
KEMs and extends the foundations to treat hybrid authenticated key exchange
protocols: we give new security models both for KEMs and authenticated key
exchange protocols that account for adversaries with different levels of quan-
tum capabilities in the security experiment. Furthermore, we examine several
combiners for KEMs and prove their robustness, i.e., we prove that the security
holds if at least one KEM is secure among possibly other assumptions. These
include a new combiner, called XOR-then-MAC combiner, which is based on
minimal assumptions and is—to the best of our knowledge—the first KEM com-
biner construction which is provably secure against fully quantum adversaries.
We also discuss dual-PRF-based combiners that are closely related to the key
schedule used in TLS 1.3 [35]. We then proceed to show how hybrid KEMs can
be used to construct hybrid authenticated key exchange protocols. Our detailed
contributions are as follows.

Hierarchy of KEM Security Definitions. We define a family of new security
notions for KEMs. Following the approach of [12] for signature schemes, we adapt
the security experiment for indistinguishability under chosen-ciphertext attack
(IND-CCA) to distinguish between classical and quantum adversarial capabil-
ities at several key points: the adversary’s local computational power during
interaction with the decapsulation oracle; whether or not an adversary can make
decapsulation queries in superposition; and the adversary’s local computational
power later, after it can no longer interact with the decapsulation oracle. We
represent the three choices as X, y, and Z, respectively, and abbreviate a combi-
nation as XyZ-ind-cca. This leads to four different levels: fully classical adversaries
(denoted XyZ = CcC); “future-quantum” (CcQ), where the adversary is classical
today but gains quantum power later; “post-quantum” (QcQ) where the locally
quantum adversary still interacts classically with the decapsulation oracle; and
“fully quantum” (QqQ), where all computation and interaction can be quantum.
As summarized in Fig. 1, we show that these different security notions form a
strict hierarchy. Unless stated otherwise, the following constructions in the paper
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focus on providing security against QcQ adversaries, excluding the fully-quantum
scenario. This “restriction” is natural as hybrid solutions are intended to secure
the transition to the post-quantum setting.

Fig. 1. Implications (→) and separations (�→) between indistinguishability-based
security notions for KEMs wrt. two-stage adversaries.

KEM Combiners. We present three KEM combiners and show their robustness
for CcC, CcQ, and QcQ adversaries; all the proofs are in the standard model.

– XtM: The XOR-then-MAC combiner XtM computes the session key k of the
resulting hybrid KEM as the left half of k1 ⊕ k2, where k1 and k2 are the ses-
sion keys of the input KEMs. Additionally, the XtM combiner augments the
ciphertexts with a message authentication code (MAC) tag MACKmac(c1‖c2),
where Kmac is built from the right halves of k1 and k2, and c1 and c2 are
the ciphertexts of the two input KEMs. XtM uses the lowest number of cryp-
tographic assumptions, as it relies solely on the security of one of the two
combined KEMs and the (one-time) existential unforgeability of the MAC
scheme; such a MAC can be built unconditionally and efficiently using uni-
versal hash functions [39]. We also discuss that the XtM combiner achieves
full quantum resistance (QqQ) if one of the input KEMs has this property
and if the MAC is QcQ secure, where the MAC can again be built uncon-
ditionally. To the best of our knowledge this is the first security proof for a
KEM combiner in this setting.

– dualPRF: The dual PRF combiner computes k as PRF(dPRF(k1, k2), c1‖c2).
In a dual pseudorandom function (PRF), the partial functions dPRF(k1, ·)
and dPRF(·, k2) are both assumed to be PRFs (and thus indistinguishable
from random functions).
This combiner is motivated by the key derivation function used in
TLS 1.3 [35], which acts both as an extractor (like HKDF’s extraction algo-
rithm) and as a pseudorandom function (like HMAC in HKDF), and models
how Whyte et al.’s hybrid TLS 1.3 proposal derives the combined session
key [40] by concatenating both session keys prior to key derivation.

– The nested combiner N computes k as PRF(dPRF(F (k1), k2), c1‖c2). It is
motivated by Schanck and Stebila’s hybrid TLS 1.3 proposal which derives
the combined session key by feeding each component into an extended TLS
1.3 key schedule [37].

Hybrid Authenticated Key Exchange. Our third contribution is to show how to
build hybrid authenticated key exchange from hybrid KEMs. Our construction
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relies on Krawczyk’s SigMA-compiler [32] using signatures and MACs to authen-
ticate and lift the protocol to one that is secure against active adversaries. The
intriguing question here is which security properties the involved primitives need
to have in order to achieve resistance against the different levels of adversarial
quantum power. Intuitively, the “weakest primitive” determines the overall secu-
rity of the compiled protocol. However, as we will show in Sect. 4, this intuition
is not entirely correct for partially quantum adversaries.

2 Key Encapsulation Mechanisms and Their Security

We adjust the basic definitions for KEMs and their indistinguishability-based
security notions to the partially and fully quantum adversary setting.

A key encapsulation mechanism K consists of three algorithms KeyGen,
Encaps, Decaps and a corresponding key space K. The key generation algorithm
KeyGen() returns a public/secret-key pair (pk, sk). The encapsulation algorithm
Encaps(pk) takes as input a public key pk and outputs a ciphertext c and a key
k ∈ K, whereas Decaps(sk, c) takes as input a secret key sk and a ciphertext c
and returns a key k ∈ K or ⊥, denoting failure.

A KEM K is ε-correct if for all (sk, pk) ← KeyGen() and (c, k) ← Encaps(pk),
it holds that Pr[Decaps(sk, c) �= k] ≤ ε. We say it is correct if ε = 0. The security
of KEMs is defined in terms of the indistinguishability of the session key against
chosen-plaintext (IND-CPA) and chosen-ciphertext (IND-CCA) adversaries. The
adversary A is given c∗, κ∗

b , and pk, and is asked to output a bit b′, indicating
whether κ∗

b equals Decaps(sk, c∗) or a random value. A wins if b′ = b. In the
IND-CCA experiment A additionally has access to a decapsulation oracle, which
returns the decapsulation of any ciphertext not equal to the challenge ciphertext
c∗. We adapt the traditional definitions of IND-CPA and IND-CCA security of
KEMs for quantum adversaries. Here we only treat the case of IND-CCA security,
the definition of IND-CPA security against quantum adversaries can be found
in the full version of this paper [11].

IND-CCA Security Against Partially or Fully Quantum Adversaries.
Previous works on security of KEMs against quantum adversaries, such as that
of Hofheinz, Hövelmanns, and Kiltz [28], consider a quantum adversary that has
local quantum power and can query the random oracle in superposition. Bindel
et al. [12] however, consider partially quantum adversaries to model the security
of signature schemes against quantum adversaries. We consider the latter app-
roach in the context of IND-CCA security of KEMs to enable distinctions when
modeling chosen-ciphertext attacks for KEMs. In particular, our model allows
to distinguish between adversaries with evolving quantum capabilities over time.
To capture these cases for hybrid signatures, [12] introduced a two-stage security
notion for unforgeability of signature schemes; we transfer this notion to KEMs.

We consider a two-stage adversary A = (A1,A2), in which A1 has access
to the decapsulation oracle, then terminates and passes a state to the second-
stage adversary A2, which does not have access to the decapsulation oracle. Let
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X,Z ∈ {C,Q} and y ∈ {c, q}. We will use the terminology “XyZ adversary” to
denote that A1 is either classical (X = C) or quantum (X = Q), that A1’s access
to its decapsulation oracle is either classical (y = c) or quantum (y = q), and that
A2 is either classical (Z = C) or quantum (Z = Q). In the random oracle model,
the adversary can query the random oracle in superposition, if it is quantum; this
is independent of y but depends on X and Z. Not all combinations of two-stage
We consider the following configurations of XyZ adversaries to be relevant:

CcC security corresponds to a purely classical adversary with classical access
to all oracles. This corresponds to the traditional IND-CCA security notion. CcQ
security refers to a scenario with a currently classical but potentially future
quantum adversary. In particular, the adversary is classical as long as it has
access to the decapsulation oracle; eventually the adversary gains local quan-
tum computing power, but by this time the adversary relinquishes access to the
decapsulation. QcQ security models an adversary that always has local quantum
computing power, but interacts with the active system (in the first stage) only
using classical queries. This kind of setting is for example considered in [28] and
is commonly referred to as the post-quantum setting. QqQ security models a
fully quantum adversary with quantum access to all oracles in the first stage.1

It is notation-wise convenient to define an order for the notions, with Q ≥ C
and q ≥ c, consequently implying a partial order XyZ ≥ UvW if X ≥ U, y ≥ v, and
Z ≥ W, i.e., QqQ ≥ QcQ ≥ CcQ ≥ CcC. Let max S (resp., minS) denote the set of
maximal (resp., minimal) elements of S according to this partial order. Since we
usually have a total order on S, i.e., S ⊆ {CcC,CcQ,QcQ,QqQ}, we often simply
speak of the maximal element. For example, it holds that CcQ = max{CcC,CcQ}.

Figure 2 shows the security experiment for indistinguishability of keys in
a key encapsulation mechanism K = (KeyGen,Encaps,Decaps) under chosen-
ciphertext attacks for a two-stage XyZ adversary A = (A1,A2) in the classical
or quantum random oracle model; the standard model notion can be obtained
by omitting the hash oracles. For every notion XyZ-ind-cca, we define the corre-
sponding advantage to be AdvX

yZ-ind-cca
K (A) =

∣
∣
∣Pr

[

ExptX
yZ-ind-cca

K (A) ⇒ 1
]

− 1
2

∣
∣
∣.

Similarly to [12], and as depicted in Fig. 1, we can show that the various
indistinguishability notions for KEMs are related to each other through a series
of implications and separations. The proposition statements and proofs of these
results can be found in the full version [11].

3 Practical Combiners for Hybrid Key Encapsulation

In this section, we discuss the use of robust combiners to construct hybrid key
encapsulation mechanisms. We propose three combiners motivated by practical
applications of hybrid KEMs. The first combiner, the XOR-then-MAC combiner
XtM, uses a simple exclusive-or of the two keys k1, k2 of the KEMs but adds a
message authentication over the ciphertexts (with a key derived from the encap-
sulated the keys). Hence, this solution relies solely on the additional assumption
1 Our fully quantum QqQ model is different from [1] since our challenge ciphertext c∗

is classical, whereas [1] considers quantum challenge ciphertexts.
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Fig. 2. Two-Stage IND-CCA security of KEM K in the classical or quantum random
oracle model.

of a secure one-time MAC which, in turn, can be instantiated unconditionally.
The second combiner, dualPRF, relies on the existence of dual pseudorandom
functions (PRFs) [4,5,8] which provide security if either the key material or the
label carries entropy. The HKDF key derivation function is, for example, based
on this dual principle. The third combiner, N, is a nested variant of the dual-PRF
combiner inspired by the key derivation procedure in TLS 1.3 and the proposal
how to augment it for hybrid schemes in [37].

Throughout we let K1 = (KeyGen1,Encaps1,Decaps1) and K2 = (KeyGen2,
Encaps2,Decaps2) be two KEMs. We write C[K1,K2] = (KeyGenC ,EncapsC ,
DecapsC) for the hybrid KEM constructed by one of the three proposals
C ∈ {XtM, dualPRF,N}. In all our schemes, KeyGenC simply returns the con-
catenation of the two public keys (pk ← (pk1, pk2)) and the two secret keys
(sk ← (sk1, sk2)).

In the following, we focus on proving security against at most post-quantum
QcQ adversaries, i.e., adversaries with classical access to the decapsulation oracle
only, omitting QqQ-ind-cca security. This is due to the fact that hybrid KEMs
and key exchange solutions are designed to secure the transitional phase until
quantum computers become first available. The eventually following widespread
deployment of quantum computers and cryptography, and thus security against
QqQ adversaries, is outside the scope of the post-quantum setting.

3.1 XtM: XOR-then-MAC Combiner

Giacon et al. [26] demonstrate that the plain XOR-combiner, which concatenates
the ciphertexts and XORs the individual keys, preserves ind-cpa security. They
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show that, in general, it does not preserve ind-cca security, e.g., the combiner
may become insecure if one of the KEMs is insecure. We note that it is easy
to see that this is even true if both KEMs are ind-cca secure: given a challenge
ciphertext (c∗

1, c
∗
2) the adversary can make two decapsulation requests for (c∗

1, c2)
and (c1, c∗

2) with fresh ciphertexts c1 �= c∗
1, c2 �= c∗

2 for which it knows the
encapsulated keys. This allows the adversary to easily recover the challenge key
κ∗
0 from the answers.

The XOR-then-MAC Combiner. Our approach is to prevent the adver-
sary from mix-and-match attacks by computing a message authentication
code over the ciphertexts and attaching it to the encapsulation. For this we
require a strongly robust MAC combiner, i.e., a combiner which takes two
keys kmac,1, kmac,2 as input and provides one-time unforgeability, even if one
of the keys is chosen adversarially. We discuss the construction of such MACs
later. The combined KEM key is derived as an exclusive-or of the leading
parts of the two encapsulated keys, kkem ← kkem,1 ⊕ kkem,2, and the MAC key
kmac = (kmac,1, kmac,2) consisting of the remaining parts of both encapsulated
keys. If necessary, the encapsulated keys can be stretched pseudorandomly by
the underlying encapsulation schemes first to achieve the desired output length.
We depict the resulting hybrid KEM in Fig. 3.

Fig. 3. KEM constructed by the XOR-then-MAC combiner XtM[K1,K2,M].

Security of MACs. It suffices to use one-time MACs with multiple verification
queries. This means that the adversary can initially choose a message, receives
the MAC, and can then make multiple verification attempts for other messages.
We require strong unforgeability, meaning the adversary wins if it creates any
new valid message-tag pair, even for the same initial message. We use a two-
stage version of the definition with an XyZ adversary who is of type X while it
has y access to the verification oracle and receives the challenge ciphertext. The
adversary is of type Z after it no longer has access to the verification oracle.

To capture the strong combiner property of MACs, where the adversary A
tries to win for a key kmac = (kmac,1, kmac,2) where either kmac,1 or kmac,2 is chosen
by A, we allow A to specify one of the two keys for computing the challenge and
for each verification query and in the forgery attempt. The security experiment
for XyZ-OT-sEUF security of such two-key MACs is given in the full version of
this paper [11].
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Security of the XOR-then-MAC Combiner. We can now show that the
XOR-then-MAC combiner is a robust KEM combiner, in the sense that the
resulting KEM is as secure as the strongest of the two input KEMs (assuming
the MAC is also equally secure). In particular, we show in Theorem 1 that
XtM[K1,K2,M] is IND-CCA secure in the post-quantum setting (QcQ) if the
MAC M and at least one of the two KEMs is post-quantum IND-CCA secure.
In fact, the security offered by the MAC is only required in case of IND-CCA
attacks, yielding an even better bound for the IND-CPA case. In what follows,
atk is a variable for either cca or cpa.

Theorem 1 (XOR-then-MAC is robust). Let K1 be a XcZ-ind-atk secure
KEM, K2 a UcW-ind-atk secure KEM, and M is an RcT-OT-sEUF secure MAC,
where RcT = max{XcZ,UcW}. Then XtM[K1,K2,M] as defined in Fig. 3 is also
RcT-ind-atk secure. More precisely, for any efficient adversary A of type RcT
against the combined KEM K′ = XtM[K1,K2,M], there exist efficient adver-
saries B1, B2, and B3 such that

AdvR
cT-ind-atk

XtM[K1,K2,M](A) ≤ 2 · min
{

AdvR
cT-ind-atk

K1
(B1),AdvR

cT-ind-atk
K2

(B2)
}

+ AdvR
cT-OT-sEUF

M (B3).

Moreover, the run times of B1, B2, and B3 are approximately the same as that of
A, and B3 makes at most as many verification queries as A makes decapsulation
queries.

The corresponding proof can be found in the full version of this paper [11].

Instantiating the MAC. We use a strong form of combiner for MACs where
the adversary can choose one of the two MAC keys. It is easy to build secure
MAC combiners of this type by concatenating two MACs, each computed under
one of the keys. For specific constructions carious improvements may apply.
For instance, for deterministic MACs in which verification is performed via re-
computation, one may aggregate the two MACs via exclusive-or [30] to reduce
the communication overhead.

MACs satisfying the QcQ-OT-sEUF notion can be constructed based on the
Carter-Wegman paradigm using universal hash functions [39], without relying
on cryptographic assumptions. Our construction of course uses that the input,
consisting of the ciphertexts holding the keys, is larger then the keys, such that
we need to extend the domain of the universal hash function. For a pairwise-
independent hash function with bound ε, it is clear that an adversary cannot win
with a single verification query after seeing one MAC, except with probability at
most ε. Since verification is deterministic and consists of re-computing the tag,
it follows that the adversary cannot win with probability more than qε with q
verification queries [7].

The Carter-Wegman paradigm allows for another potential improvement.
Suppose one uses hashing of the form am+b over some finite field F with addition
+ and multiplication ·, where m is the message and kmac = (a, b) is the MAC key.
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Then, instead of computing one MAC for each key part kmac,1 and kmac,2, one
can compute a single MAC over the key kmac = kmac,1+kmac,2 = (a1+a2, b1+b2).
This combiner provides strong unforgeability as required above, since for known
keys kmac,2 = (a2, b2) and k′

mac,2 = (a′
2, b

′
2) one can transform a MAC for message

m under unknown key kmac,1+kmac,2 into one for kmac,1+k′
mac,2, simply by adding

(a′
2−a2) ·m+(b′

2−b2) to the tag. By symmetry this holds analogously for known
keys kmac,1 and k′

mac,1.
Alternatively to Carter-Wegman MACs, one could use HMAC [5] for instan-

tiating the MAC directly, or rely on the HKDF paradigm of using HMAC as an
extractor. Namely, one applies the extraction step of HKDF, HKDF.Ext, with
the ciphertexts acting as the salt and the MAC key as the keying material. This
approach is based on the idea that HMAC is a good extractor. We discuss such
issues in more detail next, when looking at the TLS-like combiners.

Resistance Against Fully-Quantum Attacks. We have shown that the com-
biner XtM[K1,K2,M] inherits security of the underlying KEMs if the MAC is
secure, for classical queries to the decapsulation oracle (which is the setting we
also consider for key exchange). We outline here that the result can be easily
extended to fully quantum adversaries with superposition queries to the decap-
sulation oracle. This only assumes that one of the individual KEMs achieves
this level of security. Interestingly, the MAC M only needs to be QcQ-OT-sEUF
secure for a single classical verification query. The reason is that the MAC in
the challenge is still computed classically, and in the security reduction we mea-
sure a potential forgery in a decapsulation superposition query and output this
classical MAC.

The approach for showing security is very similar to the proof in the post-
quantum case. The only difference lies in the final game hop, where we cannot
simply read off a potential MAC forgery from a decapsulation query of the form
(c∗

1, ∗, ∗) for the value c∗
1 in the challenge, because the query is in superposition.

But we can adapt the “measure-and-modify” technique of Boneh et al. [13]
for proving the quantum-resistance of Bellare-Rogaway style encryptions. In
our case, if the amplitudes of entries (c∗

1, c2, τ) with a valid MAC and fresh
(c2, τ) �= (c∗

2, τ
∗) in the quantum decapsulation queries would be non-negligible,

then we could measure for a randomly chosen query among the polynomial many
decapsulation queries to get a (classical) MAC forgery with non-negligible prob-
ability. This would contradict the QcQ-OT-sEUF security of M. If, on the other
hand, the query probability of such forgeries is negligible, then we can change
the function Decaps⊥ into Decaps⊥⊥ which now also outputs ⊥ for any query
of the form (c∗

1, ∗, ∗). Following the line of reasoning as in [13], based on the
results of Bennett et al. [10], this cannot change the adversary’s output behav-
ior significantly. Again, since we can instantiate the MAC for classical queries
information-theoretically, we get a secure KEM combiner in the fully quantum
case, without requiring an extra assumption beyond full quantum resistance of
one of the KEMs.
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3.2 dualPRF: Dual-PRF Combiner

Our second combiner is based on dual PRFs [4,5,8]. The definitions of (dual)
PRF security can be found in the full version [11]. Informally, a dual PRF
dPRF(k, x) is a PRF when either the key material k is random (i.e., dPRF(k, ·) is
a PRF), or alternatively when the input x is random (i.e., dPRF(·, x) is a PRF).
HMAC has been shown to be a secure MAC under the assumption it is a dual
PRF, and Bellare and Lysyanskaya [8] have given a generic validation of the dual
PRF assumption for HMAC and therefore HKDF.

To construct a hybrid KEM from a dual PRF, the naive approach of
directly using a dual PRF to compute the session key of the combined KEM
as dPRF(k1, k2) is not sufficient. If, say, K1 is secure and K2 is completely bro-
ken, then an adversary might be able to transform the challenge ciphertext
(c∗

1, c
∗
2) into (c∗

1, c2), where c2 �= c∗
2 but encapsulates the same key k2 as c∗

2. With
a single decapsulation query the adversary would be able to recover the key
dPRF(k1, k2) and distinguish it from random. Our approach, shown in Fig. 4, is
to apply another pseudorandom function with the output of the dual PRF as
the PRF key and the ciphertexts as the input label: PRF(dPRF(k1, k2), (c1, c2)).

Our dualPRF combiner is inspired by the key derivation in TLS 1.3 [35]
and models Whyte et al.’s proposal for supporting hybrid key exchange in
TLS 1.3 [40]. In TLS 1.3, HKDF’s extract function is applied to the raw ECDH
shared secret; the result is then fed through HKDF’s expand function with the
(hashed) transcript as (part of) the label. In Whyte et al.’s hybrid proposal,
the session keys from multiple KEMs are concatenated as a single shared secret
input to HKDF extract as shown in Fig. 5. The dualPRF combiner models this
by taking dPRF as HKDF extract and PRF as HKDF expand (cf. Fig. 4).

Security of the Dual-PRF Combiner. We show that dualPRF[K1,K2, dPRF,
PRF] is IND-CCA secure in the post-quantum setting if dPRF is a post-quantum
secure dual PRF, PRF is a post-quantum secure PRF, and at least one of the
two KEMs is post-quantum IND-CCA secure. The proof can be found in the full
version [11].

Theorem 2 (Dual-PRF is robust). Let K1 be an XcZ-ind-atk secure KEM,
K2 be a UcW-ind-atk secure KEM, and RcT = max{XcZ,UcW}. Moreover, let
dPRF : K1 × K2 → K ′ be a RcT secure dual PRF, and PRF : K ′ × {0, 1}∗ →
KdualPRF be a RcT secure PRF. Then dualPRF[K1,K2, dPRF,PRF] as defined in
Fig. 4 is RcT-ind-atk secure.

More precisely, for any ind-atk adversary A of type RcT against the
combiner dualPRF[K1,K2, dPRF,PRF], we derive efficient adversaries B1, B2,
B3, and B4 such that AdvR

cT-ind-atk
dualPRF[K1,K2,dPRF,PRF](A) ≤ 2 · AdvRcT-dprf-sec

dPRF (B3) +

2 · AdvRcT-prf-sec
PRF (B4) + min

{

AdvR
cT-ind-atk

K1
(B1),AdvR

cT-ind-atk
K2

(B2)
}

.

The theorem relies on two-stage security notions for PRFs and dual PRFs,
which are the natural adaptation of PRF and dual-PRF security: a two-stage



Hybrid Key Encapsulation Mechanisms and Authenticated Key Exchange 217

Fig. 4. KEM constructed by the dual PRF
combiner dualPRF[K1,K2, dPRF,PRF].

Fig. 5. Excerpt from altered TLS 1.3
key schedule as proposed in [40] to
incorporate an additional secret k2,
enabling a hybrid mode.

XyZ adversary for PRF is classical or quantum (X) while it has access to the PRF
oracle (which it accesses classically or in superposition depending on y). After
this, in the second stage, it runs classically or quantumly (Z) without oracle
access, before outputting a guess as to whether its oracle was real or random.
We give the formal definitions of two-stage security notions for PRFs and dual
PRFs in the full version of the paper [11].

3.3 N: Nested Dual-PRF Combiner

We augment the dualPRF combiner in the previous section by an extra prepro-
cessing step for the key k1: ke ← Ext(0, k1), where Ext is another PRF. This is
the nested dual-PRF combiner N shown in Fig. 6. Our nested dual-PRF com-
biner N models Schanck and Stebila’s proposal for hybrid key exchange in TLS
1.3 [37]. In their proposal, as depicted in Fig. 7, one stage of the TLS 1.3 key
schedule is applied for each of the constituent KEMs in the hybrid KEM con-
struction: each stage in the key schedule applies the HKDF extract function
with one input being the output from the previous stage of the key schedule and
the other input being the shared secret from this stage’s KEM. Finally, HKDF
expand incorporates the (hash of the) transcript, including all ciphertexts. Mod-
eling the extraction function Ext as a PRF, our nested combiner N captures this
scenario.

Security of the Nested Dual-PRF Combiner. We show in Theorem 3
that N[K1,K2, dPRF,PRF,Ext] is IND-CCA secure in the post-quantum setting
if dPRF is a post-quantum secure dual PRF, PRF and Ext are post-quantum
secure PRFs, and at least one of the two KEMs is post-quantum IND-CCA
secure.
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Fig. 6. KEM constructed by the nested dual-
PRF combiner N[K1,K2, dPRF,PRF,Ext].

Fig. 7. Excerpt from altered TLS 1.3
key schedule as proposed in [37] to
incorporate an additional secret k2,
effectively enabling a hybrid mode.

Theorem 3 (Nested dual-PRF is robust). Let K1 be an XcZ-ind-atk secure
KEM, K2 be a UcW-ind-atk secure KEM, dPRF : K ′ × K2 → K ′′ be a RcT =
max{XcZ,UcW} secure dual PRF, PRF : K ′′ × {0, 1}∗ → KN be an RcT secure
PRF, and Ext : {0, 1}∗ × K1 → K ′ be an RcT secure PRF. Then the combiner
N[K1,K2, dPRF,PRF,Ext] as defined in Fig. 4 is RcT-ind-atk secure.

More precisely, for any ind-atk adversary A of type RcT against the combined
KEM N[K1,K2, dPRF,PRF,Ext], we derive efficient adversaries B1, B2, B3, B4,
and B5 such that

AdvR
cT-ind-atk

N[K1,K2,dPRF,PRF,Ext](A) ≤ min
{

AdvR
cT-ind-atk

K1
(B1),AdvR

cT-ind-atk
K2

(B2)
}

+2 · AdvRcT-dprf-sec
dPRF (B3) + 2 · AdvRcT-prf-sec

PRF (B4)

+2 · AdvRcT-prf-sec
Ext (B5).

The proof follows easily from the proof of the dualPRF combiner. Only here
we make one more intermediate step in which we use the pseudorandomness of
Ext to argue that the output of Ext(0, k1) is pseudorandom.

4 Authenticated Key Exchange from Hybrid KEMs

We now turn towards the question of how to achieve hybrid authenticated key
exchange from hybrid KEMs. There exists a vast body of literature on com-
pilers for authenticated key exchange [6,18,29,31,34,36]. In the following we
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consider secure AKE protocols from key encapsulation mechanisms combined
with SigMA-style authentication [32]. As for KEMs, we consider a two-stage
adversary and adjust the commonly used model for authenticated key exchange
by Bellare and Rogaway [9] to this setting.

4.1 Security Model

We begin by establishing the security definition for authenticated key exchange
against active attackers, starting from the model of Bellare and Rogaway [9].

Parties and Sessions. Let KE be a key exchange protocol. We denote the set of
all participants in the protocol by U . Each participant U ∈ U is associated with a
long-term key pair (pkU , skU ), created in advance; we assume every participant
receives an authentic copy of every other party’s public key through some trusted
out-of-band mechanism. In a single run of the protocol (referred to as a session),
U may act as either initiator or responder. Any participant U may execute
multiple sessions in parallel or sequentially.

We denote by πj
U,V the jth session of user U ∈ U (called the session owner)

with intended communication partner V . Associated to each session are the
following per-session variables; we often write πj

U,V .var to refer to the variable
var of session πj

U,V .

– role ∈ {initiator, responder} is the role of the session owner in this session.
– stexec ∈ {running, accepted, rejected} reflects the current status of execution.

The initial value at session creation is running.
– sid ∈ {0, 1}∗ ∪ {⊥} denotes the session identifier. The initial value is ⊥.
– stkey ∈ {fresh, revealed} indicates the status of the session key K. The initial

value is fresh.
– K ∈ D ∪ {⊥} denotes the established session key. The initial value is ⊥.
– tested ∈ {true, false} marks whether the session key K has been tested or not.

The initial value is false.

To identify related sessions which might compute the same session key, we
rely on the notion of partnering using session identifiers. Two sessions πi

S,T and
πj
U,V are said to be partnered if πi

S,T .sid = πj
U,V .sid �= ⊥. We assume that if

the adversary has not interfered, sessions in a protocol run between two honest
participants are partnered.

Adversary Model. The adversary interacts with honest parties running AKE
protocol instances via oracle queries, which ultimately allow the adversary to
fully control all network communications (injecting messages and scheduling if
and when message delivery occurs) and compromise certain secret values; the
goal of the adversary is to distinguish the session key of an uncompromised ses-
sion of its choice from random. We model the adversary as a two-stage potentially
quantum adversary with varying levels of quantum capabilities. As in Sect. 3, we
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only consider adversaries that interact with parties using classical oracle queries,
omitting QqQ adversaries. The following queries model the adversary’s control
over normal operations by honest parties:

NewSession(U, V, role): Creates a new session πj
U,V for U (with j being the next

unused counter value for sessions between U and intended communication
partner V ∈ U ∪ {�}) and sets πj

U,V .role ← role.
Send(πj

U,V ,m): Sends the message m to the session πj
U,V . If no session πj

U,V

exists or does not have πj
U,V .stexec = running, return ⊥. Otherwise, the party

U executes the next step of the protocol based on its local state, updates
the execution status πj

U,V .stexec, and returns any outgoing messages. If stexec
changes to accepted and the intended partner V has previously been cor-
rupted, we mark the session key as revealed: πj

U,V .stkey ← revealed.

The next queries model the adversary’s ability to compromise secret values:

Reveal(πj
U,V ): If πj

U,V .stexec = accepted, Reveal(πj
U,V ) returns the session key

πj
U,V .K and marks the session key as revealed: πj

U,V .stkey ← revealed. Oth-
erwise, it returns ⊥.

Corrupt(U): Returns the long-term secret key skU of U . Set πj
V,W .stkey ← revealed

in all sessions where V = U or W = U . (If the security definition is meant to
capture forward secrecy, this last operation is omitted.)

The final query is used to define the indistinguishability property of session keys:

Test(πj
U,V ): At the start of the experiment, a test bit btest is chosen uniformly

and random and fixed through the experiment. If πj
U,V .stexec �= accepted, the

query returns ⊥. Otherwise, sets πj
U,V .tested ← true and proceeds as follows.

If btest = 0, a key K∗ ←$ D is sampled uniformly at random from the session
key distribution D. If btest = 1, K∗ is set to the real session key πj

U,V .K. Return
K∗. The Test query may be asked only once.

4.2 Security Definitions

We provide the specific security experiment and definition for AKE security,
following the approach of Brzuska et al. [21,22] and divide Bellare–Rogaway-style
AKE security into the sub-notions of BR-Match security and BR key secrecy. We
only state the definition for two-stage BR key secrecy and security here. The
definition for two-stage BR-Match security can be found in the full version [11].

Definition 1 (Two-Stage BR Key Secrecy and Security). Let KE be a key
exchange protocol with key distribution D and let A = (A1,A2) be a two-stage
XcZ adversary interacting with KE via the queries defined in Sect. 4.1 within the
following security experiment ExptX

cZ-BR
KE,D (A):

Setup. The challenger generates long-term public/private-key pairs for each
participant U ∈ U , chooses the test bit btest ←$ {0, 1} at random, and sets
lost ← false.
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Query Phase 1. Adversary A1 receives the generated public keys and may
(classically) query NewSession, Send, Reveal, Corrupt, and Test.

Stage Change. At some point, A1 terminates and outputs some state st to be
passed to the second stage adversary A2.

Query Phase 2. A2 may now perform local computations on state st, but may
query only Reveal and Corrupt.

Guess. At some point, A2 terminates and outputs a guess bit bguess.
Finalize. The challenger sets lost ← true if there exist two (not necessar-

ily distinct) sessions π, π′ such that π.sid = π′.sid, π.stkey = revealed, and
π′.tested = true. (That is, the adversary has tested and revealed the key in
a single session or in two partnered sessions.) If lost = true, the challenger
outputs a random bit; otherwise the challenger outputs [[bguess = btest]]. Note
that forward secrecy, if being modelled, is incorporated into the Corrupt query
and need not be stated in the Finalize step.

We say that A wins the game if bguess = btest and lost = false. We say KE pro-
vides XcZ-BR key secrecy (with/without forward secrecy) if for all QPT XcZ adver-
saries A the advantage function AdvX

cZ-BR
KE,D (A) =

∣
∣
∣Pr

[

ExptX
cZ-BR

KE,D (A) ⇒ 1
]

− 1
2

∣
∣
∣ is

negligible in the security parameter.
We call KE XcZ-BR secure (with/without forward secrecy) if KE provides

BR-Match security and XcZ-BR key secrecy (with/without forward secrecy).

Implications. Similarly to the two-stage security notions of indistinguishability
for KEMs, the following implications hold for two-stage BR security. The proof
of Theorem 4 can be found in the full version [11].

Theorem 4 (QcQ-BR =⇒ CcQ-BR =⇒ CcC-BR). Let KE be an authenticated
key exchange protocol. If KE is QcQ-BR secure, then KE is also CcQ-BR secure.
If KE is CcQ-BR secure then it also is CcC-BR secure.

4.3 Compilers for Hybrid Authenticated Key Exchange

In the following we present a compiler for authenticated key exchange in the
two-stage adversary setting. The compiled protocol, denoted by CSigMA, com-
bines a passively secure key encapsulation mechanisms (KEMs) with SigMA-
style authentication [32]. Figure 8 in the appendix shows the compiled proto-
col between Alice and Bob. It takes as input an IND-CPA-secure KEM K, a
signature scheme S, a message authentication scheme M—both existentially
unforgeable under chosen-message attack—and a KDF-secure key derivation
function KDF, where security is considered with respect to two-stage adver-
saries. To obtain hybrid authenticated key exchange, the KEM K may then be
instantiated with any hybrid KEM.

Security Analysis. We now show that the compiled protocol CSigMA achieves
two-stage BR security (cf. Definition 1). In the theorem below we assume that the
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Fig. 8. Compiled protocol CSigMA - AKE from signatures and MACs

key encapsulation mechanism K is either classically secure or quantum resistant
against passive adversaries, i.e., R-ind-cpa = C-ind-cpa or R-ind-cpa = Q-ind-cpa
and that the remaining primitives achieve either CcC, CcQ, or QcQ security.

One would generally assume that the “weakest primitive” determines the
overall security of the compiled protocol. However, it turns out this intuition is
not quite correct. Naturally, in case either the unauthenticated key agreement K
or the key derivation function KDF are only classically secure, we cannot expect
more than classical CcC-BR security of the compiled protocol. Similarly, full post-
quantum QcQ-BR security can only be achieved if all components of the protocol
provide this level of security. Interestingly though, for the compiled protocol to
guarantee security against future-quantum adversaries (CcQ-BR security) it suf-
fices for the signature and MAC scheme to be classically secure when combined
with Q-ind-cpa-secure key encapsulation and at least CcQ-secure key derivation.
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Theorem 5. Let K be an R-ind-cpa key encapsulation mechanism, S be an ScT-
unforgeable signature scheme, M be a UcV-unforgeable message authentication
scheme, and KDF be a WcX-secure key derivation function. Then the compiled
protocol CSigMA is YcZ-BR secure with forward secrecy, where

– YcZ = CcC, if either the key encapsulation mechanism K or the key derivation
function KDF are only classically secure, i.e., if either R = C or WcX = CcC.

– YcZ = QcQ, if all components are resistant against fully quantum adversaries,
i.e, ScT = UcV = WcX = QcQ (and R = Q).

– YcZ = CcQ, if the employed signature and MAC scheme are at most future-
quantum secure, i.e., if ScT,UcV ∈ {CcC,CcQ} (and R = Q, WcX ≥ CcQ).

More precisely, for any efficient two-stage YcZ adversary A there exist effi-
cient adversaries B1,B2, . . . ,B4 such that AdvY

cZ-BR
CSigMA,D(A) ≤ n2

s ·2−|nonce|+ns

(

nu ·
AdvS

cT-eufcma
S (B1)+ns·

(

AdvR-ind-cpaK (B2)+AdvW
cX-kdf-sec

KDF (B3)+AdvU
cV-eufcma

M (B4)
))

where ns denotes the maximum number of sessions, |nonce| the length of the
nonces, and nu the maximum number of participants.

The corresponding proofs for Key Secrecy and Match Security can be found
in the full version [11].
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Abstract. In (TCC 2017), Hofheinz, Hövelmanns and Kiltz provided
a fine-grained and modular toolkit of generic key encapsulation mecha-
nism (KEM) constructions, which were widely used among KEM sub-
missions to NIST Post-Quantum Cryptography Standardization project.
The security of these generic constructions in the quantum random ora-
cle model (QROM) has been analyzed by Hofheinz, Hövelmanns and
Kiltz (TCC 2017), Saito, Xagawa and Yamakawa (Eurocrypt 2018), and
Jiang et al. (Crypto 2018). However, the security proofs from standard
assumptions are far from tight. In particular, the factor of security loss
is q and the degree of security loss is 2, where q is the total number of
adversarial queries to various oracles.

In this paper, using semi-classical oracle technique recently introduced
by Ambainis, Hamburg and Unruh (ePrint 2018/904), we improve the
results in (Eurocrypt 2018, Crypto 2018) and provide tighter security
proofs for generic KEM constructions from standard assumptions. More
precisely, the factor of security loss q is reduced to be

√
q. In addition, for

transformation T that turns a probabilistic public-key encryption (PKE)
into a determined one by derandomization and re-encryption, the degree
of security loss 2 is reduced to be 1. Our tighter security proofs can give
more confidence to NIST KEM submissions where these generic trans-
formations are used, e.g., CRYSTALS-Kyber etc.

Keywords: Quantum random oracle model ·
Key encapsulation mechanism · Generic construction

1 Introduction

Indistinguishability against chosen-ciphertext attacks (IND-CCA) [1] is widely
accepted as a standard security notion for a key encapsulation mechanism
c© Springer Nature Switzerland AG 2019
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(KEM). Random oracle model (ROM) [2] is an idealized model, where a hash
function is idealized to be a publicly accessible random oracle (RO). Generic
constructions of IND-CCA-secure KEMs in the ROM are well studied by Dent
[3] and Hofheinz, Hövelmanns and Kiltz [4]. Essentially, these generic con-
structions are categorized as variants of Fujisaki-Okamoto (FO) transforma-
tion (denote these transformations by FO transformations for brevity) [5,6],
including FO�⊥, FO⊥, FO�⊥

m, FO⊥
m, QFO�⊥

m and QFO⊥
m, where m1 (without m)

means K = H(m) (K = H(m, c)), �⊥ (⊥) means implicit (explicit) rejection,
FO denotes the class of transformations that turn a PKE with standard security
(one-wayness against chosen-plaintext attacks (OW-CPA) or indistinguishabil-
ity against chosen-plaintext attacks (IND-CPA)) into an IND-CCA KEM, Q
means an additional Targhi-Unruh hash [7] (a length-preserving hash function
that has the same domain and range size) is added into the ciphertext, and
variants of REACT/GEM transformation [8,9] (denote these transformations
by modular FO transformations), including U�⊥, U⊥, U�⊥

m, U⊥
m, QU�⊥

m and QU⊥
m,

where U denotes the class of transformations that turn a PKE with non-standard
security (e.g., OW-PCA, one-way against plaintext checking attack [8,9]) or a
deterministic PKE (DPKE, where the encryption algorithm is deterministic)
into an IND-CCA-secure KEM.

Recently, post-quantum security of these generic transformations has gath-
ered great interest [4,10–15] due to the widespread adoption [11, Table 1] in KEM
submissions to NIST Post-Quantum Cryptography Standardization Project [16],
of which the goal is to standardize new public-key cryptographic algorithms
with security against quantum adversaries. Quantum adversaries may execute
all offline primitives such as hash functions on arbitrary superpositions, which
motivated the introduction of quantum random oracle model (QROM) [17]. As
Boneh et al. have argued [17], for fully evaluating the post-quantum security,
the analysis in the QROM is crucial.

When proving a security of a cryptographic scheme S under a hardness
assumption of a problem P , we usually construct a reduction algorithm A against
P that uses an adversary B against S as a subroutine. Let (T, ε) and (T ′, ε′)
denote the running times and advantages of A and B, respectively. The reduc-
tion is said to be tight if T ≈ T ′ and ε ≈ ε′. Otherwise, if T � T ′ or ε � ε′,
the reduction is non-tight. Generally, the tightness gap, (informally) defined by
Tε′
T ′ε [18], is used to measure the quality of a reduction. Tighter reductions with
smaller tightness gap are desirable for practice cryptography especially in large-
scale scenarios, since the tightness of a reduction determines the strength of the
security guarantees provided by the security proof.

In [4,10,11] and this work, all the security reductions for (modular) FO
transformations in the QROM satisfy (1) T is about T ′, i.e., T ≈ T ′; (2) ε′ ≈ κε

1
τ ,

where κ and τ in the following are respectively denoted as the factor and degree

1 The message m here is picked at random from the message space of underlying PKE.
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of security loss2. Let q be the total number of adversarial queries to various
oracles.

– In [4], Hofheinz et al. presented QROM security reductions for QFO�⊥
m and

QFO⊥
m with κ = q

3
2 and τ = 4, for QU�⊥

m and QU⊥
m with κ = q and τ = 2.

– In [10], Saito, Xagawa and Yamakawa presented a tight security proof (i.e.,
κ = 1 and τ = 1) for U�⊥

m under a new (non-standard) security assump-
tion called disjoint simulatability (DS). Moreover, two generic transformation,
TPunc and KC, were given to construct a DS-secure DPKE from standard
assumptions, with security reductions κ = q and τ = 2.

– In [11], Jiang et al. presented security reductions for FO�⊥, FO�⊥
m, T , U�⊥, U⊥,

U�⊥
m and U⊥

m with κ = q and τ = 2.

As seen above, above security proofs of (modular) FO transformations from
standard assumptions are far from tight. Recently, To better assess the security
of lattice-based submissions, Ducas and Stehlé [19] suggested 10 questions that
NIST should be asking the community. The 10-th question [19, Problem 10] is
on this non-tightness in the QROM. To better understand this, they asked that

Can the tightness of those reductions be improved?

1.1 Our Contributions

In this paper, we give a positive answer and show that tightness of these reduc-
tions can be improved. Specifically, we provide tighter security proofs for these
generic transformations in [4,10] by using semi-classical oracle technique recently
introduced by Ambainis, Hamburg and Unruh [20]. The improvements of the fac-
tor κ and the degree τ of security loss are summarized in Table 1. The detailed
comparison with previous results in [10,11] is shown in Table 2, where ε (ε′) is
the advantage of an adversary against security of underlying (resulting) crypto-
graphic protimitive and δ is the correctness error (the probability of decryption
failure in a legitimate execution of a scheme).

Table 1. Improvements of the factor κ and the degree τ of security loss.

(κ, τ) TPunc, KC T FO�⊥m, FO�⊥, U�⊥, U⊥,U�⊥m, U⊥
m

SXY18 [10] (q, 2) – –
JZC+18 [11] – (q, 2) (q, 2)
Our work (

√
q, 2) (q, 1) (

√
q, 2)

2 When comparing the tightness of different reductions, we assume perfect correctness
of underlying scheme for brevity.
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Table 2. Comparisons between previous works [10,11] and our work.

Transformations SXY18 [10] Our results

PKE′=TPunc(PKE, G)
IND-CPA⇒DS

ε′ ≈ q
√

ε
IND-CPA⇒DS

ε′ ≈ √
qε

DPKE′=KC(DPKE, H)
OW-CPA⇒DS

ε′ ≈ q
√

ε
OW-CPA⇒DS

ε′ ≈ √
qε

Transformations JZC+18 [11] Our results

PKE′=T(PKE, G)
OW-CPA⇒OW-qPCA

ε′ ≈ q
√

ε + q
√

δ

IND-CPA⇒OW-qPCA
ε′ ≈ qε + q

√
δ

KEM-I=FO�⊥m(PKE, G, H, f)
OW-CPA⇒IND-CCA

ε′ ≈ q
√

ε + q
√

δ

IND-CPA⇒IND-CCA
ε′ ≈ √

qε + q
√

δ

KEM-II=FO�⊥(PKE, G, H)
OW-CPA⇒IND-CCA

ε′ ≈ q
√

ε + q
√

δ

IND-CPA⇒IND-CCA
ε′ ≈ √

qε + q
√

δ

KEM-III=U�⊥(PKE′, H)
OW-qPCA⇒IND-CCA

ε′ ≈ q
√

ε
OW-qPCA⇒IND-CCA

ε′ ≈ √
qε + qδ

KEM-IV=U⊥(PKE′, H)
OW-qPVCA⇒IND-CCA

ε′ ≈ q
√

ε
OW-qPVCA⇒IND-CCA

ε′ ≈ √
qε + qδ

KEM-V=U�⊥m(DPKE′, H)
OW-CPA⇒IND-CCA

ε′ ≈ q
√

ε + q
√

δ

OW-CPA⇒IND-CCA
ε′ ≈ √

qε + qδ

KEM-VI=U⊥
m(DPKE′, H)

OW-VA⇒IND-CCA
ε′ ≈ q

√
ε + q

√
δ

OW-VA⇒IND-CCA
ε′ ≈ √

qε + qδ

1. For FO�⊥
m and FO�⊥, the security loss factor q in [11] is reduced to be

√
q.

Specifically, we give a reduction from IND-CPA security of underlying PKE
to IND-CCA security of resulting KEM with ε′ ≈ √

qε+q
√

δ, which is tighter
than ε′ ≈ q

√
ε + q

√
δ in [11] from OW-CPA security of underlying PKE.

2. For T, the quadratic security loss is reduced to be a linear one. Particularly,
we provide a reduction from IND-CPA security of underlying PKE to OW-
qPCA security of resulting PKE with ε′ ≈ qε+q

√
δ, while previous reduction

in [11] is from OW-CPA security of underlying PKE with ε′ ≈ q
√

ε + q
√

δ.
3. For TPunc and KC, the security loss factor q in [10] is reduced to be

√
q. Both

IND-CPA security of underlying PKE and OW-CPA of underlying DPKE
can be reduced to DS security of DPKE by TPunc and KC with ε′ ≈ √

qε3,
respectively. While, under the same assumptions, previous reductions [10] are
with ε′ ≈ q

√
ε.

4. For U�⊥, U⊥, U�⊥
m and U⊥

m, the security loss factor q in [11] is also reduced
to

√
q. Particularly, OW-qPCA (one-way against quantum plaintext checking

attacks) security and OW-qPVCA (one-way against quantum plaintext and
(classical) validity checking attacks) security of underlying PKE, OW-CPA
security and OW-VA (one-way against validity checking attacks) security of

3 Here, for TPunc and KC, we just follow [10] and assume the perfect correctness of
underlying PKE.
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underlying DPKE can be reduced to IND-CCA security of resulting KEM
with ε′ ≈ √

qε + qδ. While, under the same assumptions, previous reductions
in [11] are with ε′ ≈ q

√
ε or ε′ ≈ q

√
ε + q

√
δ.

According to [11, Table 1], our results directly apply to the NIST KEM submis-
sions [16], including CRYSTALS-Kyber, LAC, SABER, SIKE and LEDAkem,
and provide tighter reductions than previous known [4,11]. For the submis-
sions [16] where QFO�⊥

m and QFO�⊥ are adopted, including FrodoKEM, KINDI,
Lizard, NewHope, OKCN-AKCN-CNKE, Round2, Titanium, BIG QUAKE and
LEDAkem, our results also provide tighter reductions than [11] without requiring
the additional Targhi-Unruh hash.

1.2 Technique

In security proofs of (modular) FO transformations [4,10,11], reprogramming
random oracle is an important trick. The security loss in current proofs [4,10,11]
arises from the reprogramming of quantum random oracle. Here, we focus on the
techniques of improving the analysis of quantum random oracle programming.

One way to hiding (OW2H) lemma [21, Lemma 6.2] is a practical tool to
prove the indistinguishability between games where the random oracles are
reprogrammed. Roughly speaking, OW2H lemma states that the distinguish-
ing advantage |Pleft − Pright| of an oracle algorithm AO that issuing at most q
queries to an oracle O distinguishes Left (O is not reprogrammed) from Right
(O is reprogrammed at x∗), can be bounded by 2q

√
Pguess, that is

|Pleft − Pright| ≤ 2q
√

Pguess, (1)

where Pguess is the success probability of another oracle algorithm B guessing
x∗ by running AO and measuring one of AO’s query uniformly at random. To
apply OW2H lemma to prove the security of some certain cryptographic schemes,
[10,11,13] generalized the OW2H lemma. However, these generalizations do not
give tighter bounds.

Very recently, Ambainis et al. [20] further improved the OW2H lemma by
giving higher flexibility as well as tighter bounds. Specifically, a new technique
called semi-classical oracle was developed, and semi-classical OW2H lemma was
given with tighter bounds. Informally, a semi-classical oracle OSC

x∗ measures the
output |fx∗(x)〉 instead of |x〉, where fx∗(x) = 1 if x = x∗ and 0 otherwise.
Let O\x∗ be an oracle that first queries semi-classical OSC

x∗ and then O. Semi-
classical OW2H lemma shows that above |Pleft − Pright| can be bounded by
2
√

qPfind, i.e.,
|Pleft − Pright| ≤ 2

√
qPfind, (2)

where Pfind is the probability of the event Find that semi-classical oracle OSC
x∗

ever outputs 1 during the execution AO\x∗
.

Next, we show how to use above semi-classical OW2H lemma to improve the
security proofs of (modular) FO transformations [10,11]. The primal obstacle is
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the simulation of the semi-classical oracle OSC
x∗ , which is quantumly accessable.

In particular, the key is simulation of fx∗ . We overcome this by making the
best of specific properties of different FO-like KEM constructions. Specifically,
in security proofs of (modular) FO transformations, x∗ is instantiated with m∗

of which the encryption is exactly challenge ciphertext c∗.

– For KC, U�⊥
m and U⊥

m, underlying PKE is deterministic. fm∗(m) can be sim-
ulated by verifying whether the encryption of m is c∗.

– For U�⊥ and U⊥, underlying PKE satisfies OW-qPCA or OW-qPVCA secu-
rity. fm∗(m) can be simulated by verifying whether PCO(m, c∗) = 1, where
Pco(m, c) is the plaintext checking oracle that returns 1 iff decryption of
ciphertext c yields message m.

– For TPunc, underlying PKE satisfies IND-CPA security. We note that in
IND-CPA security game, m∗ ∈ {m0,m1}, where m0 and m1 are chosen by
the adversary. Thus, the simulator can simulate fm∗ by setting m∗ = m0 or
m∗ = m1. This trick comes from [20, Sect. 4.2], where Ambainis et al. argued
the hardness of inverting a random oracle with leakage.

– For T , FO�⊥
m, FO�⊥, OW-CPA security of underlying PKE is assumed in pre-

vious security proofs in [4,11], where OW2H lemma is used. When using
semi-classical OW2H lemma, we need to a stronger assumption of underlying
PKE, IND-CPA security, to follow above mentioned trick to simulate fm∗ .

Directly utilizing semi-classical OW2H lemma with bound (2) instead of
OW2H lemma with bound (1), we improve the security reductions for FO�⊥

m,
FO�⊥, TPunc, KC, U�⊥, U⊥, U�⊥

m and U⊥
m, and reduce security loss factor from q

to
√

q.
By introducing Bures distance, Ambainis et al. [20] also gave another tighter

bound, ∣∣∣
√

Pleft − √
Pright

∣∣∣ ≤ 2
√

qPfind. (3)

Apparently, as pointed by [20], if Pright is negligible, i.e., Pright ≈ 0, we can
approximately have |Pleft| � 4qPfind. In the security proofs of (modular) FO
transformations, roughly speaking, Pleft is the success probability of an adver-
sary against resulting cryptographic scheme, Pright is the corresponding “target
probability” (typically, 0 or 1/2) specified by concrete security definition, and
Pfind is the success probability of another adversary against underlying prim-
itive. Note that for OW-qPCA security, the “target probability” Pright = 0.
Thus, using semi-classical OW2H lemma with bound (3), we can further reduce
quadratic security loss in the proof of T in [11] to a linear one.

