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Chapter 17
Impact of Arbuscular Mycorrhizal Fungi 
(AMF) in Global Sustainable 
Environments

Sanjeev Kumar and Joginder Singh

17.1  �Introduction

The arbuscular mycorrhizal (AM) association is a symbiosis between soil-borne fungi 
with more than 80% of the terrestrial land plants. Colonization of AM fungi with host 
roots resulted in increased growth and development of plants. This association further 
improved nutrient uptake and increased protection against soil-borne pathogenic fun-
gus (Smith and Read 1997; St-Arnaud and Vujanovic 2007). Arbuscular mycorrhizal 
fungi are important components of soil microbiota and form mutual interactions with 
other microorganisms of rhizospheric soil (Bowen and Rovira 1999; Mathur et  al. 
2011; Yadav et al. 2019a). These interactions are mainly confined to the mycorrhizo-
sphere region of plant that leads to changes in the physical and chemical structures of 
the soil. Furthermore, associations change in root exudation pattern (composition and 
quantity) and fungal exudates, and mycorrhizal formation can affect the microbial 
population present in rhizosphere. This also affects the colonization pattern by soil 
microorganisms, and it is known as mycorrhizal effect (Gryndler 2000). 
Mycorrhizosphere is known as a zone which influences the mycorrhiza (fungus roots) 
in the soil (Oswald and Ferchau 1968). Moreover, the mycorrhizosphere consists of 
two components as shown in Fig. 17.1. One is a thin layer of soil that surrounds the 
root, known as rhizosphere. The other is a zone of AM hypha–soil interaction 
(Marschner 1995) called hydrosphere. Hydrospheric zone consists of AM soil myce-
lium, and this is not affected by plant roots. Therefore, mycorrhizosphere region affects 
soil fertility and quality. Current application of chemical fertilizers and pesticides with 
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continuous husbandry of single crop may affect the community composition pattern of 
AM fungi in different soil types.

Describing the diversity of AM communities at sites becomes, therefore, an 
important step in determining the effect of different agricultural practices. Mycorrhizal 
communities are site-specific, and each species can be affected in several ways by 
different agricultural management practices. Agricultural practices such as tillage, 
fertilization, and crop rotation affect the structure of AMF communities. There are a 
number of reports that have described AM community composition in differently 
managed ecosystems, as briefly shown in Table 17.1. In recent years, organic farming 
practices have gained importance in many industrialized countries for the conserva-
tion of natural resources and reduction of environmental degradation (Maider et al. 
2002; Yadav et  al. 2017, 2018, 2019b). Several reports concluded significantly 
greater AMF colonization in organically managed soil which further enhances 
microbial activity and biodiversity (Maider et al. 2002; Kumar and Adholeya 2016). 
In contrast, very few studies have dealt with structural and functional differences 
among AM fungi in different land-use systems. The screening and identification, and 
multiplication of diverse AMF species occurring over a broad range of land-use 
intensity will contribute to meeting the future need for sustainable development.

17.2  �Extraction and Propagation of AMF

The obligate symbiotic nature of AM fungi has greatly hindered their use in agricul-
ture, agroforestry, and the commercialization of inocula. Additionally, biodiversity 
of AMF species is measured mainly by extracting, counting, and identifying their 
field-collected asexual spores containing limited taxonomic characters. To over-
come this limitation, new methodologies have been required that allow studies of 
different aspects of life cycle of AM fungi. For this purpose, in the last few decades, 

Fig. 17.1  Arbuscular mycorrhizal fungi interacted with plant growth-promoting bacteria 
(Beneficial microorganism) in the mycorrhizosphere affecting soil properties and quality. 
(Modified from Jeffries et al. (2003))
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a number of reports are available (Schenck 1982; Brundrett et al. 1994; Clapp et al. 
1996; Verma and Adholeya 1996) that deal with isolation and enumeration of AM 
fungal propagules, propagation of AM propagules in greenhouse pot culture, and 
finally, storage of fungal material for germplasm collection, which required thor-
ough understanding of AM fungal life cycle and growth pattern.

