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Abstract The optimal stopping and impulse control problems for a Markov-Feller
process are considered when the controls are allowed only when a signal arrives.
This is referred to as control problems with constraint. In [28, 29, 30], the HJB
equation was solved and an optimal control (for the optimal stopping problem, the
discounted impulse control problem and the ergodic impulse control problem, re-
spectively) was obtained, under suitable conditions, including a setting on a com-
pact metric state space. In this work, we extend most of the results to the situation
where the state space of the Markov process is locally compact.

Keywords: Markov-Feller processes, information constraints, impulse control, con-
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1 Introduction

A considerable literature has been devoted to optimal stopping and impulse control
of Markov processes (e.g., see the references in Bensoussan and Lions [3, 4], Ben-
soussan [2], Davis [10]). A relatively small part of this literature concerns problems
where constraints are imposed on the admissible stopping times. In the present pa-
per, we address optimal stopping and impulse control problems of a Markov process
xt when the stopping times must satisfy a constraint, namely, the control is allowed
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to take place only at the jump times of a given process yt , these times representing
the arrival of a signal.

For instance, the system evolves according to a diffusion process xt and the sig-
nal yt is a Poisson process as in Dupuis and Wang [11], where an optimal stopping
problem is studied, with an application to finance. In this example, thanks to the
memoryless property of the exponential distribution, the yt process does not appear
as such. It is interesting to notice that, in the usual (unconstrained) case, the dy-
namic programming leads to the variational inequality max{−Au+αu,u−ψ}= 0,
where A is the infinitesimal generator of xt and ψ is the stopping cost (with run-
ning cost f = 0). However, in the constrained case, this becomes the equation
−Au+αu+λ [u−ψ ]+= 0, where λ is the intensity of the Poisson process (which
is assumed independent from xt ). As soon as the intervals between the jumps of yt

are not exponentially distributed, the control problem must be formulated with the
couple (xt ,yt) and the generator of this two-component process intervenes in the
HJB equation.

Such problems has been studied in [28, 29, 30], when the process xt takes values
in a metric compact space E and yt = t − τn, where {τn} is an increasing sequence
of instants such that Tn = τn − τn−1, for n ≥ 1 are, conditionally to xt , IID random
variables. Using an auxiliary discrete time problem in a systematic way, some re-
sults have been obtained for optimal stopping and impulse control (with discounted
and ergodic cots). Several applications of optimal stopping with constraint have
been studied where the decision times are related to availability of some assets (see
Lempa [23] and references therein). More generally, portfolio problems with trans-
action costs could give rise to impulse control with constraint. Moreover, we can
consider applications in simple hybrid models (with the signal being the ‘discrete’
variable, see last section).

The main aim of the present work is to extend the previous results to the case
of a locally compact Polish space, considering the three categories of problems:
optimal stopping, impulse control with discounted cost as well as ergodic cost. We
also mention further extensions and how some generalizations of the present model
is related to hybrid models.

Without pretending to be comprehensive, let us mention (a) that references re-
lated to optimal stopping with constraint include also Liang [25] who studied par-
ticular cases of the model considered here and (b) that other class of (analogue)
constraint have been considered, e.g., in Egloff and Leippold [12]. Moreover, for
impulse control with constraint, we found only a few references, Brémaud [7, 8],
Liang and Wei [26], and Wang [39]. A different kind of constraint is considered
in Costa et al. [9], where the constraints are written as infinite horizon expected
discounted costs.

The paper is organized as follows. In section 2, we introduce notations, defini-
tions and preliminary properties of the uncontrolled process, which is the two com-
ponents process (xt ,yt). Section 3 presents the definition of the optimal stopping
problem and its solution. Section 4 describes the process controlled by impulses
and the assumptions, which are used for both discounted cost and ergodic cost. In
section 5, the impulse control problem with discounted cost is solved via the HJB
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equation. In section 6, we present the ergodic cost problem and its solution. Some
extension are mentioned in section 7 and in section 8 we discuss the links with
hybrid models.

2 The Uncontrolled Process

Let us begin with some notations, definitions, comments, and preliminary proper-
ties.
Basic Notations:

• R
+ = [0,∞[, E a locally compact, separable and complete metric space (in short,

a locally compact Polish space), and also N0 = {0,1, . . .} (i.e., natural numbers
and 0), N0 = N0 ∪{∞}, R

+
= [0,∞];

• B(Z) the Borel σ -algebra of sets in Z, B(Z) the space of real-valued Borel and
bounded functions on Z, Cb(Z) the space of real-valued continuous and bounded
functions on Z, C0(Z) real-valued continuous functions vanishing at infinity on
Z, i.e., a real-valued continuous function v belongs to C0(Z) if and only if for
every ε > 0 there exists a compact set K of Z such that |v(z)| < ε for every z in
ZrK1, and also, if necessary, B+(Z), C+

b (Z), C+
0 (Z) for non-negative functions;

usually either Z = E or Z = E ×R
+;

• the canonical space D(R+,Z) of cad-lag functions, with its canonical process
zt(ω) = ω(t) for any ω ∈ D(R+,Z), and its canonical filtration F

0 = {F 0
t : t ≥

0}, F 0
t = σ(zs : 0 ≤ s ≤ t).

Assumption 2.1 Let (Ω ,F,xt ,yt ,Pxy) be a (realization of a) strong and normal ho-
mogeneous Markov process , on Ω = D(R+,E ×R

+) with its canonical filtration
universally completed F= {Ft : t ≥ 0} with F∞ = F , where (xt ,yt) is the canoni-
cal process having values in E×R

+, and Exy (or Ex,y when a confusion may arrive)
denotes the expectation relative to Pxy.

a) It is also assumed that xt is a Markov process by itself (referred as the reduced
state), with a C0-semigroup Φx(t) (i.e., Φx(t)C0(E) ⊂ C0(E), ∀t ≥ 0), and in-
finitesimal generator Ax with domain D(Ax)⊂C0(E).

b) The process yt (referred to as the signal process) has jumps to zero at times
τ1, . . . ,τn → ∞ and yt = t − τn for τn ≤ t < τn+1 (i.e., τ1 is the time of the first
jump –to zero– of yt , each jump is ‘the signal’ and yt is exactly the ‘time elapsed
since the last jump or signal’), and if y0 = 0 and τ0 = 0 then it is assumed that
conditionally to xt , the intervals between jumps Tn = τn − τn−1 are indepen-
dent, identically distributed random variables with a non-negative continuous
and bounded intensity function λ (x,y), which is such that there exists a constant
K > 0 satisfying Ex0{τ1} ≤ K, for any x in E. ⊓⊔

1 Typically E = R
d and this means that v(z)→ 0 as |z| → ∞.
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Remark 2.1. Actually, we begin with a realization of the reduced state process xt on
the canonical space D(R+,E) and the signal process yt is constructed based on the
given intensity λ (x,y), and this procedure yields a C0(E ×R

