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Foreword

This volume contains a selection of papers based on a thematic summer program
“Modeling, Stochastic Control, Optimization, and Related Applications” held at the
Institute for Mathematics and its Applications from May 1-June 30, 2018 and orga-
nized by George Yin and Qing Zhang. This summer program included four week-
long workshops over the eight week focus period:

• Stochastic Control, Computational methods, and Applications,
• Queuing Theory and Networked Systems,
• Ecological and Biological Applications, and
• Finance and Economics Applications.

The papers found in this volume cover a broad array of application areas and uti-
lize a wide variety of techniques, from applied probability and network science to
stochastic differential equations and numerical methods. We would like to thank
volume editors, George Yin and Qing Zhang. Finally, we acknowledge the National
Science Foundation for its support of this program.

The Institute for Mathematics and its Applications was established by a grant
from the National Science Foundation to the University of Minnesota in 1982. The
primary mission of the IMA is to foster research of a truly interdisciplinary na-
ture, establishing links between mathematics of the highest caliber and important
scientific and technological problems from other disciplines and industries. IMA
Volumes are used to communicate results of these programs that we believe are of
particular value to the broader scientific community. The full list of IMA books can
be found at the web site of the Institute for Mathematics and its Applications:

http://www.ima.umn.edu/springer/volumes.html.
Presentation materials from the IMA talks are available at

http://www.ima.umn.edu/talks/.
A video library is at

http://www.ima.umn.edu/videos/.

Daniel Spirn

v

Minneapolis, MN, USA, May 2019



Preface

This volume collects papers, based on invited talks given at the IMA workshop in
Modeling, Stochastic Control, Optimization, and Related Applications, held at the
Institute for Mathematics and Its Applications, University of Minnesota, during May
and June, 2018.

There were four week-long workshops during the conference. They are (1)
stochastic control, computation methods, and applications, (2) queueing theory and
networked systems, (3) ecological and biological applications, and (4) finance and
economics applications. For broader impacts, researchers from different fields cov-
ering both theoretically oriented and application intensive areas were invited to par-
ticipate in the conference. It brought together researchers from multi-disciplinary
communities in applied mathematics, applied probability, engineering, biology,
ecology, and networked science, to review, and substantially update most recent
progress. As an archive, this volume presents some of the highlights of the work-
shops, and collect papers covering a broad range of topics. After the conference, 23
papers were submitted. All papers were reviewed.

Without the help and assistance of the IMA directors and staffs, the conference
could not come into being. We thank Fadil Santosa for the initial suggestion and
encouragement as well as subsequent help. Our thanks go to Daniel Spirn, Benjamin
Brubaker, and Katherine Dowd for their support throughout the workshops. It had
been a pleasure working with Rebecca Malkovich and Georgia Kroll and all the
IMA professionals. Their supports are greatly acknowledged. Finally, we thank the
contributors of this volume, invited speakers of the workshops, and the attendees for
making the conference a successful and memorable event.

Detroit and Athens, George Yin
Feb., 2019, Qing Zhang
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Uniform Polynomial Rates of Convergence for A
Class of Lévy-Driven Controlled SDEs Arising
in Multiclass Many-Server Queues

Ari Arapostathis, Hassan Hmedi, Guodong Pang, and Nikola Sandrić

Abstract We study the ergodic properties of a class of controlled stochastic dif-
ferential equations (SDEs) driven by α-stable processes which arise as the limit-
ing equations of multiclass queueing models in the Halfin–Whitt regime that have
heavy–tailed arrival processes. When the safety staffing parameter is positive, we
show that the SDEs are uniformly ergodic and enjoy a polynomial rate of conver-
gence to the invariant probability measure in total variation, which is uniform over
all stationary Markov controls resulting in a locally Lipschitz continuous drift. We
also derive a matching lower bound on the rate of convergence (under no abandon-
ment). On the other hand, when all abandonment rates are positive, we show that the
SDEs are exponentially ergodic uniformly over the above-mentioned class of con-
trols. Analogous results are obtained for Lévy–driven SDEs arising from multiclass
many-server queues under asymptotically negligible service interruptions. For these
equations, we show that the aforementioned ergodic properties are uniform over all
stationary Markov controls. We also extend a key functional central limit theorem
concerning diffusion approximations so as to make it applicable to the models stud-
ied here.

Key words: subexponential ergodicity, multiclass queues, Lévy processes

Ari Arapostathis
Department of ECE, The University of Texas at Austin, EER 7.824, Austin, TX 78712, e-mail:
ari@ece.utexas.edu

Hassan Hmedi
Department of ECE, The University of Texas at Austin, EER 7.834, Austin, TX 78712, e-mail:
hmedi@utexas.edu

Guodong Pang
The Harold and Inge Marcus Dept. of Industrial and Manufacturing Eng., College of Engineering,
Pennsylvania State University, University Park, PA 16802, e-mail: gup3@psu.edu

Nikola Sandrić
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1 Introduction

Lévy–driven controlled stochastic differential equations (SDEs) arise as scaling lim-
its for multiclass many-server queues with heavy-tailed arrival processes and/or with
asymptotically negligible service interruptions; see [4,12,13]. In these equations, the
control appears only in the drift and corresponds to a work-conserving scheduling
policy in multiclass many-server queues, that is, the allocation of the available ser-
vice capacity to each class under a non-idling condition (no server idles whenever
there are jobs in queue). For the limiting process, we focus on stationary Markov
controls, namely time-homogeneous functions of the process. When the arrival pro-
cess of each class is heavy-tailed (for example, with regularly varying interarrival
times), the Lévy process driving the SDE is a multidimensional anisotropic α-stable
process, α ∈ (1,2). When the system is subject to service interruptions (in an alter-
nating renewal environment affecting the service processes only), the Lévy process
is a combination of either a Brownian motion, or an anisotropic α-stable process,
α ∈ (1,2), and an independent compound Poisson process.

Ergodic properties of these controlled SDEs are of great interest since they help
to understand the performance of the queueing systems. In [4], the ergodic prop-
erties of the SDEs under constant controls are thoroughly studied. It is shown that
when the safety staffing is positive, the SDEs have a polynomial rate of convergence
to stationarity in total variation, while when the abandonment rates are positive, the
rate of convergence is exponential. However, the technique developed in [4] does
not equip us to investigate the ergodic properties of these SDEs beyond the constant
controls, since the Lyapunov functions employed are modifications of the common
quadratic functions that have been developed for piecewise linear diffusions [5].

It was recently shown in [7] that the Markovian multiclass many–server queues
with positive safety staffing in the Halfin–Whitt regime are stable under any work-
conserving scheduling policies. Motivated by this significant result, Arapostathis et
al. (2018) [3] have developed a unified approach via a Lyapunov function method
which establishes Foster-Lyapunov equations which are uniform under stationary
Markov controls for the limiting diffusion and the prelimit diffusion-scaled queue-
ing processes simultaneously. It is shown that the limiting diffusion is uniformly
exponentially ergodic under any stationary Markov control.

In this paper we adopt and extend the approach in [3] to establish uniform ergodic
properties for Lévy-driven SDEs. As done in [4], we distinguish two cases: (i) pos-
itive safety staffing, and (ii) positive abandonment rates. We focus primarily on the
first case, which exhibits ergodicity at a polynomial rate, a result which is some-
what surprising. The second case always results in uniform exponential ergodicity.
By employing a polynomial Lyapunov function instead of the exponential function
used in [3], we first establish an upper bound on the rate of convergence which
is polynomial. The drift inequalities carry over with slight modifications from [3],
while the needed properties of the non-local part of the generator are borrowed
from [2]. As in [4], we use the technique in [9] to establish a lower bound on the
rate of convergence, which actually matches the upper bound. As a result, we es-
tablish that with positive safety staffing, the rate of convergence to stationarity in
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total variation is polynomial with a rate that is uniform over the family of Markov
controls which result in a locally Lipschitz continuous drift.

When the SDE is driven by an α–stable process (isotropic or anisotropic), in or-
der for the process to be open–set irreducible and aperiodic, it suffices to require
that the controls are stationary Markov and the drift is locally Lipschitz continuous.
However, the existing proof of the convergence of the scaled queueing processes of
the multiclass many–server queues with heavy–tailed arrivals to this limit process,
assumes that the drift is Lipschitz continuous [13]. In this paper, we extend this re-
sult on the continuity of the integral mapping (Theorem 1.1 in [13]) to drifts that
are locally Lipschitz continuous with at most linear growth (see Lemma 4). Apply-
ing this, we also present an extended functional central limit theorem (FCLT) for
multiclass many-server queues with heavy-tailed arrival processes (see Theorem 6).

On the other hand, when the Lévy process consists of a Brownian motion and
a compound Poisson process, which arises in the multiclass many–server queues
with asymptotically negligible interruptions under the

√
n scaling, the SDE has a

unique strong solution that is open–set irreducible and aperiodic under any station-
ary Markov control. To study uniform ergodic properties, we also need to account
for the second order derivatives in the infinitesimal generator. For this reason we
modify the Lyapunov function with suitable titling on the positive and negative half
state spaces. We also discuss the model with a Lévy process consisting of a α-stable
process and a compound Poisson process.

1.1 Organization of the paper

In Section 2, we present a class of SDEs driven by an α–stable process, whose er-
godic properties are studied in Section 3. In Section 4, we study the ergodic proper-
ties of Lévy–driven SDEs arising from the multiclass queueing models with service
interruptions. In Section 5, we provide a description of the multiclass many–server
queues with heavy-tailed arrival processes, and establish the continuity of the inte-
gral mapping with a locally Lipschitz continuous function that has at most linear
growth, as well as the associated FCLT.

1.2 Notation

We summarize some notation used throughout the paper. We use Rm (and Rm
+),

m ≥ 1, to denote real-valued m-dimensional (nonnegative) vectors, and write R for
m = 1. For x,y ∈ R, we write x∨ y = max{x,y}, x∧ y = min{x,y}, x+ = max{x,0}
and x− = max{−x,0}. For a set A ⊆ Rm, we use Ac, ∂A, and 1A to denote the
complement, the boundary, and the indicator function of A, respectively. A ball of
radius r > 0 in Rm around a point x is denoted by Br(x), or simply as Br if x = 0.
We also let B≡ B1. The Euclidean norm on Rm is denoted by | · |, and 〈· , ·〉 stands
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for the inner product. For x ∈ Rm, we let ‖x‖1 := ∑i|xi|, and we use x′ to denote
the transpose of x. We use the symbol e to denote the vector whose elements are all
equal to 1, and ei for the vector whose i th element is equal to 1 and the rest are equal
to 0.

We let B(Rm), Bb(Rm), and P(Rm) denote the classes of Borel measurable
functions, bounded Borel measurable functions, and Borel probability measures
on Rm, respectively. By Pp(Rm), p > 0, we denote the subset of P(Rm) con-
taining all probability measures π(dx) with the property that

∫
Rm |x|pπ(dx) < ∞.

For a finite signed measure ν on Rm, and a Borel measurable f : Rm → [1,∞),
‖ν‖ f := sup|g|≤ f

∫
Rm |g(x)|ν(dx), where the supremum is over all Borel measurable

functions g satisfying this inequality.

2 The model

We consider an m-dimensional stochastic differential equation (SDE) of the form

dXt = b(Xt ,Ut)dt +dÂt , X0 = x ∈ Rm . (1)

All random processes in (1) live in a complete probability space (Ω,F ,P). We have
the following structural hypotheses.

(A1) The control process {Ut}t≥0 lives in the (m−1)-simplex

∆ := {u ∈ Rm : u≥ 0 , 〈e,u〉= 1} ,

and the drift b : Rm×∆ → Rm is given by

b(x,u) = `−M
(
x−〈e,x〉+u

)
−〈e,x〉+Γ u

=

{
`−
(
M+(Γ −M)ue′

)
x , 〈e,x〉> 0 ,

`−Mx , 〈e,x〉 ≤ 0 ,

(2)

where ` ∈ Rm, M = diag(µ1, . . . ,µm) with µi > 0, and Γ = diag(γ1, . . . ,γm)
with γi ∈ R+, i = 1, . . . ,m.

(A2) The process {Ât}t≥0 is an anisotropic Lévy process with independent sym-
metric one-dimensional α-stable components for α ∈ (1,2).

Define

K+ :=
{

x ∈ Rm : 〈e,x〉> 0
}
, and K− :=

{
x ∈ Rm : 〈e,x〉 ≤ 0

}
.

A control Ut is called stationary Markov, if it takes the form Ut = v(Xt) for a Borel
measurable function v : K+→ ∆ . We let Usm denote the class of stationary Markov
controls, and Ũsm its subset consisting of those controls under which
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bv(x) := b
(
x,v(x)

)
is locally Lipschitz continuous. These controls can be identified with the function v.
Note that if v : K+→ ∆ is Lipschitz continuous when restricted to any set K+∩BR,
R > 0, then v ∈ Ũsm, but this property is not necessary for membership in Ũsm.

Clearly, for any v ∈ Usm, the drift bv(x) has at most linear growth. Therefore, if
v∈ Ũsm, then using [1, Theorem 3.1, and Propositions 4.2 and 4.3], one can conclude
that the SDE (1) admits a unique nonexplosive strong solution {Xt}t≥0 which is a
strong Markov process and it satisfies the Cb-Feller property. In addition, in the
same reference, it is shown that the infinitesimal generator (Av,DAv) of {Xt}t≥0
(with respect to the Banach space (Bb(Rm),‖·‖∞)) satisfies C2

c (Rm)⊆DAv and

Av∣∣
C2

c (Rm)
f (x) :=

〈
bv(x),∇ f (x)

〉
+Iα f (x) , (3)

where

Iα f (x) :=
d

∑
i=1

∫
R∗

d f (x;yiei)
ξi dyi

|yi|1+α
,

for some positive constants ξ1, . . . ,ξm, and

d f (x;y) := f (x+ y)− f (x)−〈y,∇ f (x)〉 , f ∈C1(Rm) . (4)

Here, DAv and C2
c (Rm) denote the domain of Av and the space of twice continuously

differentiable functions with compact support, respectively.
We let Pv

x and Ev
x denote the probability measure and expectation operator on the

canonical space of the solution of (1) under v∈ Ũsm and starting at x. Also, Pv
t (x,dy)

denotes its transition probability. From the proof of Theorem 3.1 (iv) in [4] we have
the following result.

Theorem 1. Under any v ∈ Ũsm, Pv
t (x,B)> 0 for all t > 0, x ∈ Rm and B ∈B(Rm)

with positive Lebesgue measure. In particular, under any v ∈ Ũsm, the process
{Xt}t≥0 is open–set irreducible and aperiodic in the sense of [11].

Remark 1. As far as the results in this paper are concerned we can replace the
anisotropic non-local operator Iα with the isotropic operator∫

R∗
d f (x;y)

dy
|y|m+α

,

as done in [4].

We also define

Au f (x) :=
〈
b(x,u),∇ f (x)

〉
+Iα f (x) , u ∈ ∆ .

In the next section we study the ergodic properties of {Xt}t≥0. To facilitate the
analysis, we define the spare capacity, or safety staffing, β as
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β := −〈e,M−1`〉 . (5)

Note that if we let ζ = β

m e+M−1`, with β as in (5), then a mere translation of the
origin of the form X̃t = Xt − ζ results in an SDE of the same form, with the only
difference that the constant term ` in the drift equals − β

m Me. Since translating the
origin does not alter the ergodic properties of the process, without loss of generality,
we assume throughout the paper that the drift in (2) has the form

b(x,u) = −β

m
Me−M(x−〈e,x〉+u)−〈e,x〉+Γ u . (6)

3 Uniform ergodic properties

We recall some important definitions used in [3, Section 2.3].

Definition 1. We fix some convex function ψ ∈C2(R) with the property that ψ(t)
is constant for t ≤ −1, and ψ(t) = t for t ≥ 0. The particular form of this function
is not important. But to aid some calculations we fix this function as

ψ(t) :=


− 1

2 , t ≤−1 ,

(t +1)3− 1
2 (t +1)4− 1

2 t ∈ [−1,0] ,

t t ≥ 0 .

Let I= {1, . . . ,m}. With δ and p positive constants, we define

Ψ(x) := ∑
i∈I

ψ(xi)

µi
, and Vp(x) :=

(
δΨ(−x)+Ψ(x)+

m
mini∈I µi

)p

.

Note that the term inside the parenthesis in the definition of Vp, or in other words
V1, is bounded away from 0 uniformly in δ ∈ (0,1]. The function Vp also depends
on the parameter δ which is suppressed in the notation.

For x ∈Rm we let x± :=
(
x±1 , . . . ,x

±
m
)
. The results which follows is a corollary of

Lemma 2.1 in [3], but we sketch the proof for completeness.

Lemma 1. Assume β > 0, and let δ ∈ (0,1] satisfy(
max
i∈I

γi
µi
−1
)+

δ ≤ 1 . (7)

Then, the function Vp in Definition 1 satisfies, for any p > 1 and for all u ∈ ∆ ,〈
b(x,u),∇Vp(x)

〉
≤ p

(
δβ +

m
2
(1+δ )−δ‖x‖1

)
Vp−1(x) ∀x ∈K− , (8)〈

b(x,u),∇Vp(x)
〉
≤ −p

(
β

m
−δβ −δ

m
2
+δ‖x−‖1

)
Vp−1(x) ∀x ∈K+ . (9)
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Proof. We have

〈
b(x,u),∇Ψ(x)

〉
= − β

m ∑
i∈I

ψ
′(xi)−∑

i∈I
ψ
′(xi)

(
xi−〈e,x〉+ui

)
−〈e,x〉+ ∑

i∈I
ψ
′(xi)

γi
µi

ui ,
(10)

and 〈
b(x,u),∇Ψ(−x)

〉
=

β

m ∑
i∈I

ψ
′(−xi)+∑

i∈I
ψ
′(−xi)xi

−〈e,x〉+ ∑
i∈I

ψ
′(−xi)

(
1− γi

µi

)+ui

+ 〈e,x〉+ ∑
i∈I

ψ
′(−xi)

(
γi
µi
−1
)+ui .

(11)

It is easy to verify that ψ ′(−1/2) = 1/2, from which we obtain

∑
i∈I

ψ
′(xi)xi ≥ ‖x+‖1−

m
2
, and −∑

i∈I
ψ
′(−xi)xi ≥ ‖x−‖1−

m
2
. (12)

Therefore, (8) follows by using (12) in (10)–(11).
We next turn to the proof of (9). If γi ≤ µi for all i ∈ I, then the proof is simple.

This is because the inequality ∑i∈I ψ ′(xi)xi ≥ 〈e,x〉 and the fact that ‖ψ ′‖∞ ≤ 1
implies that

∑
i∈I

ψ
′(xi)

(
xi−〈e,x〉+ui

)
≥ 0 for x ∈K+ ,

which together with (10) shows that

〈
b(x,u),∇Ψ(x)

〉
≤ −β

m ∑
i∈I

ψ
′(xi) ≤ −

β

m
on K+ . (13)

On the other hand, by (11) and (12) we obtain

δ
〈
b(x,u),∇Ψ(−x)

〉
≤ δ

β

m ∑
i∈I

ψ
′(−xi)+δ ∑

i∈I
ψ
′(−xi)xi

≤ δβ +δ
m
2
−δ‖x−‖1 on Rm .