17.2.1  �Pot-Culture Inoculum

The most intensively used pot-culture technique consisted of growing bait plants in 
field-collected soil. It allows the sporulation and multiplication of AM fungal propa-
gules (spores and colonized roots) present in the collected soil sample. The 

Table 17.1  A summary of number of AMF species reported in different land-use system

Habitats
Number of AM 
species

Trap culture 
used References

Bamboo Forest, Taiwan 14 – Wu and Chen (1986)
Old meadow, Quebec 13 – Hamel et al. (1994)
Grassland, North Carolina, USA 23 + Bever et al. (1996)
Tallgrass prairie, Kanas, USA 14 – Bentivenga and Hetrick 

(1992)
Sonoran deserts crub, Arizona, 
USA

7–-9 + Stutz and Morton 
(1996)

Sand dune, Rhode Island, USA 6 – Koske and Halvorson 
(1981)

Sao Paulo, Brazil 19 – Trufem (1995)
Santa Catarina, Brazil 12 – Stürmer and Bellei 

(1994)
Sandy soil, Hel Peninsula, Poland 34 – Blaszkowski (1994)
Native vegetation, Cultivated Soil, 
Poland

46 – Blaszkowski (1993)

Native woodland, Florida, USA 10 + Schenck and Kinloch 
(1980)

Malus domestica orchards, USA 3–6 + Miller et al. (1995)
Wheat monoculture, Cultivated 24 – Schalamuk et al. (2006)
Amazon forest, Colombia 18 – Peňa-Venega et al. 

(2007)
Western Brazilian, Amazon 54 – Stümer and Siqueira 

(2011)
Changins, Canton Vaud, 
Switzerland

26 + Mathimaran et al. 
(2005)

Native forest and grassland in 
southeast Tibet

08 Xu et al. (2017)

Cr contaminated site of Jajmau, 
Kanpur, India

07 + Akhtar et al. (2017)

Modified from Douds and Millner (1999)
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collected soil sample was frequently diluted with a variety of inert substrates 
(Feldman and Idczak 1994; Lilly and Santhanakrishnan 1999), sterilized sand 
(Bragaloni et  al. 1998; Gaur and Adholeya 2002), vermiculite, or Terra green 
(Baltruschat 1987). This propagation approach multiplies AM species of unknown 
composition.

17.2.2  �Trap Culturing

Field-collected AM spores are found to be low in numbers, parasitized with microbes 
and fungi, lacking suitable information for taxonomic characters, and hindering a 
more accurate identification. Trapping is necessary to obtain healthy AM spores for 
identification as well for using as inoculum to establish monospecific culture. Trap 
cultures are helpful in unveiling AM community that is undetected in initial extrac-
tion of spores from field soil (Morton et al. 1995). Beaver et al. (1996) and Koske 
et al. (1997) observed that trap cultures tended to encourage preferential sporulation 
of some species when different conditions are applied. Miller et al. (1985) recov-
ered 14 AMF species in Sorghum and Coleus trap cultures that were not previously 
present in field sampling of apple orchards. Trap culture has been extensively used 
to investigate AM biodiversity and isolates of indigenous fungi (Morton et al. 1995). 
Beaver et al. (1996) established Sorghum trap cultures and also transplanted intact 
plants from the field to microcosms in order to complement their diversity estimates 
based on field-collected spores from mown grassland. Successive generation of trap 
cultures using the same soil sample often allows the initiation of nonsporulating 
dormant species (Stutz and Morton 1996). Establishment of trap cultures greatly 
improves the assessment of species composition in an ecosystem, and in some 
cases, it can promote the sporulation of cryptic AMF species that were not sporulat-
ing in field conditions (Stürmer 2004). AMF biodiversity studies from 30 sites in 
Arizona, USA, were compared to determine the impact of urbanization on AMF 
communities by Bills and Stutz (2009). In this study, they used trap cultures for AM 
spores propagation collected from the field soil of nonindigenous and indigenous 
plants at urban sites and from indigenous plants at desert sites.

