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Abstract This chapter is about two-person nonzero-sum stochastic differential
games with discounted and long-run average (a.k.a. ergodic) payoffs. Our aim is
to give conditions for the existence of feedback correlated randomized equilibria for
each aforementioned payoff that are natural generalizations of the well-known Nash
equilibria. To do so, we rewrite our original problem in terms of an auxiliary zero-
sum game, so that the way to find correlated equilibria is based on some properties
of this later game. Key ingredients to achieve the desired results are the continuity
properties of the payoffs.

1 Introduction

Nash equilibrium is a very useful concept in game theory, however it is well known
that under standard conditions the existence of Nash equilibria in nonzero-sum
games with uncountable state-action spaces is not necessarily guarantied within the
set of randomized strategies.

During the past decades, there has been works that have dealt to game models
with particular features in order to ensure the existence of Nash equilibria; for in-
stance, games with an additive structure (see, e.g. [8, 16, 17]). Other works have
explored an alternative method, which consists of “relaxing” the idea of Nash equi-
librium. The idea is to extend the set of strategies into a bigger one, giving rise to
the concept of correlated strategies as well as to the concept of correlated equilib-
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ria (see e.g. [4, 5, 20, 21]). This approach is the one we have focused on in this
manuscript, whose details will be explained in later sections.

Recall that the Nash equilibrium concept means that if one player tries to alter
his strategy unilaterally, he cannot improve his performance by such a change. If
players choose their strategies according to the Nash equilibrium concept, they are
said to play non-cooperatively, i.e., each player is only interested in maximizing his
own utility. The correlated equilibrium concept means that all players, before taking
a decision over the strategies, receive a global (or joint) recommendation, that is
drawn randomly according to a joint distribution μ , then no player has an incentive
to divert from the recommendation, provided that all other players follow theirs.

The main distinguishing feature of the concept of correlated equilibrium, unlike
the definition of Nash equilibrium is that those recommendations do not need to
be independent; i.e., the joint distributions do not need to be a product of marginal
distributions. It turns out that a correlated equilibrium μ is a Nash equilibrium if and
only if μ is a product measure.

It is well recognized that correlated equilibria were introduced by Aumman in
1974 for nonzero-sum games in normal form, extending the Nash equilibrium con-
cept, [4, 5]. There exists a vast number of manuscripts that are focused on corre-
lated strategies concept providing conditions for the existence of correlated equilib-
ria [4, 5, 10, 20, 21, 22, 23, 24], this is, in some part, because it is easier to prove the
existence and characterize correlated equilibria compared with Nash equilibria.

The work is inspired by the paper [20] which deals with correlated relaxed equi-
libria in nonzero-sum linear differential games with finite-horizon payoffs. Our aim
here is to prove the existence of feedback correlated equilibria for a more general dy-
namic when the payoffs are of the (infinite horizon) discounted and average type. A
key point to obtain our desired equilibria is to guarantee the continuity to both payoff
functions (discounted and average payoffs) within the set of correlated strategies.

Although we restrict ourselves to the case of two players, its relatively easy to
extend our results to the more general context of N players.

The main novelty of the manuscript lies in the fact that we are working with
infinite-horizon (discounted and ergodic) payoff criteria under a considerable gen-
eral diffusion process. Furthermore, the set of correlated equilibria are shown to be
feedback, meaning that they are dependent on the current state of the game. To the
best of our knowledge, this treatment has not been already studied in the current
literature.

This chapter is organized as follows: In section 2, we introduce both the game
and the payoffs we are trying to optimize. We also define the Nash equilibrium
concept. Section 3 is devoted to the introduction of correlated strategies. We extend
the domain of our payoffs over these strategies and will prove the continuity of those
criteria. By last, in section 4 we introduce the concept of correlated equilibria and
prove the existence of them. To do so, we rewrite the original game as a zero-sum
game and we explore some of its properties. Correlated equilibria will be obtained
through the use of some min-max theorems as well as for the continuity of our
payoffs.
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Notation and terminology.

• For some m, n ∈ N, let O ⊂ Rm and V ⊂ Rn be given open and Borel sets, re-
spectively. We define:

– Wl,p(O) the Sobolev space consisting of all real-valued measurable functions
h on O such that Dλ h exists for all |λ | ≤ l in the weak sense and it belongs to
Lp(O), where

Dλ h :=
∂ |λ |h

∂xλ1
1 , . . . ,∂xλm

m
with λ = (λ1, · · · ,λm), and |λ | :=

m

∑
i=1

λi.

– Ck(O) the space of all real-valued continuous functions on O with continuous
l-th partial derivative in xi ∈ R, for i = 1, ...,m, l = 0,1, ...,k. In particular,
when k = 0, C0(O) stands for the space of real–valued continuous functions
on O .

– Ck,β (O) the subspace of Ck(O) consisting of all those functions h such that
Dλ h satisfies a Hölder condition with exponent β ∈ (0,1], for all |λ | ≤ k.

– Cb(O×V ) the space consisting of all continuous bounded functions on O×V .

• For vectors x and matrices A we use the usual Euclidean norms

|x|2 := ∑
i

x2
i and |A|2 := Tr(AA

′
) = ∑

i, j
A2

i j,

where A
′

and Tr(·) denote the transpose and the trace of a square matrix, respec-
tively.

• For any two strategies, say π1 and π2, the notation π1 ×π2 means the product
measure associated to this pair.

2 The game model

Consider an m−dimensional diffusion process x(·) controlled by two players and
evolving according to the stochastic differential equation

dx(t) = b(x(t),u1(t),u2(t))dt +σ(x(t))dW (t), x(0) = x0, (1)

where b : Rm ×U1 ×U2 → Rm, σ : Rm → Rm×d are given functions, and W (·) is
a d-dimensional standard Brownian motion. The sets U1 ⊂ Rm1 and U2 ⊂ Rm2 are
Borel sets called the action set for player 1 and player 2, respectively. Moreover, for
k = 1,2, uk(·) is a non-anticipative Uk−valued stochastic process representing the
control actions of player k at each time t ≥ 0.

