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Chapter 6
Extracellular Fungal Peroxidases 
and Laccases for Waste Treatment:  
Recent Improvement

Shanmugapriya S., Manivannan G., Selvakumar Gopal, 
and Sivakumar Natesan

6.1  Introduction

Fungi are widespread eukaryotic microorganism exploit subsidiary living conditions 
through their unusual extracellular enzymes capable of utilizing variable sources as 
substrates. Mostly, these extracellular enzymes degrade complex organic substances 
including cellulose, hemicellulose, lignin, phenols, pesticides, hydrocarbons, etc. 
into simple molecules for their carbon, energy, and nutrition (Burns et al. 2013). 
Among the various organic substances, lignin, hemicelluloses, and phenolic com-
pounds are the major wastes as environmental pollutants. Due to the chemical com-
plexity, lignins take a long time to its natural degradation. In nature, majority of the 
fungi in the phylum Basidiomycota have the enzymes such as laccases and peroxi-
dases to actively degrade the lignin containing polyphenol waste from the environ-
ment, which have potential biotechnological applications.

Three phenotypic groups of fungi specifically white-rot, brown-rot, and soft-rot 
fungi are the predominant groups which degrade lignin compounds variably. Among 
them, white-rot fungi execute complete lignin degradation with the ability to cleave 
Cα- Cβ, β-aryl, and C1-Cα bonds, including aromatic C-C bonds degradation c, but 
brown-rot fungi partially degrade lignin compounds by Fenton/Haber Weiss chem-
istry (Arantes et  al. 2012). However, white-rot fungi produce a special group of 
extracellular enzymes like laccases and peroxidases which entirely degrade lignin 
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compounds. Also, fungal laccases and peroxidases have enormous potentials in 
environmental detoxification and bioremediation of phenolic compounds. Using 
these enzymes, the white-rot fungi can convert wood, paints, pesticides, and plastics 
etc. into nutrients, and it has lots of industrial application. Laccases have been 
regarded as a “Green Tool,” because they require molecular oxygen (O2) as the only 
co-substrate for biocatalysis and not hydrogen peroxide (H2O2) (Surwase et  al. 
2016). In this chapter, the structure, functional properties, applications, and their 
recent advancements are being discussed.

6.2  Laccases

Laccases (EC 1.10.3.2; 1,4-benzenediol: oxygen oxidoreductases) are extracellular 
copper-containing monomeric glycoproteins, which come under multicopper oxi-
dase family (Solomon et al. 1996). It is otherwise called as polyphenol oxidase and 
blue multicopper oxidases. It oxidizes several aromatic and non-aromatic com-
pounds especially phenols as well as diamines and hexacyanoferrate by using 
molecular oxygen as an electron acceptor. It was first demonstrated in the sap of the 
Japanese lacquer tree Toxicodendron vernicifluum (formerly Rhus vernicifera); 
hence, it is named as laccase. Its molecular weight ranges from 50 kDa to 100 kDa 
(Galhaup and Haltrich 2001).

6.3  Sources of Laccases

Laccases have been generally present as extracellular and intracellular enzymes in 
several organisms ranging from microbes to higher plants. It was first discovered in 
plants by Yoshida in 1883. It is widely distributed in all plants, but not yet studied 
properly, because of the existence of several isoenzymes of laccase in lignified plant 
tissues (Gavnholt et  al. 2002) and difficulties of their detection and purification 
from crude plant extracts (Ranocha et  al. 1999), but it was well documented in 
fungi. Fungi are unique important class of eukaryotic microorganisms and synthe-
size unusual enzymes capable of performing chemically tricky reactions (Viswanath 
et al. 2008; Shraddha et al. 2011). Many fungal species are of great value and can 
remove toxic recalcitrant compounds in an environment-friendly manner. Laccases 
play an important role in bioremediation of toxic phenolic compounds (Singh et al. 
2011) and degradation of recalcitrant xenobiotic compounds. The presence of lac-
case enzyme in fungi was first reported by Laborde in 1897 (Mayer and Harel 
1979). Laccases are found in a wide range of fungi generally in white-rot fungi 
(Brijwani et al. 2010; Mayer and Staples 2002).

Generally, paper and pulp industry effluents contain a large amount of chlori-
nated phenolic compounds that is formed from incomplete breakdown of lignin 
during pulp bleaching process. Different groups of fungi can remove such lignin 
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and phenol from the effluent by producing extracellular enzymes like laccase, 
 manganese peroxidase, and lignin peroxidase. Several studies suggested that fila-
mentous fungi are the best choice than bacteria for the removal of soil pollutants 
because fungi can reach the pollutant efficiently than bacteria (Rubilar et al. 2008; 
Kour et al. 2019; Yadav et al. 2018). For example, laccase activity was detected in 
the cultures of fungi belonging to Basidiomycetes, Ascomycetes, and Deuteromycetes 
family (Table 6.1). The highest amount of laccase is produced by white-rot fungi 
(Leonowicz et al. 1997). Laccase enzyme has been reported in many fungal species 
such as Trichoderma reesei (Levasseur et al. 2010), Xylaria polymorpha (Nghi et al. 
2012), Lentinus tigrinus (Pozdnyakova et al. 2006), Pleurotus ostreatus (Zhao et al. 
2017), Cerrena unicolor (Kim et  al. 2002) T. versicolor (Minussi et  al. 2007; 
Rogalski et al. 1991), Trametes pubescens (Shleev et al. 2007) Melanocarpus albo-
myces (Kiiskinen et  al. 2002), Magnaporthe grisea (Iyer and Chattoo 2003), 
Aspergillus flavus PUF5 (Priyanka and Uma 2017), Trametes hirsuta (Tapia-Tussell 
et  al. 2011), Trametes ljubarskyi (Goh et  al. 2017), Aspergillus flavus (Kumar 
et  al. 2016), etc. Further, Abd El Monssef et  al. (2016) reported that the genus 
Alternaria, Aspergillus, Cladosporium, Penicillium, Rhizopus, and Trichoderma 
also produce laccases.

Table 6.1 Examples of laccase producing fungi

Class and division Source References

Agaricomycetes Trametes versicolor Bourbonnais and Paice (1992)
Agaricomycetes Phanerochaete chrysosporium 

BKM-F-1767
Srinivasan et al. (1995)

Agaricomycetes Pleurotus pulmonarius Marques de Souza et al. (2002)
Sordariomycetes 
(Ascomycota)

Chalara (syn. Thielaviopsis) 
paradoxa CH 32

Robles et al. (2002)

Agaricomycetes Trametes pubescens Galhaup and Haltrich (2001); 
Rodriguez Couto et al. (2004); 
Osma et al. (2007)

Agaricomycetes Phanerochaete chrysosporium 
ME-446

Kapich et al. 2004

Agaricomycetes Trametes hirsuta Rodríguez Couto et al. (2006)
Agaricomycetes Phanerochaete chrysosporium 

NCIM 1197
Gnanamania et al. (2006)

Agaricomycetes Pycnoporus sanguineus Vikineswary et al. (2006)
Agaricomycetes Ganoderma lucidum Murugesan et al. (2007)
Eurotiomycetes 
(Ascomycota)

Aspergillus carbonarius Sanjay et al. (2007)

Sordariomycetes 
(Ascomycota)

Trichoderma harzianum WL1 Sadhasivam et al. (2008)

Agaricomycetes
(Basidiomycota)

Pleurotus ostreatus, Trametes 
pubescens, Cerrena unicolor, and 
Trametes versicolor

Osma et al. (2011)

Sordariomycetes 
(Ascomycota)

Trichoderma spp. Kalra et al. (2013)
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Other than fungi and plants, laccase enzyme has been reported from bacteria 
(Santhanam et al. 2011) (Yadav et al. 2016, 2019a, b), lichens (Laufer et al. 2009) 
and sponges (Li et  al. 2015a). Moreover, polyphenol oxidases with laccase-like 
activity have been found in oysters (Luna-Acosta et al. 2010) and insect cuticles 
(Lang et al. 2012). Functions of laccase enzymes are based on their source and the 
stage of life of the organism producing them.