17.2.3  �Single-Spore Culture

It is well known that pot culture established from multiple spores setup from field 
soil may contain more than one species/isolate of AM fungi. Establishment of a 
single-spore culture is the same like pot culture but, as their name implies, it is initi-
ated using single spore. Single-spore culture of AM fungi constitutes valuable 
resource, not only for plant growth experiment but also for taxonomic and bio-
chemical studies. Several techniques were reported for establishing monosporic 
culture from germinated and ungerminated spores by Hepper (1984) and Brundrett 
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and Juniper (1995). Later, more improved methods for hypha and single-spore 
propagation were described by Fracchia et al. (2001). Single-spore culture using 
healthy-looking AM spores was collected from pot culture and originated from field 
soil usually with high success rate (80%) particularly for ‘aggressive’ species of 
Glomeromycota (Walker 1999). However, the success rate for the development of 
monosporic culture using field-collected spore is only 1%. This may be due to con-
tamination of (1) fragment of hyphae, (2) other species sporulating inside dead 
spores, and (3) production of a culture of a species other than the one thought to 
have been used for inoculation.

17.3  �Biodiversity of AMF

17.3.1  �Subtropical Agricultural Soil

Many soils of tropics are low in soil biodiversity and prone to degradation because 
of soil moisture stress, low nutrient capital, high erosion, low pH, high P fixation, 
and low amount of soil organic matter (Sanchez et al. 2003; Kour et al. 2019; Rana 
et al. 2019a, b). In the last decade, intensive use of inorganic fertilizers and pesti-
cides along with introduction of new high-yielding cultivar had overcome these 
constraints (Dalgaard et al. 2003). However, at the same time, decline in quality and 
fertility of soils leads to gradual decline in household food production in tropic and 
subtropic ecosystems. Several recent studies have demonstrated that AM fungi are 
common and ecologically important in tropical ecosystems; and they co-occur with 
mixture of plant species; maintain soil fertility; guard against erosion; and fully 
utilize soil resources (Alttieri 2004).

Almost all tropical plants have mycorrhizal association. There are 102 AM 
fungi reported in diverse tropical habitats from India (Ragupathy and 
Mahadevan 1993; Manoharachary et al. 2005). The occurrence of AM fungi in 
a forest and also coastal regions of Andhra Pradesh was reported by 
Manoharachary and Rao (1991); distribution and identification of AM fungi in 
the rhizosphere soils of the tropical plains were done in Tamil Nadu, India, by 
Ragupathy and Mahadevan (1993); and from natural forest regions in the Old 
Delhi Ridge, Saraswati Range of Haryana, by Thapar and Uniyal (1996). 
Diversity of AM fungi has also been studied in the coastal sand dunes of the 
west coast of India (Beena et al. 2000); in deciduous forests in Dharwad dis-
trict of Karnataka (Lakshman et al. 2001); in the Western Ghats of Goa (Khade 
and Rodrigues 2003); and in coastal saline soils of Kerala, South India, 
(Karthikeyan and Selvaraj 2009).

The AM biodiversity in rhizospheric soil of plant Leucaena leucocephala 
was studied from the agricultural field of Bangalore and reported by Nalini 
et al. (1987). Diversity of AM fungi was studied in the pot-culture setup from 
the agricultural field soil of different wheat-growing regions of India by Singh 
and Adholeya (2002). A subsequent study by Sunil Kumar and Garampalli 
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(2010) reported AM fungal diversity in agricultural soils of maize, wheat, 
Pigeon pea, and chickpea plants; and soil samples were collected from Gwalior 
and Hassan districts, India. AM fungi were collected from the tannery effluent-
polluted soil of Tamil Nadu, India, by Sambandan et al. (1991). Raman et al. 
(1993) described and identified Glomus and Gigaspora spp. in the mycorrhizo-
spheres of 14 plant species collected from a magnesite mine spoil in India. 
Later studies by Raman and Sambandan (1998), and in soils of Kanpur, Uttar 
Pradesh, by Khade and Adholeya (2009), described AM community from tan-
nery-contaminated soils.