For (u1,u2) ∈U1 ×U2, and h in W2,p(Rm), let
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Lu1,u2h(x) :=
m

∑
i=1

bi(x,u1,u2)
∂h
∂xi

(x)+
1
2

m

∑
i, j

ai j(x)
∂ 2h

∂xi∂x j
(x), (2)

where bi is the i–th component of b, and ai j is the (i, j)–component of the matrix
a(·) := σ(·)σ ′(·).

Let us now proceed to define the sets of strategies allowed for each player.
Randomized Markov strategies. Let B(U1) be the Borel σ−algebra of U1 ,

and let P(U1) be the space of probability measures on U1. In the same way, we
define B(U2) and P(U2) associated to player 2.

Definition 1. A randomized Markov strategy for player k (k = 1,2) is defined as a
family πk := {πk

t : t > 0} of stochastic kernels on B(Uk)×Rm; that is:

(a) for each t ≥ 0 and x ∈ Rm, πk
t (·|x) is in P(Uk), satisfying πk

t (Uk|x) = 1;
(b) for each D ∈ B(Uk) and t ≥ 0, πk

t (D|·) is a Borel function on Rm; and
(c) for each B ∈ B(Uk) and x ∈ Rm, the function t �→ πk

t (B|x) is a Borel measur-
able function.

Definition 2. A randomized strategy πk = {πk
t : t ≥ 0} (k = 1,2) is said to be sta-

tionary if there is a stochastic kernel πk on B(Uk)×Rm such that πk
t (·|x) = πk(·|x)

for all x ∈ Rm, t ≥ 0.

The set of randomized stationary strategies for player k is denoted by Πk, k = 1,2.
Next we define the payoff functions that each player wants to “optimize.’’
Payoff rates. For each player k = 1,2, let rk :Rm×U1×U2 →R be a measurable

function, which we will call the payoff rate of player k; in this sense, at each t ≥ 0,
rk(x(t),u1,u2) is the payoff of player k at time t, when the actions u1 ∈ U1 and
u2 ∈U2 are decided by players 1 and 2, respectively.

Throughout this manuscript we will use the notation π1 × π2, representing the
product measure of π1 and π2.

Let the function ψ be either b or rk, k = 1,2. When players use a stationary
randomized strategy (π1 ×π2) ∈ Π1 ×Π2, we write:

ψ(x,π1 ×π2) :=
∫

U1

∫
U2

ψ(x,u1,u2)π1(du1|x)π2(du2|x), x ∈ Rm.

With the above notation, the infinitesimal generator (2) is written as

Lπ1×π2
h(x) :=

m

∑
i=1

bi(x,π1 ×π2)
∂h
∂xi

(x)+
1
2

m

∑
i, j

ai j(x)
∂ 2h

∂xi∂x j
(x), x ∈ Rm.

Assume for the moment the existence of the probability measure Pπ1×π2
x for each

x ∈ Rm and π1 ×π2 ∈ Π1 ×Π2, associated to the process x(·). We will also denote
by Eπ1×π2

x (·) its respective expectation. Next define the payoff criteria each player
would be interested to optimize.
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Definition 3 (Discounted payoff criterion). Let α > 0, and consider the payoff
rates r1 and r2. For each player k = 1,2, the expected α−discounted payoff for
player k when players use the strategy (π1 ×π2) ∈ Π1 ×Π2 given the initial state
x ∈ Rm, is

Vk(x,π1 ×π2) := Eπ1×π2

x

[∫ ∞

0
e−αt rk(x(t),π1 ×π2)dt

]
. (3)

Definition 4 (Average payoff criterion). For each player k = 1,2, the expected av-
erage payoff for player k when players use the strategy (π1 ×π2) ∈ Π1 ×Π2 given
the initial state x ∈ Rm, is

Jk(x,π1 ×π2) := liminf
T→∞

1
T
Eπ1×π2

x

[∫ T

0
rk(x(t),π1 ×π2)dt

]
. (4)

In a noncooperative N-person nonzero-sum stochastic differential game, each
player tries to maximize (or minimize) his/her individual performance criterion (in
particular, criteria of type (3) and (4)). A Nash equilibrium, in this case, is a strategy
such that once it is chosen by the players, no player will profit unilaterally by simply
changing his/her own strategy. More specifically, in the maximization context, we
have the next definition:

Definition 5 (Nash equilibrium). Let Fk, k = 1,2, be either the discounted payoff in
(3) or the average payoff (4). A randomized pair of strategies (π1∗ ×π2∗ ) ∈ Π1 ×Π2
is a Nash equilibrium if and only if

F1(x,π1
∗ ×π2

∗ )≥ F1(x,π1 ×π2
∗ ), ∀ π1 ∈ Π1,

F2(x,π1
∗ ×π2

∗ )≥ F2(x,π1
∗ ×π2), ∀ π2 ∈ Π2.

It is also well recognized that the existence of Nash equilibria in nonzero-sum
games with uncountable state-action spaces is not necessarily guarantied in the set of
randomized policies Π1×Π2 under standard conditions (for example, the conditions
established in this chapter); however, such existence is achieved under special cases.
For instance, we can assume the drift b in the dynamic (1) and the payoff rates
rk both satisfy an additive structure property (see, for instance, [8, 16, 17]). One
alternative to avoid restrictive assumptions to the model, is to extend the concept of
Nash equilibrium into a bigger set of Π1 ×Π2, which entails, in particular, to the
concept of correlated strategies and its corresponding correlated equilibrium.

In the next section we will provide, among other things, conditions so that the
dynamic (1) can attain a unique solution in some sense and that the payoffs in (3)
and (4) are finite valued on the set of correlated strategies.
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3 Correlated strategies.

In this work we extend the set of strategies available to the players. These strategies
allow players to correlate their decisions during a pre-play communication process
(see Section 4).

Definition 6 (Correlated strategy). A correlated (stationary) randomized strategy
μ is a stochastic kernel on B(U1 ×U2)×Rm such that:

(a) for each x ∈ Rm, μ(·|x) is a joined probability measure on U1 ×U2 and such
that μ(U1 ×U2|x) = 1.

(b) For each D ∈ B(U1 ×U2), μ(D|·) is Borel measurable on Rm.