+)-semigroup denoted
by Φxy(t). Thus, in view of Palczewski and Stettner [34], all this implies that both
semigroups Φx(t) and Φxy(t) have the Feller property, i.e., Φxy(t)Cb(E) ⊂ Cb(E)
and Φxy(t)Cb(E ×R

+)⊂Cb(E ×R
+), and since only a strong and normal Markov

process is assumed, the semigroup Φxy(t) is (initially) acting on B(E ×R
+) and

so, weak (or stochastic) continuity is deduced from the assumption of a cad-lag
realization, which means that

(x,y, t) 7→ Exy{h(xt ,yt)} is a continuous function, (1)

for any h in Cb(E ×R
+). In [28, 29, 30] a probabilistic construction of the sig-

nal process yt was described, but there are other ways to constructing Φxy(t).
For instances, begin with the process (xt , ỹt) with ỹt = y+ t having infinitesimal
generator A0 = Ax + ∂y and a C0(E ×R

+)-semigroup. Then, add the perturba-
tion Bh(x,y) = λ (x,y)[h(x,0)− h(x,y)], which is a bounded operator generating a
C0(E ×R

+)-semigroup, with domain D(B) = C0(E ×R
+). Hence Axy = A0 + B

generates a C0(E ×R
+)-semigroup, with D(Axy) = D(A0), e.g., see Ethier and

Kurtz [13, Section 1.7, pp. 37–40, Thm 7.1]. Therefore Axy will also denote the
weak infinitesimal generator in Cb(E ×R

+), in several places of the following sec-
tions. ⊓⊔

Remark 2.2. Note that Assumption 2.1 (b) on the signal process yt means, in partic-
ular, that

Px0
{

Tn ∈ (t, t + dt) | xs, 0 ≤ s ≤ t
}
= λ (xt , t)exp

(
−

∫ t

0
λ (xs,s)ds

)
, (2)

and then it is deduced that Φxy(t) has an infinitesimal generator Axy = Ax +Ay with

Ayϕ(x,y) = ∂yϕ(x,y)+λ (x,y)[ϕ(x,0)−ϕ(x,y)], (3)

and recall that ∂y denotes the derivative with respect to y, and that λ ≥ 0 and λ ∈
Cb(E ×R

+). Moreover, using the law of T1 as in (2) and the Feller property of
(xt ,yt), it is also deduced that

(x,y) 7→ Exy
{

e−ατ1g(xτ1)
}

belongs to Cb(E ×R
+), (4)

for any g in Cb(E) and any α ≥ 0. Note that if y0 = y then τ1 is random variable
independent of T1,T2, . . . with distribution Px0{T1 ∈ · |y0 = y}. Furthermore, in turn,
by applying Dynkin’s formula to Axyϕ(x,y)+αϕ(x,y) = f (x,y), it follows that

(x,y) 7→ Exy

{∫ τ1

0
e−αt f (xt ,yt)dt

}
is in Cb(E ×R

+), (5)

for any f in Cb(E ×R
+) and any α > 0. ⊓⊔
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Remark 2.3. Note that because λ (x,y) is bounded (it suffices for y near 0), there
exists a constant a such that Px0{τ1 ≥ a > 0} ≥ a > 0, for any x in E . Moreover,
from Assumption 2.1 (b) on the signal process yt we have

Ex0{τ1}= Ex0

{∫ ∞

0
tλ (xt , t)exp

(
−

∫ t

0
λ (xs,s)ds

)
dt
}
,

so if λ (x,y) ≤ k1 < ∞, for every y ≥ 0, and x ∈ E , then Ex0{τ1} ≥ a1 = 1/k1..
Also, the condition Ex0{τ1} ≤ a2 is satisfied if, for instance λ (x,y) ≥ k0 > 0 for
y ≥ y0, x ∈ E , then a2 = y0 +1/k0. Moreover, since λ (x,y) is a continuous function
in E ×R

+, the continuity of Exy{τ1} follows. ⊓⊔

Definition 2.1 (with comments). If the evolution ė = −αt in [0,1] is added to the
homogeneous Markov process {(xt ,yt) : t ≥ 0} then the expression

{(Xn,en) = (xτn ,e
−ατn), n = 0,1, . . .}, (6)

with e0 = 1, τ0 = 0 and X0 = x, becomes a homogeneous Markov chain in ]0,1]×E
with respect to the filtration G = {Gn : n = 0,1, . . .} obtained from F, namely, Gn =
Fτn . Note that {xτn : n≥ 0} is also a Markov chain with respect to Gn. In this context,
if

τ = inf{t > 0 : yt = 0}, (7)

is considered as a functional on Ω , then the sequence of signals (i.e., the instants of
jumps for yt ) is defined by recurrence

τk+1 = inf{t > τk : yt = 0}, ∀k = 1,2, . . . , (8)

with τ1 = τ , and by convenience, set τ0 = 0. Let us also mention that Remark 2.3
yields: there exists a constant a1 such that

Px0{τ ≥ a1 > 0} ≥ a1 > 0, ∀x ∈ E, (9)

and by Assumption 2.1, there exists another constant a2 > 0 such that

Ex0{τ} ≤ a2, ∀x ∈ E. (10)

It is also valid,

0 < a1 ≤ τ(x) := Ex0{τ} ≤ a2, ∀x ∈ E, (11)

for some real numbers a1,a2. An F-stopping time θ > 0 satisfying yθ = 0 when
θ <∞ is called an admissible stopping time, in other words, if and only if there exists
a discrete (i.e., N0-valued) G-stopping time η such that θ = τη with the convention
that τ∞ = ∞. Moreover, if the condition θ > 0 (or equivalently η ≥ 1) is dropped
then θ is called a zero-admissible stopping time. ⊓⊔
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3 Optimal Stopping with Constraint

This section is an extension of [28] to a locally compact space E .

3.1 Setting-up

The usual optimal stopping problems as presented above is well known, but our
interest here is to restrict the stopping action (of the controller) to certain instants
when a signal arrives. As discussed in the previous section, the state of the dynamic
system is a homogeneous Markov process {(xt ,yt) : t ∈ R

+} with values in the
locally compact Polish space E ×R

+, satisfying the Feller conditions (1). Suppose
that

f ∈Cb(E ×R
+), ψ ∈Cb(E), α > 0, (12)

where f (x,y) is the running cost, ψ(x) is the terminal cost, and α is the discount
factor.

Thus, for any stopping time θ

Jxy(θ ,ψ) = Exy

{∫ θ

0
e−αt f (xt ,yt)dt + e−αθψ(xθ )

}
, (13)

is the cost function with the optimal cost

u(x,y) = inf
{

Jxy(θ ,ψ) : θ > 0, yθ = 0
}
, (14)

i.e., θ is any admissible stopping time, as defined in Section 2. Also, it is defined an
auxiliary problem with optimal cost

u0(x,y) = inf
{

Jxy(θ ,ψ) : yθ = 0
}
, (15)

which provides a homogeneous Markovian model. Since u(x,y) = u0(x,y) for any
x ∈ E and y > 0, it may be convenient to write u0(x) = u0(x,0) as long as no confu-
sion arrives.