17.3.2  �Inorganically Managed Agricultural Soil

Arbuscular mycorrhiza is an association between plants and fungus and must be 
studied as a dynamic system, not as an individual organism. This dynamic sys-
tem leads to hypotheses for a number of investigations, and also edaphic proper-
ties influence both plants and mycorrhiza diversity. An earlier study by Hayman 
(1975) found that crop rotation and fertilizer’s treatment caused changes in spore 
population in soil. Abbott and Robson (1991) observed that more of AM com-
munity is in the top 8 cm of zero-tilled soil as compared with tilled soil. Later 
studies by McGonigle and Miller (1993) observed that less tillage of soil is better 
for mycorrhizal population, and that reduced disturbance of soil with ridge till-
age resulted in more induced mycorrhizal population. Subsequent studies by 
Johansen et al. (1993) observed that application of inorganic fertilizers increased 
the abundance of specific mycorrhizal fungi, for example, Rhizophagus intrara-
dices and Funneliformis mosseae, whereas, other species like Gigaspora gigan-
tea, Gigaspora margarita, Scutellospora calospora, or Paraglomus occultum 
significantly decreased in abundance. In a subsequent report, Treseder et  al. 
(2004) show that conventional agricultural practices such as application of inor-
ganic fertilizers and tillage tend to decrease AMF spore abundance and alter 
community composition. Similar findings by Hijri and Sanders (2005) observed 
AMF species diversity to be low in agricultural field and also found that low-
input agricultural land with crop rotation practices induces relatively high AMF 
species richness. Jasper et  al. (1989) observed that soil disturbance decreases 
AM colonization of plants via destruction of AM fungal network. Tillage prac-
tices reduce AMF spore density and species richness (Hendrix et al. 1990; Altieri 
1999). Galvez et al. (2001) observed negative impact on AMF spore numbers and 
on the density of AMF hyphae in tilled soil. Higher AMF infection potential, as 
well as faster development of AMF colonization, was observed in soils under 
reduced tillage conditions by McGonigle and Miller (1996). By contrast, Jansa 
et al. (2002) found no significant effect of tillage on diversity indices of the AMF 
community structure. Jansa et al. (2002, 2003) found that Rhizophagus species is 
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generally predominantly present in tilled soil. On the contrary, Scutellospora sp. 
was observed in minimum-tilled soil.

17.3.3  �Organically Managed Agricultural Soil

Arbuscular mycorrhizal fungi are important members of soil microbial community 
and can exert beneficial effect by application of low-input organic agricultural prac-
tices. Many agricultural practices can negatively affect AM fungal population while 
organic agricultural practices may be the sustainable practices and increase the 
number of AM spores in soil. This may be due to increased pore volume of soil 
which has a beneficial effect on AM colonization, the mycorrhizal growth response, 
and AM spore density (Giovanetti and Avio 1985). The addition of organic matter 
also decreases the mechanical soil resistance to the growth of AM hyphae (Joner 
and Jakobsen 1995). AM sporulation was found to be enhanced when soil rich in 
organic amendments was investigated by Douds et  al. (1997) and Johnson and 
McGraw (1988). Application of farmyard manure overall reduced AM density in 
rhizospheric soils of corn, millet, and sunflowers as reported by Harinikumar and 
Bagyaraj (1989); however, other field studies have observed negative effects of 
farmyard manure on mycorrhizal colonization (Jensen and Jokobsen 1980). 
Subsequent studies by Muthukumar and Udaiyan (2000) found that organically 
managed soil improves colonization of roots with mycorrhizal fungus. Additionally, 
application of organic matter can have a beneficial effect on the growth of indige-
nous AM fungi in nutrient-limited soils (Caravaca et al. 2002; Gaur and Adholeya 
2002). Overall, higher biomass and diversity of soil animals and a higher microbial 
activity were noted in organically managed soil (Maider et al. 2002). Recent study 
by Gosling et al. (2010) examined 11 sites to test the hypothesis that organic man-
agement increases AM fungal number and colonization potential of tilled agricul-
tural soil. They concluded overall spore number to be significantly higher in 
organically managed soil with no overall difference in soil physicochemical proper-
ties. However, it was also found in the study of Eason et al. (1999) that organic 
farming not necessarily resulted in large numbers of AM spores in absolute terms.

