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Abstract In this chapter, we present recent developments in using the tools of
continuous-time Markov chains for the valuation of European and path-dependent
financial derivatives. We also survey results on a newly proposed regime switching
approximation to stochastic volatility, and stochastic local volatility models. The
presented framework is part of an exciting recent stream of literature on numerical
option pricing, and offers a new perspective that combines the theory of diffusion
processes, Markov chains, and Fourier techniques. It is also elegantly connected to
partial differential equation (PDE) approaches.

1 Introduction

Markov processes are ubiquitous in finance, as they provide important building
blocks for constructing stochastic models to describe the dynamics of financial as-
sets. A representative Markov process that is widely used is the diffusion process,
which is characterized through a stochastic differential equation (SDE). Diffusion
processes evolve continuously in time and in state, and there is usually limited ana-
lytical tractability except for a few very special cases, thus an efficient and accurate
approximation method is needed. In general, there are two possible directions for
approximating a diffusion process:
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1. Time discretization: discretize the time space into a finite discrete grid of time
points, while preserving the continuous state space of the diffusion process, and
then approximate the evolution of the diffusion process through time-stepping.
Representative methods in this category include the Euler discretization as well
as higher order time-stepping schemes (see [36] for a comprehensive account
of existing methods), and the Ito-Taylor expansion method which is based on
iterative applications of the Dynkin formula and fundamental properties of in-
finitestimal generators of the diffusion process.

2. State discretization: discretize the state space into a finite discrete grid of spa-
tial points, while preserving the continuous time dimension of the diffusion
process, and then approximate the evolution of the diffusion process through a
continuous-time Markov chain (CTMC). A CTMC is a natural approximation
tool here as it evolves continuously in time, and its transition density can be
completely characterized through the rate matrix or generator matrix, which is
a (discrete-state) analogue to the infinitestimal generator of the diffusion pro-
cess.

There are pros and cons associated with either of the above two possible approxi-
mation methods, which will be discussed in details in subsequent sections. The pre-
vious (finance and economics) literature has mainly focused on the first approach,
which we briefly summarize below:

• The Euler discretization has been very popular in numerical solutions of SDEs
arising in finance, e.g. the Cox-Ingersoll-Ross (CIR) process. The convergence
properties of the discretization scheme, and careful handling of the boundary
behaviors have been discussed in the literature, see [35]. The Euler method
is also the pillar for the “simulated maximum likelihood estimation” (SMLE)
popular in financial econometrics, see [22]

• The Ito-Taylor expansion is based on a small-time expansion, and it has been
applied in parameter estimation of diffusion process (see [3]), and options pric-
ing (see [46]).

On the other hand, the second approximation approach has a relatively thinner
literature and has received much less attention from academics in finance and eco-
nomics. Thus it is our focus to survey the recent literature on CTMC approximation
methods applied to options pricing. A brief summary of the extant literature is as
follows:

• The Markov chain approximation method was first developed in the setting of
general stochastic control theory, for which it yields tractable solutions for gen-
eral Markovian control problems, see [44]. Note, however, that the main tool
employed there is the discrete-time Markov chain (DTMC). The more specific
application to finance (e.g. the Merton optimal investment and consumption
problem) has been considered in [55].

• In the realm of options pricing, to the best of authors’ knowledge, the DTMC
method was first applied in the GARCH option pricing setting, see [19, 20].
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• The above previous literature concerns the DTMC method, and some of the
more recent literature considers applying the CTMC method to both path-
independent and path-dependent options pricing, see some of the recent de-
velopments in [8, 14, 54, 71, 72, 73]. Rigorous convergence analysis for the
CTMC approximation method has been established in [47, 70] for the case
of path-independent options, and in [53, 61] for the case of a class of path-
dependent options (e.g. arithmetic Asian option and step option, which is based
on the occupation time.).

Regime switching models are popular in financial applications, such as time se-
ries modeling (see [29]), interest rate/foreign exchange rate movements (see [4]),
credit rating transitions (see [6]), economic booms and recessions (see [39]), stock
trading (see [74]) etc. It has also been popular in the options pricing and portfolio
choice literature, see for example [75, 76]. Note that most of the previous literature
mentioned above concerns the regime switching model itself. Regime switching
models are closely related to the continuous-time Markov chain. Intuitively, we can
think of a CTMC as a stochastic process making transitions among a finite number
of “regimes”. Regime switching models also reflect the idea of “random volatility”,
since we can understand the different regime levels as corresponding to different
volatility levels for the financial asset of interest. Motivated by these two insights,
there is recent development in the literature utilizing the regime switching model
as an approximation tool for continuous stochastic volatility models. The method
reduces a multi-factor stochastic volatility model to a one-dimensional diffusion
model subject to regime switching, and handy analytical expressions have been de-
veloped, see [12, 13, 14, 15, 43].

There are two major components in this chapter: first we shall describe the main
ideas behind utilizing a CTMC in approximating a diffusion process, and then dis-
cuss the applications and survey the recent relevant literature; second, we depict the
main ideas on regime switching approximation to continuous stochastic volatility
and stochastic local volatility models.

The chapter is organized as follows: Section 2 recalls the basic theory underlying
the use of a continuous time Markov chain to approximate a general diffusion pro-
cess, and then presents the main method for approximating time-changed Markov
processes. Section 3 presents the method for approximating general stochastic
volatility models by a Markov modulated diffusion process, and furthermore by a
Markov modulated CTMC for the case of stochastic local volatility models. Section
4 concludes the chapter.

2 Univariate Markov Chain Approximations

Early research in Markov chain based option pricing [9] dealt with approximating
the univariate diffusion dynamics for an underlying risky asset. Our treatment starts
with this case, and builds gradually to more complex dynamics, including general
continuous stochastic local volatility models.
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2.1 Markov Processes, Diffusion Models, and Option Pricing

Assume that we are equipped with a complete filtered probability space (Ω ,F ,F,P),
where F = {Ft}t≥0 denotes the standard filtration, and here P is the risk-neutral
measure under which we price options. Consider a real-valued (time-homogeneous)
diffusion process {St}t≥0, which satisfies the following stochastic differential equa-
tion:

dSt = μ(St)dt +σ(St)dWt , 0 ≤ t ≤ T, (1)

where Wt is a standard Brownian motion, and μ,σ : R → R are respectively drift
and diffusion functions satisfying appropriate regularity conditions so that (1) has
a unique solution1. The random process S = {St}t≥0 belongs to Markov process
class, and is often used to model the price evolution of a risky asset, for example the
stock price or the commodity price. For a rigorous and more in depth treatment of
Markov processes, the reader is invited to refer to the monograph [24]. The diffusion
characterized by (1) nests some important models in finance as special cases, such
as the geometric Brownian motion (Black-Scholes model), the Cox-Ingersoll-Ross
(CIR) process, etc. Assume that the state space for S is given by S = [0,∞), and
this is intuitive because most financial assets are positive valued. In general, we are
interested in computing the following quantity:

E[H(ST )|S0], (2)

which is a conditional expectation for some payoff function H under the risk-neutral
probability measure P. For example, when H(s) = max(s − K,0) = (s − K)+, it
represents the payoff of a European call option with expiry T , and a strike price
K > 0. This is a representative example for path-independent payoffs. As for path-
dependent derivatives, [54] consider the expectation of the following form

E[g(ST )I{τA>T}+H(SτA)I{τA≤T}|S0] (3)

with τA = inf{t ≥ 0 : St ∈ A} denoting the first time that S enters the set A, which
represents knock-in or knock-out events depending on contract specifications. As-
suming that A represents knock-out events, then (3) concerns an option that consists
of a payment g(ST ) in the case the contract has not been knocked out by time T ,
and a rebate H(SτA) if it has. This type of (path-dependent) payoff is commonly en-
countered in the options market. Other variants of barrier options include the down-
and-out, up-and-out, and double knock-out options. In particular, the expectation in
(2) is just a special case of (3) when A = /0.