Remark 3.1. Both costs u(x,y) and u0(x,y) represent the optimization over all stop-
ping times that occur when the signal arrives, the difference is that for y = 0 and t=0
(i.e., when the first signal arrives at the beginning), the control action is allowed for
the optimal cost u0(x,0), but it is not allowed for the optimal cost u(x,0), i.e., one
may say that for u(x,0) the ‘controller is (so to speak) always ‘late’ (at the begin-
ning and arriving simultaneously with the signal) and control is not possible. One
may consider even an alternative situation, where with a certain probability (inde-
pendently of (xt ,yt), for instance) the control is allowed, and therefore, the optimal
cost (in the simplest case) would be a convex combination of u(x,0) and u0(x,0).
Clearly, all this comment will apply later, for the impulse control problem. ⊓⊔
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The Dynamic Programming Principle shows (heuristically) that

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατ min{ψ ,u}(xτ ,yτ)

}
, (16)

with τ = inf{t > 0 : yt = 0} being the first jump of yt , and

u0(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ ,yτ )

}
, y > 0,

u0(x,0) = min
{
Ex0

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ ,yτ)

}
,ψ(x)

}
,

(17)

are the corresponding Hamilton-Jacobi-Bellman (HJB) equations, which are re-
ferred to as variational inequalities (VI) in a weak form. Also, both problems are
(logically) related by the condition

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ ,yτ)

}
. (18)

Thus, yτ = 0 implies

u0(x) = min
{

ψ(x),Ex0
{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ )

}}
,

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατ min{ψ ,u}(xτ ,0)

}
,

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ)

}
,

i.e., if u0(x) is known then the above equalities yield u(x,y) and u0(x,y).

3.2 Solving the VI

By means of (6), the continuous-time cost Jx0(θ ,ψ) with f = 0 and a stopping time
θ = τη can be written as

Jx0(θ ,ψ) = Ex0
{

e−αθ ψ(xθ )
}

= E
{

eη ψ(Xη) | e0 = 1,X0 = x
}

:= K1x(η ,ψ), (19)

for any discrete stopping time η relative to the Markov chain, i.e., where η has
values in N0 = and the convention τ∞ = ∞, and the last equality is the definition
of the discrete cost K1x(η ,ψ). This means that the optimal cost u0(x) is also the
optimal cost of a discrete-time stopping time problem relative to the homogeneous
Markov chain (certainly, there are several other ways of considering an equivalent
problem in discrete-time), i.e, u0(x) = inf{K1x(η ,ψ) : η ≥ 0}. This yields
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u0(x) = min
{

ψ(x),Ex0e−ατ u0(xτ)
}

(20)

as the HJB equation for u0(x), when f = 0.

Theorem 3.1. Under Assumption 2.1 and (12), the VI (17) and (16) have each a
unique solution in Cb(E ×R

+), which are the optimal costs (14) and (15), respec-
tively. Moreover, the first admissible exit time of the continuation region is optimal,
i.e., the discrete stopping times

θ̂ = inf
{

t > 0 : u(xt ,yt)≤ ψ(xt ,yt), yt = 0},

θ̂0 = inf
{

t ≥ 0 : u0(xt ,yt) = ψ(xt ,yt), yt = 0}
(21)

are optimal, namely, u(x,y) = Jxy(θ̂ ,ψ) and u0(x,y) = Jxy(θ̂0,ψ). Furthermore, the
relation (18) holds. ⊓⊔

Proof. This result is proved in [28] when E is compact, and it is valid under the
assumptions in Section 2 with the same arguments, and therefore, only the main
idea and comments are presented.

First, let us mention that the translation

u 7−→ u−Exy

{∫ ∞

0
e−αt f (xt ,yt)dt

}
(and similarly with u0) reduces to a zero running cost, i.e., in all this section we may
assume f = 0 without any lost of generality, only the terminal cost ψ is relevant.
Also, Assumption 2.1(b) on the signal and the inequality

(1− e−αa)Px0{τ ≥ a}= (1− e−αa)Px0
{

1− e−ατ ≥ 1− e−αa}
≤ 1−Ex0

{
e−ατ}, ∀a > 0,

imply Ex0{e−ατ} ≤ 1− (1− e−αa1)a0 := k1 < 1. This is used to solve the VI

u0(x) = min
{
Ex0

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ)

}
,ψ(x)

}
,

by means of a fixed point for a contraction operator. Then, some martingale argu-
ments are used to establish that u0(x) is indeed the optimal cost of a discrete-time
optimal stopping time problem relative to a Markov chain (6), where the first exit
time of the continuation region {x : u0(x)<ψ(x)} is optimal. Next, this is connected
with the continuous-time problem and the conclusion follows.

If the function u0(x,y) belongs to the domain D(Axy) then VI becomes

Axyu0(x,y)−αu0(x)+ f (x,y) = 0, ∀(x,y) ∈ E×]0,∞[,

min
{

Axyu0(x,y)−αu0(x)+ f (x,y),ψ(x)−u0(x,y)
}
= 0, ∀(x,y)∈E×{0},

where Axy is the infinitesimal generator. It may be proved that this is indeed the
case when ψ also belongs to D(Axy), but only continuity is usually not sufficient.
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However, the optimal cost u given by (14) belongs to D(Axy) and the VI (16) is
equivalent to

−Axyu(x,y)+αu(x,y)+λ (x,y)[u(x,0)−ψ(x,y)]+ = f (x,y), (22)

for any (x,y) in E × [0,∞[, where λ (x,y) is the jump-intensity as discussed in the
previous section. Also remark u0 = min{u,ψ}, which makes clear that u0(x,y) may
not belong to the domain D(Axy)⊂Cb(E × [0,∞[).

Remark 3.2. The VI/HJB equation (22) is similar to the penalized equation of the
unconstrained problem, e.g., see Bensoussan and Lions [3]. Similarly, using the
same method as in the penalized problem, if λ goes to infinity (uniformly) then the
solution uλ converges to the solution (which is a function of x only) of the classical
variational inequality of the unconstrained problem. ⊓⊔

There are some references regarding the stopping time problem with Poisson
constraint (e.g., Dupuis and Wang [11], Lempa [23], Liang and Wei [26]), while
there are many more about the usual or standard stopping times problem (e.g., the
books by Bensoussan and Lions [3], Peskir and Shiryaev [35], among several others
books and papers).

4 Impulse Controlled Process

This section describes the controlled process and assumptions common to both, the
discounted problem and the ergodic problem, as treated in the next two sections.

4.1 Controlled Process

For a detailed construction we refer to Bensoussan and Lions [4] (see also Davis [10],
Lepeltier and Marchal [24], Robin [36], Stettner [38]).