17.3.4  �Industrial Wasteland Soil

Wastewater discharged from textile and dye industries is the major cause of serious 
environmental hazards. Many physical and chemical methods have been used to 
detoxify the wastewater, but unfortunately, due to high operating costs and complex 
operational process, a suitable alternative will be required; also, these methods do 
not take away dyes completely. In contrast, introduction of biological organism, 
arbuscular mycorrhizal fungi (AMF), has enormous potential to enhance phytoac-
cumulation process of heavy metal by naturally grown plant species in 
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contaminated soils as shown in Fig.  17.2. However, very limited information is 
available about community composition of tolerant mycorrhizal species/strains 
associated with heavy metal accumulator plant grown naturally under tropical soil. 
Study suggested that consortia of Rhizophagus species from metal polluted soil 
contribute to higher uptake and transportation of heavy metals, as well as tolerance 
of heavy metals toxicity than single AMF species. This study also suggested differ-
ent AM fungi to differ in their susceptibility and tolerance to heavy metals, and 
being responsible for uptake of specific metals only constitutes some limitation. It 
was also suggested that roots of some plant are species-specific and sporulate differ-
ently in the presence specific AMF species/strains. Many reports described that the 
presence of AMF increases the efficiency of plants for the removal of heavy metals 
from toxic environment (Regvar et  al. 2003; Turnau and Mesjasz-Przybylowicz 
2003). The study by Kumar and Adholeya (2016, 2018) recorded that Rhizophagus 
fasciculatus obtained from trap culture originated from sludge-contaminated field 
used for the clean-up of multi–metal-contaminated tannery sludge. More recent 
report by Nazir and Bareen, (2011) investigated the synergistic effect of Rhizophagus 
fasciculatus and Trichoderma pseudokoningii on Heliathus annuus for decontami-
nating toxic metals from tannery sludge. They showed that consortia of AM fungi 
could be exploited for decontamination of heavy metals from tannery sludge.

Identification and
multiplication
under in-Vitro

Functional
diversity of
AMF using
different
concentration
of heavy
metal Trap

culture/
Single
spore
culture

AM fungal
spore

Field inoculation
with AM fungi

Mycorrhizal Technology

Fig. 17.2  Mycorrhizal-based technology use as a bioremediation of polluted soil
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17.4  �Life Cycle of AMF, and Economic and Ecological 
Significance

Arbuscular mycorrhizas are mainly symbiotic with herbaceous plants in temper-
ate areas, but are also found frequently in tropical trees (Smith and Read 2008). 
80–90% of terrestrial plant species form association with AM (Smith and Read 
2008). In a recent survey of 3617 plant species, Wang and Qiu (2006) showed 
that 92% of the families (80% of the species) potentially form at least one mycor-
rhiza type. A very detailed review about mycorrhizal associations was most 
recently published (by Brundrett 2009). AM fungi enhance mobilization and 
transportation of nutrients to roots (Smith and Read 1997). AM fungi improved 
nutrient uptake, especially nitrogen and phosphorus, by increasing the abilities 
of the host plants to explore a larger volume of soil than plant roots alone would 
have been able to cover, and to mobilize phosphate from a greater surface area 
(Joner et al. 2000). It also reduces water stress and improves soil aggregation in 
eroded soils (Caravaca et al. 2002). There are three different phases of AM fun-
gal interaction: (1) the asymbiotic phase, when AM fungal spores germinate and 
hypha grow in the absence of plant signals; (2) the presymbiotic phase, during 
which AM fungal hyphal growth and differentiation occur in the presence of 
signal exuded by host roots; and (3) the symbiotic phase, following colonization 
of roots, during which there is formation of intraradical structures and an 
exchange of nutrients between host and fungus. The formation of AM symbiosis 
is a complex developmental event leading to the coordination of gene expression 
of both partners. The fungus life cycle starts with germination of hyphae from 
resting spores. The spores are able to germinate in the absence of host plants, but 
the growth of the hyphae is restricted after days or weeks, depending on the spe-
cies/isolate of AM fungi (Tamasloukht et al. 2003). Germination of AM spores 
need not necessarily be in the presence of plant host root, although the percent-
age of germination is sometimes increased in their presence. Gigaspora spores 
germinated directly through the spore wall, Acaulospora and Scutellospora 
through germination shields, and Glomus (Siqueira et  al. 1985) through the 
hyphal attachment. On the other hand, germinating spores produce diffusible fac-
tors that lead to an expression of specific genes in the host plant root cells even 
in the absence of direct physical contact (Kosuta et al. 2003). Furthermore, sev-
eral reports confirm plant–microbe interaction and show that root exudates also 
produce primary plant signal that triggers a complex cascade of signals from 
both the plant and the AM fungus (Morandi 1996; Vierheilig et al. 1998). Root 
exudates of AM host plants stimulate spore germination (Gianinazzi et al. 1989; 
Schreiner and Koide 1993) and hyphal growth (Mosse and Hepper 1975; Graham 
1982; Balaji et al. 1995; Pinior et al. 1999). It is known that in the absence of 
roots or root exudates, the hyphae have very slow metabolic rates, and all attempts 
at long-term culture have failed (Azcón-Aguilar et al. 1999; Giovannetti 2000; 
Bécard et al. 2004). The presence of a root or root exudates stimulates growth 
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and branching of the mycelium and apparently converts it into an ‘infection-
ready’ state.