For some special cases in which the probability density function of S is known,
it is possible to obtain exact analytical expressions for E[H(ST )|S0]. However, we

1 Depending on particular applications, it can be either a strong or weak solution. Usually
Lipschitz-type conditions are required for there to exist a unique strong solution (c.f. [33]). As for a
unique-in-law weak solution to exist, the Engelbert-Schimidt condition (c.f. [38]) may be imposed.
Since we are mainly interested in applications to options pricing, the existence of a unique-in-law
weak solution is sufficient for our discussions.
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note that, in general, it is difficult to compute E[H(ST )|S0] exactly for a general
diffusion model. As a result, various numerical methods are considered. Some rep-
resentative methods are numerical PDE methods (through the link provided by the
Feynman-Kac theorem), Monte Carlo simulation methods, Fast Fourier Transform
(FFT) methods (applicable only when the characteristic function of S is known), to
name just a few. In this chapter, we consider an alternative yet very general approach
through the use of continuous-time Markov chain approximations, which has been
recently proposed in [54, 14, 49, 15] and has received appreciable attention. Next,
for a bounded Borel function H, define

PtH(x) := Ex[H(St)] := E[H(St)|S0 = x]. (4)

Recall that S satisfies the Markov property:

E[H(St+r)|Ft ] = PrH(St). (5)

From (5), by taking the expectation on both sides, it is easy to see that the family of
(pricing) operators (Pt)t≥0 forms a semigroup:

Pt+rH = Pt(PrH), ∀r, t ≥ 0, and P0H = H. (6)

Let C0(S ) denote the set of continuous functions on the state space S that
vanish at infinity. To guarantee the existence of a version of S with cádlág paths
satisfying the (strong) Markov process, we assume the following Feller’s properties:

Assumption 1 S = {St}t≥0 is a Feller process on S . That is, for any H ∈C0(S ),
the family of operators (Pt)t≥0 satisfies

• PtH ∈C0(S ) for any t ≥ 0;
• limt→0 PtH(x) = H(x) for any x ∈ S .

The family (Pt)t≥0 is determined by its infinitesimal generator L , where

L H(x) := lim
t→0+

PtH(x)−H(x)
t

, ∀H ∈C0(S ). (7)

For the diffusion given in (1), we have

L H(x) =
1
2
σ2(x)

∂ 2H
∂x2 +μ(x)

∂H
∂x

. (8)

For example, the standard Black-Scholes-Merton (BSM) model is described by
μ(S) = (r− q) · S and σ(S) := σ · S, where r,q ∈ R represent the continuous rates
of interest and dividends, respectively, and by abuse of notation σ is a constant
volatility rate.



120 Zhenyu Cui, J. Lars Kirkby and Duy Nguyen

2.2 Markov Chain Approximation

With the basic setup in previous section, we shall discuss the construction of ap-
proximating CTMC for a particular diffusion process. In the literature, there have
been various methods in the constructions, and they mainly differ in the allocation
schemes of grid points to “fill up” the state space, see [49]. In this section, we shall
introduce a particular method to construct the approximating CTMC, and the issue
of optimal design of grids is discussed in Section 2.3. This work considers two main
directions in the CTMC approximation literature. In the first case we will approx-
imate the underlying process St directly, and we shall use n̄ to denote the number
of states in the CTMC approximating the underlying asset process. In the second
case we approximate a related (latent) stochastic factor, such as stochastic volatility,
and will use m̄ to denote the number of states in the approximating CTMC of that
stochastic factor. We start with the first approach.

Given the diffusion characterized by (1), the goal is to construct a continuous-
time Markov chain {Sn̄

t }t≥0 taking values in Sn̄ = {s1,s2, . . . ,sn̄}- the finite state-
space set, and having its dynamics “close” to those of St . Then, Sn̄

t will be used in
approximating quantities involving the original process St , such as expected values
of path functionals. For the Markov chain Sn̄

t , its transitional dynamics are described
by the rate matrix Q = [qi j]n̄×n̄ ∈ Rn̄×n̄, whose elements qi j satisfy the q-property:
(i) qii ≤ 0, qi j ≥ 0 for i �= j, and (ii) ∑ j qi j = 0,∀i = 1,2, . . . , n̄. In terms of qi j’s, the
transitional probability of the CTMC Sn̄

t is given by:

P(Sn̄
t+Δ t = s j|Sn̄

t = si,Sn̄
t ′ ,0 ≤ t ′ ≤ t) = δi j +qi jΔ t +o((Δ t)2), (9)

where in the above expression δi j denotes the Kronecker delta. In particular, the
transitional matrix is represented in the form of a matrix exponential:

P(Δ t) = exp(QΔ t) =
∞

∑
k=0

(QΔ t)k/(k!), Δ t > 0. (10)

Here the finite set Sn̄, which is the state space of the CTMC {Sn̄
t }t≥0, is carefully

chosen such that the state space of St is sufficiently covered. Details on how to
choose the grid points s1,s2, . . . ,sn̄ are given in Section 2.3. In addition, the con-
struction must guarantee that Sn̄

t weakly converges to its continuous counterpart St
under appropriate technical conditions. This is particularly helpful since it guaran-
tees that the desired expected values of well behaved path functionals converge to
the true values as the grid points are made denser in the space of St .

To this end, for each i ∈ {1,2, . . . , n̄− 1} define ki := vi+1 − vi, and let μ+(μ−)
denote respectively the positive (negative) part of the function μ . A non-uniform
finite discretization of L H(x) in (8) is given by:
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μ(si)

( −ki

ki−1(ki−1 + ki)
H(si−1)+

ki − ki−1

kiki−1
H(si)+

ki−1

ki(ki−1 + ki)
H(si+1)

)
+
σ2(si)

2

(
2

ki−1(ki−1 + ki)
H(si−1)− 2

ki−1ki
H(si)+

2
ki(ki−1 + ki)

H(si+1)

)
= qi,i−1H(si−1)+qi,iH(si)+qi,i+1H(si+1) =: L nH(s). (11)

where qi, j’s are chosen as in [49], which is recalled here

qi j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ−(si)

ki−1
+
σ2(si)− (ki−1μ−(si)+ kiμ+(si))

ki−1(ki−1 + ki)
, if j = i−1,

μ+(si)

ki
+
σ2(si)− (ki−1μ−(si)+ kiμ+(si))

ki(ki−1 + ki)
, if j = i+1,

−qi,i−1 −qi,i+1, if j = i,
0, if j �= i−1, i, i+1.

(12)

Here k := {k1,k2, . . . ,kn̄−1} is chosen such that

0 < max
1≤i≤n̄−1

{ki} ≤ min
1≤i≤n̄

{
σ2(si)

|μ(si)|
}
.

With this choice of ki’s, Q = [qi j]n̄×n̄ is a tridiagonal matrix. Moreover, we have

σ2(si)≥ max
1≤i≤n̄−1

{ki} · |μ(si)| ≥ max
1≤i≤n−1

{ki} · (μ+(si)+μ−(si))

≥ ki−1μ−(si)+ kiμ+(si). (13)

As a result, the q-property is satisfied: qi j ≥ 0,∀1 ≤ i �= j ≤ n̄, and ∑n̄
j=1 qi j = 0, i =

1, . . . , n̄. In addition, we have the following property regarding the diagonalizability
of the generator matrix Q = [qi j]n̄×n̄.

Theorem 1. (Diagonalization [15]) The tridiagonal matrix Q defined in (12) is
diagonalizable. In addition, Q has exactly n̄ simple real eigenvalues satisfying
0 ≥ λ1 > λ2 > .. . > λn̄. Hence, the transitional matrix P(t) has the following de-
composition:

P(Δ t) = ΓΓΓ eD0Δ tΓΓΓ−1 with Q = ΓΓΓD0ΓΓΓ−1, (14)

where D0 := diag(λ1,λ2, . . . ,λn̄) is a diagonal matrix of the eigenvalues of Q, ΓΓΓ =
(γi j)i, j=1,...,n̄ is a matrix whose columns are the corresponding eigenvectors, and we
write ΓΓΓ−1 = (γ̃i j)i, j=1,...,n̄.

Furthermore, under some appropriate conditions, it can be shown that Sn̄
t con-

verges weakly to St as n̄ → ∞. More specifically, there is the following result.

Theorem 2. (Weak convergence [54]) Let S be a Feller process whose infinitesimal
generator L does not vanish at zero and infinity. Let Sn̄

t be the continuous time
Markov chain with the generator given in (11). Assume that maxs∈Sn̄ |L H(s)−
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L n̄H(s)| → 0 as n̄ → ∞ for all functions H in the core of L and lims→0+ L H(s) =
0, then Sn̄

t converges weakly to St as n̄ → ∞. That is, E[H(Sn̄
T )|S0] → E[H(ST )|S0]

for all bounded continuous functions H.

