
437© Springer Nature Switzerland AG 2019 
A. N. Yadav et al. (eds.), Recent Advancement in White Biotechnology Through 
Fungi, Fungal Biology, https://doi.org/10.1007/978-3-030-25506-0_18

Chapter 18
Fungal Phytoremediation of Heavy Metal-
Contaminated Resources: Current 
Scenario and Future Prospects
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18.1  �Introduction

Phytoremediation is the technique in which living plants are used for remedia-
tion of the contaminated soils, water, sediment, and ecosystem (Cunningham and 
Ow 1996). The utilization of fungus for remediation of the contaminated 

A. Kumar 
Host Plant Section, Central Muga Eri Research & Training Institute, Central Silk Board, 
Lahdoigarh, Jorhat, Assam, India

K. P. Arunkumar 
Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, India 

A. K. Chaturvedi 
Water Management (Agriculture) Division, Centre for Water Resources Development and 
Management, Kozhikode, Kerala, India 

K. Yadav 
Department of Botany, Dayalbagh Educational Institute, Agra, Uttar Pradesh, India 

S. K. Malyan 
Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization 
(ARO), The Volcani Center, Rishon LeZion, Israel 

P. Raja 
ICAR-IISWC, Regional Centre, Ooty, Tamil Nadu, India 

R. Kumar · S. A. Khan 
Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural 
Research Institute, New Delhi, India 

K. K. Yadav 
Institute of Environment and Development Studies, Bundelkhand University,  
Jhansi, Uttar Pradesh, India 

K. L. Rana · D. Kour · N. Yadav · A. N. Yadav (*) 
Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib,  
Sirmour, Himachal Pradesh, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25506-0_18&domain=pdf
https://doi.org/10.1007/978-3-030-25506-0_18


438

resources is fungal phytoremediation. Fungi survive about 5300 years (Gams and 
Stalpers 1994). Armillaria bulbosa is the longest and largest living fungal spe-
cies in the world (Smith et al. 1992). Fungi play vital role in all ecosystems and 
are capable of regulating the nutrient as well as energy flow through their myce-
lial networks, and hence, they are considered as natural and true ecosystem engi-
neers (Lawton and Jones 1995). The ecological and biochemical capacity of 
fungi to degrade environmental chemicals and decrease the risk associated with 
metals and metalloids through chemical modification or its bioavailability makes 
them as a potent bioremediation agent. However, to date, the ecological demands 
and ecophysiological strengths of fungi in bioremediation have not been poten-
tially explored. Unlike bacteria, the fungal phytoremediation does not require 
absolute water phase as fungus can grow in the air-water interface. However, the 
water phase acts as a carrier for nutrient transport for hydrophobic organic 
contaminants.

Interaction of fungi with metals includes mobilization and immobilization in 
the mycosphere, sorption to cell walls, and uptake into fungal cell. Thereafter, 
chemical transformation, translocation, and metabolization along with reactions 
of pollutants on fungal enzymes such as extracellular oxidoreductases/cell-bound 
enzymes allow fungi to act on various metal pollutants (Harms et  al. 2011; 
Prakash 2017). Hence, the role of filamentous fungi becomes important where 
translocation of essential factors necessitates for the transformation or detoxifica-
tion of environmental chemicals. Conversely, requirement of fungal degradation 
is needed for pollutant classes, i.e., dioxins, 2, 4, 6-trinitrotoluene, synthetic 
drugs, or endocrine-disrupting chemicals found in medium as these are ineffi-
ciently degraded by bacteria (Harms et al. 2011; Macellaro et al. 2014; Mnif et al. 
2011). Fungi can be used  in the  treatment of contaminated  soil surface with 
organic/metal contaminants, water streams with trace organic contaminants and 
removal of metals from water stream, VOCs from air, and organic pollutants using 
isolated extracellular enzymes instead of whole fungi (Nguyen 2015; Pinedo-
Rivilla et al. 2009).