The chemical nature of diffusible factors of plants and of fungi is not yet 
known. First observation by Akiyama et al. (2005) suggested that strigolactones 
are known to stimulate the germination of seeds of root parasite in the genera 
Striga and Orobanche and their role as general signaling molecule for establish-
ment of AM symbiosis. Furthermore, Besserer et  al. (2006) investigated and 
observed that strigolactones are responsible not only for spore germination but 
also for stimulating the growth of hypha of AMF. Several other phenolic com-
pounds produced by roots or seeds are known to influence symbiotic develop-
ment between Rhizobium and Agrobacterium and their hosts. Ex Flavonoids have 
stimulatory effects on the growth and branching of germ tubes of Gigaspora 
margarita and some Glomus species (Gianinazzi-Pearson et al. 1989; Tsai and 
Phillips 1991; Bécard et al. 1992; Buee et al. 2000) and can also lead to increased 
colonization of roots by the fungi (Nair et al. 1991; Siqueira et al. 1991; Akiyama 
et  al. 2002). Oldroyd and Downie (2004) confirmed rhizobial symbioses, and 
AM fungi utilize the same factor (at least seven proteins) of a common signaling 
(Sym) pathway in legumes. Therefore, it is likely that different rhizobial and 
mycorrhizal signals (Nod factors and Myc factors) result in a common signaling 
pathway, whereas the output is unique in both symbioses (Oldroyd and Downie 
2006; Kosuta et  al. 2008). In AM, Myc factors are thought to induce calcium 
oscillations in root epidermal cells (Kosuta et al. 2008) and activate plant symbi-
osis-related genes (Kosuta et al. 2003).