As an illustration, consider the value of an European option e−rTE[H(ST )|S0]
with the payoff function H(x) = (x−K)+ for a call option and H(x) = (K − x)+

for a put option. Assume that S0 = si ∈ Sn̄, i.e., the initial value of the stock price
belongs to the state space of the CTMC, for 1 ≤ i ≤ n̄ let eeei denote the column
vector of size n̄ having the value 1 on the i-th entry and 0 elsewhere; eee′i denotes the
transpose of eeei. We have the following two results for the applications respectively
to path-independent and path-dependent options; more details can be found in [15].

Theorem 3. (European Option) The value of a European option written on ST can
be approximated by

E[e−rT H(ST )|S0 = si]≈ e−rT eee′i exp(QT )HHH(Sn̄
T ),

where HHH(Sn̄
T ) is an n̄×1 vector whose jth entry is given by H(s j).

Theorem 4. (Bermudan Option) Let Δ = T/M, where M is the number of monitor-
ing dates, and assume that S0 = si. The approximate value of a Bermudan option
with monitoring dates t0 < t1 < .. . < tM is evaluated recursively by{

BM = HHH(Sn̄
T ),

Bm = max{e−rΔ eee′i exp(QΔ)Bm+1,HHH(Sn̄
T )},m = M−1,M−2, . . . ,0.

(15)

2.3 Grid and Boundary Design

In this section, we shall describe the detailed construction of the grids, and hence the
state space of the approximating CTMC. As previously mentioned, there are a few
ways to generate the grid points, for example, a uniform grid can be constructed
from two pre-chosen left and right boundary values s1 and sn̄, and then inserting
equally-spaced grid points in between. However, intuitively the uniform grid should
not perform very well, and the reason is that it may not be equally likely for the
stochastic process to visit each point in its state space. For example, consider the
CIR process, which is mean-reverting, and by its mean-reverting property it tends
to revert to its mean level either from above or below in equilibrium. Thus it is
more likely for the CIR process to visit its long-term mean level rather than the two
boundary points. This indicates that we shall insert more grid points around places
in the state space that are more often visited, i.e., there are dense clusters of grid
points in the state space, and in general this leads to a non-uniform grid.

In the following, we construct a non-uniform grid by carefully choosing the ter-
minal values s1 and sn̄ so that the state space of St is sufficiently covered and we
manage to place more points around the important values (for example, around S0).
The choice of s1 and sn̄ depends on the boundary condition of the diffusion process.
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Assume that the state space of the diffusion is given by S = (e1,e2), then we usu-
ally take s1 = e1 and sn̄ = e2. For example, in the CIR model, S = [0,∞), and we
take s1 = 0 and sn̄ = L, where L is chosen sufficiently large. Note that the detailed
classification of the exact properties of the two boundaries (e.g. as inaccessible, exit
or regular) does not impact our choices of s1 and sn̄. One advantage of choosing s1
and sn̄ according to the boundaries of St is that we can guarantee that the approx-
imating CTMC has the same boundary for its state space. This indicates one clear
advantage of the CTMC approximation method over time-discretization methods
such as the Euler time-stepping method. It is well-known in the literature (see [52])
that the Euler time-stepping may yield a boundary bias that is hard to quantify. The
reason behind this is that the approximating process from the Euler time-stepping
may no longer have similar boundary behaviors as the original process.

After we have fixed the left and right boundaries of the grid, what remains is to
determine the spacing of the grid points. To this end, define two constants2 γ > 0
and s̄ε > 0, then we fix t = T/2, and center the grid about the mean of the process
St by: s1 := max{s̄ε , μ̄(t)− γσ̄(t)} if the domain of St is positive; otherwise s1 :=
μ̄(t)− γσ̄(t). We next choose sn̄ := μ̄(t)+γσ̄(t), and here we have defined μ̄(t) :=
E[St |S0] and σ̄(t) as the standard deviation conditional3 on S0. Finally, we generate
s2,s3, . . . ,sn̄−1 using the following procedure:

si = S0 + ᾱ sinh
(

c2
i
n̄
+ c1

(
1− i

n̄

))
, i = 2,3, . . . , n̄−1,

where

c1 = arcsinh
(

s1 −S0

ᾱ

)
, c2 = arcsinh

(
sn̄ −S0

ᾱ

)
for ᾱ < (sn̄−s1). This transformation concentrates more grid points near the critical
point S0, where the magnitude of non-uniformity of the grid is controlled by the
parameter ᾱ . More specifically, a smaller ᾱ results in a more nonuniform grid. For
numerical computations later, we choose ᾱ = (sn̄ − s1)/5. Since S0 is not likely a
member of the variance grid, we can find the bracketing index j0 such that s j0 ≤
S0 < s j0+1. Holding the points s1,s2 constant4, we then shift the remaining points
s j, j ≥ 2 by S0 − s j0 so that s j0 = S0 is now a member of the adjusted grid.

For an illustration, in Figure 1 we consider the case S∈ [s1,s60] = [0,25] and S0 =
12.5. A non-uniform grid of size n̄ = 60 is formed using the procedure described
above. Recall that the non-uniformity of the grid is controlled by the parameter ᾱ:
the smaller the value of ᾱ , the more points are placed densely around S0, which is
evident from the plot of Figure 1. It is noted that non-uniform grid has been used
extensitively in the literate, for example, it has been utilized in forming the PDE grid

2 We can increase γ to make it large enough to sufficiently cover the domain of vt . From numerical
experimentation, we find that γ = 4.5 and and s̄ε = 0.00001 are sufficient for the models considered
in this work.
3 If moments of the variance process are unknown, the grids can be fixed using s1 = β1S0 and
sn̄ = β2S0. For example, we can take β1 = 10−3 and β2 = 4.
4 This keeps an “anchor” at the boundary in the case where S0 ≈ 0.
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(see [63]). Non-uniform grids have also been used in options pricing, for example
in [42] the authors show that non-uniform grid is more favorable as compared to the
uniform grid and helps to improve the rate of convergence. A 2-dimensional plot is
considered in Figure 2.

Rigorous convergence and error analyses for the CTMC approximation method
to option pricing, and the optimal grid design are provided respectively in [47, 70],
to which we refer the reader for more details. Regarding the prices and greeks (delta
and gamma) of continuously-monitored barrier options, we briefly summarize the
main findings in [70]:

1. If there is no grid coinciding with the barrier level, then the convergence can
only be of first order.

2. If the barrier level is part of the grid points, then the convergence is of second
order for call/put type payoffs. For digital type payoffs, it is in general of first
order unless the strike is exactly at the middle two grid points, in which case
there is second order convergence.

3. To summarize, there are the following two conditions necessary and sufficient
for achieving second order convergence for both prices and greeks:

• A grid point falls exactly at the barrier level;
• The strike price is exactly at the middle of two grid points.

Non-uniform grids that satisfy the two conditions in the third item above can be
easily constructed. In particular, the authors of [70] propose a class of piecewise
uniform grids fulfilling these two conditions that further remove convergence oscil-
lations. Hence, Richardson extrapolation can be applied to accelerate convergence
to the third order.

Fig. 1 Nonuniform grid plot with S ∈ [0,25] and n̄ = 60,S0 = 12.5, ᾱ = 25/15.

0 5 10 15 20 25
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2.4 Relation to PDE

The Markov chain approximation corresponds to a state discretization, and it is of
interest to see its connection to discretization methods of PDEs. In [70, 47], the con-
nection is established between the Markov chain approximation techniques and the
numerical solution to classic PDEs (see also [54]). Consider the time-homogeneous
diffusion as in (1), and with natural boundaries5 −∞ ≤ e1 < e2 ≤ ∞. Given a well-
behaved payoff H(·) (for example, continuous on (e1,e2)), the expected value

u(t,x) = Ex[H(St)]

satisfies the following partial differential equation (PDE)

∂tu(t,s) = μ(s)∂su(t,y)+
1
2
σ2(s)∂ssu(t,s), t > 0, s ∈ (e1,e2), (16)

u(0,s) = H(s), s ∈ (e1,e2).

Recall that the continuous process St is approximated by the CTMC Sn̄
t with state

space Sn̄ := {si}n̄
i=1. For ease of exposition, we assume (without loss of generality)

a uniform step size k ≡ ki = si − si−1. A semi-discrete approximation is made using
a central difference discretization in the space of y:

μ(s)∂su(t,s)+
1
2
σ2(s)∂ssu(t,s)

≈ μ(si)
u(t,si+1)−u(t,si−1)

2k
+

1
2
σ2(si)

u(t,si+1)−2u(t,si)+u(t,si−1)

k2 , (17)

with appropriate boundary conditions (e.g. reflecting, killing, or absorbing).
Let uk(t) be the approximate option price based on the discretization in (17).