6.3.1  Structure of Laccases

Laccases are glycoproteins synthesized as monomer and containing four copper 
atoms (Fig.  6.1). After synthesis, laccase was modified with mannose which is 
accountable for about 10–50% of total weight of laccase. Carbohydrate may con-
tribute structural stability of laccases (Mayer and Staples 2002). Glycosylation of 
laccases confers copper retention, susceptibility to proteolytic degradation, thermal 
stability, and secretion. The copper atoms of laccase are divided into three types. 
They are (i) Type 1 (T1) (ii) Type 2 (T2) and (iii) Type 3 (T3). Laccase contains one 
T1 and T2 and two T3 copper atoms. The catalytic mechanism of the laccase starts 
with the donation of an electron to the substrate by the T1 copper site, followed by 
an internal electron transfer from the reduced T1 to the T2 and T3 copper sites. 
During oxidation of substrate, molecular oxygen is reduced to water (Jones and 
Solomon 2015). The reduction reaction takes place at trinuclear cluster which is 
formed by the association of T2 and T3 copper atoms (Fig. 6.1). Type 1 copper 
confers blue color to the enzyme because of maximum absorbance around at 600 nm 
which is the result of the covalent copper–cysteine bond (Matera et  al. 2008). 
However, in fungal laccases, the axial ligand is leucine or phenylalanine, which pos-
sibly provides the mechanism for the regulation of enzyme activity (Claus 2004; 
Kumar et al. 2003; Enguita et al. 2003; Garavaglia et al. 2004). Type 2 is a non-blue 
copper and showed weak absorption in the visible spectrum (Niku-Paavola et al. 
2004). Type 2 copper is coordinated by two histidine residues and is strategically 

Fig. 6.1 Catalytic mechanism of laccase
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positioned close to Type 3 copper. Type 3 copper is a binuclear center that showed 
maximum absorbance at 330 nm in its oxidized form (Matera et al. 2008; Decker 
and Terwilliger 2000). Laccase molecular weight was determined to be in the range 
of 60–390 kDa (Kalme et al. 2009). The pH values vary between pH 4.32–6.51 and 
pH  5.32–6.19 (Cázares-García et  al. 2013; Moreno et  al. 2017). The catalytic 
domain of laccase is moderately conserved in diverse fungal species, and the rest of 
the enzyme structure shows high diversity (Gochev and Krastanov 2007; Moreno 
et al. 2017). However, laccases with variants in the active site are also reported in 
Pleurotus ostreatus (Palmieri et al. 1997). In this fungus, enzymes lacking the maxi-
mum absorption around 600 nm are usually classified as “yellow” or “white” lac-
cases. Difference in the active center might confer these laccases have different 
functional properties of interest. Similar white laccase has also been reported in 
Deuteromycete fungus and Myrothecium verrucaria NF-05 (Zhao et  al. 2012). 
These white laccases contain only one Cu, one Fe and two Zn atoms (Palmieri et al. 
1997; Zhao et al. 2012), but laccase enzyme of Phellinus ribis has one manganese 
atom instead of T1 copper atom (Min et al. 2001). Many fungi have variable number 
of laccase genes and they are typically inducible.

6.3.2  Mechanism of Laccase Activity

Laccases have wide range of substrate-specific activity on ortho- and para-diphenol 
groups, as well as mono-, di-, and polyphenols, aminophenols, methoxyphenols, 
ascorbate, and aromatic amines with the linked four-electron reduction of oxygen 
to water (Bourbonnais and Paice 1990; Bourbonnais et al. 1995; Madhavi and Lele 
2009). Oxidation of aromatic compounds occurs with the concurrent reduction of 
one O2 molecule to H2O. After four cycles of single-electron oxidation of aromatic 
compounds, it leads to formation of free radicals and reduction of one molecule of 
oxygen into two molecules of H2O (Fig. 6.1). Initially, the free radical is unstable 
and converted to a quinone in a second enzyme-catalyzed step. Alternatively, oxi-
dized phenol-containing polymers may be partially degraded by nonenzymatic 
radical reactions. Partial degradation is due to the breaking of covalent bonds that 
join the monomer (Strong and Claus 2011). In the presence of small molecules, 
known as redox mediators, laccases improve their substrate specificity. Redox 
mediators are low molecular weight and small-sized molecules that are used as 
enhancer in the real electron transfer steps of enzymatic degradations process. It is 
a stable and reusable molecule. It increases the capability of an enzyme to react 
toward uncommon substrates (Majeau et al. 2010). The following mediators are 
frequently used for laccase activity. (1) 2,2′-Azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS), (2) 1-hydroxy-benzotriazole, (HBT) (3) 1-nitroso-2-naph-
thol-3,6-disulfonic acid (NNDS), (4) syringaldehyde, (5) 4-Acetylamino-TEMPO 
4-hydroxy-TEMPO, (6) violuric acid (VIO), and (7) p-coumaric acid (Majeau 
et al. 2010).
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6.3.3  Applications of Laccases

Laccases have several biological functions such as lignification of plant cell walls 
(O’Malley et  al. 1993), lignin biodegradation, detoxification of lignin (Baldrian 
2006), virulence factors (Williamson et al. 1998), and copper and iron homeostasis 
(Stoj and Kosman 2003). Further, laccases have potential applications in bioreme-
diation, paper pulp bleaching, finishing of textiles, biofuel cells, etc. Laccases 
exhibit transformation reactions like oxidation of functional groups to the hetero-
molecular coupling for production of new antibiotics derivatives or the catalysis of 
key steps in the synthesis of complex natural products (Xenakis et  al. 2016). 
However, fungal laccases are largely used for removal of phenols which present in 
wastewater (Pang et  al. 2016). The following are the significant areas of laccase 
applications.

6.3.3.1  Environmental Applications

Extensive use of chemicals in agriculture and industrialization leads to release of 
different persistent, hazardous, bioactive, and bioaccumulative chemicals to the 
environment that causes pollution in land and water. These toxic chemicals create 
adverse effects on both human and other flora and fauna of soil and aquatic environ-
ment. Naturally, phenol and its derivatives are ever-present pollutants that arrived as 
wastewater from the effluents of industrial activities, such as pulp, petrochemicals, 
coal refineries, pharmaceuticals, production of resins, paints, and textiles (Rastegari 
et al. 2019; Yadav et al. 2017). They are highly toxic to aquatic organisms, including 
fish and shellfishes. The toxic effects of phenol are based on its chemical complex-
ity and the range of free radical formation. It causes acute toxicity, with an effect of 
damaging DNA or enzymes inducing mutagenicity, carcinogenicity, and hemato-
toxic and hepatotoxic effects toward humans and other living organisms 
(Michałowicz and Duda 2007). Therefore, removal of phenol is essential to protect 
the environment and individual. Most of the conventional oxidation method (chemi-
cal method) removes the chemicals but has several drawbacks such as (i) use of 
hazardous chemicals for oxidation (ii) nonspecific, and (iii) undesirable side reac-
tions. In the present scenario, biological treatment methods (enzymatic oxidation) 
are most suitable and widely used due to specific and biodegradable catalysts and 
enzyme reactions are carried out in mild conditions (Rodríguez Couto and Toca 
Herrera 2006).