The second step in the root–AM fungus interaction prior to colonization is the 
formation of aspersorium on the root surface. Genre et al. (2005) observed that 
AM fungi on the root surface involve changes in the plant cells, encompassing 
wall alterations, nuclear movements, alterations in cytoskeletal activity, and 
membrane proliferation and modification, including the formation of a complex 
prepenetration apparatus (PPA). Using a plant mutant of Lotus japonicus affected 
in the symbiosis genes SYM15 or SYMRK, Demchenko et al. (2004) found that 
the plant actively allows the fungus to penetrate the rhizodermis. They observed 
three steps in the interaction that were differentially impaired in the mutants: (1) 
the surface opening, where the anticlinal cell walls of two adjacent epidermal 
cells separate from each other in the vicinity of fungal hyphae: (2) the intracel-
lular passage of hyphae through an exodermal cell and an adjacent cell of the 
outermost cortical layer; and (3) the arbuscule formation in cells of the two 
innermost cortical layers. Gallaud (1905) identified two different morphological 
growth patterns of AMF on the root surface. First, Arum type is characterized by 
fast-growing hyphae spreading through intercellular air spaces and penetrating 
cortical cells by side branches, in which arbuscules are formed. Smith and Read 
(2008) show that Arum type in particular is typical for fast-growing crops. 
Second, Paris type is characterized by hyphae growing intracellular from cell to 
cell in which coils are formed. This type of growth pattern is found in Gentianaceae 
(Sýkorová et al. 2007).
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Subsequently, AM fungus forms tree-like structures, called arbuscules, inside 
inner cortical cells of host roots. On the other hand, genera belonging to Paraglomus, 
Scutellospora, and Gigaspora form intra-and intercellular storage organs called 
vesicles in the late stage of the symbiosis (Smith and Read 1997; Morton and 
Redecker 2001). Sander et al. (1977) reported that arbuscules in AM fungi are the 
central place for nutrient exchange. This structure is degraded by plant cells after 4 
to 10 days, and then plant regains its original morphology (Jacquelinet-Jeanmougin 
et al. 1987). Consequently, plant cells form new colonization. The life cycle is com-
pleted by the formation of new spores by the AM fungus.

17.5  �Role of AMF for Global Sustainable Environments

Climate change and food security have now become major problems mainly in 
developing countries. Therefore, there is need to fulfill demand of growing popula-
tion of developing countries by increasing food production through high-input agri-
cultural practices and at the same time by minimizing negative environmental 
impact (Foley et  al. 2011; Rillig et  al. 2016). Holistic use of several beneficial 
microorganisms may lead to minimization of environmental pollution and conser-
vation of soil ecosystem. Moreover, many microbes symbiotically associated in soil 
life play a role as major pillars in conservation agriculture. Among these symbioses, 
a well-known player is mycorrhiza, the extensive symbiotic association of fungi 
with roots of higher plant (Smith and Read 2008). AM fungi offer several benefits 
to the plants: (1) improved nutrient uptake, (2) faster growth, (3) greater drought 
resistance, (4) protection from pathogens, (5) increased seedling survival, (6) 
improved soil structure, and (6) greater resistance to invasion by weeds. Colonization 
of the root system by AM fungi confers benefits directly to the host plant growth and 
development, through the acquisition of phosphate and other mineral nutrients from 
the soil. In addition, colonization may also enhance the plant’s resistance to biotic 
and abiotic stresses (Newsham et al. 1995). AM fungi also develop an extensive 
hyphal network out with the plant root system, which makes a significant contribu-
tion to the improvement of soil texture and water relationship (Bethlenfalvay and 
Schuepp 1994). Mycosorption using AM fungi in heavy metal-contaminated soil 
showed significantly greater accumulation as compared with plant noncolonized 
with AM fungi (Utomo et al. 2014). Therefore, AM fungi constitute an integral and 
important component of ecosystems and may have significant applications in sus-
tainable agricultural system (Schreiner and Bethlenfalvay 1995). Current produc-
tion technique of mycorrhizal inocula presents with certain limitations with regard 
to purity and quality. Moreover, Cardoso and Kuyper (2006) suggested that side by 
side with mycorrhizal technology, mycorrhizal management practices may increase 
crop production through intensive use of agroforestry. They also concluded that 
sustainable conservation of soil ecosystem may be possible through mycorrhiza-
tion, multi cropping, and crop rotation practices.
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17.6  �Conclusions and Future Prospect

This chapter suggests that the presence of AMF increases the efficiency of plants for 
the removal of heavy metals from toxic environment. Study revealed that plant species 
diversity would increase the diversity of AMF in soil and contribute to the efforts to 
restore degraded lands. Review dealt with selection and multiplication of AMF from 
wasteland sites and the manner in which we can use them for future revegetation pro-
grams. The characterization and identification of AMF adapted from harsh conditions 
of soils/area affected by industrial effluents can be put to use for future utilization of 
the reclaimed areas for the successful management of revegetation programs.
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