We will denote by Γ the set of all correlated randomized strategies. On the other
hand, the marginal distributions of μ are defined as:

μ1(B1|x) := μ(B1 ×U2|x) and μ2(B2|x) := μ(U1 ×B2|x),

for each Borel set Bk ∈ B(Uk), k = 1,2, and x ∈ Rm.
Let ψ be either b, r1 or r2. When players use a correlated strategy μ ∈ Γ , we

write
ψ(x,μ) :=

∫
U1×U2

ψ(x,u1,u2)μ(d(u1,u2)|x),

Furthermore, the generator (2) turns out to be

Lμ h(x) :=
m

∑
i=1

bi(x,μ)
∂h
∂xi

(x)+
1
2

m

∑
i, j

ai j(x)
∂ 2h

∂xi∂x j
(x), x ∈ Rm. (5)

We denote by Γk the set of k-marginal measures associated to Γ , for k = 1,2.

Remark 1. Throughout this work we will assume that the players choose only ran-
domized stationary strategies. The reason is that, even when it is possible to work in
a more general class of strategies (for instance that of the so-named non-anticipative
policies), our present hypotheses (stated later on) ensure the existence of optimal
policies in the class of stationary strategies for all players. Further, it is worth to
mention that recurrence and ergodicity properties of the state system (1) can be eas-
ily verified through the use of stationary strategies, but for general non-anticipative
strategies, the corresponding state system might be time-inhomogeneous; a fact that
can be hard to handle.

Assumption 1 Recall the elements of the dynamic (1). We assume:

(a) The action sets U1 and U2 are compact.
(b) The function b : Rm ×U1 ×U2 → Rm satisfies the following conditions:

(i) it is continuous on Rm ×U1 ×U2.
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(ii) it satisfies a Lipschitz condition uniformly in (u1,u2) ∈U1 ×U2; that is, there
exists a positive constant K1 such that, for all x,y ∈ Rm,

sup
(u1,u2)∈U1×U2

|b(x,u1,u2)−b(y,u1,u2)| ≤ K1|x− y|.

(c) There exists a positive constant K2 such that for all x,y ∈ Rm,

|σ(x)−σ(y)| ≤ K2|x− y|.

(d) (Uniform ellipticity). The matrix a(x) = σ(x)σ ′(x) satisfies that, for some
constant c0 > 0

xa(y)x′ ≥ c0|x|2 for all x,y ∈ Rm.

Remark 2. (a) Assumption 1 ensures that there exists an almost surely unique
strong solution of (1), for each strategy μ ∈Γ , which is a Markov–Feller process
and whose infinitesimal generator coincides with Lμ in (5). (For more details, see
the arguments of [2, Theorem 2.2.7]).

(b) The aforementioned existence and uniqueness remain valid for special types
of joint kernels of either form μ = π1 ×π2, or μ = π1 × μ2 or μ = μ1 ×π2, for
every π1 ∈ Π1, π2 ∈ Π2 μ1 ∈ Γ1, μ2 ∈ Γ2. This implies that the dynamic (1) is
well defined even when a usual pair of strategies (π1 × π2) ∈ Π1 ×Π2 as that
introduced in Definition 2 is applied.

The following assumption is a Lyapunov–like condition that guaranties, in par-
ticular, that the discounted payoff criterion (3) is finite, among other facts such as
the positive recurrence property of the diffusion (1) and the existence of an invariant
measure, each of them for a suitable type of controls (or strategies) u1(·) and u2(·).
Assumption 2 There exists a function w ∈ C2(Rm), with w ≥ 1, and constants d ≥
c > 0 such that

(i) lim|x|→∞ w(x) = +∞, and
(ii) Lu1,u2 w(x)≤−cw(x)+d for each (u1,u2) ∈U1 ×U2 and x ∈ Rm.

Remark 3. An easy application of Ito’s formula to ectw(x(t)) along with Assumption
2(ii), give us that

sup
μ∈Γ

Eμ
x (w(x(t))≤ e−ctw(x)+

d
c
(1− e−ct).

Definition 7. Let w≥ 1 be the function in Assumption 2 and O ⊂Rm be an open set.
We define the Banach space Bw(O) consisting of real–valued measurable functions
h on O with finite w–norm defined as follows:

‖h‖w := sup
x∈O

|h(x)|
w(x)

.

We also include another set of hypotheses related to the payoffs rk that uses the
above definition.
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Assumption 3 (a) The function rk(x,u1,u2) is continuous on Rm ×U1 ×U2 and
locally Lipschitz in x uniformly with respect to (u1,u2) ∈ U1 ×U2; that is, for
each R > 0, there exists a constant K(R)> 0 such that

sup
(u1,u2)∈U1×U2

|rk(x,u1,u2)− rk(y,u1,u2)| ≤ K(R)|x− y| for all |x|, |y| ≤ R.

(b) rk(·,u1,u2) is in Bw(R
m) uniformly in (u1,u2); that is, there exists M > 0 such

that for all x ∈ Rm

sup
(u1,u2)∈U1×U2

|rk(x,u1,u2)| ≤ Mw(x).

We will extend the discounted payoff criteria (3) and (4) on the set Γ .
Extended discounted criterion: Given rk as in Assumption 3, k = 1,2, and for

any initial state x ∈ Rm, the extended α−discounted payoff for player k when the
strategy μ ∈ Γ is applied is defined as

Vk(x,μ) := Eμ
x

[∫ ∞

0
e−αt rk(x(t),μ)dt

]
. (6)

The following proposition is a direct consequence of Assumptions 2, 3(b), and
Remark 3, so we shall omit the proof; similar arguments can be founded in [9,
Proposition 9.1].

Proposition 1. Under the Assumptions 1, 2, 3, the payoff (6) belongs to the space
Bw(R

m) for each correlated strategy μ; in fact, for each x in Rm we have

|Vk (x,μ)| ≤ M(α)w(x) (7)

with M(α) := M (α+d)
αc . Here, c and d are the constants in Assumption 2(b), and M

is the constant in Assumption 3(b).

Extended average criterion: Let rk be as in Assumption 3, k = 1,2, and x ∈Rm.
We define the extended average payoff for player k when the strategy μ ∈ Γ is used
and initial state x, as follows

Jk(x,μ) := liminf
T→∞

1
T
Eμ

x

[∫ T

0
rk(x(t),μ)dt

]
. (8)

Note that the above limit always exists. Actually, we will impose an ergodicity
condition so that this limit becomes a constant in some sense.