Then from the work of [54, 47] we have that uk(t) satisfies the following (matrix-
valued) ordinary differential equation (ODE):

d
dt

uk(t) = QQQuk(t), uk(0) = Hk, (18)

where uk and Hk = [H(s1), . . . ,H(sn̄)]
% are Rn̄ column vectors, and Q is the n̄× n̄

tridiagonal generator matrix given (12) with a constant step size k. We can solve the
ODE and represent the solution as matrix exponential:

uk(t) = eQtHk. (19)

Define πkg(.) = (g(y1),g(y2), . . . ,g(yn̄))
T , and ‖A‖∞ =maxi, j |Ai, j|, and consider

the option written on the underlying process St . Let u(·) and uk(·) denote respec-

5 Note that we make the same assumptions (e.g. Assumption 2.1 to 2.3) as in [47], to which we
refer the reader for more details.
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tively the true value and the approximate option value written on St and Sn̄
t , then we

have the following result:

Theorem 5. ([47]) Suppose that H is piece-wise twice continuously differentiable
(i.e., there are only a finite number of points in (e1,e2) where this is not true) and
that at any non-differentiable point s, there exists some δs > 0 such that H is Lips-
chitz continuous in (s−δs,s+δs). Consider k ∈ (0,ε), where ε is sufficiently small
such that ε ≤ δs for all non-differentiable points s. For any t > 0, there is some
constant Ct > 0 independent of k such that

|| uk(t)−πku(t, ·) ||∞ ≤Ctk2. (20)

This establishes the second order convergence from the approximate solution to
the true solution.

2.5 Additive Functionals and Exotic Options

One of the benefits of the CTMC framework is the availability of closed-form pric-
ing formulas given the relative simplicity of a finite state Markov process. Recall
the transitional rate matrix Q and the probability transitional matrix P given in Sec-
tion 2.2. For a function h : R→ R, define a diagonal matrix D := diag(d j j)n̄×n̄ with
d j j = h(s j), j = 1, . . . , n̄. The following Proposition 1 is concerned with the Laplace
transforms of discrete and continuous additive functionals defined therein. In the
following, we use M to denote number of observation points.

Proposition 1. ([14]) Define the additive functionals Bn̄
M and An̄

t for the CTMC Sn̄
t

by:

Bn̄
M :=

M

∑
m=0

h(Sn̄
tm), k ≥ 0, An̄

t :=
∫ t

0
h(Sn̄

u)du, t ≥ 0. (21)

(i) Discrete case: gd(M;x) := Ex

[
e−θBn̄

M

]
= (e−θDP(Δ))Me−θD1, where Δ :=

t/M.

(ii) Continuous case: gc(t;x) := Ex

[
e−θAn̄

t

]
= e(G−θD)t1.

Consider the the following functions which are related to Asian options:

vd(M,K,x) = Ex[(Bn̄
M −K)+], vc(t,K,x) = Ex[(An̄

t −K)+],

where Bn̄
M and An̄

t are defined in (21).

Theorem 6. (Laplace transform of Asian option [14])

(i) Discrete case: Let ld(M,θ ,x) :=
∫ ∞

0 e−θkvd(M,k,x)dk. Then for any complex
number θ satisfying Re(θ)> 0, we have
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ld(M,θ ,x) =
1
θ 2

(
e−θD exp(QΔ)

)M
e−θD111− 1

θ 2 111+
x
θ

1− e(M+1)rΔ

1− erΔ ,

where 111 is the n̄×1 vector with all entries equal to 1.
(ii) Continuous case: Let lc(t,θ ,x) =

∫ ∞
0 e−θkvc(t,k,x)dk. Then for nay complex

number θ satisfying Re(θ)> 0, we have

lc(t,θ ,x) =
1
θ 2 e(Q−θD)t111− 1

θ 2 111+
x

rθ
(ert −1).

We note that the value of a discretely monitored Asian call option is given by
e−rT

M+1 vd(M,(M +1)K,x), and similarly for a continuously monitored Asian call op-
tion. The results from Theorem 6 can be combined with numerical inverse Laplace
transform techniques (see [1]) to price an arithmetic Asian option numerically.

Remark 1. There is a recent ground-breaking paper ([8]) that obtains the double
transforms for the valuation of discretely-monitored and continuously-monitored
arithmetic Asian options in the case when the underlying follows a CTMC. Later,
[18] managed to reduce the double transforms therein to a single Laplace transform,
which yields improved numerical performance. The topic on valuation of Asian
options under different model dynamics has been of interest as reflected in recent
literature, see [42, 25, 41, 10, 37, 11].

3 Regime Switching Approximations

For some applications in finance, such as volatility modeling, it is often the case
that a multi-factor stochastic model is needed. One representative example is the
stochastic volatility model, in which both the stock price process and the stochastic
variance process (latent process that is not directly observable) are following diffu-
sion processes. Due to the leverage effect documented in the equity market, there is
usually a negative correlation between the stock price diffusion process and the vari-
ance diffusion process. It has been a challenge to decouple the non-zero correlation
between the stock price and the volatility when designing approximation schemes.
For example, it is a challenging task when carrying out Euler discretizations to the
system of SDEs in a stochastic volatility model (see [58]).

Previous literature mostly considers the CTMC approximation of a one dimen-
sional diffusion process, and here we shall describe a recent approach, which is
developed in a series of papers ([12, 13, 14]), that has expanded the approach from
univariate processes to cover multi-factor dynamics. It is based on a regime switch-
ing approximation to the stochastic volatility models, and the key insight is to sim-
plify the dynamics in such a way that a regime switching approximation can be
applied.
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3.1 Markov Modulated Dynamics

Regime switching or Markov modulated models are a natural extension of the dy-
namics in (1), allowing for state dependent drift and volatility coefficients. Here the
underlying (modulating) state is governed by a CTMC, {α(t)}t≥0, which takes val-
ues in M := {1,2, . . . , m̄}, and is specified by its generator matrix or rate matrix,
ΛΛΛ = [λi j]m̄×m̄. We denote the underlying process, which is being modulated, by Sm̄

t .
We model the log return process Xm̄

t := log(Sm̄
t /Sm̄

0 ), t ∈ [0,T ] by

dXm̄
t = μα(t)dt +σα(t)dW ∗(t), (22)

where W ∗
t is a standard Brownian motion independent of α(t), μα(t) := r − q −

1
2σ

2
α(t). In particular, regime changes coincide with changes in the state of α(t).

Between state transitions, the asset price is governed by a standard diffusion pro-
cess with constant drift and volatility coefficients. This corresponds to the following
model for the underlying:

dSm̄
t = Sm̄

t (r−q)dt +Sm̄
t σα(t)dW ∗(t). (23)

An important property of regime-switching models is that the characteristic func-
tion (ChF) of the log-return process is available in closed-form. In particular, define
the set of functions

ψ j(ξ ) = iξμ j − 1
2
ξ 2σ2

j , j = 1, . . . , m̄, (24)

which represents the characteristic exponents of Xm̄
t when each of the states is fixed.

Lemma 1. ([7]) For t > 0, the characteristic function of Xm̄
t is given by the following

matrix form

E[exp(iXm̄
t ξ )|α(0) = j0] = eee′j0 exp(t (ΛΛΛ +diag(ψ1(ξ ), . . . ,ψm̄(ξ )))1, (25)

where 1 ∈Rm̄ is a unit (column) vector, and eee j0 ∈Rm̄ is a vector of zeros, except for
the value 1 in the position α(0) = j0.

Our treatment of regime-switching models has been necessarily brief. There are
several excellent further references including the following: [34, 50, 51, 56, 57, 65,
69]. For a comprehensive treatment of regime switching models, and in particular
regime switching diffusion processes and their applications, please refer to mono-
graphs [66, 67, 68].