Conversely, an increasing trend toward energy- and cost-efficient passive phy-
toremediation methods for the reclamation of contaminated natural resources, 
i.e., land, water, and air is the need of hour. The low degree of mechanical inter-
vention in natural attenuation of natural resources especially soils favors the 
importance of filamentous fungi in sustainable fungal phytoremediation (Harms 
et al. 2011). Another aspect involves arbuscular mycorrhizal (AM) fungal asso-
ciation with plants, as these are integral, functioning parts in plant roots and 
enhance plant growth even under highly contaminated soils with heavy metals. 
AM fungi play an important role in metal tolerance and accumulation of heavy 
metals in the plants root growing on heavy metal-contaminated soils. Hence, iso-
lation of stress-adapted indigenous AM fungi could be targeted as a potential 
biotechnological tool for inoculation of plants for degraded ecosystems. Major 
role of AM fungi attributed to the secretion of glomalin (a glycoprotein), stabiliz-
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ing the aluminum in soil and in the roots of Gmelina plants, has been reported 
(Dudhane et al. 2012). There are several fungal species such as A. niger, A. pul-
lulans, C. resinae, F. trogii, G. lucidum, Penicillium sp. (Loukidou et al. 2003; 
Say et al. 2003), R. arrhizus, and T. versicolor, which efficiently recover heavy 
metals from the contaminated environment. Heavy metal bioaccumulation poten-
tial of A. versicolor was observed 6 for 50 mg/L Cr (VI) and Ni (II) and 5 for Cu 
(II) ions with the 99.89, 30.05, and 29.06% removal yield, respectively at optimal 
pH by Taştan et al. (2010). Kumar Ramasamy et al. (2011) found that Aspergillus 
fumigates is very suitable for removal of Pb (II) ions from the electronic waste 
aqueous solution (containing Pb 100 mg/L) through batch sorption with adsorp-
tion capacity of 85.41%. El Zeftawy and Mulligan (2011) found that micellar-
enhanced ultrafiltration MEUF could treat phosphorous-rich heavy metal 
wastewater with a transmembrane pressure of 69  kPa, at 25  °C and pH  6.9. 
Häyrynen et  al. (2012) observed that pressure and cross-flow velocity signifi-
cantly affects the flux of Cd and Cu in MEUF purification methods, while P was 
not retained (Landaburu-Aguirre et  al. 2012). Thus, potential application of 
MEUF for heavy metal decontamination of nutrient-rich wastewaters has been 
recently justified (Mani and Kumar 2014).

18.2  �Potential Sources of Heavy Metal Contamination 
and Associated Risks

18.2.1  �Anthropogenic

Based on the relative higher densities (3.5–7.0 g/cm3), atomic weights, or atomic 
numbers (>20), metals are termed as heavy metals. Some heavy metals are essen-
tial nutrients (Fe, Co, Zn), relatively harmless (Ru, Ag, and Id), but potentially can 
be toxic in larger amounts or certain forms. Conversely, heavy metals, such as Cd, 
Hg, and Pb, are highly poisonous. The common source of heavy metals is antisep-
tics, fertilizers, sedimentation, cars, golf clubs, mobile phones, plastics, self-
cleaning ovens, solar panels, and particle accelerators (Gupta et al. 2018; Singh 
et  al. 2013;  Hübner et  al. 2010; Singh et  al. 2017; Yadav et  al. 2018b, c) 
(Table  18.1). The potential sources are atmospheric deposition; automobile 
exhausts, metal industries, mine spoils, river dredging and urban refuse disposal, 
pyrometallurgical industries, and fossil fuel combustion are also the main sources 
of heavy metals (Lottermoser 2010a, b; Matta et  al. 2018; Prasad 2001) 
(Table 18.1). Industries such as microelectronics, plastics, refinery textiles, wood 
preservatives, agrochemicals (fertilizers and pesticides), sugar-based industries 
and waste disposal sewage sludge, landfill leachate, and fly ash disposal are also 
some of the chief sources of the heavy metals (Bhatia et al. 2015; Gupta et al. 
2018; Singh et al. 2013a; Kumar et al. 2016; Singh and Kumar 2006; Yadav et al. 
2018b, c) (Fig. 18.1).

18  Fungal Phytoremediation of Heavy Metal-Contaminated Resources: Current…
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18.2.2  �Water Resources

Water contamination due to heavy metals is a known threat and has been attributed 
to anthropogenic sources involving untreated domestic and industrial wastewater 
discharges, chemical spills, and agricultural residues (Malyan et  al. 2014; 

Table 18.1  Sources of heavy metals and respective anthropogenic activities (adapted and modified 
from Yadav et al. 2017)

Heavy metals Anthropogenic activities

Antimony 
(Sb)

Alloys, Britannia metal, electrical applications, flame-proof pigments and glass, 
pewter, medicines for parasitic diseases, queen’s metal, semiconductors

Arsenic (As) Geogenic processes, fuel, smelting operations, thermal power plants
Beryllium 
(Be)

Alloy, electrical insulators in power transistors, moderator, nuclear power plants

Cadmium 
(Cd)

e-waste, incinerations and fuel combustion, paint sludge, waste batteries, Zn 
smelting

Chromium 
(Cr)