(14)

Therefore, when γi ≤ µi for all i ∈ I, (9) follows by adding (13) and (14).
Without assuming that γi ≤ µi, a careful comparison of the terms in (10)–(11),

shows that (see [3, Lemma 2.1])

δ 〈e,x〉+ ∑
i∈I

ψ
′(−xi)

(
γi
µi
−1
)+ui−∑

i∈I
ψ
′(xi)

(
xi−〈e,x〉+ui

)
−〈e,x〉+ ∑

i∈I
ψ
′(xi)

γi
µi

ui ≤ 0 ∀(x,u) ∈K+×∆ .
(15)
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Thus (9) follows by using (13)–(15) in (10)–(11). This completes the proof. ut

On the other hand, when Γ > 0, the proof of [3, Theorem 2.2] implies the fol-
lowing.

Lemma 2. Assume that Γ > 0. Then there exists a positive constant δ such that for
any p > 1, 〈

b(x,u),∇Vp(x)
〉
≤ c0− c1Vp(x) ∀(x,u) ∈ Rm×∆ ,

for some positive constants c0 and c1 depending only on δ .

Another result that we borrow is Proposition 5.1 in [2], whose proof implies the
following.

Lemma 3. The map x 7→ |x|α−pIαVp(x) is bounded on Rm for any p ∈ (0,α).

Theorems 2 and 3 that follow establish ergodic properties which are uniform
over controls in Ũsm in the case of positive safety staffing and positive abandonment
rates, respectively.

Theorem 2. Assume β > 0. In addition to (7), let

δ <
β

2m(2β +m)
. (16)

We have the following.

(a) For any p ∈ (1,α), the function Vp(x) in Definition 1 satisfies the Foster–
Lyapunov equation

AuVp(x) ≤ C0(p)− p
(

β

2m
+δ‖x−‖1

)
Vp−1(x) ∀(x,u) ∈ Rm×∆ , (17)

for some positive constant C0(p) depending only on p.
(b) Under any v∈ Ũsm, the process {Xt}t≥0 in (1) admits a unique invariant prob-

ability measure πv ∈ P(Rm).
(c) There exists a constant C1(ε) depending only on ε ∈ (0,α), such that, under

any v ∈ Ũsm, the process {Xt}t≥0 in (1) satisfies∥∥Pv
t (x, ·)−πv( ·)

∥∥
TV
≤ C1(ε)(t ∨1)1+ε−α |x|α−ε ∀x ∈ Rm . (18)

Proof. Note that, since α > 1, Lemma 3 implies that IαVp(x)
1+|Vp−1(x)|

vanishes at infinity.

Using δ as in (16), it is clear that δβ +δ
m
2 ≤

β

2m . Thus, (17) is a direct consequence
of Lemmas 1 and 3 together with the definition in (3).

Clearly, (17) implies that

AvVp(x) ≤ C0(p)− p
β

2m
Vp−1(x) ∀x ∈ Rm , (19)
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and for any v ∈ Ũsm. It is well known that the existence of an invariant probability
measure πv follows from the Cb-Feller property and (19), while the open-set irre-
ducibility asserted in Theorem 1 implies its uniqueness.

Equation (18) is a direct result of (19), Theorem 1 and [6, Theorem 3.2]. This
completes the proof. ut

Theorem 3. Assume that Γ > 0 and p∈ [1,α). Then, there exists a positive constant
δ such that

AuVp(x) ≤ κ̃0− κ̃1Vp(x) ∀(x,u) ∈ Rm×∆ .

for some positive constants κ̃0 and κ̃1. Moreover, under any v ∈ Ũsm, the process
{Xt}t≥0 admits a unique invariant probability measure πv ∈ P(Rm), and for any
γ ∈ (0, κ̃1) there exists a positive constant Cγ such that∥∥Pv

t (x, ·)−πv( ·)
∥∥

Vp
≤ CγVp(x)e−γt , x ∈ Rm , t ≥ 0 .

Remark 2. We limited our attention to controls in Ũsm only to take advantage of
Theorem 1. However, if under some v ∈ Usm the SDE in (1) has a unique weak
solution which is an open-set irreducible and aperiodic Cb-Feller process, then it
has a unique invariant probability measure πv, and the conclusions of Theorems 2
and 3 follow.

Concerning the lower bound on the rate of convergence, we need not restrict the
controls in Ũsm. The lack of integrability of functions that have strict polynomial
growth of order α (or higher) under the Lévy measure of Iα , plays a crucial role in
determining this lower bound. Consider a v ∈ Usm as in Remark 2, and suppose that
β > 0.

Then it is shown in Lemma 5.7 (b) of [4] that∫
Rm

(
〈e,M−1x〉+

)p
πv(dx) < ∞ for some p > 0 =⇒ p < α−1 . (20)

We use this property in the proof of Theorem 4 which follows. To simplify the nota-
tion, for a function f which is integrable under πv, we let πv( f ) :=

∫
Rm f (x)πv(dx).

Theorem 4. We assume β > 0. Suppose that under some v ∈ Usm such that Γ v = 0
a.e. the SDE in (1) has a unique weak solution which is an open-set irreducible and
aperiodic Cb-Feller process. Then the process {Xt}t≥0 is polynomially ergodic. In
particular, there exists a positive constant C2 not depending on v, such that for all
ε > 0 we have∥∥Pv

t (x, ·)−πv( ·)
∥∥
TV
≥ C2

( t ∨1
ε

+ |x|α−ε

) 1−α
1−ε ∀(t,x) ∈ R+×Rm .

Proof. The proof uses [9, Theorem 5.1] and some results from [4]. Recall the func-
tion ψ , and define

χ̆(t) := 1+ψ(t) , and χ(t) := −χ̆(−t) .
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Also, we scale χ(t) using χR(t) := R+χ(t−R), R∈R. Thus, χR(t) = t for t ≤ R−1
and χR(t) = R− 1

2 for t ≥ R.
Let

F(x) := χ̆
(
〈e,M−1x〉

)
, and Fκ,R(x) := χR ◦Fκ(x) , x ∈ Rm , R > 0 ,

where Fκ(x) denotes the κ th power of F(x), with κ > 0.
Using the same notation as in [9, Theorem 5.1] whenever possible, we define

G(x) := Fα−ε(x), for ε ∈ (0,α−1). Then πv(Fα−ε) = ∞ by (20). Applying the Itô
formula to (19) we obtain

Ev
x
[
Vα−ε

(
Xt
)]
−Vα−ε(x) ≤ C0(α− ε) t , x ∈ Rm .

Since Fα−ε ≤C0Vα−ε for some constant C0 ≥ 1, the preceding inequality implies
that

Ev
x
[
Fα−ε

(
Xt
)]
≤ C0

(
C0(α− ε)t +Vα−ε(x)

)
=: g(x, t) .

Next, we compute a suitable lower bound f (t) for πv
(
{x : G(x)≥ t}

)
. We have

AvF1,R(x) = Iα F1,R(x)+ χ
′
R
(
F(x)

)〈
bv(x),∇F(x)

〉
= Iα F1,R(x)+ χ

′
R
(
F(x)

)
χ̆
′(〈e,M−1x〉

)(
−β + 〈e,x〉−

)
.

(21)

Integrating (21) with respect to πv, and replacing the variable R with t, we obtain

β πv
(
χ
′
t (F)h

)
= πv

(
Iα F1,t

)
+πv

(
χ
′
t (F)h̃

)
, (22)

where
h(x) := χ̆

′(〈e,M−1x〉
)
, and h̃(x) := h(x)〈e,x〉− .

Taking limits as t→ ∞ in (22), we obtain

βπv(h) = πv(Iα F)+πv(h̃) . (23)

Subtracting (22) from (23), gives

β πv(h−χ
′
t (F)h) = πv

(
Iα(F−F1,t)

)
+πv

(
h̃−χ

′
t (F)h̃

)
. (24)

Note that all the terms in this equation are nonnegative. Moreover, Iα(F−F1,t)(x)
is nonnegative by convexity, and thus

πv
(
Iα(F−F1,t)

)
≥ inf

x∈B

(
Iα(F−F1,t)(x)

)
πv(B)

≥ Iα(F−F1,t)(0)πv(B) .
(25)

It is straightforward to show that Iα(F−F1,t)(0)≥ κ̂t1−α for some positive constant
κ̂ . Therefore, by (24)–(25) and the definition of the functions F , F1,R and h, we
obtain
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πv
(
{x : 〈e,M−1x〉> t}

)
≥ πv(h−χ

′
t (F)h)

≥ β
−1

πv(B)Iα(F−F1,t)(0)

≥ κ̂ t1−α .

(26)

Therefore, by (26), we have

πv
(
{x : G(x)≥ t}

)
= πv

(
{x :

(
〈e,M−1x〉

)α−ε
> t}

)
= πv

(
{x : 〈e,M−1x〉> t

1
α−ε }

)
≥ κ̂ t

1−α
α−ε =: f (t) .

Next we solve y f (y) = 2g(x, t) for y = y(t), and this gives us y =
(
κ̂−12g(x, t)

) α−ε
1−ε ,

and
f (y) = κ̂

(
κ̂
−12g(x, t)

) 1−α
1−ε = C1

(
C0(α− ε)t +Vα−ε(x)

) 1−α
1−ε ,

with
C1 :=

(
2C0
) 1−α

1−ε κ̂
α−ε
1−ε .

Therefore, by [9, Theorem 5.1], and since ε is arbitrary, we have

∥∥Pv
t (x, ·)−πv( ·)

∥∥
TV
≥ f (y)− g(x, t)

y

=
C1

2
(
C0(α− ε)t +Vα−ε(x)

) 1−α
1−ε

(27)

for all t ≥ 0 and ε ∈ (0,α−1).
As shown in the proof of [4, Theorem 3.4], there exists a positive constant κ ′0,

not depending on ε , such that

C0(α− ε) ≥ κ
′
0(1+ ε

−1) . (28)

Thus the result follows by (27)–(28). ut

4 Ergodic properties of the limiting SDEs arising from queueing
models with service interruptions

The limiting equations of multiclass G/M/n+M queues with asymptotically neg-
ligible service interruptions under the

√
n-scaling in the Halfin–Whitt regime are

Lévy–driven SDEs of the form

dXt = b(Xt ,Ut)dt +σdWt +dLt , X0 = x ∈ Rm . (29)

Here, the drift b is as in Section 2, σ is a nonsingular diagonal matrix, and {Lt}t≥0 is
a compound Poisson process, with a drift ϑ , and a finite Lévy measure η(dy) which



12 Ari Arapostathis, Hassan Hmedi, Guodong Pang, and Nikola Sandrić

is supported on a half-line of the form {tw : t ∈ [0,∞)}, with 〈e,M−1w〉 > 0. This
can be established as in Theorem 6 in Section 5, assuming that the control is of the
form Ut = v(Xt) for a map v : K+ → ∆ , such that bv(x) is locally Lipschitz, when
the scaling is of order

√
n (see also Section 4.2 of [4]).

As we explain later, under any stationary Markov control, the SDE in (29) has a
unique strong solution which is an open-set irreducible and aperiodic strong Feller
process. Therefore, as far as the study of the process {Xt}t≥0 is concerned, we do
not need to impose a local Lipschitz continuity condition on the drift, but can allow
the control to be any element of Usm.

There are two important parameters to consider. The first is the parameter θc,
which is defined by

θc := sup
{

θ ∈Θc
}
, with Θc :=

{
θ > 0 :

∫
Bc
|y|θ η(dy) < ∞

}
.

The second is the effective spare capacity, defined as

β̃ := −
〈
e,M−1 ˜̀〉 ,

where

˜̀ :=

`+ϑ +
∫
Bc yη(dy) , if

∫
Bc |y|η(dy)< ∞

`+ϑ , otherwise.

Suppose that v ∈ Usm is such that Γ v(x) = 0 a.e. x in Rm. Then as shown in
Lemma 5.7 of [4], the process {Xt}t≥0 controlled by v cannot have an invariant
probability measure πv unless 1 ∈Θc and β̃ > 0, and moreover,∫

Rm

(
〈e,M−1x〉+

)p
πv(dx) < ∞ for some p > 0 =⇒ p+1 ∈Θc .

In addition, β̃ =
∫
Rm〈e,x〉−πv(dx) [4, Theorem 3.4 (b)]. Conversely, 1 ∈ Θc and

β̃ > 0 are sufficient for {Xt}t≥0 to have an invariant probability measure πv under
any constant control v, and πv ∈Pp(Rm) if p+1∈Θc (see Theorems 3.2 and 3.4 (b)
in [4]).

On the other hand, if Γ > 0, that is, it has positive diagonal elements, then {Xt}t≥0
is geometrically ergodic under any constant Markov control, and πv ∈ Pθ (Rm) for
any θ ∈Θc [4, Theorem 3.5]. This bound is tight since, in general, if under some
Markov control v the process {Xt}t≥0 has an invariant probability measure πv ∈
Pp(Rm), then necessarily p ∈Θc.

We extend the results derived for constant Markov controls in [4] to all controls
in Usm. Recall the definition in (4). Let

b̃(x,u) := b(x,u)+ ˜̀− ` ,

and b̃v(x) = b̃
(
x,v(x)

)
for v ∈ Usm. As explained in Section 2, we assume, without

loss of generality, that the constant term in b̃ is as in (6) with β replaced by β̃ .



Uniform Polynomial Rates of Convergence for a Class of Lévy-Driven SDEs 13

We define the operator A u on C2 functions by

A u f (x) := Lu f (x)+Jη f (x) , (x,u) ∈ Rm×∆ ,

where

Lu f (x) =
1
2

trace
(
σσ
′
∇

2 f (x)
)
+
〈
b̃(x,u),∇ f (x)

〉
, (x,u) ∈ Rm×∆ , (30)

and
Jη f (x) :=

∫
Rm

d f (x;y)η(dy) , x ∈ Rm .

Also, Lv is defined as in (30) by replacing u with v(x) for a control v ∈ Usm, and
analogously for A v.

It follows from the results in [8] that, for any v ∈ Usm, the diffusion

dX̃t = b̃(X̃t ,v(X̃t))dt +σ(X̃t)dWt , X̃0 = x ∈ Rd (31)

has a unique strong solution. Also, as shown in [14], since the the Lévy measure
is finite, the solution of (29) can be constructed in a piecewise fashion using the
solution of (31) (see also [10]). It thus follows that, under any stationary Markov
control, (29) has a unique strong solution which is a strong Markov process. In
addition, its transition probability Pv

t (x,dy) satisfies Pv
t (x,B)> 0 for all t > 0, x∈Rm

and B ∈ B(Rm) with positive Lebesgue measure. Thus, under any v ∈ Usm, the
process {Xt}t≥0 is open–set irreducible and aperiodic.

Recall Definition 1. In order to handle the second order derivatives in A u we
need to scale the Lyapunov function Vp. This is done as follows. With ψ as in Defi-
nition 1, we define

ψδ (t) := ψ(δ t) , and Ψδ (x) := ∑
i∈I

ψδ (xi)

µi
, δ ∈ (0,1] ,

and let

Vp,δ (x) :=
(

δ
2
Ψ(−x)+Ψδ (x)+

m
mini∈I µi

)p

.

Note that V1,δ is bounded away from 0 uniformly in δ ∈ (0,1]. Here we use the
inequality ∑i∈I ψ ′

δ
(xi)xi ≥ δ‖x+‖1−

m
2 . Then, under the assumption that β̃ > 0, the

drift inequalities take the form〈
b̃(x,u),∇Vp,δ (x)

〉
≤

pδ

(
δ β̃ + m

2δ
(1+δ 2)−δ‖x‖1

)
Vp−1,δ (x) ∀x ∈K− ,

−pδ
(

β̃

m −δ β̃ −δ
m
2 +δ‖x−‖1

)
Vp−1,δ (x) ∀(x,u) ∈K+×∆ .

(32)

The following result is analogous to Theorem 2.
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Theorem 5. Assume β̃ > 0, and 1 ∈Θc. Let p ∈Θc with p > 1. Then the following
hold.

(a) There exists δ > 0, a positive constant C̃0, and a compact set K such that

A uVp,δ (x) ≤ C̃01K(x)− pδ
β̃

2m
Vp−1,δ (x) ∀(x,u) ∈ Rm×∆ . (33)

(b) Under any v∈ Usm, the process {Xt}t≥0 in (1) admits a unique invariant prob-
ability measure πv ∈ P(Rm).

(c) For any θ ∈Θc there exists a constant C̃1(θ) depending only on θ , such that,
under any v ∈ Usm, the process {Xt}t≥0 in (1) satisfies∥∥Pv

t (x, ·)−πv( ·)
∥∥
TV
≤ C̃1(θ)(t ∨1)1−θ |x|θ ∀x ∈ Rm .

Proof. It is straightforward to show that ψ ′′
δ
(t) ≤ 2δ 2 and ψ ′

δ
(t) ≤ δ for all t ∈ R.

An easy calculation then shows that there exists a positive constant C such that

trace
(
σσ
′
∇

2Vp,δ (x)
)
≤ Cp2

δ
2(Vp−1,δ (x)+Vp−2,δ (x)

)
(34)

for all p ≥ 1 and x ∈ Rm. Recall that V1,δ is bounded away from 0 uniformly in
δ ∈ (0,1]. This of course implies that Vp−2,δ is bounded by some fixed multiple of
Vp−1,δ for all p ≥ 1. Therefore, (32) and (34) imply that for some small enough
positive δ we can chose a positive constant C̃′0, and a compact set K′ such that

LuVp,δ (x) ≤ C̃′01K′(x)− pδ
3β̃

4m
Vp−1,δ (x) ∀(x,u) ∈ Rm×∆ . (35)

If p ∈Θc, then [4, Lemma 5.1] asserts that JηVp,δ vanishes at infinity for p < 2,
and JηVp,δ is of order |x|p−2 for p ≥ 2. This together with (35) implies (33). The
rest are as in the proof of Theorem 2. ut

If Γ > 0, then the arguments in the proof of Theorem 5 together with Lemma 2
show that the process {Xt}t≥0 is geometrically ergodic uniformly over v∈Usm. Thus
we obtain the analogous results to Theorem 3. We omit the details which are routine.

Note that the assumption that the Lévy measure η(dy) is supported on a half-
line of the form {tw : t ∈ [0,∞)}, with 〈e,M−1w〉> 0 has not been used, and is not
needed in Theorem 5. Under this assumption we can obtain a lower bound of the
rate of convergence analogous to equation (3.9) in [4], by mimicking the arguments
in that paper. We leave the details to the reader.

Remark 3. With heavy-tailed arrivals and asymptotically negligible service interrup-
tions under the common n1/α-scaling for α ∈ (1,2), in the modified Halfin–Whitt
regime, the limit process is an SDE driven by an anisotropic α-stable process (with
independent α-stable components) as in (1), and a compound Poisson process with
a finite Lévy measure as in (29). This can be established as in Theorem 6, under the
same scaling assumptions in Section 4.2 of [4]. Thus the generator is given by
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Âu f (x) :=
〈
b̃(x,u),∇ f (x)

〉
+Jη f (x)+Iα f (x) ,

and Âv is defined analogously by replacing u with v(x) for v ∈ Ũsm.
To study this equation, we use the Lyapunov function Vp in Definition 1, with

p ∈ [1,α)∩Θc. Following the proof of Theorem 5, and also using Lemma 3, it
follows that there exists δ > 0 sufficiently small, a constant Ĉ0 and a compact set K̂
such that

ÂuVp(x) ≤ Ĉ01K̂(x)− p
β̃

2m
Vp−1(x) ∀(x,u) ∈ Rm×∆ .

Thus, (18) holds for any ε such that α−ε ∈Θc. The results of Theorem 3 also follow
provided we select p ∈ [1,α)∩Θc. However the lower bound is not necessarily the
one in Theorem 4. Instead we can obtain a lower bound in the form of equation (3.9)
in [4].