Let us consider Ω ∞ = [D(R+;E ×R
+)]∞, and define F 0

t = Ft and F
n+1
t =

F n
t ⊗Ft , for n ≥ 0, where Ft is the universal completion of the canonical filtration

as previously.
An arbitrary impulse control ν (not necessarily admissible at this stage) is a

sequence (θn,ξn)n≥1, where θn is a stopping time of F
n−1
t , θn ≥ θn−1, and the

impulse ξn is F
n−1
θn

measurable random variable with values in E .

The coordinate in Ω ∞ has the form (x0
t ,y

0
t ,x

1
t ,y

1
t , . . . ,x

n
t ,y

n
t , . . .), and for any im-

pulse control ν there exists a probability Pν
xy on Ω ∞ such that the evolution of

the controlled process (xν
t ,y

ν
t ) is given by the coordinates (xn

t ,y
n
t ) of Ω ∞ when

θn ≤ t < θn+1, n ≥ 0 (setting θ0 = 0), i.e., (xν
t ,y

ν
t ) = (xn

t ,y
n
t ) for θn ≤ t < θn+1.

Note that clearly (xν
t ,y

ν
t ) is defined for any t ≥ 0, but (xi

t ,y
i
t) is only used for any

t ≥ θi, and (xi−1
θi

,yi−1
θi

) is the state at time θi just before the impulse (or jump) to
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(ξi,yi−1
θi

) = (xi
θi
,yi

θi
), as long as θi < ∞. For the sake of simplicity, we will not al-

ways indicate, in the sequel, the dependency of (xν
t ,y

ν
t ) with respect to ν . A Markov

impulse control ν is identified by a closed subset S of E ×R
+ and a Borel mea-

surable function (x,y) 7→ ξ (x,y) from S into C = E ×R
+
r S, with the following

meaning: intervene only when the the process (xt ,yt) is leaving the continuation re-
gion C and then apply an impulse ξ (x,y), while in the stopping region S, moving
back the process to the continuation region C, i.e., θi+1 = inf{t > θi : (xi

t ,y
i
t) ∈ S},

with the convention that inf{ /0} = ∞, and ξi+1 = ξ (xi
θi+1

,yi
θi+1

), for any i ≥ 0, as
long as θi < ∞.

Now, the admissible controls are defined as follows, recalling that τn are the
arrival times of signal

Definition 4.1. (i) As mentioned earlier, a stopping time θ is called ‘admissible’ if
almost surely there exists n = η(ω)≥ 1 such that θ (ω) = τη(ω)(ω), or equivalently
if θ satisfies θ > 0 and yθ = 0 a.s.
(ii) An impulse control ν = {(θi,ξi), i ≥ 1} as above is called ‘admissible’, if each
θi is admissible (i.e., θi > 0 and yθi = 0), and ξi ∈ Γ (xi−1

θi
). The set of admissible

impulse controls is denoted by V .
(iii) If θ1 = 0 is allowed, then ν is called ‘zero-admissible’. The set of zero-
admissible impulse controls is denoted by V0.
(iv) An ‘admissible Markov’ impulse control corresponds to a stopping region
S= S0×{0}with S0 ⊂E , and an impulse function satisfying ξ (x,0)= ξ0(x)∈Γ (x),
for any x ∈ S0, and therefore, θi = τ i

ηi
and ηi+1 = inf{k > ηi : xi

τ i
k
∈ S0}, with τ0

0 = 0,

τ i
k = inf{t > τ i

k−1 : yi
t = 0}, for any k ≥ i ≥ 1. ⊓⊔

The discrete time impulse control problem has been consider in Bensoussan [2],
Stettner [37]. As seen later, it will be useful to consider an auxiliary problem in
discrete time, for the Markov chain Xn = xτn , with the filtration G = {Gn,n ≥ 0},
Gn = F n−1

τn
. The impulses occurs at the stopping times ηk with values in the set

N = {0,1,2, . . .} and are related to θk by ηi = inf{k ≥ 1 : θk = τk} for admissible
controls {θk} and similarly for zero-admissible controls. Thus,

Definition 4.2. If ν = {(ηi,ξi), i ≥ 1} is a sequence of G-stopping times and Gηi-
measurable random variables ξi, with ξi ∈ Γ (xτηi

), ηi increasing and ηi →+∞ a.s.,
then ν is referred to as an ‘admissible discrete time’ impulse control if η1 ≥ 1.
If ηi ≥ 0 is allowed, this is referred as an ‘zero-admissible discrete time’ impulse
control. ⊓⊔

4.2 Common Assumptions

It is assumed that there are a running cost f (x,y) and a cost-per-impulse c(x,ξ )
satisfying

f : E ×R
+ → R

+ bounded and continuous, α > 0,

c : E ×E → [c0,+∞[, c0 > 0, bounded and continuous,
(23)
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where the discount factor is not used within the ergodic contest. Moreover, for any
x ∈ E , the possible impulses must be in Γ (x) = {ξ ∈ E : (x,ξ ) ∈ Γ }, where Γ is a
given analytic set in E ×E such that for every x in E the following properties hold
true

/0 6= Γ (x) is compact2, ∀ξ ∈ Γ (x), Γ (ξ )⊂ Γ (x), and

c(x,ξ )+ c(ξ ,ξ ′)≥ c(x,ξ ′), ∀ξ ∈ Γ (x), ∀ξ ′ ∈ Γ (ξ )⊂ Γ (x).
(24)

Finally, defining the operator M

Mv(x) = inf
ξ∈Γ (x)

{
c(x,ξ )+ v(ξ )

}
, (25)

it is assumed that

M maps Cb(E) into Cb(E), and there exists a measurable

selector ξ̂ (x) = ξ̂ (x,v) realizing the infimum in Mv(x), ∀x,v.
(26)

Remark 4.1. (a) The last condition in (24) is to ensure that simultaneous impulses
is never optimal. (b) (26) requires some regularity property of Γ (x), e.g., see
Davis [10]. (c) It is possible (but not necessary) that x belongs to Γ (x), actually,
even Γ (x) = E whenever E is compact. However, an impulse occurs when the sys-
tem moves from a state x to another state ξ 6= x, i.e., it suffices to avoid (or not to
allow) impulses that moves x to itself, since they have a higher cost. ⊓⊔

5 Discounted Cost

This section is an extension of [29] to a locally compact space E .

5.1 HJB Equation

The discounted cost of an impulse control (or policy) ν = {(θi,ξi) : i ≥ 1)} is given
by

Jx,y(ν) = E
ν
x,y

{∫ ∞

0
e−αt f (xt ,yt)dt +

∞

∑
i=0

e−αθic(xi−1
θi

,ξi)
}
, (27)

where E
ν
xy is the Pν

xy-expectation of the process under the impulse control ν with

initial conditions (x0,y0) = (x,y), and xi−1
θi

is the value of the process just before
the impulse. Note that the process {yt : t ≥ 0} is not subject to any impulse, and the
condition yθ = 0 determines admissibility of the impulse time θ .