From the arguments in [2, 12], for each μ ∈Γ , the Markov process x(·) is positive
recurrent and admits a unique invariant probability measure ημ , for which

ημ(w) :=
∫
Rm

w(x)ημ(dx)< ∞, (9)
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where w is the function defined in Assumption 2. The next assumption corresponds
to the well-known assymptotic behaviour of x(t) when t goes to the infinite. Suffi-
cient conditions for this assumption can be seen in Theorem 2.7 in [14].

Assumption 4 For every μ ∈ Γ , the process x(·) is uniformly w-exponentially er-
godic; that is, there exist positive constants k1 and k2 such that

sup
μ∈Γ

∣∣Eμ
x
[
ν(x(t))

]−ημ(ν)
∣∣≤ k1‖ν‖we−k2tw(x), (10)

for all x ∈ Rm, t ≥ 0, and ν ∈ Bw(R
m).

In (10), the notation ημ(ν) has the same meaning as (9) with ν instead of w.

Remark 4. Under Assumptions 1, 2, 3, and 4, the extended average payoff criterion
(8) satisfies the following: For each k = 1,2:

(a) Jk(x,μ) =
∫
Rm rk(y,μ)ημ(dy), for all x ∈ Rm, μ ∈ Γ ; actually the limit in (8)

does exist in a strong sense (i.e., liminf = limsup) and does not depend on the
initial condition x.

(b) supμ∈Γ |Jk(x,μ)| ≤ M · d/c, , for all x ∈ Rm, with M and d,c the constants
appearing in our previous Assumptions 3 and 2, respectively.

For a proof of these two assertions, we can quote Section 3 in [9] or Section 2 in
[14].

3.1 Continuity properties

In this part we will ensure that the functions μ �→ Vk(x,μ) and μ �→ Jk(x,μ) are
continuous. To this end, we endow the set Γ with the topology of joint strategies
(see e.g. [3, Lemma 3.4] or [6]).

Definition 8 (Topology of join strategies). We say that a sequence {μn : n =

1,2, ...} ⊂ Γ converges to μ ∈ Γ (and we will denote such convergence as μn
W→ μ)

if and only if for all h ∈ Cb(R
m ×U1 ×U2) and g ∈ L1(Rm)∫

Rm
g(x)

∫
U1×U2

h(x,u1,u2)μn(d(u1,u2)|x)dx −→
n→∞∫

Rm
g(x)

∫
U1×U2

h(x,u1,u2)μ(d(u1,u2)|x)dx.

Remark 5. The space Γ is a convex compact metric space endowed with the pre-
vious topology; see [25, Theorem IV.3.11] or [6, Section 3]. Furthermore, as was
mentioned in [16, Remark 2.11(b)], the set Π1 ×Π2 is compact too. The convexity
of this last product set easily follows from the convexity of Πk, k = 1,2.

The following proposition gives a characterization for the α-discounted reward
(6). For a proof we quote [15, Proposition 3.1.5].
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Proposition 2. Assume that the Assumptions 1, 2, 3 hold true. Then, for every
μ ∈ Γ , the associated total expected α-discounted function Vk(·,μ) (k = 1,2) is
in W2,p(Rm)∩Bw(R

m) and it satisfies the equation

αVk(x,μ) = rk(x,μ)+LμVk(x,μ). (11)

Conversely, if some function ϕk ∈W2,p(Rn)∩Bw(R
m) verifies (11), then

ϕk(x) =Vk(x,μ) for all x ∈ Rm.

Moreover, if the equality in (11) is replaced by “≤” or “≥′′, then (11) holds with
the respective inequality.

The following result addresses a continuity property of the total expected α-
discounted payoffs.

Proposition 3 (Continuity of Vk). For k = 1,2, the mapping μ �−→Vk(x,μ) is con-
tinuous on Γ , for each x ∈ Rm.

Proof. Let {μn} ∈ Γ such that μn
W→ μ . Observe that Proposition 2 ensures that, for

each n ≥ 1, Vk(x,μn) satisfies the equation

αVk(x,μn) = rk(x,μn)+LμnVk(x,μn) x ∈ Rm. (12)

This last equation in terms of the operator L μn
α given in (30) becomes

0 = L μn
α Vk(x,μn) x ∈ Rm. (13)

Next we will check that the hypotheses (a)-(e) of Theorem 2 provided in the
appendix of this chapter are satisfied.

(a) This hypothesis trivially follows from (13) (or by (12)).
(b) To prove this hypotheses, let R> 0, and take the ball BR := {x ∈Rm | |x|< R}.

By [13, Theorem 9.11], there exists a constant C0 independent of R such that, for
a fixed p > m (m being the dimension of (1)), we have

‖Vk(·,μn)‖W2,p(BR)
≤ C0

(‖Vk(·,μn)‖Lp(B2R) +‖rk(·,μn)‖Lp(B2R)

)
≤ C0

(
M(α)‖w‖Lp(B2R) +M‖w‖Lp(B2R)

)
≤ C0 (M(α)+M) |B̄2R|1/p max

x∈B̄2R

w(x)< ∞,

where |B̄2R| represents the volume of the closed ball with radious 2R, and M and
M(α) are the constants in Assumption 3(b) and in (7), respectively.

(c)-(e) The parts (c) and (d) of Theorem 2 trivially hold by taking ξn ≡ 0 and
αn ≡ α , whereas that part (e) is part of our hypotheses.

Then, for k = 1,2, we get the existence of a function hk
μ ∈W2,p(BR) together with

a subsequence {n j} such that Vk(·,μn j)→ hk
μ(·) uniformly in BR and pointwise on

Rm as j → ∞ and μn j
W→ μ . Furthermore, hk

μ satisfies
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αhk
μ(x) = rk(x,μ)+Lμ hk

μ(x), x ∈ BR.

Since the radious R> 0 was arbitrary, we can extend our analysis to all of x∈Rm.
Thus, Proposition 2 asserts that hk

μ(x) actually coincides with Vk(x,μ). This proves
the continuity of Vk. �

We are going to focus on the continuity of the extended average payoff (8). To
begin with, we shall use a characterization of this criterion, whose proof is identical
to that in [14, Lemma 4.1] (see also [9, Proposition 5.1]).