Laccases are capable of oxidizing, polymerizing, or transforming different xeno-
biotics including phenolic pesticides into less toxic molecules. Hence, it is a more 
apt enzyme in water (Majeau et al. 2010) and soil bioremediation. Laccase-based 
bioremediation has been proposed to remove toxins from textile, paper and pulp, 
food, distillery, pharmaceutical, printing, paint, and cosmetic industrial effluents. 
For the remediation, laccase could be used as (1) free enzyme, (2) immobilized 
enzyme, and (3) laccase containing cells to remove the pollutants from water 
(Mugdha and Usha 2012).
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6.3.3.1.1 Direct Use of Laccase Producing Fungi

The growing fungi are used for waste (harmful pollutants) treatment. In this method, 
the fungal cells can adapt in the pollutant containing environment, utilize the harm-
ful pollutants as carbon and energy requirements by synthesizing the specialized 
degradative enzyme, and digest or transform the pollutants to harmless. The intro-
duced organisms produced enzyme that co-metabolized the targeted contaminants 
(Mugdha and Usha 2012). White-rot fungus Trametes versicolor is able to remove 
humic acids from a real humic-rich industrial-treated wastewater of a food- 
processing plant (Mostafa Zahmatkesh et al. 2017).

6.3.3.1.2 Cell-Free Laccase Enzyme

Enzymes extracted from organisms are used to treat toxic pollutants as a pure form 
or crude extract. This method is advantageous, because of the following: (1) there is 
no need of acclimatization of source organisms to the toxic environment, (2) addi-
tional nutrients are not essential, (3) growth supportive environment is not required, 
(4) the growth rate of the source organism does not affect the amount of available 
enzyme to treat the effluent, (5) usage of cell-free enzyme makes it easier to stan-
dardize optimum treatment conditions, and (6) it is easy to handle and monitor the 
process (Karam and Nicell 1997). Crude enzyme extract is the least processed but 
contains active form of the enzyme. It is used to treat large-scale effluent treatment. 
Although usage of pure enzyme is highly expensive, crude enzyme preparation at 
larger volume should be used for industrial effluent treatment. In general, enzyme 
function is based on their conformation, under extreme conditions such as very high 
or low pH and temperature, high ionic strength, high concentrations of reactants, 
and presence of inhibitors; the structure of free enzyme may be modified and the 
enzyme becomes nonfunctional (Karam and Nicell 1997). Besides, use of free 
enzyme is hard to be taken from the residual reaction system for reuse (Wang et al. 
2008). Therefore, immobilized preparation of enzymes and the whole-cell biomass 
for repeated long-time usage have been developed.

6.3.3.1.3 Immobilized Laccase Enzyme

Immobilization of enzyme provides an increasing availability of enzyme to the sub-
strate with better turnover over a significant period of time. The practice of immo-
bilized enzymes in effluent treatment overcomes the cell-free enzyme because of 
the following reasons: (1) high stability, (2) easy to handle, (3) reusability, and (4) 
cost-effectiveness. Immobilization of laccase was done using different materials 
and used for bioremediation process (Table 6.2). Several immobilization techniques 
have been developed and adapted in enzyme immobilization for different applica-
tions. Theoretically, enzyme immobilizations are done by two basic methods: 
they are physical (entrapment, encapsulation, and cross-linking) and chemical 
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Table 6.2 Immobilization of laccase enzyme and their applications

Organisms 
name Support

Method of 
immobilization Applications References

Trametes 
versicolor

Porous glass beads Entrapment Dye decolorization Champagne 
and Ramsay 
(2010)

Trametes 
versicolor

Microfibers Encapsulation Dye decolorization Dai et al. 
(2010)

Aspergillus Green coconut fiber Adsorption Dye decolorization Cristovao et al. 
(2011)

Trametes 
versicolor

Carbon-based 
mesoporous 
magnetic 
composites

Adsorption Phenol removal Liu et al. 
(2012)

Trametes 
versicolor

Gold electrode Covalent bonding Biosensor for 
Phenolic 
compounds in 
industrial effluents

Sarika et al. 
(2014)

Coriolopsis 
gallica

Calcium alginate 
beads

Entrapment Remazol Brilliant 
Blue R, Reactive 
Black 5, and 
Bismarck Brown R

Daassi et al. 
(2014)

T. versicolor Nanostructured 
bacterial cellulose

Physical adsorption 
and cross-linking 
with glutaraldehyde

Biosensors and 
establishment of 
bioreactors

Chen et al. 
(2015)

Cyathus bulleri Polyvinyl alcohol Entrapment Decolorization of 
azo dye acid red 27

Chhabra et al. 
(2015)

Cercospora sp. 
SPF-6

Alginate Entrapment Dye decolorization Vikram et al. 
(2015)

Cyathus bulleri Polyvinyl alcohol Entrapment Acid red 27 Chhabra et al. 
(2015)

Trametes 
versicolor

ZnO/SiO2 
nano-composite

Adsorption Remazol Brilliant 
Blue B and Acid 
Blue 25

Li et al. 
(2015b)

Trametes 
versicolor

Poly(glycidyl 
methacrylate-co- 
ethylene glycol 
dimethacrylate)

Covalent bonding Bisphenol A Melo et al. 
(2017)

Trametes 
versicolor

Chitosan 
macrobeads

Covalent bonding Anthracene Azzurra 
Apriceno et al. 
(2017)

Trametes 
versicolor

Magnetic 
nanoparticles

Polymerization 4-chlorophenol Zhang et al. 
(2017)

Trichoderma 
harzianum 
strain HZN10

Sol–gel matrix Entrapment Dye decorization Zabin et al. 
(2017)

Cerrena sp Cross-linked 
enzyme aggregates

Cross-linking Malachite green Yang et al. 
(2017a)

Functionalized 
methacrylate–
acrylate 
microspheres

Covalent bonding Biosensor for 
Tartrazine

Mazlan et al. 
(2017)

(continued)
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(adsorption, covalent binding) interactions with enzyme-supportive matrix 
(Matijosyte et al. 2010) (Fig. 6.2).

 (i) Entrapment is defined as the preservation of enzymes in a porous solid matrix, 
such as polyacrylamide, collagen, alginate, or gelatin (Dayaram and Dasgupta 
2008; Lu et al. 2007; Niladevi and Prema 2008; Phetsom et al. 2009).

 (ii) In encapsulation, enzymes are protected in a semi-permeable polymer materi-
als such as polyethyleneimine, sol–gel silica matrix, SiO2, and poly(GMA-co- 
nBA) microspheres (Qiu and Huang 2010; Rochefort et al. 2008; Crestini et al. 
2010; Mazlan and Hanifah 2017).

 (iii) In the adsorption method, the enzyme immobilized onto a support is based on 
ionic and/or other weak forces of attraction. Adsorption is based on the pH and 
ionic strength of the medium and the hydrophobicity of the support (Xu et al. 
2009; Fang et al. 2009; Forde et al. 2010). Adsorbents like Mobil Composition 
of Matter (MCM), cyano-modified silica (CNS), and Santa Barbara Amorphous 
(SBA-15) (Forde et al. 2010) and ion-exchange resins such as dextran, agarose, 
and chitosan (Cordova et al. 2009; Çorman et al. 2010; Ibrahim et al. 2007) are 
used for laccase immobilization.