2 compactness is not really necessary, but it is convenient



438 J.L. Menaldi and M. Robin

Thus, the optimal cost is defined by

u(x,y) = inf
{

Jx,y(ν) : ν ∈ V
}
, ∀(x,y) ∈ E × [0,∞[, (28)

and its associated auxiliary impulse control problem (referred to as the ‘time-
homogeneous’ impulse control) with an optimal cost given by

u0(x,y) = inf
{

Jx,y(ν) : ν ∈ V0
}
, ∀(x,y) ∈ E × [0,∞[. (29)

As with the optimal stopping time problems, since u(x,y) = u0(x,y) for any x ∈ E
and y > 0, it may be convenient to write u0(x) = u0(x,0) as long as no confusion
arrives.

The Dynamic Programming Principle shows (heuristically), see [29, Section 3]
that

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατ min{Mu,u}(xτ ,yτ)

}
, (30)

and

u0(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ ,yτ )

}
, y > 0,

u0(x) = min
{
Ex0

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ)

}
,Mu0(x)

}
,

(31)

are the corresponding Hamilton-Jacobi-Bellman (HJB) equations, which are re-
ferred to as quasi-variational inequalities (QVI) in a weak form. Note that M is
an operator in the variable x alone, so that Mu(x,y) = [Mu(·,y)](x). In any case,
min{Mu,u}(xτ ,yτ ) = min{Mu,u}(xτ ,0), because yτ = 0. Also, both problems are
related (logically) by the condition

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ)

}
, (32)

and so, if u0(x) is known then the last equality yields u(x,y) and u0(x,y). The opti-
mal cost u0(x) can be expressed as a discrete-time optimal impulse control similar to
Bensoussan [2, Chapter 8, 89–132] (ignoring the constraint), but this not necessary
for the analysis, since everything is based on the results obtained for the optimal
stopping time problems discussed in section 3.

5.2 Solving the QVI

Define

u0(x,y) = Exy

{∫ ∞

0
e−αt f (xt ,yt)dt

}
, ∀(x,y) ∈ E ×R

+, (33)
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This function u0 is the cost of no intervention, i.e., when the controller choose not
to apply any impulse to the system. Since all cost are supposed nonnegative, the
interval

Cb(u
0,Z) = {v ∈Cb(E ×R

+) : 0 ≤ v ≤ u0}, (34)

for either Z = E ×R
+ or Z = E , contains the optimal cost either u or u0, given by

either (28) or (29).
To find a solution to the QVIs (30) and (31) set u0 = u0

0 = u0 and consider the
schemes

un(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατ min{Mun−1,un}(xτ ,0)

}
,

un
0(x) = min

{
Ex0

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατun

0(xτ)
}
,Mun−1

0 (x)
}
,

for n≥ 1, i.e., a sequence of optimal stopping times problems with constraint. Based
on Theorem 3.1, each VI has a unique solution either u(x,y) in Cb(E ×R

+) or un
0 in

Cb(E) satisfying either/or

un(x,y) = inf
θ
Exy

{∫ θ

0
e−αt f (xt ,yt)dt + e−αθ Mun−1(xθ ,0)

}
,

un
0(x) = inf

θ
Ex0

{∫ θ

0
e−αt f (xt ,yt)dt + e−αθMun−1

0 (xθ )
}
,

(35)

where the minimization is over all admissible (or zero-admissible) stopping times
θ .

As in [29, Thms 4.2 and 4.3], we have

Theorem 5.1. Let us suppose Assumption 2.1 and (23), (24), (26). Then each of the
sequences of functions {un

0} and {un} defined above, is monotone decreasing to the
unique solution u in Cb(u0,E ×R

+) and the solution u0 in Cb(u0,E), of the QVIs
(30) and (31). Moreover, the estimate: there exist constants C > 0, 0 < r < 1 such
that

|un(x,y)− u(x,y)|+ |un
0(x,y)− u0(x,y)| ≤Crn, ∀(x,y) ∈ E ×R

+,

for all n ≥ 1, as well as the relations (32),

u(x,y) = inf
θ
Exy

{∫ θ

0
e−αt f (xt ,yt)dt + e−αθ Mu(xθ ,0)

}
,

u0(x) = inf
θ
Ex0

{∫ θ

0
e−αt f (xt ,yt)dt + e−αθMu0(xθ )

}
,

hold true, where the minimization is over (zero-)admissible stopping times θ . Fur-
thermore, un and u belong to the domain D(Ax,y)⊂Cb(E × [0,∞[) of the infinitesi-
mal generator Ax,y, and u(x,y)
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−Ax,yu(x,y)+αu(x,y)+λ (x,y)
[
u(x,0)− (Mu(·,0))(x)

]+
=

= f (x,y), ∀(x,y) ∈ E ×R
+,

−Ax,yun(x,y)+αu(x,y)+λ (x,y)
[
un(x,0)− (Mun−1(·,0))(x)

]+
=

= f (x,y), ∀(x,y) ∈ E ×R
+, ∀n ≥ 1,

are equivalent to the corresponding QVI and VI.

Proof. Only a short idea of the main points in the proof are mentioned. First, a de-
creasing and concave mapping is defined with the expressions in (35), and following
an argument similar to the one used in Hanouzet and Joly [16], the exponential con-
vergence/estimate is proved and a fixed point (solving the QVIs) is obtained. At this
point, the remaining assertions are obtained with a little more work.

In the following Theorem, all assertions are written for the optimal cost (28), but
a similar result holds true for the other optimal cost (29), with the zero-admissible
impulse controls.

Theorem 5.2. Under the assumptions as in Theorem 5.1, the unique solution of the
QVI equation (30) is the optimal cost (28), i.e., u(x,y) = inf

{
Jx,y(ν) : ν ∈ V

}
, for

every (x,y) in E ×R
+. Moreover, the first admissible exit time of the continuation

region provides an optimal impulse control.

Proof. The arguments are the same as in [29, Thms 4.4 & 4.5], there are no changes
in assuming only E locally compact (instead of compact), only the compactness of
Γ (x) is necessary. Most of the discussion involves some martingale properties.

Note that if u is the optimal cost then (1) the continuation region [u < Mu] is
defined as all (x,y) in E ×R

+ such that u(x,y)< Mu(x,0), (2) the optimal jump-to
is a Borel minimizer ξ̂ (x) of Mu(x,0), i.e., x 7→ ξ̂ (x) is a Borel functions from E
into Γ (x) and c(x, ξ̂ (x))+ u(ξ̂ (x),0) = Mu(x,0), for every x in E., and (3) the first
exit time of [u < Mu] is defined as

θ̂(x,y,s) = inf
{

t > s : u(xt−s,yt−s) = Mu(xt−s,0), yt−s = 0
}
,

and θ̂ (x,y,s) = ∞ if u(xt−s,yt−s)< Mu(xt−s,0) for every t > s such that yt = 0. Note
that he Markov process t 7→ (xt−s,yt−s), for t ≥ s, represents the initial condition
(xs,ys) = (x,y). Moreover, the continuity ensures that

u(xθ̂(x,y,s)−s,0) = c
(
xθ̂(x,y,s)−s, ξ̂ (xθ̂(x,y,s)−s)

)
+ u

(
ξ̂ (xθ̂ (x,y,s)−s),0

)
,

whenever θ̂ (x,y,s) < ∞.
Therefore, the evolution under the above feedback (or Markov impulse control

as in Definition 4.1-iv) and initial conditions (x,y) is as follows:
(1) first θ1 = θ̂ (x,y,0) and ξ1 = ξ̂ (xθ1) when θ1 < ∞ (we may use an isolated

‘coffin’ state ∂ to set x∞ = ∂ and ξ̂ (∂ ) = ∂ ),
(2) next θk+1 = θ̂ (ξk,0,ϑk), for any k ≥ 1.
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This is an optimal admissible impulse control ν̂ = {(θk,ξk) : k ≥ 1}, which is proved
in the same way as for the case E compact.