Proposition 4 (Poisson equation). For each k = 1,2, and each fixed strategy μ ∈Γ ,
we denote by gk(μ) :=

∫
Rm rk(y,μ)ημ(dy). Then, under the Assumptions 1, 2, 3, and

4, there exists a function ϕk
μ ∈W2,p(Rn)∩Bw(R

m), such that the pair (gk(μ),ϕk
μ)

satisfies the so-named Poisson equation

gk(μ) = rk(x,μ)+Lμ ϕk
μ(x), k = 1,2, x ∈ Rm, (14)

as long with the transversality condition∫
Rm

ϕk
μ(x)ημ(dx) = 0. (15)

Moreover, gk(μ) is equal to the extended average payoff Jk(x,μ), for all x ∈ Rm.

Now let us show the continuity of gk(μ):

Proposition 5 (Continuity of gk). For k = 1,2, the mapping μ �−→ gk(μ) is contin-
uous on Γ .

Proof. The proof is similar to that given in Proposition 3. Indeed, take again a ball
BR for some R > 0 and use μn ∈ Γ such that μn

W→ μ . By Proposition 4, for each
n the pair (gk(μn),ϕk

μn) satisfies the equation (14) with ϕk
μn ∈W2,p(Rm)∩Bw(R

m).
This equation in terms of operator L μn

α in (30) becomes

gk(μn) = L μn
0 ϕk

μn(x). (16)

We will check that hypotheses (a)-(e) of Theorem 2 are satisfied. For this end, note
by Assumption 3(b) and Proposition 4, that the functions rk(·,μn) and ϕk

μn are both
in Bw(R

m). Thus, using again the result in [13, Theorem 9.11], we can ensure the
existence of some C̄0 (independent of R) such that

||ϕk
μn ||W2,p(BR)

≤ C̄0(||ϕk
μn ||Lp(B2R) + ||rk(·,μn)||Lp(B2R)

≤ C̄0(M1||w||Lp(B2R) +M||w||Lp(B2R))

≤ C̄0(M1 +M)|B2R|1/p max
x∈B2R

w(x)< ∞, (17)

where |B2R| is defined as in the proof of Proposition 3 and M1 is some given con-
stant. The hypotheses (a) and (b) follows from (16) and (17), respectively. As for
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part (c), we take ξn = gk(μn) and noting that |gk(μn)| ≤ Md/c (see Remark 4(b)),
we get the existence of a constant gk such that gk(μn)→ gk (under a suitable sub-
sequence), hence part (c) of Theorem 2 trivially holds. Also, part (d) is satisfied by
taking αn ≡ 0. Part (e) is part of our hypotheses. In this way, Theorem 2 ensures
the existence of a function ϕk

μ ∈W2,p(BR) together with a subsequence {n j} such

that ϕk
μn j

(·)→ ϕk
μ(·) uniformly in BR and pointwise on Rm as j → ∞ and μn j

W→ μ .

Moreover, ϕk
μ satisfies

gk = rk(x,μ)+Lμ ϕk
μ(x) = 0, x ∈ BR. (18)

Since the radious R > 0 was arbitrary, we can extend our analysis to all of x ∈ Rm.
Finally, let ϕk

μ(·) be the bias function of μ , see [9, Definition 5.1]. By [9, Propo-
sition 5.1], the pair (gk(μ),ϕk

μ(·)) is the unique solution of the Poisson equation
(14), i.e., ϕk

μ(·) = ϕk
μ(·)+ c for some constant c ∈ R, and gk = gk(μ). This implies

that
gk(μ) = rk(·,μ)+L μ ϕk

μ(x) = 0 x ∈ Rm.

Furthermore, [9, Proposition 5.1] also ensures that the bias ϕk
μ(·) satisfies the

transversality condition (15). Hence, a simple use of Proposition 4 provides us the
continuity of the mapping μ �−→ gk(μ) on Γ . �

4 Correlated equilibria

As mentioned in [20], a correlated strategy limits the freedom of the players in
selecting their strategies, because a process of pre-play communication is needed to
carry out a correlated strategy. However, any player is free to choose any strategy,
regardless of the results of the communication process.

Suppose that a correlated strategy μ ∈Γ is fixed by the players during a pre-play
communication process. Then players make their final decisions independently of
each other. As a consequence, we obtain the following cases.

1. Both players accept μ ∈ Γ , then the system (1) evolves by applying the control
strategy μ .

2. Both players do not accept μ ∈Γ , then the system (1) evolves according to some
(π1,π2) ∈ Π1 ×Π2 ⊂ Γ .

3. Player 1 does not accept μ ∈ Γ and decides to use a stationary randomized
strategy π1 ∈ Π 1 instead, while player 2 approves the use of μ . Then, π1 and
μ are taken into account and the system (1) evolves with the control strategy
(π1,μ2) ∈ Π1 ×Γ2 ⊂ Γ , with μ2 as the marginal distribution of μ on U2.

4. Player 2 does not accept μ ∈ Γ and decides to use a stationary randomized
strategy π2 ∈ Π 2 instead, while player 1 approves the use of μ . Then, π2

and μ are taken into account and the system (1) evolves according to the pair
(μ1,π2) ∈ Γ1 ×Π2, with μ1 as the marginal distribution of μ on U1.



Correlated Equilibria for Infinite Horizon Nonzero-Sum Stochastic Differential Games 193

The next definition extends the concept of a Nash equilibrium for the larger set
of join strategies Γ .

Definition 9 (Correlated equilibria). Let Fk be either payoffs Vk or Jk, defined in
(6) and (8), respectively. A correlated randomized strategy μ ∈ Γ is a correlated
equilibrium for the extended payoff Fk if and only if

F1(x,μ)≥ F1(x,π1 ×μ2) ∀ π1 ∈ Π1,

F2(x,μ)≥ F2(x,μ1 ×π2) ∀ π2 ∈ Π2.

Existence of correlated equilibria always exists under our present hypotheses as
it is established next:

Theorem 1. (a) Under Assumptions 1, 2, and 3, there exists a correlated equilib-
rium associated to the payoff Vk in (6).

(b) If Assumption 4 is also considered, then the existence of a correlated equilib-
rium for the payoff Jk in (8) is also achieved.