5 Multiclass G/M/n+Mueues with heavy-tailed arrivals

As in [4, Subsection 4.1], consider G/M/n+M queues with m classes of customers
and one server pool of n parallel servers. Customers of each class form their own
queue and are served in the first-come first-served (FCFS) service discipline. Cus-
tomers of different classes are scheduled to receive service under the work con-
serving constraint, that is, non-idling whenever customers are in queue. We assume
that the arrival process of each class is renewal with heavy-tailed interarrival times.
The service and patience times are exponentially distributed with class-dependent
rates. The arrival, service and abandonment processes of each class are mutually
independent.

We consider a sequence of such queueing models indexed by n and let n→∞. Let
An

i , i = 1, . . . ,m, be the arrival process of class-i customers with arrival rate λ n
i . As-

sume that An
i ’s are mutually independent. Define the FCLT-scaled arrival processes

Ân = (Ân
1, . . . , Â

n
m)
′ by Ân

i := n−1/α(An
i −λ n

i ϖ), i = 1, . . . ,m, where ϖ(t)≡ t for each
t ≥ 0, and α ∈ (1,2). We assume that

λ n
i /n → λi > 0, and `n

i := n−1/α(λ n
i −nλi) → `i ∈ R , (36)

for each i = 1, . . . ,m, as n→ ∞, and that the arrival processes satisfy an FCLT

Ân ⇒ Â = (Â1, . . . , Âm)
′ in (Dm, M1), as n→ ∞ ,

where the limit processes Âi, i = 1, . . . ,m, are mutually independent symmetric α-
stable processes with Âi(0) ≡ 0, and ⇒ denotes weak convergence and (Dm,M1)
is the space of Rm-valued càdlàg functions endowed with the product M1 topology
[15]. The processes Âi have the same stability parameter α , with possibly different
“scale” parameters ξi. Note that if the arrival process of each class is renewal with
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regularly varying interarrival times of parameter α , then we obtain the above limit
process. Let µi and γi be the service and abandonment rates for class-i customers,
respectively.
The modified Halfin-Whitt regime. The parameters satisfy

n1−1/α(1−ρ
n) −−−→

n→∞
ρ = −

m

∑
i=1

`i

µi
,

where ρn := ∑
m
i=1

λ n
i

nµi
is the aggregate traffic intensity. This follows from (36). Let

ρi := λi/µi for i ∈ I.
Let Xn = (Xn

1 , . . . ,X
n
d )
′, Qn = (Qn

1, . . . ,Q
n
d)
′, and Zn = (Zn

1 , . . . ,Z
n
d)
′ be the pro-

cesses counting the number of customers of each class in the system, in queue, and
in service, respectively. We consider work-conserving scheduling policies that are
non-anticipative and allow preemption (namely, service of a customer can be inter-
rupted at any time to serve some other class of customers and will be resumed at a
later time). Scheduling policies determine the allocation of service capacity, i.e., the
Zn process, which must satisfy the condition that 〈e,Zn〉= 〈e,Xn〉∧n at each time,
as well as the balance equations Xn

i = Qn
i +Zn

i for each i.
Define the FCLT-scaled processes X̂n = (X̂n

1 , . . . , X̂
n
d )
′, Q̂n = (Q̂n

1, . . . , Q̂
n
d)
′, and

Ẑn = (Ẑn
1 , . . . , Ẑ

n
d)
′ by

X̂n
i := n−1/α(Xn

i −ρin) , Q̂n
i := n−1/αQn

i , Ẑn
i := n−1/α(Zn

i −ρin) .

We need the following extension of Theorem 1.1 in [13]. Let φ : D([0,T ],Rm)→
D([0,T ],Rm) denote the mapping x 7→ y defined by the integral representation

y(t) = x(t)+
∫ t

0
h(y(s))ds , t ≥ 0 .

It is shown in [13, Theorem 1.1] that the mapping φ is continuous in the Skorohod
M1 topology when m = 1 and the function h is Lipschitz continuous. The lemma
which follows extends this result to functions h : Rm→ Rm which are locally Lips-
chitz continuous and have at most linear growth.

Lemma 4. Assume that h is locally Lipschitz and has at most linear growth. Then
the mapping φ defined above is continuous in (Dm,M1), the space D([0,T ],Rm)
endowed with the product M1 topology.

Proof. Assume that xn→ x in Dm with the product M1 topology as n→∞. Let xi be
the ith component of x, and similarly for xi

n. Let

Gx :=
{
(z, t) ∈ Rm× [0,T ] : zi ∈ [xi(t−),xi(t)] for each i = 1, . . . ,m

}
,

be the (weak) graph of x, and similarly, Gxn for xn; see Chapter 12.3.1 in [15].
Then following the proof of Theorem 1.2 in [13], it can be shown that there exist
parametric representations (u,r) and (un,rn) of x and xn, that map [0,1] onto the
graphs Gx and Gxn of x and xn, respectively, and satisfy the properties below. In
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the construction of the time component as in Lemma 4.3 of [13], the discontinuity
points of all the xi components need to be included, and then the spatial component
can be done similarly as in the proof of that lemma.

(a) The time (domain) components r,rn ∈C([0,1], [0,T ]) are nondecreasing func-
tions satisfying r(0) = rn(0) = 0 and rn(1) = rn(1) = T , and such that r and rn
are absolutely continuous with respect to Lebesgue measure on [0,1].

(b) The derivatives r′ and r′n exist for all n and satisfy ‖r′‖∞ < ∞, supn‖r′n‖∞ < ∞,
and ‖r′n− r′‖L1 → 0, where ‖r‖∞ := sups∈[0,1]|r(s)|, and ‖·‖L1 denotes the L1

norm.
(c) The spatial components u = (u1, . . . ,um) and un = (u1

n, . . . ,u
m
n ), n ∈ N, lie in

C([0,1],Rm), and satisfy u(0)= x(0), u(1)= x(T ), un(0)= xn(0), un(1)= xn(T ),
and ‖un−u‖∞→ 0 as n→ ∞.

As shown in the proof of Theorem 1.1 in [13], there exist parametric represen-
tations (uy,ry) and (uyn ,ryn) of y and yn, respectively, with ry = r and ryn = rn,
satisfying

uyn(s) = un(s)+
∫ s

0
h
(
uyn(w)

)
r′n(w)dw , s ∈ [0,1] , (37)

and similarly for uy(s). Here, (u,r) and (un,rn) are the parametric representations
of x and xn, respectively, whose properties are summarized above.

Since xn→ x in (Dm,M1) as n→ ∞, we have supn ‖un‖∞ < ∞. Taking norms in
(37), and using also the property supn ‖r′n‖∞ < ∞, and the linear growth of h, an
application of Gronwall’s lemma shows that supn ‖uyn‖∞ ≤ R for some constant R.
Enlarging this constant if necessary, we may also assume that ‖uy‖∞ ≤ R. By the
representation in (37), we have

|uyn(s)−uy(s)| ≤ |un(s)−u(s)|+
∣∣∣∣∫ s

0

(
h(uyn(w))−h(uy(w))

)
r′n(w)dw

∣∣∣∣
+

∣∣∣∣∫ s

0
h(uy(w))r′n(w)dw−

∫ s

0
h(uy(w))r′(w)dw

∣∣∣∣ .
Let κR be a Lipschitz constant of h on the ball BR. Then, applying Gronwall’s lemma
once more, we obtain

‖uyn −uy‖∞ ≤
(
‖un−u‖∞ +‖r′n− r′‖L1 sup

BR

h
)

eκR‖r′n‖∞ −−−→
n→∞

0 .

This completes the proof. ut

Remark 4. Suppose h, x, xn, and y are as in Lemma 4, but yn satisfies

yn(t) = xn(t)+
∫ t

0
hn(yn(s))ds , t ≥ 0 ,

for some sequence hn which converges to h uniformly on compacta. Then a slight
variation of the proof of Lemma 4, shows that yn→ y in Dm.



18 Ari Arapostathis, Hassan Hmedi, Guodong Pang, and Nikola Sandrić

Control approximation. Given a continuous map v : K+→∆ , we construct a station-
ary Markov control for the n-system which approximates it in a suitable manner.

Recall that 〈e,ρ〉= 1. Let

Xn :=
{

n−1/α(y−ρn) : y ∈ Zm
+ ,〈e,y〉> n

}
,

and Zn = Zn(x̂) denote the set of work-conserving actions at x̂ ∈ Xn. It is clear that
a work-conserving action ẑn ∈ Zn(x̂) can be parameterized via a map Ûn : K+→ ∆ ,
satisfying

ẑn
i (x̂) = x̂i−〈e, x̂〉+Ûn

i (x̂) . (38)

Consider the mapping defined in (38) from ẑn ∈Zn(x̂) to Ûn, and denote its image
as Ûn(x̂). Let

Ûn[v](x̂) ∈ Argmin
u∈Ûn(x̂)

∣∣〈e, x̂〉u−〈e, x̂〉v(x̂)∣∣ , x̂ ∈ Xn . (39)

The function Ûn[v] has the following property. There exists a constant č such that
with B̌n denoting the ball of radius čnα̌ in Rm, with α̌ := 1− 1/α, then

sup
x̂∈B̌n∩Xn

∣∣∣〈e, x̂〉Ûn[v](x̂)−〈e, x̂〉v(x̂)
∣∣∣ ≤ n−1/α . (40)

We have the following functional limit theorem.

Theorem 6. Let v ∈ Ũsm. Under any stationary Markov control Ûn[v] defined in
(39), and provided there exists X(0) such that X̂n(0)⇒ X(0) as n→ ∞, we have

X̂n ⇒ X in (Dm,M1) as n→ ∞ ,

where the limit process X is the unique strong solution to the SDE in (1). The pa-
rameters in the drift are given by `i in (36), µi, and γi, for i = 1, . . . ,m.

Proof. The FCLT-scaled processes X̂n
i , i = 1, . . . ,m, can be represented as

X̂n
i (t) = X̂n

i (0)+ `n
i t−µi

∫ t

0
Ẑn

i (s)ds− γi

∫ t

0
Q̂n

i (s)ds+ Ân
i (t)− M̂n

S,i(t)− M̂n
R,i(t)

where `n
i is defined in (36), with

M̂n
S,i(t) = n−1/α

(
Sn

i

(
µi

∫ t

0
Zn

i (s)ds
)
−µi

∫ t

0
Zn

i (s)ds
)
,

M̂n
R,i(t) = n−1/α

(
Rn

i

(
γi

∫ t

0
Qn(s)ds

)
− γi

∫ t

0
Qn

i (s)ds
)
,

and Sn
i ,R

n
i , i = 1, . . . ,m, are mutually independent rate-one Poisson processes, rep-

resenting the service and reneging (abandonment), respectively.
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The result can be established by mimicking the arguments in the proof of in [4,
Theorem 4.1], and applying Lemma 4 and Remark 4, using the function

hn(x) := `n +M
(
x−〈e,x〉+Ûn[v](x)

)
−〈e,x〉+Γ Ûn[v](x) ,

and the bound in (40). ut

6 Concluding remarks

We have extended some of the results in [4] stated for constant controls, to stationary
Markov controls resulting in a locally Lipschitz drift in the case of SDEs driven
by α-stable processes, and to all stationary Markov controls in the case of SDEs
driven by a Wiener process and a compound Poisson process. The results in this
paper can also be viewed as an extension of some results in [3]. However, the work
in [3] also studies the prelimit process and establishes tightness of the stationary
distributions. To the best of our knowledge, this is an open problem for systems
with arrival processes which are renewal with heavy-tailed interarrival times (no
second moments). This problem is very important and worth pursuing.
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Nudged Particle Filters in Multiscale Chaotic

Systems with Correlated Sensor Noise

Ryne Beeson and N. Sri Namachchivaya

Abstract In this work we present recent and new results for the theory and algo-
rithms of efficient estimation of the coarse-grain dynamics of a multiscale chaotic
dynamical system, where observations may be limited both spatial and in time,
and the observations are correlated with the slow states. The rigorous mathemati-
cal statement and convergence result with a rate of convergence to the reduced order
filter problem is given for the case of correlated sensor noise. Based on this result, al-
gorithms for efficient numerical solution of the filtering problem for the coarse-grain
dynamics are provided. We then address a second issue, which presents itself in the
case of chaotic systems and degrades particle filtering performance; the growth of
small errors at an exponential rate. We solve this problem by introducing an optimal
control problem for the solution of the proposal distribution and develop a numerical
algorithm for it’s solution. The algorithms developed in this work are demonstrated
on the widely used multiscale chaotic Lorenz 1996 model, that mimics mid-latitude
convection.

1 Introduction

With the continual growth in computational power, higher dimensional, more com-
plex physical models are more readily used in engineering and science applications.
Simultaneously, there is more and more interest in applying controls to and esti-
mating or forecasting these complex models. Often the physical models may have
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multiple time and spatial scales. For instance, in climate and weather modeling, it
is common practice to model the dynamics of the atmosphere or ocean on varying
spatial grids with distinct time scale separations, and to use stochastic consistency,
the additional of a stochastic process, to model the unresolved modes.

Whether one is interested in forecasting the states of their model, or applying
control to the model, the need for estimating the states of the system at a time t
given past observations of the system, is a critical problem. This is the problem of
filtering theory, of which the main result is that the filter, a conditional measure,
is characterized by the evolution of a certain stochastic differential equation (SDE)
taking values in a probability measure space. General and flexible numerical algo-
rithms have been devised for the solution of this SDE, but suffer from the curse
of dimensionality. Hence the reduction of the model is crucial for improving the
performance of these general filtering algorithms.

In the case where the model possesses large time-scale separations, one can lever-
age the theory of stochastic averaging to show that there exists a lower dimensional
process X0

t that is close to the coarse-grain dynamics Xt , but is uncoupled from the
fine-grain processes Zt . In particular Xt ⇒ X0

t as a time-scale separation parameter
tends to zero. Our interest lies in understanding whether we can show certain con-
vergence results of the filter associated with Xt to a lower dimension filter; exploiting
this property of Xt ⇒ X0

t . Being able to show such results, allows potential insight
into how more efficient lower dimensional filter algorithms can be created, and thus
more accurate and tractable filtering methods for solving modern problems.

For instance, a motivating problem for the multiscale correlated filtering prob-
lem stems from atmospheric and climatology problems; for example, coupled
atmosphere-ocean models, which immediately provide a multiscale model with fast
atmospheric and slow ocean dynamics. In the case of climate prediction the ocean
memory, due to its heat capacity, holds important information. Hence, the improved
estimate of the ocean state, which is often the slow component, is of greater interest.

In particular, we are interested in working with the following problem. Con-
sider the system of equations describing the multiple timescale correlated sensor
noise problem, defined on a filtered probability space (Ω ,F ,(Ft),Q), supporting
an (unobserved) signal processes (Xε

t ,Z
ε
t ) and an observation process Y εt , as follows

dXε
t = b(Xε

t ,Z
ε
t )dt +σ(Xε

t ,Z
ε
t )dWt , Xε

0 = x ∈ Rm

dZεt =
1
ε

f (Xε
t ,Z

ε
t )dt +

1√
ε

g(Xε
t ,Z

ε
t )dVt , Zε0 = z ∈ Rn

dY εt = h(Xε
t ,Z

ε
t )dt +αdWt + γdUt , Y ε0 = 0 ∈ Rd

(1)

where Xε
t ,Z

ε
t ,Y

ε
t take values in Rm,Rn, and Rd respectively for m,n,d ∈ N. Here

0 < ε� 1 is a timescale separation parameter; hence Xε
t is a slow process, and Zεt is

a fast process. Wt ,Vt ,Ut are independent standard Brownian motions. The presence
of α �= 0 indicates sensor-signal noise correlation in the observation process Y εt .
Assuming (1) possesses certain properties such that Xε

t ⇒ X0
t , to be properly defined

in Section 2, and assuming the test function of interest is of the form ϕ = ϕ(x), then
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can we show that

πε,xt (ϕ)≡ EQ [ϕ(Xε
t ,Z

ε
t ) | Y ε

t ]⇒ π0
t (ϕ)≡ EQ

[
ϕ(X0

t ) | Y ε
t
]
,

where ϕ is an integrable test function, Y ε
t ≡ σ({Y εs | s ∈ [0, t]}) is the σ -algebra

generated by the observation process, and πε,xt is the x-marginal of πεt ? In particular,
can a rate of convergence be shown for the case of correlated sensor-signal noise.
And furthermore, what can be done to improve numerical methods for solving the
filtering problem if (1) is a chaotic system or still high-dimensional after reduction.

The organization of this chapter is as follows. In Section 2 we properly introduce
the filtering problem for the multiscale correlated sensor-signal noise problem. We
present the main converge results and describe the mathematical techniques used
to show the result, which includes the re-casting of the filter SDE into a backward
stochastic partial differential equation (BSPDE) and finally into backward doubly
stochastic differential equations (BDSDEs). In Section 3 we introduce the Lorenz
1996 model [23], which is an example of a chaotic system used to model a ran-
dom multiscale natural system. It is a heuristic model that mimics mid-latitude at-
mospheric dynamics with microscopic convective processes. It is a useful tool for
testing new data assimilation methods for use in numerical weather simulations ow-
ing to its transparency and low computational cost (c.f [1, 27, 15, 20]). We in fact
present a stochastic version of the Lorenz 1996 model, where the stochastic forcing
is justified by the need to account for unresolved modes [25]. The Lorenz ’96 model
will act as our testbed model for benchmarking various filtering methods in Sec-
tion 6. Before leaving Section 3, we introduce the heterogeneous multiscale method
(HMM) [9], which we use to numerical solve for the homogenized dynamics. We
then compare the qualitative behavior of the full Lorenz ’96 and homogenized mod-
els and verify that the relevant assumptions for applying HMM to the Lorenz ’96
model are satisfied. In Section 4, we recall the derivation of the sequential impor-
tance sampling (SIS) particle filter (PF) for the solution of the filtering problem and
then share an algorithm that combines the multiscale integration technique, HMM,
with the SIS PF, which we simple refer to as PF from now on. This filtering algo-
rithm is called the homogenized hybrid particle filter (HHPF). Lastly, in Section 4
we provide results regarding how to account for the case of correlated sensor-signal
noise when filtering a continuous-time signal with sparse in-time discrete observa-
tions. In Section 5 we address a critical issue when applying a PF to a chaotic system
with a sparse in-time observation process. To keep the number of particles low, yet
attain desired accuracy, we introduce a control on the particles and solve an optimal
control problem that results in an optimal proposal distribution for the PF. In Sec-
tion 6 we demonstrate the aforementioned sequential monte carlo based methods on
the Lorenz 1996 model with a correlated sensor-signal noise observation process.
Section 7 provides concluding remarks.
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2 Homogenized Correlated Nonlinear Filtering

The theoretical aim of filtering is to derive representations and convergence results
of the filter πεt ,

πεt (ϕ)≡ EQ [ϕ(Xε
t ,Z

ε
t ) | Y ε

t ] ,

a conditional measure, where Y ε
t ≡ σ({Y εs | s ∈ [0, t]}) is the σ -algebra generated

by the observation process, ϕ(x,z) is an integrable test function of interest, and the
dynamics of (Xε

t ,Z
ε
t ,Y

ε
t ) is given by (1). In the case where for each fixed x, Zε,xt is

ergodic and converges rapidly to it’s stationary distribution; that is,

dZε,xt =
1
ε

f (x,Zε,xt )dt +
1√
ε

g(x,Zε,xt )dVt ,

is ergodic, then the theory of stochastic averaging [28] tells us that Xε
t ⇒ X0

t in dis-
tribution as ε → 0, where X0

t satisfies the following averaged stochastic differential
equation (SDE),

dX0
t = b(X0

t )dt +
√

a(X0
t )dWt . (2)

Equation (2) is also known as the effective dynamics. With the stationary distribu-
tion of Zε,xt denoted as μ∞(z;x), the averaged coefficients b and a are defined as,

b(x)≡
∫

b(x,z)μ∞(dz;x), (3)

a(x)≡
∫
σσ∗(x,z)μ∞(dz;x).