3.2 Stochastic Volatility

Consider the stochastic volatility model whose dynamics are of the following form:
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dSt
St

= γ(vt)dt +κ(vt)dW (1)
t ,

dvt = μv(vt)dt +σv(vt)dW (2)
t ,

(26)

where E[dW (1)
t dW (2)

t ] = ρdt with ρ ∈ (−1,1) denoting the correlation level be-
tween asset and volatility. For the model considered in (26), we assume that there
exists a constant C > 0 such that for all v1,v2 in the state space of vt

|μv(v1)−μv(v2)|+ |σv(v1)−σv(v2)| ≤C|v1−v2|, (μv(v1))
2+(σv(v1))

2 ≤C(1+v2
1).

The above conditions guarantee that there exists a unique solution vt possessing the
strong Markov property (see [26]). Moreover, we assume that σv(.) and κ(.) are
continuously differentiable, with σv(·)> 0 on the domain of vt .

We sometimes call this model the “linear” stochastic volatility model since the
stock price dynamic is linear in the stock price state variable S. The model (26) is
very general, and encompasses many well-known SV models in the literature. A
representative list of common SV models can be found in Table 1.

Heston dSt = rSt dt +
√

Vt St dW (1)
t r ∈ R

([31]) dVt = η(θ −Vt)dt +α
√

Vt dW (2)
t η ,θ ,α,v0 > 0

3/2 dSt = rSt dt +
√

Vt St dW (1)
t r ∈ R

([45]) dVt =Vt [η(θ −Vt)dt +α
√

Vt dW (2)
t ] η ,θ ,α,v0 > 0

4/2 dSt = rSt dt +St [a
√

Vt +b/
√

Vt ]dW (1)
t r ∈ R

([27]) dVt = η(θ −Vt)dt +α
√

Vt dW (2)
t a,b,η ,θ ,α,v0 > 0

Hull-White dSt = rSt dt +
√

Vt St dW (1)
t r ∈ R

([32]) dVt = αVt dt +βVt dW (2)
t β ,v0 > 0

Stein-Stein dSt = rSt dt +Vt St dW (1)
t r ∈ R

([62]) dVt = η(θ −Vt)dt +βVt dW (2)
t β ,v0 > 0

α-Hypergeometric dSt = rSt dt + eVt St dW (1)
t r ∈ R

([23]) dVt = (η−θeαVt )dt +βVt dW (2)
t β ,v0 > 0

Jacobi dSt = (r−Vt/2)dt +
√

Vt −ρ2Q(Vt)dW (1)
t r ∈ R

([2]) dVt = (η−θeαVt )dt +β
√

Q(Vt)dW (2)
t β ,v0 > 0

Table 1 Some stochastic volatility models. For Jacobi model, we have Q(v) := (v− vmin)(vmax −
v)/(

√
vmax −√

vmin)
2.

In the next subsection, we seek to single out the correlation ρ and decouple the
SDE system in (26).

3.2.1 Decoupled Dynamics

Options pricing in a general stochastic volatility model is notoriously difficult due
to the general correlation structure between the two driving Brownian motions W (1)

t

and W (2)
t . In this section, we will provide a general procedure to decouple the cor-

relation between the two Brownian motions. From the Ito’s lemma, we have
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Fig. 2 Nonuniform grid plot with (S,v) ∈ [0,25]× [0,0.5], n̄ = 60, m̄ = 60,S0 = 12.5,v0 =
0.05, ᾱS = 25/15, ᾱv = 0.5/15.

d log(St) =

(
γ(vt)− 1

2
κ2(vt)

)
dt +κ(vt)dW (1)

t . (27)

Next, define f̂ (x) :=
∫ x

c
κ(u)
σv(u)

du with c being a constant, and

h(x) := L ( f̂ (x)) = μv(x) f̂ ′(x)+
1
2
σ2

v (x) f̂ ′′(x).

Denote f (vt ,v0) := ρ( f̂ (vt)− f̂ (v0)), then we have

d f (vt ,v0) = ρd f̂ (vt) = ρh(vt)dt +ρκ(vt)dW (2)
t . (28)

Finally, define W ∗
t := W (1)

t −ρW (2)
t√

1−ρ2
, then one can easily verify that W ∗

t is a standard

Brownian motion and E[dW ∗
t dW (2)

t ] = 0, i.e., the two Brownian motions W ∗
t and

W (2)
t are independent. Next, we plug (28) into (27), and obtain

d log(St) =

(
γ(vt)− 1

2
κ2(vt)

)
dt +κ(vt)(ρdW (2)

t +
√

1−ρ2dW ∗
t )

=

(
γ(vt)− 1

2
κ2(vt)

)
dt +d f (vt ,v0)−ρh(vt)dt +

√
1−ρ2κ(vt)dW ∗

t .

Denote X̃t := log(St/S0)− f (vt ,v0), then we can rewrite (26) as

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25
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dX̃t =

(
γ(vt)− 1

2κ
2(vt)−ρh(vt)

)
dt +

√
1−ρ2κ(vt)dW ∗

t ,

dvt = μv(vt)dt +σv(vt)dW (2)
t .

(29)

Observe that the two Brownian motions in (29) are independent, and we have
successfully decoupled the correlation structure. We will refer to the process X̃t
which provides the decoupling as the auxiliary process.6

3.2.2 Regime Switching Approximation: Affine Case

Using the continuous time Markov chain approximation in Section 2, we will con-
vert (29) into a regime switching model. More specifically, for m̄ ∈ N+ we will
approximate the variance process vt by another independent finite state Markov
chain αt taking values in the state space M := {1,2, . . . , m̄} with the generator
ΛΛΛ = [λi j]m̄×m̄ obtained as in (12) using the dynamics of vt given in (29). Then the
model in (29) is reduced to

dX̃m̄
t =

(
γ(vαt ))−

1
2
κ2(vαt )−ρh(vαt )

)
dt +

√
1−ρ2κ(vαt )dW ∗

t ,

=: μX (vαt )dt +σX (vαt )dW ∗
t , (30)

and note that notation-wise vm̄
t = vαt , where vαt takes values in Sv := {v1, . . . ,vm̄}.

In particular, the diffusion coefficients depend only on vαt . As with the regime-
switching models discussed in Section 3.1, once ΛΛΛ is determined, X̃ m̄

t can be de-
scribed by its generator in each state, or equivalently by its set of characteristic
exponents

ψ̃ j(ξ ) = iξμX (v j)− 1
2
ξ 2σX (v j)

2, j = 1, . . . , m̄. (31)

From Lemma 1, the ChF of X̃ m̄
t , E (ξ ) = [E j,k], is given by

E (ξ ) := E[exp(iξ X̃ m̄
t )|α(0) = j] = eee′j exp(t (ΛΛΛ +diag(ψ̃1(ξ ), . . . , ψ̃m̄(ξ )))1.

Moreover, we can recover the ChF of the log-return approximation as

Ẽ j,k(ξ ) := E[exp(iξ · log(Sm̄
t /S0))|α(0) = j,α(t) = k]

= E j,k(ξ ) · exp(iξ · f (vk,v j)), (32)

which follows from the original representation X̃t := log(St/S0)− f (vt ,v0). The
availability of a closed form ChF is a key advantage of the approximation frame-
work, as it enables the use of highly efficient Fourier transform based approaches,
which we demonstrate in Section 3.2.3 for barrier options.

6 We note that the extension of this procedure to processes with jumps is straightforward.
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3.2.3 Recursive Option Pricing under Stochastic Volatility

Provided the decoupled regime-switching dynamics in (30), Lemma 1 provides a
closed-form characteristic function, which enables option pricing via Fourier tech-
niques. As an example, consider a barrier option with terminal payoff G(XT ) =
H(S0 exp(XT )) = H(ST ), where Xt = ln(St/S0), and fix a set of monitoring dates
tm = mΔ , m = 0, . . . ,M, where Δ = T/M. Let C denote the continuation region,
and C c the knock-out region for Xt , so the option expires worthless if it is observed
within C c at any time tm, and pays G(XT ) otherwise. For a double barrier option
with knockout barriers L and U in the space of St , C = [lx,ux] where lx := ln(L/S0)
and ux := ln(U/S0) in log space.

Barrier options can priced for the SV model defined in (26) using the Markov
chain approximation, which yields

log(Sm̄
t /S0) = X̃ m̄

t + f (vm̄
t ,v0) := Xm̄

t ,

from which Sm̄
t = S0 exp(Xm̄

t ). The barrier option price is calculated through the
following recursive procedure, starting from the known terminal values and working
backwards:⎧⎨⎩VM(Xm̄

M ,αM) = H(Xm̄
M)�{Xm̄

M∈C }
Vm(Xm̄

m ,αm) = e−rΔE
[
Vm+1(Xm̄

m+1,αm+1)�{Xm̄
m ∈C }|Xm̄

m ,αm

]
m = M−1, ...,0,

(33)
where7 Xm̄

m :=Xm̄
tm and αm =α(tm). By definition, Vm+1(Xm̄

m+1,αm+1)= 0 for Xm̄
m+1 ∈

C c = [lx,ux]
c.