To prove this theorem, we are going to describe some auxiliary results.
The auxiliary zero-sum game: Consider the set

Θ =
{
(π1 ×π2,λ1,λ2) : λ1,λ2 > 0, λ1 +λ2 = 1, π1 ×π2 ∈ Π1 ×Π2

}
.

We assume that we have two virtual players, say players A and B, so that the set of
correlated randomized strategies Γ is the set of strategies for player A, whereas that
Θ is the set of strategies for player B. The common payoff for both players is given
by

GF(x,μ,π1 ×π2,λ1,λ2) :=

λ1

[∫
U1×U2

F1(x,u1,u2)μ(d(u1,u2)|x)−
∫

U1×U2

F1(x,u1,u2)π1(du1|x)μ2(du2|x)
]

+λ2

[∫
U1×U2

F2(x,u1,u2)μ(d(u1,u2)|x)−
∫

U1×U2

F2(x,u1,u2)μ1(du1|x)π2(du2|x)
]
,

(19)

where Fk denotes either Vk or Jk, for k = 1,2 and the subscript F of G simply refers
the dependence of G with the F ′

k s.
In virtue of the notation in (6) or (8), the payoff given in (19) can be rewritten as

GF(x,μ,π1 ×π2,λ1,λ2) = λ1
[
F1(x,μ)−F1

(
x,π1 ×μ2

)]
+ λ2

[
F2(x,μ)−F2

(
x,μ1 ×π2)]. (20)

Value of the game: In zero-sum games, the functions

U(x) := inf
(π1×π2,λ1,λ2)∈Θ

sup
μ∈Γ

GF(x,μ,π1 ×π2,λ1,λ2) and

L(x) := sup
μ∈Γ

inf
(π1×π2,λ1,λ2)∈Θ

GF(x,μ,π1 ×π2,λ1,λ2),
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play an important role. The function L is called the game’s lower value, and U is the
game’s upper value. Clearly, we have L≤ U. If the upper and lower values coincide,
then the game is said to have a value, and the value of the game, denoted as V, is the
common value of L and U, i.e.,

V := L= U.

Definition 10. Let X be a nonempty Hausdorff space and let g : X �→ R be a real-
valued function. We say that g is affine-like function if and only if, for every x1,x2 ∈
X and β ∈ [0,1], there exists xβ ∈ X such that g(xβ ) = βg(x1)+(1−β )g(x2).

The following proposition shows some properties of the payoff functions GV and
GJ .

Proposition 6. (a) Suppose that Assumptions 1, 2 and 3 hold true. Then, the map-
ping μ �→ GV (·,μ, ·, ·, ·) is continuous and affine-like on Γ . Furthermore, the
mapping (π1 ×π2,λ1,λ2) �→ GV (·, ·,π1 ×π2,λ1,λ2) is affine-like on Θ .

(b) If in addition Assumption 4 is satisfied, then the same assertion in (a) is true
for the payoff GJ.

Proof. (a) First, let us prove the continuity: Consider the sequence {μn} ⊂ Γ such
that μn

W→ μ . Observe that

0 ≤ |GV (x,μn,π1 ×π2,λ1,λ2)−GV (x,μ,π1 ×π2,λ1,λ2)|
≤ λ1|V1(x,μn)−V1(x,μ)|+λ2|V2(x,μn)−V2(x,μ)|+λ1|V1(x,π1 ×μ2n)

−V1(x,π1 ×μ2)|+λ2|V2(x,μ1n ×π2)−V2(x,μ1 ×π2)|. (21)

Then, in virtue of Proposition 3, the terms in the right-hand side of (21) converge to
zero as μn

W→ μ . So, GV is continuous in Γ .
On the other hand, it is well-known that the discount payoff Vk can be seen as

a linear mapping between rk and the so-named occupation measure ν [x; μ]; i.e.,
Vk(x,μ) =

∫
rk dν [x; μ], for every x ∈ Rm and μ ∈ Γ , where ν [x; μ] is defined as∫

rk ν [x; μ] = αEμ
x

[∫ ∞

0
e−αt

∫
U1×U2

rk(x(t),u1,u2)μ
(
d(u2,u2)|x(t)

)
dt
]
. (22)

The details of this last fact can be extracted from page 1191 in [11] or from page
102 in [7]. Then by rewritting the payoff function Vk in the way of (22), it can be
proved (see, for instance [11], page 1195) that, for any two strategies μ,μ ∈ Γ and
β ∈ [0,1], there exists another μβ ∈ Γ so that

ν [x; μβ ] = βν [x; μ]+ (1−β )ν [x; μ]. (23)

This last property together with (22) yield that Vk(x,μβ )= βVk(x,μ)+(1−β )Vk(x,μ)
and the choice of μβ is independent of k = 1,2. With the previous ingredients, let
us use the strategy μβ ∈ Γ obtained by the affine-like property for both criteria V1
and V2, for some arbitrary choose of two strategies μ,μ ∈ Γ and β ∈ [0,1]. Then,
the following is satisfied
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GV (x,μβ ,π1 ×π2,λ1,λ2) = λ1
[
V1(x,μβ )−V1

(
x,π1 ×μβ

2 )
]
+

λ2
[
V2(x,μβ )−V2

(
x,μβ

1 ×π2)]
= λ1

[{βV1(x,μ)+(1−β )V1(x,μ)}−V1
(
x,π1 ×μβ

2 )
]
+

+λ2
[{βV2(x,μ)+(1−β )V2(x,μ)}−V2

(
x,μβ

1 ×π2)].
(24)

In addition, by following the same arguments of page 1195 in [11], it can be also
verified that

V1
(
x,π1 ×μβ

2 ) = βV1
(
x,π1 ×μ2)+(1−β )V1

(
x,π1 ×μ2) and

V2
(
x,μβ

1 ×π2)= βV2
(
x,μ1 ×π2)+(1−β )V2

(
x,μ1 ×π2). (25)

Combining (25) with (24) we deduce

GV (x,μβ ,π1 ×π2,λ1,λ2) = βGV (x,μ,π1 ×π2,λ1,λ2)

+(1−β )GV (x,μ,π1 ×π2,λ1,λ2),

for all (π1 ×π2,λ1,λ2) ∈Θ . This proves the affine-like property of GV on Γ .
On the other hand, for any β ∈ [0,1] and any (π1 ×π2,λ1,λ2), (π1 ×π2,λ 1,λ 2)

∈Θ consider the following strategies πk
β ∈ Πk and constants λ β

k ∈ R (k = 1,2):

πk
β :=

βλkπk +(1−β )λ kπk

βλk +(1−β )λ k
, and λ β

k := βλk +(1−β )λ k.