6 Ergodic Cost

This section is an extension of [30] to a locally compact space E .

6.1 Setting-up

We define the average cost to be minimized, as

JT (0,x,y,ν) = E
ν
xy

{∫ T

0
f (xν

s ,y
ν
s )ds+∑

i
1θi≤T c(xi−1

θi
,ξi)

}
,

J(x,y,ν) = liminf
T→∞

1
T

JT (0,x,y,ν),
(36)

the ergodic control problem is to characterize

µ(x,y) = inf
ν∈V

J(x,y,ν), (37)

and to find an optimal control. The auxiliary problem is concerned with

µ0(x,y) = inf
ν∈V0

J̃(x,y,ν), with

J̃(x,y,ν) = liminf
n→∞

1
Eν

xy{τn}
Jτn(0,x,y,ν),

(38)

and Jτn(0,x,y,ν) as in (36) with T = τn. Actually, as seen later, µ(x,y) = µ0(x,y) is
a constant.

The Dynamic Programming Principle shows (heuristically, see [30, Section 3]
that, with w0(x) = w0(x,0),

w0(x) = min
{
Ex0

{∫ τ

0
[ f (xt ,yt)− µ0]dt +w0(xτ)

}
,Mw0(x)

}
,

w0(x,y) = Exy

{∫ τ

0
[ f (xt ,yt)− µ0]dt +w0(xτ)

}
,

(39)

are the corresponding Hamilton-Jacobi-Bellman (HJB) equations in a weak form
with two unknowns µ0 and w0. Note that M is an operator in the variable x alone,
so that Mw0(x,y) = [Mw0(·,y)](x) as given by (25). Also, both problems are related
(logically) by the condition
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w(x,y) = Exy

{∫ τ

0
[ f (xt ,yt)− µ0]dt +w0(xτ)

}
, (40)

and so, if w0(x) is known then the last/first equality yields w(x,y) and w0(x,y).
Recall that τ is defined by (7) and that since w(x,y) = w0(x,y) for any x ∈ E and
y> 0, it may be convenient to write w0(x) =w0(x,0) as long as no confusion arrives.
Note that the functions w(x,y) and w0(x) may be called potentials, and a priori, they
are not costs, but they are used to determine an optimal control.

6.2 Solving the HJB

An important point to mention is to remark that the HJB equation (39) is equivalent
to

w0(x) = min
{

Mw0(x), ℓ(x)− µ0τ(x)+Pw0(x)
}
, (41)

where

ℓ(x) = Ex0

{∫ τ

0
f (xs,ys)ds

}
, τ(x) = Ex0{τ}, (42)

with τ as in (7), and in view of the property (4),

Ph(x) = Ex0{h(xτ)}, (43)

defines the operator P on Cb(E). Note that (10) yields

0 ≤ ℓ(x)≤ a2‖ f‖. (44)

Moreover, from the Feller property of xt and the law of τ , it follows that ℓ(x) is
continuous.

In addition to the hypotheses of Sections 2 and 4, we assume that there exists a
positive measure m on E such that

m(E)> 0 and P(x,U)≥ m(U), ∀U ∈ B(E), (45)

where P(x,U) =Ex01U(xτ), with τ defined by (7), and B(E) is the Borel σ -algebra
on E .

Remark 6.1. From

P(x,U) = Ex0

{∫ ∞

0
λ (xt , t)exp

(
−

∫ t

0
λ (xs,s)ds

)
1U(xt)dt

}
.

and Remark 2.3, one can check that (45) is satisfied when the transition probability
of xt has a density with respect to a probability on E satisfying: for every ε > 0 there
exists k(ε) such that
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p(x, t,x′)≥ k(ε)> 0, on E × [ε,∞[×E. (46)

This is the case, for instance, for periodic diffusion processes, see Bensoussan [1],
and for reflected diffusion processes with jumps, see Garroni and Menaldi [14, 15]
(which is also valid for reflected diffusion processes without jumps). Furthermore,
a simple example for E locally compact is provided by a pure jump process with
generator

Axg(x) = b(x)
{∫

E
g(z)q(x,dz)− g(x)

}
.

One can check that (45) is satisfied if, for instance, 0 < k0 ≤ λ (x,y)≤ k1, 0 < b1 ≤
b(x)≤ b2, q(x,B)≥ m0(B) for a positive measure m0, with with m0(E)> 0. ⊓⊔

Lemma 6.1. Under assumption (45), there exist a positive measure γ on E, and a
constant 0 < β < 1 such that P(x,B) ≥ τ(x)γ(B), for every B ∈ B(E), any x ∈ E,
with τ(x)γ(E)> 1−β . ⊓⊔

Theorem 6.1. Under Assumption 2.1 and (23), (24), (26), as well as (45), there
exists a solution (µ0,w0) in R

+×Cb(E) of (41), and therefore, of (39). ⊓⊔

For details of the Lemma 6.1 and Theorem 6.1 proofs, note that Kurano [21, 22]
results hold true for a locally compact space E , and refer to [30, Lem 4.1 and Thm
4.2]. For instance, the assumptions (45) and (11) imply

P1B(x) =: P(x,B)≥ τ(x)γ(x), ∀B ∈ B(E),

with γ(B) = m(B)/a2 and any β in ]0,1[ such that 1− β < m(E)a1/a2. Now, the
HJB equation (41) can be written as

w0(x) = inf
ξ∈Γ (x)∪{x}

{
ℓ(ξ )+1ξ 6=xc(x,ξ )− µ0τ(ξ )+Pw0(ξ )

}
.

Since P′(x,dz) := P(x,dz)− τ(x)γ(dz) satisfies P′(x,E)< β < 1, the operator

Rv(x) = inf
ξ∈Γ (x)∪{x}

{
ℓ(ξ )+1ξ 6=xc(x,ξ )+Pw0(ξ )− τ(ξ )

∫
E

v(z)γ(dz)
}

is a contraction on Cb(E) having a unique fixed point w0, and moreover, w0 ≥ 0
because ℓ(x) ≥ 0 and c(x,ξ ) > 0. Thus, (µ0,w0) is a solution, where µ0 := γ(w0),
the integral of w0 with respect to γ(·) on E .