 (iv) Covalent attachment is widely used enzyme immobilization method in which 
the chemical groups on the support surface are activated and react with nucleo-
philic groups on the protein (Arroyo 1998; Brady and Jordaan 2009). For 
example, silica-based supports such as kaolinite or mesoporous silica nanopar-
ticles and GLU-activated silica nanoparticles (Champagne and Ramsay 2007; 
Liu et al. 2008; Salis et al. 2009), epoxy-activated resins such as Eupergit and 
Sepabeads (Berrio et  al. 2007; Russo et  al. 2008), Alumina and Granocel 
(Crestini et  al. 2010), and electrodes based on carbon, glass, gold, silver or 
graphite (Balland et al. 2008; Rahman et al. 2008; Szamocki et al. 2009) have 
been frequently used for laccase.

Fig. 6.2 Enzyme immobilization methods
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 (v) In cross-linked method, enzyme immobilization is possible with the use of 
bifunctional cross-linkers (Brady and Jordaan 2009). For example, dialde-
hydes, diiminoesthers, diisocyanates, and diamines activated by carbodiimide 
(Arroyo 1998) have been used.

6.3.3.2  Textile Effluent Treatment

Colors and dyes are commonly used in textile, paper, food, cosmetics, and pharma-
ceutical industries. There are above 1,00,000 different human-made synthetic dyes 
available on the market, and worldwide, its production is around 7,00,000 tons/year 
(Hao et al. 2000). Wastewater from textile industries carries 10% of the dye stuffs 
which has been a significant cause of environmental pollution. Most of the synthetic 
dyes are lethal to living organisms due to their toxic and carcinogenic properties. 
The removal of dyes from industrial wastewaters could be very important due to 
their toxicity and carcinogenicity. The structural complexity of dyes makes effluent 
treatment difficult by conventional physicochemical methods due to their high cost 
and low effectiveness. Laccases are promising tools for the detoxification of dyes 
(Table 6.3) because it has shown efficient decolorization of different industrial dyes 
at low concentrations (Rodriguez et al. 1999; Reyes et al. 1999) without generation 
of harmful aromatic amines (Chivukula and Renganathan 1995; Wong and Yu 1999).

Dye degradation ability of laccase depends on physiochemical parameters such 
as cell aging, concentration of dye, immobilized cells, etc. (He et al. 2004; Kalyani 
et  al. 2008). Laccase from Polyporus rubidus showed efficient decolorization of 
industrially important synthetic textile dyes in broad range of concentration without 
the use of redox mediators (Bayoumi et  al. 2014). Immobilized laccase of 
Paraconiothyrium variabile has pH and thermal stability and exhibited efficient 
decolorization of Acid Blue 25 and Acid Orange 7 (Mirzadeh et al. 2014). Complete 
decolorization of malachite green was achieved with Cerrena sp. laccase CLEAs 
(cross-linked enzyme aggregates) at 60 °C (Yang et al. 2017a). Trametes versicolor 
CBR43 can decolorize different types of dyes such as acid disperse and reactive 
textile dyes by producing laccase and Mn-dependent peroxidase (Yang et al. 2017b). 
Laccase enzyme from Cerrena unicolor strain GSM-01has been purified and identi-
fied that laccase is a monomeric protein of 63.2 kDa, their optimal pH and tempera-
ture is 2.6 and 45 °C, respectively and effectively decolorize bromothymol blue, 
evans blue, methyl orange, and malachite green (Wang et al. 2017).

6.3.3.3  Paper Industries

Large amount of phenolic compounds such as lignin and their derivatives contain-
ing effluent has been discharged from the paper industries. Commonly, chemical 
bleaching method is used to remove lignin. In this process, chlorine is used, but 
chlorine formed bond with lignin and produce toxic organochloro-complexes like 
chlorolignins, chlorophenols, chloroguiacols, and chloroaliphatics. Large volume 
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of dark colored wastewater is produced at the end of bleaching process. Dark colored, 
toxic wastewater of paper industry are highly hazardous and also create environ-
ment pollution. Physical and chemical methods such as ultrafiltration, ion exchange, 
lime precipitation and aerated lagoons, and activated sludge methods are used to 
treat wastewater, but they are ineffective and expensive. This triggers the use of 
microbial laccase enzymes which fulfills the whole requirement and delignification, 
separates wood into its constituent fibers and lessens the toxic wastewater forma-
tion. Laccase-mediated delignification was introduced in the 1900 and uses media-
tors to oxidize the phenolic compound, lignin.

The laccase enzyme itself can effectively break phenolic compound due to its 
high redox potential. The incorporation of mediator along with laccase increases the 
availability and dimension of the enzyme against non-aromatic ring-containing 
compounds. Several mediators ABTS, HBT, N-hydroxyacetanilide (NHA), and vio-
luric acid have been used in delignification process. Effective mediators commonly 

Table 6.3 Decolorization of various dyes by laccase

Organism name Dye name References

Ganoderma lucidum Ramazol Black B and Ramzol Orange 
16

Murugesan et al. 
(2009)

Trametes versicolor Orange G Casas et al. (2010)
Aspergillus ochraceus 
NCIM-1146

Methyl Orange Telke et al. (2010)

Paraconiothyrium variabile Bromophenol blue Vinoth Kumar 
et al. (2011)

Trametes versicolor Reactive Black 5 Bibi and Bhatti 
(2012)

Armillaria sp. F022 Reactive Black 5 Hadibarata et al. 
(2012)

Trametes trogii Acid Orange 51 Dalel Daassi et al. 
(2013)

Coprinopsis cinerea Methyl Orange Tian et al. (2014)
Aspergillus niger Basic fuchsin Rani et al. (2014)
Cerrena sp. circulans BWL1061 Malachite Green Yang et al. (2015)
Ganoderma sp. Direct Blue E Iyer et al. (2016)
Pleurotus ostreatus MTCC 142 Congo Red Das et al. (2016)
Paraconiothyrium variabile Acid Orange 67, Disperse Yellow 79, 

Basic Yellow 28, Basic Red 18, Direct 
Yellow 107, and Direct Black 166

Forootanfar Hamid 
et al. (2016)

Talaromyces funiculosum (M2F) Reactive Magenta HB Ankita Chatterjee 
et al. (2017)

Marasmiellus palmivorus Reactive blue 220 (RB)and Acid blue 
80 (AB)

Cantele Cantele 
et al. (2017)

Marasmius cladophyllus Remazol Brilliant Blue R, Orange G, 
and Congo red

Ngieng Ngui Sing 
et al. (2017)

6 Extracellular Fungal Peroxidases and Laccases for Waste Treatment: Recent…



164

possess N-OH functional group, and it should be biodegradable, specific, and 
economically feasible. Paper recycling reduces usage of source material and also 
cost. Laccase facilitated bleaching of old newsprint pulp with improved brightness 
by removing the lignin component (Hakala 2011; Xu et al. 2007, 2009). Combined 
action of laccase and hemicellulolytic enzyme exhibited efficient deinking and 
biobleaching of the pulp. The combination of xylanase and laccase is an effective 
tool for lessening the amount of lignin and related molecules from the pulp (Valls 
and Roncero 2009; Saxena and Chauhan 2016). Old newsprint is efficiently recy-
cled with high brightness and low effective residual ink concentration (ERIC) con-
tent through a combination of the physical methods like sonication and microwaving 
and enzymatic method (laccase and xylanase) (Virk et  al. 2013). Pure laccase 
enzyme from T. versicolor decolorized the paper and pulp mills effluent to a clear 
light-yellow solution (Karimi et al. 2010), and various structurally different indus-
trial dyes (Dhillon et al. 2012). The expression of delignifying enzymes only com-
menced complete glucose depletion (Girard et  al. 2013). B. adusta and P. 
chrysosporium have showed 100% delignification of industrial pulp and paper mill 
wastewater in 8–10 days, independent from pH control, with a significant reduction 
of total organic carbon (TOC) of the solution (Costa et al. 2017).