Mining, industrial coolants, chromium salt manufacturing, leather tanning

Cobalt (Co) Ceramics, glass industry, metallurgy (in super alloys), paints
Copper (Cu) Mining, electroplating, smelting
Iron (Fe) Alloys, cast iron, construction, machine manufacturing, steel, transportation, 

wrought iron
Lead (Pb) Alloys, antiknock agents, cable sheathings, ceramics, glassware, lead-acid 

batteries, plastic, ordinance, pigments, solder, tetramethyl lead, pipes
Manganese 
(Mn)

Alloys, antiknock agents, batteries, catalysts, coating welding rods, 
ferromanganese steels production, fungicides, pigments, dryers, wood 
preservatives

Mercury(Hg) Catalysts, dental fillings, fungicides, electrodes, electrical and thermal 
measuring apparatus, metals extraction by amalgamation, mobile cathode 
production, mercury vapor lamps, pharmaceuticals, oscillators, scientific 
instruments, solders, rectifiers, X-ray tubes

Molybdenum 
(Mo)

Alloys, cast irons, catalysts, corrosion inhibitors, dyes, electroplating, flame 
retardants, lubricants, nonferrous metals, smoke

Nickel (Ni) Alloys, arc-welding, catalysts, computer components, electroplating, Ni/Cd 
batteries, paint pigments and ceramics, rods, surgical and dental instruments, 
ceramic molds, and glass containers

Selenium (Se) Dandruff treatment glass industry, inorganic pigments, lubricants, photoelectric 
and photo cells, rubber production, semiconductors, stainless steel, thermo-
elements, and xerographic materials

Stannum (Sn) Brasses, bronzes, catalysts, dental amalgam, pesticides, pewter, stabilizers, 
tin-plated steel

Titanium (Ti) Ti as alloy in aeronautics nucleation, catalyst, deep temperature thermometers, 
electronics industry, glass ceramics, infrared optical systems, low melting 
glasses, semiconductors, supraconductors, UV-filtering agents, white pigments

Vanadium (V) Alloys, catalyst, steel production
Zinc (Zn) Electroplating, smelting
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Tchounwou et al. 2012). The outcome is poor water quality, degradation, and water 
borne-human health risks even at lower doses of heavy metals (Kumar et al. 2014; 
Micó et al. 2006; Wongsasuluk et al. 2014). Major heavy metals such as lead, mer-
cury, chromium, cadmium, copper, and aluminum for water contaminations are 
originated through anthropogenic activates and natural incidents like seepage from 
rocks, volcanoes, and forest fires. Over a time period, heavy metals enter in the 
food chain through water, and there chronic effects could be manifested for many 
years and may exert several threats such as mental disorders, pain in joints, gastric 
disorders, and even cancer. Human population living near industries are more sus-
ceptible to heavy metal toxicity. Along with that, pregnant women and malnutri-
tioned children are more vulnerable to heavy metal toxicity. Freshwater bodies are 
heavily affected by pathogens from untreated wastewater and heavy metals from 
mining and industrial release (Caravanos et  al. 2016). It has been reported that 
more than 80% of the world’s wastewater is released to the environment without 
treatment, which is the major cause of nearly 58% diarrheal disease (major cause 
of child mortality) (Connor et al. 2017). Hence, it is of utmost importance in the 
coming future to mitigate this global threat of water toxicity with proper remedia-
tion measure, and techniques are required for the treatment of water. In that con-
text, fungal phytoremediation serves as an environment-friendly, pocket-friendly, 
and reliable technique.

Fig. 18.1  Overview of sources of heavy metal pollution and its agroecological consequences. 
(Source: Srivastava et al. (2017))

18  Fungal Phytoremediation of Heavy Metal-Contaminated Resources: Current…
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18.3  �Role of Heavy Metals in Living Beings

Heavy metals such as chromium (glucose metabolism), cobalt (metabolism), copper 
and iron (oxygen and electron transport), zinc (hydroxylation reactions) (Nieboer 
and Richardson 1978), manganese and vanadium (enzyme regulation), nickel (cell 
growth), and selenium (antioxidant and hormone production) (Emsley 2011) are 
important for certain biological processes. Molybdenum (catalysis of redox reac-
tions), cadmium (in marine diatoms), tin (growth in a few species), and tungsten 
(metabolic processes of archaea and bacteria) may be required for growth of differ-
ent species (Emsley 2011). A deficiency and excess of any of these above-discussed 
heavy metals may impart heavy metal poisoning of living beings (Venugopal and 
Luckey 1978). Hence, excess amount of heavy metals could dysfunction various 
physiological and biological effects in the human beings which have been elabo-
rated in next sections.