Next define the transition probability matrix P(Δ) as in (10), with elements

PΔjk = P[α(t +Δ) = k|α(t) = j], j,k = 1, . . . , m̄,

which captures transitions of the volatility state. Then with αm = j and Xm̄
m = x ∈C ,

we have for m = M−1, ...,0,

Vm(x, j) = e−rΔE
[
Vm+1(Xm̄

m+1,αm+1)|Xm̄
m = x,αm = j

]
= e−rΔ ∑

k=1,..,m̄
PΔj,kE

[
Vm+1(Xm̄

m+1,k)|Xm̄
m+1 = x,αm = j,αm+1 = k

]
= e−rΔ ∑

k=1,..,m̄
PΔj,k

∫
C

Vm+1(y,k)p j,k(y|x)dy,

where we have defined the set of transition densities for the log return process for
j,k = 1, . . . , m̄

p j,k(y|x) = P[Xm̄(Δ) ∈ y+dy|Xm̄(0) = x,α(0) = j,α(Δ) = k].

7 A European option can be priced recursively by setting C = (−∞,∞).
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As demonstrated in [43], the transition densities p j,k(y|x) can be approximated with
high efficiency using the ChF of log returns of Xm̄

Δ , Ẽ j,k(ξ ), by combing the closed
form expression in (32) with the Fourier method of [40].

3.2.4 Example: 4/2 model CTMC Approximation

Many prominent examples fall within the framework of dynamics (26), including
those of Heston [31], Hull-White [32], Stein-Stein [62], α-Hypergeometric [23],
Jacobi [2], 3/2 [45] and the 4/2 model for which we are going to illustrate in detail.
We illustrate the transform required to obtain a de-correlated representation for the
4/2 model. The reader is invited to refer to Table 1 for a list of additional models
that can also be similarly considered.

The 4/2 stochastic volatility model (without jumps) was recently proposed in
[27], with the important property that the instantaneous volatility can be uniformly
bounded away from zero (unlike Heston’s model, for example). It contains the He-
ston model (can be thought of as a “1/2” model) and the 3/2 model as special cases,
and thus earns itself the name of a “4/2” model. Extension of the 4/2 model by
adding the jump component in the underlying process can be founded in [42]. The
dynamics of the 4/2 model are given by{

dSt
St

= (r−q−λκ)dt +
[
a
√

vt +
b√
vt

]
dW (1)

t ,

dvt = η(θ − vt)dt +σv
√

vtdW (2)
t .

(34)

For this model, it is assumed that the Feller’s condition 2ηθ >σ2
v is satisfied, and for

a,b > 0, the volatility component is uniformly bounded away from zero, which fol-
lows from applying Cauchy’s inequality to [a

√
vt +

b√
vt
]≥ 2

√
a
√

vt
b√
vt
= 2

√
ab> 0

for a,b > 0. The change of variable, which will help us remove the correlation be-
tween the two stochastic processes W (1)

t , W (2)
t in (34), is given by

X̃t = log
( St

S0

)
− ρ
σv

(
a(vt − v0)+b(log(vt)− log(v0))

)
. (35)

Therefore, if we denote

μX (vt)=
(aρη
σv

− a2

2

)
vt +

(ρbσv −b2

2
− bρηθ

σv

) 1
vt
+
ρη
σv

(b−aθ)+r−q−λκ−ab,

then the dynamics in (34) can be written as{
dX̃t = μX (vt)dt +[a

√
vt +

b√
vt
]
√
(1−ρ2)dW ∗

t ,

dvt = η(θ − vt)dt +σv
√

vtdW (2)
t .

(36)

After approximating the variance process vt by a m̄-state Markov chain, and substi-
tuting it into (36), we have that the dynamics in (30) are reduced to
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dX̃m̄
t = μX (vαt )dt +

[
a
√

vαt +
b√vαt

]√
(1−ρ2)dW ∗

t , (37)

where vαt takes values in Sv = {v1 v2, . . . ,vm̄}.
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Fig. 3 Conditional transition densities of m̄ = 40 state CTMC approximation to (CIR) volatility
process vt under 4/2 (and Heston) stochastic volatility, for several values of t.

In Figure 3, we illustrate the CTMC approximation of the underlying variance
process, which in the 4/2 (and Heston) model is a Cox-Ingersol-Ross (CIR) process.
For t ∈ {1/5,1/10,1/20,1/50,1/100}, we plot the transition density of vαt , condi-
tional on v0, for the CIR process with η = 2,θ = 0.04,v0 = 0.06,ρ = −0.9,σv =
0.15. In this example, the initial variance v0 = 0.06 is higher than its longer term
mean, θ = 0.04. When t = 1/100, the density is centered about v0, and the dif-
fusive term dominates the transition probabilities, leading to a roughly symmetric
(approximately normal) transition density. As time increases up to t = 1/5, the den-
sities spread out, with more mass clustering near the long term mean θ . With just
m̄ = 40 points, the densities of the CTMC are a faithful representation of the under-
lying continuous density of vt .



Markov chain approximation for options pricing 135

3.2.5 Example: Heston and 4/2 model option pricing

We now illustrate the application of the CTMC approximation for option pricing
under the 4/2 model discussed in Section 3.2.4, starting with the special case of
Heston’s model, which is obtained by setting a = 1 and b = 0. The recursive pricing
strategy outlined in Section 3.2.3 can be used to price European options, and in
Heston’s model reference prices can be obtained to machine precision using Fourier
techniques (e.g. [40]). The model parameters are set to be

η = 1, θ = 0.025, v0 = 0.025, ρ =−0.7, σv = 0.18.

The state space for the CTMC approximation of vt is determined as described in
Section 2.3, with the grid width parameter ᾱ = (vm̄−v1)/ζ parameterized by ζ > 0.
For ζ ≈ 1, the grid becomes uniform, while for ζ ≈ 0, the grid is tightly clustered
around the initial variance v0.
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Fig. 4 European option convergence in Heston’s model as a function of grid non-uniformity pa-
rameter ζ . T = 0.5, K = S0 = 100, r = 0.05. Ref price: 5.7574.

Figure 4 illustrates the pricing error for an at-the-money European call option
with ζ ∈ {0.8,0.4,0.2}. As is typically the case, having a more non-uniform grid
is most beneficial when the number of grid points m̄ is small. Other factors can
also influence this choice in practice, including the long term level of variance and
its relation to the initial variance, as well as the time to maturity. For example, a
short maturity option with initial variance near its longer term level will benefit the
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most from a grid which clusters around v0, while as T increases (or equivalently σv
increases) the benefit diminishes.

In the next set of experiments, we consider the 4/2 model, with base parameters

η = 1.8, θ = 0.04, v0 = 0.04, ρ =−0.7, σv = 0.1.

Table 2 illustrates the convergence in m̄ for three 4/2 models, which vary based on
the values of a and b. The first case, a = 1,b = 0, is simply Heston’s model, while
the other two cases have the additional variance term b/

√
vt from (36). Reference

prices, to which the approximations have converged within four decimal places in
the last row (m̄ = 60), are computed using m̄ = 120.

a = 1,b = 0 a = 0.5,b = 0.5v0 a = 0.5,b = 0.25v0
m̄ price error price error price error

10 6.9020 1.46e-03 6.9623 5.51e-02 5.5935 5.16e-02
20 6.8999 5.93e-04 6.9066 5.47e-04 5.5414 4.25e-04
40 6.9005 3.68e-05 6.9071 9.98e-05 5.5418 5.36e-05
60 6.9005 2.43e-06 6.9071 3.22e-05 5.5419 1.42e-05

Table 2 European call option prices under 4/2 model. T = 0.5, K = S0 = 100, r = 0.05.