Remark 6.2. When λ does not depends on x, the function τ(x) is constant and (41)
is the HJB equation of a standard discrete time impulse control problem as studied
in Stettner [37, Section 4] for Γ (x) = Γ fixed. ⊓⊔

Then, we have

Theorem 6.2. Under the assumptions as in Theorem 6.1, the constant µ0 obtained
in Theorem 6.1 satisfies
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µ0 = inf
{

J̃(x,0,ν) : ν ∈ V0
}

and there exists an optimal feedback control based on the exit times of the continu-
ation region [w0 < Mw0].

Proof. First, by means of Theorem 6.1 when Γ (x) = {x} (which means ‘no con-
trol’), we show that there exists ( j,h) ∈ R

+×Cb(E) solution of

h(x) = ℓ(x)− jτ(x)+Ph.

Note that assumption (45) implies that P has a unique invariant probability denoted
by ζ0(dx), see the book Hernández-Lerma [17, Section 3.3, pp. 56–61].

Thus, there are two cases: µ0 = j and µ0 < j. First, for µ0 = j, from the equation
for h and the fact that Xn = xτn is a Markov chain, we have

j = liminf
n

1
Ex0{τn}

Ex0

{n−1

∑
i=0

ℓ(Xi)
}

= liminf
n

1
Ex0{τn}

Ex0

{∫ τn

0
f (xt ,yt)dt

}
= J̃(x,0,ν),

with ν = 0, i.e., no impulse at all. Then, as in [30, Thm 5.1] we have µ0 ≤ J̃(x,0,ν),
for every ν in V0, i.e., µ0 ≤ j. Therefore, if µ0 = j then

µ0 = inf
{

J̃(x,0,ν) : ν ∈ V0}= j = J̃(x,0,0),

and ν = 0, i.e., ‘no impulses at all’, is optimal.
Next, the case µ0 < j is treated as in [30, Thm 5.1], with w̃(x) = w0(x)− h(x),

ℓ̃(x) = ( j − µ0)τ(x), w̃ = min{Mw̃, ℓ̃+Pw̃}. Indeed, using the results in Bensous-
san [2, Section 7.4, pp. 74–77], we show that this discrete time problem has an
optimal control ν̂ = {(η̂i, ξ̂i) : i ≥ 1} given by

η̂i = inf{n ≥ η̂i−1 : w0(Xn) = Mw0(Xn)},

where Xn is the controlled Markov chain and ξ̂i = ξ̂ (Xη̂i
) with a measurable selector

ξ̂ (x) realizing the infimum in Mw0(x). This is translated in continuous time as θ̂i =

τη̂i
and ξ̂i = ξ̂ (xθ̂i

).

Remark 6.3. It is clear that the previous argument about ( j,h) shows that the hy-
pothesis (5.1) in our previous paper [30] is not really necessary, and therefore, it is
a small improvement on it. ⊓⊔

Theorem 6.3. Under the assumptions as in Theorem 6.1, the constant µ0 obtained
in Theorem 6.1 satisfies

µ0 = inf
{

J(x,0,ν) : ν ∈ V
}
= J(x,y, ν̂),

where ν̂ is obtained by τ-translations from the optimal control in Theorem 6.2.
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Proof. (sketch) The first step is to show that w(x,y) defined by (40) satisfied

−Axyw(x,y)+λ (x,y)[w(x,0)−Mw(x,0)]+ = f (x,y)− µ0

Actually, this is not surprising in view of the results for the discounted case, but the
proof is somewhat cumbersome, see [30, Proposition 5.5].

This implies that the process

MT =

∫ T

0
[ f (xt ,yt)− µ0]dt +w(xT ,yT ), T ≥ 0

is a submartingale, and the argument is completed as in [30].

Remark 6.4 (Ergodic cost: A more general ergodic assumption). The assumption
(45) is not satisfied, in general, for diffusion processes in the whole space, and thus,
it is perhaps, relatively restrictive. A ‘localized’ substitute for (45) could be the
assumption:

(i) there exist a closed set C, an open set D, C ⊂ D ⊂ E , and a constant β0 ∈]0,1[
as well as a probability m satisfying 0 < m(C)< 1 = m(D) and such that P(x,B)≥
β0m(B), for every B ∈ B(E), any x ∈ E; and

(ii) there exist a continuous function W : E → [1,∞[, and constant β ∈]0,1[ such
that PW is continuous and PW (x)≤ βW (x)+β01C

∫
C W (z)m(dz), for every x ∈ E .

An adaptation of Jaskiewicz [19] allows us to obtain a solution (µ0,w0) of (41),
with w0 in the weighted-space

CW(E) =

{
g continuous and sup

x

{ |g(x)|
W (x)

}
< ∞

}
,

and to obtain Theorem 6.2, under some additional technical assumptions. Also, The-
orem 6.3 can be obtained under the additional assumption

E
{

e−k0tW (xt)
}
≤W (x), ∀x ∈ E, t > 0,

where λ (x,y)≥ k0 > 0 for every x,y. A detailed analysis will be in a paper in prepa-
ration [31] together with examples satisfying the various assumptions. This analysis
is based on several references (e.g., Hernández-Lerma and Lasserre [18], Meyn and
Tweedie [33, 32], among others). ⊓⊔

7 Extension

As in [28, 29, 30] let us mention some possible extensions:

• A variable discount factor α(x,y) instead of α constant, as well as a finite-
horizon cost.
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• Letting the discount factor α → 0 in the optimal discounted costs uα(x,y) and
uα(x) = uα(x,0) = uα

0 (x,0) we expect to obtain ergodic costs, e.g., if µα =
αuα(x) and wα

0 (x) = uα(x)− uα(x0) then µα → µ0 and wα
0 (x) → w0(x), but

this is still something to be properly shown, when Γ (x) is not reduced to a fixed
compact.

• A quantify signal, e.g, yt has jumps back to {0,1,2} instead of only {0} with
the following meaning: there are three classes of impulse controls V0 ⊂ V1 ⊂ V2

that are enabled only and accordingly to the value of yt (some more details are
necessary for a convenient example). In this case, instead (7), the signals are
given by the functional

τ = inf{t > 0 : yt ∈ I}, (47)

where a prototype is I = {0,1,2}. In this case, the Markov chain will include
also yτn , i.e., (Zn,en) = (xτn ,yτn ,e

−ατn). We may think that as the waiting-time
passes (indicated or represented by the process yt ) the necessity of ‘controlling’
increases and impulses to other regions (that previously were not allowed) be-
comes enabled, i.e., when i < yt < i+1 then only the class Vi of impulse controls
is available, which produces an impulse back to some y = j < i+ 1. Actually, a
detailed example may be needed, and this is not discussed here.
In this case, jumps should be always backward, i.e., yt may jumps only to the
values 0,1 or 2 that are smaller that the value of yt . Certainly, what is accom-
plished for three values could be applied for any finite number of values, and
perhaps ‘extrapolate’ to infinite many values (as long as they are isolated values).
Thus, ψ(x,y) makes sense for the optimal stopping time problem (without any
changes!) but the analysis within the impulse control could give some interesting
surprises.