Then
√

a(x) is the factor of the modified Cholesky decomposition of a(x).

2.1 Main Result

In the case ϕ = ϕ(x), we consider the x-marginal of πεt (ϕ),

πε,xt (ϕ)≡
∫
ϕ(x)πεt (dx,dz)

If Xε
t takes values in Rm and Zεt in Rn with m ≤ n, then it would be advantageous to

consider the reduced (homogenized) filter equation

π0
t (ϕ)≡ EQ

[
ϕ(X0

t ) | Y ε
t
]
.

Yet the result Xε
t ⇒ X0

t does not necessarily imply πε,xt → π0
t . In [16], convergence

of the x-marginal to the homogenized filter is shown for the non-correlated case,
α = 0. Specifically, it is proved that for any T > 0, the difference between the x-
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marginal of the original filter and the filter for the coarse-grain dynamics goes to
zero as ε → 0 at the rate

√
ε ,

EQ

[
d
(
πε,xT ,π0

T
)]≤ √

εC, (4)

where d denotes a suitable distance on the space of probability measures that gen-
erates the topology of weak convergence. Kushner [19] presents the next closest
result to what we desire for two-timescale filtering problems, which is covered in
great detail there, but does not obtain rates of convergence.

It is of interest to understand if a similar result holds in the correlated sensor noise
case. For example, in our motivating problem of atmospheric or climate problems,
sensors in those environments (e.g. floats, drifters, balloons) are coupled to their
noisy environment. Further, as discussed in [14, 34], the correlated noise problem
also occurs whenever a filter is based on a discrete time model that is derived from
a continuous time model.

In this section, we provide the main ideas and tools used to show the following
result,

Theorem 1. Under appropriate assumptions on the coefficients of (1), for every p ≥
1 and T ≥ 0 there exists C > 0, such that for every ϕ with sufficient regularity(

EQ

[∣∣πε,xT (ϕ)−π0
T (ϕ)

∣∣p
])1/p ≤ √

εC(ϕ)

In particular, there exists a metric d on the space of probability measures, such that
d generates the topology of weak convergence, and such that for every T ≥ 0 there
exists C > 0 such that

EQ

[
d
(
πε,xT ,π0

T
)]≤ √

εC

The convergence result, with an exact rate of convergence, is an extension of [16].
The complete details of the proof are provided in [5].

2.2 Zakai Equation

To show the above result, we make use of probabilistic representations of stochastic
partial differential equations, that then allows us to get estimates giving a rate of
convergence. To begin, we perform a standard Girsanov change of measure using
the exponential martingale Dε

t ,

Dε
t ≡ dPε

dQ

∣∣∣∣
Ft

= exp
(
−
∫ t

0
h∗(Xε

s ,Z
ε
s )dBs − 1

2

∫ t

0
‖h(Xε

s ,Z
ε
s )‖2ds

)
,

where dBt ≡ αdWt + γdUt . If αα∗ + γγ∗ = Id., then Bt is a standard BM; this we
assume for now. Then by the Kallianpur-Striebel formula, we can express the nor-
malized condition measure πεt in terms of an unnormalized condition measure ρεt ,
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πεt (ϕ) =
EPε

[
ϕ(Xε

t ,Z
ε
t )D̃

ε
t | Y εt

]
EPε

[
D̃ε

t | Y εt
] =

ρεt (ϕ)
ρεt (1)

, (5)

where D̃ε
t = (Dε

t )
−1. The advantage of working with ρεt is that it’s evolution is

defined by linear dynamics, whereas πεt is nonlinear. Similarly, define π0
t (ϕ) =

ρ0
t (ϕ)/ρ0

t (1) and the x-marginals,

πε,xt (ϕ) = ρε,xt (ϕ)/ρε,xt (1), ρε,xt (ϕ)≡
∫
ϕ(x)ρεt (dx,dz).

Under the new measure Pε , the observation process is a standard Brownian motion
(BM) and the SDEs for (Xε

t ,Z
ε
t ) are now of the form,

dXε
t = [b(Xε

t ,Z
ε
t )−σ(Xε

t ,Z
ε
t )α∗h(Xε

t ,Z
ε
t )]dt +σ(Xε

t ,Z
ε
t )dW̃t

dZεt =
1
ε

f (Xε
t ,Z

ε
t )dt +

1√
ε

g(Xε
t ,Z

ε
t )dVt ,

where W̃t is a standard BM under Pε . The unnormalized conditional measure, ρεt ,
satisfies a Zakai-type equation,

dρεt (ϕ) = ρεt (G
εϕ)dt +ρεt (h

∗ϕ+∂xϕσα∗)dY εt , (6)

with generator G ε given by

G ε ≡ 1
ε
GF +GS

GF ≡
n

∑
i=1

fi(x,z)
∂
∂ zi +

1
2

n

∑
i, j
(gg∗)i j(x,z)

∂ 2

∂ zi∂ z j

GS ≡
m

∑
i=1

bi(x,z)
∂
∂xi +

1
2

m

∑
i, j
(σσ∗)i j(x,z)

∂ 2

∂xi∂x j .

Note that in the case of correlated noise, an additional stochastic forcing term,
ρεt (∂xϕσα∗)dY εt is present in (6). Also of note, is that the correlated problem typi-
cally addressed in the literature is of the form:

dXε
t = b(Xε

t ,Z
ε
t )dt +ψ(Xε

t ,Z
ε
t )dWt +ξ (Xε

t ,Z
ε
t )dUt

dY εt = h(Xε
t ,Z

ε
t )dt +dUt

(7)

(c.f. [6, 3]). Choosing ξ = σα∗ and ψψ∗+ξξ ∗ = σσ∗ again yields the Zakai-type
equation for ρεt , (6). This is useful since convergence proofs for branching particle
algorithms, which provide a numerical solution to 6, already exist for this second
case [6].
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2.3 Dual Representations and Reduced Order Zakai Equation

For a given bounded test function ϕ and terminal time T , we follow [29] in intro-
ducing the associated dual process vε,T,ϕt (x,z) of (6),

vε,T,ϕt (x,z)≡ EPεt,x,z

[
ϕ(Xε

T )D̃
ε
t,T | Y εt,T

]
, (8)

where

D̃ε
t,T ≡ exp

(∫ T

t
h∗(Xε

s ,Z
ε
s )dY εs − 1

2

∫ T

t
‖h(Xε

s ,Z
ε
s )‖2ds

)
.

vε,T,ϕt (x,z) is dual in the sense that ρε,xT (ϕ) = ρεt (v
ε,T,ϕ
t ) is almost surely constant

for each bounded test function ϕ and time t. Therefore if we also introduce

D̃0
t,T ≡ exp

(∫ T

t
h∗(X0

s )dY εs − 1
2

∫ T

t
‖h(X0

s )‖2ds
)
,

v0,T,ϕ
t (x)≡ EPεt,x

[
ϕ(X0

T )D̃
0
t,T | Y εt,T

]
,

and

h(x)≡
∫

h(x,z)μ∞(dz;x), (9)

then to show convergence of πε,xT → π0
T as ε → 0, it suffices to show vε,T,ϕ0 → v0,T,ϕ

0
for sufficiently many ϕ . Specifically, let

vϕ(x,z)≡ vε,T,ϕ0 (x,z)− v0,T,ϕ
0 (x), (10)

then in [5] we use the following inequality relations,

E

[∣∣ρε ,xT (ϕ)−ρ0
T (ϕ)

∣∣p
]
= E

[∣∣∣∣∫ vϕ(x,z)Q0(dx,dz)
∣∣∣∣p]

≤ E

[∫
|vϕ(x,z)|pQ0(dx,dz)

]
=

∫
E
[|vϕ(x,z)|p]Q0(dx,dz), (11)

where

dρ0
t (ϕ) = ρ0

t (Gϕ)dt +ρ0
t (h

∗ϕ+∂xϕσα∗)dYt , (12)
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with ρ0
0 (ϕ) =EQ

[
ϕ(X0

0 )
]

and σ(x) =
∫
Rn σ(x,z)μ∞(dz;x). Proving convergence of

E [|vϕ(x,z)|p] at the rate ε p/2 in the last line (11) and assuming the initial distribution
Q0 is well-behaved, alongside supporting arguments, provides the desired result.

2.4 BDSDEs and Sketch of Convergence Proof

To show convergence of E [|vϕ(x,z)|p] at the rate ε p/2, we use the following pro-
gram. We fix T > 0 and a test function ϕ and omit them from the notation for vε,T,ϕt .
The process vεt solves the backward stochastic partial differential equation (BSPDE)

−dvεt = G εvεt dt +(h∗vεt +∂xvεt σα
∗)d

←−
Y t , vεT = ϕ (13)

where
←−
Y t denotes the application of a backward Itô integral; Yt a standard BM with

backward filtration.
The main idea is to expand vεt as a series expansion in ε ,

vεt (x,z) = v0
t (x)+ψt(x,z)+Rt(x,z), (14)

ψt , Rt begin corrector and error terms respectively, and

−dv0
t = G v0

t dt +
(
h∗v0

t +∂xv0
t σα

∗)d
←−
Y t , v0

T = ϕ. (15)

We pause at this point to re-iterate the significance of showing convergence to
the reduced order filter. Specifically, the dual representation of the unnormalized
conditional measure, given in (13), is a function valued process for a given test
function ϕ(x,z). The test function has domain Rm×Rn for some m,n∈N. Hence the
linear operator G ε in (13) is defined by coefficients taking values in Rm,Rn,Rm×m

and Rn×n. In comparison, the dual of the reduced order filter, given in (15), has
a linear operator G defined only by coefficients taking values in Rm and Rm×m.
Typically, m � n in multiscale problems, and hence performing filtering on the
reduced order problem is computationally advantageous. Even in the case that m is
equal to or only slightly less than m+ n, it is still desirable to filter on the reduced
order equation.

The critical tool to show convergence is to use the theory of backward dou-
bly stochastic differential equations (BDSDEs) [30], so that we have a finite-
dimensional representation for each of the terms in the expansion (14). For instance,
consider the BSPDE given by (13). Applying the existence results for BSPDEs [33],
let us try to find the dynamics of θ t,x,z

s = vεs (X
ε,t,x
s ,Zε,t,zs ), where Xε,t,x

s and Zε,t,zs are
versions of Xε

s and Zεs starting at x and z respectively at time t. This implies that
θ t,x,z

t = vεt (x,z) and according to [30], the dynamics of θ t,x,z
s are given by a BDSDE:

−dθ t,x,z
s =

(
h∗(Xε,t,x

s ,Zε,t,zs )θ t,x,z
s +η t,x,z

s α∗)d
←−
Y s −η t,x,z

s dWs −ξ t,x,z
s dVs, (16)
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with boundary condition θ t,x,z
T = ϕ(Xε,x,t

T ,Zε,z,tT ), driven by the signal process with
generator G ε ,

dXε
s = b(Xε

s ,Z
ε
s )ds+σ(Xε

s ,Z
ε
s )dWs Xε

t = x

dZεs =
1
ε

f (Xε
s ,Z

ε
s )ds+

1√
ε

g(Xε
s ,Z

ε
s )dVs Zεt = z,

and (η t,x,z
s ,ξ t,x,z

s ) are pair process to θ t,x,z
s such that

η t,x,z
t = ∂xvεt (x,z)σ(x,z)

ξ t,x,z
t =

1√
ε
∂zvεt (x,z)g(x,z).

The BDSDE (16) is a finite dimensional representation of (13) and therefore al-
lows us to use standard tools, for example Gronwall’s lemma, for calculating the
necessary estimates.

To summarize this section, we use the existence results for BSPDE [33] for the
terms in the expansion (14), producing a BDSDE representation [30] for each. Then
using the ergodic property of the fast-process, and estimates on the semi-groups for
the drift and diffusion coefficients [36, 31], we show in [5] that E [|ψt |p] ,E [|Rt |p]→
0 as ε → 0 at the rate of ε p/2.

3 The Lorenz 1996 Model

The Lorenz ’96 model was originally introduced in [23] to mimic multiscale mid-
latitude atmospheric dynamics for an unspecified scalar meteorological quantity. A
latitude circle is divided into K sectors, and each sector is subdivided into J sub-
sectors. The model has two timescales with the slow-scale atmospheric variable at
time t in the k-th sector given by {Xk

t } and the fast-scale atmospheric variable in
subsector (k, j) at time t given by {Zk, j

t }. Mathematically, the dynamics are

dXk
t = (Xk−1

t (Xk+1
t −Xk−2

t )−Xk
t +F +

hx

J

J

∑
j=1

Zk, j
t )dt

dZk, j
t =

1
ε

(
Zk, j+1

t (Zk, j−1
t −Zk, j+2

t )−Zk, j
t +hzXk

t

)
dt, (17)

where k = 1, . . . ,K and j = 1, . . . ,J. Here, we use the version of the model in [10]
and [17], in which the nonlinear, linear and slow scale effects in the fast dynamics
are all of order 1. In this setting, [10] showed that (for a lower order version of the
Lorenz ’96 model) the fast scale dynamics display ergodic properties such that the
averaging technique described in Section 3.1 can be used to average out the fast
dynamics when we are only interested in the slow dynamics (coarse-grain process).
In (17), F is a slow-scale forcing, and hx,hz are coupling terms.
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The dynamics of unresolved modes can be represented by adding forcing in the
form of stochastic terms (see, for example, [24, 25]). The use of stochastic terms
to represent nonlinear self-interaction effects at short timescales in the unresolved
modes is appropriate if we are only interested in the coarse-grain dynamics oc-
curring in the long, slow timescale. This is called stochastic consistency in [25].
Considering (17), where only quadratic nonlinearity is present in the fast process,
the motivation behind adding stochastic forcing is thus to model higher order self-
interaction effects.

For the purpose of filtering, which requires some noise in the dynamics, as well
as for the reason of stochastic consistency, let us write (17) in a standard form with
additive stochastic forcing,

dXε
t = b(Xε

t ,Z
ε
t )dt +σxdWt , Xε

t ∈ RK

dZεt =
1
ε

f (Xε
t ,Z

ε
t )dt +

1√
ε
σzdVt , Zεt ∈ RJ , (18)

with b, f given as in (17). In Section 6, we will consider the application of numerical
filters to solve the filtering problem with the Lorenz ’96 model as the signal of
interest. We will in particular be interested in the estimation of the coarse-grain
{Xk

t } dynamics by way of using the homogenized dynamics {X0,k
t }.

We now fix our model parameters, for the purpose of understanding the behavior
of (17) and making comparisons with the numerical solution of the homogenized
dynamics. Let the simulation parameters be: ε = 1E-2, F = 10, (hx,hz) = (−1,1),
σx,σz sparse square matrices with 1 along the diagonal and 0.05 on the first two sub
and super-diagonals, K = 6 and J = 9. Hence (Xt ,Zt) ∈ R6 ×R54 and the homog-
enized dynamics have X0

t ∈ R6, so a state space dimension a 10th of the original.
Figure 1 illustrates the behavior of a generic slow state X1

t (shown in orange), the
fast states in the 1st sector, that is Z1,1

t , . . . ,Z1,9
t (shown in gray), and the fast scale

forcing that enters (17) for the X1
t component (shown in light blue); the fast scale

forcing is (hx/J)∑J
j=1 Z1, j

t .
Due to the symmetry of the model, it is sufficient to look at one sector to get

a glimpse of the qualitative behavior of the dynamics. According to [23], the time
scale used here, T = 20, is roughly equivalent to mimicking 100 days in ‘real’ time.
The solution shown in Fig. 1 was produced by integrating the initial conditions with
an Euler-Maruyama integration scheme with a step-size of δ = 1E-4.

3.1 Heterogenous Multiscale Method (HMM)

Since we will be interested in filtering on the homogenized dynamics, given in gen-
eral form by (2), we require a numerical method for generating b and a1/2 for
the signal dynamics, h for the observation process, and depending on the numer-
ical method chosen for filtering, σ . The heterogenous multiscale method (HMM)
[35, 10] outlines an algorithm for efficient multiscale integration with [9] providing
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Fig. 1 Behavior of Lorenz ’96: X1
tXX in orange, Z1,1

tZZ . . . ,Z1,9
tZZ in gray, and the fast scale forcing

(hx/J)∑J
j=1 Z1, j

tZZ on X1
tXX in light blue.

the analysis proving relevant weak and strong convergence theorems for the algo-
rithm. The driving numerical motivation for HMM, is that the stability of simulating
the signal process (Xε

tXX ,ZεtZZ ) of (1) requires an integration step-size, δmδδ , which must
be smaller than ε . The general idea of HMM is to integrate (x,Zε,(z0,s)

tZZ ), that is the
fast process ZεtZZ starting at z0 at time s < t, with fixed Xε

tXX = x, with an integration
step-size δmδδ < ε for a small period of time Δm > δmδδ and with a finite number of
realizations R ∈ N. We call Δm the fast-macro step-size. From this simulation, a
transition density μΔμμ m(z;x,z0) is constructed and should be close to μ∞(z;x). Then
the averaged coefficients of (3) and (9) can be approximated, so that filtering can
be applied to (12). Since μ∞(z;x) is dependent on x, the averaged coefficients must
be recalculated, but on larger time-scales then Δm. We denote ΔM ≥ Δm, the slow-
macro step-size, which is the interval of time upon which the transition density
μΔμμ m(z;x,z0) and hence coefficients b,a,σ ,h are assumed to hold accurately. Dur-
ing this time-interval a slow-integration step-size δMδ > δmδδ is used to integrate the
averaged SDE (2).

The parameters we use in this paper are slightly different than that in [10]. There-
fore we should confirm the applicability of HMM to our problem. We do this numer-
ically, setting the relevant simulation parameters to R = 1, δmδδ = 1E-4, δMδ = 1E-2,
Δm = 5δmδδ , and ΔM = 10δMδ . With these parameters, and the same initial conditions
as used in Fig. 1, we get the result shown in Fig. 2 when integrating with HMM us-
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ing Euler-Maruyama integration schemes for both the fast and slow-scale processes.
After some time, the qualitative behavior seen in Fig. 1 and Fig. 2 are quite different,
but Fig. 3 and Fig. 4 show us that on shorter time scales (the first 0.8 time units of
the simulations), the dynamics of the numerically averaged X0

tXX are indeed near the
original XtXX .

Fig. 2 Behavior of HMM solution of Lorenz ’96: X0,1
tXX in orange, R = 1 realizations of Z1,1

tZZ . . . ,Z1,9
tZZ

with fixed X0
tXX in gray, and the averaged fast scale forcing on X0,1

tXX in light blue.

The fact that the numerically averaged is close on shorter time scales is sufficient
in the filtering context of sparse in-time observations if the observations occur before
the XtXX and X0

tXX solutions separate too much. For instance, in Section 6 we will assume
that the observations come every Δ t = 10δMδ , which is Δ t = 0.1 for our parameters.
The solutions XtXX and X0

tXX are certainly visually close in Fig. 3 and Fig. 4 over the time
interval [0,0.1]. The update step at t = 0.1 in filtering will then improve the estimate
of XtXX at time t = 0.1 and therefore limit the separation that may have occurred over
the interval [0,0.1].