3.3 Regime Switching CTMCs

In Section 3.2, we discussed the use of a CTMC to approximate one dimension of
the two-dimensional stochastic volatity model, which resulted in a regime-switching
diffusion. Taking this idea one step further, we can consider the case of a Markov
modulated CTMC, i.e., a regime switching CTMC. In this case, the n̄-state CTMC
Sn̄

t is further modulated by a second independent CTMC, {αt}t≥0, with state space
M = {1, . . . , m̄}. Then we have a RS-CTMC, denoted as Sn̄,m̄

t , of the following
form:

dSn̄,m̄
t = Sn̄,m̄

t (r−q)dt +Sn̄,m̄
t σα(t)dW ∗(t). (38)

In particular, conditioned on αt = l, the instantaneous transitions of Sn̄,m̄
t can be

described by the following generator Gl , l ∈ M :

Glh(x) := lim
δ↓0

E

[
h(Sn̄,m̄,

t+δ )|α(t) = l,Sn̄,m̄
t = x

]
−h(x)

δ
, (39)

which corresponds to a rate matrix Gl = (gl
k j)n̄×n̄. An explicit example of Gl will

be given in Section 3.4.2.
In Section 3.4, we consider the applications of regime switching Markov chain

approximation to several options pricing problems. In the following, we shall dis-
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cuss the details of the regime switching approximation in two types of models in in-
creasing order of generality: the stochastic volatility(SV) model, and the stochastic
local volatility(SLV) model. In the SV model, we utilize one approximating CTMC,
and for the case of the SLV model, there are two independent approximating CTMCs
introduced.

3.4 Stochastic Local Volatility

The proposed valuation framework is also applicable to general stochastic local
volatility models whose dynamics are given by:{

dSt = ω(St ,vt)dt +κ(vt)Γ (St)dW (1)
t ,

dvt = μv(vt)dt +σv(vt)dW (2)
t ,

(40)

where E[dW (1)
t dW (2)

t ] = ρdt with ρ ∈ (−1,1). Here we assume that ω(·, ·) : R×
R → R, κ(·) : R → R+ and Γ (·) : R → R+. Some representative local volatility
models are listed in Table 3. We make the following assumption about the Feller
property of (St ,vt).

Assumption 2 For any Φ ∈ C0(S×V), define the pricing operator PtΦ(S,v) :=
E[Φ(St ,vt)|S0 = S,v0 = v], and assume that (St ,vt) is a Feller process, i.e.,

• PtΦ ∈C0(S×V) for any t ≥ 0;
• lim

t→0
PtΦ(S,v) =Φ(S,v) for any (S,v) ∈ S×V.

The Feller property guarantees that there exists a version of the process (St ,vt)
with cádlág paths satisfying the strong Markov property. Similar to the scalar case,
the family (Pt) is determined by its infinitesimal generator L S, where

L SΦ(S,v) := lim
t→0+

(PtΦ−Φ)(S,v)
t

, (41)

for any Φ ∈C0(S×V) for which the right-hand side of (41) converges in the strong
sense.8 From (40), we can calculate

L SΦ =
[κ(v)Γ (S)]2

2
∂ 2Φ
∂S2 +ρκ(v)Γ (S)σ(v)

∂ 2Φ
∂v∂S

+

+
σ2

v (v)
2

∂ 2Φ
∂v2 +ω(S,v)

∂Φ
∂S

+μv(v)
∂Φ
∂v

. (42)

For example, for the classical SABR model, see Table 3, the generator is given by

8 Convergence is with respect to the norm ‖Φ‖ := sup(s,v)∈S×V |Φ(s,v)| on the Banach space
(C0(S×V),‖·‖). The domain of L S is dense in C0(S×V).
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L SΦ =
1
2

v2S2β ∂ 2Φ
∂S2 +ραv2Sβ

∂ 2Φ
∂v∂S

+
1
2
(αv)2 ∂ 2Φ

∂v2 .

3.4.1 Decoupled Dynamics

Define the functions g(x) :=
∫ x
.

1
Γ (u)du and f̂ (x) :=

∫ x
.

κ(u)
σv(u)

du, and let X̃t := g(St)−
ρ f̂ (vt). Then similarly to the stochastic volatility case, the dynamics in (40) can be
rewritten as⎧⎨⎩dX̃t =

(
ω(St ,vt)

Γ (St)
− Γ ′(St)

2
κ2(vt)−ρh(vt)

)
dt +

√
1−ρ2κ(vt)dW ∗

t ,

dvt = μv(vt)dt +σv(vt)dW (2)
t ,

(43)
where

h(x) := L v f (x) = μv(x) f̂ ′(x)+
1
2
σ2

v (x) f̂ ′′(x)

= μv(x)
κ(x)
σv(x)

+
1
2
(
σv(x)κ′(x)−σ ′

v(x)κ(x)
)
. (44)

We shall carry out the approximation procedure in two layers: one for the
stochastic variance process, and one for the asset price process. The first layer ap-
proximation is obtained by replacing vt with vm̄

t = vα(t), and we obtain

X̃ m̄
t := g(Sm̄

t )−ρ f̂ (vm̄
t ),

where Sm̄
t is used to denote the dependence of St on vm̄

t . Next, let

ζ0(X̃ m̄
t ,vm̄

t ) := g−1(X̃ m̄
t +ρ f (vm̄

t )),

and for any fixed state vl ∈ Sv, define

ω̃(·,vl) := ω(ζ0(·,vl),vl), Γ̃ (·,vl) := Γ (ζ0(·,vl)).

We further define:

μX (x,vl) :=
(
ω̃(x,vl)

Γ̃ (x,vl)
− Γ̃ ′(x,vl)

2
κ2(vl)−ρh(vl)

)
, (45)

where Γ̃ ′(·,vl) =Γ ′(ζ0(·,vl)). We manage to obtain the following dynamics for X̃ m̄
t

conditional on the value of vm̄
t :

dX̃m̄
t = μX (X̃ m̄

t ,vm̄
t )dt +

√
1−ρ2κ(vm̄

t )dW ∗
t . (46)
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3.4.2 Regime Switching Approximation: Linear and Nonlinear Case

The insight of [14] is to combine the RS-CTMC representation provided in Propo-
sition 2 with a Markov chain approximation for the decoupled dynamics of the SLV
model in (40). From the single layer approximation in (46), for each variance state
l ∈ M , the generator satisfies

L m̄
l ξ (x) = μX (x,vl)ξ ′(x)+

(1−ρ2)κ2(vl)

2
ξ ′′(x). (47)

We then make a second layer approximation, similarly as before. In particular, for
each l ∈ M , the rate matrix is given by Gl = (gl

k j), where

gl
k j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

μX
−(xk,vl)

δ x
k−1

+
σ̃2(vl)− [δ x

k−1μX
−(xk,vl)+δ x

k μX
+(xk,vl)]

δ x
k−1(δ

x
k−1 +δ

x
k )

, j = k−1,

μX
+(xk,vl)

δ x
k

+
σ̃2(vl)− [δ x

k−1μX
−(xk,vl)+δ x

k μX
+(xk,vl)]

δ x
k (δ

x
k−1 +δ

x
k )

, j = k+1,

−ql
k,k−1 −ql

k,k+1, j = k,
0, | j− k|> 1,

(48)
where σ̃(vl) =

√
1−ρ2κ(vl) and δ x

k = xk − xk−1 for k = 1,2, . . ..
The generator is approximated for l ∈ M ,k ∈ N by

L n̄,m̄
l ξ (xk) =

n̄

∑
j=1

gl
k jξ (x j) =

n̄

∑
j=1

gl
k j(ξ (x j)−ξ (xk)). (49)

The key insight of the paper [60] is that we can represent the RS-CTMC Sn̄,m̄
t as

a one-dimensional process, by embedding it into a Markov chain, called Yt , with an
enlarged state space SY , which is defined in the following result. The state space of
the two-dimensional process Sn̄,m̄

t is mapped bijectively to that of Yt , SY , by the func-
tion φ(·) defined below. The space SY can be interpreted as indexing m̄ consecutive
copies of SX , one for each of the modulating states l ∈ M . Thus

Proposition 2. ([60]) Suppose that {Sn̄,m̄
t , t ≥ 0} is a discrete state regime-switching

CTMC, and consider another one-dimensional CTMC {Yt , t ≥ 0} with state space
SY := {1,2, ..., n̄ · m̄} and n̄ · m̄× n̄ · m̄ transition rate matrix

G =

⎛⎜⎜⎜⎝
λ11In̄ +G1 λ12In̄ · · · λ1m̄In̄
λ21In̄ λ22In̄ +G2 · · · λ2m̄In̄

...
...