18.4  �Possible Impacts of Heavy Metal Contaminations

18.4.1  �On Humans

Non-essential metals can escape control mechanisms such as binding to specified 
cell constituents, cellular processes malfunctioning, compartmentalization, homeo-
stasis, oxidative deterioration, and transport, and therefore, they have toxic and fur-
ther lethal effects (Gupta et  al. 2018). The important health symptoms of heavy 
metal toxicity in human are central nervous system disorders, dementia in adults, 
emotional instability, insomnia, intellectual disability in children, kidney diseases, 
liver diseases, depression, vision disturbances, and increased morbidity and mortal-
ity rate (Jain et al. 2015; Yadav et al. 2018b, c). The metal toxicity depends on the 
generation of oxidative stress (increased reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) production; depletion of intracellular antioxidant stores and 
free radical scavengers) (Jan et al. 2015). Heavy metals toxicity due to occupational 
exposure mainly responsible for multiple organ systems and toxicity levels mainly 
depends on the form and type of the heavy element, on route and duration of the 
exposure, and, to a greater extent, on a person’s individual susceptibility (Jan et al. 
2015) (Fig. 18.2).

18.4.2  �On Plants

Heavy metal contamination in soil and water resources affects growth and yield per-
formance as well as nutritional quality of plants to a great extent. For the plants 
which are grown in close vicinity to the contaminated soil and water or at the con-
taminated site, metals cause physiological dysfunctioning and biochemical 
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alterations (Sharma et al. 2012a; 2012b). In case of vegetables requiring high mois-
ture percentage, the use of heavy metal-contaminated irrigation water is one of the 
major causes for high metal toxicity in plants. Some of the heavy metals at a lower 
concentration are required for optimum performance of plants; however, excess 
amount may cause toxicity, e.g., chromium (Yadav et al. 2018b, c). Common fea-
tures pertaining to metal toxicity are reduced biomass reduction, leaf chlorosis, and 
root growth and seed germination inhibition (Ghani 2011). Cr toxicity considerably 
affects the physio-biochemical processes in barley, cauliflower, citrullus maize, 
wheat, and vegetables (Ghani 2011). ROS signalling and oxidative damage affect 
enzymes like catalase; cytochrome oxidase and peroxidase with iron as their compo-
nent are affected by chromium toxicity. The catalase activity stimulated with an 
excess supply of chromium-inducing toxicity has been studied, concerning nitrate 
reductase activity, photosynthesis, photosynthetic pigments, and protein content in 
algae (Nath et al. 2008). Pb and Cd also affect the gas exchange attributes, ROS sys-
tem, cause chlorophyll deterioration, and ultimately the overall performance of major 
agricultural crop worldwide (Anjum et al. 2015; Mobin and Khan 2007; Pinho and 
Ladeiro 2012; Zhu et al. 2007). The microbes are ubiquitous in nature and have been 
reported from diverse sources including extreme habitats (Yadav et al. 2015a, b, c, 
2017b) and as plant microbiomes (Kour et al. 2019b; Yadav 2018; Yadav et al. 2016). 
These microbes have potential applications in agriculture, industry, pharmaceutical, 
and environment (Kour et al. 2019a; Yadav et al. 2017a, 2018a, 2019a, b).

Fig. 18.2  Trophic transfer of toxic HMs from soil to plants to humans and organism’s food to 
humans and their toxicity. (Adapted with permission from Saxena et al. (2019))

18  Fungal Phytoremediation of Heavy Metal-Contaminated Resources: Current…
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18.5  �Phytoremediation of Contaminated Soils/Water 
Resources

In general, phytoremediation is the process of bioremediation using plant species 
called hyperaccumulators to reduce the toxic contaminants in the environment. This 
is a novel advanced technology, considered as eco-friendly having lesser investment 
cost. Current scenario explains the feasibility and accountability of this technique. 
Many plant species are being used as hyperaccumulators, and new species are being 
explored (Ali et  al. 2013). Eventually, phytoremediation is an interdisciplinary 
branch that requires knowledge for soil composition, soil microbiology and envi-
ronment engineering, plant physiological processes, and in recent development use 
of lower plant groups as a sustainable system for the bioremediations of toxic heavy 
metals (Pisani et al. 2011). Some of the species of the plants used in phytoremedia-
tion are Robinia pseudoacacia and Sesbania drummondii for Pb, Stanleya pinnata 
for Se, etc. (Yang et al. 2016).