2 Preliminaries

Symbol description λ is denoted as a security parameter. K, M, C and R are
denoted as key space, message space, ciphertext space and randomness space,
respectively. Denote the sampling of a uniformly random element x in a finite
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set X by x
$← X. Denote the sampling from some distribution D by x←D.

x =?y is denoted as an integer that is 1 if x = y, and otherwise 0. Pr[P : G]
is the probability that the predicate P holds true where free variables in P are
assigned according to the program in G. Denote deterministic (probabilistic)
computation of an algorithm A on input x by y := A(x) (y ← A(x)). Let |X| be
the cardinality of set X. AH means that the algorithm A gets access to the oracle
H. f ◦ g(·) means f(g(·)). Following the work [4], we also make the convention
that the number qH of the adversarial queries to an oracle H counts the total
number of times H is executed in the experiment.

Note: All cryptographic primitives and corresponding security and correct-
ness definitions used in this paper are presented in AppendixA.

2.1 Quantum Random Oracle Model

In this section, we will present several existing lemmas that we need in our
security proofs.

Lemma 1 (Simulating the random oracle [22, Theorem 6.1]). Let H be
an oracle drawn from the set of 2q-wise independent functions uniformly at ran-
dom. Then the advantage any quantum algorithm making at most q queries to
H has in distinguishing H from a truly random function is identically 0.

Lemma 2 (Generic search problem [11,23,24]). Let γ ∈ [0, 1]. Let Z be
a finite set. F : Z → {0, 1} is the following function: For each z, F (z) = 1
with probability pz (pz ≤ γ), and F (z) = 0 else. Let N be the function with
∀z : N(z) = 0. If an oracle algorithm A makes at most q quantum queries to F
(or N), then

∣
∣Pr[b = 1 : b ← AF ] − Pr[b = 1 : b ← AN ]

∣
∣ ≤ 2q

√
γ.

Semi-classical oracle. Roughly speaking, semi-classical oracle OSC
S only mea-

sures the output |fS(x)〉 but not the input |x〉, where fS is the indicator
function such that fS(x) = 1 if x ∈ S and 0 otherwise. Formally, for a query
to OSC

S with
∑

x,z ax,z|x〉|z〉, OSC
S does the following

1. initialize a single qubit L with |0〉,
2. transform

∑
x,z ax,z|x〉|z〉|0〉 into

∑
x,z ax,z|x〉|z〉|fS(x)〉,

3. measure L.
Then, after performing this semi-classical measurement, the query state will
become

∑
x,z:fS(x)=y ax,z|x〉|z〉 (non-normalized) if the measurement outputs

y (y ∈ 0, 1).

Lemma 3 (Semi-classical OW2H [20, Theorem 1]). Let S ⊆ X be random.
Let O1, O2 be oracles with domain X and codomain Y such that O1(x) = O2(x)
for any x /∈ S. Let z be a random bitstring. (O1, O2, S and z may have arbitrary
joint distribution D.) Let OSC

S be an oracle that performs the semi-classical mea-
surements corresponding to the projectors My, where My :=

∑
x∈X:fS(x)=y |x〉〈x|

(y ∈ 0, 1). Let O2\S (“O2 punctured on S”) be an oracle that first queries OSC
S

and then O2. Let AO1(z) be an oracle algorithm with query depth q. Denote
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Find as the event that in the execution of AO2\S(z), OSC
S ever outputs 1 during

semi-classical measurements. Let

Pleft : = Pr[b = 1 : (O1,O2, S, z)←D, b ← AO1(z)]
Pright : = Pr[b = 1 : (O1,O2, S, z)←D, b ← AO2(z)]

Pfind : = Pr[Find : (O1,O2, S, z)←D,AO2\S(z)].

Then |Pleft − Pright| ≤ 2
√

(q + 1)Pfind,
∣∣√Pleft − √

Pright

∣∣ ≤ 2
√

(q + 1)Pfind.
The lemma also holds with bound

√
(q + 1)Pfind for alternative definition of

Pright = Pr[b = 1 ∧ ¬Find : (O1,O2, S, z)←D, b ← AO2\S(z)].

Lemma 4 (Search in semi-classical oracle [20, Corollary 1]). Suppose
that S and z are independent, and that A is a q-query algorithm. Let Pmax :=
maxx∈X Pr[x ∈ S]. Then Pr[Find : AOSC

S (z)] ≤ 4q · Pmax.

3 Improved Security Proofs for (Modular) FO
Transformations

In [4], Hofheinz et al. proposed several (modular) FO transformations, including
T, U�⊥, U⊥, U�⊥

m, U⊥
m, FO�⊥

m and FO�⊥, of which the security in the QROM was
proven by [10,11]. However, except the one for U�⊥

m from DS security of underlying
DPKE to IND-CCA security of resulting KEM [10], all the reductions are non-
tight due to the usage of OW2H lemma. To achieve a DS-secure DPKE, [10] also
gave two transformations, TPunc and KC, from an IND-CPA-secure PKE and
a OW-CPA-secure DPKE, respectively. But, the security reductions for TPunc
and KC are also non-tight due to the utilization of OW2H lemma.

In this section, we will show that if the underlying PKE is assumed to be
IND-CPA-secure, tighter reductions for FO�⊥

m and T can be achieved by using
semi-classical oracle technique in [20]. As discussed in Sect. 1.2, we can also use
semi-classical oracle technique to obtain tighter security reductions for FO�⊥,
TPunc, KC, U�⊥, U⊥, U�⊥

m and U⊥
m. We present them in the full version.

To a public-key encryption scheme PKE = (Gen, Enc, Dec) with message
space M and randomness space R, hash functions G : M → R, H : M → K
and a pseudorandom function (PRF) f with key space Kprf , we associate KEM-
I=FO�⊥

m[PKE,G,H,f ], see Fig. 1.

Theorem 1 (PKE IND-CPA
QROM⇒ KEM-I IND-CCA). If PKE is δ-

correct, for any IND-CCA B against KEM-I, issuing at most qD queries to
the decapsulation oracle Decaps, at most qG (qH) queries to the random oracle
G (H) ((qG + qH) ≥ 1), there exist an IND-CPA adversary A against PKE and
an adversary A′ against the security of PRF with at most qD classical queries
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Fig. 1. IND-CCA-secure KEM-I=FO�⊥m[PKE,G,H,f ]

such that
and the running time of A is about that of B.

Proof. Here, we follow the proof skeleton of [11, Theorem 2]. Let B be an adver-
sary against the IND-CCA security of KEM-I, issuing at most qD queries to
the decapsulation oracle Decaps, at most qG (qH) queries to the random ora-
cle G (H). Denote ΩG, ΩH and ΩHq

as the sets of all functions G : M → R,
H : M × C → K and Hq : C → K, respectively. Consider the games G0 − G9

in Fig. 2. Although the games G0 − G5 are essentially the same with the games
G0−G5 in prior proof of [11, Theorem 2], we still outline them here for readabil-
ity and completeness. In particular, to apply the semi-classical oracle techniques
in [20], we introduce games G6 − G9, which are different from the proof of [11,
Theorem 2], and essential for the improvement of tightness in this paper.

Game G0. Since game G0 is exactly the IND-CCA game,

∣∣Pr[GB
0 ⇒ 1] − 1/2

∣∣ = AdvIND-CCA

KEM-I
(B).

Game G1. In game G1, the Decaps oracle is changed that the pseudorandom
function f is replaced by a random function H ′

q. Obviously, any distinguisher
between G0 and G1 can be converted into a distinguisher A′ between f and H ′

q

with at most qD classical queries. Thus,

∣∣Pr[GB
0 ⇒ 1] − Pr[GB

1 ⇒ 1]
∣∣ ≤ AdvPRF(A′).

Let G′ be a random function such that G′(m) is sampled according to the
uniform distribution over Rgood(pk, sk,m) := {r ∈ R : Dec(sk,Enc(pk,m; r)) =
m}. Let ΩG′ be the set of all functions G′. Define δ(pk, sk,m) =
|R\Rgood(pk,sk,m)|

|R| as the fraction of bad randomness and δ(pk, sk) =
maxm∈M δ(pk, sk,m). With this notation δ = E[δ(pk, sk)], where the expec-
tation is taken over (pk, sk)←Gen.
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Game G2. In game G2, we replace G by G′ that uniformly samples from
“good” randomness at random, i.e., G′ $← ΩG′ . Following the same analy-
sis as in the proof of [11, Theorem 1], we can show that the distinguishing
problem between G1 and G2 is essentially the distinguishing problem between
G and G′, which can be converted into a distinguishing problem between
F1 and F2, where F1 is a function such that F1(m) is sampled according
to Bernoulli distribution Bδ(pk,sk,m), i.e., Pr[F1(m) = 1] = δ(pk, sk,m) and
Pr[F1(m) = 0] = 1 − δ(pk, sk,m), and F2 is a constant function that always
outputs 0 for any input. Thus, conditioned on a fixed (pk, sk) we obtain by
Lemma 2,

∣∣Pr[GB
1 ⇒ 1 : (pk, sk)] − Pr[GB

2 ⇒ 1 : (pk, sk)]
∣∣ ≤ 2qG

√
δ(pk, sk). By

averaging over (pk, sk)←Gen we finally obtain
∣∣Pr[GB

1 ⇒ 1] − Pr[GB
2 ⇒ 1]

∣∣ ≤ 2qGE[
√

δ(pk, sk)]≤2qG

√
δ.

Game G3. In G3, H is substituted with Hq ◦ g, where g(·) = Enc(pk, ·;G(·)).
Since the G in this game only samples “good” randomness, the function g is
injective. Thus, Hq ◦ g is a perfect random function. Therefore, G2 and G3 are
statistically indistinguishable and we have Pr[GB

2 ⇒ 1] = Pr[GB
3 ⇒ 1].

Game G4. In game G4, the Decaps oracle is changed that it makes no use of
the secret key sk′ any more. When B queries the Decaps oracle on c (c �= c∗),
K := Hq(c) is returned as the response. Let m′ := Dec(sk, c) and consider the
following two cases.

Case 1: Enc(pk,m′;G(m′)) = c. In this case, H(m′) = Hq(c) and both Decaps

oracles in G3 and G4 return the same value.
Case 2: Enc(pk,m′;G(m′)) �= c. In this case, H ′

q(c) and Hq(c) are respectively
returned in G3 and G4. In G3, H ′

q(c) is uniformly random and independent
of the oracles G and H in B’s view. In G4, queries to H can only reveal
Hq(ĉ), where ĉ satisfies g(m̂) = ĉ for some m̂. If there exists a m̂ such that
Enc(pk, m̂;G(m̂)) = c, m̂ = m′ since G in this game only samples from
“good” randomness. Thus, Enc(pk,m′;G(m′)) = c will contradict the condi-
tion Enc(pk,m′;G(m′)) �= c. Consequently, Hq(c) is also a fresh random key
just like H ′

q(c) in B’s view. Hence, in this case, the output distributions of
the Decaps oracles in G3 and G4 are identical in B’s view.

As a result, the output distributions of G3 and G4 are statistically indistinguish-
able and we have Pr[GB

3 ⇒ 1] = Pr[GB
4 ⇒ 1].

Game G5. In game G5, we replace G′ by G, that is, G in this game is reset to
be an ideal random oracle. Then, following the same analysis as in bounding the
difference between G1 and G2, we can have

∣∣Pr[GB
4 ⇒ 1] − Pr[GB

5 ⇒ 1]
∣∣ ≤ 2qG

√
δ.
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Fig. 2. Games G0-G9 for the proof of Theorem 1
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Let G̈ (Ḧ) be the function such that G̈(m∗) (Ḧ(m∗)) is picked uniformly
at random from R (K), and G̈ = G (Ḧ = H) everywhere else. In the proof of
[11, Theorem 2], G and H in game G5 are directly reprogrammed to G̈ and Ḧ,
respectively, and then the OW2H lemma is used to argue the indistinguishability.

Here, in order to use the semi-classical OW2H lemma, we reprogram G and
H in game G5 with an additional semi-classical oracle. Thereby, we need to
consider the simulation of such a semi-classical oracle, which is unnecessary in
the proof of [11, Theorem 2]. As discussed in Sect. 1.2, this semi-classical oracle
can be simulated under the IND-CPA security assumption. Thus, we present
following gamehops from G6 to G9.

Game G6. In game G6, replace G and H by G̈\m∗ and Ḧ\m∗ respectively. For
B’s query to G̈\m∗ ( Ḧ\m∗), G̈\m∗ (Ḧ\m∗) will first query a semi-classical ora-
cle OSC

m∗ , i.e., perform a semi-classical measurement, and then query G̈ (Ḧ). Let
Find be the event that OSC

m∗ ever outputs 1 during semi-classical measurements
of B′s queries to G̈\m∗ and Ḧ\m∗. Note that if the event ¬Find that OSC

m∗ always
outputs 0 happens, B never learns the values of G(m∗) and H(m∗) and bit b is
independent of B’s view. That is, Pr[GB

6 ⇒ 1 : ¬Find] = 1/2. Hence,

Pr[GB
6 ⇒ 1 ∧ ¬Find : G6] = 1/2 Pr[¬Find : G6] = 1/2(1 − Pr[Find : G6]).

Let (G×H)(·) = (G(·),H(·)), (G̈×Ḧ)(·) = (G̈(·), Ḧ(·)), and (G̈×Ḧ)\m∗(·) =
(G̈\m∗(·), Ḧ\m∗(·)). If one wants to make queries to G (or H) by accessing to
G × H, he just needs to prepare a uniform superposition of all states in the
output register responding to H (or G). The number of total queries to G × H
is at most qG + qH .

Fig. 3. AG×H for the proof of Theorem 1.

Let AG×H be an oracle algorithm on input (pk, c∗,H(m∗),Hq)4 in Fig. 3.
Sample pk, m∗, G, Hq, H and c∗ in the same way as G5 and G6, i.e.,

(pk, sk) ← Gen, m∗ $← M, G
$← ΩG, Hq

$← ΩHq
, H := Hq ◦ g and c∗ =

Enc(pk,m∗;G(m∗)). Then, AG×H(pk, c∗,H(m∗),Hq) perfectly simulates G5,
and A(G̈×Ḧ)\m∗

(pk, c∗,H(m∗),Hq) perfectly simulates G6. Applying Lemma 3

4 Although Hq here is the whole truth table of Hq, it is just taken as an oracle to
make queries (with at most qH times) in algorithm A. Thus, we can also take Hq as
an accessible oracle instead of a whole truth table.
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with X = M, Y = (R,K), S = {m∗}, O1 = G × H, O2 = G̈ × Ḧ and
z = (pk, c∗,H(m∗),Hq) and A, we can have

∣
∣Pr[GB

5 ⇒ 1] − Pr[GB
6 ⇒ 1 ∧ ¬Find : G6]

∣
∣ ≤

√
(qG + qH + 1)Pr[Find : G6].

Game G7. In game G7, replace r∗ := G(m∗) and k∗
0 := H(m∗) by r∗ $← R and

k∗
0

$← K. We do not care about B’s output, but only whether the event Find
happens. Note that in G6 and G7, there is no information of (G(m∗),H(m∗)) in
the oracle G̈ × Ḧ. Thus, apparently, Pr[Find : G6] = Pr[Find : G7]].

Game G8. In game G8, replace G̈ and Ḧ by G and H. Since G(m∗) and H(m∗)
are never used in simulating B’s view, such a replacement causes no difference
from B’s view and we have Pr[Find : G7] = Pr[Find : G8].

Game G9. In game G9, replace m∗ by m′∗. Note that the information of m∗ in
this game only exists in the oracles G\m∗ and H\m∗. By Lemma 4,

Pr[Find : G9] ≤ 4(qG + qH/|M|).

Fig. 4. Adversary A for the proof of Theorem 1

Next, we show that any adversary distinguishing G8 from G9 can be con-
verted into an adversary against the IND-CPA security of underlying PKE. Con-
struct an adversary A on input (1λ, pk) as in Fig. 4. Then, according to Lemma 1,
if b′′ = 0, A perfectly simulates G8 and Pr[Find : G8] = Pr[1 ← A : b′′ = 0]. If
b′′ = 1, A perfectly simulates G9 and Pr[Find : G9] = Pr[1 ← A : b′′ = 1]. Since

|Pr[Find : G8] − Pr[Find : G9]| = 2AdvIND-CPA

PKE
(A).

Finally, combing this with the bounds derived above, we have
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≤ AdvPRF(A′) + 4qG

√
δ + 1/2 Pr[Find : G6] +

√
(qG + qH + 1)Pr[Find : G6]

≤ AdvPRF(A′) + 4qG

√
δ +

√
2(qG + qH + 1)Pr[Find : G6]

≤ AdvPRF(A′) + 4qG

√
δ + 2

√

(qG + qH + 1)AdvIND-CPA

PKE
(A) + 2

(qG + qH + 1)2

|M| .

��
The transformation T [4,25] turns a probabilistic PKE into a determined one

by derandomization and re-encryption [25,26]. To a PKE=(Gen, Enc, Dec) with
message space M and randomness space R, and a random oracle G : M → R,
we associate PKE′ = (Gen,Enc′,Dec′) = T[PKE, G], see Fig. 5. As discussed
in Sect. 1.2, for T, using semi-classical OW2H lemma with bound (3), we can
improve the reduction in [11] and reduce the quadratic security loss to a linear
one. The complete proof of Theorem 2 is presented in AppendixB.

Fig. 5. OW-qPCA-secure PKE′ = T[PKE, G]

Theorem 2 (PKE IND-CPA
QROM⇒ PKE′ OW-qPCA). If PKE is δ-

correct, for any OW-qPCA B against PKE′, issuing at most qG quantum queries
to the random oracle G and at most qP quantum queries to the plaintext check-
ing oracle Pco, there exists an IND-CPA adversary A against PKE such that

and the running
time of A is about that of B.
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A Cryptographic Primitives

Definition 1 (Public-key encryption). A public-key encryption scheme
PKE consists of three algorithms. The key generation algorithm, Gen, is a proba-
bilistic algorithm which on input 1λ outputs a public/secret key-pair (pk, sk). The
encryption algorithm Enc, on input pk and a message m ∈ M, outputs a cipher-
text c ← Enc(pk,m). If necessary, we make the used randomness of encryption

explicit by writing c := Enc(pk,m; r), where r
$← R (R is the randomness

space). The decryption algorithm Dec, is a deterministic algorithm which on
input sk and a ciphertext c outputs a message m := Dec(sk, c) or a rejection
symbol ⊥/∈ M. A PKE is determined if Enc is deterministic. We denote DPKE
to stand for a determined PKE.

Definition 2 (Correctness [4]). A public-key encryption scheme PKE is δ-
correct if E[max

m∈M
Pr[Dec(sk, c) �= m : c ← Enc(pk,m)]] ≤ δ, where the expecta-

tion is taken over (pk, sk) ← Gen. A PKE is perfectly correct if δ = 0.

Definition 3 (DS-secure DPKE [10]). Let DM denote an efficiently sam-
pleable distribution on a set M. A DPKE scheme (Gen,Enc,Dec) with plaintext
and ciphertext spaces M and C is DM-disjoint simulatable if there exists a PPT
algorithm S that satisfies the following,

(1) Statistical disjointness:

DisjPKE,S := max
(pk,sk)∈Gen(1λ;Rgen)

Pr[c ∈ Enc(pk,M) : c ← S(pk)]

is negligible, where Rgen denotes a randomness space for Gen.
(2) Ciphertext indistinguishability: For any PPT adversary A,

AdvDS-IND

PKE,DM,S(A) :=

∣∣
∣∣∣∣

Pr
[
A(pk, c∗) → 1 :

(pk, sk) ← Gen;m∗ ← DM;
c∗ = Enc(pk,m∗)]

]

−Pr[A(pk, c∗) → 1 : (pk, sk) ← Gen; c∗ ← S(pk)]

∣∣
∣∣∣∣

is negligible.

Definition 4 (OW-ATK-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. For ATK ∈ {CPA,VA,
qPCA, qPVCA} [11], we define OW-ATK games as in Fig. 6, where

OATK :=

⎧
⎪⎪⎨

⎪⎪⎩

⊥ ATK = CPA
Val(·) ATK = VA
Pco(·, ·) ATK = qPCA

Pco(·, ·),Val(·) ATK = qPVCA.

Define the OW-ATK advantage function of an adversary A against PKE as
.
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Fig. 6. Games OW-ATK (ATK ∈ {CPA, VA, qPCA, qPVCA}) for PKE, where OATK

is defined in Definition 4. In games qPCA and qPVCA, the adversary A can query the
Pco oracle with quantum state.

IND-CPA for PKE

1 : (pk, sk) ← Gen

2 : b ← {0, 1}
3 : (m0, m1)←A(pk)

4 : c∗ ← Enc(pk, mb)

5 : b′ ← A(pk, c∗)

6 : return b′ =?b

IND-CCA for KEM

1 : (pk, sk) ← Gen

2 : b
$← {0, 1}

3 : (K∗
0 , c∗) ← Encaps(pk)

4 : K∗
1

$← K
5 : b′ ← ADecaps(pk, c∗, K∗

b )

6 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗

2 : return ⊥
3 : else return

4 : K := Decaps(sk, c)

Fig. 7. IND-CPA game for PKE and IND-CCA game for KEM.

Definition 5 (IND-CPA-secure PKE). Define IND − CPA game of PKE
as in Fig. 7 and the IND − CPA advantage function of an adversary A against
PKE as .

Definition 6 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms. The key generation algorithm Gen outputs a key
pair (pk, sk). The encapsulation algorithm Encaps, on input pk, outputs a tuple
(K, c), where K ∈ K and c is said to be an encapsulation of the key K. The
deterministic decapsulation algorithm Decaps, on input sk and an encapsulation
c, outputs either a key K := Decaps(sk, c) ∈ K or a rejection symbol ⊥/∈ K.

Definition 7 (IND-CCA-secure KEM). We define the IND − CCA game
as in Fig. 7 and the IND − CCA advantage function of an adversary A against
KEM as .
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B Proof of Theorem2

Proof. Let B be an adversary against the OW-qPCA security of PKE′, issuing at
most qPC queries to the oracle PCO, at most qG queries to the random oracle
G. Denote ΩG as the sets of all functions G : M → R. Let G′ be a random
function such that G′(m) is sampled according to the uniform distribution in
Rgood(pk, sk,m), where Rgood(pk, sk,m) := {r ∈ R : Dec(sk,Enc(pk,m; r)) =
m}. Let ΩG′ be the set of all functions G′. Let δ(pk, sk,m) = |Rbad(pk,sk,m)|

|R| as
the fraction of bad randomness, where Rbad(pk, sk,m) = R \ Rgood(pk, sk,m).
δ(pk, sk) = maxm∈M δ(pk, sk,m). δ = E[δ(pk, sk)], where the expectation is
taken over (pk, sk)←Gen. Consider the games in Figs. 8 and 9.

Game G0. Since game G0 is exactly the OW-qPCA game,

Pr[GB
0 ⇒ 1] = AdvOW−qPCA

PKE
′ (B).

GAMES G0 − G6

1 : (pk, sk) ← Gen;G $← ΩG

2 : G′ $← ΩG′ ;G := G′ //G1 − G2

3 : m∗ $← M; r∗ := G(m∗)

4 : r∗ $← R //G6

5 : c∗ := Enc(pk, m∗; r∗)//G0 − G6

6 : g(·) := Enc(pk, ·;G(·))//G0 − G4

7 : m′ ← BG,PCO(pk, c∗)//G0 − G4

8 : G̈ = G; G̈(m∗) $← R//G5 − G6

9 : g(·) := Enc(pk, ·; G̈\m∗(·))//G5 − G6

10 : m′ ← BG̈\m∗,PCO(pk, c∗)//G5 − G6

11 : Query G with input m′//G4 − G6

12 : return m′ =?m∗

Pco(m,c) //G0 − G1

1 : if m /∈ M
2 : return ⊥
3 : else return

4 : Dec′(sk, c) =?m

PCO (m, c) //G2 − G6

1 : if m /∈ M
2 : return ⊥
3 : else return

4 : g(m) =?c

Fig. 8. Games G0-G6 for the proof of Theorem 2

Game G1. In game G1, we replace G by G′ that uniformly samples from “good”
randomness at random, i.e., G′ $← ΩG′ . Following the same analysis as in the
proof of Theorem1, we can have

∣∣Pr[GB
0 ⇒ 1] − Pr[GB

1 ⇒ 1]
∣∣ ≤ 2qG

√
δ.
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GAMES G6

1 : (pk, sk) ← Gen;G $← ΩG

2 : m∗ $← M; r∗ $← R
3 : c∗ := Enc(pk, m∗; r∗)

4 : g(·) := Enc(pk, ·;G\m∗(·))
5 : m′ ← BG\m∗,PCO(pk, c∗)

6 : Query G with input m′

7 : return m′ =?m∗

PCO (m, c) //G6 − G7

1 : if m /∈ M return ⊥
2 : else return

3 : g(m) =?c

GAMES G7

1 : (pk, sk) ← Gen;G $← ΩG

2 : m∗, m∗
1

$← M; r∗ $← R
3 : c∗ := Enc(pk, m∗

1; r
∗)

4 : g(·) := Enc(pk, ·;G\m∗(·))
5 : m′ ← BG\m∗,PCO(pk, c∗)

6 : Query G with input m′

7 : return m′ =?m∗

Fig. 9. Game G6 and game G7 for the proof of Theorem 2

Game G2. In game G2, the PCO oracle is changed that it makes no
use of the secret key any more. Particularly, when B queries PCO oracle,
Enc(pk,m;G(m)) =?c is returned instead of Dec′(sk, c) =?m. It is easy to ver-
ify that Dec′(sk, c) =?m is equal to Dec(sk, c) =?m ∧ Enc(pk,m;G(m)) =?c.
Thus, the outputs of the PCO oracles in G1 and G2 merely differs for the case
of Dec(sk, c) �= m and Enc(pk,m;G(m)) = c. But, such a case does not exist
since G in this game only samples from “good” randomness. That is, the PCO
oracle in G2 always has the identical output with the one in G1. Therefore, we
have

Pr[GB
1 ⇒ 1] = Pr[GB

2 ⇒ 1].

Game G3. In game G3, we switch the G that only samples from “good” ran-
domness back to an ideal random oracle G. Then, similar to the case of G0 and
G1, the distinguishing problem between G2 and G3 can also be converted to the
distinguishing problem between G and G′. Using the same analysis method in
bounding the difference between G0 and G1, we can have

∣∣Pr[GB
2 ⇒ 1] − Pr[GB

3 ⇒ 1]
∣∣ ≤ 2qG

√
δ.

Game G4. In game G4, an additional query to G with classical state |m′〉|0〉 is
performed after B returns m′. Obviously, G4 has the same output as G3 and we
have

Pr[GB
3 ⇒ 1] = Pr[GB

4 ⇒ 1].
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Let G̈ be the function that G̈(m∗) = r̈∗, and G̈ = G everywhere else, where
r̈∗ is picked uniformly at random from R.

Game G5. In game G5, we replace G by a semi-classical oracle G̈\m∗. For a query
input, G̈\m∗ will first query OSC

m∗ , i.e., perform a semi-classical measurement,
and then query G̈. Let Find be the event that OSC

m∗ ever outputs 1 during semi-
classical measurements of the queries to G̈\m∗. We note that

Pr[GB
5 ⇒ 1 ∧ ¬Find : G5] = 0

since GB
5 ⇒ 1 implies that m′ = m∗ in G5, and G̈ is classically queried at m′

in G5
5. Applying Lemma 3 with X = M, Y = R, S = {m∗}, O1 = G, O2 = G̈

and z = (pk, c∗), we can have
∣∣
∣∣

√
Pr[GB

4 ⇒ 1] −
√

Pr[GB
5 ⇒ 1 ∧ ¬Find : G5]

∣∣
∣∣ ≤

√
(qG + 2)Pr[Find : G5].

Game G6. In game G6, we replace r∗ := G(m∗) by r∗ $← R. Since G(m∗) is only
used once and independent of the oracles G̈ and PCO,

Pr[Find : G5] = Pr[Find : G6].

Note that G(m∗) is never used in G6, we can just replace G
$← ΩG; G̈ =

G; G̈(m∗) $← R by G̈
$← ΩG. For brevity and readability, we will substitute the

notation G̈ with notation G. Then, game G6 can be rewritten as in Fig. 9.

Game G7. In game G7, we replace c∗ = Enc(pk,m∗; r∗) by c∗ = Enc(pk,m∗
1; r

∗),

where m∗
1

$← M. Note that the information of m∗ in this game only exists in
the oracle G\m∗, by Lemma 4 we have

Pr[Find : G7] ≤ 4
qG + 1
|M| .

Next, we show that any adversary distinguishing G6 from G7 can be con-
verted into an adversary against the IND-CPA security of underlying PKE
scheme. Construct an adversary A on input (1λ, pk) as in Fig. 10, where Find
is 1 iff the event Find that OSC

m0
ever outputs 1 during semi-classical measure-

ments of the queries to G\m0 happens. Then, according to Lemma 1, if b′′ = 0,
A perfectly simulates G6 and Pr[Find : G6] = Pr[1 ← A : b′′ = 0]. If b′′ = 1,
A perfectly simulates G7 and Pr[Find : G7] = Pr[1 ← A : b′′ = 1]. Since

|Pr[Find : G6] − Pr[Find : G7]| = 2AdvIND-CPA

PKE
(A).

5 For a classical query input m∗, OSC
m∗ always outputs 1.
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A(1λ, pk)

1 : m∗, m∗
1

$← M;m0 = m∗;m1 = m∗
1

2 : b′′ $← {0, 1}; r∗ $← R
3 : c∗ = Enc(pk, mb′′ ; r∗)

4 : Pick a 2qG-wise function G

5 : g(·) := Enc(pk, ·;G\m0(·))
6 : m′ ← BG\m0,PCO(pk, c∗)

7 : Query G with input m′

8 : return Find

PCO (m, c)

1 : if m /∈ M
2 : return ⊥
3 : else return

4 : g(m) =?c

Fig. 10. Adversary A for the proof of Theorem 2

Finally, combing this with the bounds derived above, we can conclude that

AdvOW−qPCA

PKE
′ (B) ≤ 4qG

√
δ + 2(qG + 2)AdvIND-CPA

PKE
(A) + 4

(qG + 2)2

|M| .

��
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Quantum Random Oracle Model
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Musashino-shi, Tokyo 180-8585, Japan
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Abstract. This paper studies indistinguishability against quantum
chosen-ciphertext attacks (IND-qCCA security) of key-encapsulation
mechanisms (KEMs) in quantum random oracle model (QROM). We
show that the SXY conversion proposed by Saito, Yamakawa, and
Xagawa (EUROCRYPT 2018) and the HU conversion proposed by Jiang,
Zhang, and Ma (PKC 2019) turn a weakly-secure deterministic public-
key encryption scheme into an IND-qCCA-secure KEM scheme in the
QROM. The proofs are very similar to that for the IND-CCA security
in the QROM, easy to understand, and as tight as the original proofs.

Keywords: Tight security · Quantum chosen-ciphertext security ·
Post-quantum cryptography · KEM

1 Introduction

Quantum Superposition Attacks: Scalable quantum computers will threaten clas-
sical cryptography because of efficient quantum algorithms, e.g., Grover’s algo-
rithm for DB search [Gro96] and Shor’s algorithms for factorization and dis-
crete logarithms [Sho97]. Hence, we study classical cryptography secure against
quantum adversaries (see e.g., the technical report from NIST [CJL+16]). More-
over, several researchers studied stronger quantum adversaries that can mount
quantum superposition attacks, that is, quantum adversaries that can obtain the
result of quantum computations with secret. For example, the adversary can
obtain

∑
c ψc |c,D(k, c)〉 by querying

∑
c ψc |c〉, where D is a decryption circuit

of a symmetric-key encryption scheme and k is a secret key. There are sev-
eral quantum superposition attacks that break classically-secure cryptographic
primitives: Kuwakado and Morii [KM12] presented a quantum chosen-plaintext
attack against the Even-Mansour construction of a block cipher if the inner per-
mutation is publicly available as quantum oracle, which employed Simon’s algo-
rithm [Sim97] neatly. Kaplan, Leurent, Leverrier, and Naya-Plasencia [KLLN16]
also studied quantum superposition attacks against several block ciphers and

c© Springer Nature Switzerland AG 2019
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modes.1 Boneh and Zhandry [BZ13b] also gave a block cipher that is secure
against chosen-plaintext-and-ciphertext attacks but vulnerable against quantum
chosen-ciphertext attacks.

The stronger attack model in which adversaries can issue quantum queries
is worth investigating. We motivate to investigate this model from following
arguments:

– If a source code containing secret information is available, then a quantum
adversary can implement a quantum machine containing secret information
by itself and mount quantum superposition attacks. For example, a reverse
engineering of a physical machine containing secret information allows an
adversary to obtain an obfuscated code containing secret information. More-
over, white-box cryptography and obfuscation allows us to publish an obfus-
cated code containing secret information [GHS16].2

– In the future, quantum machines and quantum channels will be ubiquitous.
Protocols and primitives will handle quantum data as discussed in Damgård,
Funder, Nielsen, and Salvail [DFNS14].

– Even if they handle classical data, we can consider the quantum-ubiquitous
world as Boneh and Zhandry discussed [BZ13a,BZ13b]. In this world, the
end-user device is quantum and, thus, the device should measure the final
quantum state and output a classical information, which prevents the quan-
tum superposition attacks. This last step would be eventually avoided by
an implementation bug or be circumvented by a neat hack of a quantum
adversary in the future.

– Moreover, if they handle classical data and are implemented in classi-
cal machines, one can consider special techniques that force the classical
machines behave quantumly. For example, Damgård, Funder, Nielsen, and
Salvail [DFNS14] and Gagliardoni, Hülsing, and Schaffner [GHS16] discussed
the ‘frozen smart-card’ scenario.

Security of PKE and KEM against Quantum Chosen-Ciphertext Attacks: Boneh
and Zhandry [BZ13b] introduced the security against quantum chosen-ciphertext
attacks (qCCA security in short) for public-key encryption (PKE), which is the
security against quantum adversaries that make quantum decryption queries.
Boneh and Zhandry [BZ13b] showed that a PKE scheme obtained by applying
the Canetti-Halevi-Katz conversion [BCHK07] to an identity-based encryption
(IBE) scheme and one-time signature is IND-qCCA-secure if the underlying
IBE scheme is selectively-secure against quantum chosen-identity queries and
the underlying one-time signature scheme is (classically) strongly, existentially
unforgeable against chosen-message attacks. They also showed that if there exists

1 We also note that Anand, Targhi, Tabia, and Unruh [ATTU16] showed several modes
are secure against quantum superposition attacks if the underlying block cipher is
quantumly-secure PRF.

2 This means that if there is quantum chosen-plaintext or quantum chosen-ciphertext
attack that breaks a cryptographic scheme easily, we should not publish an obfus-
cated code by the white-box cryptography or obfuscation.
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an IND-CCA-secure PKE, then there exists an ill-formed PKE that is IND-CCA-
secure but not IND-qCCA-secure [BZ13b].

As far as we know, this is the only known PKE scheme that is proven to be
IND-qCCA secure (excluding the concurrent work by Zhandry [Zha18, 2018-
08-14 ver.]).

1.1 Our Contribution

We show that the SXY conversion in Saito, Yamakawa, and Xagawa [SXY18]
and the HU conversion proposed by Jiang, Zhang, and Ma [JZM19] turn a PKE
scheme into an IND-qCCA-secure KEM scheme in the QROM, if the underlying
PKE scheme is perfectly-correct and disjoint-simulatable. We also observed that
the perfect correctness can be relaxed as δ-correctness with negligible δ [HHK17].

Our idea is summarized as follows: In the last step of the IND-CCA security
proofs of the above conversions, the challenger should simulate the decapsulation
oracle on a query of any ciphertext c except the challenge ciphertext c∗. Roughly
speaking, we observe that, if this simulation is “history-free,” i.e., if the simula-
tion does not depend on previously made queries at all, this procedure can be
quantumly simulated by implementing this procedure in the quantum way.3 For
example, in the last step of the IND-CCA security proof in [SXY18], the decap-
sulation oracle on input c returns K = Hq(c) if c � c∗, where Hq is a random
function chosen by the reduction algorithm. Therefore, intuitively speaking, this
simulation is “history-free” and can be implemented quantumly.

1.2 Concurrent Works

Zhandry [Zha18, 2018-08-14 ver.] showed that the PKE scheme obtained by
applying the Fujisaki-Okamoto conversion [FO13] to a PKE scheme PKE and a
DEM scheme DEM is IND-qCCA-secure in the QROM, if PKE is OW-CPA-
secure and well-spread, DEM is OT-secure4. Zhandry proposed recording and
testing techniques to simulate the decryption oracles. We note that his security
proof is non-tight unlike ours.

1.3 Organizations

Section 2 reviews basic notations and definitions. Section 3 reviews security
notions of PKE and KEM. Section 4 gives our new qCCA-security proof for
the KEM in [SXY18] as known as the SXY conversion. Section 5 gives our new
qCCA-security proof for the KEM in [JZM19] as known as the HU conversion.

3 Boneh et al. [BDF+11] defined history-free reductions for signature schemes. They
also discussed the difficulties to model history-free reductions in the case of (public-
key) encryption schemes. We also do not define history-free property of reductions
for KEMs.

4 Any efficient adversary cannot distinguish E(k,m0) from E(k,m1) even if it chooses
m0 and m1 with |m0 | = |m1 |.
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2 Preliminaries

2.1 Notation

A security parameter is denoted by κ. We use the standard O-notations: O, Θ, Ω,
and ω. DPT and PPT stand for deterministic polynomial time and probabilistic
polynomial time. A function f (κ) is said to be negligible if f (κ) = κ−ω(1). We
denote a set of negligible functions by negl(κ). For two finite sets X and Y,
Map(X,Y) denote a set of all functions whose domain is X and codomain is Y.

For a distribution χ, we often write “ x ← χ,” which indicates that we take a
sample x from χ. For a finite set S, U(S) denotes the uniform distribution over
S. We often write “ x ← S” instead of “ x ← U(S).” For a set S and a deterministic
algorithm A, A(S) denotes the set {A(x) | x ∈ S}.

If inp is a string, then “out ← A(inp)” denotes the output of algorithm A
when run on input inp. If A is deterministic, then out is a fixed value and we
write “out := A(inp).” We also use the notation “out := A(inp; r)” to make the
randomness r explicit.

For the Boolean statement P, boole(P) denotes the bit that is 1 if P is true,
and 0 otherwise. For example, boole(b′ ?

= b) is 1 if and only if b′ = b.

2.2 Quantum Computation

We refer to [NC00] for basic of quantum computation.

Quantum Random Oracle Model. Roughly speaking, the quantum random
oracle model (QROM) is an idealized model where a hash function is modeled
as a publicly and quantumly accessible random oracle. See [BDF+11] for a more
detailed description of the model.

Lemma. We review useful lemmas regarding the quantum oracles.

Lemma 2.1. Let � be an integer. Let H : {0, 1}� × X → Y and H′ : X → Y be
two independent random oracles. If an unbounded time quantum adversary A

makes a query to H at most qH times, then we have
�
�
�Pr[s ← {0, 1}� : AH,H(s, ·)

() → 1] − Pr[AH,H′

() → 1]
�
�
� ≤ qH · 2

−�+1
2

where all oracle accesses of A can be quantum.

Though this seems to be a folklore, Saito et al. [SXY18] and Jiang et al. [JZC+18]
gave the proof.

The second one is the hardness of generic search problem. If the oracle F
rarely returns 1, then it is hard to distinguish F from the zero oracle N.
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Lemma 2.2 (Generic Search Problem ([ARU14, Lemma 37], [HRS16,
Thm.1], [JZC+18])). Let γ ∈ [0, 1]. Let Z be a finite set. Let F : Z → {0, 1} be
the following function: For each z, F(z) = 1 with probability pz at most γ and
F(z) = 0 else. Let N be the zero function, that is, N(z) = 0 for any z ∈ Z. If an
oracle algorithm A makes at most Q quantum queries to F (or N), then

�
�Pr[AF

() → 1] − Pr[AN
() → 1]

�
�
≤ 2q

√

γ.

Particularly, the probability that A finds a z satisfying F(z) = 1 is at most 2q
√

γ.

Simulation of Random Oracle. In the original quantum random oracle model
introduced by Boneh et al. [BDF+11], they do not allow a reduction algorithm
to access a random oracle, so it has to simulate a random oracle by itself. In
contrast, in this paper, we give a random oracle access to a reduction algorithm.
We remark that this is just a convention and not a modification of the model
since we can simulate a random oracle against quantum adversaries in several
ways; (1) 2q-wise independent hash function [Zha12], where q is the maximum
number of queries to the random oracle, (2) quantumly-secure PRF [BDF+11],
and (3) hash function modeled as quantum random oracle [KLS18]. In addition,
Zhandry proposed a new technique to simulate the quantum random oracle, the
compressed oracle technique [Zha18]. His new simulation of the quantum random
oracle is perfect even for unbounded number of queries. In what follows, we use
tRO to denote a time needed to simulate a quantum random oracle.

3 Definitions

3.1 Public-Key Encryption (PKE)

The model for PKE schemes is summarized as follows:

Definition 3.1. A PKE scheme PKE consists of the following triple of
polynomial-time algorithms (Gen,Enc,Dec).

– Gen(1κ ; rg) → (ek, dk ): a key-generation algorithm that on input 1κ , where κ
is the security parameter, outputs a pair of keys (ek, dk ). ek and dk are called
the encryption key and decryption key, respectively.

– Enc(ek,m; re) → c: an encryption algorithm that takes as input encryption
key ek and message m ∈ M and outputs ciphertext c ∈ C.

– Dec(dk, c) → m/⊥: a decryption algorithm that takes as input decryption key
dk and ciphertext c and outputs message m ∈ M or a rejection symbol ⊥ �M.

Definition 3.2. We say a PKE scheme PKE is deterministic if Enc is deter-
ministic. DPKE stands for deterministic public key encryption.

We review δ-correctness in Hofheinz, Hövelmanns, and Kiltz [HHK17].
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Definition 3.3 (δ-Correctness [HHK17]). Let δ = δ(κ). We say that PKE =

(Gen,Enc,Dec) is δ-correct if

Ex
(ek,dk )←Gen(1κ )

[

max
m∈M

Pr[c ← Enc(ek,m) : Dec(dk, c) � m]

]

≤ δ(κ).

In particular, we say that PKE is perfeclty correct if δ = 0.

We also define key’s accuracy.

Definition 3.4 (Accuracy). We say that a key pair (ek, dk ) is accurate if for
any m ∈ M,

Pr[c ← Enc(ek,m) : Dec(dk, c) = m] = 1.

Remark 3.1. We observe that if PKE is deterministic, then δ-correctness implies
that

Ex
(ek,dk )←Gen(1κ )

[(ek, dk ) is inaccurate] ≤ δ(κ).

In other words, if PKE is deterministic and δ-correct, then a key pair is accurate
with probability ≥ 1 − δ. We finally stress that, if PKE is deterministic but
derandomized by the random oracle, then we cannot apply the above argument.

Disjoint Simulatability. Saito et al. defined disjoint simulatability of
DPKE [SXY18]. Intuitively speaking, a DPKE scheme is disjoint-simulatable
if there exists a simulator that is only given an encryption key and generates a
“fake ciphertext” that is computationally indistinguishable from a real ciphertext
of a random message. Moreover, we require that a fake ciphertext falls in a valid
ciphertext space with negligible probability. The formal definition is as follows.

Definition 3.5 (Disjoint simulatability [SXY18]). Let D

M

denote an effi-
ciently sampleable distribution on a set M. A deterministic PKE scheme PKE =

(Gen,Enc,Dec) with plaintext and ciphertext spaces M and C is D

M

-disjoint-
simulatable if there exists a PPT algorithm S that satisfies the followings.

– (Statistical disjointness:)

DisjPKE,S(κ) := max
(ek,dk )∈Gen(1κ ;R)

Pr[c ← S(ek ) : c ∈ Enc(ek,M)]

is negligible, where R denotes a randomness space for Gen.
– (Ciphertext-indistinguishability:) For any PPT adversary A,

Advds-indPKE,D
M

,A,S(κ) :=

�
�
�
�
�
�
�

Pr
[
(ek, dk ) ← Gen(1κ);m∗

← D

M

;
c∗ := Enc(ek,m∗

) : A(ek, c∗) → 1

]

−Pr
[
(ek, dk ) ← Gen(1κ); c∗ ← S(ek ) : A(ek, c∗) → 1

]

�
�
�
�
�
�
�

is negligible.
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IND-QCCA. Boneh and Zhandry showed that if we consider a quantum
challenge oracle, then there exists a quantum adversary that can distinguish
the superposition of plaintexts [BZ13b]. They showed that indistinguishability
against fully-quantum chosen-plaintext attack (IND-fqCPA) and indistinguisha-
bility against fully-quantum chosen-left-right-plaintext attack (IND-fqlrCPA)
is impossible. (For the details, see their paper [BZ13b].) Thus, we only consider
a classical challenge oracle.

Fig. 1. Game for PKE schemes

We need to define the result of m ⊕ ⊥, where ⊥ � M. In order to do so, we
encode ⊥ as a bit string outside of the message space. The security definition
follows:

Definition 3.6 (IND-qCCA for PKE [BZ13b]). For any adversary A, we
define its IND-qCCA advantages against a PKE scheme PKE = (Gen,Enc,Dec)
as follows:

Advind-qccaPKE,A (κ) :=
�
�
�Pr[Exptind-qccaPKE,A (κ) = 1] − 1/2

�
�
� ,

where Exptind-qccaPKE,A (κ) is an experiment described in Fig. 1. We say that PKE is
IND-qCCA-secure if Advind-qccaPKE,A (κ) is negligible for any PPT adversary A.

3.2 Key Encapsulation Mechanism (KEM)

The model for KEM schemes is summarized as follows:

Definition 3.7. A KEM scheme KEM consists of the following triple of
polynomial-time algorithms (Gen,Encaps,Decaps):

– Gen(1κ ; rg) → (ek, dk ): a key-generation algorithm that on input 1κ , where κ
is the security parameter, outputs a pair of keys (ek, dk ). ek and dk are called
the encapsulation key and decapsulation key, respectively.

– Encaps(ek ; re) → (c,K): an encapsulation algorithm that takes as input encap-
sulation key ek and outputs ciphertext c ∈ C and key K ∈ K.
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– Decaps(dk, c) → K/⊥: a decapsulation algorithm that takes as input decap-
sulation key dk and ciphertext c and outputs key K or a rejection symbol
⊥ � K.

Definition 3.8 (δ-Correctness). Let δ = δ(κ). We say that KEM =

(Gen,Encaps,Decaps) is δ-correct if

Pr[(ek, dk ) ← Gen(1κ); (c,K) ← Encaps(ek ) : Decaps(dk, c) � K] ≤ δ(κ).

In particular, we say that KEM is perfeclty correct if δ = 0.

Fig. 2. Game for KEM schemes

IND-qCCA. We also define indistinguishability under quantum chosen-
ciphertext attacks (denoted by IND-qCCA) for KEM by following [BZ13b].

Definition 3.9 (IND-qCCA for KEM). For any adversary A, we define its
IND-qCCA advantage against a KEM scheme KEM = (Gen,Encaps,Decaps) as
follows:

Advind-qccaKEM,A (κ) :=
�
�
�Pr[Exptind-qccaKEM,A (κ) = 1] − 1/2

�
�
� ,

where Exptind-qccaKEM,A (κ) is an experiment described in Fig. 2.
We say that KEM is IND-qCCA-secure if Advind-qccaKEM,A (κ) is negligible for any

PPT adversary A.

4 IND-qCCA Security of SXY

Let PKE1 = (Gen1,Enc1,Dec1) be a deterministic PKE scheme and let H : M →

K and H′ : {0, 1}� × C → K be random oracles. We review the conversion SXY
in Fig. 3. We show that KEM := SXY[PKE1,H,H′

] is IND-qCCA-secure if the
underlying PKE1 is a disjoint-simulatable DPKE.
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Fig. 3. KEM := SXY[PKE1,H,H′

].

Theorem 4.1 (IND-qCCA security of SXY in the QROM). Let PKE1 be
a δ-correct DPKE scheme. Suppose that PKE1 is D

M

-disjoint-simulatable with
a simulator S. For any IND-qCCA quantum adversary A against KEM issuing
qH and qH′ quantum random oracle queries to H and H′ and qDec decapsulation
queries, there exists an adversary B against the disjoint simulatability of PKE1

such that

Advind-qccaKEM,A (κ) ≤ Advds-indPKE1,DM

,S,B(κ) + DisjPKE1,S(κ) + qH′
· 2

−�+1
2 + 2δ

and Time(B) ≈ Time(A) + qH · Time(Enc1) + (qH + qH′ + qDec) · tRO.

We note that the proof of Theorem 4.1 is essentially equivalent to that of the
CCA security in the QROM in [SXY18] except that at the final game we require
quantum simulation of decapsulation oracle.

Table 1. Summary of games for the Proof of Theorem4.1

Security Proof. We use a game-hopping proof. The overview of all games is
given in Table 1.

Game0: This is the original game, Exptind-qccaKEM,A (κ).

Game1: This game is the same as Game0 except that H′

(s, c) in the decapsulation
oracle is replaced with Hq(c) where Hq : C → K is another random oracle. We
remark that A is not given direct access to Hq.
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Game1.5: This game is the same as Game1 except that the random oracle H(·) is
simulated by H′

q(Enc1(ek, ·)) where H′

q is yet another random oracle. We remark
that a decapsulation oracle and generation of K∗

0 also use H′

q(Enc1(ek, ·)) as H(·)
and that A is not given direct access to H′

q.

Game2: This game is the same as Game1.5 except that the random oracle H(·)
is simulated by Hq(Enc1(ek, ·)) instead of H′

q(Enc1(ek, ·)). We remark that the
decapsulation oracle and generation of K∗

0 also use Hq(Enc1(ek, ·)) as H(·).

Game3: This game is the same as Game2 except that K∗

0 is set as Hq(c∗) and
the decapsulation oracle always returns Hq(c) as long as c � c∗. We denote the
modified decapsulation oracle by qDec’.

Game4: This game is the same as Game3 except that c∗ is set as S(ek ).
The above completes the descriptions of games. We clearly have

Advind-qccaKEM,A (κ) = |Pr[Game0 = 1] − 1/2|

by the definition. We upperbound this by the following lemmas.

Lemma 4.1. We have

|Pr[Game0 = 1] − Pr[Game1 = 1]| ≤ qH′
· 2

−�+1
2 .

Proof. This is obvious from Lemma 2.1. ��

Lemma 4.2. Let Acc and Acc denote the event that the key pair (ek, dk ) is
accurate and inaccurate, respectively. We have

|Pr[Game1 = 1] − 1/2| ≤ |Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2| + δ.

Proof. By the definition, we have

Pr[Acc] ≥ 1 − δ and Pr[Acc] ≤ δ.

We have

|Pr[Game1 = 1] − 1/2|

=

�
�
�Pr[Acc] · Pr[Game1 = 1 | Acc] + Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2

�
�
�

≤ Pr[Acc] · Pr[Game1 = 1 | Acc] + |Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2|

≤ Pr[Acc] + |Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2|
≤ |Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2| + δ

as we wanted. ��

Lemma 4.3. We have

Pr[Game1 = 1 | Acc] = Pr[Game1.5 = 1 | Acc].
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Proof. Since we assume that the key pair (ek, dk ) of PKE1 is accurate, Enc1(ek, ·)
is injective. Therefore, if H′

q(·) is a random function, then H′

q(Enc1(ek, ·)) is also
a random function. Remarking that access to H′

q is not given to A, it causes no
difference from the view of A if we replace H(·) with H′

q(Enc1(ek, ·)). ��

Lemma 4.4. We have

Pr[Game1.5 = 1 | Acc] = Pr[Game2 = 1 | Acc].

Proof. We say that a ciphertext c is valid if we have Enc1(ek,Dec1(dk, c)) = c
and invalid otherwise. We remark that Hq is used only for decrypting an invalid
ciphertext c as Hq(c) in Game1.5. This means that a value of Hq(c) for a valid c
is not used at all in Game1.5.

On the other hand, any output of Enc1(ek, ·) is valid due to the accuracy of
(ek, dk ). Since H′

q is only used for evaluating an output of Enc1(ek, ·), a value of
H′

q(c) for an invalid c is not used at all in Game1.5.
Hence, it causes no difference from the view of A if we use the same random

oracle Hq instead of two independent random oracles Hq and H′

q. ��

Lemma 4.5. We have

Pr[Game2 = 1 | Acc] = Pr[Game3 = 1 | Acc].