Plugging these elements into GV , it is easy to check that for each μ ∈Γ and x ∈Rm,

GV (x,μ,π1
β ×π2

β ,λ
β
1 ,λ

β
2 ) = βGV (x,μ,π1 ×π2,λ1,λ2)+

(1−β )GV (x,μ,π1 ×π2,λ 1,λ 2).

This proves that GV is affine-like on Θ .
(b) As for the continuity of GJ on Γ , the proof is the same as in part (a), the only

difference lies in replacing Vk by Jk and just use Proposition 5 in lieu of Proposition
3. Furthermore, there are works asserting that the average payoff Jk (k = 1,2) can
be rewritten in terms of an occupation measure ρ[μ]; i.e., for all x ∈ Rm and each
μ ∈ Γ , Jk(x,μ) =

∫
rkdρ[μ], where ρ[μ](dy,du) := ημ(dy)μ(du|y), with ημ being

the invariant measure defined in (9) (for further details see for instance, [2], page
87 or [7], page 91). Using the argumets as in page 92 of [7], we can obtain exactly
the same property as (23) for ρ rather that ν . Then, it is straightforward that the
mapping μ �→ Jk(·,μ) is affine-like on Γ . To prove the affine-like property of GJ ,
we proceed in the same way as (24). We can use also the same procedures of page
92 of [7] to get a similar relation of (25) associated to Jk. These previous properties
would prove that GJ is affine-like on Γ after doing basic estimates. The proof that
GJ is affine-like on Θ is similar to the one presented for GV so we shall omit it. �
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Proposition 7. The upper value U is nonnegative.

Proof. Clearly we know that

sup
μ∈Γ

GF(·,μ,π1 ×π2,λ1,λ2)≥ GF(·,μ,π1 ×π2,λ1,λ2)

∀ μ ∈ Γ , (π1 ×π2,λ1,λ2) ∈Θ .

Then taking in particular μ̂ := π1×π2, we obtain that GF(·, μ̂,π1×π2,λ1,λ2) = 0.
Therefore,

sup
μ∈Γ

GF(·,μ,π1 ×π2,λ1,λ2)≥ GF(·, μ̂,π1 ×π2,λ1,λ2) = 0,

∀ (π1 ×π2,λ1,λ2) ∈Θ .

This implies that

U(·) := inf
(π1×π2,λ1,λ2)∈Θ

sup
μ∈Γ

GF(·,μ,π1 ×π2,λ1,λ2) ≥ 0. (26)

�

Proof of Theorem 1. (a) First note that Proposition 6 gives the hypotheses to get
the Isaac’s condition (see, for instance pages 108-109 in [20])

inf
(π1×π2,λ1,λ2)∈Θ

sup
μ∈Γ

GV (x,μ,π1 ×π2,λ1,λ2) =

= sup
μ∈Γ

inf
(π1×π2,λ1,λ2)∈Θ

GV (x,μ,π1 ×π2,λ1,λ2), x ∈ Rm. (27)

Relations (27) and (26) gives us that

sup
μ∈Γ

inf
(π1×π2,λ1,λ2)∈Θ

GV (x,μ,π1 ×π2,λ1,λ2)≥ 0 ∀ x ∈ Rm.

As μ �→ GV (·,μ, ·, ·, ·) is continuous, then it easy to verify that

μ �→ inf
(π1×π2,λ1,λ2)∈Θ

GV (·,μ,π1 ×π2,λ1,λ2)

is upper semi-continuous. This last property together with the compactness of Γ
imply the existence of μ∗ ∈ Γ (that depends only of x ∈ Rm) such that

GV (x,μ∗,π1 ×π2,λ1,λ2)≥ 0, ∀ (π1 ×π2,λ1,λ2) ∈Θ , x ∈ Rm. (28)

In virtue of (28), if we let λ2 → 0 in (19) or (20) (yielding that λ1 → 1), we get

V1(x,μ∗)−V1(x,π1 ×μ∗
2 )≥ 0, for all π1 ∈ Π 1.

Similarly, by letting λ1 → 0 (yielding that λ2 → 1), we can also deduce
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V2(x,μ∗)−V2(x,μ∗
1 ×π2)≥ 0 for all π2 ∈ Π 2.

Thus, from the Definition 9, μ∗ ∈ Γ becomes a correlated equilibrium.
The proof of part (b) is identical than (a), the only difference lies in the fact that

we need Assumption 4 as an extra hypothesis to guarantee the continuity for GJ . �

Appendix

The main objective of this appendix is to prove that the convergence μn
W→ μ , αn →

α , and hn → h (this later convergence in a suitable sense), yield that, for each k =
1,2,

lim
n→∞

{
rk(·,μn)+Lμnhn −αnhn

}
= rk(·,μ)+Lμ h−αh. (29)

Let O be an open, bounded and connected subset of Rm. We denote the closure
of this set by Ō .

For every x ∈ Rm, μ ∈ Γ , α > 0, h in W2,p(O), we define

Ψ̂(x,μ,α;h) := rk (x,μ)+
n

∑
i=1

bi(x,μ)
∂h
∂xi

(x)−αh(x),

L μ
α h(x) := Ψ̂(x,μ,α;h)+

1
2

m

∑
i, j=1

ai j(x)
∂ 2h

∂xi∂x j
(x), (30)

where bi is the i-th component of the function b defined in (1) and a as in Assump-
tion 1(d).

The following theorem establishes the limit result referred in (29).

Theorem 2. Let O be a bounded C 2 domain. Suppose that there exist sequences
{hn} ∈W2,p(O), {ξn} ∈ Lp(O), with p > m (m is the dimension of (1)), {μn} ∈ Γ ,
and {αn} ≥ 0, satisfying the following:

(a) L μn
αn hn = ξn in O for n = 1,2, . . .

(b) There exists a constant M̃1 such that ‖hn‖W2,p(O) ≤ M̃1 for n = 1,2, . . .
(c) ξn converges in Lp(O) to some function ξ .
(d) αn converges to some constant α ≥ 0.
(e) μn

W→ μ ∈ Γ .