6.3.3.4  Bioremediation of PAHs

Polycyclic aromatic hydrocarbons (PAHs) are xenobiotic compounds and consist of 
a benzene ring arranged linearly, angularly or in clusters (Zeng et al. 2011; Li et al. 
2010; Yadav et al. 2018). Rapid industrialization and widespread use of pesticides 
for better agricultural output liberates large amount of PAHs, the main pollutant of 
soil, air, or aquatic environment. PAHs and their derivatives such as polychlorinated 
biphenyls (PCBs); benzene, toluene, ethylbenzene, and xylene (BTEX); polycyclic 
aromatic hydrocarbons (PAHs); trinitrotoluene (TNT); pentachlorophenol (PCP); 
and 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) are highly toxic for 
humans as well as carcinogenic to living beings. PAHs are less soluble in water and 
are resistant to biodegradation (Ihssen et al. 2015). Laccase enzyme may convert 
polycyclic aromatic hydrocarbons to their quinines and then carbon dioxide. 
Laccase converts acenaphthylene to 1, 2- acenapthalenedione and 1,8-napthelic 
acid when used along with mediator HBT (Madhavi and Lele 2009). Laccase- 
mediated removal of PAHs is an economically feasible, ecofriendly, and efficient 
bioremediation process. Polychlorinated biphenyls (PCB) are recalcitrant toxic sub-
stances, presently banned in most countries but used as pesticides and wood preser-
vatives. T. versicolor degraded PCP efficiently after the initial uptake by the mycelia 
(Pallerla and Chambers 1998). Laccase-mediated degradation rate of PCBs is 
inversely proportional to number of chlorine. The 4–6-chlorine substituted hydroxyl- 
PCB is degraded by laccase in the presence of the mediator 2,2,6,6- tetramethylpipe
ridine- N-oxy radical (Keum and Li 2004). Heterologously expressed Trametes san-
guineus laccase in Trichoderma atroviride efficiently removed phenolic compounds 
present in industrial wastewater, bisphenol A (an endocrine disruptor) from the 
culture medium, benzo[a]pyrene, and phenanthrene (Balcázar-López et al. 2016).
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Enzyme immobilized on mesoporous nanofibers that were prepared by Vinyl- 
modified poly (acrylic acid)/SiO2 nanofibrous membranes exhibited a better triclo-
san removal (Xu et  al. 2014). Laccase enzyme from Trametes versicolor and 
Myceliophthora thermophile could degrade the hormones and endocrine disrupting 
compounds (EDCs) (Dennis Becker et al. 2017). Phenolic compounds present in 
industrial wastewater and bisphenol A (an endocrine disruptor) from the culture 
medium was removed effectively by the heterologously expressed Trametes san-
guineus laccase in Trichoderma atroviride (Balcázar-López et al. 2016). Bjerkandera 
adusta has the ability to degrade aromatic xenobiotics (Sodaneath et al. 2017) and 
extractives (Kinnunen et al. 2017) have raised its biotechnological importance in 
wastewater treatments for lignin removal.

The immobilization of Trametes versicolor laccase on carbon-based mesoporous 
magnetic composites was done by an adsorbing laccase into bimodal carbon-based 
mesoporous magnetic composites. Adsorption effects of the support were respon-
sible for the quick removal rate in the first hour, and up to 78% and 84% of phenol 
and p-chlorophenol were removed in the end of the reaction, respectively, indicating 
that the magnetic bimodal mesoporous carbon is a promising carrier for both immo-
bilization of laccase and further application in phenol removal (Liu et al. 2012).

6.3.3.5  Biosensor for Detection of Pollutants

Researchers concentrated to device a system for deduction of phenolic compounds 
in the environment, food, and biomedical components by a user-friendly and cost- 
effective approach. Biosensors are suitable for monitoring contaminated area con-
tinuously with high specificity and sensitivity. Among the various biosensors, 
enzymatic biosensor has increased eventually, due to its substrate-specific catalytic 
activities. There are more number of biosensors available to detect phenolic com-
pounds, in particular, horseradish peroxidase (Jaafar et al. 2006), and tyrosinase. 
However, those enzyme biosensors have some disadvantages due to their lower 
structural stability and sensitive to reaction products (Rodríguez-Delgadoa et  al. 
2015). On the other hand, laccase shows a strong claimant as a biosensor, having 
selective advantages over other enzymes including stability, catalytic efficacy (elec-
tron transfer reaction), and oxidized phenol and related compounds in the presence 
of O2 without any cofactors (Munteanu et al. 1998).

Laccase can react with wide range of phenolic compounds; therefore, it has been 
used in biosensor technology to detect the presence of various phenolic compounds, 
oxygen, aromatic amines, morphine, codeine, catecholamines, and plant flavonoids 
even at low concentration (Leite et al. 2003; Jarosz-Wilkołazka et al. 2004; Ferry 
and Leech 2005). The smaller and more efficient biosensors are developed through 
controlled deposition and specific adsorption of laccase on different types of sur-
faces, at the micro and nanometer scale. There are two types of laccase biosensors: 
the first type monitors spectrum variation (at an absorbance of 600  nm) of the 
enzyme, and the second type monitors voltage changes from a modified oxygen 
electrode (Madhavi and Lele 2009). Immobilized alkali-tolerant laccase on nitrocel-
lulose membrane can react with different substrates (syringaldazine, catechol, 

6 Extracellular Fungal Peroxidases and Laccases for Waste Treatment: Recent…



166

catechin, and L- DOPA) at their low concentrations (Singh et al. 2010). Oktem et al. 
(2012) immobilized laccase enzyme on Whatman filter paper No. 1 with coloring 
agent MBTH (3-methyl-2-benzothiazolinone) that is used for the identification of 
oxidation products of phenols by developing maroon-green colors.

6.4  Peroxidase

Peroxidases (EC 1.11.1.7) are glycoproteins with a hematin compound as cofactor. 
This heme protein has iron (III) protoporphyrin IX as the prosthetic group. They 
catalyze hydrogen peroxide (H2O2)-dependent oxidization of the different organic 
and inorganic compounds. Its molecular weights range between 30 and 150 kDa 
(Bansal and Kanwar 2013). It is widely distributed in all living organisms like 
bacteria, fungi, algae, plants, and animals. Peroxidases have been applied to reduce 
pollution in environment. They have the potential to oxidize phenols, cresols, and 
chlorinated phenols and synthetic textile azo dyes in water. Phenolic compounds are 
degraded by lignin peroxides (LiPs) in the presence of H2O2 (co-substrate) and vera-
tryl alcohol (mediator). In this degradation, H2O2 is reduced to H2O by accepting an 
electron from LiP (which can oxidize itself). The oxidized LiP returns to its native 
form (reduced) by gaining an electron from veratryl alcohol thereby veratryl 
aldehyde is formed. Veratryl aldehyde gets reduced back to veratryl alcohol by 
receiving an electron from the substrate (Karigar and Rao 2011).