A more rigorous numerical verification that HMM is appropriate for our model
comes from two investigations: 1. comparing the effective (stationary) density as-
sociated with X0

tXX with the x-marginal of the transition density of Xε
tXX with our time

scale separation parameter ε = 1E-2, and 2. showing that the (x,ZεtZZ ) process con-
verges exponentially to it’s invariant distribution, regardless of initial condition on
ZεtZZ = z ∈ Rn. Technically, we should see this last result occur within a time interval
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Fig. 3 Behavior of Lorenz ’96: X1
tXX in orange, Z1,1

tZZ . . . ,Z1,9
tZZ in gray, and the fast scale forcing

(hx/J)∑J
j=1 Z1, j

tZZ on X1
tXX in light blue.

Fig. 4 Behavior of HMM solution of Lorenz ’96: X0,1
tXX in orange, R = 1 realizations of Z1,1

tZZ . . . ,Z1,9
tZZ

with fixed X0
tXX in gray, and the averaged fast scale forcing on X0,1

tXX in light blue.

of length Δm, which implies that the application of HMM is well founded for our
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choice of parameter. Again, in the context of filtering, we are able to relax this last
requirement and still effectively filter.

For the first investigation, Fig. 5 provides a numerical confirmation that (17) with
ε = 1E-2 produces Xε

tXX with a marginal density close to the effective density for X0
tXX .

Specifically, Fig. 5 compares the marginal density of the first slow component X1
tXX

for ε = 1E-2 and 1E-3, which are nearly the same, implying that the statistics for
the dynamics of Xε

tXX with ε = 1E-2 is close to X0
tXX . Because of the symmetry of the

signal model (17), all slow components Xk
tXX have the same marginal density, hence

comparing only for the X1
tXX marginal density is appropriate.

In Fig. 6 we show the marginal density of the first component of the fast process
for four different simulations. For this analysis, we simulate the full model from a
randomly generated initial condition to eliminate transient effects. Then we fix the
slow process Xε

tXX = x and simulate the fast process for randomly generated Zε0ZZ , where
each component of Zε0ZZ is chosen according to N (0,1); normal distribution with
mean zero and variance one. Fig. 6 shows the convergence of the transition densities
μ15·Δm(z;Xε

0XX = x,Zε0ZZ ) for the first component of ZεtZZ ; showing that on a macro step
of 15Δm we have sufficient convergence from most initial states of Zε0ZZ . When using
HMM in our estimation implementation of HHPF, we can in fact relax the condition
for convergence of the transition densities and still effectively filter. Hence why we
will use a macro step of only Δm in Section 6 analysis.

Fig. 5 Simulation of (18). Shown in gray is the X1
tXX (i.e. first component) marginal density when

ε = 1E-2 and similarly in light blue the X1
tXX marginal density when ε = 1E-3.
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Fig. 6 Transition densities of the first component of ZεtZZ : μ15·Δm (z;Xε
0XX = x,Zε0ZZ ), for randomly gen-

erated Zε0ZZ ; the first component of Zε0ZZ is shown as Z1
0ZZ in the legend for four different simulations.

Xε
0XX = x is a fixed slow state.

4 Numerical Solution of the Reduced Order Filter

The convergence result shown in Section 2 provides the theoretical foundation upon
which efficient numerical methods can be developed to solve the multiscale corre-
lated filtering problem. Our objective in this section, is to explain how this theory
can be used to create sequential Monte Carlo methods for the homogenized fil-
tering equation. In particular, we will show how a standard sequential importance
sampling (SIS) particle filter (PF) can be combined with the HMM to create the Ho-
mogenized Hybrid Particle Filter (HHPF); an SIS PF adapted to the homogenized
dynamics. We will consider the case of a continuous-time signal and discrete-time
observation processes. A similar methodology can be pursued for other ensemble
based filtering methods, for instance the ensemble Kalman filter [17, 38].

4.1 Sequential Importance Sampling Particle Filter (PF)

Standard particle filtering procedures (particle approximation of distributions, prop-
agation and weighting) can be used in approximating the distribution of the signal
process conditioned on observations. Ultimately, we are interested in approximating
integrals of certain test functions ϕ ,
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πεt (ϕ) =
∫
Rm×Rn

ϕ(x,z)πεt (dx,dz).

Hence we would like to be able to sample from πεt . Although we cannot do this
directly, we can use the principle of importance sampling to approximate this action.

The main idea in importance sampling is that π is a distribution that is difficult
to sample from, yet it is proportional to a function that is easy to evaluate: π ∝ ψ .
One also assumes that there exists a distribution q, called the importance or proposal
distribution, that is absolutely continuous with respect to π; that is q � π , and which
is easy to sample from. Then define the importance weights w ≡ ψ/q, so that

π ∝ wq. (19)

Returning to our filtering problem in the discrete-time observation setting, let
{tk ∈ R}, k ∈ N be a finite collection of observation times, that are strictly increas-
ing. And for brevity, we will simply use k as a time index for processes instead of the
full tk. Let ξ ∈ Rm ×Rn be a state in the range space of the signal process (Xε

t ,Z
ε
t )

and y ∈Rd for Y εt in (1). Then by Bayes’ theorem, the posterior distribution p(ξk|yk)
is proportional to multiplication of the likelihood and prior distributions,

p(ξk|yk) ∝ p(yk|ξk)p(ξk) (20)

Therefore applying the principle of importance sampling in this setting, we have

p(ξk|yk) ∝ wkq(ξk) where wk =
p(yk|ξk)p(ξk)

q(ξk)
.

Now assume we can approximate the posterior distribution as a weighted col-
lection of Dirac distributions. In particular, consider an ensemble of independent
particles indexed by a set A = {1, . . . ,N}, N ∈ N, with the particles evolving ac-
cording to the signal process in (1). Each particle represents a stochastic realization
of the signal process; we denote the set of values that the particles take in the sig-
nal state space at time tk as A ξ

k and the values by individual particles with similarly

notation A ξ
k ( j) for j ∈A . The probability of each particle representing the true sig-

nal process is given by the set of time-varying weights {w j
k} j∈A . Then the posterior

distribution is approximated at time tk by a weighted sum of Dirac distributions,

p(ξk|yk) = ∑
j∈A

w j
kδ

j
k (ξk),

where δ j
k has support on the singleton given by A ξ

k ( j). And w j
k ∈ [0,1] with

∑ j∈A w j
k = 1 for each tk.

For convenience, let us make a common choice for the importance distribution,
by setting q(ξk) equal to the prior distribution. Then given a posterior distribution
p(ξk|yk) at time tk, the importance (prior) distribution is simply
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q(ξk+1) = p(ξk+1) = ∑
j∈A

w j
kδ

j
k+1(ξk+1). (21)

And the posterior distribution at tk+1 is,

p(ξk+1|yk+1) = ∑
j∈A

w j
k+1δ

j
k+1(ξk+1)

∝ ∑
j∈A

w j
k p(yk+1|ξk+1)δ

j
k+1(ξk+1). (22)

Therefore, when new observation data is available, the weights are updated accord-
ing to

w j
k+1 ∝ w j

k p(yk+1|δ j
k+1). (23)

Since ∑ j∈A w j
k = 1 for each tk, these new weights must be normalized. Lastly, note

that in the case where our observation is a Gaussian process; that is

Yk = h(ξk)+Uk with Uk ∼ N (0,R),

then the weights are updated according to,

w j
k+1 ∝ w j

k exp
(
−1

2
(yk+1 −h(ξk+1))

∗R−1(yk+1 −h(ξk+1))

)
. (24)

Particle filters are known to suffer from certain degeneracy conditions. The main
issue is that it is not uncommon to have one particle with nearly all the weight
after a small number of observations; that is for one j ∈ A , w j

k � 1 and wi
k � 1

for A � i �= j. The a priori selection of an optimal proposal distribution is help-
ful as a remedy to this problem, but often difficult. Another technique that can be
effective in combating degeneracy is resampling; intuitively, this just means that
particles with large weights are multiplied and those with small weights are elim-
inated. We refer the reader to [13, 8, 7, 2] for more details regarding resampling,
importance sampling and other concepts associated with basic particle filters. In the
numerical simulations presented in this paper, we will use the universal (system-
atic) resampling technique (c.f. [2, p.180]). The resampling technique is used when
the effective particle number Neff,k ≡ 1/∑ j∈Ak

(w j
k)

2 falls below some user specified
threshold; and occurs after updating the weights, but before normalization.

In summary, our standard particle filter algorithm, that will be used in our nu-
merical simulations has the following recursive structure:

Particle Filter (PF) Algorithm

1. At time tk, set w j
k = 1/N, ∀ j ∈ A and

p(ξk|yk) = ∑
j∈A

w j
kδ

j
k (ξk).
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2. Generate the prior at tk+1 by advecting each particle under the signal dynamics
given by (1),

p(ξk+1) = ∑
j∈A

w j
kδ

j
k+1(ξk+1).

3. Update the particle weights according to

w j
k+1 ∝ w j

k p(yk+1|ξk+1).

4a. If Neff,k is below a threshold (indicating particle degeneracy), then apply universal
resampling and set

w j
k+1 = 1/N, ∀ j ∈ A .

4b. Otherwise, compute the l2 norm of the weights and re-normalize each

w j
k+1 ← w j

k+1/|w|2.

4.2 Homogenized Hybrid Particle Filter (HHPF)

HHPF differs from regular particle filtering in the sense that particles are used to
represent X0

t instead of (Xε
t ,Z

ε
t ). Hence the particles and their weights approximate

the reduced order filter π0
t . The numerical integration of the particles A x

t ( j) under
the SDE (2) requires multiscale integration techniques to approximate the averaged
drift and diffusion coefficients. Similarly, multiscale techniques are needed for the
averaged observation coefficient (9); for observation and updating of the particle
weights {w j

t } j∈A . These coefficients are calculated using the HMM described in
Section 3.1. We simply summarize the algorithm steps here, and refer the reader to
the papers [32, 39, 22] for full details on HHPF.

Homogenized Hybrid Particle Filter (HHPF) Algorithm

1. Same as (PF) step 1.
2. Apply the HMM multiscale integration technique and compute the averaged co-

efficients b,a1/2,h.
3. Generate the prior at tk+1 by advecting each particle under the signal dynamics

given by (2).
4. Same as (PF) step 3., but using h in the likelihood distribution.
5. Same as (PF) steps 4a. and 4b.

4.3 Likelihood for Correlated Sparse Observations

Neither the PF nor HHPF algorithms just described detail how we should account
for correlation between the sensor and signal noise in the discrete-time observation
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process; that is an observation process of the form,

YtYY kt = h(XtXX kt )+
∫ tkt

t

∫∫
k

∫∫
t

∫
−1

αdWsWW + γUγγ tUU kt ,

with α,γ �=�� 0. Following the SIS PF algorithm, when we select the proposal dis-
tribution as the prior distribution, then we must derive the likelihood distribution
for updating the particle weights. To do this, consider a discrete-time signal and
observation process of the form,

x j = f jf (x j−1)+G jv j−1,

...
xk−1 = fkff −1(xk−2)+Gk−1vk−2, (25)

xk = fkff (xk−1)+Gkvk−1,

yk = hk(xk)+ ek.

As before, subscript indices indicate times, xk is the signal process, yk the observa-
tion process, and {v j} is a sequence of independent Gaussian random variables. The
sequence {e j} are also Gaussian, but correlated with {v j}; specifically, the random
variable ek is correlated with v j−1, . . . ,vk−1. Figure 7 provides a pictorial represen-
tation of (25).

The noises v j−1, . . . ,vk−2,vk−1,ek are jointly Gaussian,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
v j−1

...
vk−2
vk−1
ek

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ∈ N

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜0,

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢
Q j−1 . . . 0 0 S j

0
. . . 0 0

...
0 0 Qk−2 0 Sk−1
0 0 0 Qk−1 Sk

ST
j . . . ST

k−1 ST
k Rk

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

with Q j the covariance matrix associated with v j, Rk with ek and S j the covariance
of v j−1 and ek for instance.

Fig. 7 A pictorial representation of (25) with arrows between v j and ek indicating sensor-signal
correlation.
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For simplicity of discussion, let us assume f = f j and h = h j, ∀ j. Also, define
Ĝ j ≡ G jQ j−1GT

j , Ŝ j ≡ G jS j, and

R≡

⎡⎢⎢⎢⎢⎢⎢⎣
Ĝ j . . . 0 0 Ŝ j

0
. . . 0 0

...
0 0 Ĝk−1 0 Ŝk−1

0 0 0 Ĝk Ŝk

ŜT
j . . . ŜT

k−1 ŜT
k Rk

⎤⎥⎥⎥⎥⎥⎥⎦=

[
Q̃ S̃
S̃T Rk

]
.

The probabilistic description of the state space model is then given by,

p

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
x j

x j+1
...

xk
yk

⎞⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
x j−1

⎞⎟⎟⎟⎟⎟⎠= N

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
f (x j−1)
E [ f (x j)]

...
E [ f (xk−1)]
E [h(xk)]

⎞⎟⎟⎟⎟⎟⎠ ,R

⎞⎟⎟⎟⎟⎟⎠

= N

((
E
[

f (Xj−1:k)
]

E [h(xk)]

)
,

[
Q̃ S̃
S̃T Rk

])
,

where we used the notation Xj−1:k to be the vector (xk, . . . ,x j−1). We will need the
following lemma on conditional Gaussian distributions.

Lemma 1. Let X ,Y be two vectors with jointly Gaussian distribution:(
X
Y

)
∼ N

((
μx
μy

)
,

[
Pxx Pxy
Pyx Pyy

])
Then the conditional Gaussian distribution for Y given X = x is Gaussian dis-
tributed,

(Y |X = x)∼ N
(
μy +PyxP−1

xx (x−μx),Pyy −PyxP−1
xx Pxy

)
.

Using Lemma 1, the likelihood p(yk|xk,xk−1, . . . ,x j−1) is,

p(yk|xk,xk−1, . . . ,x j−1) ∝ N
(

h(xk)+ S̃T Q̃−1(Xj−1:k − f (Xj−1:k)),Rk − S̃T Q̃−1S̃
)
.

Although we presented the results of Section 2 for a continuous-time signal, once
we apply a numerical filtering algorithm to the problem, we are forced to numeri-
cally integrate and therefore the continuous-time signal becomes a discrete-time
process. For instance, our application of an Euler-Maruyama scheme means that
each Euler step can be thought of as one line from (25). It is in this sense that we
will apply the results of this subsection with PF and HHPF to solve the correlated
filtering problem. For a simple two-dimensional example demonstrating correlated
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filtering with the aforementioned methods, see [4]. For the reader interested in al-
gorithms for the continuous-time signal and observation case with correlated sensor
noise, see [6], where a branching particle filter is presented for solution of the Zakai
equation.

5 Nudged Particle Filter

In the previous section, we presented the PF, HHPF, and correlated variants of each
derived from sequential importance sampling when the proposal distribution was
selected to be the prior distribution. The selection of the prior as the proposal is
typical; the optimal proposal distribution, the one that minimizes the variance of the
weights of the particles after observations, is usually not known in closed form, and
selection of the prior as the proposal provides a closed form for the update of the
weights when the observation process is Gaussian. But the typical sub-optimality of
selecting the prior as the proposal further encourages particle degeneracy. Particle
degeneracy can be particularly pronounced in the case where the signal dynam-
ics are chaotic; possessing positive Lyapunov exponents, for example the Lorenz
1996 model. In this section, we use optimal control methods to construct an im-
proved prior proposal distribution that helps to improve the filtering quality with
fixed number of particles when the system is of high dimension and may be chaotic.

5.1 Nudging in Particle Filters

We will construct a better prior proposal, and hence posterior, by incorporating in-
formation from the observation into the particle propagation. For example, let us
consider the time interval [tk, tk+1], where observations are given at the discrete times
tk and tk+1. We introduce an additive control, ut , in the dynamics of each particle
X̂ i

t ∈ A x
t (i),

dX̂ i
t = b(X̂ i

t )dt +ui
tdt +σ(X̂ i

t )dWt , t ∈ (tk, tk+1). (26)

The control is chosen to minimize the cost functional:

J(tk,x,u)≡ Etk,X̂
i,x
tk

[
1
2

∫ tk+1

tk
ui(s)∗Q(X̂ i

s)
−1ui(s)ds+g

(
Ytk+1 , X̂

i
tk+1

)]
, (27)

where Etk,X̂
i,x
tk

is the expectation with respect to the probability measure of the pro-

cess that starts at X̂ i,x
tk = x at time tk, Q(x) = σσ∗(x) and

g(y,x)≡ 1
2
(y−h(x))∗R−1(y−h(x)).
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The choice of cost functional, is such that the control that minimizes the cost func-
tional will have the effect of steering the particle towards a location most represen-
tative of the observation Ytk+1 . For brevity, in the remainder of the paper we suppress
the x-dependence in the notation for Q.

Covariance matrices Q and R in the cost indicate that the subspaces of the signal
and observation that have larger noise variance contribute less to the total cost. The
matrix Q−1 allows for more control in the directions of large signal noise by penal-
izing the energy of the control less in those directions. The terminal cost g incurs a
large cost component when |Y j

tk+1
− h j(X̂ i

tk+1
)| is large, but R−1 reduces the contri-

bution of |Y j
tk+1

−h j(X̂ i
tk+1

)| to the total cost if quality of observation in direction j is

poor, so that particles are controlled less based on information from Y j
tk+1

.

5.2 Optimal Control Solution

We follow the standard procedure [12] and let V (t,x) be the value function defined
by

V (t,x)≡ inf
u

J(tk,x,u), t ∈ [tk, tk+1].

Then V (t,x) is the solution of the Hamilton-Jacobi-Bellman (HJB) equation,

−∂V
∂ t

+H(t,x,DxV,D2
xV ) = 0, V (tk+1,x) = g(Ytk+1 ,x), (28)

where the Hamiltonian of the associated control problem is

H(t,x, p,P)≡ sup
u

[
−(b(x)+u)∗p− 1

2
u∗Q−1u− 1

2
tr(QP)

]
(29)

=

[
−b(x)∗p+

1
2

p∗Qp− 1
2

tr(QP)
]
, (30)

where the supremum in the above equation is achieved with u = −Qp. Hence the
optimal control is

u(t) =−Q∇xV (t, X̂t), (31)

V being the solution of (28).
Using the form of the optimal control (31) in the Hamiltonian, (28) can be written

as

∂V
∂ t

+b(x)∗∇xV +
1
2

tr(Q∇2
xV )− 1

2
∇∗

xV Q∇xV = 0, t ∈ [tk, tk+1], (32)

V (tk+1,x) = g(Ytk+1 ,x). (33)
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Equation (32) is nonlinear due to the 1
2 ∇∗

xV Q∇xV term. The nonlinearity can be
removed by employing a log-transformation as in [12, 11]: V (t,x) = − logΦ(t,x).
The expression for the optimal control (31) becomes

u(t,x) =
1

Φ(t, X̂t)
Q∇xΦ(t, X̂t), (34)

where Φ satisfies

∂Φ
∂ t

+b(x)∗∇xΦ+
1
2

tr(Q∇2
xΦ) =

∂Φ
∂ t

+GΦ = 0, t ∈ [tk, tk+1], (35)

Φ(tk+1,x) = e−g(Ytk+1 ,x).

Equation (35) is a linear second order PDE. Hence, by the Feynman-Kac formula
(c.f. Theorem 4.2 of [18]), the solution to (35) can be represented as

Φ(t,x) = Et,x

[
e−g(Ytk+1 ,η

t,x
tk+1

)
]
, (36)

where Et,x is the expectation with respect to the sample paths generated by the un-
controlled diffusion equation. That is, the probability measure induced by a process
η t,x evolving according to

dη t,x
s = b(η t,x

s )ds+σ(η t,x
s )dW̃s, s ∈ [t, tk+1], (37)

η t,x
t = x,

where W̃ is a standard Brownian motion.
For the optimal control (34), the gradient of (36) is needed. In [21], the gradient

is obtained using the Clark-Ocone formula in Malliavin calculus [26]. Here, we give
the result in [38], where additive noise in the signal dynamics can be exploited to
yield the gradient by way of another Feynman-Kac formula. In particular, this will
apply for the Lorenz 1996 model investigated in Section 6.