Proof. Since we set H(·) := Hq(Enc1(ek, ·)), for any valid c and m := Dec1(dk, c),
we have H(m) = Hq(Enc1(ek,m)) = Hq(c). Therefore, responses of the decapsula-
tion oracle are unchanged. We also have H(m∗

) = Hq(c∗). ��

Lemma 4.6. We have

|Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2| ≤ |Pr[Game3 = 1] − 1/2| + δ.

Proof. We have

|Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2|

≤

�
�
�
�
�

Pr[Acc] · Pr[Game3 = 1 | Acc] + Pr[Acc] · Pr[Game3 = 1 | Acc]
−Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2

�
�
�
�
�

≤

�
�
�Pr[Game3 = 1] − 1/2 − Pr[Acc] · Pr[Game3 = 1 | Acc]

�
�
�

≤ |Pr[Game3 = 1] − 1/2| + Pr[Acc] · Pr[Game3 = 1 | Acc]

≤ |Pr[Game3 = 1] − 1/2| + Pr[Acc]
≤ |Pr[Game3 = 1] − 1/2| + δ.

In the third inequality, we use the fact that for any reals a, b, and c with
c ≥ 0, we have |a − b − c| ≤ |a − b| + c. (See Lemma A.1 for the proof.) We
use this inequality by setting a = Pr[Acc] · Pr[Game3 = 1 | Acc], b = 1/2 and
c = Pr[Acc] · Pr[Game3 = 1 | Acc]. ��
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Lemma 4.7. There exists a quantum adversary B such that

|Pr[Game3 = 1] − Pr[Game4 = 1]| ≤ Advds-indPKE1,DM

,S,B(κ).

and Time(B) ≈ Time(A) + qH · Time(Enc1) + (qH + qH′ + qDec) · tRO.

Proof. We construct an adversary B, which is allowed to access two random
oracles Hq and H′, against the disjoint simulatability as follows5.

B

Hq,H′

(ek, c∗) : It picks b ← {0, 1}, sets K∗

0 := Hq(c∗) and K∗

1 ← K, and invokes
b′ ← A

H,H′,qDec’
(ek, c∗,K∗

b
) where A

′s oracles are simulated as follows.
– H(·) is simulated by Hq(Enc1(ek, ·)).
– H′ can be simulated because B has access to an oracle H′.
– qDec’(·) is simulated by filtering c∗ and using Hq(·); that is, on input
∑

c,z φc,z |c, z〉, B returns
∑

c�c∗,z φc,z |c, z ⊕ Hq(c)〉 +
∑

z φc∗,z |c
∗, z ⊕ ⊥〉.

Finally, B returns boole(b ?
= b′).

This completes the description of B. It is easy to see that B perfectly simu-
lates Game3 if c∗ = Enc1(ek,m∗

) and Game4 if c∗ = S(ek ). Therefore, we have

|Pr[Game3 = 1] − Pr[Game4 = 1]| ≤ Advds-indPKE1,DM

,S,B(κ)

as wanted. Since H is simulated by one evaluation of Enc1 plus one evaluation of a
random oracle Hq, and H′ and qDec’ are simulated by one evaluation of random
oracles, we have Time(B) ≈ Time(A) + qH · Time(Enc1) + (qH + qH′ + qDec) · tRO.��

Lemma 4.8. We have

|Pr[Game4 = 1] − 1/2| ≤ DisjPKE1,S(κ).

Proof. Let Bad denote the event that c∗ is in Enc1(ek,M) in Game4. It is easy
to see that we have

Pr[Bad] ≤ DisjPKE1,S(κ).

When Bad does not occur, i.e., c∗ � Enc1(ek,M), A obtains no information about
K∗

0 = Hq(c∗). This is because queries to H only reveal Hq(c) for c ∈ Enc1(ek,M),
and qDec’(c) returns ⊥ if c = c∗. Therefore, we have

Pr[Game4 = 1 | Bad] = 1/2.

Combining the above, we have

|Pr[Game4 = 1] − 1/2|

=

�
�
�Pr[Bad] · (Pr[Game4 = 1 | Bad] − 1/2) + Pr[Bad] · (Pr[Game4 = 1 | Bad] − 1/2)

�
�
�

≤ Pr[Bad] +
�
�
�Pr[Game4 = 1 | Bad] − 1/2

�
�
�

≤ DisjPKE1,S(κ)

as we wanted. ��

5 We allow a reduction algorithm to access the random oracles. See Subsect. 2.2 for
details.
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Proof (Proof of Theorem 4.1). Combining all lemmas in this section, we obtain
the following inequality:

Advind-qccaKEM,A (κ) = |Pr[Game0 = 1] − 1/2|

≤ |Pr[Game1 = 1] − 1/2| + qH′
· 2

−�+1
2

≤ |Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2| + δ + qH′
· 2

−�+1
2

= |Pr[Acc] · Pr[Game1.5 = 1 | Acc] − 1/2| + δ + qH′
· 2

−�+1
2

= |Pr[Acc] · Pr[Game2 = 1 | Acc] − 1/2| + δ + qH′
· 2

−�+1
2

= |Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2| + δ + qH′
· 2

−�+1
2

≤ |Pr[Game3 = 1] − 1/2| + 2δ + qH′
· 2

−�+1
2

≤ |Pr[Game4 = 1] − 1/2| + Advds-indPKE1,DM

,S,B(κ) + 2δ + qH′
· 2

−�+1
2

≤ DisjPKE1,S(κ) + Advds-indPKE1,DM

,S,B(κ) + 2δ + qH′
· 2

−�+1
2 .

��

Fig. 4. KEM := HU[PKE1,H,H′

].

5 IND-qCCA Security of HU

Very recently, Jiang, Zhang, and Ma [JZM19] proposed a conversion HU, which
allows an explicit rejection but requires additional hash value c2 of m. Let
PKE1 = (Gen1,Enc1,Dec1) be a deterministic PKE scheme and let H : M → K

and H′ : M → H be random oracles. We review the conversion HU in Fig. 4.
We show that KEM := HU[PKE1,H,H′

] is IND-qCCA-secure if the underlying
PKE1 is a disjoint-simulatable DPKE.

Theorem 5.1 (IND-qCCA security of HU in the QROM). Let PKE1 be a
δ-correct DPKE scheme. Suppose that PKE1 is D

M

-disjoint-simulatable with a
simulator S. For any IND-qCCA quantum adversary A against KEM issuing
qH and qH′ quantum random oracle queries to H and H′ and qDec decapsulation
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queries, there exists an adversary B against the disjoint simulatability of PKE1

such that

Advind-qccaKEM,A (κ) ≤ Advds-indPKE1,DM

,S,B(κ) + DisjPKE1,S(κ) + 2qDec · |H |

−1/2 + 2δ

and Time(B) ≈ Time(A) + (qH + qH′
) · Time(Enc1) + (qH + qH′ + 2qDec) · tRO.

The proof of Theorem 5.1 follows.

Table 2. Summary of games for the Proof of Theorem 5.1. We let g(·) = Enc1(ek, ·).

Security Proof. We use a game-hopping proof. The overview of all games is
given in Table 2.

Game0: This is the original game, Exptind-qccaKEM,A (κ).

Game1: This game is the same as Game0 except that the random oracle H(·) and
H′

(·) are simulated by Hq(Enc1(ek, ·)) and H′

q(Enc1(ek, ·)), respectively, where
Hq : C → K and H′

q : C → H are random oracles. We remark that a decapsula-
tion oracle and generation of K∗

0 also use Hq(Enc1(ek, ·)) as H(·), and generation
of c∗2 uses H′

q(Enc1(ek, ·)) as H′

(·). We also remark that A is not given direct
access to Hq and H′

q.

Game2: This game is the same as Game1 except that the decapsulation oracle
returns K := Hq(c1) if c1 = Enc1(ek,m) and H′

q(c1) = c2, instead returns K := H(m)
if c1 = Enc1(ek,m) and H′

(m) = c2.

Game3: This game is the same as Game2 except that the decapsulation oracle
returns K := Hq(c1) if H′

q(c1) = c2. That is, the decapsulation oracle never use
the re-encryption check.

Game4: This game is the same as Game3 except that c∗1 is set as S(ek ).
The above completes the descriptions of games. We clearly have

Advind-qccaKEM,A (κ) = |Pr[Game0 = 1] − 1/2|

by the definition. We upperbound this by the following lemmas.
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Lemma 5.1. Let Acc denote the event that the key pair (ek, dk ) is accurate. We
have

|Pr[Game0 = 1] − 1/2| ≤ |Pr[Acc] · Pr[Game0 = 1 | Acc] − 1/2| + δ.

We omit the proof, since the proof is the same as that of Lemma 4.2.

Lemma 5.2. We have

Pr[Game0 = 1 | Acc] = Pr[Game1 = 1 | Acc].

Proof. Since we assume that the key pair is accurate, Enc1(ek, ·) is injective.
Therefore, if Hq(·) (and H′

q(·), resp.) is a random function, then Hq(Enc1(ek, ·))
(and H′

q(Enc1(ek, ·)), resp.) is also a random function. Remarking that access to
Hq and H′

q is not given to A, it causes no difference from the view of A if we
replace H(·) (and H′

(·), resp.) with Hq(Enc1(ek, ·)) (and H′

q(Enc1(ek, ·)), resp.). ��

Lemma 5.3. We have

Pr[Game1 = 1 | Acc] = Pr[Game2 = 1 | Acc].

Proof. This change is just conceptual. Suppose that c1 = Enc1(ek,m). We have
that c2 = H′

(m) holds if and only if c2 = H′

q(c1) and K = H(m) = Hq(c1). ��

Lemma 5.4. We have

|Pr[Game2 = 1 | Acc] − Pr[Game3 = 1 | Acc]| ≤ 2qDec |H |

−1/2 .

Proof. Recall that we have H′

(m) = H′

q(Enc(ek,m)) and H′

q(c1) = c2.
Let us see the details how the decapsulation oracle treats the query |c1, c2, z〉.

Let m = Dec1(dk, c1).

– Case 1 that c1 = Enc1(ek,m): in this case, the decapsulation oracles in both
games return |c1, c2, z ⊕ K〉, where K := Hq(c1) or ⊥ depending on that c2 =

H′

q(c1).
– Case 2 that c1 � Enc1(ek,m) and c2 � H′

q(c2): In this case, the decapsulation
oracles in both games return |c1, c2, z ⊕ ⊥〉.

– Case 3 that c1 � Enc1(ek,m) and c2 = H′

q(c1): In this case, the decapsulation
oracle in Game2 returns |c1, c2, z ⊕ ⊥〉, but the decapsulation oracle in Game3
returns |c1, c2, z ⊕ Hq(c1)〉.

If the query is classical, we can argue the difference as in [JZM19]: Since the
adversary cannot access to H′

q directly, it cannot know the value of H′

q(c1) if c1
lies outside of Enc(ek, ·). Therefore, any c2 hits the value H′

q(c1) with probability
at most 1/|H |.

Even if the query is quantum, the problem is distinguishing problem and we
invoke Lemma2.2. We now reduce from generic search problem to distinguishing
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Game2 with Game3. We define the distribution DF over F := { f : C×H → {0, 1}}
as follows: for each c1 ∈ C, choose hc1 ← H uniformly at random and set

f (c1, h) :=

{
1 if h = hc1
0 otherwise.

For each (c1, h), we have Pr[ f (c1, h) = 1] ≤ |H |

−1.
The reduction algorithm is defined as follows: Suppose that we are given

f : C ×H → {0, 1}, which is chosen according to DF or set as the zero function
N. We construct H, H′, and the decapsulation oracle as follows:

– Hq and H′

q: we choose Hq |Enc1(ek,M)

and H′

q |Enc1(ek,M)

uniformly at random.
– H: on input |m, z〉, it returns |m, z ⊕ Hq(Enc1(ek,m))〉.
– H′: on input |m, z〉, it returns |m, z ⊕ H′

q(Enc1(ek,m))〉.
– qDecc∗ : On input |c1, c2, z〉, it computes m = Dec1(dk, c1) and computes K as

follows:
• if c1 = c∗1 and c2 = c∗2, then let K = ⊥.
• if c1 = Enc1(ek,m) and c2 = H′

q(c1), then let K = Hq(c1).
• if c1 = Enc1(ek,m) and c2 � H′

q(c1), then let K = ⊥.
• if c1 � Enc1(ek,m) and f (c1, c2) = 1, then let K = Hq(c1).
• if c1 � Enc1(ek,m) and f (c1, c2) = 0, then let K = ⊥.

it returns |c1, c2, z ⊕ K〉.

If f = N, then this algorithm perfectly simulates Game2. On the other hand,
if f ← DF , then this algorithm perfectly simulates Game3, since any adversary
cannot access H′

q on C \ Enc(ek,M). Thus, according to Lemma2.2, we have
upperbound 2qDec |H |

−1/2 as we wanted. ��

Lemma 5.5. We have

|Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2| ≤ |Pr[Game3 = 1] − 1/2| + δ.

We omit the proof, since the proof is the same as that of Lemma 4.6.

Lemma 5.6. There exists an adversary B such that

|Pr[Game3 = 1] − Pr[Game4 = 1]| ≤ Advds-indPKE1,DM

,S,B(κ).

and Time(B) ≈ Time(A) + qH · Time(Enc1) + (qH + qH′ + qDec) · tRO.

Proof. Let g(·) := Enc1(ek, ·). For ease of notation, we define a new function
fHq,H′

q
: C ×H → K ∪ {⊥} as follows:

fHq,H′

q
(c1, c2) :=

{
Hq(c1) if H′

q(c1) = c2
⊥ otherwise.

We construct an adversary B, which is allowed to access two random oracles Hq

and H′

q, against the disjoint simulatability as follows (See footnote 5).
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B

Hq,H′

q
(ek, c∗1) : It picks b ← {0, 1}, sets K∗

0 := Hq(c∗1) and K∗

1 ← K, and invokes
b′ ← A

H,H′,Dec
′

(ek, c∗1,K
∗

b
) where A

′s oracles are simulated as follows.
– H(·) is simulated by Hq(Enc1(ek, ·)).
– H′

(·) is simulated by H′

q(Enc1(ek, ·)).
– Dec

′

(·) is simulated by filtering c∗1; on input
∑

c1,c2,z φc1,c2,z |c1, c2, z〉, B

returns
∑

c1�c∗1,z

φc1,c2,z |c1, c2, z ⊕ fHq,H′

q
(c1, c2)〉 +

∑

c2,z

φc∗1,c2,z |c
∗

1, c2, z ⊕ ⊥〉

Finally, B returns boole(b ?
= b′).

This completes the description of B.
Since c∗2 := Hq(c∗1), if c2 � c∗2, then the decapsulation oracle in both games

and fHq,H′

q
return ⊥ on input (c∗1, c2). Thus, we have

∑

c2,z

φc∗1,c2,z |c
∗

1, c2, z ⊕ ⊥〉 =
∑

c2�c∗2,z

φc∗1,c2,z |c
∗

1, c2, z ⊕ ⊥〉 + φc∗1,c∗2,z |c
∗

1, c
∗

2, z ⊕ ⊥〉

and B perfectly simulate the decapsulation oracle.
It is easy to see that B perfectly simulates Game3 if c∗1 = Enc1(ek,m∗

) and
Game4 if c∗1 ← S(ek ). Therefore, we have

|Pr[Game3 = 1] − Pr[Game4 = 1]| ≤ Advds-indPKE1,DM

,S,B(κ)

as wanted. We have Time(B) ≈ Time(A) + (qH + qH′
) · Time(Enc1) + (qH + qH′ +

2qDec) · tRO, since B invokes A once, H is simulated by one evaluation of Enc1
plus one evaluation of a random oracle, and H′ and Dec

′

are simulated by two
evaluations of random oracles. ��

Lemma 5.7. We have

|Pr[Game4 = 1] − 1/2| ≤ DisjPKE1,S(κ).

Proof. Let Bad denote the event that c∗1 ∈ Enc1(ek,M) happens in Game4. It is
easy to see that we have

Pr[Bad] ≤ DisjPKE1,S(κ).

When Bad does not occur, i.e., c∗1 � Enc1(ek,M), A obtains no information about
K∗

0 = Hq(c∗1). This is because queries to H only reveal Hq(c) for c ∈ Enc1(ek,M),
and Dec

′

(c) returns ⊥ if c = c∗1. Therefore, we have

Pr[Game4 = 1 | Bad] = 1/2.
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Combining the above, we have

|Pr[Game4 = 1] − 1/2|

=

�
�
�Pr[Bad] · (Pr[Game4 = 1 | Bad] − 1/2) + Pr[Bad] · (Pr[Game4 = 1 | Bad] − 1/2)

�
�
�

≤ Pr[Bad] +
�
�
�Pr[Game4 = 1 | Bad] − 1/2

�
�
�

≤ DisjPKE1,S(κ)

as we wanted. ��

Proof (Proof of Theorem 5.1). Combining all lemmas in this section, we obtain
the following inequality:

Advind-qccaKEM,A (κ) = |Pr[Game0 = 1] − 1/2|

≤ |Pr[Acc] · Pr[Game0 = 1 | Acc] − 1/2| + δ
= |Pr[Acc] · Pr[Game1 = 1 | Acc] − 1/2| + δ
= |Pr[Acc] · Pr[Game2 = 1 | Acc] − 1/2| + δ

≤ |Pr[Acc] · Pr[Game3 = 1 | Acc] − 1/2| + 2qDec |H |

−1/2 + δ

≤ |Pr[Game3 = 1] − 1/2| + 2qDec |H |

−1/2 + 2δ

≤ |Pr[Game4 = 1] − 1/2| + Advds-indPKE1,DM

,S,B(κ) + 2qDec |H |

−1/2 + 2δ

≤ DisjPKE1,S(κ) + Advds-indPKE1,DM

,S,B(κ) + 2qDec |H |

−1/2 + 2δ.

��
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A Simple Lemma

Lemma A.1. For any reals a, b, and c with c ≥ 0, we have

|a − b − c| ≤ |a − b| + c.

Proof. We consider the three cases below:

– Case a − b ≥ c ≥ 0: In this case, we have a − b − c ≥ 0. Thus, we have
|a − b − c| = a − b − c ≤ a − b + c = |a − b| + c.

– Case a − b ≤ 0 ≤ c: In this case, we have a − b − c ≤ 0. We have |a − b − c| =
−(a − b − c) = −(a − b) + c = |a − b| + c.

– Case 0 ≤ a − b ≤ c: Again, we have a − b − c ≤ 0. We have |a − b − c| =
−(a − b − c) = −(a − b) + c ≤ a − b + c = |a − b| + c.

In all three cases, we have |a − b − c| ≤ |a − b| + c as we wanted. ��
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Abstract. We speed up the isogeny-based “SeaSign” signature scheme
recently proposed by De Feo and Galbraith. The core idea in SeaSign is to
apply the “Fiat–Shamir with aborts” transform to the parallel repeated
execution of an identification scheme based on CSIDH. We optimize this
general transform by allowing the prover to not answer a limited num-
ber of said parallel executions, thereby lowering the overall probability
of rejection. The performance improvement ranges between factors of
approximately 4.4 and 65.7 for various instantiations of the scheme, at
the expense of roughly doubling the signature sizes.

Keywords: Isogeny-based cryptography · Signatures · SeaSign ·
Rejection sampling · Group actions

1 Introduction

Elliptic curves have become a staple in various cryptographic applications in
the past decades. In 1994, however, it was pointed out by Shor that a quantum
computer could solve the Discrete Logarithm Problem (DLP), which is the core
hardness assumption in elliptic-curve cryptography, in polynomial time [12]. For
that reason, some of the recent research has shifted towards isogeny-based cryp-
tography. In essence, the underlying mathematical problem is to find an isogeny
between two given elliptic curves over a finite field. According to current knowl-
edge, this problem can generally be assumed to be hard, even with the possible
advent of quantum computers in mind.

The first instances of isogeny-based cryptosystems were proposed by Cou-
veignes in 1997 [2], including a non-interactive key exchange protocol. His paper
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was not published at that time, and the idea was independently rediscovered
in 2006 by Rostovtsev and Stolbunov [11]. More recently, Jao and De Feo pro-
posed the so-called Supersingular Isogeny Diffie–Hellman (SIDH) scheme in
2011 [7]. This key-exchange protocol is the basis for SIKE [6], which was submit-
ted to the post-quantum standardization project led by NIST [10]. SIDH is inher-
ently different from the scheme of Couveignes and Rostovtsev–Stolbunov, mostly
due to the fact that the endomorphism rings of supersingular elliptic curves are
noncommutative. However, in 2018, Castryck, Lange, Martindale, Panny and
Renes adapted the Couveignes–Rostovtsev–Stolbunov scheme to supersingular
elliptic curves, which yields big efficiency improvements, and named the resulting
protocol “CSIDH” [1]. In essence, this variation is made possible by restricting
the family of curves under consideration to supersingular elliptic curves defined
over Fp instead of Fp2 .

CSIDH’s small key sizes prompted De Feo and Galbraith to transform it into
a signature scheme called SeaSign in the same year [4]. The construction uses the
Fiat–Shamir with aborts framework, a technique commonly used in lattice-based
cryptography [8], together with an isogeny-based identification scheme going
back to Couveignes [2] and Rostovtsev–Stolbunov [11]. Their paper presents
three different versions of SeaSign featuring various trade-offs between signature
size, public-key size, and secret-key size. One of these versions attains 128 bits
of security with signatures of less than one kilobyte. An issue impacting all of
these schemes, however, is that the signing and verification times are rather
substantial. Indeed, the basic SeaSign scheme takes (on average) almost two
days to sign a message on a typical CPU, whereas the variants with smaller
signatures or public keys still take almost ten minutes to sign (on average).

In this paper we tackle this performance issue in the more general setting
of using group actions in a “Fiat–Shamir with aborts” scheme. We first discuss
two (unfortunately mutually exclusive) adjustments that reduce the likelihood of
rejections, which decreases the expected number of failed signing attempts before
a success and hence makes signing more efficient. Next, we describe a modifi-
cation that significantly speeds up the signing process at the cost of a small
increase in signature size. The basic idea is to allow the prover to refuse answer-
ing a small fixed number of challenges, thereby reducing the overall probability
of aborting. To attain a given security level, the total number of challenges—and
correspondingly the signature size—will be somewhat larger than for standard
Fiat–Shamir with aborts. As an application of these general techniques, we ana-
lyze the resulting speed-up for the various versions of the SeaSign signature
scheme. The improvement is most noticeable when applied to the basic scheme:
the original signing cost goes down from almost two days to just over half an
hour. The other two, more advanced variants are still sped up by a factor of
four to roughly two minutes per signature. Even though this is still too slow for
most (if not all) applications, it is a significant improvement over the state of
the art, and the underlying ideas of these speed-ups might be useful for other
cryptographic schemes as well.
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1.1 Notation

The notation [a; b] denotes the integer range {a, ..., b}.
Fix n ≥ 1. Throughout, we will consider a transitive action of the abelian

group Z
n on a finite set X, with a fixed element E0 ∈ X. We will assume that

“short” vectors in Z
n are enough to reach “almost all” elements of X.1 Moreover,

we assume that the cost of computing the action [v]E of a vector v ∈ Z
n on an

element E ∈ X is linear in the 1-norm ‖v‖1 =
∑n

j=1|vj | of v. (We will argue in
Sect. 2.1 that these assumptions are satisfied in the CSIDH setting.)

2 Preliminaries

A good introductory reference for the applications of elliptic-curve isogenies in
cryptography are the lecture notes by De Feo [3].

2.1 CSIDH

Consider a supersingular elliptic curve E defined over Fp, where p is a large
prime. While the endomorphism ring End(E) of E over the algebraic closure of
Fp is noncommutative, the ring EndFp

(E) of endomorphisms defined over Fp is
an order O in the imaginary quadratic field Q(

√−p).
The ideal class group of EndFp

(E) = O is the quotient of the group of frac-
tional invertible ideals in O by the principal fractional invertible ideals in O,
and will be denoted cl(O). The group cl(O) acts on the set of Fp-isomorphism
classes of elliptic curves with Fp-rational endomorphism ring O through isoge-
nies. More specifically, when given an O-ideal a and an elliptic curve E with
EndFp

(E) = O, we define [a]E as the codomain of the isogeny ϕa : E → E/a
whose kernel is

⋂
α∈a ker α. This isogeny is well-defined and unique up to Fp-

isomorphism.
There are formulas for computing [a]E. However, for general a, this compu-

tation requires large field extensions and hence has superpolynomial time com-
plexity. To avoid this, CSIDH restricts to ideals of the form a =

∏n
i=1 l

ei
i , where

all li are prime ideals of small norm �i, and such that the action of li can be
computed entirely over the base field Fp. The curve [a]E can then be computed
by chaining isogenies of degrees �i. In principle the cost of computing the action
of li is in Θ(�i), but for small values of �i it is dominated by a full-size scalar
multiplication, which is why assuming cost |e1| + · · · + |en| for computing the
action of

∏n
i=1 l

ei
i , as mentioned in Sect. 1.1, comes close to the truth. (More-

over, in our setting, the |ei| are all identically distributed, hence the differences
in costs between various �i disappear on average.)

The CSIDH group action is defined as follows.

1 In other words: The action of Z
n on X factors through the quotient Q = Z

n/S,
where S ≤ Z

n is the stabilizer of any E ∈ X, and we assume that Q is “sufficiently”
covered by “short” vectors in Z

n under the quotient map Z
n � Q.
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Parameters. Integers n ≥ 1, B ≥ 0. A prime p of the form 4 · �1 · · · �n − 1,
with �i small distinct odd primes. The elliptic curve E0 : y2 = x3 + x over Fp.
Write X for the set of (Fp-isomorphism classes of) elliptic curves over Fp with
EndFp

(E) = O = Z[π], where π is the Fp-Frobenius endomorphism.

Group Action. A group element is represented2 by a vector (e1, ..., en) ∈ Z
n

sampled uniformly random from [−B;B]n, which defines the ideal a =
∏n

i=1 l
ei
i

with li = 〈�i, π−1〉. A public element is represented by a single coefficient A ∈ Fp,
describing the curve EA : y2 = x3 +Ax2 +x. The result of the action of an ideal
a on a public element A ∈ Fp, assuming that EA has the right endomorphism
ring O, is the coefficient B of the curve [a]EA : y2 = x3 + Bx2 + x.

The security assumption of the group action is that it is essentially a black-
box version of the group cl(O) on which anyone can efficiently act by translations.
In particular, given two elliptic curves E,E′ ∈ X, it should be hard to find an
ideal a of O such that E′ = [a]E.

Notice that it is not clear in general that the vectors in [−B;B]n cover
the whole group, or even a “large” fraction. Unfortunately, sampling uniformly
random from cl(O) is infeasible for large enough parameters, since there is no
known efficient way to compute the structure of cl(O) in that case. In fact,
knowing the exact class group structure would be sufficient to obtain much more
efficient signatures, since no rejection sampling would be required [4]. Under the
right assumptions however, the elements represented by vectors in [−B;B]n are
likely to cover a large fraction of the group as long as (2B + 1)n ≥ #cl(O). The
values suggested for (n,B) in [1] are (74, 5), which aim to cover a group of size
approximately 2256. This results in group elements of 32 bytes, public elements
of 64 bytes, and a performance of about 40ms per group action computation.
For more details, see [1].

As stated in Sect. 1.1, we will from now on abstract away the underlying
isogeny-based constructions and work in the setting of the group (Zn,+) acting
on a finite set X.

2.2 SeaSign

SeaSign [4] is a signature scheme based on a sketch of an isogeny-based identi-
fication scheme by Couveignes [2] and Stolbunov [13], in combination with the
“Fiat–Shamir with aborts” construction [8] from lattice-based cryptography to
avoid leakage. The identification part of SeaSign works as follows. Note that our
exposition differs from [4] for consistency with the following sections.

Parameters. Like CSIDH, and additionally integers δ ≥ 1 and S ≥ 2.3

2 Note this representation matches the assumptions in Sect. 1.1.
3 Technically there is no reason for δ to be an integer: it is sufficient that δ ∈ 1

B
· Z,

but we will assume δ ∈ Z throughout for simplicity.
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Keys. Alice’s private key is a list a = (a(1), ...,a(S−1)) of S − 1 vectors sampled
uniformly random from [−B;B]n ⊆ Z

n.
For i ∈ {1, ..., S − 1}, write Ei := [a(i)]E0, that is, the result of applying

the group element represented by a(i) ∈ Z
n; then Alice’s public key is the list

[a]E0 := (E1, ..., ES−1) of her secret vectors applied to the starting element E0.
This situation is summarized in Fig. 1.

Fig. 1. Structure of Alice’s key pair.

Identification. Alice samples an ephemeral vector b uniformly random from
the set [−(δ+1)B; (δ+1)B]n ⊆ Z

n. She then computes E = [b]E0 and commits
to E. On challenge c ∈ {0, ..., S − 1}, she computes r = b − a(c) (where a(0) is
defined as 0). If r ∈ [−δB; δB]n, she reveals r; else she rejects the challenge. Bob
verifies that [r]Ec = E.

See Fig. 2 for a visual representation of this protocol.

Fig. 2. The identification scheme in the scenario c = 2.

Since an attacker (who cannot break the underlying isogeny problems) has a
1/S chance of winning, this identification scheme provides log2 S bits of security.
In order to amplify the security level, Alice typically computes t ≥ 1 independent
vectors b1, ...,bt instead of just one. The verifier responds with t challenges
c1, ..., ct ∈ {0, ..., S −1}. Alice then computes ri = bi −a(ci) for all 1 ≤ i ≤ t and
reveals them if all of them are in [−δB; δB]n; else she rejects the challenge. In
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order to not have to reject too often, δ must be rather large; more specifically, δ
was chosen as nt in [4] to achieve a success probability of roughly 1/e.

As mentioned in the introduction, [4] gives three SeaSign constructions. The
original idea is the scheme above with S = 2, i.e., the public key is a single public
element. This results in a large t and therefore a very large signature. The second
scheme lets the number of private keys S range from 2 up to 216, which results
in smaller, faster signatures at the expense of larger public-key sizes.4

The final scheme reduced the size of the public key again by using a Merkle
tree, at the cost of increasing the signature size. We will not elaborate on all
those variants in detail.

To turn this identification scheme into a non-interactive signature proto-
col, the standard Fiat–Shamir transformation can be applied [5]. In essence,
Alice obtains the challenges c1, ..., ct herself by hashing the ephemeral public
elements [b1]E0, ..., [bt]E0 together with her message. Alice then sends her sig-
nature ([b1]E0, ..., [bt]E0; r1, ..., rt) to Bob, who can recompute the challenges
c1, ..., ct to verify that indeed [ri]Eci = [bi]E0 for all i ∈ {1, ..., t}.

3 The Improved Signature Scheme

In this section we describe our improvements.

3.1 Core Ideas

1. The first improvement is minor (but still significant) and concerns the identi-
fication scheme itself: the following observations result in two variants of the
scheme that are more efficient than the basic scheme.5

– Variant F : The ephemeral secret b is automatically independent of all
secrets a(i), hence can be revealed even if it lies outside of [−δB; δB]n.
We remark that this variant is described in [4] already but disregarded as
only a single signing attempt is examined. When taking into account the
average signing cost however, it can clearly improve performance, and we
will quantify these improvements.

– Variant T : Depending on the entries of the concrete private keys a(i),
the ephemeral secret b can be sampled from a smaller set than the
worst-case range used in SeaSign to reduce the probability of rejection.
Indeed, although the j-th entry in each a(i) is a priori sampled uniformly
in [−B;B], which gives rise to the interval [−(δ + 1)B; (δ + 1)B] for
the j-th coefficient of each ephemeral vector b, it is obviously useless
(since it will always be rejected) to sample the j-th coefficient outside
the interval [−δB + mj ; δB + Mj ] with mj = min{0, a

(1)
j , ..., a

(S−1)
j } and

Mj = max{0, a
(1)
j , ..., a

(S−1)
j }.

4 In [4], S is always a power of 2, but any S ≥ 2 works.
5 The acronyms F and T refer to “full” and “truncated” ranges, respectively.
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It is clear that Variant F and Variant T are mutually exclusive: in Variant T
the ephemeral secret b is sampled from a set that is dependent on the private
keys a(i), whereas for Variant F to work it is required that this sampling is
done completely independently.

2. The second improvement is more significant and modifies the “Fiat–Shamir
with aborts” transform as follows: assume the identification scheme uses s-
bit challenges (corresponding to a probability of 2−s that an attacker can
cheat), and that each execution has probability of rejection ε. The SeaSign
approach to attain security level λ is to simultaneously obtain t = �λ/s�
non-rejected executions of the identification protocol which happens with
probability (1 − ε)t. Our approach increases the total number of challenges,
but allows the prover to refuse answering a fixed number u of them, since this
tolerates much higher rejection probabilities at the cost of a relatively small
increase in public-key and signature size.

We now provide more details on each of the above ideas.

3.2 Identification Scheme

Parameters. Integers S ≥ 2 and δ ≥ 1.

Keys. Like in SeaSign (Sect. 2.2).

Identification. Using Alice’s key pair (a, [a]E0), a (log2 S)-bit identification
protocol can be constructed as follows:

Variant F Variant T
Alice samples a vector b uniformly random from the set ...

I =
[
−(δ + 1)B; (δ + 1)B

]n ⊆ Z
n . I =

n∏

j=1

[
−δB + mj ; δB + Mj

]
⊆ Z

n ,

where

mj = min{0, a
(1)
j , ..., a

(S−1)
j } ;

Mj = max{0, a
(1)
j , ..., a

(S−1)
j } .

She then computes E = [b]E0 and commits to E. On challenge
c ∈ {0, ..., S − 1}, she computes r = b − a(c) (where a(0) is defined as 0).

If c = 0 or r ∈ [−δB; δB]n, If r ∈ [−δB; δB]n, ...

... then she reveals r; else she rejects the challenge. Bob verifies that [r]Ec = E.

Lemma 1. The distribution of revealed vectors r is independent of a(c).
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Proof. This is trivial in Variant F in the event c = 0. For the other cases, note
that I is constructed such that r = b − a(c) is uniformly distributed on a set
containing Δ := [−δB; δB]n, no matter what a(c) is. Therefore, the distribution
of r conditioned on the event r ∈ Δ is uniform on Δ independently of a(c). �

Remark 1. Lemma 1 only talks about the conditional distribution of r if it is
revealed. Note that in Variant T , the probability that it can be revealed is still
correlated to the entries of a(c), which may have security implications. We show
in Sect. 3.3 how to get around this issue in a signature scheme.

3.3 Signature Scheme

Our improved signature scheme is essentially the “Fiat–Shamir with aborts” con-
struction also used in SeaSign (see Sect. 2.2), except that we allow the signer to
reject a few challenges in each signature. The resulting scheme is parameterized
by two integers t ≥ 0, denoting the number of challenges the signer must answer
correctly, and u ≥ 0, the number of challenges she may additionally refuse to
answer.

Write ID for (one of the variants of) the identification scheme in Sect. 3.2.

Keys. Alice’s identity key consists of a key pair (a, [a]E0) as in ID.

Signing. To sign a message m, Alice first generates a list b1, ...,bt+u of random
vectors, each sampled as the vector b in ID. She computes the corresponding
public elements [b1]E0, ..., [bt+u]E0 and hashes them together with the message
m to obtain a list of challenges c1, ..., ct+u ∈ {0, ..., S − 1}. To produce her
signature, she then traverses the tuples (bi, ci) in a random order, computing the
correct response ri = bi −a(ci) (as in ID) if possible and a rejection ✗ otherwise.
Once t successful responses have been generated, the remaining challenges are
all rejected in order not to leak any information about the rejection probability;
cf. Remark 1.6 Finally, the signature is

([b1]E0, ..., [bt+u]E0; r1, ..., rt+u) ,

where exactly u of the ri equal ✗. (If less than t challenges could be answered,
Alice aborts and retries the whole signing process with new values of bi.)

Verification. This again is standard: Bob first checks that at most u of the
t + u values ri are ✗. He then recomputes the challenges c1, ..., ct+u by hashing
the message m together with the ephemeral elements [bi]E0 and verifies that
[ri]Eci = [bi]E0 for all i ∈ {1, ..., t + u} with ri �= ✗.

6 This is why the tuples are processed in a random order: Proceeding sequentially and
rejecting the remaining tail still leaks, since the number of ✗ at the end would be
correlated to the rejection probability.
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Remark 2. The signatures can be shortened further: Sending those [bi]E0 with
ri �= ✗ is wasteful. It is enough to send the hash H of all ephemeral elements
[bi]E0 instead, since Bob can extract ci from H, recompute [bi]E0 as [ri]Eci ,
and verify in the end that the hash H was indeed correct.

Remark 3. As mentioned earlier, one can reduce the public-key size by using a
Merkle tree, but this does not significantly alter the computation time for any
part of the protocol. Given that the main focus of our adjustments to SeaSign
is speeding it up, we will therefore not investigate this avenue any further.

Security. The proof for the security for this scheme is completely analogous to
the original SeaSign scheme. This follows from Lemma 1 and the fact that there
are always a fixed number u of ✗ per signature in random positions. Instead of
reproducing the proof here, we refer the reader to [4].

4 Analysis and Results

In order to quantify our speed-ups compared to the original SeaSign scheme, we
analyze our adjustments in the same context as [4]. This means that (n,B) =
(74, 5) and log2 p ≈ 512. Furthermore we will require 128 bits of security and
will let S range through powers of two between 2 and 216.

As mentioned before, Variant F and Variant T are mutually exclusive. For
this reason, we computed the results for both cases to compare which performs
better under given conditions. Variant T clearly converges to the original SeaSign
scheme rapidly for growing S, while Variant F always keeps at least a little bit
of advantage. It is clear that from a certain value of S onward, Variant F will
always be better. For small S however, Variant T will outperform Variant F
rather significantly for average-case key vectors.

We now discuss how to optimize the parameters (t, u, δ) for a given S. The
main cost metric is the expected signing time7

δ · (t + u)/q ,

where q is the probability of a full signing attempt being successful (i.e., at most
u rejections ✗). This optimization problem depends on two random variables:

– The number Z of challenges that an attacker can successfully answer even
though he cannot break the underlying isogeny problems.

– The number A of challenges that Alice can answer without leaking, i.e., the
number of non-rejected challenges.

7 Other optimizations could look at the sum of signing and verification time, or even
take into account key generation time, but we will not delve into those options.
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Since the t + u challenges are independent, both Z and A are binomially dis-
tributed with count t + u. Let Tk,α denote the tail cumulative distribution func-
tion of Bink,α, i.e.,

Tk,α(x) =
k∑

i=x

(
k

i

)

αi(1 − α)k−i ,

which is the probability that a Bink,α-distributed variable attains a value of at
least x. The success probability for an attacker is 1/S, since he knows the correct
answer to at most one of S challenges c. In order to achieve 128 bits of security,
it is required that

Pr[Z ≥ t] = Tt+u,1/S(t) ≤ 2−128 .

This condition implies that for fixed S and t, there is a maximal value umax (t)
for u, the number of allowed rejections ✗, regardless of δ.

Let σ(δ) denote Alice’s probability of being able to answer (i.e., not reject ✗)
a single challenge for a given value of δ; hence A ∼ Bint+u,σ(δ). In order to find
the optimal (u, δ) for a given t, we need to minimize the expression

δ · (t + u)/q(t, u, δ) ,

where
q(t, u, δ) = Pr[A ≥ t] = Tt+u,σ(δ)(t)

is the probability of a full signing attempt being successful. The function σ
depends on the variant (F or T ). In case of Variant F we have

σ(δ) =
1
S

+
S − 1

S

(
2δB + 1

2(δ + 1)B + 1

)n

.

For Variant T , the function depends on the private keys in use. With fixed
private keys a(1), ..., a(S−1) and the notation mj = min{0, a

(1)
j , ..., a

(S−1)
j } and

Mj = max{0, a
(1)
j , ..., a

(S−1)
j } as before, the formula becomes

σ(δ) =
n∏

j=1

2δB + 1
2δB + 1 − mj + Mj

.

For our analysis we work with the expected probability over all possible keys.
Our results for the optimization problem can be found in Table 1. The

sage [14] code that computes these values can be found in AppendixA; it takes
about twelve minutes on a single core. We are quite confident that the values in
Table 1 are optimal, but cannot strictly claim so since we have not proven that
the conditions used in the script to terminate the search capture all optimal
values, although this seems reasonable to assume.

There are two major differences in the way we present our data compared
to [4]. First of all, we list the expected signing time instead of a single signing
attempt, which represents the real cost more accurately. Second, we express the
time in equivalents of “normal” CSIDH operations instead of in wall-clock time,
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Table 1. Parameters for our improved SeaSign variants, optimizing for signing time.
All of these choices provide ≥128 bits of security (of course assuming that the under-
lying isogeny problems are hard). Gray lines with variant “—” refer to the original
parameter selection methodology suggested in [4]. The signature sizes make use of the
observation in Remark 2. The “CSIDHs” columns express the computational load in
terms of equivalents of a “normal” CSIDH operation, i.e., with exponents in [−B; B]n,
making use of the assumption that the cost is linear in the 1-norm of the input vector.
Using current implementations [1,9], computing one “CSIDH”-512 takes approximately
40ms of wall-clock time on a standard processor. Finally, the rightmost column shows
the speed-up in signing and verification times compared to the original SeaSign scheme.

S t u δ Var. Public-key

bytes

Signature

bytes

Expected

signing

attempts

Expected

signing

CSIDHs

Expected

verifying

CSIDHs

Speed-up

factors

21 128 0 9472 — 64 b 19600 b 2.718 3295480 1212416

21 337 79 114 T 64 b 36838 b 1.058 50175 38418 65.7 | 31.6

22 64 0 4736 — 192 b 9216 b 2.718 823818 303104

22 144 68 133 T 192 b 18256 b 1.063 29962 19152 27.5 | 15.8

23 43 0 3182 — 448 b 5967 b 2.718 371862 136826

23 83 56 141 T 448 b 11695 b 1.078 21119 11703 17.6 | 11.7

24 32 0 2368 — 960 b 4320 b 2.718 205928 75776

24 59 58 119 F 960 b 9376 b 1.076 14985 7021 13.7 | 10.8

25 26 0 1924 — 1984 b 3442 b 2.717 135937 50024

25 43 50 111 F 1984 b 7301 b 1.085 11198 4773 12.1 | 10.5

26 22 0 1628 — 4032 b 2866 b 2.717 97322 35816

26 33 42 108 F 4032 b 5835 b 1.089 8824 3564 11.0 | 10.0

27 19 0 1406 — 8128 b 2440 b 2.717 72585 26714

27 26 32 113 F 8128 b 4550 b 1.107 7254 2938 10.0 | 9.1

28 16 0 1184 — 16320 b 2020 b 2.717 51469 18944

28 22 30 106 F 16320 b 4028 b 1.114 6139 2332 8.4 | 8.1

29 15 0 1110 — 32704 b 1883 b 2.717 45235 16650

29 19 28 101 F 32704 b 3609 b 1.121 5321 1919 8.5 | 8.7

210 13 0 962 — 65472 b 1609 b 2.717 33974 12506

210 17 31 88 F 65472 b 3593 b 1.113 4703 1496 7.2 | 8.4

211 12 0 888 — 131008 b 1473 b 2.716 28946 10656

211 15 27 89 F 131008 b 3155 b 1.126 4208 1335 6.9 | 8.0

212 11 0 814 — 262080 b 1340 b 2.716 24322 8954

212 13 18 106 F 262080 b 2413 b 1.165 3828 1378 6.4 | 6.5

213 10 0 740 — 524224 b 1207 b 2.716 20099 7400

213 12 20 94 F 524224 b 2436 b 1.153 3467 1128 5.8 | 6.6

214 10 0 740 — 1048512 b 1208 b 2.716 20099 7400

214 11 19 92 F 1048512 b 2276 b 1.157 3193 1012 6.3 | 7.3

215 9 0 666 — 2097088 b 1075 b 2.716 16279 5994

215 10 15 100 F 2097088 b 1934 b 1.191 2977 1000 5.5 | 6.0

216 8 0 592 — 4194240 b 944 b 2.716 12861 4736

216 10 22 79 F 4194240 b 2369 b 1.147 2898 790 4.4 | 6.0
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which makes the results independent of a concrete choice of CSIDH implemen-
tation and eases comparison with other work.

Unsurprisingly, the biggest speed-up can be seen for the basic SeaSign scheme
(i.e., S = 2), since that is where the largest δ could be found. The expected
signing time is reduced by a factor of 65, whereas verification is sped up by
a factor of roughly 31, at the cost of doubling the signature size. As predicted,
Variant F outperforms Variant T from a certain point onward, which apparently
is for S ≥ 24. The case S = 216 gains a factor of 4.4 in the expected signing time
and 6.0 in verification time. Note though that it only has 2.7% faster signing
and 21% faster verification than the case S = 215 (which uses public keys half
as big), which further emphasizes the importance of choosing the right trade-
offs. Perhaps unsurprisingly, taking u = umax (t) often gives the best (expected)
signing times, although this is not always the case: for instance, for S = 216 we
have umax (10) = 29, but u = 22 with a bigger δ yields (slightly) better results.

Acknowledgements. We are thankful to Steven Galbraith for his observation about
shorter signatures in Remark 2, and to Taechan Kim for pointing out an error in an
earlier version of the script in Appendix A.

A Script for Table 1

#!/usr/bin/env sage
RR = RealField(1000)

secbits = 128
pbits = 512
csidhn, csidhB = 74, 5
isz = lambda d: 2*d*csidhB+1 # interval size
sigsize = lambda S, t, u, delta, var = ’O’: ceil(1/8 * (0

+ ceil(min(t+u, u*log(t+u,2), t*log(t+u,2))) # indices of rejections
+ ceil(log(S,2)*(t+u)) # hash of ephemeral public keys
+ pbits*u # rejected ephemeral public keys
+ t*ceil(log(isz(delta+(var==’F’))**csidhn,2)))) # revealed secret keys

pksize = lambda t, S: ceil(1/8 * (S-1)*pbits)

def Bin(n, p, k): # Pr[ Bin_n,p >= k ]
return sum(RR(1) * binomial(n, i) * p**i * (1-p)**(n-i) for i in range(k, n+1))

@cached_function
def joint_minmax_cdf(n, x, y, a, b):

# Pr that min and max of n independent uniformly random
# integers in [a;b] satisfy min <= x and max <= y.
if x < a or y < a: return 0
if y > b: y = b
return RR((y-a+1)/(b-a+1))**n - (RR((y-x)/(b-a+1))**n if x < y else 0)

@cached_function
def joint_minmax(n, x, y, a, b):

# Pr that min and max of n independent uniformly random
# integers in [a;b] satisfy min = x and max = y.
F = lambda xx, yy: joint_minmax_cdf(n, xx, yy, a, b)
return F(x,y) - F(x-1,y) - F(x,y-1) + F(x-1,y-1)

def prob_accept_original(delta, S):
# sample r from [-(delta+1)*B, (delta+1)*B];
# reject r and a_c-r outside [-delta*B; +delta*B]
return (isz(delta) / isz(delta+1)) ** csidhn # entries are independent
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def prob_accept_full(delta, S):
# sample r from [-(delta+1)*B, (delta+1)*B];
# reject a_c-r outside [-delta*B; +delta*B]
prob = (isz(delta) / isz(delta+1)) ** csidhn # entries are independent
prob = 1/S*RR(1) + (S-1)/S*prob # can always reveal r
return prob

def prob_accept_truncate(delta, S):
prob = RR(0)
for x in range(-csidhB, csidhB + 1):

for y in range(x, csidhB + 1):
# Pr[min and max coeffs of S-1 secret keys are x and y]
weight = joint_minmax(S-1, x, y, -csidhB, +csidhB)
# sample from [min(0,x)-delta*B, max(0,y)+delta*B];
# reject outside [-delta*B; +delta*B]
prob += weight * isz(delta) / (isz(delta) + max(0,y) - min(0,x))

return prob ** csidhn # entries are independent

@cached_function
def max_u(t, S): # largest possible u for given S,t

u, F = 1, lambda u: Bin(t+u, 1/S, t)
while F(u) <= 2**-secbits: u *= 2
lo, hi = u//2, u+1
while hi - lo > 1:

m = (lo+hi+1)//2
if F(m) <= 2**-secbits: lo = m
else: hi = m

return lo

def prob_sign(t, u, sigma):
return Bin(t+u, sigma, t)

def exp_csidhs_sign(t, u, delta, S, prob):
pr_single = prob(delta, S)
pr_all = prob_sign(t, u, pr_single)
return (t+u) * delta / pr_all

def csidhs_verif(t, delta):
return t * delta

for s in range(1, 17):
S = 2**s

t = ceil(secbits/log(S,2)) - 1
last_umax = -1

best_time, no_progress = 1./0, 0
while True:

if no_progress >= max(16, t/8): break #XXX hack
t += 1

if Bin(t + 4*t, 1/S, t) < 2**-secbits: umax = 4*t #XXX hack
else: umax = max_u(t,S)

no_progress_inner = True

for variant in (’OTF’ if t == ceil(secbits/log(S,2)) else ’TF’):

for u in ([0] if variant == ’O’ else reversed(range(last_umax+1, umax+1))):

print >>sys.stderr, log(S,2), variant, t, u, no_progress

prob = {’O’: prob_accept_original,
’F’: prob_accept_full,
’T’: prob_accept_truncate}[variant]
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@cached_function
def f(x): return exp_csidhs_sign(t, u, x, S, prob)

if variant == ’O’:
delta = csidhn * t

else:
_, delta = find_local_minimum(f, 1, 2**24, tol=1)
delta = min((floor(delta), ceil(delta)), key = f)

if f(delta) < best_time:
print (’logS={:2d} t={:3d} u={:3d} delta={:4d} {} ~> ’ \

’pksize={:9,d}b sigsize={:7,d}b ’ \
’tries={:8.6f} signCSIDHs={:9,d} verifCSIDHs={:9,d}’) \
.format(log(S,2), t, u, delta, variant,

pksize(t,S),
sigsize(S, t, u, delta, variant),
float(1 / prob_sign(t, u, prob(delta, S))),
round(f(delta)),
csidhs_verif(t, delta))

best_time = f(delta)
no_progress_inner = False

no_progress = no_progress + 1 if no_progress_inner else 0

last_umax = umax
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Abstract. We study (�, �)-isogeny graphs of principally polarised super-
singular abelian surfaces (PPSSAS). The (�, �)-isogeny graph has cycles
of small length that can be used to break the collision resistance assump-
tion of the genus two isogeny hash function suggested by Takashima.
Algorithms for computing (2, 2)-isogenies on the level of Jacobians and
(3, 3)-isogenies on the level of Kummers are used to develop a genus two
version of the supersingular isogeny Diffie–Hellman protocol of Jao and
de Feo. The genus two isogeny Diffie–Hellman protocol achieves the same
level of security as SIDH but uses a prime with a third of the bit length.

Keywords: Post-quantum cryptography ·
Isogeny-based cryptography · Cryptanalysis · Key exchange ·
Hash function

1 Introduction

Isogeny-based cryptography involves the study of isogenies between abelian vari-
eties. The first proposal was an unpublished manuscript of Couveignes [6] that
outlined a key-exchange algorithm set in the isogeny graph of elliptic curves.
This was rediscovered by Rostovtsev and Stolbunov [18]. A hash function was
developed by Charles, Goren and Lauter [4] that uses the input to the hash to
generate a path in the isogeny graph and outputs the end point of the path.
Next in the line of invention is the Jao–de Feo cryptosystem [12] which relies
on the difficulty of finding isogenies with a given degree between supersingular
elliptic curves. A key exchange protocol, called the Supersingular Isogeny Diffie–
Hellman key exchange (SIDH), based on this hard problem, was proposed in the
same paper. The authors proposed working with 2-isogenies and 3-isogenies for
efficiency.

Elliptic curves are principally polarised abelian varieties of dimension one,
hence we can turn to principally polarised abelian varieties of higher dimension
when looking to generalise isogeny-based cryptosystems. As noted by Takashima
elliptic curves have three 2-isogenies but abelian surfaces (abelian varieties of
dimension 2) have fifteen (2, 2)-isogenies. Hence, this motivates the use of abelian
surfaces for use in these cryptosystems.

In this work, we will focus on principally polarised supersingular abelian vari-
eties of dimension two, which we call principally polarised supersingular abelian
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surfaces (PPSSAS) and consider their application to cryptography. The two chal-
lenges before us are: to understand the isogeny graphs of PPSSAS, and to have
efficient algorithms to compute isogenies between principally polarised abelian
surfaces (PPAS) in general.

In this work, we will examine the structure of the (�, �)-isogeny graph of
PPSSAS and show that the genus two hash mentioned above is no longer collision
resistant. This will be presented in Sect. 2. The realisation of the genus two
version of SIDH will make up Sect. 3 and we will examine its security in Sect. 4.