• For stopping time problems, recall that several extensions are possible, in par-
ticular the use of data with polynomial growth (instead of bounded). However,
there are some extra complications for the impulse control problems.

8 Hybrid Models

The state of a continuous-time hybrid model has a continuous-type variable x (with
cad-lag paths) and a discrete-type variable n (with cad-lag piecewise constant paths).
The ‘signal’ is represented by the ‘jumps’ of nt , and in general, this signal enable
any possible change in the setting of the model, not only the ‘possibility of control-
ling’ as studied in this paper (an others). The general idea is that the usual evolution
of the system is described by the component xt , and ‘once in a while’ (or under
some specific conditions) a discrete transition (i.e., a jump of nt occurs) and ev-
erything may change, and the evolution continues thereafter. With this in mind, the
signal (to act, e.g., to control the system as in our model) is given by the ‘hitting
time’ of a set of states S, i.e., τ = inf{t > 0 : (xt ,nt) ∈ S}, and this set S plays the
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role of a ‘set-interface’, where the continuous-type and discrete-type variables ex-
change information. This set-interface may be given a priori or used as part of the
parameters of control. In our previous ‘control with constraint’ presentation, the
discrete-type component nt was ignored (because there are only on/off possibilities)
and the continuous-type component xt is actually composed by two parts (xt ,yt), as
they were called, the reduced state xt and the signal process yt . Thus, in our model,
the set-interface S is E ×{0}, the same for every n (which is ignored, as mentioned
earlier).

To present the problem studied in this paper as a hybrid model the ‘details’ (a)
and (b) of Assumption 2.1 are not mentioned, and instead, assumptions directly on
the functional (7) and the signal (8) are imposed, e.g., at least it is assumed (9), but
for ergodic cost, the condition (10) is required. Also, some continuity is needed, i.e.,

(x,y) 7→ Exy{e−ατ ϕ(xτ)} and (x,y) 7→ Exy

{∫ τ

0
e−αt f (xt ,yt)

}
dt (48)

are continuous functions, for every ϕ in Cb(E) and f in Cb(E × [0,∞[). Most of
the results in previous section are valid under these ‘more general’ assumptions,
except those involving the specific form of infinitesimal generator Ay (3). To be more
specific, the following results can be extended under these more general hypotheses:
Theorem 3.1, without (22), for optimal stopping; Theorem 5.1 (without the formula
regarding the generator), and Theorem 5.2 for the discounted cost; Theorem 6.1 and
Theorem 6.2 (but not Theorem 6.3) for the ergodic cost. For instance, if we assume
(9) and that signals given by (8) then define the time-interval between jumps Tn =
τn − τn−1, which (conditionally to xt ) forms an independent, identically distributed
sequence of random variables with a non-negative and bounded intensity Λ(x,y).
Hence, the initial ‘signal process’ (which is not necessarily equal to the time elapsed
since the last signal) can be replaced to obtain an equivalent (in most aspects) model
as the one in this paper.

Indeed, let us make an example of a similar situation, i.e., a signal process ỹt

which is not equal to the process yt , the ‘time elapsed since the last signal’. In this
example, the state is (x, ỹ), the controller is allowed to ‘control’ (via an impulse)
when ỹ = 0, however, ỹt has

Azϕ(z) = ∂zϕ(z)+Λ(z)[qϕ(0)+ (1− q)ϕ(z/2)−ϕ(z)],

as its infinitesimal generator, with 0 < q < 1, i.e., the process zt jumps at sn, σn =
sn+1 − sn are IID having an intensity Λ(z), and at the jump-times, zsn = 0 with
probability q and zsn = zsn−/2 with probability 1− q. In this case, the functional of
interest is always the same (7), namely, τ = inf{t > 0 : ỹt = 0}, with the sequence of
signals τk+1 = inf{t > τk : ỹt = 0}, τ0 = 0, which are not necessarily the sequence
of jump-times {sn} of the process ỹt . However, if

F(t) = 1− exp
(
−

∫ t

0
Λ(s)ds

)
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is the law of σ1 for P0 then the convolution F∗n(t) is the law of sn = ∑n σn and the
law of τ = τ1 (when ỹ0 = 0) is given by

P0{τ ≤ t}= ∑
n

F∗n(t)q(1− q)n−1 := G(t),

and the sequence of signals {τk} define another sequence Tk = τk+1 − τk of IID
random variables with law G(t). Hence, if we take λ (t) = G′(t)/(1−G(t)) then the
control problem for (xt , ỹt) and f (x) (i.e., independent of ỹ) should be equivalent to
the problem (xt ,yt), with yt constructed from λ (y), since the discrete problems are
identical for (xt , ỹt) and (xt ,yt). It is clear that theses considerations can be extended
to a similar model (xt ,zt)

Azϕ(z) = b(z)∂zϕ(z)+Λ(z)
∫
R+

(
ϕ(ζ )−ϕ(z)

)
m(z,dζ ),

under suitable assumptions on the drift b and the probability kernel m(dζ ,z).
Another kind of problem could have the constraint ‘control is allowed at any

jump of zt ’, with xt as the reduced state process and zt as the signal process. For
this model, the condition, ‘when the process zt jumps’ is not exactly the same as
‘when zt vanishes’. In other words, technically speaking, the full state of the system
needs something else that the knowledge of (x,z), i.e., we need to know zt and zt−

to check if a jump has really occurred. Thus, if zt = ỹt above, then we would have
τn = sn, the jump-times of zt . For the (xt ,yt) model (as well as for the hybrid model)
presented in the above sections, the constraint “control is allowed only . . . ” ‘when
yt jumps’ is exactly the same as saying ‘when yt vanishes’. Nevertheless, we may
have an infinitesimal generator like Az (of the piecewise deterministic process zt –
or something else–) with a b(z) > 0 and m(ϕ ,z) = ϕ(0), which is not exactly the
process yt (the time elapsed since the last signal), but it has the property that zt = 0
iff yt = 0. Thus, for those type of processes, the constraint “control is allowed only
when zt vanishes” is equivalent to “control is allowed only when yt vanishes”.

Because of the particular meaning of our signal process yt as the ‘time elapsed
since last signal’, we obtain more detailed results than in the general hybrid model.
Therefore, there are many generalization in various directions, e.g., in between to
consecutive signals some other type of control could be allowed, signals of various
types enabling particular types of controls may be given, and many other ways on
how a continuous-type and a discrete-type variables may interact. Actually, much
more details on the (hybrid) model are necessary to advance further in this discus-
sion, and this is part of our book in preparation Jasso-Fuentes et al. [20], which
follows some the problems discussed in Bensoussan and Menaldi [5, 6] and [27].
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