Then, there exist a function h ∈W2,p(O) and a subsequence {nr} ⊂ {1,2, . . .} such
that hnr → h in the norm of C1,η(Ō) for η < 1− m

p as r → ∞. Moreover,

L μ
α h = ξ in O. (31)

Proof. We first show that there exist a function h in W2,p(O) and a subsequence
{nr} ⊂ {1,2, ...} such that, as r → ∞, hnr → h weakly in W2,p(O) and strongly in
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C1,η(Ō). Namely, since W2,p(O) is reflexive (see [1, Theorem 3.5]), then, using
Theorem 1.17 in the same reference [1], the ball

H :=
{

h ∈W2,p(O) : ‖h‖W2,p(O) ≤ M̃
}

(32)

is weakly sequentially compact. On the other hand, since p>m, by [1, Theorem 6.2,
Part III], the imbedding W2,p(O) ↪→C1,η(Ō), for 0 ≤ η < 1− m

p is compact; hence,
it is also continuous, and thus the set H in (32) is relatively compact in C1,η(Ō). This
fact ensures the existence of a function h ∈ W2,p(O) and a subsequence {hnr} ≡
{hn} ⊂ H such that

hn → h weakly in W2,p(O) and strongly in C1,η(Ō). (33)

The second step is to show that, as n → ∞,∫
O

g(x)Ψ̂(x,μn,αn, ;hn)dx →
∫

O
g(x)Ψ̂(x,μ,α;h)dx for all g ∈ L1(O). (34)

To this end, given x ∈ O , k = 1,2, functions h ∈ W2,p(O) and hn ∈ H, μ,μn ∈ Γ ,
and constants αn, α ≥ 0, the following holds for all g ∈ L1(O).

∣∣∣∣∫
O

g(x)Ψ̂(x,μn,αn;hn)dx−
∫

O
g(x)Ψ̂(x,μ,α;h)dx

∣∣∣∣
≤
∣∣∣∣∫

O
g(x) [rk(x,μn)− rk(x,μ)]dx

∣∣∣∣
+

m

∑
i=1

∣∣∣∣∫
O

g(x)
[

bi(x,μn)
∂hn

∂xi
(x)−bi(x,μ)

∂h
∂xi

(x)
]

dx
∣∣∣∣

+

∣∣∣∣∫
O

g(x) [αnhn(x)−αh(x)]dx
∣∣∣∣

≤
∣∣∣∣∫

O
g(x)rk(x,μn)dx−

∫
O

g(x)rk(x,μ)dx
∣∣∣∣

+
m

∑
i=1

∣∣∣∣∫
O

g(x)
∂hn

∂xi
(x) [bi(x,μn)−bi(x,μ)]dx

∣∣∣∣
+

m

∑
i=1

∣∣∣∣∫
O

g(x)bi(x,μn)

[
∂hn

∂xi
(x)− ∂h

∂xi
(x)

]
dx
∣∣∣∣+ |αn −α|

∣∣∣∣∫
O

g(x)hn(x)dx
∣∣∣∣

+α
∣∣∣∣∫

O
g(x) [hn(x)−h(x)]dx

∣∣∣∣ .
Since the embedding W2,p(O) ↪→ C1,η(Ō) is continuous, hypothesis (b) together
with the definition of the norm ‖ ·‖C1,η (Ō), imply that there is a constant M̄ > 0 such
that

max
{
|hn|, max

1≤i≤m

∣∣∣∣∂hn

∂xi

∣∣∣∣}≤ ‖hn‖C1,η (Ō) ≤ M̄ ‖hn‖W2,p(O) ≤ M̄M̃1.
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On the other hand, it is easy to verify that Assumptions 1 and 3, yield that
|b(·,μ)|+ |rk(·,μ)| ≤ K(Ō). Hence,∣∣∣∣∫

O
g(x)Ψ̂(x,μn,αn;hn)dx−

∫
O

g(x)Ψ̂(x,μ,α;h)dx
∣∣∣∣≤∣∣∣∣∫

O
g(x)rk(x,μn)dx−

∫
O

g(x)rk(x,μ)dx
∣∣∣∣

+M̄M̃1m max
1≤i≤m

∣∣∣∣∫
O

g(x) [bi(x,μn)−bi(x,μ)]dx
∣∣∣∣

+‖g‖L1(O) ‖hn −h‖C1,η (Ō) (mK(Ō)+α)+ |αn −α|M̄M̃1 ‖g‖L1(O) . (35)

Observe that rk(·,μ) k = 1,2, and bi(·,μ) i = 1, · · · ,m are bounded on Ō . Then,
hypotheses (d) to (e), together with (33), lead to the right hand side of (35) goes to
zero as n → ∞, thus proving (34).

The existence of the constant K(Ō) used for the analysis in (35) can be also used
to get also that |σ(x)| ≤ K(Ō), then we can affirm that for each g in L

p
p−1 (O),

1
2

∣∣∣∫O g(x)
[
∑m

i, j=1 ai j(x) ∂ 2hn
∂xi∂x j

(x)−∑m
i, j=1 ai j(x) ∂ 2h

∂xi∂x j
(x)

]
dx
∣∣∣

≤ m2

2

[
K(Ō)

]2 ∑m
i, j=1

∣∣∣∫O g(x)
[

∂ 2hn
∂xi∂x j

(x)− ∂ 2h
∂xi∂x j

(x)
]

dx
∣∣∣ . (36)

Thus the weak convergence of {hn} to h in W2,p(O) yields that the right–hand side
of (36) converges to zero as n → ∞. Notice also that the convergence of (34) is
also valid for all g ∈ L

p
p−1 (O). The reason is because L

p
p−1 (O)⊂ L1(O) (recall the

Lebesgue measure on O is bounded). This last fact together with (36) and hypothesis
(c), yield that for every g in L

p
p−1 (O),∫

O
g(x)

[
L μ

α h(x)−ξ (x)
]

dx = lim
n→∞

∫
O

g(x)
[
L μn

αn (x)−ξn(x)
]

dx = 0.

The above limit, along with Theorem 2.10 in [18], implies (31), i.e.

L μ
α h = ξ in O.

This completes the proof. �
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