18.6  �Fungal Phytoremediation

As its name explains, fungal phytoremediation or mycoremediation is a form of 
bioremediation where the degradative abilities of fungi are utilized to remove or 
neutralize the harmful contaminants present in soil and water. It is a relatively new 
form of bioremediation where its use only spans a few decades, beginning as early 
as 1966 (Matsumura and Boush 1966), but it is known or being practiced to a lesser 
extent. Malathion (an insecticide and neurotoxin) breakdown was successfully done 
using Trichoderma viride and Pseudomonas (Matsumura and Boush 1966). There 
are several mushroom species identified till date to remove the heavy metals from 
the contaminated resources. The important species are Galerina vittiformis (Cu, Cd, 
Cr, Pb, and Zn), Hypholoma capnoides (Ti, Sr, and Mn), and Marasmius oreades 
(bismuth and titanium). The other important fungal species which are having high 
fungal phytoremediation potentials are Agaricus bisporus, Lentinus squarrosulus, 
Phanerochaete chrysosporium, Pleurotus ostreatus, Pleurotus tuber-regium, P. 
ostreatus, P. pulmonarius, and Trametes versicolor (Adenipekun and Lawal 2012; 
D’Annibale et al. 2005).

In this chapter, the sources of different heavy metals (HMs) with adverse effects 
in major countries on human health along with the permissible limits of HMs has 
been highlighted to have the understanding on the current scenario of fungal 
phytoremediation works (Table 18.2). Similarly, the different groups of fungus hav-
ing remediation potential for the most potent heavy metals have been highlighted in 
Table  18.3. Further, the categorical classification of different fungus and their 
importance in particular metal have been worked out with extensive literature sur-
vey in order to target potential fungal phytoremediation techniques for the metal 
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Table 18.3  Categorical classification of fungal species targeting metal remediates for fungal 
phytoremediation

Species Metals remediate References

Agaricus bisporus Ni, Cu, Pb, Mn, Cd, 
Zn, Hg, Fe

Nagy et al. (2014)

Agaricus bitorquis Cu, Zn, Fe, Cd, Pb, Ni, Lamrood and Ralegankar 
(2013)

Alternaria alternata Cd, Cr, Cu, Ni Seshikala and Charya (2012)
Armillaria mellea Ni, Cu, Pb, Mn, Cd, Zn Ita et al. (2008)
Ascochyta betae Cr Seshikala and Charya (2012)
Aspergillus fumigatus Cu, Cd, Ni, Co, Pb Rao et al. (2005)
Aspergillus flavus Zn, Cu, Ni, Pb Thippeswamy et al. (2012a)
Aspergillus foetidus Cr Prasenjit and Sumathi (2005)
Aspergillus fumigates Pb Kumar Ramasamy et al. (2011)
Aspergillus niger Cd, Pb, Zn, Cu, Ni, Cr, Pal et al. (2010)
Aspergillus ochraceus Cr Seshikala and Charya (2012)
Aspergillus oryzae Cr Nasseri et al. (2002)
Aspergillus terreus Pb, Cu, Ni, Cr Seshikala and Charya (2012)
Aspergillus versicolor Cr, Ni, Cu Taştan et al. (2010)
Aspergillus versicolor Pb Çabuk et al. (2005)
Candida tropicalis Zn Akhtar et al. (2008)
Candida utilis Cr Pattanapipitpaisal et al. (2001)
Circinella sp. Ni Alpat et al. (2010)
Cladonia rangiformis (lichen) Pb Ekmekyapar et al. (2012)
Cladosporium resinae Cu Gadd and de Rome (1988)
Cunninghamella echinulata Pb, Ni, Zn Shouaib et al. (2011)
Curvularia lunata Cu, Cr, Cd Seshikala and Charya (2012)
Drechslera rostrata Cr Seshikala and Charya (2012)
Fusarium oxysporum Cr Amatussalam et al. (2011)
Fusarium solani Cr, Zn, Ni Sen and Dastidar (2011)
Ganoderma lucidum Cu Muraleedharan et al. (1995)
Ganoderma lucidum, Penicillium sp. Ar Loukidou et al. (2003)
Gliocladium sp. Cu Tahir (2012)
Lactarius piperatus Cd Nagy et al. (2014)
Lentinus edodes Cd, Pb, Cr Tu and Huang (2005)
Metarhizium anisopliae Pb Çabuk et al. (2005)
Mucor hiemalis Cd, Cu Srivastava and Hasan (2011)
Mucor rouxii Pb, Cd, Ni, Zn Majumdar et al. (2010)
Mucor sp. Cu Tahir (2012)
Neurospora crassa Pb, Cu Kiran et al. (2005)
Penicillium canescens Cr Say et al. (2003)
Penicillium canescens As, Pb, Cd, Hg Say et al. (2003)
Penicillium chrysogenum Cu, Ni, U, Cr, Th, Zn, 

Cd, Pb
Tan and Cheng (2003)

(continued)
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Table 18.3  (continued)