Due to space restrictions, we will assume knowledge of abelian varieties and
some of their properties. Assiduous readers can refer to [16] and [15] for defini-
tions and background.

2 PPSSAS Graph

Let p and � be distinct primes. In this section, we will examine the structure
of the graph Gp,�, where the vertices are isomorphism classes of PPSSAS over
Fp, and edges are present between two vertices if they are (�, �)-isogenous. We
will see that the PPSSAS graph has a regular and repeating substructure that
we can identify. This can be seen explicitly in the subgraphs of the full isogeny
graph presented in AppendixA.

2.1 Morphisms to Subgroups

One of the key tools in studying isogenies between abelian varieties is the corre-
spondence between subgroups and isogenies. This subsection explains the prop-
erties a subgroup needs to have in order to correspond to an appropriate isogeny.

The first result allows us to restrict our attention to Jacobians of hyperelliptic
curves of genus two or some reducible product of two elliptic curves.

Theorem 1. If A/Fp is a PPAS, then A ∼= JH for some smooth (hyperelliptic)
genus two curve H, or A ∼= E1 × E2 where Ei are elliptic curves.

Proof. Use [11, Theorem 3.1] which says that A is isomorphic over Fpn (for some
n) to the two cases in the theorem, or to the restriction of scalars of a polarized
elliptic curve over a quadratic extension of Fpn . Since we are working over Fp,
the latter case is absorbed into the second case. ��

Given an abelian variety A, the dual variety A∨ exists and is unique up to
isomorphism. An ample divisor L of A defines an isogeny φL : A → A∨ known
as the polarisation of A. If the polarisation is an isomorphism, then we say that
it is principal.

There is a non-degenerate alternating pairing, known as the Weil pairing, on
an abelian variety A over k

em : A[m](k) × A∨[m](k) → k
∗
,

where A[m] is the m-torsion subgroup of A.
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Being non-degenerate, the Weil pairing is non-trivial on the entire torsion
subgroup. But there are subgroups in the torsion subgroup onto which the Weil
pairing acts trivially when restricted. We give them a special name:

Definition 1. A subgroup S of A[m] is proper if A[n] �⊆ S for any 1 < n ≤ m.
Let A be an abelian variety over F̄p, and let m be a positive integer co-prime

with p. We say a proper subgroup S of A[m] is maximal m-isotropic if

(1) the m-Weil pairing on A[m] restricts trivially to S, and
(2) S is not properly contained in any other subgroup of A[m] satisfying (1).

We call the first condition the isotropic condition. Note that the definition for
a maximal isotropic subgroup does not include kernels of isogenies that factor
through the multiplication-by-n map.

The following result then illustrates the preservation of principal polarisations
under isogenies whose kernels are isotropic.

Proposition 1. Let H be a hyperelliptic curve of genus two over Fq. Let K be
a finite, proper, Fq-rational subgroup of JH(Fq). There exists a PPAS A over
Fq, and an isogeny φ : JH → A with kernel K, if and only if K is a maximal
m-isotropic subgroup of JH [m] for some positive integer m.

Proof. The quotient JH → JH/K always exists as an isogeny between abelian
varieties [19, III.3.12]. Since JH is the Jacobian of a hyperelliptic curve, it has
a principal polarisation λ. Now consider the polarisation μ = [deg φ] ◦ λ on JH ,
then we certainly have K = ker φ ⊆ ker μ, and since K is isotropic, we use [15,
Theorem 16.8] to get a polarisation λ′ on JH/K. Using [15, Remark 16.9], we
have that deg λ′ = 1 and so JH/K is a PPAS.

Furthermore, by Theorem1, we have that A is the Jacobian of a hyperelliptic
curve of genus two or a product of two elliptic curves. ��

Using the results above, we can focus on the type of subgroups of the torsion
group that correspond to the isogenies we would like to investigate. We will
denote by Cn the cyclic group of order n.

Lemma 1. Let A be a PPAS. If K is a maximal �n-isotropic subgroup, then it
cannot be cyclic.

Proof. Suppose that K is cyclic, then K is trivial on the pairing from the alter-
nating property. It can then be shown that K is contained in C2

�n , which is also
isotropic and so K cannot be maximal. ��
Proposition 2. Let A be a PPAS. Then the maximal �n-isotropic subgroups of
A[�n] are isomorphic to

C�n × C�n or C�n × C�n−k × C�k

where 1 ≤ k ≤ 
n/2�.
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Proof. We see, from Lemma 1 and the fact that maximal isotropic subgroups
must be proper, that K must have rank 2 or 3. Suppose that K has rank 2, then
it can be shown that to be maximal, K must have the structure C�n × C�n by
repeated inclusion.

Let C�a × C�b × C�c × C�d be a subgroup of A[�n]. To simplify notation, we
write this as [a, b, c, d]. Without loss of generality, we can take a ≥ b ≥ c ≥ d.
Then we have that the dual is [n−a, n−b, n−c, n−d] (since the composition with
the original isogeny is multiplication-by-�n) and n − a ≤ n − b ≤ n − c ≤ n − d.
Hence to get the symmetry as specified by [16, pg. 143, Thm. 1], we must have
that n− a = d and n− b = c. Since we must have that one of the indices is zero,
we take d = 0 and the result follows. ��
This result narrows down the subgroups that we need to study in order to study
sequences of (�, �)-isogenies between PPAS.

2.2 Number of Neighbours in an (�, �)-isogeny Graph

In this section, we will consider the structure of an (�, �)-isogeny graph, Gp,�.
We do so by computing the number of neighbours that each vertex is connected
to. Also, we will see that the number of paths between each vertex can vary
according to the structure of the kernel.

We approach this question by choosing an arbitrary PPAS and considering
isogenies emanating from this surface. Then the nascent isogeny graph is a rooted
graph at the chosen surface. The first result counts the number of elements n
steps from the root.

Theorem 2. Let A be a PPAS, � be a prime different from p and n > 2. Then
the number of �n-maximal isotropic subgroup of A[�n] is

�2n−3(�2 + 1)(� + 1)
(

�n + �
�n−2 − 1

� − 1
+ 1

)

if n is even, and

�2n−3(�2 + 1)(� + 1)
(

�n +
�n−1 − 1

� − 1

)

if n is odd.

The proof of the theorem follows by summing the number of maximal isotropic
subgroups which is given in the following proposition.

Proposition 3. Let A be a PPAS. Let N(a, b, c) be the number of maximal
isotropic subgroups of A isomorphic to C�a × C�b × C�c . Then

1. N(n, n − a, a) = �3n−2a−4(�2 + 1)(� + 1)2, where 1 ≤ a < n/2;
2. N(n, n, 0) = �3n−3(�2 + 1)(� + 1);
3. N(2k, k, k) = �4k−3(�2 + 1)(� + 1).
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Proof. We will prove this for the second case. Note that this is equivalent to
finding a subgroup isomorphic to C2

�n in A[�n] ∼= C4
�n which satisfies the isotropic

condition.
So we need to find 2 elements in C4

�n that have full order, are isotropic
under the Weil pairing and generate subgroups with trivial intersection. To make
things concrete, let 〈P1, . . . , P4〉 = C4

�n . Let us pick the first element A ∈ C4
�n .

This involves picking a full order element in C4
�n for which we have �4n − �4n−4

choices. Let A =
∑

[ai]Pi.
To pick the second element B ∈ C4

�n , we need to pick a full order element
but also ensure that B is isotropic to A under the Weil pairing. If we write
B =

∑
[bi]Pi, then we require that

e�(A,B) = e�(P1, P2)a1b2−a2b1 · e�(P1, P3)a1b3−a3b1 · e�(P1, P4)a1b4−a4b1

· e�(P2, P3)a2b3−a3b2 · e�(P2, P4)a2b4−a4b2 · e�(P3, P4)a3b4−a4b3

= 1.

But this is a linear condition on the selection of the bi’s. Thus this gives us
�3n − �3n−3 choices1. But we need to pick B such that B /∈ 〈A〉. Given that B
has full order, we need to avoid (� − 1)�3(n−1) elements. Hence the total number
of choices for B is

�3n − �3(n−1) − (� − 1)�3(n−1).

Now, we need to divide the choices we have for A and B by the number of
generating pairs in a subgroup C2

�n . The total number of generating pairs is
(�2n −�2(n−1))(�2n −�2(n−1)−(�−1)�2(n−1)). Hence the total number of maximal
isotropic C2

�n subgroups of C4
�n is

(�4n − �4n−4)(�3n − �3(n−1) − (� − 1)�3(n−1))
(�2n − �2(n−1))(�2n − �2(n−1) − (� − 1)�2(n−1))

= �3n−3(�2 + 1)(� + 1).

The other two cases are proved similarly. ��
Now, suppose we have an isogeny which has a maximal isotropic kernel K

with order �2n, then we can decompose this isogeny into a sequence of n (�, �)-
isogenies:

A0
φ1−−−→ A1

φ2−−−→ A2
φ3−−−→ . . .

φn−−−→ A0/K.

As mentioned in the introduction, this decomposition of isogenies is non-unique.
This arises from kernels whose structure allows for more than one subgroup
1 To see this, note that each e�(Pi, Pj) = μαi,j , where μ is an �-root of unity and αi,j

is some non-zero integer. We can express the isotropic condition as

b4(α1,4a1 + α2,4a2 + α3,4a3) ≡
α1,2(a2b1 − a1b2) + α1,3(a3b1 − a1b3)
+α2,3(a3b2 − a2b3) + α1,4a4b1
+α2,4a4b2 + α3,4a4b3

(mod �).

In the case where (α1,4a1 + α2,4a2 + α3,4a3 �≡ 0, we have free choices for b1, b2, b3
(not all divisible by �) and so have �3n − �3n−3 choices.
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isomorphic to C� × C�. The key observation is that these subgroups form the
kernels of φ1. In that spirit, the next two lemmata will give properties for the
kernels of the first isogeny.

Lemma 2. Let A be a PPAS. Let K be a maximal isotropic subgroup of A[�n]
which is isomorphic to C�n × C�n−a × C�a for some a ≥ 0. Let 〈P,Q,R〉 = K
such that P,Q,R have orders �n, �n−a, �a respectively.

(1) Let Pi, Qi, Ri ∈ Ai be elements mapped from P = P0, Q = Q0, R = R0. Then
[�n−i−1]Pi ∈ ker φi+1 for all i ≥ 0.

(2) The first (�, �)-isogeny must have kernel

〈[�n−1]P, [�n−a−1]Q+[k][�a−1]R〉 for 0 ≤ k ≤ �−1, or 〈[�n−1]P, [�a−1]R〉.

Proof. (1) One can show by contradiction that if there is a kernel not containing
Pi, then we will have cyclic kernels, which cannot be a kernel of a (�, �)-
isogeny by Lemma 1.
Next, let P ′ ∈ 〈Pi〉, Q′ ∈ 〈Qi〉, and R′ ∈ 〈Ri〉 such that P ′, Q′, R′ all have
order �. Then kernels cannot be of the form P ′ +Q′, P ′ +R′, Q′ +R′. Indeed,
it can be shown by examining the pairing e�(P ′ +Q′, P ′ +R′) to see that one
either obtains a cyclic kernel, or that the subgroup above is not isotropic.

(2) We have from the first part that [�n−1]P must be a generator of the group.
The second generator must be chosen from the remaining points of order �.
By the isotropic condition of K, we have that they are all isotropic on the
pairing as well.

��
Lemma 3. Let G ∼= C�n × C�n−a × C�a and H be abelian groups. Let

〈P 〉 ∼= C�n , 〈Q〉 ∼= C�n−a , 〈R〉 ∼= C�a

be subgroups of G with trivial intersections. If φ : G → H is a group homomor-
phism, with

ker φ =
〈
[�n−1]P, [�n−a−1]Q + [k][�a−1]R

〉
for 1 ≤ k ≤ � − 1 and a ≤ n/2, then H ∼= C�n−1 × C�n−a × C�a−1 .

Proof. We have that φ(P ) has order �n−1 and Q has order �n−a, since
[�n−a−1]Q /∈ ker φ. Since the order of the kernel is �2, we must have that
H ∼= C�n−1 × C�n−a × C�a−1 . ��

We can now study the different isogenies that exist between two vertices
on the graph. In particular, we will be counting the number of different paths
between any two vertices on the graph.

We will examine the base cases first, where there is only one path between
two vertices, or where two vertices are separated by two (�, �)-isogenies.

Proposition 4. Let A be a PPAS, and let K ∼= (C�n ×C�n−a ×C�a). Let P (n, a)
be the number of paths from A to A/K. Then
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1. P (n, 0) = 1 for all n;
2. P (2, 1) = � + 1.

Proof. 1. Since kernels of (�, �)-isogenies cannot be cyclic, the only possible sub-
group of order �2 of C�n ×C�n is C� ×C�, and there is only one choice for this
subgroup.

2. Let K = C�2 ×C� ×C�. Then from Lemma 2 (and using its notation) we must
have that the first isogeny has kernel

〈[�]P,Q + [k]R〉 for 0 ≤ k ≤ � − 1, or 〈[�]P,R〉.
There are �+1 choices for the first kernel. Thereafter, there is only one choice
for the second kernel and so we have a total of � + 1 paths.

��
Now, we can prove the general case.

Proposition 5. Using the notation above, where P (n, a) is the number of paths
in a (C�n × C�n−a × C�a)-isogeny. Then P (n, a) satisfies the following recursive
equation:

P (n, a) = 2P (n − 1, a − 1) + (� − 1)P (n − 1, a),

where 1 ≤ a < n/2, and with the following boundary conditions:

P (n, 0) = 1, P (2, 1) = � + 1.

Proof. We will prove this by induction. The base cases of the induction steps
are easy and the boundary conditions follow from Proposition 4. We will show
the induction step.
Let us suppose that the recursive formula holds for P (n−1, a−1) and P (n−1, a).
Now, suppose that our kernel is isomorphic to C�n × C�n−a × C�a . Since each
(�, �)-isogeny has a kernel of the form C� × C�, we have, from Lemma 2(2), that
the first isogeny must have a kernel of the form

〈[�n−1]P, [�n−a−1]Q + [k][�a−1]R〉 for 0 ≤ k ≤ � − 1, or 〈[�n−1]P, [�a−1]R〉.
It is clear that if the kernel is given by

〈[�n−1]P, [�n−a−1]Q〉 or 〈[�n−1]P, [�a−1]R〉,
then the residual kernel will be of the form

C�n−1 × C�n−a−1 × C�a or C�n−1 × C�n−a × C�a−1

respectively. Otherwise, if the first kernel has the form

〈[�n−1]P, [�n−a−1]Q + [k][�a−1]R〉 for 1 ≤ k ≤ � − 1,

the residual kernel will be of the form C�n−1 ×C�n−a ×C�a−1 by Lemma 3. Hence
we are done. ��
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Proposition 4 actually shows us the different paths that can exist between
vertices in the graph. In particular, for kernels with rank 2, there can only be a
single path between the domain and codomain. However, for kernels with rank 3,
there can be a multitude of paths that exist between the domain and codomain.
It can be seen that the following shapes (diamonds) are the basic paths drawn
out by kernels with group structure C�2 × C� × C� for different �’s.

� = 2 � = 3 � = 5 � = 7

The non-uniqueness of these paths can be seen more explicitly in the example
in AppendixA, where the kernel has order 256. Also in AppendixA, we will see
how the diamonds fit together in the isogeny graph.

2.3 Cryptanalysis of the Isogeny-Based Hash Functions

The CGL hash function performs a random walk on the supersingular elliptic
curve 2-isogeny graph. From each supersingular elliptic curve, there are three
2-isogenies emanating from that curve. The algorithm receives a binary string as
input and returns an Fp2 value as output. It does so by taking a fixed base curve,
discards one of the three isogenies (how this is done will not be of consequence
in this discussion), and uses the first bit of the input as a choice between the
remaining two isogenies. In the subsequent step, the algorithm uses the second
bit to choose between the only two isogenies that does not lead back to the base
curve (this is termed “no back-tracking”). Note that in this discussion, we have
not mentioned how one can deterministically choose one isogeny over the other
given a fixed bit, but there is a variety of ways one can “order” the isogenies.
Readers are encouraged to refer to the original paper for more details.

In the genus two case of the hash function, due to the additional isogenies
available to a single vertex (15 as opposed to 3), it is hoped that one can achieve
a higher security level with a smaller number of steps. In [21] Takashima outlined
an algorithm for obtaining a sequence of (2, 2)-isogenies without backtracking. He
also implicitly suggested the generalisation of the above hash function to genus
two. The genus two version of the CGL hash uses the input bits to traverse the
(2, 2)-isogeny graph of PPSSAS. The algorithm begins at a pre-chosen PPSSAS
and begins a walk based on the binary input to the algorithm. The walk on
the graph is similar to the original CGL hash with a difference of an increased
number of paths at each iteration.
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Genus Two Hash Collisions. One of the main results of [4] is the proof that
the CGL hash function is collision resistant. The vague intuition for this is that
the supersingular elliptic curve isogeny graph is locally tree-like, i.e. there are
no small cycles in a small enough subgraph. This assumption fails in the genus
two case as pictured above, any diamond configuration leads to a collision in
the hash. An attacker can find two pairs of bits so that the walks collide. Using
the diamond of � = 2 as an example, where a hash is performed by walking
along the left-most path. An attacker, with the knowledge that the hash has
traversed through a diamond, will be able to choose either the middle path or
the right-most path to achieve a collision.

In terms of endomorphisms, the collision resistance in the CGL hash is
achieved by the lack of endomorphisms of degree 2k, where k is small, in the
graph. However, as we have seen in the previous section, we might be able to
find endomorphism of degree 16 (or cycles of length 4) after 2 iterations of the
genus two hash.

3 Genus Two SIDH Cryptosystem

In this section, we will construct the key exchange protocol for genus two. The
scheme presented here follows the original scheme closely. Before presenting the
scheme, we will review two algorithms used to select a base PPSSAS and select
a key from the keyspace. We will also look briefly at the isogeny algorithms
employed in the scheme.

We note that the MAGMA implementation of the scheme is extremely slow. An
example is presented in AppendixB.

3.1 Selecting a Base Hyperelliptic Curve

Similar to the SIDH case, we pick primes of the form p = 2n · 3m · f − 1.
We consider a base hyperelliptic curve given by

H : y2 = x6 + 1.

It can be shown that the Jacobian of H is supersingular since it is the double
cover of the supersingular elliptic curve y2 = x3 + 1, which is supersingular over
Fp, since p ≡ 2 (mod 3). We then take a random sequence of Richelot isogenies
to obtain a random PPSSAS.

3.2 Selection of Secrets

Our aim is to use scalars to encode the secret kernel to be used by the two parties
of the key exchange as this allows for a compact representation of the secret.

Firstly, let H/Fq be a hyperelliptic curve of genus two and let JH be its
Jacobian. The secret kernels will be maximal isotropic subgroups of JH [�n] of
order �2n. As seen in Sect. 2, the kernels will have structure C�n × C�n−k × C�k ,
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where 0 ≤ k < n/2. Hence they should be generated by three points: Q1, Q2

and Q3. Furthermore, to fulfil the condition of isotropy, we also require that the
generators satisfy

e�n(Q1, Q2) = e�n(Q1, Q3) = e�n(Q2, Q3) = 1.

Our approach is summarised by the following steps:

Pre-computation:
Step 1: Find generators for JH [�n]. Name them P1, P2, P3, P4.
Step 2: Find the values αi,j such that e�n(Pi, Pj) = e�n(P1, P2)αi,j .

Secret selection:
Step 3: Pick some r1, r2, r3, r4 ∈ [1, . . . , �n − 1]4 such that they are not
simultaneously divisible by �.
Step 4: Pick a random2 0 ≤ k < n/2 and compute s1, s2, s3, s4 and
t1, t2, t3, t4 by solving the two linear congruences⎛

⎝ r1s2 − r2s1 + α1,3(r1s3 − r3s1)
+α1,4(r1s4 − r4s1) + α2,3(r2s3 − r3s2)
+α2,4(r2s4 − r4s2) + α3,4(r3s4 − r4s3)

⎞
⎠ ≡ 0 mod �k

⎛
⎝ r1t2 − r2t1 + α1,3(r1t3 − r3t1)

+α1,4(r1t4 − r4t1) + α2,3(r2t3 − r3t2)
+α2,4(r2t4 − r4t2) + α3,4(r3t4 − r4t3)

⎞
⎠ ≡ 0 mod �n−k

Step 5: Output (s1, . . . , s4, r1, . . . , r4, t1, . . . , t4) as the secret scalars which
will give the generators of the kernel:

Q1 =
∑

[si]Pi, Q2 =
∑

[ri]Pi, Q3 =
∑

[ti]Pi.

Remark 1. Note the following:

(i) Step 1 can be performed using standard group theoretic algorithms.
(ii) Step 2 performs discrete logarithm computations modulo a 2 and 3-smooth

modulus and so is extremely efficient by using the Silver–Pohlig–Hellman
algorithm [8, §13.2].

(iii) In Step 4, we pick a random solution in the solution space for ri and ti. It
can be shown that this ensures that the isotropic condition is upheld.

3.3 Isogeny Algorithms

Computing an �-isogeny between elliptic curves can be done with a complexity
of O(�). The general method to compute the codomains of this isogeny or to
map points under the isogeny is to use Vélu’s formula [25]. However, the efficient
computation of arbitrary isogenies between abelian varieties of dimension greater
than 1 is lacking. Here, we will present algorithms for computing the codomains
of (2, 2) and (3, 3)-isogenies and show how we can map subgroups under these
isogenies. The speed-ups come from the use of simpler representations in the
computation: the use of hyperelliptic curves in the (2, 2) case and the use of
Kummer surfaces in the (3, 3).
2 This will not be a uniformly random choice if one wants to sample the entire

keyspace.
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Richelot Isogenies. We will use Richelot isogenies to perform our (2, 2)-
isogenies as is standard in the literature. Richelot isogenies are relatively well-
understood and have been implemented in various computational algebra pro-
grams. Useful references for Richelot isogenies are [1,3,20].

Note that Richelot isogenies operate on the level of hyperelliptic curves in the
sense that they are morphisms between hyperelliptic curves. The support of the
elements in the kernel of a (2, 2)-isogeny defines a factorisation of the defining
hyperelliptic curve polynomial into quadratic polynomials. One can find the
hyperelliptic curve in the codomain via the Richelot correspondence. We can
map points between hyperelliptic curves via this Richelot correspondence. We
use this to extend the map on curves to a map on Jacobians by mapping the
support of elements of the Jacobian.

(3, 3)-Isogenies over the Kummer Surface. As for (3, 3)-isogenies, we note
that for the purposes of genus two isogeny cryptography, we do not need to map
points under the isogeny but only need to map Kummer points under the isogeny
since the Jacobian points that correspond to the Kummer points both generate
identical subgroups.

Given an abelian variety A, the Kummer variety is defined by A/〈±1〉. This
is a quartic surface in P

3 and computations of isogenies on the Kummer surface
was the object of study of [2]. We can use the formulae3 presented in [2] to
compute the images of Kummer points under the isogeny. This has also been
noted by Costello in [5].

We remark that the procedure detailed in [2, §3] is incomplete. Using the
notation in [2], a last transformation is necessary as c has shifted away from 1
due to prior transformations. At that stage, we have the following:

(s, t, c0, c1, c2,m0,m1,m2, u) = (s′, t′, 1,−1, 0,−r′, 0, 1, 1).

We need one last transformation

y �→ (4/λ1)2y

and set

s = λ1/4, r = Coefficient of x in H1, t = Coefficient of 1 in H1

to get the (r, s, t)-parameterisation of [2, Theorem 6].
The key to forming the cubic formula which maps Kummer points to Kum-

mer points under the (3, 3)-isogeny lies in the biquadratic forms on the Kummer
surface from [3, pg. 23]. Given the generators of the maximal isotropic subgroup
of JH [3], the authors found two cubic forms which are each invariant under trans-
lation by T1 and T2 respectively. The cubic forms generated spaces of dimension
8 and intersect in dimension 4, which gives an explicit description of the quartic
model of the Kummer surface.
3 The files containing the formulae can be found in http://www.cecm.sfu.ca/∼nbruin/

c3xc3/.

http://www.cecm.sfu.ca/~nbruin/c3xc3/
http://www.cecm.sfu.ca/~nbruin/c3xc3/
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3.4 Genus Two SIDH

We will present the key exchange protocol in genus two for completeness. The
astute reader will see that all the steps carry over from the original scheme
presented in §3.2 of [14].

Set-Up. Pick a prime p of the form p = 2eA3eBf −1 where 2eA ≈ 3eB . Now, we
pick a hyperelliptic curve H using the methods of Sect. 3.1 which will be defined
over Fp2 . We then generate the bases {P1, P2, P3, P4} and {Q1, Q2, Q3, Q4} which
generate JH [2eA ] and JH [3eB ] respectively.

First Round. Alice chooses her secret scalars (ai)i=1,...,12 using the steps out-
lined in Sect. 3.2 and computes the isogeny φA : JH → JA with kernel given
by 〈

4∑
i=1

[ai]Pi,

8∑
i=5

[ai]Pi,

12∑
i=9

[ai]Pi

〉
.

She also needs to compute the points φA(Qi) for i = 1, 2, 3, 4. She sends the
tuple

(G2(JA), φA(Q1), φA(Q2), φA(Q3), φA(Q4))

to Bob, where G2(JA) is the G2-invariants of the hyperelliptic curve associated
to JA.

At the same time, Bob chooses his secret scalars (bi)i=1,...,12 using the steps
outlined in Sect. 3.2 and computes the isogeny φB : JH → JB which has the
kernel 〈

4∑
i=1

[bi]Pi,

8∑
i=5

[bi]Pi,

12∑
i=9

[bi]Pi

〉
.

He computes the points φB(Pi) for i = 1, 2, 3, 4, and sends the tuple

(G2(JB), φB(P1), φB(P2), φB(P3), φB(P4))

to Alice.

Second Round. Alice will receive Bob’s tuple and proceeds with computing
JB from the G2-invariant, and the points

〈
4∑

i=1

[ai]φB(Pi),
8∑

i=5

[ai]φB(Pi),
12∑

i=9

[ai]φB(Pi)

〉
.

This is the kernel of a (2eA , 2eA−k, 2k)-isogeny φ′
A : JB → JBA. Bob will perform

a similar computation and arrive at the PPSSAS JAB . But since

JAB = JA/φA(KB) ∼= JH/〈KA,KB〉 ∼= JB/φB(KA) = JBA,

they can then use the G2-invariants of JAB and JBA as their shared secret.
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Remark 2. The method in [2] allows us to find ±φB(Pi). However, we need the
map

(P1, P2, P3, P4) �→ (φB(P1), φB(P2), φB(P3), φB(P4))

or
(P1, P2, P3, P4) �→ (−φB(P1),−φB(P2),−φB(P3),−φB(P4))

to ensure that the subgroup generated by Alice in the second round is isotropic.
To fix this problem, one could check if

e2eA (φB(Pi), φB(Pj)) = e2eA (Pi, Pj)3
eB

for all 1 ≤ i < j ≤ 4 and negate the φB(Pi)’s accordingly.

4 Security and Analysis

4.1 Security Estimates

In this section, we will define the computational problem needed to analyse our
cryptosystem.

Let p be a prime of the form 2n · 3n · f − 1, and fix a hyperelliptic curve of
genus two H over Fp2 and let JH denote its Jacobian. Fix bases for JH [2n] and
JH [3m], denoting them by {Pi}i=1,2,3,4 and {Qi}i=1,2,3,4 respectively.

Problem 1 (Computational Genus Two Isogeny (CG2I) Problem). Let φ : JH →
JA be an isogeny whose kernel is given by K. Given JA and the images {φ(Qi)},
i ∈ {1, 2, 3, 4}, find generators for K.

This problem is conjectured to be computationally infeasible for the same
reasons as listed in [14]. However, due to the higher regularity of the genus two
isogeny graph, we are able to perform a smaller number of isogeny computations
to achieve the same security level as compared to SIDH.

Let us look at the complexities of the algorithms one can employ against the
CG2I problem, where the task is to recover the isogeny φA : JH → JA when
given JH and JA. We note that from Proposition 3, we have that the number of
elements in the n-sphere is �3n−3(�2 +1)(�+1) ≈

√
p3, hence a naive exhaustive

search on the leaves of JH has a complexity of O(
√

p3). One can improve on this
by considering the meet-in-the-middle search by listing all isogenies of degree
�n from JH and JA and finding collisions in both lists. The meet-in-the-middle
search has a complexity of O( 4

√
p3). One can perform better by employing a

quantum computer to reduce the complexity to O( 6
√

p3) using Claw finding
algorithms [23]. This compares favourably with the genus one case which has
classical security of O( 4

√
p), and quantum security of O( 6

√
p). An example of a

prime which one can use to achieve 128-bits of security is 171-bits, whereas the
genus one case requires 512-bits for the same level of security.
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4.2 Existing Attacks on SIDH

We will dedicate this section to examining the impact of the attacks proposed
in the cryptanalysis papers [7,9,10,17,24]. We will group the attacks into two
classes: Curves and points, and computing endomorphism rings.

Attacks on curves and points include the adaptive attack [9] and fault attacks
[10,24]. Attacks via the computation of endomorphism rings include the methods
using auxiliary points to find a subring of the endomorphism ring [17] and using
the Deuring correspondence [7]. The purpose of computing the endomorphism
ring is due to the result in [9] that showed a reduction, in most cases, that the
SIDH problem is at most as difficult as computing the endomorphism ring. The
key observation behind this result is that the isogenies tend to be short paths in
the graph, and so a lattice reduction performed on the basis of the connecting
ideal would yield an element that corresponds to the secret isogeny via results
in [13].

Adaptive Attack. Due to the similar construction of the two protocols, the
adaptive attack still carries over to the genus two version. Suppose the attacker
is playing the role of Bob and sends Alice the points

φB(P1), φB(P2), φB(P3), φB([2n−1]P4 + P4).

Following the procedure detailed in [9], Bob will be able to recover the first bit
of a4. To recover the rest of the secret, one only needs to tweak the algorithm
presented in the original paper.

Fault Attack. The loop-abort fault attack presented in [10] would still apply,
as our protocol still requires repeated computations of isogenies of low degrees,
resulting in the existence of intermediate curves which is key to the attack.

The fault injection on a point as presented in [24] relies on the recovery of the
image of one random point under the secret isogeny. Intuitively, the n-torsion
points of an abelian variety of genus g is a Z/nZ-module of rank 2g. Hence the
recovery of the image of one random point as in the g = 1 case in [24] is akin to
recovering a one-dimensional subspace and the task of finding the secret isogeny
is the recovery of the complementary subspace.

This approach can still work in our setting, however we will require a mini-
mum of 2 images of random points under the isogeny. This is because the com-
plementary subspace in our case is of dimension 2, and so we will need at least
two points to span that space.

Endomorphism Ring Computations. Let E be a supersingular elliptic curve
over k and let char k = p > 0. Then we know that EndE⊗Q = Bp,∞, where Bp,∞
is the quaternion algebra over Q ramified at p and ∞. Also, EndE is a maximal
order of Bp,∞. In the case of higher genus, if A is a PPSSAV of dimension g,
then we have that the endomorphism algebra is EndA ⊗ Q = Mg(Bp,∞) [16,
pg. 174, Cor. 2].
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We will leave the thorough examination of the effects of endomorphism ring
computations on the cryptosystem as an open problem.

5 Conclusion

We studied the (�, �)-isogeny graphs and cryptanalysed a genus two variant of
the CGL hash function. We studied the implementation of the genus two SIDH
cryptosystem by looking at the mapping of Kummer points under a (3, 3)-isogeny
and Jacobian points under a (2, 2)-isogeny. We have shown that the genus two
isogeny cryptosystem can be implemented, but the fact of the matter is: improve-
ments in the algorithms need to be found before a practical implementation can
be achieved.

Acknowledgements. The authors would like to thank Steven Galbraith, Lukas
Zobernig, Chloe Martindale, Luca de Feo and David Kohel for enlightening discus-
sions. In particular, we thank Steven for the idea of the cryptanalysis of the hash
function. We also thank the reviewers for suggesting improvements to the paper, most
of which we have tried to include.

A Examples of Isogeny Graphs

We will consider kernels with order 256 in this example. The key to each example
is to the find the number of C2 × C2 subgroups of each kernel since this would
correspond with the number of possible (2, 2)-isogenies. Firstly, we note that the
structure of maximal isotropic subgroups of order 256 must be C16 × C16, or
C16 × C4 × C4, or C16 × C8 × C2 by Proposition 2. The isogeny graphs are given
in Fig. 1.

The easy case is when the kernel K0 has the structure C16 × C16. This is
because there is only one C2 × C2 subgroup in K. Hence, there is only one
isogeny path available and we have a straight line.

Now, let us consider the case when K1 has the structure C16 × C4 × C4. We
will label the isomorphism classes of the surfaces by (n), where n is a natural
number. We will denote the first surface by (1).

We can represent the 3 generators of K1 by P , Q and R, where their orders
are 16, 4 and 4 respectively. There are 3 different C2 × C2 subgroups of K given
by 〈[8]P, [2]Q〉, 〈[8]P, [2]R〉 and 〈[8]P, [2](Q + R)〉 in accordance to Lemma 2.
Hence, we can and will denote the (2, 2)-subgroups of K by the scalar preceding
Q and R. For instance, the three subgroups given here are denoted by (2, 0),
(0, 2) and (2, 2).

These 3 subgroups lead to non-isomorphic surfaces labelled as (2), (3) and
(4). The edges are labelled by the subgroup corresponding to the isogeny.

Consider the vertex (2), and consider the (2, 2)-isogeny from (2) with kernel
〈[4]P, [2]R〉4 and denote the codomain by (8). One can see that the isogeny from
(1) to (8) has kernel 〈[4]P, [2]Q, [2]R〉.
4 Note that we actually mean 〈[4]φ(P ), [2]φ(R)〉, where φ corresponds to the (2, 2)-

isogeny from (1). We will drop φ for ease of notation.
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One can also map from (3) and (4) to (8) via the kernels (2,0) and (2,0).
Immediately, one can spot the diamonds mentioned prior to this example.
Indeed, the diamonds can be seen repeatedly in the graph.

Vertices can form tips of the diamond when there is a C4 ×C2 ×C2 subgroup
in the kernel. This is best illustrated in the next example where the kernel K2

has structure C16 × C8 × C2. Using the notation from the previous example, K2

will be given by 〈P ′, Q′, R′〉, where P ′ = P , [2]Q′ = Q and R′ = [2]R.
Starting from the vertex (1) again, we have the same 3 subgroups, which

result in the same surfaces (2), (3) and (4). We also have that the three surfaces
will all have maps into (8) as before. However, residual kernel at (2) is now
isomorphic to C8×C8, hence we see that the isogeny path from (2) down to (18)
is a straight line. The residual kernel at (4) on the other hand, is C8 × C4 × C2,
hence it contains C4×C2×C2 as a subgroup and so, (4) forms the tip of another
diamond.

Another thing to note about this case is that the moment R is in the kernel,
we cannot have C4 × C2 × C2 as a subgroup of the residual kernel. This can be
observed from the diagonal right-to-left lines in Fig. 1b.

Lastly, Fig. 2 shows all the neighbours which are two (2, 2)-isogenies away.
So the top vertex is connected to each of the middle and bottom vertices by an
isogeny of degree 4 and 16 respectively. The diamonds corresponding to kernels
with the structure C4 ×C2 ×C2, (though contorted) are present and its number
is as predicted in Proposition 3.
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(b) Kernel has structure C16 × C8 × C2.

Fig. 1. Isogeny subgraphs when the kernel has order 256.
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Fig. 2. Isogeny graph from an arbitrary vertex showing 2 layers of isogenies.

B Implementation

We have implemented the key exchange scheme in MAGMA using p of 100-bits.
This yields a classical security of 75-bits and a quantum security of 50-bits. The
first round of the key exchange which required the mapping of points took 145.7 s
for Alice and 145.41 s for Bob. The second round of the key exchange took 74.8 s
for Alice and 72.29 s for Bob.

The implementation took parameters eA = 51 and eB = 32, and f = 1 with

p = 4172630516011578626876079341567.

The base hyperelliptic curve is defined by

H : y
2
= (380194068372159317574541564775i + 1017916559181277226571754002873)x

6

+ (3642151710276608808804111504956i + 1449092825028873295033553368501)x
5

+ (490668231383624479442418028296i + 397897572063105264581753147433)x
4

+ (577409514474712448616343527931i + 1029071839968410755001691761655)x
3

+ (4021089525876840081239624986822i + 3862824071831242831691614151192)x
2

+ (2930679994619687403787686425153i + 1855492455663897070774056208936)x

+ 2982740028354478560624947212657i + 2106211304320458155169465303811

where i2 = −1 in Fp2 .
The generators of the torsion subgroups are given by

P1 =

⎛
⎜⎜⎝

x2 + (2643268744935796625293669726227i + 1373559437243573104036867095531)x
+2040766263472741296629084172357i + 4148336987880572074205999666055,

+(2643644763015937217035303914167i + 3102052689781182995044090081179)x
+1813936678851222746202596525186i + 3292045648641130919333133017218

⎞
⎟⎟⎠ ,

P2 =

⎛
⎜⎜⎝

x2 + (1506120079909263217492664325998i + 1228415755183185090469788608852)x
+510940816723538210024413022814i + 325927805213930943126621646192,

+(1580781382037244392536803165134i + 3887834922720954573750149446163)x
+167573350393555136960752415082i + 1225135781040742113572860497457

⎞
⎟⎟⎠ ,

P3 =

⎛
⎜⎜⎝

x2 + (3505781767879186878832918134439i + 1904272753181081852523334980136)x
+646979589883461323280906338962i + 403466470460947461098796570690,

+(311311346636220579350524387279i + 1018806370582980709002197493273)x
+1408004869895332587263994799989i + 1849826149725693312283086888829

⎞
⎟⎟⎠ ,
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P4 =

⎛
⎜⎜⎝

x2 + (2634314786447819510080659494014i + 72540633574927805301023935272)x
+1531966532163723578428827143067i + 1430299038689444680071540958109,

+(3957136023963064340486029724124i + 304348230408614456709697813720)x
+888364867276729326209394828038i + 2453132774156594607548927379151

⎞
⎟⎟⎠ ,

Q1 =

⎛
⎜⎜⎝

x2 + (2630852063481114424941031847450i + 66199700402594224448399474867)x
+497300488675151931970215687005i + 759563233616865509503094963984,

+(1711990417626011964235368995795i + 3370542528225682591775373090846)x
+2409246960430353503520175176754i + 1486115372404013153540282992605

⎞
⎟⎟⎠ ,

Q2 =

⎛
⎜⎜⎝

x2 + (950432829617443696475772551884i + 3809766229231883691707469450961)x
+1293886731023444677607106763783i + 2152044083269016653158588262237,

+(3613765124982997852345558006302i + 4166067285631998217873560846741)x
+2494877549970866914093980400340i + 3422166823321314392366398023265

⎞
⎟⎟⎠ ,

Q3 =

⎛
⎜⎜⎝

x2 + (1867909473743807424879633729641i + 3561017973465655201531445986517)x
+614550355856817299796257158420i + 3713818865406510298963726073088,

+(846565504796531694760652292661i + 2430149476747360285585725491789)x
+3827102507618362281753526735086i + 878843682607965961832497258982

⎞
⎟⎟⎠ ,

Q4 =

⎛
⎜⎜⎝

x2 + (2493766102609911097717660796748i + 2474559150997146544698868735081)x
+843886014491849541025676396448i + 2700674753803982658674811115656,

+(2457109003116302300180304001113i + 3000754825048207655171641361142)x
+2560520198225087401183248832955i + 2490028703281853247425401658313

⎞
⎟⎟⎠ .

The secret scalars of Alice and Bob are

α1 = 937242395764589, α2 = 282151393547351, α3 = 0, α4 = 0,

α5 = 0, α6 = 0, α7 = 1666968036125619, α8= 324369560360356,

α9 = 0, α10 = 0, α11 = 0, α12 = 0,

β1 = 103258914945647, β2 = 1444900449480064, β3 = 0, β4 = 0,

β5 = 0, β6 = 0, β7 = 28000236972265, β8= 720020678656772,

β9 = 0, β10 = 0, β11 = 0, β12 = 0,

Using their secret scalars, they will obtain the following pair of hyperelliptic
curves

HA : y
2
= (3404703004587495821596176965058i + 403336181260435480105799382459)x

6

+ (3001584086424762938062276222340i + 3110471904806922603655329247510)x
5

+ (1017199310627230983511586463332i + 1599189698631433372650857544071)x
4

+ (2469562012339092945398365678689i + 1154566472615236827416467624584)x
3

+ (841874238658053023013857416200i + 422410815643904319729131959469)x
2

+ (3507584227180426976109772052962i + 2331298266595569462657798736063)x

+ 2729816620520905175590758187019i + 3748704006645129000498563514734,

HB : y
2
= (3434394689074752663579510896530i + 3258819610341997123576600332954)x

6

+ (3350255113820895191389143565973i + 2681892489448659428930467220147)x
5

+ (2958298818675004062047066758264i + 904769362079321055425076728309)x
4

+ (2701255487608026975177181091075i + 787033120015012146142186182556)x
3

+ (3523675811671092022491764466022i + 2804841353558342542840805561369)x
2

+ (3238151513550798796238052565124i + 3437885792433773163395130700555)x

+ 1829327374163410097298853068766i + 3453489516944406316396271485172.
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The auxiliary points computed are the following

φB(P1) = ±

⎛
⎜⎜⎝

x2 + (576967470035224384447071691859i + 3905591233169141993601703381059)x
+1497608451125872175852448359137i + 2622938093324787679229413320405,
(2205483026731282488507766835920i + 1887631895533666975170960498604)x
+2270438136719486828147096768168i + 1098893079140511975119740789184

⎞
⎟⎟⎠ ,

φB(P2) = ±

⎛
⎜⎜⎝

x2 + (200280720842476245802835273443i + 3878472110821865480924821702529)x
+476628031810757734488740719290i + 2957584612454518004162519574871,
(3949908621907714361071815553277i + 630639323620735966636718321043)x
+901597642385324157925700976889i + 2429302320101537821240219151082

⎞
⎟⎟⎠ ,

φB(P3) = ±

⎛
⎜⎜⎝

x2 + (4133157753622694250606077231439i + 2486410359530824865039464484854)x
+217800646374565182483064906626i + 1249364962732904444334902689884,

(1265490246594537172661646499003i + 2130834160349159007051974433128)x
+2580286680987425601000738010969i + 578046610192146114698466530758

⎞
⎟⎟⎠ ,

φB(P4) = ±

⎛
⎜⎜⎝

x2 + (6601102003779684073844190837i + 87106350729631184785549140074)x
+2330339334251130536871893039627i + 1494511552650494479113393669713,
(1706314262702892774109446145989i + 3539074449728790590891503255545)x

+1950619453681381932329106130008i + 685170915670741858430774920061

⎞
⎟⎟⎠ ,

φA(Q1) =

⎛
⎜⎜⎝

x2 + (3464040394311932964693107348618i + 1234121484161567611101667399525)x
+17895775393232773855271038385i + 3856858968014591645005318326985,

(2432835950855765586938146638349i + 3267484715622822051923177214055)x
+985386137551789348760277138076i + 1179835886991851012234054275735

⎞
⎟⎟⎠ ,

φA(Q2) =

⎛
⎜⎜⎝

x2 + (363382700960978261088696293501i + 3499548729039922528103431054749)x
+3832512523382547716418075195517i + 3364204966204284852762530333038,
(3043817101596607612186808885116i + 4027557567198565187096133171734)x
+4087176631917166066356886198518i + 1327157646340760346840638146328

⎞
⎟⎟⎠ ,

φA(Q3) =

⎛
⎜⎜⎝

x2 + (3946684136660787881888285451015i + 1250236853749119184502604023717)x
+3358152613483376587872867674703i + 467252201151076389055524809476,
(1562920784368105245499132757775i + 987920823075946850233644600497)x
+1675005758282871337010798605079i + 1490924669195823363601763347629

⎞
⎟⎟⎠ ,

φA(Q4) =

⎛
⎜⎜⎝

x2 + (1629408242557750155729330759772i + 3235283387810139201773539373655)x
+1341380669490368343450704316676i + 1454971022788254094961980229605,
(2393675986247524032663566872348i + 3412019204974086421616096641702)x

+1890349696856504234320283318545i + 841699061347215234631210012075

⎞
⎟⎟⎠ .

This allows for both parties to compute the final isogeny to obtain
⎛
⎝

1055018150197573853947249198625i + 2223713843055934677989300194259,
819060580729572013508006537232i + 3874192400826551831686249391528,
1658885975351604494486138482883i + 3931354413698538292465352257393

⎞
⎠

as their common G2-invariants.
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Abstract. The recently proposed CSIDH primitive is a promising can-
didate for post quantum static-static key exchanges with very small keys.
However, until now there is only a variable-time proof-of-concept imple-
mentation by Castryck, Lange, Martindale, Panny, and Renes, recently
optimized by Meyer and Reith, which can leak various information about
the private key. Therefore, we present an efficient constant-time imple-
mentation that samples key elements only from intervals of nonnega-
tive numbers and uses dummy isogenies, which prevents certain kinds
of side-channel attacks. We apply several optimizations, e.g. Elligator
and the newly introduced SIMBA, in order to get a more efficient
implementation.

Keywords: CSIDH · Isogeny-based cryptography ·
Post-quantum cryptography · Constant-time implementation

1 Introduction

Isogeny-based cryptography is the most juvenile family of the current proposals
for post-quantum cryptography. The first cryptosystem based on the hardness
of finding an explicit isogeny between two given isogenous elliptic curves over a
finite field was proposed in 1997 by Couveignes [10], eventually independently
rediscovered by Rostovtsev and Stolbunov [19] in 2004, and therefore typically
called CRS. Childs, Jao, and Soukharev [7] showed in 2010 that CRS can be
broken using a subexponential quantum algorithm by solving an abelian hid-
den shift problem. To avoid this attack, Jao and De Feo [13] invented a new
isogeny-based scheme SIDH (supersingular isogeny Diffie-Hellman) that works
with supersingular curves over Fp2 . The current state-of-the-art implementation
is SIKE [12], which was submitted to the NIST post-quantum cryptography
competition [17].

De Feo, Kieffer and Smith optimized CRS in 2018 [11]. Their ideas led to the
development of CSIDH by Castryck, Lange, Martindale, Panny, and Renes [6],
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who adapted the CRS scheme to supersingular curves and isogenies defined over
a prime field Fp. They implemented the key exchange as a proof-of-concept,
which is efficient, but does not run in constant time, and can therefore leak
information about private keys. We note that building an efficient constant-time
implementation of CSIDH is not as straightforward as in SIDH, where, speaking
of running times, only one Montgomery ladder computation depends on the
private key (see [9]).

In this paper we present a constant-time implementation of CSIDH with
many practical optimizations, requiring only a small overhead of factor 3.03
compared to the fastest variable-time implementation from [14].

Organization. The rest of this paper is organized as follows. The following
section gives a brief algorithmic introduction to CSIDH [6]. Leakage scenarios
based on time, power analysis, and cache timing are presented in Sect. 3. In
Sect. 4, we suggest different methods on how to avoid these leakages and build a
constant-time implementation. Section 5 contains a straightforward application
of our suggested methods, and various optimizations. Thereafter, we provide
implementation results in Sect. 6 and give concluding remarks in Sect. 7. Appen-
dices A and B give more details about our implementations and algorithms.

Note that there are two different notions of constant-time implementations,
as explained in [3]. In our case, it suffices to work with the notion that the
running time does not depend upon the choice of the private key, but may vary
due to randomness. The second notion specifies strict constant time, meaning
that the running time must be the same every time, independent from private
keys or randomness. Throughout this paper, ‘constant time’ refers to the first
notion described above.

Related Work. In [3], Bernstein, Lange, Martindale, and Panny describe
constant-time implementations in the second notion from above, which is
required for quantum attacks. In this paper, we follow the mentioned differ-
ent approach for an efficient constant-time implementation, but reuse some of
the techniques from [3].

2 CSIDH

We only cover the algorithmic aspects of CSIDH here, and refer to [6] for the
mathematical background and a more detailed description.

We first choose a prime of the form p = 4 · �1 · ... · �n − 1, where the �i are
small distinct odd primes. We work with supersingular curves over Fp, which
guarantees the existence of points of the orders �i, that enable us to compute
�i-isogenies from kernel generator points by Vélu-type formulas [20].

A private key consists of a tuple (e1, . . . , en), where the ei are sampled from
an interval [−B,B]. The absolute value |ei| specifies how many �i-isogenies have
to be computed, and the sign of ei determines, whether points on the current
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Algorithm 1. Evaluating the class group action.
Input : a ∈ Fp such that Ea : y2 = x3 + ax2 + x is supersingular, and a list of

integers (e1, ..., en) with ei ∈ {−B, ..., B} for all i ≤ n.
Output: a′ ∈ Fp, the curve parameter of the resulting curve Ea′ .

1 while some ei �= 0 do
2 Sample a random x ∈ Fp.
3 Set s ← +1 if x3 + ax2 + x is a square in Fp, else s ← −1.
4 Let S = {i | sign(ei) = s}.
5 if S = ∅ then
6 Go to line 2.

7 P = (x : 1), k ← ∏
i∈S �i, P ← [(p + 1)/k]P .

8 foreach i ∈ S do
9 K ← [k/�i]P .

10 if K �= ∞ then
11 Compute a degree-�i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉.
12 a ← a′, P ← ϕ(P ), k ← k/�i, ei ← ei − s.

curve or on its twist have to be used as kernel generators. One can represent
this graphically: Over Fp, the supersingular �i-isogeny graph consists of distinct
cycles. Therefore, we have to walk |ei| steps through the cycle for �i, and the
sign of ei tells us the direction.

Since this class group action is commutative, it allows a basic Diffie-Hellman-
type key exchange: Starting from a supersingular curve E0, Alice and Bob choose
a private key as described above, and compute their public key curves EA resp.
EB via isogenies, as described in Algorithm 1. Then Alice repeats her computa-
tions, this time starting at the curve EB , and vice versa. Both parties then arrive
at the same curve EAB , which represents their shared secret. Furthermore, pub-
lic keys can be verified efficiently in CSIDH (see [6]). Therefore, a static-static
key-exchange is possible.

However, the quantum security is still an open problem. For our implementa-
tion we use CSIDH-512, the parameter set from [6], that is conjectured to satisfy
NIST security level 1. In the light of the subexponential quantum attack on CRS
and CSIDH [7], more analysis on CSIDH has been done in [3–5].

3 Leakage Scenarios

It is clear and already mentioned in [6] that the proof-of-concept implementation
of CSIDH is not side-channel resistant. In this paper we focus on three scenarios
that can leak information on the private key. Note that the second scenario
features a stronger attacker. Further, there will of course be many more scenarios
for side-channel attacks.
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Timing Leakage. As the private key in CSIDH specifies how many isogenies
of each degree have to be computed, it is obvious that this (up to additional
effort for point multiplications due to the random choice of points) determines
the running time of the algorithm. As stated in [14], the worst case running time
occurs for the private key (5, 5, . . . , 5), and takes more than 3 times as much
as in the average case. The other extreme is the private key (0, 0, . . . , 0), which
would require no computations at all. However, in a timing-attack protected
implementation, the running time should be independent from the private key.

Power Analysis. Instead of focusing on the running time, we now assume that
an attacker can measure the power consumption of the algorithm. We further
assume that from the measurement, the attacker can determine blocks which
represent the two main primitives in CSIDH, namely point multiplication and
isogeny computation, and can separate these from each other. Now assume that
the attacker can separate the loop iterations from each other. Then the attacker
can determine which private key elements share the same sign from the isogeny
blocks that are performed in the same loop, since they have variable running
time based on the isogeny degree. This significantly reduces the possible key
space and therefore also the complexity of finding the correct key.

Cache Timing Attacks. In general, data flow from the secret key to branch
conditions and array indices must be avoided in order to achieve protection
against cache timing attacks [1]. Our implementation follows these guidelines to
avoid vulnerabilities against the respective possible attacks.

4 Mitigating Leakage

In this section we give some ideas on how to fix these possible leakages in an
implementation of CSIDH. We outline the most important ideas here, and give
details about how to implement them efficiently in CSIDH-512 in Sect. 5.