Let Φx ≡ ∇xΦ . Taking the gradient of (35),

∂Φx

∂ t
+GΦx +(∇xb(x))∗Φx = 0, t ∈ [tk, tk+1], (38)

Φx(tk+1,x) =−e−g(Ytk+1 ,x)∇xg(Ytk+1 ,x).

Using the Feynman-Kac formula,

Φx(t,x) =−Et,x

[
e−g(Ytk+1 ,η

t,x
tk+1

) e
∫ tk+1
t (∇xb(ηt,x

s ))
∗
ds ∇xg(Ytk+1 ,η

t,x
tk+1

)

]
, (39)

where Et,x is expectation with respect to the sample paths η generated by (37).
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5.3 Updating Particle Weights

By applying control to the particles, the particle system is deviating from the true
signal dynamics. This deviation has to be compensated for in the particle weights
(23) when constructing the posterior. However, since the particles are evolved with
control according to (26), the weights at observation times should be updated ac-
cording to

wi
tk+1

∝ exp
(
−g(Ytk+1 , X̂

i
tk+1

)
) dμi

dμ̂i
(tk+1, X̂ i

[tk,tk+1]
)wi

tk , (40)

where dμi
dμ̂i

(tk, X̂ i
[tk,tk+1

) is the Radon-Nikodym derivative of:

• μi, the measure on the path space C([tk, tk+1],R
m) generated by a process that

evolves according to the uncontrolled signal dynamics (37) in [tk, tk+1], with start-
ing point (tk, X̂ i

tk),

with respect to

• μ̂i, the measure generated by the process that evolves according to the controlled
dynamics (26), with starting point (tk, X̂ i

tk).

According to (31), we have u(t, X̂ i
t ) = −σσ∗∇xV (t, X̂ i

t ). Let u = σv, where
v(t, X̂ i

t )≡−σ∗∇xV (t, X̂ i
t ). Then, the particle evolution equation (26) becomes

dX̂ i
t = b(X̂ i

t )dt +σ
(
dWt + v(t, X̂ i

t )dt
)
, for t ∈ (tk, tk+1]. (41)

Girsanov’s theorem can now be used to perform a measure change that makes B ≡
W +

∫
vdt, a Brownian motion under the new measure. Doing so, we obtain

dμi

dμ̂i,
(tk+1, X̂ i

[tk,tk+1]
) = exp

(
−
∫ tk+1

tk
v(s, X̂ i

s)
∗dWs − 1

2

∫ tk+1

tk
v(s, X̂ i

s)
∗v(s, X̂ i

s)ds
)
.

(42)

With the derivations just presented, we can state the algorithm for a nudged par-
ticle filter adapted to the homogenized dynamics. For additional remarks on the
nudged particle filter, including insight into the optimality and behavior of the par-
ticles, see [38]. Additional application and theory of this algorithm to reduced order
filters, but without correlated sensor-signal noise, is given in [22, 21, 38]. Other
related works are [20, 37].

Nudged Homogenized Hybrid Particle Filter (HHPFc) Algorithm

1. At time tk, set w j
tk = 1/N, ∀ j ∈ A and

p(ξtk |ytk) = ∑
j∈A

w j
tkδ

j
tk(ξtk).
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2. Apply the HMM multiscale integration technique and compute the averaged co-
efficients b,a1/2,h.

3. Generate the prior at tk+1 by advecting each particle under the averaged signal
dynamics; that is (26) but with b,σ replaced by b,a1/2,

p(ξtk+1) = ∑
j∈A

w j
tk+1
δ j

tk+1
(ξtk+1).

• The optimal feedback control has been chosen according to (34), requiring the
solution of the Feynman-Kac formulas (36) and (39).

• And the weights have been updated by multiplication of (42).
• For (36), (39), and (42), use b,a1/2,h instead of b,σ ,h.

4. Update the particle weights at the observation time according to

w j
tk+1

← w j
tk+1

p(ytk+1 |ξtk+1).

4a. If Neff,k is below a threshold (indicating particle degeneracy), then apply universal
resampling and set

w j
tk+1

= 1/N, ∀ j ∈ A .

4b. Otherwise, compute the l2 norm of the weights and re-normalize each

w j
tk+1

← w j
tk+1

/|w|2.

6 Application to Lorenz 1996

In this section we apply the PF, HHPF, and HHPFc algorithms to a correlated sensor-
signal noise filtering problem of the Lorenz 1996 model with continuous-time signal
and discrete-time observation. We use the same Lorenz 1996 model as given in Sec-
tion 3 (17, 18), with the system parameters defined in Section 3, and the parameters
for the HMM defined in Section 3.1. For the observation process, we use the fol-
lowing

Y εtk = h(Xε
tk)+

∫ tk

tk−1

αdWs + γUtk , (43)

where {tk} are observation times and in the non-correlated case,

α ≡ 0m×m, γ ≡ σx,

and in the correlated case,

α ≡ 1√
2
σx, γ ≡ 1√

2
σx.
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The choice of α,γ in (43) means that in both the non-correlated or correlated case,
the observation has the same statistics. In (43), h ≡ Idm×m; an m×m identity matrix
and acts on x ∈Rm by matrix multiplication. In the case of the homogenized hybrid
filters, the sensor function h(·), is a function of X0

tk .
In the simulations that follow, we use an observation step-size Δ t = 10δM = 0.1

and total simulation time of T = 20, which roughly corresponds to 0.5 and 100 ‘real’
days according to [23]. The deterministic Lorenz ’96 model investigated in [23] has
an error doubling time of roughly 1.6 ‘real’ days. In all simulations, the true signal
is correlated, but we will conduct one experiment with the HHPF filter assuming
a sensor-signal model of the non-correlated type; that is α = 0m×m and γ = σx. In
all but one simulation, we use 16 particles (N = 16), with an effective number of 8
(Neff = 8); for one HHPFc experiment we will use N = 8 and Neff = 4.

In total, we consider 5 experiments with their defining parameters given in Table
1. Each experiment consisting of 24 simulations. The average RMSE, calculated as
follows,

RMSE =

√√√√T/Δ t

∑
k=1

∣∣Xε
tk −E

[
Xε

tk

]∣∣2
2,

is shown for each experiment in Table 1, as well as the average simulation run-time.
Figure 8 shows the result of the PF applied to the Lorenz ’96 problem over the

time interval [0,20]. The average RMSE was 1.52 and average simulation time 1,019
seconds. With the exception of the interval [1,2.5], the PF with 16 particles is able
to track well Xε,1

t ; the first component of Xε
t , but at the expense of long simulation

times. In Figs. 9 and 10 we show the corresponding result for the HHPF experi-
ments. And in Figs. 12 and 11 the results when nudging is used.

As one might expect, the use of HHPF results in a slight degradation in the ac-
curacy of the estimate of the signal in comparison to the PF for a fixed number
of particles, but with a significant reduction in simulation run-time. For instance,
Table 1 shows that the HHPF simulations result in more than a ten time speed-up
over the PF. Figure 9 produces the least accurate tracking of the signal out of all
experiments. This is expected, since this experiment does not model the correlated
sensor-signal noise and filters on the homogenized dynamics. Figure 10 shows that
an improvement in accuracy for the same run-time can be made by using the corre-
lated algorithm in Section 4.3.

Figure 11 depicts the type of improvement in tracking that using nudging pro-
vides over HHPF. The HHPFc solution in Fig. 11 uses the same number of particles
as the HHPF simulations, N = 16, and uses four realizations for calculation of the
Feynman-Kac formulas in (36) and (39). The calculation of the control, which is
calculated once over each observation interval - and held fixed, results in a slower
average run-time of 159 seconds per simulation, but with a much improved RMSE
of the coarse-grain states. Figure 12 is also an HHPFc simulation, but with the num-
ber of particles reduced to N = 8, which still results in good tracking due to the
nudging of the particles, and a reasonable run-time of 110 seconds per simulation
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Fig. 8 PF, α = γ = σxσσ /
√

2,N = 16,NeffNN = 8. Top graph: the signal Xε,1
tXX (first component) in black,

the estimate EXε,1
tXX in orange, observations in green. Bottom graph: RMSE in light blue.

Fig. 9 HHPF, α = 0,γ = σxσσ ,N = 16,NeffNN = 8. Top graph: the signal Xε,1
tXX (first component) in

black, the estimate EXε,1
tXX in orange, observations in green. Bottom graph: RMSE in light blue.

on average; the RMSE average of 1.30 is still lower than that of the PF average
RMSE.
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Fig. 10 HHPF with α = γ = σxσσ /
√

2,N = 16,NeffNN = 8. Top graph: the signal Xε,1
tXX (first component)

in black, the estimate EXε,1
tXX in orange, observations in green. Bottom graph: RMSE in light blue.

Fig. 11 HHPFc with α = γ =σxσσ /
√

2,N = 16,NeffNN = 8. Top graph: the signal Xε,1
tXX (first component)

in black, the estimate EXε,1
tXX in orange, observations in green. Bottom graph: RMSE in light blue.

In Figs. 13 - 16, we provide a zoomed-in view of the interval [2.5,7.5] for the
estimate of the signal in Figs. 8 - 12. Besides showing the signal, estimate of the
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Fig. 12 HHPFc with α = γ = σxσσ /
√

2,N = 8,NeffNN = 4. Top graph: the signal Xε,1
tXX (first component)

in black, the estimate EXε,1
tXX in orange, observations in green. Bottom graph: RMSE in light blue.

Table 1 Filtering results for various filter algorithms applied to the Lorenz 1996 model. RMSE
integrated over time, and filter run-time (per simulation) averaged over 24 experiments.

Experiment 1st 2nd 3rd 4th 5th
Filter PF HHPF HHPF HHPFc HHPFc
NeffNN 8 8 8 8 4
N 16 16 16 16 8
α σxσσ /

√
2 0 σxσσ /

√
2 σxσσ /

√
2 σxσσ /

√
2

γ σxσσ /
√

2 σxσσ σxσσ /
√

2 σxσσ /
√

2 σxσσ /
√

2
RMSE 1.52 2.47 2.10 1.11 1.30

Run-Time 1019 s 85 s 85 s 159 s 110 s

signal, and observations in these figures, we also show the history of the particles
(shown in light blue). The error in the observation of the signal is more apparent in
these figures. One can also see when re-sampling occurs; a rapid collapse of particles
far from the observations to locations closer to the observation at observation times.
The diffusion of the particles between observation times, partly exacerbated by the
chaotic property of the model, is also apparent. In Figs. 17 and 16, the particle
traces in light blue show that although we apply control to the particles to nudge
them towards observations, the running cost associated with applying control in
(26) means that the control is not allowed to over-power the true dynamics by too
much.
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Fig. 13 PF with α = γ = σxσσ /
√

2,N = 16,NeffNN = 8. The signal Xε,1
tXX (first component) in black, the

estimate EXε,1
tXX in orange, observations in green, particles in light blue.

Fig. 14 HHPF with α = 0,γ = σxσσ ,N = 16,NeffNN = 8. The signal Xε,1
tXX (first component) in black,

the estimate EXε,1
tXX in orange, observations in green, particles in light blue.

The last figure that we include is of the effective number, NeffNN of the solutions
shown in Figs. 8, 10, 11; having simulation parameters corresponding to the 1st, 3rd,
and 4th experiments in Table 1 respectively. Figure 18 shows the effective number at
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Fig. 15 HHPF with α = γ = σxσσ /
√

2,N = 16,NeffNN = 8. The signal Xε,1
tXX (first component) in black,

the estimate EXε,1
tXX in orange, observations in green, particles in light blue.

Fig. 16 HHPFc with α = γ = σxσσ /
√

2,N = 16,NeffNN = 8. The signal Xε,1
tXX (first component) in black,

the estimate EXε,1
tXX in orange, observations in green, particles in light blue.

observation times for these simulations. Since we set the threshold NeffNN ≤ 8 to induce
re-sampling in the simulation, this implies that for all three of these simulations, re-
sampling occurred after every observation. The other simulations, corresponding
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Fig. 17 HHPFc with α = γ = σxσσ /
√

2,N = 8,NeffNN = 4. The signal Xε,1
tXX (first component) in black,

the estimate EXε,1
tXX in orange, observations in green, particles in light blue.

Fig. 18 The effective number NeffNN at observation times versus time. PF shown in black, HHPFc in
orange, and HHPF in light blue. Values below 8 indicate re-sampling occurs.

to the results in Figs. 9 and 12, re-sampled on most, but not every observation. It
is interesting that even with nudging, Fig. 18 shows that the HHPFc approach on
Lorenz ’96 still results in significant resampling.
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7 Conclusion

In this work we presented a wide range of numerical algorithms for filtering mul-
tiscale, high-dimensional, chaotic stochastic processes that may have a correlated
sensor-signal observation process. The numerical algorithms are built from rigorous
mathematical results. For the multiscale correlated observation case, we describe
the mathematical techniques needed to show convergence of the x-marginal of the
filter to a homogenized filter with a rate of ε1/2 for a metric that generates the weak
topology on the space of probability measures [5]. Using this result, the HHPF al-
gorithm can be extended to the correlated case [32, 39, 22, 4]. The dynamics and
properties of the Lorenz 1996 model were presented and then the algorithms for the
PF and HHPF detailed. After describing the calculation of the likelihood distribu-
tion for the correlated case considered here, as well as the theory and algorithm for
HHPFc, then a number of experiments and their results were presented in Section 6.

The results of the experiments make clear the computational benefit of filtering
on the homogenized dynamics. The addition of nudging in the particle dynamics,
solving an optimal control problem that steers the particles toward areas were the
observation is more likely, helps to further combat the high-dimensionality that may
remain after reducing the state space size by using the HHPF instead of the PF. The
nudging of particles is also helpful in combating the exponential error growth in
chaotic systems. Lastly, the experiments showed the degradation in solution when
correlation of the sensor-signal in the observation process is not correctly accounted
for and modeled.

Current research is aimed at extending the aforementioned theoretical and com-
putational results to the case of more than two time-scales and correlation in the
observation process with fast time-scales. The results of this research can enable a
general, efficient and flexible framework for data assimilation of a wide range of
problems typically encountered in the engineering and physical sciences, as well as
other fields.
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Postponing Collapse: Ergodic Control with a

Probabilistic Constraint

Vivek S. Borkar and Jerzy A. Filar

Abstract We consider the long run average or ‘ergodic’ control of a discrete time
Markov process with a probabilistic constraint in terms of a bound on the exit rate
from a bounded subset of the state space. This is a natural counterpart of the more
common probabilistic constraints in the finite horizon control problems. Using a
recent characterization by Anantharam and the first author of risk-sensitive reward
as the value of an average cost ergodic control problem, this problem is mapped
to a constrained ergodic control problem that seeks to maximize an ergodic reward
subject to a constraint on another ergodic reward. However, unlike the classical con-
strained ergodic reward/cost problems, this problem has some non-classical features
due to a non-standard coupling between between the primary ergodic reward and the
one that gets constrained. This renders the problem inaccessible to standard solution
methodologies. A brief discussion of possible ways out is included.

1 Introduction

We live in an era where certain human development activities such as greenhouse
gas emissions, clearing of forests or harvesting of fish could bring about a collapse of
critical life support systems. Indeed, it is already widely believed that while the risks
of such collapses cannot be entirely eliminated, they can be mitigated in the sense of
postponing the onset of the most undesirable impacts until new technologies enable
more sustainable development. Mathematically, this essential feature can be cap-
tured in terms of the first exit time from some desirable domain in the system’s state
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space. Arguably, the associated risk mitigation problem concerns the time varying
probability of such an exit and can be modelled as a control problem with a proba-
bilistic constraint. Independently of the above motivation, there has been a consid-
erable interest in stochastic control with probabilistic constraints wherein a suitable
classical reward criterion on a finite horizon is sought to be maximized with a lower
bound on the probability of the process remaining in a prescribed subset of the state
space throughout this time horizon [2], [9]. Such a constraint, however, does not
usually make sense for an infinite horizon control problem, as the aforementioned
probability can be zero due to irreducibility properties of the process and the con-
straint is violated with certainty. A natural counterpart of the constraint then is to
put a lower bound on the rate of exit from the prescribed set, given by the expo-
nential rate of decay of the tail probability of the exit time from the set. We take
this viewpoint here and map this constraint into a constraint on a risk-sensitive re-
ward. Using a variational formulation of the risk-sensitive reward problem recently
developed in [1], this is then converted to a constrained average reward (or ‘ergodic’
reward) control problem wherein one seeks to maximize a prescribed limiting av-
erage reward functional subject to a constraint on another limiting average reward
functional. Such constrained Markov control problems have been extensively stud-
ied and one has in particular a linear programming formulation thereof in terms of
the so called ergodic occupation measures. The present situation, however, turns
out to be more complicated than the classical constrained Markov decision process
framework (see, e.g., [3], [5]) because of a non-standard ‘running cost’ function that
couples the primary and secondary objectives in a complicated manner. We give an
equivalent formulation in terms of a static optimization problem over suitably de-
fined sets of measures, with an additional constraint that reflects the above issue.
By invoking a Lagrange multiplier, we can convert it into an optimization problem
on product of two sets of measures specified by linear constraints, with a reward
function that is separately strictly concave in its arguments. This turns out to be
equivalent to a ‘team’ problem wherein two agents seek to maximize the same re-
ward, albeit in a non-cooperative fashion.

While this contribution is strictly theoretical, we were inspired by the practical
problem of sustainable management of a commercial fishery. In continuing this line
of research, we intend to develop not only numerical methods for solving the non-
trivial optimization problems that emerge, but also to adapt these methods to manage
the risks of collapse of certain fisheries in Queensland.

We shall use the following notation throughout. Denote by P(X ) the Polish
space of probability measures on a Polish space X with Prohorov topology ([4],
Chapter 2), and by C(X ),Cb(X ) the space of continuous, resp. bounded continu-
ous functions X �→ R.

Let N denote the set of natural numbers, that is, {0,1,2, · · ·}. Consider a con-
trolled Markov chain {Xt , t ≥ 0} taking values in a Polish space S, controlled by a
control process {Zt , t ≥ 0} taking values in a compact metric space U , with con-
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trolled transition kernel (x,u) ∈ S×U �→ p(dy|x,u) ∈ P(S). Thus

P(Xt+1 ∈ A|Xm,Zm,m ≤ t) = p(A|Xt ,Zt) ∀t and ∀ A ⊂ S Borel.

The {Zt} for which the above holds will be called an admissible control (process).
We shall further say that {Zt} is a Markov policy if Zt = v(Xt , t) for a measurable
v : S×N �→U and a randomized Markov policy if

P(Zt ∈ B|Xm,Zm,m ≤ t) = φ(B|Xt , t) ∀ B ⊂ S Borel

for a measurable φ : S×N �→P(U). By standard practice of abuse of terminology,
we use v, resp. φ to denote this control policy. A further special case is when there is
no explicit time dependence of v,φ on the time variable, in other words, Zt = v(Xt)
(respectively, P(Zt ∈ B|Xm,Zm,m ≤ t) = φ(B|Xt)) for a measurable v : S �→ U (re-
spectively, φ : S �→ P(U)). In this case, it will be called a stationary Markov (re-
spectively, randomized stationary Markov) policy, abbreviated as SMP, RSMP re-
spectively. Let π0 be the law of X0.