Species Metals remediate References

Penicillium cyclopium Cu Ianis et al. (2006)
Penicillium decumbens Cd, Ni, Cr Levinskaite (2001)
Penicillium digitatum Cd, Cu, Pb Galun et al. (1987)
Penicillium notatum Cr Seshikala and Charya (2012)
Penicillium purpurogenum Cr Say et al. (2003)
Penicillium verrucosum Pb Çabuk et al. (2005)
Phanerochaete chrysosporium Cu, Ni, Cd, Pb, Zn, 

Mn, Fe
Mamun et al. (2011)

Pleurotus florida Cu, Zn, Ni, Pb Prasad et al. (2013)
Pleurotus floridianus Cu, Zn, Pb, Cd, Fe, Ni Lamrood and Ralegankar 

(2013)
Pleurotus ostreatus Pb, Ni, Cu, Zn, Cu, Cr, 

Mn
Arbanah et al. (2012)

Pleurotus sajorcaju Pb, Cd, Cu, Hg, Zn, Fe Arıca et al. (2003)
Pleurotus sapidus Ni, Cu, Pb, Cd, Mn, Zn Ita et al. (2008)
Polyporus frondosus Ni, Cu, Pb, Cd, Mn, Zn Ita et al. (2008)
Polyporus sulphureus Ni, Cu, Pb, Cd, Mn, Zn Ita et al. (2008)
Pyrenochaeta cajani Cr Seshikala and Charya (2012)
Rhizoctonia solani Cr Seshikala and Charya (2012)
Rhizopus arrhizus Ni, Zn, Cd, Pb Fourest and Roux (1992)
Rhizopus arrhizus Pb, Cr, Cd, Cu, Zn, Ni Prakasham et al. (1999)
Rhizopus cohnii Cd Luo and Xiao (2010)
Rhizopus nigricans Cr, Pb, Zn Bai and Abraham (2001)
Rhizopus sp. Cu, Cd Tahir (2012)
Saccharomyces cerevisiae Cd, Ni, Pb, Cr, Zn, Cu Thippeswamy et al. (2012b)
Serpula himantioides As Adeyemi (2009)
Species of Aspergillus, Mucor, 
Penicillium, and Rhizopus

Cd, Cu, Fe Fulekar et al. (2012)

Trichosporon cutaneum Cr Bajgai et al. (2012)
Volvariella diplasia Cu, Cd, Pb, Ni Lamrood and Ralegankar 

(2013)
Volvariella volvacea Cu, Zn, Pb, Cd, Ni, Fe Lamrood and Ralegankar 

(2013)

Sources: Adapted and modified from Archana and Jaitly (2015)

contamination in soil. In addition to that for the mechanistic understanding on 
growth conditions, enzyme production, type of compound degradation has been 
explored (Table 18.4). The bioconversion efficiency of wastes by some fungal species 
has been reported worldwide (Table 18.5).
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Table 18.4  Some commonly used fungal species, for mechanistic understanding on growth 
conditions, enzyme production, type of compound degradation, and key references

Fungal species
Growth condition 
required Enzymes produced Compound degraded Reference

Phanerochaete 
chrysosporium

Lignin peroxidases 
and manganese 
peroxidases

Xenobiotic 
compounds

Paszczynski 
and Crawford 
(1995)

Aspergillus 
flavus

Grows best in 
cereals nuts 
legumes

Laccase Removing 
surfactants and dyes

Ghosh and 
Ghosh (2018)

Bjerkandera 
adusta

Commonly grows 
on dead wood

Lignin peroxidases Xenobiotic 
compounds

Rhodes (2014)

Fusarium 
oxysporum

Grows in desert, 
temperate, and 
tropical, soils of 
tundra

Endoglucanase Degrades silver Danesh et al. 
(2013)

Rhizopus 
arrhizus

Arises from 
nodes where 
rhizoids are borne

Lipases Heavy metals like 
Ni, Zn, Cd, Pb
Also remediated 
uranium- and 
thorium-affected soil

Fourest and 
Roux (1992)

Table 18.5  Bioconversion of waste by fungal species

Fungal species
Bioconversion of 
waste Remarks References

Pleurotus 
citrinopileatus

Handmade paper and 
cardboard industrial 
waste

Successfully cultivated. 
Basidiocarps possessed good 
nutrient content and no 
genotoxicity

Kulshreshtha et al. 
(2013)

Aspergillus niger Waste office paper to 
gluconic acid

Used turbine blade reactor 
and production increased to 
four times in the presence of 
oxygen than air

Ikeda et al. (2006)

Lentinus edodes Biodecoloration Decoloring reactive dye Vinciguerra et al. 
(1995)

Beauveria bassiana Production of 
chitinase enzyme

Utilized prawn chitinous 
waste

Suresh and 
Chandrasekaran 
(1998)

Phlebia radiata Production of ethanol Successfully produced 
biocompound and biofuels at 
low cost

Mäkinen et al. 
(2018)

Aspergillus flavus Production of laccase 
enzyme

Potential candidate for the 
production of lactase, used in 
bioremediation and bleaching 
of dyes, etc.