Dummy Isogenies. First, it seems obvious that one should compute a constant
number of isogenies of each degree �i, and only use the results of those required
by the private key, in order to obtain a constant running time. However, in
this case additional multiplications are required, if normal isogenies and unused
isogenies are computed in the same loop1. We adapt the idea of using dummy
isogenies from [14] for that cause. Meyer and Reith propose to design dummy
isogenies, which instead of updating the curve parameters and evaluating the
curve point P , compute [�i]P in the degree-�i dummy isogeny. Since the isogeny
algorithm computes [ �i−1

2 ]K for the kernel generator K, one can replace K by P
there, and perform two more differential additions to compute [�i]P . The curve
parameters remain unchanged.
1 This is required, since otherwise, an attacker in the second leakage scenario can

determine the private key easily.
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In consequence, a dummy isogeny simply performs a scalar multiplication.
Therefore, the output point [�i]P then has order not divisible by �i, which is
important for using this point to compute correct kernel generators in following
iterations. Further, one can design the isogeny and dummy isogeny algorithms
for a given degree �i such that they perform the same number and sequence of
operations with only minor computational overhead compared to the isogenies
from [14]. This is important to make it hard for side-channel attackers to dis-
tinguish between those two cases, since conditionally branching can be avoided
with rather small overhead.

Balanced vs. Unbalanced Private Keys. Using dummy isogenies to spend
a fixed time on isogeny computations in not enough for a constant-time imple-
mentation, however. Another problem lies in the point multiplications in line 7
and 9 of Algorithm 1. We use an observation from [14] to illustrate this. They
consider the private keys (5, 5, 5, . . .) and (5,−5, 5,−5, . . .) and observe that for
the first key, the running time is 50% higher than for the second key. The reason
for this is that in the first case in order to compute one isogeny of each degree,
the multiplication in line 7 is only a multiplication by 4, and the multiplication
in line 9 has a factor of bitlength 509 in the first iteration, 500 in the second
iteration, and so on.

For the second key, we have to perform one loop through the odd i and one
through the even i in order two compute one isogeny of each degree �i. Therefore,
the multiplications in line 7 are by 254 resp. 259 bit factors, while the bitlengths
of the factors in the multiplications in line 9 are 252, 244, . . ., resp. 257, 248,
and so on (see Fig. 1). In total, adding up the bitlengths of all factors, we can
measure the cost of all point multiplications for the computation of one isogeny
per degree, where we assume that the condition in line 10 of Algorithm 1 never
fails, since one Montgomery ladder step is performed per bit. For the first key,
we end up with 16813 bits, while for the second key we only have 9066 bits.

Fig. 1. Bitlengths of factors for computing one isogeny per degree for the keys
(5, 5, . . . , 5) (left) and (5, −5, 5, −5, . . .) (right).
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This can be generalized to any private key: The more the key elements (or
the products of the respective �i) are unbalanced, i.e. many of them share the
same sign, the more the computational effort grows, compared to the perfectly
balanced case from above. This behavior depends on the private key and can
therefore leak information. Hence, it is clear that we have to prevent this in order
to achieve a constant-time implementation.

One way to achieve this is to use constant-time Montgomery ladders that
always run to the maximum bitlength, no matter how large the respective factor
is. However, this would lead to a massive increase in running time. Another
possibility for handling this is to only choose key elements of a fixed sign. Then
we have to adjust the interval from which we sample the integer key elements, e.g.
from [−5, 5] to [0, 10] in CSIDH-512. This however doubles the computational
effort for isogenies (combined normal and dummy isogenies). We will return to
this idea later.

Determining the Sign Distribution. In our second leakage scenario, an
attacker might determine the sign distribution of the key elements by identify-
ing blocks of isogeny resp. dummy isogeny computations. One way of mitigat-
ing this attack would be to let each degree-�i isogeny run as long as a �max-
isogeny, where �max is the largest �i. As used in [3], this is possible because of
the Matryoshka-doll structure of the isogeny algorithms. This would allow an
attacker in the second leakage scenario to only determine the number of pos-
itive resp. negative elements, but not their distribution, at the cost of a large
increase of computational effort. We can also again restrict to the case that we
only choose nonnegative (resp. only nonpositive) key elements. Then there is no
risk of leaking information about the sign distribution of the elements, since in
this setting the attacker knows this beforehand, at the cost of twice as many
isogeny computations.

Limitation to Nonnegative Key Elements. Since this choice eliminates
both of the aforementioned possible leakages, we use the mentioned different
interval to sample private key elements from. In CSIDH-512, this means using
the interval [0, 10] instead of [−5, 5]. One might ask if this affects the secu-
rity properties of CSIDH. As before, there are 1174 different tuples to choose
from in CSIDH-512. Castryck et al. argue in [6] that there are multiple vectors
(e1, e2, . . . , en), which represent the same ideal class, meaning that the respec-
tive keys are equivalent. However, they assume by heuristic arguments that the
number of short representations per ideal class is small, i.e. the 1174 different
keys (e1, e2, . . . , en), where all ei are sampled from the interval [−5, 5], represent
not much less than 1174 ideal classes. If we now have two equivalent keys e �= f
sampled from [−5, 5], then we have a collision for our shifted interval as well,
since shifting all elements of e and f by +5 results in equivalent keys e′ �= f ′ with
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elements in [0, 10], and vice versa. Therefore, our shifted version is equivalent to
CSIDH-512 as defined in [6]2.

In the following sections we focus on optimized implementations, using the
mentioned countermeasures against attacks, i.e. sampling key elements from the
interval [0, 10] and using dummy isogenies.

5 Efficient Implementation

5.1 Straightforward Implementation

First, we describe the straightforward implementation of the evaluation of the
class group action in CSIDH-512 with the choices from above, before applying
various optimizations. We briefly go through the implementation aspects of the
main primitives, i.e. point multiplications, isogenies and dummy isogenies, and
explain why this algorithm runs in constant time, and does not leak information
about the private key.

Parameters. As described in [6], we have a prime number p = 4·�1 ·�2 ·...·�n−1,
where the �i are small distinct odd primes. We further assume that we have
�1 > �2 > ... > �n. In CSIDH-512 we have n = 74, and we sample the elements
of private keys (e1, e2, . . . , en) from [0, 10].

Handling the Private Key. Similar to the original implementation of
Castryck et al., we copy the elements of the private key in an array e =
(e1, e2, . . . , en), where ei determines how many isogenies of degree �i we have to
compute. Furthermore, we set up another array f = (10−e1, 10−e2, . . . , 10−en),
to determine how many dummy isogenies of each degree we have to compute. As
we go through the algorithm, we compute all the required isogenies and dummy
isogenies, reducing ei resp. fi by 1 after each degree-�i isogeny resp. dummy
isogeny. We therefore end up with a total of 10 isogeny computations (counting
isogenies and dummy isogenies) for each �i.

Sampling Random Points. In Algorithm 2 line 3, we have to find curve points
on the current curve that are defined over Fp instead of Fp2\Fp. As in [6] this
can be done by sampling a random x ∈ Fp, and computing y2 by the curve
equation y2 = x3 + ax2 + x. We then check if y is defined over Fp by a Legendre
symbol computation, i.e. by checking if (y2)(p−1)/2 ≡ 1 (mod p). If this is not
the case, we simply repeat this procedure until we find a suitable point. Note
that we require the curve parameter a to be in affine form. Since a will typically
be in projective form after isogeny computations, we therefore have to compute
the affine parameter each time before sampling a new point.
2 One could also think of using the starting curve E′, which is the result of applying the

key (5, 5, . . . , 5) to the curve E0. Then for a class group action evaluation using key
elements from [−5, 5] and the starting curve E′ is equivalent to using key elements
from [0, 10] and the starting curve E0.
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Algorithm 2. Constant-time evaluation of the class group action in
CSIDH-512.
Input : a ∈ Fp such that Ea : y2 = x3 + ax2 + x is supersingular, and a list of

integers (e1, ..., en) with ei ∈ {0, 1, .., 10} for all i ≤ n.
Output: a′ ∈ Fp, the curve parameter of the resulting curve Ea′ .

1 Initialize k = 4, e = (e1, ..., en) and f = (f1, ..., fn), where fi = 10 − ei.
2 while some ei �= 0 or fi �= 0 do
3 Sample random values x ∈ Fp until we have some x where x3 + ax2 + x is a

square in Fp.
4 Set P = (x : 1), P ← [k]P , S = {i | ei �= 0 or fi �= 0}.
5 foreach i ∈ S do
6 Let m =

∏
j∈S,j>i �i.

7 Set K ← [m]P.
8 if K �= ∞ then
9 if ei �= 0 then

10 Compute a degree-�i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉.
11 a ← a′, P ← ϕ(P ), ei ← ei − 1.

12 else
13 Compute a degree-�i dummy isogeny:
14 a ← a, P ← [�i]P , fi ← fi − 1.

15 if ei = 0 and fi = 0 then
16 Set k ← k · �i.

Elliptic Curve Point Multiplications. Since we work with Montgomery
curves, using only projective XZ-coordinates, and projective curve parameters
a = A/C, we can use the standard Montgomery ladder as introduced in [15],
adapted to projective curve parameters as in [9]. This means that per bit of the
factor, one combined doubling and differential addition is performed.

Isogenies. For the computation of isogenies, we use the formulas presented
by Meyer and Reith in [14]. They combine the Montgomery isogeny formulas
by Costello and Hisil [8], and Renes [18] with the twisted Edwards formulas by
Moody and Shumow [16], in order to obtain an efficient algorithm for the isogeny
computations in CSIDH. For a �i-isogeny, this requires a point K of order �i as
kernel generator, and the projective parameters A and C of the current curve. It
outputs the image curve parameters A′ and C ′, and the evaluation of the point
P . As mentioned before, the algorithm computes all multiples of the point K up
to the factor �i−1

2 . See e.g. [3] for more details.

Dummy Isogenies. As described before, we want the degree-�i dummy isoge-
nies to output the scalar multiple [�i]P instead of an isogeny evaluation of P .
Therefore, we interchange the points K and P in the original isogeny algorithm,
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such that it computes [ �i−1
2 ]P . We then perform two more differential additions,

i.e. compute [ �i+1
2 ]P from [ �i−1

2 ]P , P , and [ �i−3
2 ]P , and compute [�i]P from

[ �i+1
2 ]P , [ �i−1

2 ]P , and P .
As mentioned before, we want isogenies and dummy isogenies of degree �i to

share the same code in order to avoid conditionally branching. Hence, the two
extra differential additions are also performed in the isogeny algorithm, without
using the results. In our implementation, a conditional point swapping based on a
bitmask ensures that the correct input point is chosen. This avoids conditionally
branching that depends on the private key in line 9 of Algorithm2 (and lines 11
and 27 of Algorithm5).

If one is concerned that a side-channel attacker can detect that the curve
parameters A and C are not changed for some time (meaning that a series of
dummy isogenies is performed), one could further rerandomize the projective
representation of the curve parameter A/C by multiplying A and C by the same
random number3 1 < α < p.

5.2 Running Time

We now explain why this algorithm runs in constant time. As already explained,
we perform 10 isogeny computations (counting isogenies and dummy isogenies)
for each degree �i. Furthermore, isogenies and dummy isogenies have the same
running time, since they share the same code, and conditionally branching is
avoided. Therefore the total computational effort for isogenies is constant, inde-
pendent from the respective private key. We also set the same condition (line 8 of
Algorithm 2) for the kernel generator for the computation of a dummy isogeny,
in order not to leak information.

Sampling random points and finding a suitable one doesn’t run in constant
time in Algorithm 2. However, the running time only depends on randomly cho-
sen values, and does not leak any information on the private key.

Now for simplicity assume that we always find a point of full order, i.e. a point
that can be used to compute one isogeny of each degree �i. Then it is easy to see
that the total computational effort for scalar multiplications in Algorithm2 is
constant, independent from the respective private key. If we now allow random
points, we will typically not satisfy the condition in line 8 of Algorithm2 for
all i. Therefore, additional computations (sampling random points, and point
multiplications) are required. However, this does not leak information about the
private key, since this only depends on the random choice of curve points, but
not on the private key.

Hence, we conclude that the implementation of Algorithm2 as described
here prevents the leakage scenarios considered in Sect. 3. It is however quite
slow compared to the performance of variable-time CSIDH-512 in [6,14]. In the
following section, we focus on how to optimize and speed up the implementation.

3 One could actually use an intermediate value α ∈ Fp\{0, 1} of the isogeny compu-
tation, since the factor is not required to be truly random.
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5.3 Optimizations

Sampling Points with Elligator. In [3] Bernstein, Lange, Martindale, and
Panny pointed out that Elligator [2], specifically the Elligator 2 map, can be
used in CSIDH to be able to choose points over the required field of definition.
Since we only need points defined over Fp, this is especially advantageous in our
situation. For a �= 0 the Elligator 2 map works as follows (see [3]):

– Sample a random u ∈ {2, 3, . . . , (p − 1)/2}.
– Compute v = a/(u2 − 1).
– Compute e, the Legendre symbol of v3 + av2 + v.
– If e = 1, output v. Otherwise, output −v − a.

Therefore, for all a �= 0, we can replace the search for a suitable point in
line 3 of Algorithm 2, at the cost of an extra inversion. However, as explained
by Bernstein et al., one can precompute 1/(u2 − 1) for some values of u, e.g. for
u ∈ {2, 3, 4, . . .}. Then the cost is essentially the same as for the random choice of
points, but we always find a suitable point this way, compared to the probability
of 1/2 when sampling random points. This could, however, potentially lead to
the case that we cannot finish the computation: Consider that we only have one
isogeny of degree �i left to compute, but for all of the precomputed values of u,
the order of the corresponding point is not divided by �i. Then we would have
to go back to a random choice of points to finish the computation. However, our
experiments suggest that it is enough to have 10 precomputed values. Note that
the probability for actually finding points of suitable order appears to be almost
unchanged when using Elligator instead of random points, as discussed in [3].

For a = 0, Bernstein et al. also show how to adapt the Elligator 2 map to this
case, but also argue that one could precompute a point of full order (or almost
full order, i.e. divided by all �i) and simply use this point whenever a = 0. We
follow their latter approach.

SIMBA (Splitting Isogeny Computations into Multiple Batches). In
Sect. 4, we analyzed the running time of variable-time CSIDH-512 for the keys
e1 = (5, 5, . . . , 5) and e2 = (5,−5, 5,−5, . . .). For the latter, the algorithm is
significantly faster, because of the smaller multiplications during the loop (line
9 of Algorithm 1), see Fig. 1. We adapt and generalize this observation here, in
order to speed up our constant-time implementation.

Consider for our setting the key (10, 10, . . . , 10) and that we can again always
choose points of full order. To split the indices in two sets (exactly as Algo-
rithm1 does for the key e2), we define the sets S1 = {1, 3, 5, . . . , 73} and
S2 = {2, 4, 6, . . . , 74}. Then the loops through the �i for i ∈ S1 resp. i ∈ S2

require significantly smaller multiplications, while only requiring to compute
[4k]P with k =

∏
i∈S2

�i resp. k =
∏

i∈S1
�i beforehand. We now simply per-

form 10 loops for each set, and hence this gives exactly the same speedup over
Algorithm 2, as Algorithm 1 gives for the key e2 compared to e1, by using two
batches of indices instead of only one.
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One might ask if splitting the indices in two sets already gives the best
speedup. We generalize the observation from above, now splitting the indices
into m batches, where S1 = {1,m + 1, 2m + 1, . . .}, S2 = {2,m + 2, 2m + 2, . . .},
and so on4. Before starting a loop through the indices i ∈ Sj with 1 ≤ j ≤ m,
one now has to compute [4k]P with k =

∏
h/∈Sj

�h. The number and size of these
multiplications grows when m grows, so we can expect that the speedup turns
into an increasing computational effort when m is too large.

To find the best choice for m, we computed the total number of Montgomery
ladder steps during the computation of one isogeny of each degree in CSIDH-512
for different m, with the assumptions from above. We did not take into account
here that when m grows, we will have to sample more points (which costs at
least one Legendre symbol computation each), since this depends on the cost
ratio between Montgomery ladder steps and Legendre symbol computations in
the respective implementation. Table 1 shows that the optimal choice should be
around m = 5.

Table 1. Number of Montgomery ladder steps for computing one isogeny of each degree
in CSIDH-512 for different numbers of batches m.

m 1 2 3 4 5 6 7

Ladder steps 16813 9066 6821 5959 5640 5602 5721

If we now come back to the choice of points through Elligator, the assumption
from above does not hold anymore, and with very high probability, we will need
more than 10 loops per index set. Typically, soon after 10 loops through each
batch the large degree isogenies will be finished, while there are some small
degree isogenies left to compute. In this case our optimization backfires, since in
this construction, the indices of the missing �i will be distributed among the m
different batches. We therefore need large multiplications in order to only check
a few small degrees per set. Hence it is beneficial to define a number μ ≥ 10, and
merge the batches after μ steps, i.e. simply going back to Algorithm2 for the
computation of the remaining isogenies. We dub this construction SIMBA-m-μ.

Sampling Private Key Elements from Different Intervals. Instead of
sampling all private key elements from the interval [0, 10], and in total computing
10 isogenies of each degree, one could also consider to choose the key elements
from different intervals for each isogeny degree, as done in [11]. For a private key
e = (e1, e2, . . . , en), we can choose an interval [0, Bi] for each ei, in order to e.g.
reduce the number of expensive large degree isogenies at the cost of computing

4 Note that in [3] a similar idea is described. However, in their algorithm only two
isogeny degrees are covered in each iteration. Our construction makes use of the fact
that we restrict to intervals of nonnegative numbers for sampling the private key
elements.
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more small degree isogenies. We require
∏

i(Bi+1) ≈ 1174, in order to obtain the
same security level as before. For the security implication of this choice, similar
arguments as in Sect. 4 apply.

Trying to find the optimal parameters Bi leads to a large integer optimization
problem, which is not likely to be solvable exactly. Therefore, we heuristically
searched for parameters likely to improve the performance of CSIDH-512. We
present them in Sect. 6 and AppendixA.

Note that if we choose B = (B1, . . . , Bn) differently from B =
(10, 10, . . . , 10), the benefit of our optimizations above will change accordingly.
Therefore, we changed the parameters m and μ in our implementation according
to the respective B.

Skip Point Evaluations. As described before, the isogeny algorithms compute
the image curve parameters, and push a point P through the isogeny. However,
in the last isogeny per loop, this is unnecessary, since we choose a new point
after the isogeny computation anyway. Therefore, it saves some computational
effort, if we skip the point evaluation part in these cases.

Application to Variable-Time CSIDH. Note that many of the optimizations
from above are also applicable to variable-time CSIDH-512 implementations as
in [14] or [6]. We could therefore also speed up the respective implementation
results using the mentioned methods.

6 Implementation Results

We implemented our optimized constant-time algorithm in C, using the imple-
mentation accompanying [14], which is based on the implementation from the
original CSIDH paper by Castryck et al. [6]. For example the implementation
of the field arithmetic in assembly is the one from [6]. Our final algorithm, con-
taining all the optimizations from above, can be found in AppendixB.

Since we described different optimizations that can influence one another, it
is not straightforward to decide which parameters B, m, and μ to use. Therefore,
we tested various choices and combinations of parameters B, m, and μ, assuming
�1 > �2 > ... > �n. The parameters and implementation results can be found in
AppendixA. The best parameters we found are given by
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B = [5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 11, 11, 11,

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13]

using SIMBA-5-11, where the key element ei is chosen from [0, Bi]. We do not
claim that these are the best parameters; there might be better choices that we
did not consider in our experiments.

We further tried to rearrange the order of the primes �i in the different loops.
As pointed out in [14], it is beneficial to go through the �i in descending order.
However, if we suppress isogeny point evaluations in the last iteration per loop,
this means that these savings refer to small �i, and therefore the impact of this is
rather small. Hence, we put a few large primes at the end of the loops, therefore
requiring more computational effort for point multiplications, which is however
in some situations outweighed by the larger savings from not evaluating points.

In this way, the best combination we found for CSIDH-512 is �1 = 349,
�2 = 347, �3 = 337, . . . , �69 = 3, �70 = 587, �71 = 373, �72 = 367, �73 = 359, and
�74 = 353, using SIMBA-5-11 and B from above, where the Bi are swapped
accordingly to the �i.

Table 2. Performance of one class group action evaluation in CSIDH-512 with the
mentioned parameters. All timings were measured on an Intel Core i7-6500 Skylake
processor running Ubuntu 16.04 LTS, averaged over 1 000 runs.

Clock cycles ×108 Wall clock time

3.145 121.3 ms

In Table 2, we give the cycle count and running time for the implementation
using the parameters from above. The code is freely available at https://zenon.
cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation.

To give a comparison that mainly shows the impact of SIMBA and the dif-
ferent choice of B, we also ran the straightforward implementation according
to Algorithm 2 with B = [10, 10, . . . , 10], also using Elligator. In this case, we
measured 621.5 million clock cycles in the same setting as above.

https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
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Compared to the performance of the variable-time implementation from [14],
the results from Table 2 mean a slowdown of factor 3.03. However, as mentioned,
also the variable-time implementation can benefit from the optimizations from
this paper, so this comparison should not be taken too serious.

7 Conclusion

We present the first implementation of CSIDH that prevents certain side-channel
attacks, such as timing leakages. However, there might be more leakage models,
depending on how powerful the attacker is. There is also more work to be done
on making this implementation as efficient as possible. It may e.g. be possible
to find a CSIDH-friendly prime p that allows for faster computations in Fp.

Also the security features of CSIDH remain an open problem. More analy-
sis on this is required, to show if the parameters are chosen correctly for the
respective security levels.

We note that our results depend on the parameters from CSIDH-512. How-
ever, it is clear that the described optimizations can be adapted to other param-
eter sets and security levels as well.

Acknowledgments. This work was partially supported by Elektrobit Automotive,
Erlangen, Germany. We thank Joost Renes for answering some questions during the
preparation of this work, and the anonymous reviewers for their helpful and valuable
comments.

A Implementation Results

We tested several parameters in a dynamical implementation, as explained in
the paper. The setting is the same as in Sect. 6. For the parameters B0, . . . , B4

we chose
B0 = [10, 10, 10, ..., 10],

B1 = [1, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8,

12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14, 14, 14],
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B2 = [5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8,

11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13,

13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,

13, 13, 13, 13, 13, 13, 13, 13],

B3 = [2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10,

10, 10, 10, 10, 10, 10, 10, 10, 10, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,

16, 16, 16, 16, 16, 16, 16, 16, 16], and

B4 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 12, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,

20, 20, 20, 20, 20, 20, 20, 20, 20].

In an earlier version of our implementation we measured many different combina-
tions with different m and μ, running SIMBA-m-μ as described above, averaging
the running time over 1 000 runs per parameter set, given in 106 clock cycles.
For each Bi, we present the three best combinations we found in the Table 3.

Table 3. Performance of one class group action evaluation in CSIDH-512 with different
combinations of parameters. All timings are given in 106 clock cycles, and were mea-
sured on an Intel Core i7-6500 Skylake processor running Ubuntu 16.04 LTS, averaged
over 1 000 runs.

B 1st 2nd 3rd

0 μ = 10 338.1 μ = 10 343.5 μ = 11 343.7

m = 5 m = 6 m = 5

1 μ = 12 329.3 μ = 14 330.6 μ = 13 330.8

m = 4 m = 4 m = 4

2 μ = 11 326.5 μ = 12 327.0 μ = 11 327.6

m = 5 m = 5 m = 4

3 μ = 16 333.8 μ = 17 337.6 μ = 16 339.3

m = 4 m = 4 m = 3

4 μ = 20 397.5 μ = 20 399.0 μ = 21 399.5

m = 3 m = 4 m = 3
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We further tried to rearrange the order of the primes �i in the different loops,
as described in Sect. 6. However, the fastest parameter set from above was the
best choice in all our tests.

B Algorithms

In this section we describe our constant-time algorithm, containing the optimiza-
tions from above. We split the application of SIMBA in two parts: SIMBA-I
splits the isogeny computations in m batches, and SIMBA-II merges them after
μ rounds. Note that in our implementation, it is actually not required to generate
all the arrays from SIMBA-I.

Algorithm 5 shows the full class group action evaluation. Due to many loops
and indices, it looks rather complicated. We recommend to additionally have a
look at our implementation, provided in Sect. 6.

Algorithm 3. SIMBA-I.
Input : e = (e1, ..., en), B = (B1, ..., Bn), m.
Output: ei = (ei

1, ..., e
i
n), f i = (f i

1, ..., f
i
n), ki for i ∈ {0, ..., m − 1}.

1 Initialize ei = f i = (0, 0, ..., 0) and ki = 4 for i ∈ {0, ..., m − 1}
2 foreach i ∈ {1, ..., n} do

3 ei%m
i ← ei

4 f i%m
i ← Bi − ei

5 foreach j ∈ {1, ..., m} do
6 if j �= (i%m) then
7 ki ← ki · �i

Algorithm 4. SIMBA-II.
Input : ei = (ei

1, ..., e
i
n) and f i = (f i

1, ..., f
i
n) for i ∈ {0, ..., m − 1}, m.

Output: e = (e1, ..., en), f = (f1, ..., fn), and k.

1 Initialize e = f = (0, 0, ..., 0), and k = 4.
2 foreach i ∈ {1, ..., n} do

3 ei ← ei%m
i

4 fi ← f i%m
i

5 if ei = 0 and fi = 0 then
6 k ← k · �i
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Algorithm 5. Constant-time evaluation of the class group action in
CSIDH-512.
Input : a ∈ Fp such that Ea : y2 = x3 + ax2 + x is supersingular, a list of

integers (e1, ..., en) with 0 ≤ ei ≤ Bi for all i ≤ n, B = (B1, ..., Bn), m,
μ.

Output: a′ ∈ Fp, the curve parameter of the resulting curve Ea′ .

1 Run SIMBA-I(e, B, m).
2 foreach i ∈ {1, ..., μ} do
3 foreach j ∈ {1, ..., m} do
4 Run Elligator to find a point P , where yP ∈ Fp.
5 P ← [kj ]P

6 S = {ι | ej
ι �= 0 or f j

ι �= 0}
7 foreach ι ∈ S do
8 α =

∏
κ∈S,κ>ι �κ

9 K ← [α]P.
10 if K �= ∞ then
11 if ej

ι �= 0 then
12 Compute a degree-�ι isogeny ϕ : Ea → Ea′ with

ker(ϕ) = 〈K〉.
13 a ← a′, P ← ϕ(P ), ej

ι ← ej
ι − 1.

14 else
15 Compute a degree-�ι dummy isogeny:

16 a ← a, P ← [�ι]P , f j
ι ← f j

ι − 1.

17 if ej
ι = 0 and f j

ι = 0 then
18 Set kj = kj · �ι.

19 Run SIMBA-II(ei and f i for i ∈ {0, ..., m − 1}, m).
20 while some ei �= 0 or fi �= 0 do
21 Run Elligator to find a point P , where yP ∈ Fp.
22 Set P = (x : 1), P ← [k]P , S = {i | ei �= 0 or fi �= 0}.
23 foreach i ∈ S do
24 Let m =

∏
j∈S,j<i �i.

25 Set K ← [m]P.
26 if K �= ∞ then
27 if ei �= 0 then
28 Compute a degree-�i isogeny ϕ : Ea → Ea′ with ker(ϕ) = 〈K〉.
29 a ← a′, P ← ϕ(P ), ei ← ei − 1.

30 else
31 Compute a degree-�i dummy isogeny:
32 a ← a, P ← [�i]P , fi ← fi − 1.

33 if ei = 0 and fi = 0 then
34 Set k = k · �i.
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Abstract. This work contains two major parts: comprehensively study-
ing the security notions of cryptographic hash functions against quan-
tum attacks and the relationships between them; and revisiting whether
Merkle-Damg̊ard and related iterated hash constructions preserve the
security properties of the compression function in the quantum setting.
Specifically, we adapt the seven notions in Rogaway and Shrimpton
(FSE’04) to the quantum setting and prove that the seemingly stronger
attack model where an adversary accesses a challenger in quantum super-
position does not make a difference. We confirm the implications and
separations between the seven properties in the quantum setting, and in
addition we construct explicit examples separating an inherently quan-
tum notion called collapsing from several proposed properties. Finally,
we pin down the properties that are preserved under several iterated hash
schemes. In particular, we prove that the ROX construction in Andreeva
et al. (Asiacrypt’07) preserves the seven properties in the quantum ran-
dom oracle model.

Keywords: Quantum random-oracle model ⋅
Post-quantum security definitions ⋅ Hash functions

1 Introduction

Cryptographic hash functions, which produce a short digest on an input mes-
sage efficiently, are a ubiquitous building block in modern cryptography. They
are indispensable in constructing key-establishment, authentication, encryp-
tion, digital signature, cryptocurrency, and more, which constitute the back-
bone of a secure cyberspace. A host of cryptographic hash functions have been
designed [NIS15] which have been subject to extensive cryptanalysis. Most of the
constructions follow the iterated hash paradigm, which iterates a compression
function on a small domain.

The emerging technology of quantum computing brings devastating chal-
lenges to cryptography. In addition to breaking widely deployed public-key cryp-
tography due to Shor’s efficient quantum algorithm for factoring and discrete
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logarithm, effective quantum attacks on symmetric primitives have been found
in recent years that break of a variety of message authentication and authenti-
cated encryption schemes [KLLNP16,SS17].

In this work, we revisit two fundamental threads of cryptographic hash func-
tions in the presence of quantum attacks: modeling basic security properties and
establishing their interrelations; and pinning down whether the iterated hash
constructions preserve the security of the underlying compression functions.

A principal security property is collision resistance: It should be computa-
tionally infeasible to compute a collision (x,x′) such that H(x) = H(x′). Two
other basic properties are preimage resistance (Pre) and second-preimage resis-
tance (Sec). Rogaway and Shrimpton extend the three and arrive at a total of
seven properties to cope with various scenarios [RS04]. More specifically, they
consider a family of hash functions H ∶ K × M → D. Conventional Pre and Sec
require that under a random key, it is infeasible to find a preimage of a ran-
dom digest or to find a message that forms a collision with a given random
input. They propose two variations named always and everywhere. For example,
always preimage resistance (aPre) allows an attacker to pick a key K at will, and
HK needs to be preimage resistant in the usual sense. This reflects that real-
world hash functions are standalone (i.e., unkeyed), so it is important to always
enforce the property on all members in the hash family. In a complementary
vein everywhere preimage resistance (ePre), for instance, asks about finding a
preimage on any digest (i.e., adversarially chosen as opposed to a random one)
being hard. They give a comprehensive characterization of the seven properties,
including both implications and separations. For instance, they show that while
Coll implies standard Pre, there exist Coll hash functions that are not aPre or
ePre. This motivates our first question of this work:

How do we model these properties appropriately against quantum attacks, and
what are the relationships between them?

Once the appropriate quantum security notions have been nailed down,
we would like to construct hash functions achieving various desired proper-
ties. The dominating design framework is iterated hashing, which takes a com-
pression function on a relatively small domain and runs it iteratively, with
minor variations, to process longer messages. The Merkle-Damg̊ard construc-
tion [Mer89,Dam89] (adopted by SHA-1,2 families) and the sponge construc-
tion [BDPA07] (adopted in SHA-3) are notable examples. As a modular approach
to attaining security, researchers ask whether the iterated hash preserves the
security of the compression function. It is known that Merkle-Damg̊ard is colli-
sion resistant as long as the compression function is collision resistant. However it
does not preserve preimage resistance: There is a preimage-resistant compression
function, such that plugging it into Merkle-Damg̊ard fails to result in preimage-
resistance. Andreeva et al. [ANPS07] study several variants of Merkle-Damg̊ard,
such as XOR-linear [BR97] and Shoup’s [Sho00] hash schemes, and determine
their security-preserving capabilities. In short, none of them are able to preserve
all seven properties. They therefore propose a new iterated construction, ROX,
built on XOR-linear hash, and prove that it preserves all seven properties in the
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random oracle model1. In contrast, we refer to other constructions as being in
the plain model. We pose the second major question of this work:

Are iterated hashes security preserving in the quantum setting?

A positive answer will dramatically simplify the design of secure hash func-
tions to the design of a secure compression function of a small size. Answering
this question, however, could be challenging and subtle. What we prove clas-
sically often fails to carry over against quantum attacks for some fundamen-
tal reasons (e.g., no-cloning of quantum states or probabilistic analysis that
has no counterpart in the quantum formalism). There has been extensive work
developing tools for analyzing quantum security [Wat09,Unr12,Son14,Zha12a].
In particular, Unruh proves that Merkle-Damg̊ard preserves collapsing, and it
can be observed that collision resistance is also preserved in the quantum set-
ting. More specific to ROX, the random oracle model faces grave difficulties
in the presence of quantum adversaries [BDF+11]. For example, classically one
can easily simulate a random oracle by lazy sampling the responses upon every
query on-the-fly. A quantum query, which can be in superposition of all possi-
ble inputs seems to force the function to be completely specified at the onset.
Likewise, the powerful trick of programming a random oracle, i.e., changing the
outputs on some input points as long as they have not been queried before,
appears impossible if quantum queries are permitted. Recently, there is progress
on restoring proof techniques including programming a quantum random ora-
cle [ARU14,Unr14,ES15,HRS16].

Our Contributions. We investigate the two questions systematically in this work.
The main results are summarized below.

We formalize the seven security notions in the quantum setting2. Since all
properties are described in simple interactive games, we face two options to
modeling quantum attackers depending on whether the interface between the
challenger and the adversary remains classical or can also be quantum. We call
the latter “fully” or “strong” quantum attacks, reminiscent of an active line of
work recently [BZ13,Unr14,AR17]. This stronger type of attack is more realistic
in some cases than others. Our interesting finding is that which model we use
makes no difference in this setting, by a simple observation of commutativity
of some quantum operators. Namely, the security property (e.g. aPre) against a
quantum adversary and classical communication with the challenger is equivalent
to that where the access to the challenger can be quantum too.

We depict the landscape of the seven notions in the quantum setting as well
as the collapsing property, by fully determining their relationships (Fig. 2a). For
most of the existing implications and separations in [RS04], we apply a general
lifting tool in [Son14] to make analogous conclusions in the quantum setting.
1 The compression function is not given as a random oracle. Rather apart from the

compression function, the construction has access to a public random function that
is given as a black-box.

2 Some standard notions have appeared in the literature before [HRS16].
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We construct new examples to separate collapsing from our quantum notions of
aSecQ and eSecQ, and derive other relations by transitivity. Unruh’s separation
example between collapsing and collision resistance [Unr16b] is the only one that
is relative to an oracle.

We determine the security-preserving capabilities of various iterated hash
constructions. We show that the results in [ANPS07] (other than ROX) can be
“lifted” into a quantum setting. As to ROX, we adapt techniques of programming
a quantum random oracle and show that ROX preserves all security properties
we consider in this work.

Discussion. As Andreeva et al. remarked in their work, ROX is proven secure in
the random oracle model. Can we design an iterated hash that is all-preserving
in the plain model? Recently there is another quantum notion extending col-
lision resistance proposed in [AMRS18] termed Bernoulli-preserving. It implies
collapsing and appears stronger. Do the iterated hash constructions preserve
collapsing and Bernoulli-preserving of the compression function? Another inter-
esting future direction is to investigate whether iterated hash can be amplifying,
especially with the assistance of a random oracle such as in ROX. Finally, we
consider variants of the Merkle-Damg̊ard and Merkle Tree constructions. Less is
known about the versatile sponge construction in terms of security-preserving of
round functions. It has been shown very recently that the sponge is collapsing
assuming the round functions are truly random [CBH+18].

2 Preliminaries

Notations. Hash-function properties are formulated as games with a challenger
C and an adversary A. C and A perform one or more rounds of communication,
after which C outputs a bit indicating whether A “won”. Our proofs take the form
of reductions, where winning the game allows us to create an adversary to win
another game that is supposed to be hard. Following on [Son14], we formalize a
reduction as a tuple (Gint,T ,Gext) where Gext is the game that is assumed to be
hard, Gint is the game we would like to show to be secure, and T transforms an
adversary A for Gint into one for Gext. If T is efficient and maintains A’s success
probability up to a negligible difference, showing the existence of a reduction is
a proof by contradiction that Gint is hard.

We are concerned primarily with quantum adversaries. These are adversaries
that run in polynomial time on a quantum computer (qpt). We call the probabil-
ity that this adversary succeeds its “advantage”, denoted by Advprop

H (A), where
H is a hash function. By Advprop

H , we mean the maximum advantage over qpt

adversaries. When discussing concrete security, we say that H is (t, ε)-prop if for
all adversaries A running in time at most t, Advprop

H A ≤ ε. When the interaction
between C and an adversary has two rounds, we sometimes refer to an adversary
as having two parts (A,B). In this case, they share a state register S, which
the challenger may not read or modify. By convention, we use capital letters to
indicate quantum registers. Measuring a quantum register (M(⋅)) results in a
classical value, which we denote with the corresponding lowercase letter.
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We assume there exists a security parameter n for each hash function that
corresponds to the size of a key. A probability is negligible, denoted negl(n), if
it is less than 1

poly(n)
, where poly(⋅) is any polynomial function. By τH , we mean

the time required to compute H. We indicate sampling from a distribution or
receiving a result from a probabilistic algorithm by x ← S. When S is a set, this
indicates uniform sampling, unless otherwise noted.

Quantum Random Oracles. One goal of this paper is to translate results about
the ROX construction from the classical (RO) to the quantum (QRO) random
oracle model. In general, results proven in the classical RO model do not neces-
sarily carry over to a quantum setting, and even when they do, the techniques
often need to be modified.

Even efficiently simulating a random oracle—a simple task in a classical set-
ting, since an algorithm can simply lazily answer poly(n) queries—is not obvi-
ously possible in a quantum setting. A quantum query could be a superposition
of exponentially many inputs, naively requiring an exponential number of sam-
ples from the oracle’s codomain to simulate. Zhandry showed that it is possible
to efficiently simulate a random oracle using 2q samples, where q is the num-
ber of queries made to the oracle (Corollary 1 of Theorem 3.1 from [Zha12b]).
Whenever we refer to simulating a QRO, we refer to this technique.

Another property of classical random oracles is that they can be adaptively
programmed. That is, even after a polynomial number of queries have been
made, the algorithm simulating the oracle can change the output of the oracle
at some input points, since it is unlikely that A has seen the output at those
points. However, a single quantum query in superposition can “see” the output
at all points of the domain. We use a technique for programming a quantum
random oracle from [ES15], which defines a “witness-search” game in which an
adversary must guess a “witness” ŵ with P (ŵ) = 1, given some predicate P
and public information pk chosen by the challenger, given that the challenger
knows a witness w. The probability that any qpt adversary detects adaptive
programming at a point x with P (ŵ) = 1 is at most his success probability in
witness search.

Standard Hash-Function Security. Rogaway and Shrimpton [RS04] identify
seven properties of hash functions. These consist of the standard collision resis-
tance (Coll), preimage resistance (Pre), and second-preimage resistance (Sec), as
well as two stronger variants of each of the latter two—“always” (aPre, aSec) and
“everywhere” (ePre, eSec)—which give the adversary more power. The following
defines standard collision, preimage, and second-preimage resistance:
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AdvColl
H (A) = Pr[x /= x′ ∧ Hk(x) = Hk(x

′) ∶ k ← K;x,x′ ← A(1n, k)] (1)

AdvPre
H (A) = Pr[Hk(x) = y ∶ k ← K;x′ ← M ; y = Hk(x

′);x ← A(1n, k, y)] (2)

AdvSec
H (A) = Pr[x /= x′ ∧ Hk(x) = Hk(x

′) ∶ k ← K;x′ ← M ;x ← A(1n, k, x′)] (3)

Note that the challenger chooses the key k, and in the latter two properties,
challenger chooses the target that the preimage needs to match. A successful
adversary needs to work with non-negligible probability regardless of what the
challenger chooses. One way to create a stronger property would be to relax this
requirement on either the key or the preimage target.

Allowing the adversary to choose the key results in the “always” variants of
preimage and second-preimage resistance. Here, the adversary is given as a pair
of algorithms (A,B): A is responsible for choosing the key, and B is responsible
for guessing the preimage.

AdvaPre
H (A,B) = Pr[Hk(x) = y

∶k,S ← A(1n);x′ ← M ; y = Hk(x
′);x ← B(1n, S, y)] (4)

AdvaSec
H (A,B) = Pr[x /= x′ ∧ Hk(x) = Hk(x

′)

∶ k,S ← A(1n);x′ ← M ;x ← B(1n, S, x′)] (5)

Alternatively, allowing the adversary to choose the target the preimage must
match before knowing the key results in the “everywhere” variants of these
properties:

AdvePre
H (A,B) = Pr[Hk(x) = y ∶ y,S ← A(1n);k ← K;x ← B(1n, S, k)] (6)

AdveSec
H (A,B) = Pr[x /= x′ ∧ Hk(x) = Hk(x

′)

∶ x′, S ← A(1n);k ← K;x ← B(1n, S, k)] (7)

Fig. 1. Games defining the CLAPS property.

A standard quantum-only property is called “collapsing” [Unr16b,Unr16a]
(CLAPS). Let y ∈ D be an element of the digest space of Hk. CLAPS cap-
tures the idea that it should be difficult for an adversary to produce a “useful”
superposition of elements of the set H−1k (y) ⊆ M. If a hash function is not col-
lapsing, an adversary may be able to find some input-output pair with desirable
properties even if it can succeed with only negligible advantage in the Coll game.
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An adversary for CLAPS is a pair of qpt algorithms (A,B). On input k, A
outputs quantum registers S,X and a classical register y. We call the adversary
“correct” if Pr[Hk(M(X)) = y] = 1, and we restrict our attention to correct
adversaries. On input S,X, B outputs a classical bit b that represents a guess
whether X has been measured. The collapsing advantage AdvCLAPS

H (A,B) =
∣Pr[b = 1 ∶ Game1] −Pr[b = 1 ∶ Game2]∣, where Game1,2 are as shown in Fig. 1.

3 Quantum Security Properties of Hash Functions

We adapt the above notions from [RS04] to a quantum setting by allowing the
adversary to be qpt, rather than ppt, as in the original definitions. The hash
function is public, so he can make superposition queries to it, but all interac-
tions with the challenger are classical. With the exception of the poly(n)-qubit
state register S, we assume that the adversary measures all of its wires before
outputting them. We call these variants CollQ, PreQ, etc.

It would be natural to ask whether stronger properties result from allowing
the interface between the adversary and the challenger to be quantum. In other
words, the adversary does not measure its wires before outputting them. At the
end, the challenger measures all registers to determine whether the adversary
has succeeded. These properties, which we call “strongly quantum” (SQ), are
defined as follows, where K, Y , and X ′ are quantum registers:

AdvCollSQ
H (A) =Pr[x /= x′ ∧ Hk(x) = Hk(x

′)

∶ k ← K;X,X ′ ← A(1n, k);x,x′ ← M(X,X ′)] (8)

AdvPreSQ
H (A) =Pr[Hk(x) = y

∶ k ← K;x′ ← M ; y = Hk(x
′);X ← A(1n, k, y);x ← M(X)] (9)

AdvSecSQ
H (A) =Pr[x /= x′ ∧ Hk(x) = Hk(x

′)

∶ k ← K;x′ ← M ;X ← A(1n, k, x′);x ← M(X)] (10)

AdvaPreSQ
H (A) =Pr[Hk(x) = y

∶ K,S ← A(1n);x′ ← M ;Y = UH(x′)(K ⊗ ∣0⟩);
X ← B(1n, S, Y );k, x ← M(K,X)] (11)

AdvaSecSQ
H (A) =Pr[x /= x′ ∧ Hk(x) = Hk(x

′)

∶ K,S ← A(1n);x′ ← M ;X ← B(1n, S, x′);k, x ← M(K,X)]
(12)

AdvePreSQ
H (A) =Pr[Hk(x) = y

∶ Y,S ← A(1n);k ← K;X ← B(1n, S, k);x, y ← M(X,Y )] (13)
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AdveSecSQ
H (A) =Pr[x /= x′ ∧ Hk(x) = Hk(x

′)

∶ X ′, S ← A(1n);k ← K;X ← B(1n, S, k);x,x′ ← M(X,X ′)]
(14)

In (11), UH(x′) is quantum gate that acts as UH(x′) ∶ ∣k⟩ ∣y⟩ ↦ ∣k⟩ ∣y ⊕ Hk(x
′)⟩.

In other words, given a key register K in superposition, it outputs a superposition
of digests for x′.

It is easy to see that CollSQ, PreSQ, and SecSQ(8, 9, and 10) are equivalent
to their counterparts (1, 2, and 3) defined above: The challenger immediately
measures the adversary’s output registers, so without loss of generality, we may
assume that the adversary measures all output registers itself.

As it happens, the other SQ properties (11–14) are equivalent to the above
versions (4–7) as well. Intuitively, this is because, although A can put a super-
position of values on its output register, the challenger never gives this register
to B. If the challenger did so, it would be unable to check whether the adversary
had won, since it would no longer have a copy of that register. Hence, the quan-
tum “interface” with the challenger gives the adversary no additional power in
this case.

A more formal proof requires us to show the equivalence of two quantum
circuits. We give the full proof for aPreQ ≡ aPreSQ in AppendixB. The proofs
for aSecQ, ePreQ, and eSecQ are similar, but slightly more straightforward, in
that they do not require Lemma8.

Fig. 2. The relationships between the properties defined in Sect. 3. In Fig. 2a, solid
arrows indicate implications. Everywhere an arrow (or a transitive implication) is
absent indicates a separation. In Fig. 2b, → and ↛ are implications with explicit proofs,
and↣ and↣̸ hold by transitivity,⇒ and⇏ indicate quantumly “lifted” classical reduc-
tions. The dotted arrow in Fig. 2a and ↝̸ in Fig. 2b indicate that only a relativized
separation has been shown [Unr16b].
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4 Relations of Quantum Security Properties

In this section, we examine the relationships among the properties in Sect. 3.
Figure 2 illustrates these graphically. The relationships among the properties
with classical analogs carry over from the classical setting, based on the frame-
work from [Son14]. The following is a sufficient criterion for “lifting” a reduction
from a classical to a quantum setting:

Lemma 1 (Corrollary 4.6 from [Son14]). Let R = (Gext,T ,Gint) be a black-
box reduction that holds for ppt machines, and suppose the following:

1. Gint(A) and Gext(A) are defined for qpt A;
2. ∣AdvG

int

(
A) −AdvG

ext

(T (A))∣ ≤ negl(n) for all qpt A;
3. when T runs A, it runs it “in a straight line until completion,” i.e., as an

honest challenger would; and
4. for all A,A′ with AdvG

int

(A) = AdvG
ext

(A′), AdvG
ext

(T (A)) = AdvG
ext

(T (A′)).

Then R holds for qpt machines as well.

All the classical implication proofs from [RS04] (⇒ from Fig. 2b) satisfy the
hypotheses in Lemma 1, and thus that these proofs can be lifted into a quantum
setting. For example, the standard proof that Coll → eSec involves creating a
reduction (Gext = Coll,T ,Gint = eSec) where T is defined as follows:

T ∶ A ↦ A′

1. Sample x ← M and send it to the challenger.
2. Receive k from C.
3. Run A(1n, k, x) to get x′ and send (x,x′) to the challenger.

Note that T could be applied to a quantum A for eSecQ as easily as a
classical one for eSec, and the result, T (A) finds a collision in the CollQ game.
This is guaranteed due to the classical “interface” in the definitions from Sect. 3.
Moreover, it runs A as normal. So hypotheses 1 and 3 from Lemma 1 hold.
Hypothesis 2 holds as well, since the success probabilities of A and T (A) are
the same Hypothesis 4 captures the idea that the success probability of T (A)
depends only on the success probability of A, not some specific facet of its
internal behavior. This is easily seen to be the case here.

The classical separations from [RS04] (⇏ from Fig. 2b) can also be lifted in
a similar fashion. For example, the proof that Coll does not imply aSec runs as
follows: Suppose that H is Coll. We define a new function H ′ such that if k /= 0,
H ′k(x) = Hk(x), but H0(x) = 0. There is a trivial attack for aSec on H ′: The
adversary simply chooses k = 0 and outputs any x′ /= x as a second preimage.
Finally, we show that H ′ is still collision resistant using a simple reduction. The
first half of this proof (the attack) is clearly as possible on a quantum computer
as it is on a classical one. In fact, the structure of the properties from Sect. 3
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(excluding CLAPS)—where the adversary is given classical input and must pro-
duce classical output—guarantees this. Moreover, as with the implication proofs,
the reductions in the separation proofs satisfy the hypotheses in Lemma1. So
we conclude that these separations hold in a quantum setting as well.

We additionally examine the relationships between collapsing and each of the
standard properties. Unruh shows in [Unr16b] that collapsing implies collision
resistance, and this proof applies to CollQ as well. This leads to the transitive
implications from CLAPS in Fig. 2b. We find that CLAPS does not imply aPreQ,
aSecQ, or ePreQ. The proofs of these separations are given in AppendixA.

5 Quantum Security Preservations of Iterated Hash
Constructions

In this section, we consider whether several standard iterated hash constructions,
including one in the random oracle model (ROX), preserve the quantum-safe
properties from Sect. 3. The constructions we consider are the same as those
considered in [ANPS07], and we find that they preserve (and fail to preserve) the
quantum analogs of the same properties that [ANPS07] show they do classically.
In the case of the standard constructions, we omit explicit proofs, instead using
the lifting framework we introduced in Sect. 4. The proofs for ROX, meanwhile,
are more subtle, since they must be adapted to the quantum random oracle
model. We give explicit proofs in the most interesting of these cases.

Andreeva et al. discuss eleven standard iterated hash constructions, prov-
ing exhaustively (with a few exceptions) which of the seven classical properties
from [RS04] they preserve. These proofs are amenable to being “lifted” to a
quantum setting by reasoning similar to that in Sect. 4: Each implication proof
uses a reduction that satisfies the hypotheses of Lemma 1. Each separation com-
bines an attack, which is still possible in a quantum setting given the nature of
the games we consider, and a reduction, which also satisfies the hypotheses.

In contrast, we cannot use Lemma 1 to lift the proofs for the random-oracle
model construction ROX. In particular, the reductions used cannot claim to run
A identically to an honest challenger, since they must simulate a pair of random
oracles. This violates Hypothesis 3 of the lemma. Although the same results
hold, the proofs must be explicitly adapted, which we do below.
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5.1 ROX Preserves All Quantum Properties

Definition 1 (ROX). ROX(H)k = ROX
(H)

k ○ padROX

padROX ∶ {0,1}∗ → ({0,1}b)∗

x ↦ truncb(x∥RO2(x̄, ∣x∣,1)∥RO2(x̄, ∣x∣,2)∥ . . . )

ROX
(H)

k ∶ ({0,1}b)∗ → {0,1}d

Λ ↦ IV

x1∥ . . . ∥xi ↦ Hk(xi∥ROX
(H)

k (x1∥ . . . ∥xi−1) ⊕RO1(x̄, k, ν(i)))

where Λ is the empty string; ν(i) is the largest integer such that 2ν(i) divides i;
x̄ is the first n bits of x; IV ∈ {0,1}d is a fixed string; and

– H ∶ {0,1}n × {0,1}m → {0,1}d, where b = m − d > 0 is the block size, and
d ≥ 2b;

– RO1 ∶ {0,1}2n+logL → {0,1}d and RO2 ∶ {0,1}n+2 logL → {0,1}2n are random
oracles, where L is the maximum input size in blocks; and

– truncb truncates its input to a multiple of b bits;

We denote the block length of x as �(x) = ⌈(∣x∣ + 2n)/b⌉, the number of padding
blocks as 1 ≤ q2(x) ≤ ⌈ b+2n−1

2n
⌉, and the total oracle queries as q(x) = �(x)+q2(x).

Andreeva et al. [ANPS07] describe an iterated hash called ROX (Definition 1)
that preserves all of the classical properties discussed in [RS04]. In addition to
a compression function, ROX relies on two random oracles (RO1,2), although it
does not rely on this fact for all proofs. Specifically, ROX preserves aPre, Pre,
aSec, and Sec in the random oracle (RO) model, and Coll, ePre, and eSec in the
standard model.

We show that ROX also preserves the quantum analogs of these properties.
Andreeva et al.’s standard-model proofs carry over nearly unchanged for CollQ,
ePreQ, and eSecQ carry over nearly unchanged, so we omit those proofs. We show
that ROX preserves aPreQ, PreQ, aSecQ, and SecQ, replacing the classical RO
model with the QRO model.

We begin by stating the existence of some constructions using ROX that will
be useful in our proofs. The full constructions are given in AppendixC.

Lemma 2 (Extracting collisions on Hk from collisions on ROX(H)k ).
Given x̂, x̂′ ∈ dom(ROX

(H)
k ) with x̂ /= x̂′ and ROX

(H)
k (x̂) = ROX

(H)
k (x̂′), we can

extract x,x′ ∈ dom(Hk) with x /= x′ and Hk(x) = Hk(x
′) except with probability

1
2n using �(x̂) + �(x̂′) applications of H and q(x̂) + q(x̂′) oracle queries.