6.4.1  Peroxidases Classification

Peroxidases are classified into two types based on the presence or absence of heme 
group. They are (1) heme peroxidases and (2) non-heme peroxidases (Passardi et al. 
2007a, b). Most of the known peroxidase are heme-containing peroxidases (>80%). 
Small proportion of the non-heme peroxidases such as thiol peroxidase, alkylhydro-
peroxidase, and NADH peroxidase existed. Heme peroxidases have further been 
classified into two superfamilies. They are (i) peroxidase-cyclooxygenase super-
family (PCOXS) and (ii) peroxidase-catalase superfamily (PCATS) (Passardi et al. 
2007a, b; Zamocky and Obinger 2010) (Fig. 6.3).

6.4.1.1  Peroxidase-Cyclooxygenase Superfamily (PCOXS)

Animal peroxidases like myeloperoxidase (MPO), eosinophil peroxidase (EPO), 
lactoperoxidase (LPO), and thyroid peroxidase (TPO) come under this peroxidase- 
cyclooxygenase superfamily. They revealed major role in the innate immunity, 
defense responses etc. (Dick et al. 2008; Soderhall 1999). In this superfamily per-
oxidase, the heme (prosthetic) group is covalently joined with the apoprotein 
(Pandey et al. 2017).
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6.4.1.2  The Peroxidase–Catalase Superfamily (PCATS)

Non-animal (plant, fungal, and bacterial) heme peroxidases come under this super-
family. At first, based on the sources of peroxidase, this superfamily peroxidase was 
called as the plant, fungal and bacterial heme peroxidase. But, the name of this 
superfamily was altered as peroxidase–catalase superfamily after identification of 
new cnidarians peroxidase. The non-animal peroxidases are further divided into 
three classes. They are Class I, II, and III peroxidases (Pandey et al. 2017).

Class-I: They are intracellular peroxidases. It includes cytochrome c peroxidase 
(CCP1), ascorbate peroxidases and catalase peroxidase.

Class-II: They are extracellular fungal peroxidases, like the lignin (LiP) and man-
ganese (MnP) peroxidase. Both are secreted by white-rot fungi and involved in 
the degradation of lignin. Versatile peroxidases (VP; EC 1.11.1.16) displayed a 
hybrid molecular structure between LiPs and MnPs (Pérez-Boada et al. 2005). 
This group of peroxidases plays a major role in lignin biodegradation.

Class-III: They are extracellular plant peroxidases. This includes horseradish per-
oxidases (HRP), peanut peroxidase (PNP), soybean peroxidase (SBP), etc. They 
play a major role in plant physiological processes such as cell wall metabolism, 
lignification, suberization, auxins metabolism, wound healing, etc. Class II and 
Class III peroxidases contain a N-terminal signal peptides, disulfide bridges, gly-
cans, and calcium in their structure (Pandey et al. 2017).

Fig. 6.3 Classification of peroxidases
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6.4.1.3  Fungal Peroxidase (Class II Peroxidase)

6.4.1.3.1 Peroxidase Structure

Fungal peroxidases have a high-spin protoporphyrin IX (heme b) prosthetic group. 
It is located in-between the proximal (C-terminal) and distal (N-terminal) domains. 
The Fe group of this peroxidase is pentacoordinated form which is associated with 
the four pyrrole nitrogens in the imidazole group of the proximal histidine. The 
active site containing Fe coordination of peroxidases is highly conserved. At the 
active site, distal histidine assisted by an asparagine residue participate transfer of 
electrons from H2O to the heme. Redox potentials of the enzyme are determined by 
the length of Fe-imidazolic nitrogen (Fe–Ne2) bond. A higher basicity of the imid-
azole group gives a higher redox potential, except few (Choinowski et al. 1999). In 
general, the change of basicity is dependent on the electron extraction from the 
imidazolic nitrogen to the surrounding (proximal histidine) (Sinclair et al. 1992). 
This may differ in peroxidases such as LiP and MnP. Active site residues such as 
Ser177 and Asp201 weaken the basicity charges of imidazolic nitrogen bond.

The peroxidases enzymes have four disulfide bonds; it was identified in LiP, 
ARP, and T. versicolor peroxidases (Kunishima et al. 1994; Limongi et al. 1995; 
Poulos et al. 1993), but MnP have fifth SH linkage extracellular peroxidases con-
taining both N- and O-glycans; however, the glycosylation may be different in 
 various peroxidases, which determines its isozymes (Kjalke et al. 1992). In addi-
tion, extracellular peroxidases contain two highly conserved, Ca2+-binding sites 
which have been located at the proximal and distal domains (Kunishima et al. 1994; 
Poulos et al. 1993). Presence of Ca2+-binding sites gives structural stability of the 
extracellular form of peroxidases (Banci 1997), and it gives more strength to the 
active site. Being extracellular enzymes, fungal peroxidases are synthesized with an 
N-terminal signal peptide. The LiP has eight Cys residues, all forming disulfide 
bridges. The enzyme molecule consists of eight major and eight minor α-helices 
and a limited β structure in the proximal domain.

6.4.1.3.2 Mechanisms of Peroxidase Activity

Peroxidase catalyzes the oxidation of several of organic and inorganic compounds 
by using hydrogen peroxide which acts as the electron acceptor. The native form of 
enzyme (E) is oxidized to an active intermediate enzymatic form termed compound 
I (EI) with concurrent reduction of hydrogen peroxide (H2O2) to water molecule. 
Compound I oxidizes a phenol molecule to phenol-free radical and becomes com-
pound II (EII). Compound II oxidizes another one phenol molecule to phenol free 
radical and returns to its original state (E) (Fig. 6.4). The formed free radical polym-
erizes and forms insoluble polyaromatic products which are precipitated by solid–
liquid operations (Nicell 1994).
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6.4.1.4  Lignin Peroxidase

Lignin peroxidase (EC 1.11.1.14) comes under oxidoreductases family (Higuchi 
2004; Martínez et al. 2005; Hammel and Cullen 2008). It was first observed in 
the basidiomycete fungi Phanerochaete chrysosporium by Burdsall in 1983 (Glenn 
et al. 1983; Tien and Kirk 1988). LiP is an extracellular H2O2-dependent heme pro-
tein (Gold and Alic 1993; Haglund 1999; Piontek et al. 2001; Erden et al. 2009). 
LiP enzyme contains 343–345 amino acids preceded by a 27-or 28-residue leader 
sequence (Gold and Alic 1993). LiP has less substrate specificity, reacting with dif-
ferent phenolic compounds. LiP is capable of oxidizing a variety of reducing sub-
strates including polymeric substrates. It can oxidize methoxylated aromatic rings 
without a free phenolic group and produce cation radicals that undergo ring open-
ing, demethylation, and phenol dimerization (Haglund 1999). LiP needs H2O2 to 
initiate the reaction, but not mediators to decompose high redox potential com-
pounds. It is used for various industrial application and bioremediation process 
because of their wide substrate specificity and high redox potentials (Erden et al. 
2009). Phenolic compounds are degraded by lignin peroxidase (LiP) in the presence 
of H2O2 (co-substrate) and veratryl alcohol (mediator). In this degradation, H2O2 is 
reduced to H2O by accepting an electron from the LiP (which can oxidize itself). 
The oxidized LiP returns to its native form (reduced) by gaining an electron from 
veratryl alcohol; thus veratryl aldehyde is formed. Veratryl aldehyde gets reduced 
back to veratryl alcohol by accepting an electron from the substrate (Fig.  6.5). 
White-rot fungi secreted lignin and manganese peroxidases degrade lignin. Lignin- 
degrading peroxidases are identified in a number of basidiomycetous fungi: 
Phanerochaete chrysosporium, Trametes versicolor, Pleurotus spp., Phlebia radi-
ata, Coprinus spp., Bjerkandera adusta, Ceriporiopsis subvermispora, Dichomitus 

Fig. 6.4 Steps involved in peroxidase catalytic activity
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squalens and Arthromyces ramosus, Cylindrobasidium evolvens, and Daedaleopsis 
septentrionalis (Kimura et al. 1990; Pelaez et al. 1995; Varela et al. 2000; Kinnunen 
et al. 2016).