Ghosh and Ghosh 
(2018)

Monascus purpureus 
and Penicillium 
purpurogenum

Production of 
biobased pigments

Successfully produced by 
semisolid fermentation and 
submerged fermentation 
technique

Kantifedaki et al. 
(2018)
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18.6.1  �Mechanistic Approach of Fungal Phytoremediation

In fungal phytoremediation, mechanism of fungal partner is very important to 
understand. Fungal phytoremediation has got several mechanistic pathways for bio-
remediation process. In general, fungus increases the ability of roots to absorb more 
heavy metals. Its mechanism could be devised as (i) avoidance and (ii) sequestration 
mechanisms. Avoidance ameliorates the metal toxicity though decreasing the con-
centration of metal by biosorption, precipitation, and uptake or efflux. Conversely, 
sequestration involves the formation of compounds for intracellular chelation (−) 
and further dilution in plant tissues due to plant growth, exclusion from uptake 
through precipitation, and chelation in the rhizosphere (Danesh et al. 2013). Both of 
these mechanisms may play part or even could counteract. Overall, the reduction in 
absorption owing to retention and immobilization takes part in fungal structures or 
mycorrhizal roots. The activation of specific/nonspecific transporters and pores play 
the part in the plasma membrane in plants and fungi, chelation in the cytosol and the 
sequestration into the vacuoles of plants as well as in fungal cells. Further, transpor-
tation and exportation occur through the fungal hyphae, involving both active and 
passive transportation into the mycorrhizae (Fig. 18.3).

Fungal phytoremediation is proven to be efficient, where the abilities of hyperac-
cumulators diminished. One of the limitations of hyperaccumulators is to accumulate 

Fig. 18.3  Mechanisms involved in remediation of HM-contaminated soil by HMT-PGP microbes-
plant interaction. (Sources: Mishra et al. (2017))
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less concentration of contaminants due to their small biomass while fungi can accumu-
late more due to their some molecular mechanisms. Hence, intervening the interaction 
of hyperaccumulator plant with fungi and other legume plant and herbs could help us 
to use it as a potent strategy for phytoremediation (Yang et al. 2016). Therefore, further 
exercise is required for explaining the molecular mechanisms underlying.

18.6.2  �Factors Influencing the Fungal Phytoremediation

Several factors influencing the fungal phytoremediation include species of plant and 
fungi, their association strength, plant-soil interaction, physical and chemical proper-
ties of soil, and biophysical aspects such as temperature, pH, salinity, soil microbes, 
and metal characteristics (Fig. 18.4).

18.6.2.1  �Temperature

The fungi are having their different temperature range for growth based on different 
habitat, such as mesophilic (5–35  °C), psychrophilic (below °C), thermophilic 
(above 40 °C), etc. With the change in the temperature, the bioavailability of the 
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Fig. 18.4  Relationships among the factors affecting phytoremediation efficiency. (Adapted with 
permission from Saxena et al. (2019))
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heavy metals is also changed. An increase in soil temperature tends to speed up the 
concentration of metals in the soil due to increase rate of organic matter degrada-
tion. It was observed that high temperature is favorable for the absorption of heavy 
metals. However, the temperature also affects the growth of fungi. So, fungi with 
high temperature tolerance will be beneficial for the bioremediation process (Yadav 
et  al. 2018b, c). Fe and Mn are mobile in alternating in dry and wet conditions 
(Boisselet 2012).

18.6.2.2  �pH

pH is an important parameter which controls the availability of heavy metals to get 
remediated. Heavy metals are present in a dissolved state if the pH of the solution is 
at 2–3. However, the bioavailability, dissolution, and precipitation of each metal 
have its own intrinsic capacity along with the pH range.

18.6.2.3  �Redox Potential

The redox potential affects the state of oxidation of the metals, as different forms 
show different behaviors in solubility. Anaerobic conditions in deeper parts of the 
soil for oxidoreductive reactions of microorganisms can accelerate the heavy metal 
degradation. Redox potential along with pH affects the fungal-phyto interactions 
with the soil components by altering the sorption capacity and influencing stability 
of complexes.

18.6.2.4  �Heavy Metals Bound with Hydrocarbon

Some of the heavy metals are present in the bound form of the other compounds 
such as polycyclic aromatic hydrocarbons (PAH). The remediation of such metals 
can be achieved only after degradation of the host compound. Some fungal species 
such as Agaricus bisporus, Pleurotus ostreatus, and Ganoderma lucidum are 
observed to degrade the hydrocarbons in petroleum. Pleurotus ostreatus is benefi-
cial in degrading the PAH (García-Delgado et al. 2015).