We further assume the existence of a transition density ϕ(y|x,u)> 0 with respect
to a positive measure λ on S with full support, that is,

p(dy|x,u) = ϕ(y|x,u)λ (dy). (1)

2 The finite horizon control problem

We briefly describe the classical finite horizon control problem with probabilistic
constraint, in order to motivate its infinite horizon version later.

Let S0 be a proper subset of S which is the closure of its interior. Let

τ = min{n ≥ 0 : Xn /∈ S0}

denote the first exit time from S0. We shall be interested in processes killed at τ , that
is, on exit from S0. So without loss of generality, we set S = S0 ∪{Δ} where Δ is a
‘coffin’ state, and correspondingly set

p({Δ}|x,u) := 1− p(S0|x,u), p({Δ}|Δ ,u) = 1.

Correspondingly, redefine τ as τ = min{n ≥ 0 : Xn = Δ}. Without any loss of gen-
erality, we also assume that π0 is supported on S0.

Let Eκ,t [ · ],Pκ,t( · ) denote resp. the expectation and probability for initial time t
and initial law κ and let t ∧ τ := min(t,τ). If κ = δx := the Dirac measure at x, we
write Ex,t [ · ],Px,t( · ) for simplicity. Consider the finite horizon constrained control
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problem of maximizing the reward

Eπ0,0

[
T∧τ
∑

m=0
r(Xm,Zm)

]
(2)

for a prescribed reward function r ∈C(S×U), subject to the probabilistic constraint

Pπ0,0(∪T
m=0{Xm ∈ S0})≥ 1−υ (3)

for a prescribed 1 > υ > 0. We assume feasibility, i.e., (3) holds under some con-
trol policy and the maximum reward under the stated constraint is finite. The point
we want to highlight here is the fact that the above constraint may not make sense
for T = ∞ because under common reachability/irreducibility conditions on the state
process, the above probability may be zero.

3 Infinite horizon control problem

3.1 Problem formulation

In this section, we assume that S0 and therefore S = S0 ∪{Δ}, are compact.

We assume that P(τ < ∞) = 1. If we consider the above problem on an infinite
time horizon, the probabilistic constraint (3) is then always violated as observed
above, because with probability 1, state Δ will be reached in finite time. A natural
extension then is to minimize the decay rate of the exit probability from S0, that is,
maximize the quantity

Γ := limsup
T↑∞

1
T

logP(τ > T ) (4)

over admissible control policies under consideration. For the time being, we shall
confine our attention to randomized stationary Markov policies. Then the limsup
above is a limit and is given by the principal eigenvalue of the positive and posi-
tively 1-homogeneous operator A which we shall define soon. For an RSMP φ , we
let pφ (dy|x) :=

∫
φ(du|x)p(dy|x,u) denote the time-homogeneous transition kernel

under φ . Define another transition probability kernel x ∈ S0 �→ qφ (dy|x) ∈ P(S0)
by

qφ (dy|x) := (pφ (S0|x))−1 pφ (dy|x)
and set

cφ (x) := log pφ (S0|x).
Define the operator Aφ : Cb(S0) �→Cb(S0) by: for f ∈Cb(S0),
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Aφ f :=
∫

S0

pφ (dy|x) f (y)

=
∫

S0

qφ (dy|x)ecφ (x) f (y).

As in the arguments leading to Theorem 2.2 of [1], we conclude that this is a strongly
positive, strongly continuous, positively 1-homogeneous linear operator such that
the Γ of (4) under RSMP φ , denoted by Γφ , is the principal eigenvalue of Aφ guar-
anteed by the Krein-Rutman theorem [10]. We then replace (3) by the new constraint

−Γφ ≤ η . (5)

Note that Γφ ≤ 0.

We replace the finite horizon reward by the infinite horizon average reward

Wφ := liminf
T↑∞

1
T

E

[
T

∑
m=0

r(Xm,Zm)

]
. (6)

With this backdrop, our control problem is:

(P0) Maximize over φ the quantity Wφ subject to −Γφ ≤ η .

3.2 An equivalent formulation

We recall a variational formula from [1] (Theorem 3.3 of ibid. specialized to the
constant control case). Define

G := {ζ (dx,dy) = ζ0(dx)ζ1(dy|x) ∈ P(S0 ×S0) :
∫

S0

ζ0(dx)ζ1(dy|x) = ζ0(dy)},
(7)

that is, ζ0(dx) is invariant under the transition kernel ζ1(dy|x). Then Theorem 3.3
of [1] states that

Γφ = max
ζ∈G

[∫
ζ (dx,dy)

(
cφ (x)−D(ζ1(dy|x)||qφ (dy|x))

)]
, (8)

where D( · || · ) is the Kullback-Leibler divergence or ‘relative entropy’ defined by

D(μ||μ ′) :=
∫
μ(dz) log

(
dμ
dμ ′ (x)

)
if μ � μ ′,

= ∞ otherwise.
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The quantity being maximized above is seen to be the average reward for another
controlled Markov chain with state space S0, control space P(S0), and controlled
transition kernel Q(dy′|y,ζ ) = ζ (dy′), that is, the control itself is the law of the next
state, with the cost per unit time for state-control pair (x,ζ ) being given by

cφ (x)−D(ζ (dy)||qφ (dy|x)).

Thus an SMP corresponds to a measurable map y ∈ S0 �→ ζ (dy′|y), that is, a transi-
tion kernel. We consider a pair of controlled Markov chains {Xt},{Yt} such that:

• the state space for {Xt} is S0, the state space for {Yt} is also S0,
• the control space for {Xt} is P(U) and the control space for {Yt} is P(S0),
• {Xt} is governed by the RSMP x ∈ S0 �→ φ(du|x) ∈ P(U) and {Yt} is governed

by the SMP y ∈ S0 �→ ζ (dy′|y) ∈ P(S0),
• the transition kernel for {Xt} under the above RSMP is (x,φ) ∈ S ×P(U) �→∫

p(dx′|x,u)φ(du|x) ∈ P(S0) and the transition kernel for {Yt} under the above
SMP is (y,ζ ) ∈ S0 ×P(S0) �→ ζ (dy′|y) ∈ P(S0).

Here ζ ,γ factorize as

ζ (dx,dy) = ζ 0(dx)ζ 1(dy|x), γ(dx,du) = γ0(dx)φ(du|x).

We then have the static optimization (not a linear program) formulation for our prob-
lem as follows.

(P) Maximize over the pair (φ(·|·),ζ1(·|·)) the reward
∫

r(x,y)γ(dx,du) subject to

γ0(dy) =
∫
γ(dx,du)p(dy|x,u), (9)

γ(S0 ×U) = 1, (10)
γ ≥ 0, (11)

ζ0(dx) =
∫
ζ 0(dx)ζ 1(dy|x), (12)

ζ (S0 ×S0) = 1, (13)
ζ ≥ 0, (14)

and ∫
ζ (dx,dy)

(
cφ (x)−D(ζ 1(dy|x)||qφ (dy|x)))≥−η . (15)

We state our main result as a theorem.

Theorem 1 The optimization problem (P) is equivalent to our constrained control
problem (P0).

Proof (Sketch) We make the following observations:
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• Constraints (9)-(11) characterize γ(dx,du) = γ0(dx)φ(du|x) as an ‘ergodic oc-
cupation measure’ [5] wherein γ0 is the unique stationary distribution under the
RSMP φ . Note that the uniqueness follows from our assumption ϕ(y|x,u)> 0.

• Constraints (12)-(14) characterize ζ as an element of G .
• Constraint (15) is equivalent to (5) for the RSMP φ .

The equivalence follows. �

It is the last constraint (15) that makes this a hard problem, because the map
γ(dx,du) = γ0(dx)φ(du|x) �→ φ(du|x) is anything but simple. A silver lining is the
fact that the constraints on γ do not involve ζ , only the constraints on ζ involve
γ though the dependence of (15) on φ . In particular, if we introduce a ‘Lagrange
multiplier’ Λ ≥ 0 associated with constraint (15), then the problem becomes:

(P∗) Maximize ∫
r(x,y)γ(dx,du) +

Λ(η +
∫
ζ (dx,dy)

(
cφ (x)−D(ζ 1(·|x)||qφ (·|x))

)
(16)

subject to (9)-(14). Note that the constraints are now separated, that is, constraints
(9)-(11) involve only γ whereas the constraints (12)-(14) involve only ζ . This is now
an optimization problem associated with the ergodic control problem:

(P̌) Maximize over φ(du|·),ζ (dy|·) the reward

liminf
T↑∞

1
T

E
[ T

∑
m=0

(∫
φ(du|Xm)r(Xm,u) + Λ(η +

(cφ (Ym)−D(ζ 1(dy|Ym)||qφ (dy|Ym)))
)]

. (17)

where {Xn},{Yn} are controlled Markov chains introduced above. Note that this is
an ergodic team problem because the two control choices φ and ζ are made non-
cooperatively, albeit for a common objective. Also, there are further restrictions on
the ‘information structure’ of the two controllers: the respective controls φ ,ζ 1 are
constrained to depend only on the corresponding current state Xn,Yn respectively.
This leads to difficulties which we discuss in the next section.

4 Remarks on computational schemes

Problem P∗ has linear constraints that are separate in the two variables γ,ζ , but the
reward is not separable. The reward function is in fact strictly concave in each vari-
able when the other variable is kept constant, but it is not jointly concave, which



64 Vivek S. Borkar and Jerzy A. Filar

makes the problem hard. Strict concavity implies that the maximizer in either vari-
able with the other kept fixed is unique and depends continuously on the latter. Us-
ing this, it is easy to see that alternating maximization will lead to a local maximum.

Note that once ζ is fixed, the constrained maximization with respect to γ is a lin-
ear program for an ergodic control problem, whereas once γ is fixed, the constrained
maximization with respect to ζ is a concave maximization problem which too can
be made into a linear program by considering RSMP in place of SMP which means
P(P(S0))-valued controls. Thus alternating maximization amounts to alternating
linear programs. In principle one could replace these linear programs by alternative
computational schemes such as policy or value iteration, see, e.g., [8], [11]. The
difficulty here is that while this is possible for control of {Xn} with ζ 1 frozen, it is
not so easy for control of {Yn} with φ fixed, because there is no irreducibility type
condition available that would be required for justifying such schemes. In fact this
is so even when S0 is finite, because the control space is not. If one approximates the
control space by a finite set as well, then one has the extended linear and dynamic
programming formulations that cover the general case ([13], Chapter 9). All this is
for a fixed value of Λ , the Lagrange multiplier which is unknown.

To solve the overall constrained optimization problem, one has to also recur-
sively learn the Lagrange multiplier using a ‘primal-dual’ philosophy. That is, run
the iteration

Λn+1 = [Λn − s(η+Γn)]
+ . (18)

Here [x]+ := max(x,0) is the projection to [0,∞) that ensures non-negativity of
Λn,n ≥ 0. This is then a constrained gradient descent for the Lagrange multiplier.
The parameter 0 < s << 1 is a small time step that renders this iteration ‘incremen-
tal’, that is, it moves on a slower time scale compared to the alternating maximiza-
tion described above. Using the ‘two time scale’ approach of [6], Chapter 6, we
treat Λn as ‘quasi-static’, that is, treat it as constant, whence the maximization over
primal policy using value iteration or linear program tracks the optimal reward cor-
responding to λn; see ibid. for a precise statement. Note that the objective function
is linear in Λ . After the maximization over the primal variables, it is convex in Λ .
Then by Danskin’s theorem [7], (18) will be a projected subgradient descent guar-
anteed to converge to a neighborhood of the global minimum, in other words, the
Lagrange multiplier. The difficulty here is that the ‘primal’ alternating maximiza-
tion only ensures a local maximum, so this will yield at best only a local constrained
maximum.
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Resource Sharing Networks and Brownian

Control Problems

Amarjit Budhiraja∗ and Michael Conroy

Abstract We consider a family of resource sharing networks that were introduced
in the work of Massoulié and Roberts (2000) as models for Internet flows and study
an optimal stochastic control problem associated with the dynamic allocation of
resource capacities to jobs in the system. Since these stochastic control problems
are in general intractable, we analyze the system in a heavy traffic regime where
one can formally approximate these control problems by certain Brownian control
problems (BCP). It is shown that, both for a discounted cost and an ergodic cost cri-
terion, an appropriate BCP gives a lower bound on the best achievable asymptotic
cost under any sequence of admissible policies. The lower bounds established in this
work show that the threshold control policies constructed in Budhiraja and Johnson
(2017), which achieve the Hierarchical Greedy Ideal (HGI) performance (cf. Harri-
son et al. (2014)) in the heavy traffic limit, are in fact asymptotically optimal when
certain monotonicity conditions on the cost function are satisfied.

1 Introduction

In this work we consider a family of resource sharing networks that were intro-
duced in the work of Massoulié and Roberts [13] as models for Internet flows. A
fundamental problem for such networks is to construct dynamic control policies
that allocate resource capacities to jobs in the system, in an optimal manner. Opti-
mality is typically formulated in terms of an appropriate cost function which turns
the problem into that of optimal stochastic control. In general such control problems
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are intractable and therefore one considers an asymptotic formulation under a suit-
able scaling. When the cost function is of an infinite horizon discounted form, the
papers [8, 11, 9] formulate certain Brownian control problems (BCP) that formally
approximate the system manager’s control under heavy traffic conditions. The goal
of this work is to establish a rigorous asymptotic relationship between the network
control problem and the corresponding Brownian control problem. We show that if
a control policy is admissible in an appropriate sense (see Definition 3), the associ-
ated cost of using this policy is asymptotically bounded below by the value function
of the corresponding BCP (namely, the optimal cost in the BCP). Thus the BCP
gives a lower bound on the best achievable asymptotic cost under any sequence of
admissible policies. A similar result for a broad family of unitary networks (cf. [3])
was established in [4]. A basic difference between unitary networks and resource
sharing networks considered here is that in the former each job is processed by a
single resource at any given time instant whereas in resource sharing networks a job
may be processed simultaneously by several resources. Because of this basic struc-
tural difference the results obtained in [4] do not carry over to the setting of interest
in the current work. In addition to a discounted cost problem, in this work, we also
consider an ergodic cost criterion (see (11)). We formulate an appropriate Brown-
ian control problem that governs the scaling limit of the network control problems
under heavy traffic for this criterion. Under this criterion as well the cost of an ad-
missible control policy is asymptotically bounded below by the value function of
the corresponding BCP. Due to space limitations we only provide a sketch of the
proof of this result. Detailed proof will be reported elsewhere.

A recent work [5] constructs, under several conditions on the system parame-
ters, explicit threshold based control policies that achieve the so called Hierarchical
Greedy Ideal (HGI) performance in the heavy traffic limit. We refer the reader to
[10] for background and discussion of HGI policies. In general, the HGI, namely
the asymptotic cost associated with HGI policies, may not be optimal in the associ-
ated Brownian control problem. However, using the minimality property of the one
dimensional Skorohod map it can be seen that if the holding cost satisfies certain
monotonicity properties, the HGI is indeed the optimal cost in the BCP both for the
discounted and the ergodic cost. Therefore, together with the lower bounds estab-
lished in the current work, the results of [5] say that the threshold control policies
constructed in that work, under certain monotonicity conditions on the cost func-
tion (and under the conditions on system parameters assumed in [5]), are in fact
asymptotically optimal. We discuss this point in Remark 1. Finally we remark that,
although in the current work we only establish a lower bound, one expects that, un-
der quite general conditions, the value functions of the network control problems
should in fact converge to the value functions of the associated BCP. Such a result
for unitary networks and with an infinite horizon discounted cost was established
in [4]. This convergence problem for resource sharing networks considered here is
currently open.

The chapter is organized as follows. In Section 2 we introduce the class of net-
works that will be studied. We also present the main conditions and the cost criteria
of interest. Section 3 presents the equivalent workload formulations of the Brown-
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ian control problem that arise on taking a formal heavy traffic limit of the network
control problems of Section 2. In Section 4 we present the main result (Theorem 2)
of this work. Finally, Section 5 gives the proof of Theorem 2.

Notation and Conventions. Inequalities for vectors will be interpreted compo-
nentwise. We will denote by 1 the vector of ones of an appropriate dimension. Con-
vergence in probability will be denoted as P→ and convergence in distribution will
be denoted as ⇒. All stochastic processes in this work will take values in Rd for
some d and will either be given on the time interval [0,T ] or [0,∞). All of these pro-
cesses will have sample paths that are continuous from the right and have left limits
(RCLL). We will denote by Dm (resp. Dm

+ ) the space of RCLL functions from [0,∞)
to Rm (resp. Rm

+), equipped with the usual Skorohod topology, and by C m (resp. C m
+ )

the space of continuous functions from [0,∞) to Rm (resp. Rm
+), equipped with the

local uniform topology. Unless specified otherwise all processes are given on the
probability space (Ω ,F ,P). For a Polish space S, let P(S) denote the space of
all probability measures on S equipped with the usual weak convergence topology.
A collection of S-valued random variables is said to be tight if the corresponding
collection of probability laws forms a relatively compact set in P(S). We will de-
note by δx the Dirac probability measure at the point x. A collection of Dm-valued
random variables is said to be C -tight if every sequence in the collection has a con-
vergent (in distribution) subsequence whose limit is in C m a.s.

2 Network Control Problems

Consider for each r ∈ N a stochastic processing network N r with J types of jobs
and I resources for processing them. Here r is a scaling parameter and as r → ∞, the
sytem approaches criticality in a suitable sense. All the networks in the collection
have a similar structure described through an I×J matrix K with Ki j = 1 if resource
i works on job type j and Ki j = 0 otherwise. We will assume that for each subset of
resources, there is at most one job type with it as the associated set of resources, or
equivalently that no two columns of K are identical.

Let for m∈N, Nm
.
= {1, . . . ,m}. In particular, NI

.
= {1, . . . , I} and NJ

.
= {1, . . . ,J}.

We will assume the following local traffic condition:

Condition 1 Let R j = {i ∈ NI : Ki j = 1} be the set of resources that work on type
j jobs, and let J = { j ∈ NJ : ∑I

i=1 Ki j = 1} be the collection of all job types that
use only one resource. Then,

⋃
j∈J R j = NI .

The above condition, which was first introduced in [12], says that for each resource
there is a unique job-type that only requires service from that resource.

For job type j ∈NJ , let {ur
j(k)}k∈N be the i.i.d. inter-arrival times and {vr

j(k)}k∈N
be the associated i.i.d. amounts of work. For each r, the random variables in the
collection {ur

j(k),v
r
j(k),k ∈ N, j ∈ NJ} are taken to be mutually independent. We

will assume that
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P(ur
j(1)> 0) = P(vr

j(1)> 0) = 1 for all r and j, (1)

and that

{ur
j(1)

2}r and {vr
j(1)

2}r are uniformly integrable for each j. (2)

Let αr
j = 1/E[ur

j(1)] and β r
j = 1/E[vr

j(1)]. Also let σu,r
j and σ v,r

j denote the stan-
dard deviations of ur

j(1) and vr
j(1), respectively. Define the collection of renewal

processes

Ar
j(t) = max

{
k ∈ N :

k

∑
i=1

ur
j(i)≤ t

}
, j ∈ NJ , t ∈ [0,∞)

and

Sr
j(t) = max

{
k ∈ N :

k

∑
i=1

vr
j(i)≤ t

}
, j ∈ NJ , t ∈ [0,∞).