. . .
...

λm̄1In̄ λm̄2In̄ · · · λm̄m̄In̄ +Gm̄

⎞⎟⎟⎟⎠ , (50)

where In̄ is the n̄× n̄ identity matrix, Gl = (gl
k j)n̄×n̄, and ΛΛΛ = (λk, j)m̄×m̄. Define the

mapping φ : SX ×M → SY by φ(xk, l) = (l − 1) j+ k, and its inverse φ−1 : SY →
SX ×M by φ−1( j) = (xk, l) for j ∈ SY , where k is the unique integer satisfying
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j = (l −1)n̄+ k for some l ∈ {1,2, . . . , m̄}. Then we have

E

[
Ψ(Sn̄,m̄,α) | α(0) = i,Sn̄,m̄

0 = xk

]
= E[Ψ ◦φ−1(Y ) | Y0 = (i−1)n̄+ k], (51)

for any path-dependent payoff functionΨ such that the expectation on the left hand
side is finite. Here we have defined Sn̄,m̄ := (Sn̄,m̄

t )0≤t≤T , α := (α(t))0≤t≤T , and
Y := (Yt)0≤t≤T .

From this representation, [14] are able to derive closed-form pricing formulas for
European, barrier, occupation time, and Asian options. Under appropriate condi-
tions, it can be showed that (Sn̄,m̄

t ,vm̄
t ) converges weakly to (St ,vt) as n̄, m̄ → ∞. The

reader is invited to refer to [14] for more details. An extension of theoretical results
and applications to time-changed Markov processes is given in [15].

3.5 European options pricing

Vanilla option prices for the underlying ST can now be approximated with respect
to

Sn̄,m̄
T := g−1(X̃ n̄,m̄

T +ρ f (vαT )), (52)

which is the discrete-space asset process corresponding to X̃ n̄,m̄
T :

E

[
e−rT (ST −K)+

∣∣∣v0,S0

]
≈ E

[
e−rT

(
Sn̄,m̄

T −K
)+ ∣∣∣α(0) = i, X̃ n̄,m̄

0 = xk

]
,

where we assume9 that vα(0) = vi = v0 is a member of the grid for some i ∈ M ,
and X̃ n̄,m̄

0 = xk ∈ SX . From the standard CTMC theory, an explicit representation
can be obtained for a European option on Sn̄,m̄

T , in terms of the characteristics of the
one-dimensional process Yt .

Theorem 7. ([14]) Given that α(0) = i, X̃ n̄,m̄
0 = xk, for maturity T and strike K > 0,

the approximate European option price at time 0 is given by

E

[
e−rT

(
Sn̄,m̄

T −K
)+ ∣∣∣α(0) = i, X̃ n̄,m̄

0 = xk

]
= ei,xk · exp((G− rI)T ) ·H(1)

= e−rT · ei,xk · exp(GT ) ·H(1), (53)

where ei,xk is a 1× n̄m̄ vector with all entries equal to 0 except that the (i−1)n̄+ k
entry is equal to 1, and H(1) is an n̄m̄×1 vector with

H(1)
(l−1)n̄+ j =

{(
g−1(x j +ρ f (vl))−K

)+ for a call,(
K −g−1(x j +ρ f (vl))

)+ for a put.
(54)

9 These assumptions are without loss of generality in the sense that interpolation can be readily
applied otherwise. To simplify the discussion, we assume that these points are members of the grid
in what follows.
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During the calibration process, prices are required for many strikes at each maturity.
An advantage of the proposed methodology is that once the shared key component,
the matrix exponential exp(GT ), is (pre)computed and cached, which dominates the
computational cost, a spectrum of contracts with different strikes may be priced for
essentially the same cost as a single contract.

SABR dSt = vt S
β
t dW (1)

t β ∈ [0,1)
([28]) dvt = αvt dW (2)

t α,v0 > 0
λ−SABR dSt = vt S

β
t dW (1)

t β ∈ [0,1)
([30]) dvt = λ (θ − vt)dt +αvt dW (2)

t λ ,θ ,α,v0 > 0
Shifted SABR dSt = vt(St + s)βdW (1)

t β ∈ [0,1)
([5]) dvt = αvt dW (2)

t s,α ,v0 > 0
Heston-SABR dSt = rSt dt +

√
vt S

β
t dW (1)

t r ∈ R,β ∈ [0,1)
([14]) dvt = η(θ − vt)dt +α√vt dW (2)

t η ,θ ,α,v0 > 0
Quadratic SLV dSt = rSt dt +

√
vt(aS2

t +bSt + c)dW (1)
t r ∈ R,β ∈ [0,1)

([48]) dvt = η(θ − vt)dt +α√vt dW (2)
t a,η ,θ ,α,v0 > 0, 4ac > b2

Exponential SLV dSt = rSt dt +m(vt)(vL +θ exp(−λSt))dW (1)
t r ∈ R,λ ,vL ≥ 0

([14]) dvt = μ(vt)dt +σ(vt)dW (2)
t vL +θ ≥ 0

Root-Quadratic SLV dSt = rSt dt +m(vt)
√

aS2
t +bSt + c dW (1)

t r ∈ R

([14]) dvt = μ(vt)dt +σ(vt)dW (2)
t a > 0,c ≥ 0

Tan-Hyp SLV dSt = rSt dt +m(vt) tanh(βSt)dW (1)
t r ∈ R

([14]) dvt = μ(vt)dt +σ(vt)dW (2)
t β ≥ 0

Mean-reverting-SABR dSt = κ(ζ −St)dt +m(vt)S
β
t dW (1)

t r ∈ R,β ∈ [0,1)
([14]) dvt = μ(vt)dt +σ(vt)dW (2)

t κ,ζ ,v0 > 0
4/2-SABR dSt = rSt dt +Sβt [a

√
vt +b/

√
vt ]dW (1)

t r ∈ R,β ∈ [0,1)
([14]) dvt = η(θ − vt)dt +α√vt dW (2)

t a,b,η ,θ ,α,v0 > 0

Table 3 Some stochastic local volatility models

3.5.1 Example: SABR model

A now classic SLV example which has seen tremendous application in practice is
the SABR model of [30], which is specified as{

dSt = vtS
β
t dW (1)

t ,

dvt = αvtdW (2)
t ,

(55)

In particular, the variance process is governed by a geometric Brownian motion.
Given the practical nature of the SABR model, several approximation frameworks
have been introduced to efficiently estimate implied volatiles, such as the original
approach of Hagan et. al. [28], as well as the improved approximation introduced
in Antonov et. al. [5]. Traditional Monte Carlo is also widely used for this model,
especially for exotic options for which no known closed-form pricing formulas exist.

Figure 5 compares the CTMC approach introduced in [14] with each of these
methods, using the market standard implied volatilities of European options for
illustration. We see close agreement between the method of Antonov et. al. and
CTMC, while the other two methods under-perform at the wings, as is well docu-
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Fig. 5 SABR implied volatilities. α = 0.2,β = 0.1,ρ = 0,v0 = 0.1, T = 1, S0 = 0.05, r = 0.0.

mented. In addition to European options, the CTMC method can be used to price
American, Barrier, Asian, and occupation time derivatives in the SABR and other
SLV models. Additional SLV model specifications are listed in Table 3. In particu-
lar, the λ−SABR model of [30] and the Heston-SABR model studied in [14] offer
more realistic models for the variance process, as they permit mean-reversion. A
further extension of the method to the shifted SABR model has been considered in
[16].

4 Conclusions

This chapter reviews and consolidates recent research activity in the literature on ap-
plying continuous-time Markov chains to approximate stochastic processes arising
in finance. We discuss the construction, theoretical properties and numerical perfor-
mance of the CTMC approximations. We also discuss an effective regime-switching
approach to approximate the dynamics of stochastic volatility models, which en-
ables us to reduce the valuation problem to one that is concerned with a relatively
simple Markov-modulated processes. In particular, explicit valuation formulas are
obtained in terms of simple matrix expressions.

Since the CTMC approximation can be thought of as a state-space discretization,
as compared to time-discretization schemes (e.g. the Euler scheme), a promising
future research direction is to utilize this method in the efficient Monte Carlo sim-
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ulation of asset prices. A first step in this direction has obtained promising results
which are reported in [17]. We believe that the CTMC approximation method will
find applications in various areas including the valuation, estimation and calibration
of stochastic models arising in financial engineering and operations research.
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