6.4.1.5  Manganese Peroxidases

Manganese peroxidases (EC 1.11.1.13) also belong to oxidoreductase family (Higuchi 
2004; Martínez et al. 2005; Hammel and Cullen 2008). It is a lignin- degrading enzyme 
and was discovered in the fungus Phanerochaete chrysosporium following the dis-
covery of LiP (Glenn and Gold 1985). MnP is present in all white- rot fungi than lignin 
peroxidase (Hammel and Cullen 2008). MnPs are present mostly in white-rot fungi, 
such as Phanerochaete chrysosporium, Ganoderma sp., Pleurotus sp., Trametes sp., 
and Irpex lacteus (Manavalan et al. 2015; Janusz et al. 2013), Phyllosticta, Aspergillus, 
Fusarium, and Penicillium (Pant and Adholeya 2007), Hyphodontia sp., Pleurotus 
pulmonarius and Trametes ochracea (Kinnunen et al. 2016).

The MnP enzyme is made up of 330–370 amino acids and has a leader peptide 
that consists of 21–29 amino acids (Li et al. 1999). It is a glycosylated heme protein; 
molecular weight is ranging from 38 to 62.5  kDa, and averaging at 45  kDa 
(Hofrichter 2002). Compared to LiP, MnP redox potential is low and oxidizes the 
substances with the use H2O2 which act as oxidant. Manganese acts as a mediator in 
the MnP catalytic cycle. Manganese peroxidase (MnP) activity involves the oxida-
tion of Mn2+ ions to Mn3+. The Mn3+ is highly reactive and chelated with organic 
molecules such as oxalate and malates which are produced by the fungus (Kishi 
et al. 1994; Galkin et al. 1998; Mäkelä et al. 2002). Chelated Mn3+ oxidizes phenolic 
structures to phenoxyl radicals (Hofrichter 2002).

6.4.1.6  Versatile Peroxidase

Versatile peroxidase (VP) (EC 1.11.1.16) is a heme-containing ligninolytic peroxi-
dase and, as the name suggests, has the catalytic activities of both MnP and LiP and 
is able to oxidize Mn2+ similar of MnP and high redox potential non-phenolic 

Fig. 6.5 Catalytic cycle of a LiP-mediator oxidation system. VA-OH veratryl alcohol, VA-CHO 
veratryl aldehyde
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compounds like LiP. It was first identified in the white-rot fungus Pleurotus eryngii 
(Martinez et al. 1996). It was first purified from the fungi Bjerkandera (Moreira 
et al. 2007) and can transform lignin even in the absence of an external mediator. It 
is found in Physisporinus vitreus (Kong et  al. 2017), Phlebia radiata, P. pulmo-
narius, and Galerina marginata (Kinnunen et al. 2016). VPs can oxidize wide range 
of substrates with low and high redox potentials. Generally, VPs have hybrid molec-
ular structures of LiP and MnP and provide multiple binding sites for the substrates 
(Camarero et al. 1999). VPs are superior than other peroxidases, because VPs effi-
ciently oxidize phenolic compounds without the use of veratryl alcohol or Mn(II) 
that are needed for LiPs and MnPs activity, respectively (Ruiz-Duenas et al. 2009). 
Because of the catalytic versatility, VPs have been involved in the different biotech-
nological applications. VP can oxidize not only Mn (II), but also veratryl alcohol, 
phenolic, non-phenolic and high molecular weight compounds, including dyes in 
Mn-independent reactions (Asgher et al. 2008; Wong 2009). Like MnP, commercial 
applications of VPs are limited, because of their unavailability in large quantities 
which can be overcome by the use of DNA recombinant technology (Ruiz-Duenas 
et al. 2009).

6.4.2  Applications of Fungal Peroxidases

Ligninolytic extracellular enzymes especially lignin peroxidase and manganese 
peroxidase have shown capability toward the degradation of various xenobiotics 
including dyes, chlorophenols, polycyclic aromatic hydrocarbons (PAHs), organo-
phosphorus compounds, and phenols (Wesenberg et al. 2003), improve the digest-
ibility of wood or straw for animal feed (Valmaseda et al. 1991), and reduce costs 
for the pulp and paper industry (Martinez et al. 1994) (Table 6.4). The other applica-
tions of LiP are delignification of feedstock for ethanol production, textile effluent 
treatment and dye decolorization, coal depolymerization, treatment of hyperpig-
mentation, and skin-lightening through melanin oxidation. The lignin peroxidase–
graphite electrode biosensor systems have been established for recognition of 
recalcitrant aromatic compounds because of their effective bioelectrocatalysis 
(Ferapontova et al. 2006). The applications of peroxidases on various industries are 
given below.

6.4.2.1  Textile Industry

Dye is a synthetic colored substance and is used by various industries to color paper, 
cotton, polyester, nylon, silk, leather, plastics, hair, etc. to which the dye binds and 
becomes an integral part. When unbound synthetic dyes are released into water, 
they cause pollution and cause skin allergy, cancer, and chromosomal aberrations 
for human beings and also affect plants that reduce photosynthetic activity by 
reflecting sunlight and affect germination rate of plants. Fungi can rapidly become 
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accustomed to varying nutritional sources because they can produce a significant 
number of intra- and extracellular enzymes that are needed to degrade several com-
plex organic pollutants such as dye stuffs, polyaromatic compounds, organic waste, 
and steroids (Gadd 2001; Humnabadkar et al. 2008). The fungal system can be uti-
lized in the treatment of colored and metallic textile effluents (Ezeronye and 
Okerentugba 1999) because they can produce nonspecific enzymes such as lignin 
peroxidase (LiP), manganese peroxidase (MnP) and laccase (Christian et al. 2005) 
that can mineralize dyes. Direct participation of fungal ligninolytic enzymes is nec-
essary for the mineralization of dyes (Park et al. 2007). Versatile peroxidases (VPs) 
have shown effective direct oxidation of high redox potential dyes Reactive Black 
5. Reactive Black 5 is oxidized by LiP only in the presence of veratryl alcohol, 
redox mediators (Heinfling et al. 1998). It can oxidize phenols, including hydroqui-
nones (Gomez-Toribio et  al. 2001). Fungi produce enzymes extracellularly that 
confer decolorization ability of dyes. Lignin peroxidase of P. prosopidis degrades 
scarlet RR dye (Fernandes et al. 2008). LiP degrades dye by the following steps 

Table 6.4 Applications of LiP and MnP enzymes

Organism
Enzyme 
type Compound removal References

Phanerochaete 
chrysosporium

LiP Anisyl alcohol (Monomethoxylated 
Aromatic Compounds)

Valli et al. 
(1990)

Trametes versicolor MnP Pulp Bleaching (oxidation of phenolic 
lignin substructures)

Paice et al. 
(1993)