Lemma 3 (Embedding inputs for Hk into inputs for ROX(H)). Given
an input x for Hk and an index i, we can create an input x̂ for ROX

(H)
k such

that the input to the ith application of Hk is x using i calls to H and at most
⌈ b+2n−1

2n
⌉ + i oracle queries. Moreover, an adversary A making q queries notices

the change with probability at most O(q2/2n).
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Lemma 4 (Extracting a preimage under H from a preimage under
ROX(H)). Given a key k and a message x̂ ∈ {0,1}∗ with ROX

(H)
k (x̂) = y, we can

generate a message x ∈ M with Hk(x) = y using �(x) − 1 calls to H and q(x)
oracle queries.

We are now ready to prove that ROX preserves the properties from Sect. 3
in the QRO model. To conserve space, we only summarize our proofs here,
providing the full proofs in AppendixD.

Theorem 1 (ROX preserves aPreQ). If H is (t′, ε′)-aPreQ, then ROX(H)

is (t, ε)-aPreQ with

t = t′ − poly(n)τH ; ε = ε′ + O(q2/2d)

Proof Summary. We use a preimage target y for H as a preimage target for
ROX(H). In the classical proof, y is correctly distributed because an adversary
would have to guess correctly some random points to query RO1,2. This argument
fails in the quantum setting. We instead use QRO programming to show that y
appears correctly distributed to a quantum adversary.

Theorem 2 (ROX preserves PreQ). If H is (t′, ε′)-PreQ then ROX(H) is
(t, ε)-PreQ, where

t = t − poly(n)τH ; ε′ = ε + O(q2/2d)

Proof Summary. An adversary for PreQ on ROX(H) can be run using a preimage
target y for H, since y will appear to be correctly distributed. The argument is
the same as that in the proof of Theorem1, so we omit it here for brevity.

Theorem 3 (ROX preserves aSecQ). If H is (t′, ε′)-aSecQ then ROX(H) is
(t, ε)-aSecQ with

t = t′ − poly(n)τH ; ε = poly(n)ε′/(1 − 1/2n)(1 − poly(n)/2n)

Proof Summary. We embed a second-preimage target for H into a second-
preimage target for ROX(H) by adaptively programming RO1,2. We argue that
reprogramming the random oracles in this way is imperceptible to the adversary.

Theorem 4 (ROX preserves SecQ). If H is (t′ε′)-SecQ then ROX(H) is
(t, ε)-SecQ, where

t = t′ − poly(n)τH ; ε = poly(n)ε′/(1 − 1/2n)(1 − poly(n)/2n)

Proof Summary. Similarly to Theorem3, here we embed a second-preimage tar-
get for H into one for ROX(H) by programming RO1,2. Since we do not need to
program adaptively, however, the programming is straightforward. The proof is
similar to that of Theorem 3, so we omit it here for brevity.
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A CLAPS Separation Proofs

Here we show that CLAPS does not imply aPreQ, aSecQ, or ePreQ, completing
the diagram in Fig. 2.

A.1 CLAPS↛ aPreQ

Theorem 5. If a collapsing function family exists, then there is a function fam-
ily H that is (t, ε)-CLAPS with negligible ε, but with AdvaPreQ

H = 1.

Proof Summary. Since the key k in the collapsing game is chosen uniformly at
random, a collapsing function can have a constant number of “bad” keys that, for
example, result in a constant function Hk. Finding a preimage for such a function
is obviously trivial. Given a collapsing function F , we exhibit a function H that
is collapsing, but for which AdvaPreQ

H = 1.

Proof. Suppose F ∶ {0,1}n × {0,1}m → {0,1}d is (t, ε)-CLAPS, and define H as
follows:

Hk(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0d if k = 0n

Fk(x) o.w.

Lemma 5. H is (t, ε′)-CLAPS, where ε′ = ε − 1
2n .

The obvious adversary suffices to break aPreQ on H: A picks k = 0n, and B
outputs any x. Since we assume ε to be negligible, ε′ is negligible as well, and
the theorem is immediate from Lemma 5.

Proof (Proof of Lemma 5). Let (A,B) be a correct qpt adversary with
AdvCLAPS

H (A,B) = ε′. We construct a correct qpt adversary (A′,B′) for F
as follows:

Constructing (A′,B′) from (A,B)

A′(1n, k):

1. If k = 0n, FAIL. Otherwise. . .
2. Run A(1n, k) to get S,X, y with

Pr[Hk(M(X)) = y] = 1.
3. Send the challenger S,X, y.

B′(1n, S,X):

1. Run B(1n, S,X) to get b.
2. Send b to the challenger.

We claim that (A′,B′) is correct: If A′ does not fail, then k /= 0n, and by the
premise that (A,B) is correct, Pr[Fk(M(X)) = y] = Pr[Hk(M(X)) = y∣k /= 0] =
1.

Suppose A′ doesn’t fail, and the challenger for (A′,B′) is running Game1.
Then B receives S,M(X), and (A,B) sees Game1. On the other hand, if the
challenger for (A′,B′) is running Game2, X is unmeasured, and (A,B) sees
Game2.

Since the probability that A′ fails is Pr[k = 0n] = 1
2n , AdvCLAPS

F (A′,B′) ≥

ε′ − 1
2n . Therefore AdvCLAPS

H ≤ AdvCLAPS
F + 1

2n = negl(n).
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A.2 CLAPS↛ aSecQ

Theorem 6. If a collapsing function family exists, then there is a function fam-
ily H that is (t, ε)-CLAPS with negligible ε, but with AdvaSec

H = 1.

Proof Summary. This proof uses the same H as the proof of Theorem 5. Given
a collapsing function F , this H is also collapsing, but has a single “bad” key k̂
s.t. Hk̂(x) = 0d, ∀x ∈ {0,1}m. If an adversary can control the key and chooses k̂,
then whichever x the challenger picks, any other element of dom(Hk) is a second
preimage. Since the proof is identical to Theorem5, we omit it for brevity.

A.3 CLAPS↛ ePreQ

Theorem 7. If a collapsing function family exists, then there is a function fam-
ily H that is (t, ε)-CLAPS with negligible ε, but AdvePre

H = 1.

Proof Summary. If the image ŷ of some element x in the domain of H is fixed,
regardless of the key k, then an adversary can find a preimage of an element y of
his choice easily: All he must do is choose y = ŷ, and whatever k the adversary
picks, x is a preimage. But if x is the only preimage of y, this property does not
help in creating superpositions of preimages to use in the collapsing game. So H
may still be collapsing.

Proof. Suppose F ∶ {0,1}n × {0,1}m → {0,1}d−1 is (t, ε)-CLAPS. We define a
new function H ∶ {0,1}n × {0,1}m → {0,1}d as follows:

Hk(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0d if x = 0m

1∥Fk(x) o.w.

Lemma 6. H is (t, ε)-CLAPS.

The obvious adversary suffices to break ePreQ on H: A picks y = 0d and B
outputs 0m. Thus, the theorem is immediate from Lemma 6.

Proof (Proof of Lemma 6). Let (A,B) be a correct qpt adversary with
AdvCLAPS

H (A,B) = ε′. We construct a qpt adversary (A′,B′) for F as follows:

Constructing (A′,B′) from (A,B)

A′(1n, k):

1. Run A(1n, k) to get S,X, y with
Pr[Hk(M(X)) = y] = 1.

2. Measure MF (X) to get y′.
3. Send S,X, y′ to the challenger.

B′(1n, S,X):

1. Run B(S,X, y) to get b.
2. Send b to the challenger.
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(A′,B′) is correct by construction. We claim that AdvCLAPS
F (A′,B′) ≥ ε.

Consider the following cases:

1. Suppose y = 0d. Then by the premise that (A,B) is correct, X = ∣0m⟩, since
0m is the only preimage of 0d. In this case Game1 = Game2, since X = M(X),
so ∣Pr[b = 1 ∶ Game1] − Pr[b = 1 ∶ Game2]∣ = 0 for both (A,B) and (A′,B′).

2. Suppose y /= 0d, and the challenger for (A,B) is running Game1. Then B
receives M(X), so B sees Game2.

3. Suppose y /= 0d, and the challenger for (A,B) is running Game2. By the
premise that (A,B) is correct, when A produces X,

X = ∑
x∈H−1

(y)

αx ∣x⟩ = ∣1⟩ ( ∑
x∈F−1(y′)

αx ∣x⟩)

So the measurement at step 2 of A′ does not collapse X. Hence, B sees Game2.

Therefore AdvCLAPS
F (A′,B′) = ε′.

B aPreQ ≡ aPreSQ

Theorem 8. Equations 4 and 11 are equivalent. I.e., AdvaPreQ
H = AdvaPreSQ

H

Fig. 3. Three equivalent games showing that measuring the K wire before the end does
not change the aPreSQ game—hence aPreSQ and aPreQ are equivalent. Figure a is the
same as aPreSQ; Fig. c is functionally equivalent to aPreQ; and Fig. b is intermediate
between the two. The state register S from Eqs. 4 and 11 is omitted for clarity.

Proof (Proof of Theorem 8).
Let each part A, B of the adversary be a unitary operator and let n = ⌈lg ∣K∣⌉

be the size of a key, m = ⌈lg ∣M∣⌉ be the size of a message, and d = ⌈lg ∣D∣⌉ be the
size of a digest. We illustrate the circuits for three games in Fig. 3.

Lemma 7. Game 1 is equivalent to Game 2.

Lemma 8. Game 2 is equivalent to Game 3.
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We claim that the theorem follows from Lemmas 7 and 8. Note that Game
1 is exactly the aPreSQ game, as defined in Eq. 11. In Game 3, the output of
A and B, with the exception of the state register S, are measured immediately,
so without loss of generality, we may assume that their output is classical. Thus
Game 3 is equivalent to the aPreQ game (Eq. 4).

In the following two proofs, let Mn denote measuring the first n qubits in
the standard basis and leaving the rest untouched. In other words,

Mn(ρ) = ∑
x∈{0,1}n

(∣x⟩ ⟨x∣ ⊗ I)ρ(∣x⟩ ⟨x∣ ⊗ I) (15)

Proof (Proof of Lemma 7).
It suffices to show that for any unitary B and all x ∈ {0,1}n, (∣x⟩ ⟨x∣ ⊗ I)

commutes with (In⊗B). This is immediate, since (In⊗B)(∣x⟩ ⟨x∣⊗I) = ∣x⟩ ⟨x∣⊗B.

Proof (Proof of Lemma 8).
We must show that UH(x′) commutes with Mn. Since

UH(x′) ∶ ∣K⟩ ∣Y ⟩ ↦ ∣K⟩ ∣Hk(x
′) ⊕ Y ⟩

is a unitary operator that leaves the K register untouched, it can be viewed as
using the K register solely as control bits for CNOT gates, interspersed with
unitaries on the Y register. Let CNOTi,j denote a CNOT gate with control i
and target j, and V denote an arbitrary unitary that acts on the Y register.
Then for 0 ≤ i� ≤ n and n + 1 ≤ j� ≤ n + d for all 0 ≤ � ≤ q],

UH(x′) = (In ⊗ V0)
q

∏
�=1

CNOTi�,j�
(In ⊗ V�) (16)

Given the definition of Mn in Eq. 15, we must show all the factors in Eq. 16
commute with ∣x⟩ ⟨x∣⊗Id. Clearly this is the case for In⊗V�, by the same reasoning
as in the proof of Lemma 7. Similarly, it is well known that measurement of the
control qubit commutes with CNOT.

C ROX Constructions

C.1 Extracting Compression-Function Collisions (Lemma2)

Proof (Proof of Lemma 2). We claim that the following procedure extracts a
compression-function with overwhelming probability:



Quantum Security of Hash Functions and Property-Preservation 345

Extract-Collision(k, x̂, x̂′)

1. Let b1∥ . . . ∥b� = padROX(x̂) and b′1∥ . . . ∥b′�′ = padROX(x̂′).

2. Let xi = bi∥ROX
(H)

k (b1∥ . . . ∥bi−1) and x′i = b′i∥ROX
(H)

k (b′1∥ . . . ∥b′i−1).
3. For i = 0 to min(�, �′) . . .
4. If x�−i /= x′�′−i, output (x = x�−i, x

′ = x′�′−i, i
∗ = � − i).

Let x̄, x̄′ and be the first n bits of x̂, x̂′, and λ,λ′ be their respective lengths.
We must show that there always exists a colliding pair (x,x′). We consider two
cases:

– Case i. Suppose x̄ /= x̄′ or λ /= λ′. Then since x� and x′�′ each contains at least
one full output from RO2, x� /= x′�′ except with probability δ = 1

2n . In this case
the inputs to the last application of Hk form a collision for Hk.

– Case ii. Otherwise, x̄ = x̄′ and λ = λ′. In this case, the padding applied to
x̂ and x̂′ will be identical. But the mask schedule taken from RO1 will be
identical as well. So since x̂ /= x̂′, there must be block pair, (bi∗ , b

′

i′∗) on which
they differ. Since the masks and padding match, these form a collision for
Hk.

C.2 Embedding Messages (Lemma3)

Proof (Proof of Lemma 3). Let h∥g = x, where ∣h∣ = b and ∣g∣ = d, and define the
following procedure:

Embed-Message(x, i)

1. Generate a random message x̂ of length λ ≥ bi.
2. If i = 1, let x̄ be the first n bits of x, adding bits from x̂, starting with

the (m + 1)st, if x isn’t long enough. Otherwise, let x̄ be the first n bits
of x̂.

3. Let h1∥ . . . ∥h� = padROX(x̂) with ∣hj ∣ = b.

4. Evaluate μi = ROX
(H)

k (x1∥ . . . ∥xi−1).
5. Program RO1(x̄, k, ν(i)) with g ⊕ μi.
6. Program the q′ ≤ q2(x̂) outputs of RO2 contained in hi with x.
7. Let x̂′ be the first λ bits of h1∥ . . . ∥hi−1∥h∥hi+1∥ . . . ∥h�.
8. Output x̂′.

In steps 5 and 6, the above procedure requires us to program a random
oracle. To do so, we invoke witness search from [ES15], where a witness is some
image of RO1,2 corresponding to an input that starts with x̄. Since x̄ is chosen at
random, and since the codomains of RO1,2 are much larger than their domains,
the random search problem in [HRS16] can be reduced to this, with 2n marked
items in a set of 2b−n ≥ 2n, so the success probability is O(q2/2n).
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C.3 Extracting Compression-Function Preimages (Lemma4)

Proof (Proof of Lemma 4). We claim that the following procedure extracts a
collision-function preimage with overwhelming probability:

Extract-Preimage(k, x̂)

1. Evaluate ROX
(H)
k (x) up to the last application of Hk. Namely let

x1∥ . . . ∥x� = padROX(x)

x = x�∥ROX
(H)

k (x1∥ . . . ∥x�−1) ⊕ RO1(x̂, k, �)

2. Output x.

By construction, Hk(x) = y as desired. The only calls to H and RO1,RO2

are in the partial computation of ROX(H)(x). Since we omit one call to H, the
procedure calls it �(x) − 1 times.

D ROX Property-Preservation Proofs

D.1 ROX Preserves aPreQ

Proof (Proof of Theorem 1). Let (A,B) be a (t, ε) quantum adversary for aPreQ
on ROX(H), making q = poly(n) oracle queries. We construct an adversary
(A′,B′) for H using an additional poly(n) oracle queries:

Constructing (A′,B′) from (A,B)

A′(1n):

1. Run k,S ← ARO1,2(1n), simulat-
ing quantum oracles RO1,2.

2. Output k,S.

B′(1n, S, y):

1. Run x ← BRO1,2(1n, S, y).
2. Run Extract-Preimage(k, x)

to obtain a preimage x′ for y
under Hk.

3. Output x′.

By Lemma 4, if ROX(Hk)(x) = y, then Hk(x
′) = y, and A′ wins the aPreQ-

game. Note that y = Hk(g
′∥h′) for g′∥h′ chosen at random, while A would expect

a ŷ to be Hk(g∥h), where g contains at least 2b bits of RO2(x̄, ⋅), and h =
d ⊕ RO1(x̄, ⋅) for some d. The view of (A,B) in the simulated run in (A′,B′)
is thus identical to the real aPreQ-game, unless (A,B) can distinguish y and ŷ
using at most q queries. We show that A can distinguish them with probability
at most q2/2n. Hence AdvaPreQ

H (A′,B′) ≥ ε − q2/2n.
We argue that if some challenger that knew x were to reprogram RO1,2 on

inputs corresponding to x, no algorithm would be able to discover this except
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with negligible probability. In the Witness-Search game from [ES15], let P (w)

output 1 if and only if RO2(w, ∣x∣, j) = g and ROX
(H)

k (x1∥ . . . ∥x�)⊕RO1(w,k, i) =
h for some 1 ≤ i, j ≤ ∣x∣. Next, let w = x̄ and pk = (k, ∣x∣). This amounts to finding
a preimage with a suffix from a set in a random function. Hence AdvWS

Samp(A) ≤

O(q2/2d) by reducing a random search problem developed in [HRS16] to it. Thus
we can safely reprogram RO1,2 at points corresponding to P being true, and h, g
are indistinguishable from the random values supplied by B′.

D.2 ROX Preserves aSecQ

Proof (Proof of Theorem 3). Let (A,B) be a (t, ε) adversary for aSecQ on
ROX(H) making q = poly(n) oracle queries. We construct an adversary (A′,B′)
for H, using an additional ⌈ b+2n−1

2n
⌉ + poly(n) oracle queries:

Constructing (A′,B′) from (A,B)

A′(1n):

1. Run k,S ← ARO1,2(1n), simulat-
ing quantum oracles RO1,2.

2. Output k,S.

B′(1n, S, x):

1. Choose an index i ≤ poly(n).
2. Run Embed-Message(x, i) to

get x̂ ∈ dom(ROX
(H)
k ) with x

embedded as the input to the ith
application of Hk.

3. Run BRO1,2(1n, S, x̂′), to get x̂′.
4. Run Extract-

Collision(k, x̂, x̂′) to get
(x,x′, i∗).

5. If i∗ /= i, FAIL. Output x′.

By Lemma 3, Embed-Message adds an additional i = poly(n) applications of
H and an additional ⌈ b+2n−1

2n
⌉+ i oracle queries and alters the success probability

of A by at most O(q/2n) = poly(n)/2n, where q = poly(n) is the number of
queries A makes. By Lemma 2, Extract-Collision adds �(x̂)+�(x̂′) = poly(n)
applications of H and q(x̂) + q(x̂′) = poly(n) oracle queries and fails w.p. 1

2n .
Assuming both succeed, i = i∗ w.p. 1

poly(n)
. Hence AdvaSecQ

H (A′,B′) ≥ ε(1 −

q/2n)(1 − 1/2n)/poly(n).
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Abstract. The current paper improves the number of queries of the pre-
vious quantum multi-collision finding algorithms presented by Hosoya-
mada et al. at Asiacrypt 2017. Let an l-collision be a tuple of l distinct
inputs that result in the same output of a target function. In cryptology,
it is important to study how many queries are required to find l-collisions
for random functions of which domains are larger than ranges. The pre-
vious algorithm finds an l-collision for a random function by recursively
calling the algorithm for finding (l − 1)-collisions, and it achieves the

average quantum query complexity of O(N (3l−1−1)/(2·3l−1)), where N
is the range size of target functions. The new algorithm removes the
redundancy of the previous recursive algorithm so that different recur-
sive calls can share a part of computations. The new algorithm finds an
l-collision for random functions with the average quantum query com-

plexity of O(N (2l−1−1)/(2l−1)), which improves the previous bound for
all l ≥ 3 (the new and previous algorithms achieve the optimal bound for
l = 2). More generally, the new algorithm achieves the average quantum

query complexity of O

(
c
3/2
N N

2l−1−1
2l−1

)
for a random function f : X → Y

such that |X| ≥ l · |Y |/cN for any 1 ≤ cN ∈ o(N
1

2l−1 ). With the same
query complexity, it also finds a multiclaw for random functions, which
is harder to find than a multicollision.

Keywords: Post-quantum cryptography · Quantum algorithm ·
Multiclaw · Multicollision

1 Introduction

Post-quantum cryptography has recently been discussed very actively in the
cryptographic community. Quantum computers would completely break many
c© Springer Nature Switzerland AG 2019
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classical public-key cryptosystems. In response, NIST is now conducting a stan-
dardization to select new public-key cryptosystems that resist attacks with quan-
tum computers. Given this background, it is now important to investigate how
quantum computers can impact on other cryptographic schemes including cryp-
tographic hash functions.

A multicollision for a function f denotes multiple inputs to f such that they
are mapped to the same output value. In particular, an l-collision denotes a tuple
of l distinct inputs x1, x2, · · · , xl such that f(x1) = f(x2) = · · · = f(xl).

A multicollision is an important object in cryptography. Lower bounds on
the complexity of finding a multicollision are sometimes used to derive security
bounds in the area of provable security (e.g., security bounds for the schemes
based on the sponge construction [JLM14]). In a similar context, the complexity
of finding a multicollision directly impacts on the best cryptanalysis against
some constructions. Furthermore, multicollisions can be used as a proof-of-work
for blockchains. In digital payment schemes, a coin must be a bit-string the
validity of which can be easily checked but which is hard to produce. A micro-
payment scheme, MicroMint [RS96], defines coins as 4-collisions for a function. If
4-collisions can be produced quickly, a malicious user can counterfeit coins. Some
recent works prove the security of schemes and protocols based on the assumption
that there exist functions for which it is hard to find multicollisions [BKP18,
BDRV18,KNY18].

Hosoyamada et al. [HSX17] provided a survey of multicollision finding algo-
rithms with quantum computers. They first showed that an l-collision can be
produced with at most O(N1/2) queries on average to the target random function
with range size N by iteratively applying the Grover search [Gro96,BBHT98]
l times. They also reported that a combination of Zhandry’s algorithm with
l = 3 [Zha15] and Belovs’ algorithm [Bel12] achieves O(N10/21) for l = 3, which
is faster than the simple application of Grover’s algorithm. Finally, Hosoya-
mada et al. presented their own algorithm that recursively applies the colli-
sion finding algorithm by Brassard, Høyer, and Tapp [BHT98]. Their algorithm
achieves the average query complexity of O(N (3l−1−1)/(2·3l−1)) for every l ≥ 2.
For l = 3 and l = 4, the complexities are O(N4/9) and O(N13/27), respectively,
and the algorithm works as follows.

– To search for 3-collisions, it first iterates the O(N1/3)-query quantum algo-
rithm for finding a 2-collision O(N1/9) times. Then, it searches for the preim-
age of any one of the O(N1/9) 2-collisions by using Grover’s algorithm, which
runs with O(N4/9) queries.

– To search for 4-collisions, it iterates the O(N4/9)-query quantum algorithm
for finding a 3-collision O(N1/27) times. Then, it searches for the preimage of
any one of the O(N1/27) 3-collisions with O(N13/27) queries.

As demonstrated above, the recursive algorithm by Hosoyamada et al.
[HSX17] runs the (l − 1)-collision algorithm multiple times, but in each invo-
cation, the algorithm starts from scratch. This fact motivates us to consider
reusing the computations when we search for multiple (l − 1)-collisions.
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Our Contributions. In this paper, we improve the quantum query complex-
ity of the previous multicollision finding algorithm by removing the redundancy
of the algorithm. Consider the problem of finding an l-collision of a random
function f : X → Y , where l ≥ 2 is an integer constant and |Y | = N . In addi-
tion, suppose that there exists a parameter cN ≥ 1 such that cN = o(N

1
2l−1 )

and |X| ≥ l · |Y |/cN . Then, the new algorithm achieves the average quantum

query complexity of O

(
c
3/2
N N

2l−1−1
2l−1

)
. In particular, if we can take cN as a

constant, then our algorithm can find an l-collision of a random function with

O

(
N

2l−1−1
2l−1

)
queries on average, which improves the previous quantum query

complexity O

(
N

3l−1−1
2·3l−1−1

)
[HSX17] and matches with the lower bound proved

by Liu and Zhandry [LZ18].
The complexities for small l’s are listed in Table 1. A comparison between

them can be found in Fig. 1. Our algorithm finds a 2-collision, 3-collision, 4-
collision, and 5-collision of SHA3-512 with 2170.7, 2219.4, 2238.9, and 2247.7 quan-
tum queries, respectively, up to a constant factor (Table 2).

Moreover, our new algorithm finds multiclaws for random functions, which
are harder to find than multicollisions: An l-claw for functions fi : Xi → Y
for 1 ≤ i ≤ l is defined as a tuple (x1, . . . , xl) ∈ X1 × · · · × Xl such that
fi(xi) = fj(xj) for all (i, j). If there exists a parameter cN ≥ 1 such that

cN = o(N
1

2l−1 ) and |Xi| ≥ |Y |/cN for each i, our quantum algorithm finds

an l-claw for random functions fi’s with O

(
c
3/2
N N

2l−1−1
2l−1

)
quantum queries on

average. In particular, if we can take cN as a constant, then our algorithm can

find an l-claw with O

(
N

2l−1−1
2l−1

)
quantum queries.

In this paper, we do not provide the analyses of other complexity measures
such as time/space complexity and the depth of quantum circuits, but it is not
difficult to show with analyses similar to those in Ref. [HSX17] that the space
complexity and the circuit depth are the same order as the query complexity
up to a polylogarithmic factor.

Hereafter, we only consider average quantum query complexity over random
functions as the performance of algorithms unless stated otherwise.

Paper Outline. The remaining of this paper is organized as follows. In Sect. 2,
we describe notations, definitions and settings. In Sect. 3, we review previous
works related to the multicollision-finding problem. In Sect. 4, we provide our
new quantum algorithm and its complexity analysis. In Sect. 5, we conclude
this paper.

Concurrent Work. Very recently, Liu and Zhandry [LZ18] showed that for
every integer constant l ≥ 2, Θ

(
N

1
2 (1− 1

2l−1
)
)

quantum queries are both neces-
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Table 1. Query complexities of l-collision finding quantum algorithms. Each fraction
denotes the logarithm of the number of queries to the base N . The query complexity
asymptotically approaches 1/2 as l increases.

l 2 3 4 5 6 7 8

[HSX17]:
3l−1−1
2·3l−1

1
3

4
9

13
27

40
81

121
243

364
729

1093
2187

Ours:
2l−1−1
2l−1

1
3

3
7

7
15

15
31

31
63

63
127

127
255

l 2 3 4 5 6 7 8

[HSX17]:
3l−1−1
2·3l−1 0.3333.. 0.4444. 0.4814.. 0.4938.. 0.4979.. 0.4993.. 0.4997..

Ours:
2l−1−1
2l−1 0.3333.. 0.4285.. 0.4666.. 0.4838.. 0.4920.. 0.4960.. 0.4980..

Query

l1/3

1/2 Trivial upper bound

2 3 4 5 6 7 8

: Our algorithm

: Known upper bound [HSX17]

Fig. 1. Quantum query complexity for finding an l-collision. “Query” denotes the log-
arithm of the number of queries to the base N .

Table 2. The number of queries required to find an l-collision of SHA3-512. The num-
bers in the first row are obtained from the concrete bound given in [HSX17, Thm.5.1],
and those in the second row are obtained from the concrete bound given in Theorem 2
with k = 2.

l 2 3 4 5

[HSX17, Thm 5.1] 2179 2238 2260 2268

Ours, Theorem 2 2181 2230 2250 2259

sary and sufficient to find a l-collision with constant probability, for a random
function. That is, they gave an improved upper bound and a new lower bound
on the average case. The comparisons are summarized as follows:

– Liu and Zhandry consider the l-collision case that |X| ≥ l|Y |, where X is the
domain and Y is the range. We treat the case that |X| ≥ l

cN
|Y | holds for any
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positive value cN ≥ 1 which is in o(N
1

2l−1 ). We also consider the multiclaw
case.

– Their exponent 1
2 (1 − 1

2l−1
) is the same as ours 2l−1−1

2l−1
.

– They give the upper bound O
(
N

1
2 (1− 1

2l−1
)), while we give O

(
c
3/2
N N

1
2 (1− 1

2l−1
)).

When cN is a constant, our bound matches their bound.
– They give a lower bound, which matches with their and our upper bound.

We finally note that our result on an improved l-collision finding algorithm for
the case |X| ≥ l|Y | with query complexity O

(
N

1
2 (1− 1

2l−1
)
)

is reported in the
Rump Session of Asiacrypt 2017.

2 Preliminaries

For a positive integer M , let [M ] denote the set {1, . . . , M}. In this paper,
N denotes a positive integer. We assume that l is a positive integer constant.
We focus on reducing quantum query complexities for finding multicollisions
and multiclaws. Unless otherwise noted, all sets are non-empty and finite. For
sets X and Y , Func(X,Y ) denotes the set of functions from X to Y . For each
f ∈ Func(X,Y ), we denote the set {f(x) | x ∈ X} by Im(f). For a set X, let
U(X) denote the uniform distribution over X. For a distribution D on a set X,
let x ∼ D denote that x is a random variable that takes a value drawn from
X according to D. When we say that an oracle of a function f : X → Y is
available, we consider the situation that each elements of X and Y are encoded
into suitable binary strings, and the oracle gate Of : |x, z〉 �→ |x, z ⊕ f(x)〉 is
available.

An l-collision for a function f : X → Y is a tuple of elements (x1, . . . , xl, y)
in X� × Y such that f(xi) = f(xj) = y and xi 
= xj for all 1 ≤ i 
= j ≤ l. An
l-collision is simply called a collision for l = 2, and called a multicollision for
l ≥ 3. Moreover, an l-claw for functions fi : Xi → Y for 1 ≤ i ≤ l is a tuple
(x1, . . . , xl, y) ∈ X1×· · ·×Xl ×Y such that f1(x1) = · · · = fl(xl) = y. An l-claw
is simply called a claw for l = 2, and called a multiclaw for l ≥ 3.

The problems of finding multicollisions or multiclaws are often studied in
the contexts of both cryptography and quantum computation, but the problem
settings of interest change depending on the contexts. In the context of quantum
computation, most problems are studied in the worst case, and an algorithm
is said to (efficiently) solve a problem only when it does (efficiently) for all
functions. On the other hand, most problems in cryptography are studied in the
average case, since randomness is one of the most crucial notions in cryptography.
In particular, we say that an algorithm (efficiently) solves a problem if it does
so with a high probability on average over randomly chosen functions.

This paper focuses on the settings of interest in the context of cryptography.
Formally, our goal is to solve the following two problems.

Problem 1 (Multicollision-finding problem, average case). Let l ≥ 2 be a positive
integer constant, and X,Y denote non-empty finite sets. Suppose that a function



Improved Quantum Multicollision-Finding Algorithm 355

F : X → Y is chosen uniformly at random and given as a quantum oracle. Then,
find an l-collision for F .

Problem 2 (Multiclaw-finding problem, average case). Let l ≥ 2 be a positive
integer constant, and X1, . . . , Xl, Y denote non-empty finite sets. Suppose that
functions fi : Xi → Y (1 ≤ i ≤ l) are chosen independently and uniformly at
random, and given as quantum oracles. Then, find an l-claw for f1, . . . , fl.

Roughly speaking, Problem1 is easier to solve than Problem 2. Suppose that
F : X → Y is a function, and we want to find an l-collision for F . Let X1, . . . , Xl

be subsets of X such that Xi ∩Xj = ∅ for i 
= j and
⋃

i Xi = X. If (x1, . . . , xl, y)
is an l-claw for F |X1 , . . . , F |Xl

, then it is obviously an l-collision for F . In general,
an algorithm for finding an l-claw can be converted into one for finding an l-
collision. To be precise, the following lemma holds.

Lemma 1. Let X,Y be non-empty finite sets, and X1, . . . , Xl be subsets of X
such that Xi ∩ Xj = ∅ for i 
= j and

⋃
i Xi = X. If there exists a quantum

algorithm A that solves Problem 2 for the sets X1, . . . , Xl, Y by making at most q
quantum queries with probability at least p, then there exists a quantum algorithm
B that solves Problem 1 for the sets X,Y by making at most q quantum queries
with probability at least p.

How to measure the size of a problem also changes depending on which
context we are in. In the context of cryptography, the problem size is often
regarded as the size of the range of functions in the problem rather than the
size of the domains, since the domains of cryptographic functions such as hash
functions are much larger than their ranges. Hence, we regard the range size
|Y | as the size of Problem 1 (and Problem2) when we analyze the complexity of
quantum algorithms.

In the context of quantum computation, there exist previous works on prob-
lems related to ours [Bel12,Amb04,Tan09,BDH+01] (element distinctness prob-
lem, for example), but those works usually focus on the worst case complexity
and regard the domain sizes of functions as the problem size. In particular,
there does not exist any previous work that studies multiclaw-finding problem
for general l in the average case, to the best of authors’ knowledge.

3 Previous Works

3.1 The Grover Search and Its Generalization

As a main tool for developing quantum algorithms, we use the quantum database
search algorithm that was originally developed by Grover [Gro96] and later gen-
eralized by Boyer, Brassard, Høyer, and Tapp [BBHT98]. Below we introduce
the generalized version.

Theorem 1. Let X be a non-empty finite set and f : X → {0, 1} be a function
such that t/|X| < 17/81, where t = |f−1(1)|. Then, there exists a quantum
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algorithm BBHT that finds x such that f(x) = 1 with an expected number of
quantum queries to f at most

4|X|√
(|X| − t)t

≤ 9
2

·
√

|X|
t

.

If f−1(1) = ∅, then BBHT runs forever.

Theorem 1 implies that we can find l-collisions and l-claws for random func-
tions with O(

√
N) quantum queries, if the sizes of range(s) and domain(s) of

function(s) are Θ(N): Suppose that we are given random functions fi : Xi → Y
for 1 ≤ i ≤ l, where |X1|, . . . , |Xl|, and |Y | are all in Θ(N), and we want to
find an l-claw for those functions. Take an element y ∈ Y randomly, and define
Fi : Xi → {0, 1} for each i by Fi(x) = 1 if and only if fi(x) = y. Then, effectively,
by applying BBHT to each Fi, we can find xi ∈ Xi such that fi(xi) = y for each
i with O(

√
N) quantum queries with a constant probability. Similarly we can

find an l-collision for a random function F : [N ] → [N ] with O(
√

N) quantum
queries. In particular, O(

√
N) is a trivial upper bound of Problems 1 and 2.

3.2 The BHT Algorithm

Brassard, Høyer, and Tapp [BHT98] developed a quantum algorithm that finds
2-claws (below we call it BHT).1 BHT finds a claw for two one-to-one functions
f1 : X1 → Y and f2 : X2 → Y as sketched in the following. For simplicity, here
we assume |X1| = |X2| = |Y | = N . Under this setting, BHT finds a 2-claw with
O(N1/3) quantum queries.

Rough Sketch of BHT:

1. Construction of a list L. Take a subset S ⊂ X1 of size N1/3 arbitrarily.
For each x ∈ S, compute the value f1(x) by making a query and store the
pair (x, f1(x)) in a list L.

2. Extension to a claw. Define a function FL : X2 → {0, 1} by FL(x′) = 1 if
and only if the value f2(x′) ∈ Y appears in the list L (i.e., there exists x1 ∈ S
such that f2(x′) = f1(x1)). Apply BBHT to FL and find x2 ∈ X2 such that
f2(x2) appears in L.

3. Finalization. Find (x1, f1(x1)) ∈ L such that f1(x1) = f2(x2), and then
output (x1, x2).

1 As in our case, the BHT algorithm also focus on only quantum query complex-
ity. Although it runs in time Õ(N1/3) on an idealized quantum computer, it
requires Õ(N1/3) qubits to store data in quantum memories. Recently Chailloux
et al. [CNS17] has developed a quantum 2-collision finding algorithm that runs in
time Õ(N2/5), which is polynomially slower than the BHT algorithm but requires
only O(logN) quantum memories.
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Quantum Query Complexity. BHT finds a claw with O(N1/3) quantum queries.
In the first step, the list L is constructed by making N1/3 queries to f1. In the
second step, since |F−1

L (1)| = |f−1
2 (f1(S))| is equal to N1/3, BBHT finds x2 with

O(
√

N/N1/3) = O(N1/3) quantum queries to f2 (note that we can evaluate FL

by making one query to f2). The third step does not require queries. Therefore
BHT finds a collision by making O(N1/3) quantum queries in total in the worst
case.

Extension to a Collision-Finding Algorithm. It is not difficult to show that
BHT works for random functions. Thus, BHT can be extended to the quantum
collision-finding algorithm as mentioned in Sect. 2. Suppose we want to find a
(2-)collision for a random function F : X → Y . Here we assume |X| = 2N and
|Y | = N for simplicity. Now, choose a subset X1 ⊂ X of size N arbitrarily
and let X2 : = X\X1. Then we can find a collision for F by applying the BHT
algorithm introduced above to the functions F |X1 and F |X2 , since a claw for
them becomes a collision for F .

3.3 The HSX Algorithm

Next, we introduce a quantum algorithm for finding multicollisions that was
developed by Hosoyamada, Sasaki, and Xagawa [HSX17] (the algorithm is
designed to find only multicollisions, and cannot find multiclaws). Below we
call their algorithm HSX.

The main idea of HSX is to apply the strategy of BHT recursively: To find an
l-collision, HSX calls itself recursively to find many (l − 1)-collisions, and then
extend any one of those (l − 1)-collisions to an l-collision by applying BBHT.

Rough Sketch of HSX: In what follows, N denotes |Y |. Let us denote HSX(l)
by the HSX algorithm for finding l-collisions. HSX(l) finds an l-collision for a
random function f : X → Y with |X| ≥ l · |Y | as follows.

Recursive call to construct a list Ll−1. Apply HSX(l−1) to f N1/3l−1
times

to obtain N1/3l−1
many (l − 1)-collisions. Store those (l − 1)-collisions in a

list Ll−1.
Extension to an l-collision. Define Fl−1 : X → {0, 1} by Fl−1(x′) = 1 if

and only if there exists an (l − 1)-collision (x1, . . . , xl−1, y) ∈ Ll−1 such that
(x1, . . . , xl−1, x

′, y) forms an l-collision for f , i.e., f(x′) = y and x′ 
= xi for
1 ≤ i ≤ l − 1. Apply BBHT to Fl−1 to find xl ∈ X such that Fl−1(xl) = 1.

Finalization. Find (x1, . . . , xl−1, y) ∈ Ll−1 such that Fl−1(xl) = y. Output
(x1, . . . , xl−1, xl, y).

Quantum Query Complexity. HSX finds a l-collision with O(N (3l−1−1)/2·3l−1
)

quantum queries on average, which can be shown by induction as follows. For
2-collisions, HSX(2) matches the BHT algorithm. For general l ≥ 3, suppose
that HSX(l − 1) finds an (l − 1)-collision with O(N (3l−2−1)/2·3l−2

) quantum
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queries on average. In its first step, HSX(l) makes N1/3l−1 ·O(N (3l−2−1)/2·3l−2
) =

O(N (3l−1−1)/2·3l−1
) quantum queries. Moreover, in its second step, HSX(l)

makes O(
√

N/N (3l−2−1)/2·3l−2) = O(N (3l−1−1)/2·3l−1
) quantum queries by using

BBHT. The third step does not make quantum queries. Therefore it follows that
HSX(l) makes O(N (3l−1−1)/2·3l−1

) quantum queries in total.

4 New Quantum Algorithm Mclaw

This section gives our new quantum algorithm Mclaw that finds an l-claw with
O(c3/2

N N (2l−1−1)/(2l−1)) quantum queries for random functions fi : Xi → Y for

1 ≤ i ≤ l, where |Y | = N and there exists a real value cN with 1 ≤ cN ∈ o(N
1

2l−1 )
such that N

cN
≤ |Xi| holds for all i. Roughly speaking, this means that, an l-

collision for a random function f : X → Y , where |Y | = N and |X| ≥ l·N , can be
found with O(N (2l−1−1)/(2l−1)) quantum queries, which improves the previous
result [HSX17] (see Sect. 2).

Our algorithm assumes that |X1|, . . . , |Xl| are less than or equal to |Y |. How-
ever, it can also be applied to the functions of interest in the context of cryp-
tography, i.e., the functions of which domains are much larger than ranges, by
restricting the domains of them to suitable subsets.

The main idea of our new algorithm is to improve HSX by getting rid of
its redundancy: To find an l-collision, HSX recursively calls itself to find many
(l−1)-collisions. Once HSX finds an (l−1)-collision γ = (x1, . . . , xl−1, y), it stores
γ in a list Ll−1, discards all the data that was used to find γ, and then start to
search for another (l − 1)-collision γ′. It is inefficient to discard data every time
an (l−1)-collision is found, and our new algorithm Mclaw reduces the number of
quantum queries by reusing those data. We note that our algorithm Mclaw can
solve the multiclaw-finding problem as well as the multicollision-finding problem.

We begin with describing our algorithm in an intuitive manner, and then
give its formal description.

4.1 Intuitive Description and Complexity Analysis

We explain the idea of how to develop the BHT algorithm, how to develop a
quantum algorithm to find 3-claws from BHT, and how to extend it further to
the case of finding an l-claw for any l.

How to Develop the BHT Algorithm. Here we review how the BHT algo-
rithm is developed. Let f1 : X1 → Y and f2 : X2 → Y be one-to-one functions.
The goal of the BHT algorithm is to find a (2-)claw for f1 and f2 with O(N1/3)
quantum queries. For simplicity, below we assume that |X1| = |X2| = |Y | = N
holds. Let t1 be a parameter that defines the size of a list of 1-claws for f1. It
will be set as t1 = N1/3.

First, collect t1 many 1-claws for f1 and store them in a list L1. This first step
makes t1 queries. Second, extend one of 1-claws in L1 to a 2-claw for f1 and f2,
by using BBHT, and output the obtained 2-claw. Since BBHT makes O(

√
N/t1)



Improved Quantum Multicollision-Finding Algorithm 359

queries to make a 2-claw from L1, this second step makes O(
√

N/t1) queries (see
Theorem 1). Overall, the above algorithm makes q2(t1) = t1 +

√
N/t1 quantum

queries up to a constant factor. The function q2(t1) takes its minimum value
2 · N1/3 when t1 = N1/3. By setting t1 = N1/3, the BHT algorithm is obtained.

From BHT to a 3-Claw-Finding Algorithm. Next, we show how the above
strategy to develop the BHT algorithm can be extended to develop a 3-claw-
finding algorithm. Let fi : Xi → Y be one-to-one functions for 1 ≤ i ≤ 3. Our
goal here is to find a 3-claw for f1, f2, and f3 with O(N3/7) quantum queries.
For simplicity, below we assume |X1| = |X2| = |X3| = |Y | = N . Let t1, t2 be
parameters that define the number of 1-claws for f1 and that of 2-claws for f1
and f2, respectively. (They will be fixed later.)

First, collect t1 many 1-claws for f1 and store them in a list L1. This first
step makes t1 queries. Second, extend 1-claws in L1 to t2 many 2-claws for f1
and f2 by using BBHT, and store them in a list L2. Here we do not discard the
list L1 until we construct the list L2 of size t2, while the HSX algorithm does.
Since BBHT makes O(

√
N/t1) queries to make a 2-claw from L1, this second

step makes t2 · O(
√

N/t1) queries if t2 = o(t1) (see Theorem 1). Finally, extend
one of 2-claws in L2 to a 3-claw for f1, f2, and f3 by using BBHT, and output
the obtained 3-claw. This final step makes O(

√
N/t2) queries. Overall, the above

algorithm makes q3(t1, t2) = t1 + t2 · √N/t1 +
√

N/t2 quantum queries up to a
constant factor. The function q3(t1, t2) takes its minimum value 3 · N3/7 when
t1 = t2 · √

N/t1 =
√

N/t2, which is equivalent to t1 = N3/7 and t2 = N1/7. By
setting t1 = N3/7 and t2 = N1/7, we can obtain a 3-claw finding algorithm with
O(N3/7) quantum queries.

l-Claw-Finding Algorithm for General l . Generalizing the above idea to
find a 3-claw, we can find an l-claw for general l as follows. Let fi : Xi → Y
be one-to-one functions for 1 ≤ i ≤ l. Our goal here is to find an l-claw for
f1, . . . , fl. For simplicity, below we assume that |X1| = · · · = |Xl| = |Y | = N
holds. Let t1, . . . , tl−1 be parameters with ti = o(ti−1) for i = 2, . . . . , l.

First, collect t1 many 1-claws for f1 and store them in a list L1. This first
step makes t1 queries. In the i-th step for 2 ≤ i ≤ l − 1, extend ti many (i − 1)-
claws in Li−1 to ti many i-claws for f1, . . . , fi by using BBHT, and store them
in a list Li. Here we do not discard the list Li−1 until we construct the list Li

of size ti. Since BBHT makes O(
√

N/ti−1) queries to make an i-claw from Li−1,
the i-th step makes ti · O(

√
N/ti−1) queries. Finally, extend one of (l − 1)-claws

in Ll−1 to an l-claw for f1, . . . , fl by using BBHT, and output the obtained l-
claw. This final step makes O(

√
N/tl−1) queries. Overall, this algorithm makes

ql(t1, . . . , tl−1) = t1+t2·
√

N/t1+· · ·+tl−1·
√

N/tl−2+
√

N/tl−1 quantum queries
up to a constant factor. The function ql(t1, . . . , tl−1) takes its minimum value
l · N (2l−1−1)/(2l−1) when t1 = t2 · √

N/t1 = · · · = tl−1 · √
N/tl−2 =

√
N/tl−1,

which is equivalent to ti = N (2l−i−1)/(2l−1). By setting ti = N (2l−i−1)/(2l−1), we
can find an l-claw with O(N (2l−1−1)/(2l−1)) quantum queries. Our new quantum
algorithm Mclaw is developed based on the above strategy for random functions.
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4.2 Formal Description

Here we formally describe our quantum multiclaw-finding algorithm Mclaw. A
formal complexity analysis of Mclaw is given in the next subsection, and this
subsection only describes how the algorithm works.

Let N be a sufficiently large integer and suppose that |Y | = N holds. Below
we assume that |Xi| ≤ |Y | holds for all i. This is a reasonable assumption since,
if there is an algorithm that solves Problem2 in the case that |Xi| ≤ |Y | holds
for all i, then we can also solve the problem in other cases: If |Xi| > |Y | holds
for some i, take a subset Si ⊂ Xi such that |Si| = |Y | and find an l-claw for
f1, . . . , fi−1, fi|Si

, fi+1, . . . , fl. Then the l-claw is also an l-claw for f1, . . . , fl.
Here we introduce a corollary that follows from Theorem1.

Corollary 1. Let X,Y be non-empty finite sets, f : X → Y be a function, and
L′ ⊂ Y be a non-empty subset. Then there exists a quantum algorithm MTPS
that finds x such that f(x) ∈ L′ with an expected number of quantum queries to
f at most 9

√
5|X|/|f−1(L′)|.

Let FL′ : {1, . . . , 5}×X → {0, 1} be the boolean function defined by FL′(α, x) =
1 if and only if α = 1 and f(x) ∈ L′. A quantum circuit that computes FL′

can be implemented with two oracle calls to f . Then, run BBHT on FL′ . Since
|{1, . . . , 5} × X| = 5|X| and |F−1

L′ (1)| ≤ |X| ≤ 17/81 · |{1, . . . , 5} × X| always
hold, we can show that the corollary follows from Theorem1.

Our algorithm is parametrized by a positive integer k ≥ 2, and we denote
the algorithm for the parameter k by Mclawk. Mclawk can be applied in the
situation that there exists a parameter cN ≥ 1 such that cN is in o(N

1
2l−1 )

and |Xi| ≥ |Y |/cN holds for each i. We impose an upper limit on the number
of queries that Mclawk is allowed to make: We design Mclawk in such a way
that it immediately stops and aborts if the number of queries made reaches the

limit specified by the parameter Qlimitk := k · 169lc
3/2
N · N

2l−1−1
2l−1 . The upper

limit Qlimitk is necessary to prevent the algorithm from running forever, and to
make the expected value of the number of queries converge. We also define the
parameters controlling the sizes of the lists:

Ni : =

{
N
4cN

(i = 0),

N
2l−i−1
2l−1 (i ≥ 1).

(1)

For ease of notation, we define L0 and L′
0 as L0 = L′

0 = Y . Then, Mclawk is
described as in Algorithm 1.

4.3 Formal Complexity Analysis

This section gives a formal complexity analysis of Mclawk. The goal of this section
is to show the following theorem.
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Algorithm 1. Mclawk

Require: Randomly chosen functions f1, . . . , fl (fi : Xi → Y and |Xi| ≤ |Y |)).
Ensure: An l-claw for f1, . . . , fl or ⊥.
Stop condition: If the number of queries reaches Qlimitk, stop and output ⊥.

L1, . . . , Ll ← ∅, L′
1, . . . , L

′
l ← ∅.

for i = 1 to l do
for j = 1 to 	4cN · Ni
 do

if i = 1 then
Take xj ∈ X1 that does not appear in L1, y ← f1(xj).

else
Find xj ∈ Xi whose image y : = fi(xj) is in L′

i−1 by running MTPS on fi
and L′

i−1. //multiple queries are made
end if
Li ← Li ∪ {(x(1), . . . , x(i−1), xj , y)}, L′

i ← L′
i ∪ {y}.

Li−1 ← Li−1 \ {(x(1), . . . , x(i−1), y)}, L′
i ← L′

i−1 \ {y}.
end for

end for
Return an element (x(1), . . . , x(l); y) ∈ Ll as an output.

Theorem 2. Assume that there exists a parameter cN ≥ 1 such that cN is in
o(N

1
2l−1 ) and |Xi| ≥ 1

cN
|Y | holds for each i. If |Y | = N is sufficiently large,

Mclawk finds an l-claw with a probability at least

1 − 1
k

− 2l

N
− l · exp

(
− 1

15
· N

1
2l−1

cN

)
, (2)

by making at most

Qlimitk = k · 169lc
3/2
N · N

2l−1−1
2l−1 (3)

quantum queries, where k is any positive integer 2 or more.

This theorem shows that, for each integer k ≥ 2, Mclawk finds an l-claw with a

constant probability by making O

(
c
3/2
N N

2l−1−1
2l−1

)
queries.

For later use, we show the following lemma.

Lemma 2. Let X,Y be non-empty finite sets such that |X| ≤ |Y |. Suppose that
a function f : X → Y is chosen uniformly at random. Then

Pr
f∼U(Func(X,Y ))

[
|Im(f)| ≥ |X|

2
−

√
|X| ln |Y |/2

]
≥ 1 − 2

|Y | (4)

holds.

Proof. Note that, for each x ∈ X, f(x) is the random variable that takes value
in Y . Moreover, {f(x)}x∈X is the set of independent random variables. Let us
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define a function Φ : Y ×|X| → N by Φ
(
y1, . . . , y|X|

)
=

∣∣Y \{yi}1≤i≤|X|
∣∣. Then Φ

is 1-Lipschitz, i.e.,
∣∣Φ(y1, . . . , yi−1, yi, yi+1, . . . , y|X|) − Φ(y1, . . . , yi−1, y

′
i, yi+1, . . . , y|X|)

∣∣ ≤ 1 (5)

holds for arbitrary choices of elements y1, . . . , y|X|, and y′
i in Y . Now we apply

the following theorem to Φ.

Theorem 3 (McDiarmid’s Inequality (Theorem 13.7 in [MU17])). Let
M be a positive integer, and Φ : Y ×M : → N be a 1-Lipschitz function. Let
{yi}1≤i≤M be the set of independent random variables that take values in Y . Let
μ denote the expectation value Ey1,...,yM

[Φ(y1, . . . , yM )]. Then

Pr
y1,...,yM

[Φ(y1, . . . , yM ) ≥ μ + λ] ≤ 2e−2λ2/M (6)

holds.

Apply the above theorem with M = |X|, λ =
√|X| ln |Y |/2, and yx = f(x)

for each x ∈ X (here we identify X with the set {1, . . . , |X|}). Then, since
E [Φ(y1, . . . , yM )] = |Y | (1 − 1/|Y |)|X| holds, we have that

Pr
f∼U(Func(X,Y ))

[
Φ(y1, . . . , yM ) ≥ |Y | (1 − 1/|Y |)|X| +

√
|X| ln |Y |/2

]
≤ 2

|Y | .