18.6.2.5  �Other Growth Requirements

Apart from the temperature, other factors such as moisture percentage, sugar and 
other organic materials, oxygen, amino acids, vitamins, fatty acids, etc. are also 
important for fungal growth. The change in these requirements can also enhance/
limit the fungal phytoremediation potential.
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18.6.2.6  �Fungal Species

Different fungal species are having different capacity to remediate the heavy met-
als from the soil and water based on their internal genetic constitutes and external 
growth and environmental factors. To check the any new/existing species reme-
diation potential, the arsenic test (preliminary assessment) will serve as good 
choice. Later on, the heavy metals-based potential check can be made and com-
pared with the existing data. However, some of the fungal species can serve as a 
bioindicator of particular heavy metals. In this case, these species serve as the 
reference species for the remediation potential. For example, Lycoperdon perla-
tum may be employed as a bioindicator of heavy metals and selenium in soil pol-
lution (Quinche 1990).

Filamentous fungi are known to possess higher adsorption capacities for heavy 
metal removal (Singh and Gauba 2014). Trichoderma and Mortierella species iso-
lated from the soil and Aspergillus and Penicillium species isolated from marine 
and terrestrial environments, respectively, have the high ability to remediate con-
taminated environment (Thenmozhi et al. 2013). Arbuscular mycorrhizal fungus 
Glomus mosseae formed a symbiotic associate of P. vittata L. and possessed sub-
stantial resistance to arsenic toxicity by increasing the plant biomass, and this 
mycorrhiza can enhance the arsenic sink. Mycorrhiza can be a potential tool for 
fungal phytoremediation by choosing the native species of fungi/host and altera-
tion in the association by changing any of the fungi/host or controlling factors or 
inoculation of the new fungal strains. This can be achieved through re-vegetation 
on the contaminated sites such as mine areas.

18.7  �Precaution Prerequisite

Some prerequisite precautions are needed for successful achievement of fungal phy-
toremediation which involves selection of correct fungal species for targeted metal 
contamination for developing a screening protocol (Matsubara et al. 2006). Among 
these precautions, major points have been prescribed in general which should be 
considered. These involve as follows:

•	 The catabolic activity and capacity of organisms involved to transform the target 
compound(s) and bring the concentrations to levels that meet regulatory 
standards

•	 The rate of bioremediation
•	 The possible production of toxic by-products at dangerous levels during the 

remediation process
•	 Adaptability of the process to site conditions (environmental and 

anthropogenic)
•	 Economic viability of the process
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18.8  �Conclusion and Future Prospects

As explained above, fungal phytoremediation is a very potent technology for sus-
tainable bioremediation of contaminated soils and water. In general, it is still in 
infancy in laboratory conditions and greenhouse, which limits the outcome to the 
actual field condition pertaining to multiple factors. Hence, the assessment of the 
efficiency rate of fungal phytoremediation must be tested in field condition in order 
to commercialize this green technology by evaluating the different plant for targeted 
heavy metal. Similarly, there are few lags in this eco-friendly remediation technol-
ogy such as to increase the growth rate of plants, increase the biomass of such plants 
for maximum absorption of heavy metals, and take a look on possible hazards on 
food chain. Field experiments should be devised to explore the hyperaccumulators 
from where these metals can be harvested easily and feasible techniques to harvest 
these metals without exerting a negative impact on environment. Also, the key to 
mycoremediation is determining the right fungal species to target a specific pollut-
ant. Desirable traits should be identified from the hyperaccumulator and fungi 
genome. Such gene can be selected by the conventional techniques or new technolo-
gies of hybridization such as protoplast fusion. Identification of genes coding for 
different toxicants from different hyperaccumulators and their transformation in 
same plant can develop SUPERBUG plant for phytoremediation. Besides the sev-
eral constraints and limitations, fungal phytoremediation appears to be the most 
potent, eco-friendly, economical, and environmentally attractive option of bioreme-
diation in heavy metal-contaminated soils and water resources. Many fungal species 
can grow under various contaminated conditions, thus enabling remediation in the 
contaminated environment that may not be suitable for other organisms. Based on 
our review of the subject and key questions raised on the concerned topic, we do not 
conclude that it could solve the issues of metal or hydrocarbon contamination com-
pletely. Conversely, a synergistic approach involving proactive policy designing in 
the field of fungal phytoremediation ranging from lab-based desirable trait based 
targeted metal contaminations with a particular fungal species, after testing it in 
green houses it has a potential to be replicated in the field environment for the future 
safety of soil, plant, water resources and rising human population prone to future 
heavy metal contaminations.
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