Phanerochaete 
chrysosporium

MnP & 
LiP

Bentazon (3-isopropyl-1H-2,1,3 
benzothiadiazin-4(3H)-one 2,3-dioxide) 
and MCPA (4-chloro-2-
methylphenoxyacetic acid)

Castillo (1997)

Phanerochaete 
chrysosporium

LiP Procion Brilliant Blue HGR, Ranocid Fast 
Blue, Acid Red 119, and Navidol Fast 
Black MSRL

Verma and 
Madamwar 
(2002)

Fungal strain L-25 MnP Azo, diazo, and anthraquinone dyes Kariminia 
et al. (2007)

P. chrysosporium 
Burds BKM-F-1767

LiP Catechol derivative Cohen et al. 
(2009)

Phanerochaete 
chrysosporium

MnP Orange II Sharma et al. 
(2009)

P. chrysosporium 
RP78

LiP & 
MnP

Azo dyes Ghasemi et al. 
(2010)

Anthracophyllum 
discolor

MnP Phenanthrene, anthracene, fluoranthene, 
pyrene and benzo(a)pyrene

Acevedo et al. 
(2011)

P. floridensis LiP Coracryl brilliant blue Chander and 
Kaur (2015)

Phanerochaete 
chrysosporium

LiP Paper and pulp industry effluent treatment 
(Color and lignin removal)

Singh et al. 
(2016)

Phanerochaete 
chrysosporium

MnP Congo Red Bosco et al. 
(2017)
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initial asymmetric cleavage, demethylation and denitrification and form 
N-ethyl-1  l3-chlorinin-2-amine which is further degraded by laccase. Pleurotus 
ostreatus can decolorize Remazol Brilliant Blue by producing peroxidase extracel-
lularly (Shin et al. 1997).

Ganoderma lucidum, a white-rot basidiomycete, could be capable of the decol-
orization of four dyes (Drimaren Blue CLBR, Drimaren Yellow X-8GN, Drimaren 
Red K-4B and Disperse Navy Blue HGL) and degradation of phenol with the aid of 
manganese peroxidase. Manganese peroxidase (MnP) from Ganoderma lucidum 
was expressed in Pichia pastoris and recombinant MnP can also degrade four textile 
dyes and phenol (Xu et al. 2017). Similarly, Pleurotus species have been reported 
for the production of lignin peroxidases, manganese peroxidases, and laccases 
enzymes, which play a vital role in the biodegradation and bioremediation (Pandey 
et al. 2012) of textile effluents. White-rot fungi, Pleurotus flabellatus, P. ostreatus, 
and P. citrinopileatus, are used effectively and efficiently for dye decolorization and 
bioremediation of recalcitrant substances (Singh and Srivastava 2016).

MnP of Pleurotus pulmonarius could be able to decolorize the anthraquinonic 
dye Remazol Brilliant Blue R and the azo dye Congo Red. The enzyme is strictly 
dependent on Mn2+ for oxidizing phenolic and non-phenolic compounds. MnP of 
Pleurotus pulmonarius can be used for textile dye effluent treatment (da Silva et al. 
2017). Agrawal et al. (2018) reported that Ganoderma lucidum will be an effective 
phenanthrene and pyrene degrader by producing ligninolytic enzymes (laccase, 
lignin peroxidase, and manganese peroxidase).

6.4.2.2  Paper and Pulp Industry

Humic substances (HS) are formed from microbial breakdown of dead plant matter, 
mainly from lignin. HS tend to be polydisperse polymers of aromatic and aliphatic 
units that have been synthesized from the polymerization of intermediate lignin 
degradation products (Abdel-Hamid et al. 2013), and the polymer is physically and 
chemically structurally complex (Niladevi 2009). HS are existing in soil, marine, 
and groundwater environments and wastewater from industrial and municipal water 
treatment (Abdel-Hamid et al. 2013). In the pulp and paper industry, HS are pro-
duced from the chemical treatment of wood and removed using membrane filters 
during wastewater treatment, but they form biopolymer and produce blockage of 
filter leads to decrease of filtration flux rates (Sutzkover-Gutman et al. 2010). The 
enzymes are applied to remove the HS in ecofriendly method with low cost 
(Cavicchioli et al. 2011). Peroxidases catalyze H2O2-dependent oxidation of aro-
matic polymers, including HS, by generating radicals which can break aromatic 
rings, ether and carbon–carbon bonds, and by causing demethoxylation (Wong 
2009; Abdel-Hamid et al. 2013). Versatile peroxidase oxidizes complex polymeric 
humic substances (HS) derived from lignin (humic and fulvic acids) and industrial 
wastes (Siddiqui et al. 2014).
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6.4.2.3  Bioremediation of Toxic Agrochemicals

The herbicide atrazine was converted to the less toxic compounds desethyl atrazine 
and hydroxyatrazine (N-dealkylated and hydroxylated metabolites, respectively), 
by the fungus Phanerochaete chrysosporium. Atrazine removal corresponded to the 
production of LiP and MnP from the fungus (Mougin et al. 1994). LiP and MnP of 
white-rot fungus P. chrysosporium can degrade the herbicide and isoproturon in 
in vitro and in vivo conditions (Del Pilar et al. 2001). MnPs from P. chrysosporium 
have the ability to break bentazon in the presence of mediators like Mn(II) and 
Tween 80. The herbicide glyphosate was oxidized by MnP that is produced by 
Nematoloma frowardii (Pizzul et al. 2009). This information evidently indicates the 
prospective application of lignin-degrading enzymes in the treatment of herbicides 
contaminated soil and water. Polycyclic aromatic hydrocarbons (PAHs) such as 
anthracene and pyrene are highly hydrophobic, but they are oxidized by MnP and 
LiP of wood rotting fungus Nematoloma frowardii. In the presence of low molecu-
lar mediator substances, the substrate range and the oxidation rate of LiP, MnP is 
increased (Günther et  al. 1998). When endocrine-disrupting chemicals and trace 
organic contaminants like pharmaceuticals and personal care products are released 
into water, it leads to bioaccumulation, acute, and chronic toxicity to aquatic living 
organisms and also causes severe effect on human health. Podoscypha elegans 
degrades lignin and organic pollutant by producing nonspecific extracellular ligni-
nolytic enzymes such as laccase, lignin peroxidase (LiP) and manganese peroxidase 
(MnP). It can be used for the removal of pollutants from the environment (Nikki 
Agrawal et al. 2017). MnP from Pleurotus ostreatus could detoxify aflatoxin B1 
(AFB1) depending on the enzyme concentration and incubation period (Yehia 
Ramy Sayed 2014). Non-lignolytic filamentous fungus Penicillium sp. CHY-2 can 
degrade different aliphatic and aromatic hydrocarbons. Penicillium sp. CHY-2 effi-
ciently degrades decane than octane, dodecane, ethylbenzene, butylbenzene, naph-
thalene, acenaphthene, and benzo[a]pyrene by producing MnP enzyme. The relative 
molecular mass of MnP enzyme from Penicillium sp. CHY-2 is estimated to be 
36 kDa, and the native form of MnP is a monomer (Govarthanan et al. 2017).

6.5  Conclusion and Future Prospects

Fungal laccases and peroxidases are a promising biocatalyst, used as a better alter-
native for conventional chemical processes in the treatment of lignin degradation, 
wastewater treatment, decolorization, and detoxification of textile dyes and bio-
sensor preparation to detect the environmental pollutant. Their substrate range is 
fairly wide and immobilization technology increases enzyme stability and to 
achieve its reuse.
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