In addition, it follows that

|Y | (1 − 1/|Y |)|X| ≤ |Y |e−|X|/|Y | ≤ |Y |
(

1 − |X|
|Y | +

1
2

( |X|
|Y |

)2
)

= |Y | − |X|
(

1 − 1
2

|X|
|Y |

)
≤ |Y | − |X|

2
, (7)

where we used the assumption that |X| ≤ |Y | for the last inequality. Since
Φ(y1, . . . , yM ) = |Y \Im(f)| and |Im(f)| = |Y | − |Y \Im(f)| hold, it follows that
|Im(f)| is at least

|Y | −
(

|Y | − |X|
2

+
√

|X| ln|Y |/2
)

=
|X|
2

−
√

|X| ln|Y |/2 (8)

with a probability at least 1 − 2
|Y | , which completes the proof. ��

Proof (of Theorem 2). We show that Eq. 2 holds. Let us define good(i) to be the
event that

|Im(fi) ∩ L′
i−1| ≥ Ni−1 (9)

holds just before Mclawk starts to construct i-claws. (Intuitively, under the con-
dition that good(i) occurs, the number of queries does not become too large.)
We show the following claim.
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Claim. For sufficiently large N ,

Pr
[
good(i)

]
≥ 1 − 2

N
− exp

(
− 1

15
· Ni−1

cN

)
. (10)

holds.

Proof. In this proof we consider the situation that Mclawk has finished to make
Li−1 and before starting to make i-claws. In particular, we assume that |Li−1| =
|L′

i−1| = �4cNNi−1�.
Let pregood(i) be the event that |Im(fi)| ≥ �N/3cN� holds. Since cN is in

o(N
1

2l−1 ), we have that |Xi|
2 −√|Xi| ln|Y |/2 ≥

⌈
N
3cN

⌉
holds for sufficiently large

N . Hence
Pr

[
pregood(i)

]
≥ 1 − 2

|Y | (11)

follows from Lemma 2.
Let us identify Xi and Y with the sets {1, . . . , |Xi|} and {1, . . . , |Y |}, respec-

tively. Let Bj be the j-th element in Im(fi). Let χj be the indicator variable
that is defined by χj = 1 if and only if Bj ∈ L′

i−1, and define a random variable
χ by χ : =

∑
j χj . Then χ follows the hypergeometric distribution. We use the

following theorem as a fact.

Theorem 4 (Theorem 1 in [HS05]). Let K = K(n1, n,m) denote the hyperge-
ometric random variable describing the process of counting how many defectives
are selected when n1 items are randomly selected without replacement from n
items among which there are m defective ones. Let λ ≥ 2. Then

Pr [K − E[K] < −λ] < e−2αn1,n,m(λ2−1) (12)

holds, where

αn1,m,n = max
((

1
n1 + 1

+
1

n − n1 + 1

)
,

(
1

m + 1
+

1
n − m + 1

))
. (13)

Apply the above theorem with n1 = �N/3cN�, n = N , and m = |L′
i−1| =

�4cNNi−1�, for the random variable χ under the condition that |Im(fi)| =
�N/3cN� holds. Let equal denote the event that |Im(fi)| = �N/3cN� holds. Then
E [χ|equal] = n1m

n ≥ 4
3Ni−1 holds, and we have that

Pr
[
χ − E [χ|equal] < −1

4
E [χ|equal]

∣∣∣∣equal
]

≤ exp
(

−2
(

1
m + 1

+
1

n − m + 1

)
((E [χ|equal] /4

)
2 − 1

))

≤ exp
(

− 1
15m

(E [χ|equal])2
)

≤ exp
(

− 1
15

· Ni−1

cN

)
(14)
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for sufficiently large N , where we use cN = o(N
1

2l−1 ) in evaluating αn1,m,n.
Hence

Pr [χ ≥ Ni−1|equal] ≥ 1 − exp
(

− 1
15

· Ni−1

cN

)
(15)

holds, which implies that

Pr
[∣∣Im(fi) ∩ L′

i−1

∣∣ ≥ Ni−1

∣∣∣pregood(i)] = Pr
[
χ ≥ Ni−1

∣∣∣pregood(i)]

≥ Pr [χ ≥ Ni−1|equal]

≥ 1 − exp
(

− 1
15

· Ni−1

cN

)
. (16)

Therefore we have that

Pr
[
good(i)

]
> Pr

[
good(i)

∣∣∣pregood(i)] · Pr
[
pregood(i)

]

= Pr
[∣∣Im(fi) ∩ L′

i−1

∣∣ ≥ Ni−1

∣∣∣pregood(i)] · Pr
[
pregood(i)

]

≥
(

1 − 2
|Y |

) (
1 − exp

(
− 1

15
· Ni−1

cN

))

≥ 1 − 2
|Y | − exp

(
− 1

15
· Ni−1

cN

)
, (17)

which completes the proof. ��
Let good denote the event good(1) ∧ · · · ∧ good(l). Then we can show the

following claim.

Claim. For sufficiently large N , it holds that

E [Q | good] ≤ 1
k
Qlimitk, (18)

where Q is the total number of queries made by Mclawk.

Proof. Let us fix i and j. Let Q
(i)
j denote the number of queries made by Mclawk

in the j-th search to construct i-claws, and Q(i) denote
∑

j Q
(i)
j . In the j-th search

to construct i-claws, we search Xi for x with fi(x) ∈ L′
i−1, where there exist

at least |L′
i−1 ∩ Im(fi)| ≥ Ni−1 − j + 1 answers in Xi under the condition that

good(i) occurs. From Corollary 1, the expected value of the number of queries
made by MTPS in the j-th search to construct i-claws is upper bounded by

9
√

5|Xi|/|f−1
i (L′

i−1)| ≤ 9
√

5|Xi|/|L′
i−1 ∩ Im(fi)| ≤ 21

√
N/Ni−1 (19)

for each j under the condition that good(i) occurs, for sufficiently large N (we
used the condition that Ni−1 = ω(cNNi) holds for the last inequality).



Improved Quantum Multicollision-Finding Algorithm 365

Hence it follows that

E
[
Q(i)

∣∣∣ good(i)] = E

⎡
⎣∑

j

Q
(i)
j

∣∣∣∣∣∣ good
(i)

⎤
⎦ =

∑
j

E
[
Q

(i)
j

∣∣∣ good(i)]

≤
∑

1≤j≤�4cNNi�
21

√
N/Ni−1 ≤

⎧⎨
⎩

169c
3/2
N N

2l−1−1
2l−1 (i = 1)

85cNN
2l−1−1
2l−1 (i ≥ 2)

for sufficiently large N . Hence we have that E[Q | good] =
∑

i E
[
Q(i)

∣∣∣ good(i)]
is upper bounded by

169c
3/2
N N

2l−1−1
2l−1 +

l∑
i=2

85cNN
2l−1−1
2l−1 ≤ 169lc

3/2
N · N

2l−1−1
2l−1 =

1
k
Qlimitk,

which completes the proof. ��
From the above claims, it follows that E[Q] is upper-bounded by

E[Q | good] + E[Q | ¬good] Pr[¬good] ≤
(

1
k

+ Pr[¬good]
)

· Qlimitk, (20)

and Pr [¬good] is upper-bounded by
∑

i Pr
[
¬good(i)

]
, which is further upper-

bounded by

∑
i

(
2
N

+ exp
(

− 1
15

· Ni−1

cN

))
≤ 2l

N
+ l · exp

(
− 1

15
· N

1
2l−1

cN

)
. (21)

From Markov’s inequality, the probability that Q reaches Qlimitk is at most

Pr [Q ≥ Qlimitk] ≤ E[Q]
Qlimitk

≤ 1
k

+ Pr[¬good]. (22)

The event “Q does not reach Qlimitk” implies that Mclawk finds an l-claw. Thus,
from Eqs. 21 and 22, the probability that Mclawk finds an l-claw is lower-bounded
by

1 − 1
k

− 2l

N
− l · exp

(
− 1

15
· N

1
2l−1

cN

)
, (23)

which completes the proof.
��

5 Conclusion

This paper has developed a new quantum algorithm to find multicollisions
of random functions. Our new algorithm finds an l-collision of a random
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function F : [N ] → [N ] with O
(
N (2l−1−1)/(2l−1)

)
quantum queries on aver-

age, which improves the previous upper bound O(N (3l−1)/(2·3l−1)) by Hosoya-
mada et al. [HSX17]. In fact, our algorithm can find an l-claw of random
functions fi : [N ] → [N ] for 1 ≤ i ≤ l with the same average complexity
O

(
N (2l−1−1)/(2l−1)

)
. In describing the algorithm, we assumed for ease of anal-

ysis and understanding that intermediate measurements were allowed. However,
it is easy to move all measurements to the final step of the algorithm by the
standard techniques. In this paper, we focused only on query complexity, and
did not provide the analyses of other complexity measures. However, it is not
difficult to show that the space complexity and the depth of quantum circuits
are both bounded by Õ

(
N (2l−1−1)/(2l−1)

)
. For applications to cryptanalyses, it

is of interest to further study time-and-memory-efficient variants.
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Abstract. This paper studies the resistance of the code-based encryp-
tion scheme RQC to timing attacks. We describe two chosen ciphertext
timing attacks that rely on a correlation between the weight of the error
to be decoded and the running time of Gabidulin code’s decoding algo-
rithm. These attacks are of theoretical interest as they outperform the
best known algorithm to solve the rank syndrome decoding problem in
term of complexity. Nevertheless, they are quite impracticable in real
situations as they require a huge number of requests to a timing oracle.
We also provide a constant-time algorithm for the decoding of Gabidulin
codes that prevent these attacks without any performance cost for honest
users.

Keywords: RQC · Gabidulin decoding · Timing attack · Rank metric

1 Introduction

RQC [2,3] is a code-based IND-CCA2 public key encryption scheme submitted
to the NIST’s post-quantum cryptography standardization project. It features
attractive parameters and its security only relies on the rank syndrome decoding
problem without any additional assumption regarding the indistinguishability
of the considered family of codes. RQC relies on Gabidulin codes which were
introduced in 1985 in [6]. The latter are the analogs of the Reed-Solomon codes
for the rank metric and can be thought as the evaluation of q-polynomials of
bounded degree on the coordinates of a vector over Fqm . Gabidulin decoding can
be performed efficiently using the Welch-Berlekamp like algorithm proposed by
Loidreau [9]. Hereafter, we study the resistant of RQC to timing attacks.

Contributions. In this paper, we present two timing attacks against RQC. In
addition, we also describe a constant time decoding algorithm for Gabidulin
codes that prevent these attacks without any performance cost for honest users.
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J. Ding and R. Steinwandt (Eds.): PQCrypto 2019, LNCS 11505, pp. 371–386, 2019.
https://doi.org/10.1007/978-3-030-25510-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25510-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-25510-7_20


372 S. Bettaieb et al.

Paper organisation. In Sect. 2, we introduce the rank metric, Loidreau’s algo-
rithm for the decoding of Gabidulin codes as well as the RQC cryptosystem.
Next, in Sect. 3, we highlight the correlation between the rank of the error to be
decoded and the decoding time of Loidreau’s algorithm. This correlation is the
keystone of the timing attacks described in Sect. 4. To finish, countermeasures
to these attacks are presented in Sect. 5.

2 Preliminaries

In this section, we present some preliminaries regarding the rank metric
(Sect. 2.1), Gabidulin codes (Sect. 2.2) and the RQC cryptosystem (Sect. 2.3).

2.1 Rank Metric

Let q be a power of a prime p, m an integer, Fqm a finite field and β =
(β1, · · · , βm) a basis of Fqm over Fq. Any vector x ∈ F

n
qm can be associated

to the matrix Mx ∈ Mm,n(Fq) by expressing its coordinates in β.

Definition 1 (Rank weight). Let x = (x1, · · · , xn) ∈ F
n
qm be a vector, the

rank weight of x, denoted ω(x), is defined as the rank of the matrix Mx = (xi,j)
where xj =

∑m
i=1 xi,jβi. The set of words of weight w in F

n
qm is denoted Sn

w.

Definition 2 (Support). The support of x ∈ F
n
qm , denoted Supp(x), is the

Fq-linear space of Fqm spanned by the coordinates of x. Formally, Supp(x) =
〈x1, . . . , xn〉Fq

.

Definition 3 (Fqm-linear code). An Fqm-linear [n, k] code C of length n and
dimension k is a linear subspace of Fn

qm of dimension k.

Definition 4 (Generator Matrix). A matrix G ∈ F
k×n
qm is a generator matrix

for the [n, k] code C if C =
{
xG | x ∈ F

k
qm

}
.

Definition 5 (Parity-Check Matrix). A matrix H ∈ F
(n−k)×n
qm is a parity-

check matrix for the [n, k] code C if C =
{
x ∈ F

n
qm | Hx� = 0

}
. The vector

Hx� ∈ F
n−k
qm is called the syndrome of x.

2.2 Gabidulin Codes

Gabidulin codes were introduced in 1985 in [6]. They can be seen as the eval-
uation of q-polynomials of bounded degree on the coordinates of a vector over
Fqm . The notion of q-polynomial was introduced by Ore in [10].

Definition 6 (q-polynomials). A q-polynomial over Fqm is a polynomial
defined as P (X) =

∑r
i=0 piX

qi

with pi ∈ Fqm and pr �= 0. The q-degree of
a q-polynomial P is denoted degq(P ).
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Definition 7 (Gabidulin codes). Let k, n,m ∈ N such that k � n � m. Let
g = (g1, . . . , gn) be a Fq-linearly family of vectors of Fqm . The Gabidulin code
Gg(n, k,m) is the [n, k]qm code defined as

{
P (g) | degq(P ) < k

}
where P (g)

denotes the evaluation of the coordinates of g by the q-polynomial P .

Gabidulin codes can efficiently decode up to �n−k
2 � errors [6]. In such cases, the

algorithm considered hereafter in this paper features no decoding failure. It has
been proposed by Loidreau in [9] and later improved in [5]. It is based on the
resolution of the Linear Reconstruction Problem (see [5,9] for further details).

Definition 8 (Decoding(y,Gg, t)). Find, if it exists, c ∈ Gg and e with ω(e) ≤
t such that y = c + e.

Definition 9 (Reconstruction(y,g, k, t)). Find a tuple (V,N) where V is a
non-zero q-polynomial with degq(V ) ≤ t and N is a q-polynomial with degq(N) ≤
k + t − 1 such that V (yi) = N(gi) with 1 ≤ i ≤ n.

Theorem 1 ([9]). If (V,N) is a solution of Reconstruction(y,g, k, t) and
t ≤ � (n−k)

2 �, then (c, e) = (f(g),y−c) with f defined as the left euclidean divi-
sion of N by V in the ring of q-polynomials is a solution of Decoding(y,g, k, t).

As stated in [2], one can solve Reconstruction(y,g, k, t) by constructing by
recurrence two pairs of q-polynomials (N0, V0) and (N1, V1) satisfying the inter-
polation conditions of the problem V (yi) = N(gi), 1 ≤ i ≤ n at each step i and
such that at least one of the pairs satisfies the final degree conditions degq(V ) ≤ t
and degq(N) ≤ k+t−1. See Algorithm 5 (from [5], Sect. 4, Algorithm 5) hereafter
for additionnal details.

Theorem 2 ([5]). The complexity of solving the Decoding(y,Gg, t) problem
using Algorithm5 is O(n2) operations in Fqm .

2.3 The RQC Public Key Encryption Scheme

RQC [2,3] is a code-based IND-CCA2 encryption scheme whose security relies
on the rank syndrom decoding problem [4,7] without any additionnal assump-
tion regarding the indistinguishability of the family of codes used. It is based
on an IND-CPA PKE construction (described in Fig. 1) on top of which the
HHK transformation [8] is applied in order to obtain an IND-CCA2 KEM. Stan-
dard transformations are then applied in order to get an IND-CCA2 encryption
scheme. RQC uses a Gabidulin code of generator matrix G denoted C and a
random double-circulant [2n, n] code of parity-check matrix (1,h).

RQC correctness relies on the decoding capability of the Gabidulin code C.
Indeed, Decrypt (sk,Encrypt (pk,m)) = m when v − u · y is correctly decoded
namely whenever ω (x · r2 − y · r1 + e) ≤ � (n−k)

2 �.
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Fig. 1. Description of the IND-CPA version of RQC [2].

3 Correlation Between Decoding Time and Error Rank

In this section, we show that there exists a correlation between the rank of
the error to be decoded and the running time of Algorithm5. This observa-
tion is summarized in Theorem 3. We start by introducing a simpler version of
Loidreau’s algorithm (Sect. 3.1) and then we prove the aforementioned theorem
(Sect. 3.2). Next, we describe an oracle that computes the rank of the error to
be decoded using the running time of the decoding algorithm (Sect. 3.3).

3.1 A Simpler Decoding Algorithm

In order to solve the Reconstruction(y,g, k, t) problem, Loidreau’s algorithm
performs a q-polynomial interpolation. We denote by nominal case, dummy inter-
polation case and early end case the three scenarios that may occur during the
interpolation step (see Algorithm 5). The early end case is quite subtle as it per-
forms two operations simultaneously. First, it checks the discrepancy vector to
detect if the current q-polynomials are an admissible solution which can happen
whenever the rank of the error to be decoded is inferior to the decoding capacity
of the code. In addition, if a nominal interpolation can’t be performed using the
ith coordinate of the discrepancy vector (see nominal case below) but can be
performed using one of its jth coordinate where j > i, then the ith and jth coor-
dinates of the discrepancy vector are swapped. The nominal case corresponds
to the expected interpolation which requires to inverse u1,i to be performed. If
both u1,i = 0 and u0,i = 0, a dummy interpolation case will be performed.

As both the dummy interpolation case and the early end case handle situa-
tions where u1,i = 0, the considered algorithm can be simplified by merging them
together. Indeed, one can see that the dummy interpolation is using λ0 = λ1 = 0
which mean that no interpolation is actually performed at this step even if the
q-degrees of the q-polynomials are increased. As a consequence, by modifying
the early end case condition to u1,j = 0 only (see Algorithm 6), one can handle
these two cases simultaneously. In fact, the dummy interpolation cases will be
delayed to the end of the algorithm during the swap step but will never be per-
formed as an admissible solution will be found as some point before we had to
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handle these cases. This is due to the fact that the dummy interpolation only
increase the q-degrees of the q-polynomials without making any progress with
respect to error correction. Therefore, our simpler algorithm always returns the
q-polynomials of minimal q-degrees solving the reconstruction problem while the
original algorithm may return any admissible solution.

The constant time decoding algorithm proposed in Sect. 5 is based on our
simpler algorithm. Hereafter, the term decoding algorithm refers to Algorithm6.

3.2 From Decoding Time to Error Weight

The decoding algorithm performs successive interpolations until the solution is
found. As the early end case may end the main loop prematurely, the running
time of the algorithm may vary. Theorem3 formalizes this observation as it shows
that there exists a correlation between the rank of the error to be decoded and
the decoding time of the Gabidulin code whenever the rank of the considered
error is smaller than the error correcting capacity �n−k

2 �.
Theorem 3. Let G be the generator matrix of a Gabidulin code Gg(n, k,m),
m ∈ F

k
qm , e ∈ F

n
qm such that ω(e) = t with t ≤ �n−k

2 � and y = mG + e.
Then, Algorithm6 will perform exactly 2t interpolation steps when solving
Decoding(y,Gg, t).

Proof. The proof of Theorem3 follows from Lemmas 1 and 2.

Lemma 1. Under the same hypotheses as Theorem3, Algorithm6 will perform
at least 2t interpolation steps when solving Decoding(y,Gg, t).

Proof. In order to retrieve an error e, one needs to find a q-polynomial V1 such
that V1(e) = 0. If ω(e) = t, then one have degq(V1) ≥ t. As degq(V1) ≥ u if 2u
interpolations steps have been performed (from propostion 12 of [5]), it follows
that Algorithm 6 will perform at least 2t interpolation steps.

Lemma 2. Under the same hypotheses as Theorem3, Algorithm6 will perform
at most 2t interpolation steps when solving Decoding(y,Gg, t).

Proof. Let n′ = k + 2t and e′ = (e1, . . . , en′) be a shortened error such that
Supp(e′) = Supp(e). It is always possible to construct e′ from e using a coordi-
nates permutation followed by a truncation. Let Gg′(n′, k,m) be the shortened
Gabidulin code generated by the matrix G′ using the vector g′ = (g1, . . . , gn′).
As the error decoding capacity of Gg′(n′, k,m) is equal to t = �n′−k

2 �, the vector
y′ = (y1, . . . , yn′) = mG′ + e′ can be decoded using Algorithm 6 in at most 2t
interpolation steps. Let (N ′

1, V
′
1) be the solution retuned by Algorithm 6, then

every vector in Supp(e′) is a root of V ′
1 as well as every vector in Supp(e) because

Supp(e′) = Supp(e). It follows that (N ′
1, V

′
1) is a solution of the decoding prob-

lem induced by Gg(n, k,m) and y. As Algorithm 6 outputs the q-polynomials of
minimal q-degrees solving the reconstruction problem, decoding Gg(n, k,m) is
equivalent to decoding Gg′(n′, k,m) therefore Algorithm 6 will perform at most
2t interpolation steps when solving Decoding(y,Gg, t).
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Corollary 1. Let G be the generator matrix of a Gabidulin code Gg(n, k,m),
m ∈ F

k
qm , e ∈ F

n
qm such that ω(e) = t with t ≤ �n−k

2 � and y = mG + e, then it
is possible to find ω(e) from the running time of Algorithm6.

3.3 Error Weight Oracle for Gabidulin Codes and RQC

Let OGab
Time and Orqc

Time denote two timing oracles that return the running time of
either the Gabidulin decoding algorithm or the RQC Decapsulate step. Following
Corollary 1, we now explain how to construct two oracles denoted OGab

ω(e) and
Orqc

ω(e) that return the rank ω(e) of the decoded error using respectively OGab
Time

and Orqc
Time . The oracle OGab

ω(e) takes as input a Gabidulin code G and a vector y
while the oracle Orqc

ω(e) takes as input an RQC public key pk (which implicitely
defines a Gabidulin code) and a ciphertext ct.

Each oracle features an initialization step Init (see Algorithm 1) and an eval-
uation step Eval (see Algorithm 2). The Init step computes the expected running
times required to decode an error e of given weight w for all w ∈ [0, t]. To this
end, requests OGab

Time (G, e) (respectively Orqc
Time (pk, (0, e)) are made using the

message m = 0 (respectively m = r1 = r2 = 0) along with errors e of weight
i ∈ [0, t]. The Eval step uses these expected running times T to output the rank
of the error ω(e) by returning the index i such that |time−Ti| is minimal where
time denotes the result given by OGab

Time (G,y) or Orqc
Time (pk, ct). The complexity of

a OGab
ω(e) (respectively Orqc

ω(e) ) request is equal to the complexity of a Gabidulin
decoding (respectively an RQC decapsulation) namely O(n2) operations in Fqm .

Algorithm 1. Init step of OGab
ω(e) and Orqc

ω(e)

Input:

{
A Gabidulin code G(n, k, m) and access to OGab

Time for OGab
ω(e)

A public key pk and access to Orqc
Time for Orqc

ω(e)

A precision parameter param

Output: An array T of expected running times

1: T ←− (0, · · · , 0) ∈ R
t+1

2: for i ∈ {0, · · · , t} do
3: for j ∈ {1, · · · , param} do

4: e
$←−− Sn

i

5: time ←−
{

OGab
Time (G, e) for OGab

ω(e)

Orqc
Time (pk, (0, e) for Orqc

ω(e)

6: Ti+1 ←− Ti+1 + time

7: Ti+1 ←− Ti+1 / param

8: return T

In order for these oracles to be useful, each difference Ti+1 − Ti have to
be large enough to be accurately measured. Experimental results (see Sect. 5,
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Algorithm 2. Eval step of OGab
ω(e) and Orqc

ω(e)

Input:

{
A Gabidulin code G(n, k, m) and a vector y for OGab

ω(e)

A public key pk and a ciphertext ct for Orqc
ω(e)

An array T of expected running times from the Init step

Output: The rank ω(e) of the decoded error

1: time ←−
{

OGab
Time (G,y) for OGab

ω(e)

Orqc
Time (pk, ct) for Orqc

ω(e)

2: return i such that |time − Ti| is minimum

Fig. 2) shows that for the considered machine, Ti+1 − Ti amounts for 6.6 × 104

CPU cycles (approximately 0.02 ms) for Orqc
ω(e) in average. Such values allow

timing attacks to be performed locally but would hardly be sufficient to allow
an adverdary to perform a remote attack due to the variability of the network
transfer times. Nevertheless, we assume hereafter that the existence of such an
oracle is a potential threat for RQC and thus we choose to address it properly.

4 Timing Attacks Against RQC

In this section, we present two side-channel chosen ciphertext attacks against
RQC. These attacks outperform the best known algorithm to solve the rank
syndrome decoding problem [4] in term of complexity. Nonetheless, they require
a huge number of requests to Orqc

ω(e) therefore are quite unpracticable in real situ-
ations. We start by giving an overview of the attacks (Sect. 4.1) then we describe
two support recovery algorithms (Sects. 4.2 and 4.3) that relies on Orqc

ω(e) in order
to bring the aforementionned improvement. Next, we present the complexity and
the bandwidth cost of these attacks with respect to RQC parameters (Sect. 4.4).

4.1 Overview of the Attacks

The two attacks presented hereafter follow the same pattern. First, a support
recovery algorithm is used to find F = Supp(x) = Supp(y) then a linear system
is solved in order to retrieve x and y thus revealing the secret key.

The support recovery algorithm makes several requests to Orqc
ω(e) in order to

find the support of y. All these requests are constructed such that m = 0, r1 = 1
and r2 = 0 namely the considered ciphertexts are of the form (1, e). Recall from
Sect. 2.3 that decrypting a RQC ciphertext implies to decode mG+x·r2−y·r1+e.
In this case, this will reduce to decoding e− y. The support recovery algorithm
uses this particular form in order to retrieve F = Supp(y).

Once the support F is known, one only need to solve the linear system (1 h) ·
(x y)� = s to find x and y as explained in [4]. This system can be obtained
from the public key and features nm equations over Fq as well as 2wn unknowns
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over Fq because dim(F) = w. Given the RQC parameters, this system is always
solvable and the secret key sk = (x,y) is its unique solution.

4.2 Simple Support Recovery Algorithm

The simple support recovery strategy (see Algorithm 3) tests all the elements
α ∈ Fqm and checks whether they belong to the support F in order to retrieve
one of its basis (F1, · · · , Fw). To this end, a function ψ : Fqm −→ Fqm that
deterministically enumerates the elements of Fqm is defined. In addition, errors
of the form e = (α, 0, · · · , 0) ∈ F

n
qm are considered. One can see that if Supp(e) ⊂

Supp(y), then ω(e − y) = w otherwise ω(e − y) = w + 1. Using Orqc
ω(e) , one can

retrieve the rank of e − y thus learning if α ∈ F or not.

Algorithm 3. Simple support recovery

Input: A public key pk and access to Orqc
ω(e)

The oracle precision parameter param

Output: F = Supp(x) = Supp(y)

1: T ←− Orqc
ω(e).Init(pk, param)

2: F ←− 〈0〉Fq

3: α ←− 0 ∈ Fqm

4: while dim(F) < w do
5: α ←− ψ(α)
6: e ←− (α, 0, · · · , 0) ∈ F

n
qm

7: ω ←− Orqc
ω(e).Eval(T, pk, (1, e))

8: if ω = w then
9: F ←− F + 〈α〉Fq

10: return F

Algorithm 3 requires O(qm) requests to the Orqc
ω(e) oracle therefore its com-

plexity is O(n2qm) operations in Fqm .

4.3 Advanced Support Recovery Algorithm

The advanced support recovery strategy (see Algorithm 4) is a generalization of
the simple one in which we no longer consider errors of weigth ω(e) = 1 but
rather errors of weight ω(e) = t−w. Instead of only checking if α ∈ Supp(y), we
look for any linear combination of the error’s coordinates belonging to Supp(y)
therefore speeding-up the algorithm. Without loss of generality, we only consider
the case q = 2 since it matches the parameters used in RQC.

Given a ∈ F
n
qm , let (a1, · · · , aω(a)) ∈ F

ω(a)
qm denotes a basis of Supp(a). As

ω(e) = t − w and ω(y) = w, if ω(e − y) < t then there exists at least one non
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trivial linear combination of the vectors (ei)i∈[1,t−w] such that:

t−w∑

i=1

λiei =
w∑

j=1

μjyj ∈ Supp(y)

The remaining of the algorithm compute the λi of such expressions thus retriev-
ing a vector in the support F. Each oracle request may lead to the discovery of
Δ = ω(e) + ω(y) − ω(e − y) = dim(ker(y1 · · · yw e1 · · · et−w)) elements of F
although Δ will be equal to 1 with overwhelming probability.

Let Mi ∈ Mm,w+i(Fq) be the matrices defined as Mi =
(
y1 . . . yw e1 . . . ei

)

for i ∈ [1, t − w] and d = min {i | rank(Mi) < w + i}. By construction, λd = 1.
For i ∈ [1, d], let Md,i ∈ Mm,w+d(Fq) be the matrices defined as Md,i =(
y1 · · · yw e1 · · · ei−1 0 ei+1 · · · ed

)
. If rank(Md) = rank(Md,i), then λi = 1.

By performing this test for all i ∈ [1, d], one can retrieve
∑d

i=1 λiei ∈ Supp(y).
Hereafter, we assume for simplicity that rank(e) = t − w as it happens with

high probability and can be enforced at no cost by tweaking the algorithm.
The complexity of algorithm 4 is O

(
wn2/p

)
where p denotes the probability

to find a non trivial intersection between Supp(e) and Supp(y) namely p =
P (ω(e − y) < t | ω(y) = w ∧ ω(e) = t − w). The quantity 1−p represents the
probability to pick the coordinates of e linearly independant from the coordinates
of y knowing that ω(e) = t − w and ω(y) = w. For each coordinate ei, one have
qm − qw+i ways to pick it correctly amongst qm − qi potential choices therefore:

1 − p =
t−w−1∏

i=0

qm − qw+i

qm − qi
=

w−1∏

i=0

1
qm − qi

×
t−1∏

i=t−w

qm − qi

1

When considering the RQC parameters, one can approximate the complexity
of Algorithm 4 as O

(
wn2qm−t

)
operations in Fqm .

4.4 Attacks Complexity and Bandwith Cost

As the linear system solving step of the attack is negligible with respect to
the support recovery one, the attacks complexity is equal to the complexity of
Algorithms 3 and 4. Hereafter, we briefly describe a small improvement for these
algorithms relying on the fact that 1 ∈ Supp(y) in RQC. Indeed, one should note
that if a /∈ Supp(y), then ∀λ ∈ Fq, a+λ /∈ Supp(y). Thus, by setting F = 〈1〉Fq

at
the begining of the algorithms, one can choose error’s coordinates from Fqm/〈1〉Fq

instead of Fqm . Consequently, the simple attack has a complexity of O(n2qm−1)
operations in Fqm and requires O(qm−1) requests to the Orqc

ω(e) oracle. Similarly,
the advanced attack has a complexity of O(wn2qm−t−1) operations in Fqm and
requires O(qm−t−1) requests to the Orqc

ω(e) oracle.
Table 1 presents the complexity and number of requests required to perform

the attacks with respect to RQC parameters. One can see that both attacks out-
perform the best known algorithm to solve the rank syndrome decoding prob-
lem in term of complexity [4]. Nevertheless, they both require a huge number of
requests to the Orqc

ω(e) oracle therefore are quite unpracticable in real situations.
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Algorithm 4. Advanced support recovery

Input: A public key pk and access to Orqc
ω(e)

The oracle precision parameter param

Output: F = Supp(x) = Supp(y)

1: T ←− Orqc
ω(e).Init(pk, param)

2: F ←− 〈0〉Fq

3: while dim(F) < w do

4: e
$←−− Sn

t−w

5: ω ←− Orqc
ω(e).Eval(T, pk, (1, e))

6: if ω < t then
7: Δ ←− t − ω
8: d ←− 0
9: ω′ ←− 0

10: for k ∈ {1, · · · , Δ} do

� Compute d
11: repeat
12: d ←− d + 1
13: ω′ ←− ω′ + 1
14: e′ ←− (e1, · · · , ed, 0, · · · , 0) ∈ F

n
qm

15: until Orqc
ω(e).Eval(T, pk, (1, e′)) < w + ω′

� Compute λ
16: λd ←− 1
17: for i ∈ {1, · · · , d − 1} do
18: e′ ←− (e1, · · · , ei−1, 0, ei+1, · · · , ed, 0, · · · , 0) ∈ F

n
qm

19: if Orqc
ω(e).Eval(T, pk, (1, e′)) = w + ω′ − 1 then

20: λi ←− 1
21: else
22: λi ←− 0

23: F ←− F + 〈
d∑

i=1

λiei〉Fq

24: ed ←− 0
25: ω′ ←− ω′ − 1

26: return F

Table 1. Attacks complexity and bandwith cost against RQC

Complexity Requests

128 192 256 128 192 256

RSD solving [4] 2132 2203 2257 0 0 0

Simple attack (Sect. 4.2) 2101 2126 2152 288 2112 2138

Advanced attack (Sect. 4.3) 273 286 2106 258 270 290
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5 Preventing Timing Attacks Against RQC

In this section, we explain how to prevent timing attacks against RQC using
either a constant time decoding algorithm for Gabidulin codes (Sect. 5.1) or a
countermeasure based on the IND-CCA2 property of RQC (Sect. 5.2). Interest-
ingly, these two strategies can be implemented without any additional perfor-
mance cost for honest users.

5.1 Constant Time Decoding of Gabidulin Codes

Algorithm 7 provides a constant-time implementation of the reconstruction algo-
rithm and as such can be used as a countermeasure to the timing attacks against
RQC. The main idea is to perform operations on dummy q-polynomials (lines
2–5) whenever required (lines 6–17) while ensuring that every operations is per-
formed on a q-polynomial of correct q-degree with respect to a nominal case (lines
25–34). As a result, given a Gabidulin code Gg(n, k,m), and an error e ∈ F

n
qm

such that ω(e) = t with t ≤ �n−k
2 �, Algorithm 7 will perform exactly 2 × �n−k

2 �
interpolation steps whatever the value of t is.

Figure 2 compares the running time of Algorithms 6 and 7 when they are
respectively used to decode Gabidulin codes or used as part of the Decapsulate
step of RQC. We have performed 10 000 tests for each error weight using a
computer equiped with an Intel Core i7-7820X CPU @ 3.6 GHz and 16 GB of
memory. On average (excluding the case ω(e) = 0 which is discussed below),
Ti+1 − Ti is reduced from 6.6 × 104 to 5.6 × 103 CPU cycles (approximately
2 μs) for Orqc

ω(e) . The average standard deviation to the running time observed
for each error weight when using Algorithm 7 is equal to 1.4 × 104 CPU cycles.
Therefore, Orqc

ω(e) cannot be used to distinguish ω(e) in a reliable way anymore
thus rendering the aforementioned timing attacks even more impracticable.
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Fig. 2. Running time (CPU cycles) of Gabidulin code decoding and RQC-128 Decap-
sulate step with respect to different error weights ω(e) using Algorithms 6 and 7
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By analyzing Fig. 2, one immediately sees that the special case ω(e) = 0 is
an outlier with respect to the running time of Algorithm7. This is presumably
due to the fact that the involved q-polynomials have many coefficients equal to
zero which speeds the q-polynomial update step of the decoding. This case does
not appear to be concerning as it seems hard to retrieve information regarding
the support F whenever ω(x · r2 − y · r1 + e) = 0. One may exploit this special
case by trying to find errors e such that e − y = 0 (with r1 = 1 and r2 = 0)
nonetheless such an attack would have a complexity of O(qωn) operations in Fqm

which is worse than solving the rank syndrome decoding problem.
The running time of Algorithm7 is similar to the running-time required to

decode an error of weight ω(e) = �n−k
2 � using Algorithm 6. As the weight of the

error x · r2 − y · r1 + e used in RQC is equal to the error correction capacity of
the considered Gabidulin code, our constant time algorithm can be used without
any additional performance cost for honest users.

5.2 Countermeasure Based on RQC IND-CCA2 Property

RQC being an IND-CCA2 encryption scheme, any attempt to modify one of its
ciphertexts will be detected and the Decapsulate step will end-up by an Abort.
Thus, by using standard techniques when implementing the Abort behaviour,
the aforementioned timing attacks can be prevented. Indeed, one may choose to
not respond to invalid requests therefore preventing the adversary to perform
any time measurement. Alternatively, one can wait a randomly chosen amount
of time before sending its response thus forcing an adversary to perform a huge
number of requests in order to get any reliable time measurement. As both of
these strategies intervene after an Abort case is detected, they can be imple-
mented without any additional performance cost for honest users.

6 Conclusion

In this paper, we have highlighted a correlation between the rank of the error to
be decoded and the running time of Loidreau’s decoding algorithm for Gabidulin
codes. We have also described two chosen ciphertext timing attacks against RQC
that are based on this correlation. In addition, we have provided countermeasures
preventing the aforementionned attacks. The first one relies on a constant time
decoding algorithm for Gabidulin codes and second one uses the IND-CCA2
property of RQC. As both of these countermeasures can be deployed without
additional performance cost for honest users, we suggest to implement both
of them. In a future work, we will conduct a similar analysis on the HQC [1]
encryption scheme in order to study its resistance to timing attacks. Indeed,
as the latter shares the same framework than RQC in the Hamming setting, it
might be threatened by similar attacks.
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A Original Reconstruction Algorithm

Algorithm 5. Original reconstruction algorithm [9, 5]

Input: k, n ∈ N, k ≤ n

g = (g1, · · · , gn) ∈ F
n
qm , Fq-linearly independent elements

y = (y1, · · · , yn) ∈ F
n
qm

Output: (N1, V1), solution to Reconstruction(y,g, k, t).

� Initialization step

1: N0(X) ←− A〈g1, ··· , gk〉
Fq

2: V0(X) ←− 0

3: N1(X) ←− I[g1, ··· , gk],[y1, ··· , yk]

4: V1(X) ←− 1

5: u0 ←− N0{g} − V0{y}
6: u1 ←− N1{g} − V1{y}

� Interpolation step

7: for i ∈ {k + 1, · · · , n} do

8: j ←− i � Early-end case

9: while j ≤ n and u1,j = 0 and u0,j �= 0 do

10: j ←− j + 1

11: if j = n + 1 then

12: break

13: else

14: u0,i ←→ u0,j

15: u1,i ←→ u1,j

� q-polynomials update

16: if u1,i �= 0 then � Nominal case

17: λ1 ←− θ(u1,i)
u1,i

18: λ0 ←− u0,i
u1,i

19: else if u0,i = 0 then � Dummy interpolation case

20: λ1 ←− 0

21: λ0 ←− 0

22: N ′
1 ←− (X − λ1) · N1

23: V ′
1 ←− (X − λ1) · V1

24: N ′
0 ←− N0 − λ0 · N1

25: V ′
0 ←− V0 − λ0 · V1

� q-polynomials swap

26: N0 ←− N ′
1

27: V0 ←− V ′
1

28: N1 ←− N ′
0

29: V1 ←− V ′
0

� Discrepancies update

30: for j ∈ {i + 1, · · · , n} do

31: u′
0,j ←− θ(u1,j) − λ1 · u1,j

32: u′
1,j ←− u0,j − λ0 · u1,j

33: return (N1, V1)
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B Simpler Reconstruction Algorithm

Algorithm 6. Simpler reconstruction algorithm (§3.1)

Input: k, n ∈ N, k ≤ n

g = (g1, · · · , gn) ∈ F
n
qm , Fq-linearly independent elements

y = (y1, · · · , yn) ∈ F
n
qm

Output: (N1, V1), solution to Reconstruction(y, g, k, t).

� Initialization step

1: N0(X) ←− A〈g1, ··· , gk〉
Fq

2: V0(X) ←− 0

3: N1(X) ←− I[g1, ··· , gk],[y1, ··· , yk]

4: V1(X) ←− 1

5: u0 ←− N0{g} − V0{y}
6: u1 ←− N1{g} − V1{y}

� Interpolation step

7: for i ∈ {k + 1, . . . , n} do

8: j ←− i � Early-end case

9: while j ≤ n and u1,j = 0 do

10: j ←− j + 1

11: if j = n + 1 then

12: break

13: else

14: u0,i ←→ u0,j

15: u1,i ←→ u1,j

� q-polynomials update

16: λ1 ←− θ(u1,i)
u1,i

� Nominal case

17: λ0 ←− u0,i
u1,i

18: N ′
1 ←− (X − λ1) · N1

19: V ′
1 ←− (X − λ1) · V1

20: N ′
0 ←− N0 − λ0 · N1

21: V ′
0 ←− V0 − λ0 · V1

� q-polynomials swap

22: N0 ←− N ′
1

23: V0 ←− V ′
1

24: N1 ←− N ′
0

25: V1 ←− V ′
0

� Discrepancies update

26: for j ∈ {i + 1, · · · , n} do

27: u′
0,j ←− θ(u1,j) − λ1 · u1,j

28: u′
1,j ←− u0,j − λ0 · u1,j

29: return (N1, V1)
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C Constant-Time Reconstruction Algorithm

Algorithm 7. Constant-time reconstruction algorithm (§5)

Input: k, n ∈ N, k ≤ n

g = (g1, · · · , gn) ∈ F
n
qm , Fq-linearly independent elements

y = (y1, · · · , yn) ∈ F
n
qm

Output: (N1, V1), solution to Reconstruction(y,g, k, t).

1: � Classical initialization step (see Algorithm 6, lines 1 - 6)

� Constant-time initialization step

2: d ←− ((n − k)/2 ≡ 0 mod 2) ? k + t − 1 : k + t

3: N2, N3, V2, V3
$←−− { q-polynomials of q-deg d }

4: c0, c1
$←−− Fqm\{0}

5: b ←− 0

� Interpolation step

6: for i ∈ {k + 1, · · · , n} do

7: i′ ←− n + 1 � “Early-end” case

8: for j ∈ {i, · · · , n} do

9: r ←− isZero(u1,j)

10: i′ ←− (1 − r)j + ri′

11: if i′ = n + 1 or b = 1 then

12: b ←− 1

13: u0,i ←− c0
14: u1,i ←− c1
15: else

16: u0,i ←→ u0,i′
17: u1,i ←→ u1,i′

� q-polynomials update

18: λ1 ←− θ(u1,i)
u1,i

19: λ0 ←− u0,i
u1,i

20: if b = 0 then � Classical nominal case

21: N ′
1 ←− (X − λ1) · N1

22: V ′
1 ←− (X − λ1) · V1

23: N ′
0 ←− N0 − λ0 · N1

24: V ′
0 ←− V0 − λ0 · V1

25: else if i − k ≡ 0 mod 2 then � Constant-time nominal case

26: N1 ←− (X − λ1) · N1

27: V1 ←− (X − λ1) · V1

28: N ′
0 ←− N2 − λ0 · N3

29: V ′
0 ←− V2 − λ0 · V3

30: else

31: N ′
1 ←− (X − λ1) · N3

32: V ′
1 ←− (X − λ1) · V3

33: N ′
0 ←− N2 − λ0 · N3

34: V ′
0 ←− V2 − λ0 · V3

35: � Classical q-polynomials swap (see Algorithm 6, lines 22 - 25)

36: � Classical discrepancies update (see Algorithm 6, lines 26 - 28)

37: return (N1, V1)
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Abstract. Traceable ring signatures are a variant of ring signatures
which allows the identity of a user to be revealed, when it signs two
different messages with respect to the same group of users. It has appli-
cations in e-voting and in cryptocurrencies, such as the well-known Mon-
ero. We propose the first traceable ring signature scheme whose security
is based on the hardness of the Syndrome Decoding problem, a problem
in coding theory which is conjectured to be unsolvable by both classical
and quantum algorithms. To construct the scheme, we use a variant of
Stern’s protocol and, by applying the Fiat-Shamir transform to it in an
ingenious way, we obtain a ring signature that allows traceability. We
prove that the resulting protocol has the standard security properties
for traceable ring signatures in the random oracle model: tag-linkability,
anonymity and exculpability. As far as we know, this is the first proposal
for a traceable ring signature scheme in the post-quantum setting.

Keywords: Traceable ring signature scheme ·
Code-based cryptography · Stern’s protocol

1 Introduction

With the National Institute of Standards and Technology (NIST) decision
to standardize quantum-resilient protocols, post-quantum cryptography has
become a hot topic in the cryptographic community. However post-quantum
signature schemes, particularly signatures based on coding theory, are still under-
developed. Although most of the operations are relatively efficient and easy to
implement (even in hardware), code-based signature schemes consume too much
memory for practical purposes. If we consider signature schemes with additional
properties, the scenario is even worse since most of these schemes do not even
have an equivalent version based on hard problems from coding theory. In this
paper, we focus on the latter problem by developing a traceable ring signature
scheme whose security is based on the Syndrome Decoding (SD) problem, a
problem in coding theory which is believed to be hard for both classical and
quantum computers. As far as we know, this is the first code-based traceable
ring signature scheme to be proposed and the first one in the post-quantum
setting.
c© Springer Nature Switzerland AG 2019
J. Ding and R. Steinwandt (Eds.): PQCrypto 2019, LNCS 11505, pp. 387–403, 2019.
https://doi.org/10.1007/978-3-030-25510-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25510-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-25510-7_21


388 P. Branco and P. Mateus

Traceable Ring Signature Schemes. Ring signatures [22] allow for a user from a
group to sign messages on behalf of the group such that a verifier is not able to
trace the identity of the actual signer. Although in most cases anonymity is of
great importance and should be preserved, in some applications it may become a
problem, in the sense that a dishonest user can take advantage of the anonymity
to its own interest. Consider, for example, an election where someone votes once
and then tries to create a second vote, claiming to be someone else. From this
example we can see that, in some cases, we may want to reveal the identity of
abusive users. A trivial solution is to use a group signature scheme [13] (and
for which there are code-based versions [2,3]), where a group manager has much
more power than the rest of the users and can open signatures issued by the
users of the group. However, in this case, the group manager would have to open
all signatures in order to identify those issued by an abusive user, jeopardizing
anonymity of honest users.

Traceable ring signatures [19] are ring signatures where the identity of a user
may be revealed, in the case it signs two messages with respect to the same group
of users and the same issue. In this context, an issue may be an election or a
transaction, for example. Traceable ring signature schemes solve the problem
presented in the previous paragraph: an abusive user in an election gets caught
without compromising the anonymity of the other users. Traceable ring signature
schemes have also found a lot of applications in e-cash and cryptocurrencies
in the last years. In fact, one of the most famous cryptocurrencies nowadays,
Monero [26], uses a variant of the scheme by Fujisaki and Suzuki [19].

Traceable ring signature schemes are closely related to linkable ring signature
schemes [20]. Linkable ring signature schemes also allow a verifier to know if two
signatures were issued by the same user in a group of users, but its anonymity
is kept preserved no matter the number of signatures issued by this user, unlike
traceable ring signature schemes where its identity is revealed.

Previous traceable ring signature schemes were all based on the hardness of
the discrete logarithm problem [5,18,19] which can be solved by Shor’s algo-
rithm [23] using a quantum computer. Hence, the advent of a practical quantum
computer would turn Monero (with a market value of billions of dollars) and
other cryptocurrencies obsolete.

To overcome this problem, we base the security of our traceable ring signature
scheme on the syndrome decoding problem. This is a classical problem in coding
theory that is conjectured to be hard, even for quantum computers. By basing the
security of cryptographic primitives on this problem, we can design new protocols
that are conjectured to be robust against quantum adversaries. Therefore, as far
as we are aware, the traceable ring signature scheme presented in this work is
the first that is conjectured to be suitable for the post-quantum era.

Our Contribution and Techniques. The major contribution of this paper is the
construction of a traceable ring signature scheme based on the SD problem. To
develop the new traceable ring signature scheme, we build on top of a recently
proposed code-based linkable ring signature scheme [10]. More precisely, we con-
sider the GStern’s protocol, a variant of the famous Stern’s protocol [24], that
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decides the General Syndrome Decoding (GSD). This protocol allows a prover to
prove the knowledge of a error vector e for two instances of the Syndrome Decod-
ing (H, s) and (G, r) for an appropriate choice of parameters. After applying the
construction by Cramer, Damg̊ard and Shoemakers [14] for the OR relation, we
obtain a proof of knowledge protocol (

(
N
1

)
-GStern’s protocol) where the prover

proves that it knows a witness for one of several instances of the GSD problem.
Let (H, si) be the public key of a party Pi and ei its secret key, such that

HeT
i = sT

i and ei has small weight. To sign a message using the scheme, a
user collects the public keys of the elements in the ring. Let (H, s1, . . . , sN ) (the
matrix H is common to every party’s public key) be the public keys of the users
in the ring. The signer computes H̃eT

i = rT
i , where H̃ is a matrix computed using

a random oracle and that depends on the ring of users. It creates random vectors
r1, . . . , ri−1, ri+i, . . . , rN for each user of the ring. Since these vectors must be
random, the user computes them using a hash function and depending on the
message. Now, the user creates a signature by applying the Fiat-Shamir [17] to
the

(
N
1

)
-GStern’s protocol on input (H, s1, . . . , sN , H̃, r1, . . . , rN ). Suppose that

some user Pi signs creates two signatures for two different messages. Traceability
will be possible by checking for which i, ri = r′

i where ri is part of one signature
and r′

i is part of the other.
We prove the usual security properties for traceable ring signature schemes

in the Random Oracle Model: tag-linkability, anonymity and exculpability.

2 Notation and Preliminaries

We begin by presenting some notation. We will use bold lower cases to denote
vectors (like x) and bold capital letters to denote matrices (like H). We denote
the usual Hamming weight of a vector x by w(x). If A is an algorithm, we denote
y ← A(x) the output y when running A with input x. If S is a finite set, |S|
denotes its cardinality and y ←$ S means that y was chosen uniformly at random
from S. By negl(n) we denote a function F that is negligible on the parameter n,
i.e., F < 1/poly(n) where poly(n) represents any polynomial in n. The acronym
PPT means probabilistic polynomial-time.

Due to the lack of space, we refer the reader to Appendix A for a brief
introduction on sigma protocols1, the Fiat-Shamir transform [17], the Cramer-
Damg̊ard-Shoenmakers (CDS) construction for the OR relation [14] and the
original Stern’s protocol [24].

2.1 Hard Problems in Coding Theory

We present the search version of the Syndrome Decoding (SD) problem, a hard
problem in coding theory, proven to be NP-complete [7] in the worst-case. The
problem states that it is hard to decode a random linear code. Recall that a
k-dimensional code C of length n can be represented by its parity-check matrix
H ∈ Z

(n−k)×n
2 .

1 We refer the reader to [15] for a more detailed introduction on sigma protocols.
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Problem 1 (Syndrome Decoding). Given H ∈ Z
(n−k)×n
2 , s ∈ Z

n−k
2 and

t ∈ N, find e ∈ Z
n
2 such that w(e) ≤ t and HeT = sT .

The problem is also widely believed to be hard on the average-case since
the best known generic decoding classical and quantum attacks still take expo-
nential time [6,8,11,12,21] and, when e is chosen uniformly at random from
the set of vectors with weight t and the matrix H is chosen uniformly at ran-
dom from Z

(n−k)×n
2 , the statistical distance between (H,HeT ) and the uniform

distribution over Z
(n−k)×n
2 × Z

n−k
2 is negligible [16].

Next, we present a lemma which will be useful to prove the completeness of
the proposed protocols. It states that the equation HxT = sT will most likely
have a solution (not necessarily with w(x) ≤ t) with H and s chosen at random.

Lemma 2. Let n, k′ ∈ N such that k′ ≤ n/2. Given H ←$Z
k′×n
2 and s ←$Z

k′
2 ,

the probability of existing a vector x ∈ Z
n
2 such that HxT = sT is, at least,

1 − negl(n).

The proof is presented in Appendix B.1

Corollary 3. Let n, k′ ∈ N such that k′ ≤ n/4. Given H,G ←$Z
k′×n
2 and

s, r ←$Z
k′
2 , the probability that there is a vector x ∈ Z

n
2 such that HxT = sT and

GxT = rT is 1 − negl(n).

The Corollary can be easily proved by observing that
(
H
G

)
xT =

(
sT

rT

)

is a special case of the previous lemma.
For our purpose, we want the equation HxT = sT to have solutions, where

H ∈ Z
(n−k)×n
2 . Hence, we just need to consider n − k = k′ ≤ n/4, that is,

k ≥ 3n/4. To this end, we take k = 3n/4.
We now present the Generalized Syndrome Decoding (GSD) problem.

Problem 4. Given H,G ∈ Z
(n−k)×n
2 , s, r ∈ Z

n−k
2 and t ∈ N, find e ∈ Z

n
2 such

that w(e) ≤ t, HeT = sT and GeT = rT .

Note that the SD problem can be trivially reduced to GSD, by choosing
as inputs of the reduction H = G and s = r, and so GSD is a NP-complete
language.

The next protocol is a proof of knowledge protocol for the GSD problem. We
will call GStern’s protocol to the protocol presented in Algorithm 1.2

In the protocol, presented in Algorithm 1, observe that, when b = 1, V can
check that c1 was honestly computed by verifying whether H(y+e)T +sT = HyT

and G(y+e)T +rT = GyT . Also, the verifier can check that it is the same error
vector e that was used to compute the syndrome vectors s and r.
2 The name GStern’s protocol comes from Generalized Stern’s protocol.
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Algorithm 1. GStern’s protocol

1. Public information: H,G ∈ Z
(n−k)×n
2 and s, r ∈ Z

n−k
2 .

2. Secret information: e ∈ Z
n
2 such that HeT = sT , GeT = rT and w(e) = t.

3. Prover’s commitment:
– P chooses y ←$Z

n
2 and a permutation δ;

– P computes c1 = h(δ,HyT ,GyT ), c2 = h (δ(y)) and c3 = h (δ(y + e));
– P sends c1, c2 and c3.

4. Verifier’s Challenge: V sends b ←$ {0, 1, 2}.
5. Prover’s answer:

– If b = 0, P reveals y and δ;
– If b = 1, P reveals y + e and δ;
– If b = 2, P reveals δ(y) and δ(e).

6. Verifier’s verification:
– If b = 0, V checks if h(δ,HyT ,GyT ) = c1 and h (δ(y)) = c2;
– If b = 1, V checks if h(δ,H(y+e)T +sT ,G(y+e)T +rT ) = c1 and h (δ(y + e)) =

c3;
– If b = 2, V checks if h (δ(y)) = c2, h(δ(y) + δ(e)) = c3 and w (δ(e)) = t.

The protocol is proven to be complete, special sound and honest-verifier zero-
knowledge (HVZK) [10]. Nevertheless, we sketch the proof here. It is easy to see
that, from two valid transcripts (com, ch, resp) and (com, ch ′, resp′) of GStern’s
protocol, with ch �= ch ′, there is a simulator that can extract a valid witness.
For instance, when ch = 0 and ch ′ = 1, the simulator can extract the secret e
from y and y + e. In a similar way, it can always extract e in the other two
cases. To prove HVZK, note that: (i) when b = 0, the simulator just has to
reveal a random vector y and a random permutation δ; (ii) when b = 1, the
simulator has to reveal a vector x such that HxT = sT (but not necessarily with
w(x) = t). Note that this is possible due to Corollary 3; finally, (iii) when b = 2,
the simulator just has to reveal a vector with weight t.

To build our signature scheme, we apply the CDS construction [14] to
GStern’s protocol. We will call the resulting protocol

(
N
1

)
-GStern’s protocol.

We assume that the matrices H and G, and t are the same for every instance
of the GSD problem. In the following, com, ch and resp are commitments, chal-
lenges and responses, respectively, of GStern’s protocol repeated O(1/ε) times.
Moreover, the challenges are expressed as bit strings. The protocol is presented
in Algorithm 2.

The
(
N
1

)
-GStern’s protocol is a PoK that is complete, special sound and

HVZK. This fact is a direct consequence of the results in [14]. We briefly give
the sketch of the proof.

Suppose that the prover has a secret for instance j. To prove completeness,
note that a honest prover can always create valid transcript for instance j. This
follows from the completeness of GStern’s protocol. It can also create valid tran-
scripts for the other instances from the HVZK of GStern’s protocol. Thus, a
prover holding a secret for instance j can always create valid transcripts for(
N
1

)
-GStern’s protocol.
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Algorithm 2.
(
N
1

)
-GStern’s protocol

1. Public information: N instances of the GSD problem
(H, s1, . . . , sN ,G, r1, . . . , rN , t)
2. Secret information: e ∈ {0, 1}n such that w(e) = t, HeT = sT

i and GeT = rT
i

for some i ∈ {1, . . . , N}.
3. Prover’s commitment:

– P∗ simulates transcripts (comj , chj , respj) using the simulator S for j �= i
according to GStern’s protocol;

– P∗ computes comi according to GStern’s protocol;
– P∗ sends com1, . . . , comN .

4. Verifier’s challenge: V sends b ←$ C.
5. Prover’s answer:

– P computes chi = b +
∑

j �=i chj ;
– P computes respi according to comi and chi;
– Sends (comj , chj , respj) for every j.

6. Verifier’s verification:
– V checks that (comj , chj , respj) is valid according to GStern’s protocol, for every

j;
– V checks that b =

∑
j chj ;

– V accepts if it passes all the verification tests.

As usual, to prove special soundness of
(
N
1

)
-GStern’s protocol, the simulator

runs the prover and gets two valid transcripts (Com,Ch,Resp) and (Com,Ch ′,
Resp′), where Com = {comi}i, Ch = {chi}i, Ch ′ = {ch ′

i}i, Resp = {respi}i,
Resp′ = {resp′

i}i,
∑

i chi = b and
∑

i ch
′
i = b′. Suppose that the prover has the

secret for the instance j. Then chi = ch ′
i and respi = resp′

i for every i �= j.
Also, chj �= ch ′

j and respj �= resp′
j , except with negligible probability. Thus, by

the special soundness of the GStern’s protocol, the simulator can extract a valid
witness for instance j from these transcripts.

To prove HVZK, we have to show that there is a simulator capable of creating
valid transcripts for

(
N
1

)
-GStern’s protocol, even when not holding a witness for

any of the instances. But observe that, by the HVZK property of the GStern’s
protocol, the simulator can create valid transcripts for each of the instances.
Hence, a valid transcript for

(
N
1

)
-GStern’s protocol follows from these transcripts

of GStern’s protocol.
Therefore, we can use the Fiat-Shamir transform to create a secure signature

scheme [1].

2.2 Traceable Ring Signature Schemes

We present the definition of traceable ring signature scheme along with the
security model we consider, originally presented in [19]. In the following, let
pk = (pk1, . . . , pkN ), issue be a string denoting the goal of the signature (for
example, an election or a transaction) and L = (issue,pk). We will call L the
tag of the signature.
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Definition 5. A traceable ring signature scheme is defined by a tuple of algo-
rithms (KeyGen,Sign,Ver ,Trace) where:

– (pk, sk) ← KeyGen(1κ) is a PPT algorithm that takes as input a security
parameter κ and outputs a pair of public and secret keys (pk, sk);

– σ ← Sign(ski, L,M) is a PPT algorithm that takes as input a secret key ski,
a tag L = (issue,pk) and a message to be signed M and outputs a signature
σ.

– b ← Ver(L,M, σ) is a deterministic algorithm that takes as input a tag
L = (issue,pk), a signature σ and a message M and outputs a bit b such
that b = 1 if the signature is valid and b = 0 otherwise.

– s ← Trace(L,M1, σ1,M2, σ2) is a deterministic algorithm that takes as input
a tag L = (issue,pk) and two pairs of messages and corresponding signatures
(M1, σ1) and (M2, σ2) and outputs a string s that is either equal to indep,
linked or to an element pk ∈ pk such that, if σ1 ← Sign(ski, L,M1) and
σ2 ← Sign(skj , L,M2), then

Trace(L,M1, σ1,M2, σ2) :=

⎧
⎪⎨

⎪⎩

indep if i �= j,

linked else if M1 = M2,

pki otherwise.

The security requirements for a traceable ring signature scheme are three:
tag-linkability, anonymity and exculpability. Unforgeability comes from tag-
linkability and exculpability. In the following, let κ be a security parameter, N
be the number of users in the ring, L = (issue,pk) where pk = (pk1, . . . , pkN )
are the public keys of each user and Sign(sk, ·) is a signing oracle that receives
queries of the form (L,M) and outputs σ ← Sign(sk, L,M).

Tag-linkability. Informally, it must be infeasible for an adversary to create N +1
signatures having access to N pairs of public and secret keys. Let A be a PPT
adversary. Consider the following game:

GametagLinkA (κ,N) :

1 : (L, (M1, σ1) , . . . , (Mn+1, σn+1)) ← A(1κ)

2 : bi ← Ver(L, Mi, σi) ∀i ∈ {1, . . . , N + 1}
3 : si,j ← Trace(L, Mi, σi, Mj , σj) ∀i, j ∈ {1, . . . , N + 1} ∧ i �= j

4 : return b1, . . . , bN+1, s1,1, s1,2, . . . , sN+1,N+1

where L = (issue,pk) and pk = {pk1, . . . , pkN}.
We define

AdvtagLinkA (κ,N) := Pr

⎡

⎢
⎢
⎣

N+1∧

i=1

bi = 1 ∧
N+1∧

i,j=1
i�=j

si,j = indep

⎤

⎥
⎥
⎦ .

If, for all PPT adversaries A we have that AdvtagLinkA (κ,N) ≤ negl(κ,N ) then
we say that the traceable ring signature scheme is tag-linkable.



394 P. Branco and P. Mateus

Anonymity. Informally, it must be infeasible for an adversary to know who
signed the message. Let A be a PPT adversary. Consider the following game:

GameanonA (κ,N) :

1 : (pki, ski) ← KeyGen(1κ), i = 0, 1

2 : b ←$ {0, 1}
3 : b′ ← ASign(skb,·),Sign(sk0,·),Sign(sk1,·)(pk0, pk1)

4 : return b′

where the adversary is not allowed to ask queries with different tags to Sign(skb, ·)
nor to ask queries with the same tag to both Sign(skb, ·) and Sign(sk0, ·) or to
both Sign(skb, ·) and Sign(sk1, ·). We do not allow this to happen to avoid the
trivial attacks.

We define

AdvanonA (κ,N) := Pr [b = b′] − 1
2
.

If for all PPT adversaries A we have that AdvanonA (κ,N) ≤ negl(κ,N ) then we
say that the traceable ring signature scheme is anonymous.

Exculpability. Informally, it must be infeasible for an adversary A to produce
two pairs of messages and respective signatures that seem to be issued by some
user i, without knowledge of the secret key. In this case, we say that A frames
user i. Let A be a PPT adversary. Consider the following game:

GameexcA (κ,N) :

1 : (pk, sk) ← KeyGen(1κ)

2 : (L, M1, σ1), (L, M2, σ2) ← ASign(sk,·)(pk)

3 : s ← Trace(L, M1, σ1, M2, σ2)

4 : return s

where Ver(L,M1, σ1) = 1, Ver(L,M2, σ2) = 1, pk ∈ pk and at least one of the
signatures must not be linked3 to any query to Sign(sk, ·) made by A (to avoid
the trivial attacks).

We define

AdvexcA (κ,N) := Pr [s = pk] .

If for all PPT adversaries A we have that Advexc
A (κ,N) ≤ negl(κ,N ) then we

say that the traceable ring signature scheme is exculpable.
Unforgeability comes directly from the properties of tag-linkability and exculpa-
bility, as the next theorem states.

Theorem 6. ([19]). Assume that a traceable ring signature scheme is tag-
linkable and exculpable, then it is unforgeable.
3 That is, at least one of the messages (M1 or M2) was not asked in a query to the

oracle Sign(sk, ·).
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3 A Code-Based Traceable Ring Signature Scheme

In this section we propose a new traceable ring signature scheme based on the
SD problem.

The scheme is presented in Algorithm 3. In a nutshell, the traceable ring
signature scheme is obtained by applying the Fiat-Shamir transform to the

(
N
1

)
-

GStern’s protocol. To achieve traceability, we construct a set of random syn-
dromes r1 . . . , rN of a random matrix H̃ (generated via a cryptographic hash
function g and depending on the tag L), where one of the ri is the syndrome of
the secret vector known by the actual signer. When signing two different mes-
sages with respect to the same tag, this syndrome will be the same in both
signatures and, thus, we can identify the signer of the message. To prevent the
signer from cheating when signing, we force it to generate the other syndromes
with another cryptographic hash function f in such a way that the verifier will
be able to check that these syndromes were honestly and randomly generated.

The new traceable ring signature scheme is presented in Algorithm 3. In
the following, let pk = (pk1, . . . , pkN ) be the set of public keys of the users
P1, . . . ,PN in the ring and L = (issue,pk) be a tag. Let s = (s1, . . . , sN ),
r = (r1, . . . , rN ) and H be a parity-check matrix of a random code.

Let f , f̄ , g and h be four different cryptographic hash functions (modeled as
random oracles). The function h is the one used in the

(
N
1

)
-GStern’s protocol,

f̄ is the one used in the Fiat-Shamir transform, g : Z∗
2 → Z

(n−k)×n
2 is used to

compute a matrix from the issue L and f : Z
∗
2 → Z

n−k
2 is used to compute

random syndromes to allow traceability (as mentioned before). By f i(x) we
denote the function f applied i times on input x.

Note that, by Corollary 3, the probability that the prover cannot simulate
transcripts for the keys that it does not know is negligible since it can easily find
a solution x ∈ Z

n
2 for an equation of the type HxT = sT where H ∈ Z

(n−k)×n
2

and s ∈ Z
n−k
2 (when k = 3n/4). Thus, Corollary 3 guarantees the correctness of

the protocol.

4 Security Analysis

In this section we give the security proofs for the proposed traceable ring sig-
nature scheme. Recall that unforgeability for the scheme follows from the tag-
linkability and exculpability properties. We begin by proving tag-linkability for
our scheme, but first we present two lemmas. Detailed proofs are in the full
version of this paper.

Lemma 7. Given a valid signature (L,M, σ), the probability that
∣
∣
∣{i ∈ N : ∃e ∈ Z

n
2 w(e) = t ∧ HeT = sT

i ∧ H̃eT = rT
i }

∣
∣
∣ = 1

is 1 − negl(n).
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Algorithm 3. A new traceable ring signature scheme
1. Parameters: n, k, t ∈ N such that k = 3n/4, H ←$ {0, 1}(n−k)×n

2. Key Generation: Each user Pi:
– Chooses ei ←$ {0, 1}n such that w(ei) = t
– Computes sT

i = HeT
i

Public key of user Pi: H, si

Secret key of user Pi: ei such that w(ei) = t and HeT
i = sT

i

3. Sign: To sign message M , user Pi:
– Computes matrix g(L) = H̃ and H̃eT

i = rT
i ;

– Sets A0 = ri + f(M) + · · · + f i(M);
– Compute rj = A0 + f(M) + f2(M) + · · · + f j(M), for j �= i;

– Applies the Fiat-Shamir transform to
(

N
1

)
-GStern’s protocol on input (H, s, H̃, r)

where s = (s1, . . . , sN ) and r = (r1, . . . , rN ):
• Computes the commitments Com according to

(
N
1

)
-GStern’s protocol;

• Simulates the verifier’s challenge as Ch = f̄(Com, M);
• Computes the corresponding responses Resp according to

(
N
1

)
-GStern’s pro-

tocol;
• Outputs the transcript T = (Com,Ch,Resp).

– Outputs the signature (L, M, σ) where σ = (A0,Com,Resp).
4. Verify: To verify, the verifier:

– Computes rj = A0 + f(M) + f2(M) + · · · + f j(M) for all j ∈ {1, . . . , N};
– Computes Ch = f̄(Com, M);
– Verifies that T = (Com,Ch,Resp) is a valid transcript, according to

(
N
1

)
-

GStern’s protocol.
5. Trace: Given two signatures (L, M, σ) and (L, M ′, σ′) where σ = (A0,Com,Resp)
and σ′ = (A′

0,Com ′,Resp′) such that Ver(L, M, σ) = 1 and Ver(L, M ′, σ′) = 1, the
verifier:

– Computes rj = A0 + f(M) + f2(M) + · · · + f j(M) and r′
j = A′

0 + f(M ′) +
f2(M ′) + · · · + f j(M ′) for all j;

– Checks if rj = r′
j . If this happens, it stores pkj in a list traceList , which is

initially empty, for all j;
– Outputs the only pki ∈ traceList if |traceList | = 1; else if traceList = pk =

{pk1, . . . , pkN} it outputs linked ; else it outputs indep.

Lemma 8. Given two valid signatures (L,M, σ) and (L,M ′, σ′) such that they
are independent (that is, Trace(L,M, σ,M ′, σ′) = indep) the probability that
|traceList | > 1 is negl(n).

Theorem 9. (Tag-linkability). The traceable ring signature scheme proposed
is tag-linkable in the ROM.

Before proving anonymity, note that, given an instance of the SD problem
where we know the position of t/2 non-null coordinates of the error vector, this is
still an instance of the SD problem, for an appropriate choice of parameters. So,
it is still a hard problem to find the rest of the t/2 non-null positions of the error
vector. We briefly sketch the reduction here: suppose that we have an algorithm
A that solves the SD problem knowing t/2 positions of the error vector. The
algorithm that breaks the SD problem receives as input (H, sT = HeT , t/2).
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Then it computes a new matrix H′ = (H|R) where R ←$Z
(n−k)×t/2
2 and it

computes the vector s′ = s + R(1, . . . 1)T where (1, . . . , 1) has size t/2. Now
we call the algorithm A on input H′, s′, t/2 and the last positions of the error
vector. The reduction is obviously not tight. We take in account this fact when
proposing parameters for the scheme.

We now turn our attention to the anonymity of the scheme. In order to
prove anonymity for the proposed traceable ring signature scheme, we reduce a
variant of the decision version of the GSD problem to the problem of breaking the
anonymity of the scheme. This variant is the GSD problem when t/2 positions
of the error vector are known. Note that this does not threat the security since,
even when knowing half of the positions of the error vector, the GSD problem
is still computationally hard.

We need to know t/2 positions of the error vector because of following tech-
nical reason: we know how the algorithm that breaks the anonymity behaves
when it is given two valid public keys or when it is given two random values as
public keys. However, we do not know how it behaves when it is given one valid
public key and one random value as public key. More precisely, given a tuple
(H, s,G, r, t), we do not know if this represents a valid public key of the signa-
ture scheme or if it is a random tuple. However, if we know part of the secret,
we are able to construct another tuple (H, s′,G, r′, t) that is a GSD tuple, if
(H, s,G, r, t) is a GSD tuple, or that is a random tuple, otherwise.

Theorem 10. (Anonymity). The traceable ring signature scheme proposed is
anonymous in the ROM, given that the language

GSD =
{
(H, s,G, r, t) : ∃e ∈ Z

n
2 w(e) ≤ t ∧ HeT = sT ∧ GeT = rT

}

is hard to decide knowing t/2 positions of the error.

Finally, we prove that our scheme is exculpable.

Theorem 11. (Exculpability). The traceable ring signature scheme proposed
is exculpable in the ROM and given that the GSD problem is hard.

5 Parameters and Key Size

To conclude, we propose parameters for the scheme and analyze its signature and
key size. For the cheating probability of GStern’s protocol to be approximately
2−128, it has to be iterated 220 times. Recall that anonymity for our traceable
ring signature scheme is proven when knowing t/2 positions of the error vector.
Hence, to yield the standard security of approximately 128 bits for signature
schemes according to the generic decoding attack in [6], we consider a code with
n = 4150, k = 3n/4 and t = 132 (similar to [12]). Note that a code with these
parameters has a security of approximately 128 bits even when knowing t/2
positions of the error vector. This is necessary to maintain the anonymity of the
scheme. Let N be the number of users in the ring.
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Size of the Sigma Protocol. The
(
N
1

)
-GStern’s protocol has approximately 8700N

bits of exchange information in each round.

Signature Size. The signature size is approximately 240N kBytes. For example,
for a ring with N = 100 users, the signature size is approximately 24 MBytes.

Public Key size. The public key is approximately 12918950+1037 bits, which is
linear in the number of users in the ring. For example, for a ring with N = 100
users, the public key has size approximately 1.6 MBytes.

6 Conclusion

Traceable ring signature schemes have a wide range of applications. Currently
they are used in the implementation of Monero, one of the most famous cryp-
tocurrencies, but they also have other applications, such as, in e-voting. However,
the constructions for traceable ring signatures that exist in the literature are all
based on the discrete logarithm problem and, thus, they can be broken using
Shor’s algorithm.

We proposed the first traceable ring signature whose security does not rely on
the discrete logarithm problem, but rather on the SD problem, a problem that
is conjectured to be unsolvable in polynomial time by any classical or quantum
computer. Our construction is conjectured to be robust to quantum attacks. We
proved the usual security properties for traceable ring signature schemes in the
ROM.

However, the key and signature size of the protocol are too large for some
applications. This is a common problem to all code-based cryptosystems. Finding
new techniques to reduce the key and the signature size of code-based signature
schemes is an obvious direction for future work.

We also leave as an open question to prove the security of the protocol in
the Quantum Random Oracle Model (QROM) [9], where the parties can query
random oracles in superposition. Note that our proofs do not apply to the quan-
tum setup. For example, observe that the proof of exculpability uses a rewind
technique and the problem of quantum rewind is more subtle than in the clas-
sical setup [4]. Also, Unruh [25] proved that the Fiat-Shamir transform can be
applied to obtain secure signature schemes in the QROM, under certain condi-
tions. However these results are not known to hold for the case of ring signatures
constructed using the Fiat-Shamir transform.
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A Sigma Protocols

A.1 Fiat-Shamir Transform

A sigma protocol (P,V) is a three-round protocol between a prover P and a
verifier V where the prover tries to convince the verifier about the validity of
some statement. In this work, we are only interested in a particular case of
sigma protocols which are proof of knowledge (PoK) protocols. Here, the prover
P convinces the verifier V, not only about the veracity of the statement, but
also that P has a witness for it. The three rounds of any sigma protocol are
the commitment (com) by the prover, the challenge (ch) by the verifier and the
response (resp) by the prover. A transcript (com, ch, resp) is said to be valid if
the verifier accepts it as a valid proof.

A PoK must have the following properties: (i) completeness, which ensures
that the verifier will accept the proof with high probability if the prover has the
secret; (ii) special soundness, which ensures that there is an extractor such that,
given two valid transcripts (com, ch, resp) and (com, ch ′, resp′) where ch �= ch ′,
then it can extract the secret; and (iii) honest-verifier zero-knowledge (HVZK)
which ensures that no information is gained by the verifier just by looking at
the transcript. This is usually proven by showing the existence of a simulator
that can generate transcripts that are computationally indistinguishable from
transcripts generated by the interaction between the prover and the verifier. A
detailed survey on sigma protocols can be found in [15].

The Fiat-Shamir transform [17] is a generic method to convert any PoK
protocol that is complete, special sound and HVZK into a signature scheme. The
security of the Fiat-Shamir transform is proven to be secure both in the random
oracle model (ROM) [1] and in the quantum random oracle model (QROM) [25],
under certain conditions.

The idea behind the Fiat-Shamir transform is that the prover simulates the
challenge that is usually sent by the verifier. Since this challenge should be chosen
uniformly at random, the prover sets the challenge according to a cryptographic
hash function receiving as input the message to be signed and the commitment
chosen previously by the prover. More precisely, given a proof of knowledge
(P,V), the prover computes com, then it sets ch = f̄(com,M) where f̄ is a
cryptographic hash function and M is the message to be signed. Finally, it
computes resp such that (com, ch, resp) is a valid transcript. The signature of
M is (com, resp). To verify the validity of the signature, one just has to compute
ch = f̄(com,M) and check that (com, ch, resp) is a valid transcript.

A.2 CDS Construction

The Cramer-Damg̊ard-Shoenmakers (CDS) construction [14] is a generic way to
construct a proof of knowledge (P∗,V∗) where the prover proves knowledge of
the solution to some subset of instances of a problem, given any PoK protocol
(P,V) and a secret sharing scheme SS.



400 P. Branco and P. Mateus

Given N instances of a problem, let A be the set of indexes for which the
prover P∗ knows the solution. The idea behind the CDS construction is that
the new prover P∗ simulates transcripts (comj , chj , respj) for the instances it
does not know the solution, that is, for j /∈ A. For the instances that it knows
the secret, it computes the commitment comi, for i ∈ A, following the protocol
(P,V). After receiving the commitments for all instances, the verifier sends a
random bit string b to the prover. The string b will be interpreted as the secret
in SS and the challenges chj , for j /∈ A, as shares such that they form an
unqualified set. Now, this set of shares can be extended to a qualified set by
choosing properly the challenges chi, for i ∈ A. The prover then computes valid
transcripts (comi, chi, respi) for i ∈ A. It can do this because it has witnesses
for these instances. Finally, the prover P∗ sends the transcripts (comi, chi, respi)
for all i to the verifier. The verifier can check that these are valid transcripts and
that the shares chi constitute a qualified set for SS.

A.3 Stern’s Protocol

Stern’s protocol [24] is a protocol in which, given a matrix H and a syndrome
vector s, a prover proves the knowledge of an error vector e with w(e) = t
and syndrome s. The protocol is presented in Algorithm 4. Here, h denotes a
cryptographic hash function.

Algorithm 4. Stern’s protocol

1. Public information: H ∈ Z
n×(n−k)
2 and s ∈ Z

n−k
2

2. Secret information: e ∈ Z
n
2 such that HeT = sT and w(e) = t.

3. Prover’s commitment:
– P chooses y ←$Z

n
2 and a permutation δ;

– P computes c1 = h(δ,HyT ), c2 = h (δ(y)) and c3 = h (δ(y + e));
– P sends c1, c2 and c3.

4. Verifier’s challenge: V sends b ←$ {0, 1, 2}.
4. Prover’s answer:

– If b = 0, P reveals y and δ;
– If b = 1, P reveals y + e and δ;
– If b = 2, P reveals δ(y) and δ(e).

6. Verifier’s verification:
– If b = 0, V checks if h(δ,HyT ) = c1 and h (δ(y)) = c2;
– If b = 1, V checks if h(δ,H(y + e)T + sT ) = c1 and h (δ(y + e)) = c3;
– If b = 2, V checks if h (δ(y)) = c2, h(δ(y) + δ(e)) = c3 and w (δ(e)) = t.

The security of Stern’s protocol is based on the hardness of the SD problem.
The protocol has been proven to be complete, special sound and HVZK and,
furthermore, has a cheating probability of 2/3 [24].
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B Auxiliary Results

B.1 Proof of Lemma 2

The probability of existing a vector x such that HxT = sT is the probability of
H being a matrix representing a surjective application, i.e., it is the probability
of H being a full rank matrix. Hence, we have to compute the probability of
choosing k′ linearly independent vectors of size n to form the rows of H. We
have

Pr
[∃x ∈ Z

n
2 : HxT = sT

]
=

(2n − 1)(2n − 2) . . . (2n − 2k′
)

2k′n .

Since (2n − 1) ≥ (2n − 2k′
), (2n − 2) ≥ (2n − 2k′

) and (2n − 2k′−1) ≥ (2n − 2k′
),

we have that

(2n − 1)(2n − 2)(2n − 4) . . . (2n − 2k′
)

2k′n ≥
(
2n − 2k′

)k′+1

2k′n ≥
(
2n − 2k′

)k′

2k′n .

Now, note that
(
2n − 2k′

)k′

2k′n =

(
2n(1 − 2k′−n)

)k′

2k′n =
(

1 − 1
2n−k′

)k′

.

So, it remains to show that
(
1 − 1/2n−k′)k′

= 1 − negl(n)

for k′ ≤ n/2. Note that the expression decreases with k′ and so it is enough to
show for k′ = n/2.

Expanding the expression on the left using the Binomial theorem we get

(
1 − 1

2n/2

)n/2

=
n/2∑

i=0

(
n/2
i

)(
− 1

2n/2

)i

.

When i = 0 we have (
n/2
i

) (
− 1

2n/2

)i

= 1.

The expression is maximal when i = n/4. Hence, if we show that
(

n/2
i

)(
− 1

2n/2

)i

= negl(n)

when i = n/4, then

n/2∑

i=0

(
n/2
i

)(
− 1

2n/2

)i

= 1 +
n/2∑

i=1

(
n/2
i

)(
− 1

2n/2

)i

= 1 − negl(n) .
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In fact, it can be proved using Stirling approximation (which is tight) for n! that

lim
n→∞ nb

(
n/2
n/4

)(
− 1

2n/2

)n/4

= 0

for any b ∈ N. Hence, we have shown that the expression
(
n/2
n/4

) (− 1
2n/2

)n/4 goes
to zero faster than any function of the form 1/nb, for any b ∈ N. Thus, the
expression is negligible in n and the result follows. 
�
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Abstract. Quasi-cyclic moderate density parity check codes [1] allow
the design of McEliece-like public-key encryption schemes with compact
keys and a security that provably reduces to hard decoding problems for
quasi-cyclic codes.

In particular, QC-MDPC are among the most promising code-based
key encapsulation mechanisms (KEM) that are proposed to the NIST
call for standardization of quantum safe cryptography (two proposals,
BIKE and QC-MDPC KEM).

The first generation of decoding algorithms suffers from a small,
but not negligible, decoding failure rate (DFR in the order of 10−7 to
10−10). This allows a key recovery attack that exploits a small correlation
between the faulty message patterns and the secret key of the scheme
[2], and limits the usage of the scheme to KEMs using ephemeral public
keys. It does not impact the interactive establishment of secure commu-
nications (e.g. TLS), but the use of static public keys for asynchronous
applications (e.g. email) is rendered dangerous.

Understanding and improving the decoding of QCMDPC is thus of
interest for cryptographic applications. In particular, finding parameters
for which the failure rate is provably negligible (typically as low as 2−64

or 2−128) would allow static keys and increase the applicability of the
mentioned cryptosystems.

We study here a simple variant of bit-flipping decoding, which we
call step-by-step decoding. It has a higher DFR but its evolution can be
modelled by a Markov chain, within the theoretical framework of [3]. We
study two other, more efficient, decoders. One is the textbook algorithm
implemented as in [3]. The other is (close to) the BIKE decoder. For all
those algorithms we provide simulation results, and, assuming an evolu-
tion similar to the step-by-step decoder, we extrapolate the value of the
DFR as a function of the block length. This will give an indication of
how much the code parameters must be increased to ensure resistance
to the GJS attack.
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1 Introduction

Moderate Density Parity Check (MDPC) codes were introduced for cryptogra-
phy1 in [1]. They are related to Low Density Parity Check (LDPC) codes, but
instead of admitting a sparse parity check matrix (with rows of small constant
weight) they admit a somewhat sparse parity check matrix, typically with rows
of Hamming weight O(

√
n) and length n. Together with a quasi-cyclic structure

they allow the design of a McEliece-like public-key encryption scheme [4] with
reasonable key size and a security that provably reduces to generic hard prob-
lems over quasi-cyclic codes, namely the hardness of decoding and the hardness
of finding low weight codewords.

Because of these features, QC-MDPC have attracted a lot of interest from the
cryptographic community. In particular, two key exchange mechanisms “BIKE”
and “QC-MDPC KEM” were recently proposed to the NIST call for standard-
ization of quantum safe cryptography2.

The decoding of MDPC codes can be achieved, as for LDPC codes, with
iterative decoders [5] and in particular with the (hard decision) bit flipping
algorithm, which we consider here. Using soft decision decoding would improve
performance [6], but would also increase the complexity and make the scheme
less suitable for hardware and embedded device implementations, which is one
of its interesting features [7]. There are several motivations for studying MDPC
decoding. First, since QC-MDPC based cryptographic primitives may become
a standard, it is worth understanding and improving their engineering and in
particular the decoding algorithm, which is the bottleneck of their implemen-
tation. The other motivation is security. A correlation was established by Guo,
Johansson and Stankovski in [2] between error patterns leading to a decoding
failure and the secret key of the scheme: the sparse parity check matrix of a
QC-MDPC code. This GJS attack allows the recovery of the secret by making
millions of queries to a decryption oracle. To overcome the GJS attack, one must
find instances of the scheme for which the Decoding Failure Rate (DFR) is neg-
ligible. This is certainly possible by improving the algorithm and/or increasing
the code parameters, but the difficulty is not only to achieve a negligible DFR
(a conservative target is a failure rate of the same order as the security require-
ments, that is typically 2−128) but to prove, as formally as possible, that it is
negligible when the numbers we consider are out of reach by simulation.

In this work, we recall the context and the state-of-the-art in Sect. 2, mostly
results of [3] as well as some new properties. In Sect. 3 we describe a new decoder,
the step-by-step bit flipping algorithm, and its probabilistic model. This algo-
rithm is less efficient than the existing techniques, but, thanks to the model,
its DFR can be estimated. Finally in Sect. 4 we compare the DFR prediction
of our model with the DFR obtained with simulations. We compare this with

1 MDPC were previously defined, in a different context, by Ouzan and Be’ery in 2009,
http://arxiv.org/abs/0911.3262.

2 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

http://arxiv.org/abs/0911.3262
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
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BIKE decoder simulation and try to extrapolate its behavior even when the DFR
cannot be obtained by simulation.

Notation

– Throughout the paper, the matrix H ∈ {0, 1}r×n will denote the sparse parity
check matrix of a binary MDPC code of length n and dimension k = n − r.
The rows of H, the parity check equations, have a weight w = O(

√
n), and

are denoted eqi, 0 ≤ i < r. The columns of H, transposed to become row
vectors, are denoted hj , 0 ≤ j < n.

– For any binary vector v, we denote vi its i-th coordinate and |v| its Hamming
weight. Moreover, we will identify v with its support, that is i ∈ v if and only
if vi = 1.

– Given two binary vectors u and v of same length, we will denote u∩v the set of
all indices that belong to both u and v, or equivalently their component-wise
product.

– The scalar product of u and v is denoted 〈u, v〉 ∈ {0, 1}.
– For a random variable X we write X ∼ Bin(n, p) when X follows a binomial

distribution:

Pr[X = k] = fn,p(k) =
(

n

k

)
pk(1 − p)n−k.

– In a finite state machine, the event of going from a state S to a state T in at
most I iterations is denoted:

S
I−→ T .

2 Bit Flipping Decoding

The bit flipping algorithm takes as argument a (sparse) parity check matrix H ∈
{0, 1}r×n and a noisy codeword y ∈ {0, 1}n. It flips a position if the proportion of
unsatisfied equations containing that position is above some threshold. A parity
check equation eqi is unsatisfied if the scalar product 〈eqi, y〉 = 1. The proportion
of unsatisfied equations involving j is |s ∩ hj | / |hj |, where s = yHT denotes the
syndrome. In practice (see [1]), the bit flipping decoder of Algorithm 1 is parallel:
the syndrome is updated after all tests and flips. The choice of a particular
threshold τ depends on the context, that is H, y, and possibly anything the
algorithm can observe or compute. With an appropriate choice of threshold and
assuming that H is sparse enough and y close enough to the code, the algorithm
terminates with high probability.

2.1 QC-MDPC-McEliece

Bit flipping decoding applies in particular to quasi-cyclic moderate density parity
check (QC-MDPC) codes which can be used in a McEliece-like encryption scheme
[1]. In the cryptographic context, those codes are often of rate 1/2, length n,
dimension k = n/2 (codimension r = n/2). The parity-check matrix has row
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Algorithm 1. The Bit Flipping Algorithm
Require: H ∈ {0, 1}(n−k)×n, y ∈ {0, 1}n

while yHT �= 0 do
s ← yHT

τ ← threshold(context)
for j ∈ {0, . . . , n − 1} do

if |s ∩ hj | ≥ τ |hj | then
yj ← 1 − yj

return y

weight w = O(
√

n) and is regular (all columns have the same weight d = w/2).
The bit flipping decoding corrects t = O(

√
n) errors. Parameters n, r, w, t must

be fine-tuned so that the cryptosystem is secure and the decoding failure rate
(DFR) low. The implementation of Algorithm 1 for QC-MDPC was considered
in several works. Different strategies have been considered so far to choose a good
threshold: relying on the value of maxj(|s ∩ hj | / |hj |) [1], using fixed values [8]
or using the syndrome weight [3,9]. The last two strategies require, for each
set of parameters, a precomputation based on simulation to extract the proper
threshold selection rule. For the parameters of Table 1 those algorithms typically
require less than 10 iterations for a DFR that does not exceed 10−7. Table 1
gives the sets of parameters of the BIKE proposal [10] to NIST. The bit flipping
decoder of BIKE is slightly more elaborated. Its DFR appears to be below 10−10

but this is unfortunately difficult to establish from mere simulations.

Table 1. BIKE parameters (security against classical adversary)

n r w t Security

20 326 10 163 142 134 128

39 706 19 853 206 199 192

65 498 32 749 274 264 256

2.2 A Key Recovery Attack

In a recent work, Guo, Johansson, and Stankovski (GJS) [2] were able to exhibit
a correlation between faulty error patterns and the secret key of the scheme
(the sparse parity check matrix of the QC-MDPC code). An attacker that has
access to a decryption oracle for a given secret key, may perform a key recovery
attack by collecting and analyzing thousands (at least) of error patterns leading
to a failure. This limits the cryptographic usage of QC-MDPC to key encapsula-
tion mechanisms with ephemeral key. To safely extend the usage of the scheme
to static keys (allowing one-pass asynchronous key exchange, for instance for
email), one needs to lower the failure rate to something negligible. Depending
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on the adversarial model the DFR could be a small constant, like 2−64, or even—
considering the error-amplification method from [11]—a value which decreases
exponentially with the security claim (typically 2−λ for λ bits of security).

2.3 Bit Flipping Identities

More details about this section can be found in [3, part III]. We assume that
the MDPC code is quasi-cyclic and regular. That means that in the parity check
matrix H ∈ {0, 1}r×n, every row has the same weight w and every column has the
same weight d. If r = n/2, which is the most common situation in cryptographic
applications, then we have w = 2d.

We consider an instance of the decoding algorithm, the noisy codeword is
denoted y and is at distance t = O(

√
n) of the code. With probability over-

whelmingly close to 1, the corresponding error e is unique. Its syndrome is
s = yHT = eHT .

Definition 1. For a parity matrix H and an error vector e, the number of unsat-
isfied parity check equations involving the position j is σj(e,H) = |hj ∩ eHT|.
We call this quantity a counter. The number of equations affected by exactly �
errors is

E�(e,H) =
∣∣∣{i ∈ {0, . . . , r − 1} : |eqi ∩ e| = �

}∣∣∣.
The quantities e and H are usually clear from the context. We will omit them
and simply write σj and E�.

Proposition 1. The following identities are verified for all e and all H:
∑

� odd

E� =
∣∣eHT

∣∣ ,
∑

j

σj = w
∣∣eHT

∣∣ ,
∑
j∈e

σj =
∑

� odd

�E� .

The Counter Distributions. If e is distributed uniformly among the words
of weight t, we have σj ∼ Bin(d, πej

) with

π1 =
∑

� even

(
w−1

�

)(
n−w

t−1−�

)
(
n−1
t−1

) , and π0 =
∑

� odd

(
w−1

�

)(
n−w
t−�

)
(
n−1

t

) . (1)

The above distribution is valid on average. However, the following facts are
remarked in [3].

1. It does not accurately predict the counter values for an individual value of e.
In fact, the counters tend to grow with the syndrome weight.

2. Even if the initial error pattern is uniformly distributed (of fixed weight),
this is no longer true after the first iteration and the deviation from (1) is
significant.
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Conditioning the Counter Distributions with the Syndrome Weight. We denote
t = |e| and S =

∣∣eHT
∣∣ the syndrome weight. A better model for σj is given by

the distribution Bin(d, π′
ej

) where (see [3])

π′
1 =

S + X

dt
, π′

0 =
(w − 1)S − X

d(n − t)
with X =

∑
� odd

(� − 1)E� . (2)

The above formulas depends on the codes parameters n, w, d, on the error
weight t = |e|, on the syndrome weight S =

∣∣eHT
∣∣ but also on the quantity

X =
∑

�>0 2�E2�+1. Here, we wish to obtain an accurate model for the counter
distribution which only depends on S and t. We must somehow get rid of X. In
practice X = 2E3 +4E5 + · · · is not dominant in the above formula (for relevant
QC-MDPC parameters) and we will replace it by its expected value.

Proposition 2. When e is chosen uniformly at random of weight t the expected
value of X =

∑
�>0 2�E2�+1 given that S =

∣∣eHT
∣∣ is,

X(S, t) =
S

∑
� 2�ρ2�+1∑
� ρ2�+1

where ρ� =

(
w
�

)(
n−w
t−�

)
(
n
t

) .

Remarks.

– The counter distributions above are extremely close to the observations when
the error pattern e is uniformly distributed of fixed weight.

– The model gradually degenerates as the number of iterations grows, but
remains relatively accurate in the first few iterations of Algorithm 1, that
is even when e is not uniformly distributed.

2.4 Adaptive Threshold

Within this model, a good threshold for Algorithm 1 is τ = T/d where T is the
smallest integer such that (recall that fd,π is defined in the notation)

tfd,π′
1
(T ) ≥ (n − t)fd,π′

0
(T ) .

We will use this threshold selection rule in the sequel of the paper. Note that it
is very consistent with the thresholds that were empirically determined in [9] to
optimize Algorithm 1.

2.5 Estimating the Syndrome Weight

The probability for a parity equation eq of weight w to be unsatisfied when the
error e is distributed uniformly of weight t is equal to

ρ̄ =
∑

� odd

Pr[|eq ∩ e| = �] =
∑

� odd

(
w
�

)(
n−w
t−�

)
(
n
t

) =
∑

� odd

ρ�
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The syndrome weight S =
∣∣eHT

∣∣ is equal to the number of unsatisfied equations
and thus its expectation in ρ̄r. For a row-regular3 MDPC code the syndrome
weight follows the binomial distribution Bin(r, ρ̄). However, it was remarked in
[3] that for a regular MDPC code, there was a dependence between equations
and the syndrome weight followed a different distribution.

In the following proposition we give the distribution of the syndrome weight
when the error is uniformly distributed of weight t and the matrix H is regular.

Proposition 3. Let H be a binary r × n row-regular matrix of row weight w.
When the error e is uniformly distributed of weight t, the syndrome weight S =∣∣eHT

∣∣ follows the distribution

Pr[S = �] = fr,ρ̄(�)

and if H is regular of column weight d, we have

P�(t) = Pr[S = � | H is regular] =
fr,ρ̄(�)h(�)∑

k∈{0,...,r} fr,ρ̄(k)h(k)
(3)

where for � ∈ {0, . . . , r} (∗ is the discrete convolution operation and ∗n is the
n-fold iteration of the convolution with itself)

h(�) = g∗�
1 ∗ g

∗(r−�)
0 (dt)

with, for k ∈ {0, . . . , w},

g1(k) =

⎧⎨
⎩

(wk)(n−w
t−k )

(nt)
1
ρ̄ if k is odd

0 otherwise
; g0(k) =

⎧⎨
⎩

(wk)(n−w
t−k )

(nt)
1

1−ρ̄ if k is even

0 otherwise
.

The above distribution takes into account the regularity but not the quasi-
cyclicity. Nevertheless, experimental observation shows that it is accurate for
quasi-cyclic matrices, at least in the range useful for QC-MDPC codes.

3 Step-by-Step Decoding

In Algorithm 1 the positions with a counter value above the threshold are flipped
all at once. In Algorithm 2 only one position is flipped at a time. The benefit,
in contrast to algorithm 1, is that we can predict the evolution of the decoder.
For example, when position j with counter σj is flipped, the syndrome weight
becomes |s|+ |hj|− 2σj . And the error weight is either increased or decreased by
one.

To instantiate Algorithm 2, we will use the threshold selection rule described
in Sect. 2.4 and to sample j, we uniformly pick an unverified equation then a
position in this equation, that is

i
$← {i, |eqi ∩ y| odd}; j $← eqi

3 All rows of H have the same weight w, no condition on the column weight.
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Algorithm 2. The Step-by-Step Bit Flipping Algorithm
Require: H ∈ {0, 1}(n−k)×n, y ∈ {0, 1}n

while yHT �= 0 do
s ← yHT

τ ← threshold(context)
j ← sample(context)
if |s ∩ hj | ≥ τ |hj | then

yj ← 1 − yj

return y

(where x
$← X means we pick x uniformly at random in the set X). With

this rule, and using the model for counter distributions given in Sect. 2.3, the
probability to pick j ∈ e is∑

j′∈e σj′∑
j′ σj′

=
S + X

wS
=

1
w

(
1 +

X

S

)
,

where S in the syndrome weight and X = 2E2 +4E4 + · · · is defined in Sect. 2.3.
Note that this probability is slightly above 1/w and larger in general than t/n,
the same probability when j is chosen randomly.

3.1 Modeling the Step-by-Step Decoder

We assume here that H is the sparse parity check matrix of a regular QC-
MDPC code, with row weight w and column weight d. We model the step-by-step
decoder as a finite state machine (FSM) with a state (S, t) with S the syndrome
weight and t the error weight.

We consider one loop of Algorithm 2. The position j is sampled, the corre-
sponding counter value is denoted σ = |s ∩ hj | and the threshold is T = τ |hj | =
τd. There are 3 kinds of transition,

– if σ < T , then (S, t) → (S, t), with probability p
– if σ ≥ T and j ∈ e, then (S, t) → (S + d − 2σ, t − 1), with probability p−

σ

– if σ ≥ T and j ∈ e, then (S, t) → (S + d − 2σ, t + 1), with probability p+σ

and the transition probabilities are given in the following proposition.

Proposition 4.

p−
σ =

tσfd,π′
1
(σ)

wS
, p+σ =

(n − t)σfd,π′
0
(σ)

wS
, p =

∑
σ<T

(p−
σ + p+σ ),

where fd,π(i) =
(
d
i

)
πi(1 − p)d−i and π′

0, π
′
1 are given in (2) in Sect. 2.3.

The above machine does not correctly take into account the situation where
the algorithm is unable to find a suitable position to flip. We modify it as follows:
one step of the new machine will iterate the loop until a flip occurs. We call j
the flipped position and σ its counter. The possible transitions are now,
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– if no high enough counter is found, then (S, t) → L, with probability pL

– if σ ≥ T and j ∈ e, then (S, t) → (S + d − 2σ, t − 1), with probability p′−
σ

– if σ ≥ T and j ∈ e, then (S, t) → (S + d − 2σ, t + 1), with probability p′+
σ

where the state L corresponds to the situation where there no position exists
with a suitable counter.

Proposition 5.

p′−
σ = p−

σ

1 − pL

1 − p
, p′+

σ = p+σ
1 − pL

1 − p
,

where p, p−
σ , p+σ are given in Proposition 4, and

pL =

(∑
σ<T

fd,π′
1
(σ)

)t

·
(∑

σ<T

fd,π′
0
(σ)

)n−t

,

where fd,π(i) =
(
d
i

)
πi(1 − p)d−i and π′

0, π
′
1 are given in (2) in Sect. 2.3.

Note. As mentionned in Sect. 2.3, we have replaced X by X (Proposition 2) in
π′
0, π

′
1 in all the results of this section.

3.2 Computing the DFR

To compute the theoretical DFR in our model, we will add another state F
corresponding to a decoding failure. We assume the stochastic process we have
defined in the previous section is a time-homogeneous Markov chain. For any
starting state (S, t) we wish to determine with which probability the FSM reaches
the failure state after an infinite number of iterations:

DFR(S, t) = Pr[(S, t) ∞−→ F].

Since we assumed an infinite number of iterations, we need to fix an error weight
above which the decoder fails, say tfail. Similarly, to simplify the computation, we
assume that when t is small enough, say below tpass the decoder always succeeds.
We have ∀t ≤ tpass,Pr[(S, t) ∞−→ F] = 0 and ∀t > tfail,Pr[(S, t) ∞−→ F] = 1.

Notice that as long as T ≥ d+1
2 (which is always the case here), ∀σ ≥ T, Sσ <

S therefore these probabilities can be computed by induction with S in ascending
order. Finally, the probability to successfully decode a vector y noised with a
uniformly distributed error of weight t in the model is

DFR(t) =
∑
S

PS(t)DFR(S, t)

where PS(t) is the distribution of the syndrome weight given in Proposition 3.
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3.3 Using t Alone for the State Is Not Enough

In the analysis of LDPC decoding, starting with Gallager’s work [5], it is usually
assumed that the error pattern remains uniformly distributed throughout the
decoding process. This assumption greatly simplifies the analysis. It is correct
for LDPC codes, but unfortunately not for MDPC codes.

Assuming uniform distribution of the error during all the decoding is equiv-
alent to adopting a stochastic model in which the decoder state is described
by the error weight alone. From our analysis, we easily derive the transition
probabilities as

Pr[t → (t ± 1)] =
∑
S

PS(t)
∑
S′

Pr[(S, t) → (S′, t ± 1)] .

The corresponding Markov chain can be computed. We observe a huge dis-
crepancy. For instance, for parameters (n, r, w, t) = (65500, 32750, 274, 264) the
observed failure rate is in the order of 10−4 for the step-by-step decoder while
the model predicts less than 10−12. The difference is even higher for larger block
size.

4 Simulation

We simulate here three algorithms:

Algorithm 1: as in [3], using the threshold selection rule of Sect. 2.3.
Algorithm 2: step-by-step bit flipping as in the model of Sect. 3.
BIKE decoder: adapted from [10].

The parameters are those of BIKE-1 Level 5 (d = 137, w = 274, t = 264) with
rate 1/2 and a varying block size r.

The true BIKE decoder is tuned for r = 32749. We adapt it here for variable
r. The BIKE decoder starts with one iteration of Algorithm 1 and ends with
Algorithm 2 and a threshold τ = 0.5. Between the two there is a “gray zone”
step described in [10].

Let us point out that the threshold selection rule of Sect. 3 (used for Algo-
rithms 1 and 2 and the model) is not honest. It assumes that the error weight
is known throughout the computation while obviously a real decoder has no
access to that information. However the main objective here was to compare the
simulation and the model, and both of them “cheat”. Moreover, we believe that
finding the “good” threshold can always be achieved for an extra computational
cost without cheating. Note finally that the BIKE algorithm outperforms the
others without relying on the knowledge of the error weight.

In Fig. 1, we compare the DFR derived from our model to the one obtained
by Monte Carlo simulations of the three above decoders.

While our model is slightly optimistic, the DFR curve we obtain from it
follows the same evolution as the one obtained by simulation. Assuming this
stays true for higher block length values, this allows us to observe the evolution
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Fig. 1. DFR of the step-by-step algorithm in the models and from simulations (infinite
number of iterations)

of the DFR for block lengths that are out of the reach of simulation (when
the DFR becomes too small to be measured). Observing the model behavior
beyond the range plotted in Fig. 1, we have noticed that the DFR evolves in two
phases, in the first phase (r < 37 500) it closely fits a quadratic curve and in the
second phase it is linear. This ultimately linear behavior is consistent with the
asymptotic analysis of [12], even though the algorithms we are considering do
not clearly meet the assumptions under which this asymptotic analysis is valid.

We also observe a quadratic evolution with the algorithms that we imple-
mented and tested. We have no indication on when or if the curve changes from
quadratic to linear so our model suggests that an optimistic extrapolation of the
DFR would be quadratic and a pessimistic one would be linear. We give some
of those extrapolations in Table 2. We denote pfail(r) the DFR for block size r.



On the Decoding Failure Rate of QC-MDPC Bit-Flipping Decoders 415

Table 2. Extrapolating QC-MDPC parameters

(a) (b) (c) (d) (e) (f) (g) (h)

Algorithm 1 −21.7 34 889 35 541 36 950 39 766 39 837 48 215

BIKE −47.5 −57.0 32 983 33 713 34 712 37 450 37 159 44 924

Algorithm 2 (simulation) −11.5 37 537 39 905 40 952 48 610 45 772 66 020

Algorithm 2 (model) −13.6 37 554 41 872 50 333

(a): linearly extrapolated value for log2(pfail(32 749));
(b): quadratically extrapolated value for log2(pfail(32 749));
(c): minimal r such that pfail(r) < 2−64 assuming a quadratic evolution;
(d): minimal r such that pfail(r) < 2−64 assuming a linear evolution;
(e): minimal r such that pfail(r) < 2−128 assuming a quadratic evolution;
(f): minimal r such that pfail(r) < 2−128 assuming a linear evolution;
(g): minimal r such that pfail(r) < 2−256 assuming a quadratic evolution;
(h): minimal r such that pfail(r) < 2−256 assuming a linear evolution.

5 Conclusion

We have presented here a variant of the bit flipping decoder of QC-MDPC codes,
namely the step-by-step decoder. It is less efficient than the existing decoders, but
can be accurately modeled by a Markov chain. If we assume that the evolution
of the DFR of other related algorithms, and in particular BIKE, follow the same
kind of evolution, we are able to give estimates for their DFR and also of the
block size we would need to reach a low enough error rate. For BIKE-1 level 5,
we estimate the DFR between 2−47 and 2−57. As shown in Table 2, the amount
by which the block size should be increased to reach a DFR of 2−64 or even
2−128 seems to be relatively limited, only 1% to 15%. This suggests that with an
improvement of the decoder efficiency and a semantically secure conversion, the
original BIKE parameters might not be too far from what is needed to resist to
the GJS attack and allow static keys.
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