The capacity for each resource i ∈ NI is denoted by Ci. This means that if at any
time instant work of type j ∈ NJ is being processed at rate x j then we must have
C ≥ Kx. A control policy in the r-th network is a J-dimensional stochastic process
Br(t) = {Br

j(t)} j∈NJ , 0 ≤ t < ∞ which describes the amount of type- j work pro-
cessed by time t. Associated with control process Br is the I-dimensional capacity-
utilization process T r = KBr, so that T r

i (t) represents the amount of work processed
by resource i by time t. If we let Ur(t) = tC−T r(t), then Ur

i (t) denotes the unused
capacity of resource i by time t. We denote by Qr

j(t), j ∈ NJ , the number of type- j
jobs in the queue at time instant t. Then the state equation is given as

Qr(t) = qr +Ar(t)−Sr(Br(t)), t ≥ 0,

where qr ∈ NJ denotes the initial queue length vector.
A control policy {Br(t)} is required to satisfy the following condition.

Condition 2 For every r ∈ N and P a.e. ω

(i) (Monotonicity and Continuity) t �→ Br(t) is an absolutely continuous, nonneg-
ative, nondecreasing function from [0,∞)→ RJ with Br(0) = 0.

(ii) (Resource Constraint)

C ≥ K
d
dt

Br(t) for a.e. t ≥ 0. (3)

(iii) (Feasibility)
Qr(t)≥ 0 for all t ≥ 0. (4)

We will require one additional natural non-anticipativity condition on the control
policies that will be introduced later below.

Let ρr
j = αr

j/β r
j and ρr = (ρr

1, . . . ,ρ
r
J)

T . The following will be our main heavy
traffic condition:
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Condition 3 (Heavy Traffic Condition) For each j ∈ NJ, there exist α j,β j ∈ (0,∞)

and ᾱ j, β̄ j ∈R such that limr→∞ r(αr
j −α j) = ᾱ j , limr→∞ r(β r

j −β j) = β̄ j , and there
exist σu

j ,σ v
j ∈ (0,∞) such that limr→∞σu,r

j = σu
j , limr→∞σ v,r

j = σ v
j .

Furthermore, with ρ j = α j/β j for each j ∈ NJ and ρ = (ρ1, . . . ,ρJ)
T , C = Kρ .

Note that Condition 3 in particular says that limr→∞ r(ρr−ρ)=η where, for j ∈NJ ,
η j = β−2

j (ᾱ jβ j −α jβ̄ j).
Define the I-dimensional workload process W r by

W r(t) = KMQr(t), (5)

where M is the J × J diagonal matrix with entries 1/β j.
When considering scaling limits, the following two types of scaled processes will

be considered.

Definition 1. For r ∈N the fluid-scaled versions of the processes Ar,Sr,Br,T r,Ur,Qr,
and W r, are defined as

Ār(t) = r−2Ar(r2t), S̄r(t) = r−2Sr(r2t),

Q̄r(t) = r−2Qr(r2t), W̄ r(t) = r−2W r(r2t),

B̄r(t) = r−2Br(r2t), T̄ r(t) = r−2T r(r2t),

Ūr(t) = r−2Ur(r2t),

and the corresponding diffusion-scaled processes are given as

Âr(t) = r−1 (Ar(r2t)− r2tαr) , Ŝr(t) = r−1 (Sr(r2t)− r2tβ r) ,
Q̂r(t) = r−1Qr(r2t), Ŵ r(t) = r−1W r(r2t),

B̂r(t) = r−1Br(r2t), T̂ r(t) = r−1T r(r2t),

Ûr(t) = r−1Ur(r2t).

Consider the processes

X̂ r(t) = Âr(t)− Ŝr(B̄r(t)), Ŷ r(t) = rtρ− B̂r(t), t ≥ 0. (6)

Then with θ̂ r
j (t) = rt(αr −α)− r(β r −β )B̄r(t), we have the relationship

Q̂r(t) = q̂r + X̂ r(t)+ θ̂ r(t)+M−1Ŷ r(t), KŶ r(t) = Ûr(t) (7)

where q̂r = Q̂r(0) and the second equality follows from Condition 3. We will make
the following assumption on the initial condition.

Condition 4 For some q ∈ RJ
+, q̂r → q as r → ∞.

We now introduce one final requirement on control policies that will be considered
here. Roughly speaking, this requirement says that a control policy must be nonan-
ticipative, namely it can only use the information on events (e.g. arrival of jobs,
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service completions) in the system that have occurred up to the current instant. In
order to formulate the condition we begin by introducing certain multiparamater
filtrations.

Definition 2. For m = (m1, . . . ,mJ) and n = (n1, . . . ,nJ) ∈ NJ , let

F r(m,n) = σ
{

ur
j(m

′
j),v

r
j(n

′
j) : m′

j ≤ m j,n′
j ≤ n j, j ∈ NJ

}
.

Then {F r(m,n),m,n ∈ NJ} is a multiparameter filtration generated by the interar-
rival and service times with the following partial ordering:

(m1,n1)≤ (m2,n2) if and only if m1
j ≤ m2

j and n1
j ≤ n2

j for all j.

Let

F r = σ

⎧⎨⎩ ⋃
(m,n)∈N2J

F r(m,n)

⎫⎬⎭ .

We can now define the class of admissible control policies.

Definition 3. For r ∈ N, a J-dimensional process Br is said to be an admissible
resource allocation policy or an admissible control policy for network N r if it sat-
isfies Condition 2 and the following two additional conditions:

(i) If for each r and t, we define the N2J-valued random variable

τr(t) = (τr,A(t),τr,S(t)) =
(
(Ar(r2t)+1)T ,(Sr(Br(r2t))+1)T ) ,

where 1 = (1,1, . . . ,1)T ∈ NJ , then for each t ≥ 0, τr(t) is an F r(m,n)-
stopping time.

(ii) If we define the filtration

G r(t) = F r(τr(t))

= σ
{

A ∈ F r : A∩{τr(t)≤ (m,n)} ∈ F r(m,n) for all (m,n) ∈ N2J} ,
then the process Ûr .

= KŶ r is {G r(t)}-adapted.

A sequence of control policies {Br}r is called admissible if, for each r, Br is an
admissible control policy for network N r. Denote the class of all admissible se-
quences as A .

Parts (i) and (ii) of the above condition are satisfied for a very broad family of natural
control policies (cf. [4, Theorem 5.4]).

We note that the requirement in (3), implies that for any admissible control policy
Br, the process Ur(t) = tC −KBr(t) is nonnegative and nondecreasing, so that for
s ≤ t,

0 ≤ K(Br(t)−Br(s)) = (t − s)C− (Ur(t)−Ur(s))≤ (t − s)C.
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Hence for each i ∈ NI ,

0 ≤
J

∑
j=1

Ki j(Br
j(t)−Br

j(s))≤Ci(t − s). (8)

Recall that, for each j there is an i such that Ki j = 1, so if for this (i, j), L j
.
=Ci, then

0 ≤ Br
j(t)−Br

j(s)≤ L j(t − s), (9)

i.e. Br is Lipschitz continuous with Lipschitz constant not depending on r.
We now introduce the cost function. We will consider linear holding cost given

through a fixed strictly positive J-dimensional vector h. The following two types of
costs will be considered:
Infinite Horizon Discounted Cost. For a “discount factor” γ ∈ (0,∞), the infinite
horizon discounted cost in the r-th network N r, associated with a control policy
Br, is defined as

Jr
D(B

r) =
∫ ∞

0
e−γtE[h · Q̂r(t)]dt. (10)

Long-Term Cost Per Unit Time. Fix ς ∈ RI
+ such that ς > 0. In the r-th network

N r the long-term cost per unit time (or the ergodic cost) associated with a control
policy Br is defined as

Jr
E(B

r) = limsup
T→∞

E
[

1
T

∫ T

0
h · Q̂r(t)dt +

ς ·Ûr(T )
T

]
. (11)

For a sequence of control policies {Br}, the associated discounted [resp. ergodic]
asymptotic cost is defined as

JD({Br}r) = liminf
r→∞

Jr
D(B

r), [resp.] JE({Br}r) = liminf
r→∞

Jr
E(B

r). (12)

The infimum of asymptotic discounted [resp. ergodic] costs over all admissible se-
quences of control policies will be referred to as the asymptotic value function for
the discounted [resp. ergodic] control problem and is given as

J∗
D = inf

{Br}r∈A
JD({Br}r), [resp.] J∗

E = inf
{Br}r∈A

JE({Br}r). (13)

3 Equivalent workload formulations of Brownian control

problems

The main results of this work will give a lower bound on the asymptotic discounted
and ergodic control value functions in terms of value functions of certain control
problems for Brownian motions [9, 11]. We present below the Equivalent Work-
load Formulations (EWF) of these control problems. We refer the reader to [11]
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for a discussion on equivalence between this formulation and the Brownian control
problems as formulated in Harrison [8]. We begin by introducing the notion of an
effective cost function. With our formulation of the workload process as in (5) in
mind, let G = KM, where we recall that M is the J × J diagonal matrix with entries
1/β j, and let W

.
= RI

+. For each w ∈ W , define the effective cost function as

ĥ(w) = min{h ·q : Gq = w,q ≥ 0}. (14)

Note that, from the local traffic condition (Condition 1), the set on the right side is
nonempty for every w ∈ W . It is known that we can select a continuous minimizer
in the above linear program (cf. [2]), i.e. there is a continuous map q∗ : W → RJ

+

such that
q∗(w) ∈ argmin

q
{h ·q : Gq = w,q ≥ 0}.

Let θ = M−1η , and let Σ denote the J × J matrix

Σ = Σ u +Σ vR, (15)

where Σ u is the J×J diagonal matrix with entries α3
j (σ

u
j )

2, Σ v is the J×J diagonal
matrix with entires β 3

j (σ
v
j )

2, and R is the diagonal matrix with entries ρ j. The EWF
and the associated controls and state processes are defined as follows.

Definition 4. Let (Ω̃ ,F̃ , P̃,{F̃ (t)}) be a filtered probability space which supports
a J-dimensional F̃ (t)-Brownian motion X̃ with drift 0 and covariance matrix Σ .
An I-dimensional {F̃ (t)}-adapted process Ũ on this space is called an admissible
control for the EWF if the following hold P̃-a.s.:

(i) W̃ (t) .
= w+Gθ t +GX̃(t)+Ũ(t)≥ 0 for all t ≥ 0, where w = Gq,

(ii) t �→ Ũ(t) is nondecreasing and Ũ(0)≥ 0.

Denote the class of all such admissible controls as ˜A .

The discounted cost for a control Ũ ∈ ˜A in the EWF is defined as

J̃D(Ũ) =
∫ ∞

0
e−γt Ẽ[ĥ(W̃ (t))]dt, (16)

where γ is as in the last section and ĥ is as introduced in (14).
Some modifications are needed in order to define the EWF for the ergodic control

problem.

Definition 5. Let (Ω̃ ,F̃ , P̃,{F̃ (t)}) and X̃ be as in Definition 4. An I-dimensional
{F̃ (t)}-adapted process Ũ on this space is called an admissible control for the
ergodic EWF if there is a {F̃ (t)}-adapted RI

+ valued process W̃ such that the fol-
lowing hold P̃-a.s.:

(i) W̃ (t) = W̃ (0)+Gθ t +GX̃(t)+Ũ(t) for all t ≥ 0,
(ii) Ũ(t) is nondecreasing and Ũ(0) = 0,
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(iii) For all t ≥ 0, (W̃ (t+ ·),Ũ(t+ ·)−Ũ(t)) has the same distribution on D([0,∞) :
R2I) as (W̃ (·),Ũ(·)).

Denote the class of all such admissible controls as ˜AE .

The ergodic cost for a control Ũ ∈ ˜AE in the ergodic Brownian control problem
(BCP) is defined as

J̃E(Ũ) = Ẽ[ĥ(W̃ (0))]. (17)

Define the value functions

J̃∗
D = inf

Ũ∈ ˜A
J̃D(Ũ), J̃∗

E = inf
Ũ∈ ˜AE

J̃E(Ũ). (18)

Obtaining explicit simple form solutions for the control problems in Definitions 4
and 5 is in general impossible. However, there is one important setting, given in the
next theorem, where explicit solutions are available. Proof of the next theorem relies
on well known minimality properties of the Skorohod map with normal reflections
on the domain RI

+ (cf. [7]) and is omitted due to space constraints. We begin by
recalling the definition of this Skorohod map.

Definition 6. Let ψ ∈ D I such that ψ(0) ∈ RI
+. The pair (ϕ,η) ∈ D2I is said to

solve the Skorohod problem for ψ (in RI
+, with normal reflection) if ϕ = ψ +η ;

ϕ(t)∈RI
+ for all t ≥ 0; η(0) = 0; η is nondecreasing and

∫
[0,∞) 1{ϕi(t)>0} dηi(t) = 0

for all i ∈ NI . We write ϕ = Γ (ψ) and refer to Γ as the I-dimensional Skorohod
map.

It is known that there is a unique solution to the above Skorohod problem for every
ψ ∈ D I with ψ(0) ∈ RI

+.
Let v .

= Gθ . Also we denote by ι the identity map on [0,∞).

Theorem 1. Suppose that ĥ is monotonically nondecreasing, namely if w1,w2 ∈RI
+

satisfy w1 ≤ w2 then ĥ(w1)≤ ĥ(w2). Let (Ω̃ ,F̃ , P̃,{F̃ (t)}) and X̃ be as in Defini-
tion 4. Let

W ∗(t) .
= Γ (w+ vι+GX̃)(t) = w+ vt +GX̃(t)+U∗(t), t ≥ 0. (19)

Then U∗ ∈ ˜A and

J̃∗
D = J̃D(U∗) =

∫ ∞

0
e−γt Ẽ[ĥ(W ∗(t))]dt.

Suppose in addition that v < 0. Then there is a unique stationary distribution π
for the Markov process described by (19). Assume without loss of generality that
the filtered probability space (Ω̃ ,F̃ , P̃,{F̃ (t)}) supports an F̃0-measurable RI

+-
valued random variable W ′(0) with distribution π , and let {W ′(t)} be the stationary
process defined as

W ′(t) .
= Γ (W ′(0)+ vι+GX̃)(t) =W ′(0)+ vt +GX̃(t)+U ′(t), t ≥ 0. (20)

Then U ′ ∈ ˜AE and
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J̃∗
E = J̃E(U ′) =

∫
RI
+

ĥ(w)π(dw).

4 Main Result

We can now present the main result of this work.

Theorem 2. The following inequalities hold: J∗
D ≥ J̃∗

D and J∗
E ≥ J̃∗

E.

Remark 1. In [5], under quite general conditions on the matrix K and assuming that
network primitives (namely the interarrival times and amounts of work) are expo-
nentially distributed, explicit threshold form admissible control policies {Br,∗} are
constructed for which Jr

D(B
r,∗) → J̃D(U∗) and, under the additional condition that

v < 0, Jr
E(B

r,∗)→ J̃E(U ′). In view of Theorems 1 and 2, we then have that under the
conditions of [5] and with the additional assumption that ĥ is nondecreasing, the se-
quence of control policies {Br,∗} of [5] is asymptotically optimal for the discounted
cost problem, and if also v < 0, this sequence is also asymptotically optimal for the
ergodic control problem, namely we have the following

J̃∗
D ≤ J∗

D ≤ liminf
r→∞

Jr
D(B

r,∗) = J̃∗
D,

and
J̃∗

E ≤ J∗
E ≤ liminf

r→∞
Jr

E(B
r,∗) = J̃∗

E .

In particular, J∗
D = J̃∗

D and J∗
E = J̃∗

E .

The rest of this work is devoted to the proof of Theorem 2.

5 Proofs

In Section 5.1 we prove the result for the discounted cost, namely the first inequality
in Theorem 2 and in Section 5.2 we consider the ergodic cost, namely the second
inequality in Theorem 2. Due to space constraints we will only provide a sketch for
the second inequality. Detailed proof will be reported elsewhere.

5.1 Discounted Cost

We need to show that for every admissible sequence of control policies {Br}r ∈ A ,
JD({Br}r)≥ J̃∗

D. Now fix such a sequence and assume that

JD({Br}r) = liminf
r→∞

Jr
D(B

r)< ∞,
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since otherwise the inequality is immediate. The subsequence {r′} ⊂ {r} along
which the liminf is achieved will be labeled again as {r}. With this relabeling,
JD({Br}r) = limr→∞ Jr

D(B
r).

5.1.1 Preliminary results

We begin by establishing some useful asymptotic results and moment bounds.

Lemma 1. 1. The following central limit theorem holds:

(Âr, Ŝr)⇒ (A,S) as r → ∞,

where A and S are independent J-dimensional Brownian motions with drift 0
and covariances Σ u and Σ v, respectively.

2. The following law of large numbers holds:

(Q̄r, B̄r, Ār, S̄r)
P→ (0,ρι ,αι ,βι) as r → ∞.

3. If X = A+ S(ρι), then X is a Brownian motion with drift 0 and covariance Σ ,
and

(Âr, Ŝr(B̄r), X̂ r)⇒ (A,S(ρι),X) as r → ∞.

Proof. The first statement is just the functional central limit theorem for renewal
processes (see Theorem 14.6 in [1]), and the independence of A and S follows from
the independence of {ur

j(k)} and {vr
j(k)}. The last statement is immediate from the

first two. It remains to prove the law of large numbers in 2.
From the first statement, it follows that

(Ār, S̄r) =

(
Âr

r
+αrι ,

Ŝr

r
+β rι

)
P→ (αι ,βι). (21)

By (9), if s ≤ t then for each j ∈ NJ ,

B̄r
j(t)− B̄r

j(s) =
1
r2

(
Br

j(r
2t)−Br

j(r
2s)

)≤ L j(t − s),

so {B̄r}r is tight in C J . Since

Q̄r(t) =
qr

r2 + Ār(t)− S̄r(B̄r(t)), (22)

it follows that (Q̄r, B̄r, Ār, S̄r) is tight in D4J
+ . Suppose we have a subsequence that

converges weakly to some (Q̄, B̄, Ā, S̄). Since JD({Br}r)< ∞, by Fatou’s lemma we
have, taking limit along the subsequence,∫ ∞

0
e−γtE[h · Q̄(t)]dt ≤ liminf

r→∞

∫ ∞

0
e−γtE[h · Q̄r(t)]dt ≤ liminf

r→∞

Jr(Br)

r
= 0.
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Since h > 0, we have that Q̄ = 0 a.s. From (21), Ā = αι and S̄ = βι a.s., and hence
from (22), for all t ≥ 0, a.s. 0 = αt −β B̄(t), from which it follows that B̄ = ρι a.s.
��
Lemma 2. There is a c ∈ (0,∞) such that for all j ∈ NJ, r ≥ 1, and t ≥ 0,

E
[

sup
0≤s≤t

Âr
j(s)

2
]
+E

[
sup

0≤s≤t
Ŝr

j(B̄
r
j(s))

2
]
≤ c(t +1).

Furthermore, the process Ûr = KŶ r satisfies limsupr→∞ E[Ûr
i (t)]< ∞ for all i ∈NI

and t ≥ 0.

Proof. The first estimate is proved exactly as Lemma 3.5 of [4]. We now consider
the second statement in the lemma. Note that Ŵ r = GQ̂r. Since h > 0, there is a
c1 ∈ (0,∞) such that for all r ∈ N and t ≥ 0

‖Ŵ r(t)‖ ≤ ‖G‖‖Q̂r(t)‖ ≤ c1‖G‖h · Q̂r(t).

It follows that

limsup
r→∞

∫ ∞

0
e−γtE‖Ŵ r(t)‖dt ≤ c1‖G‖JD({Br}r)< ∞.

Now, from (7),
Ŵ r(t) = Gq̂r +GX̂r(t)+Gθ̂ r(t)+Ûr(t), (23)

and so from the first part of this lemma, there is a c2 ∈ (0,∞) such that for all t ≥ 0
and r ∈ N

E‖Ûr(t)‖ ≤ E‖Ŵ r(t)‖+‖Gq̂r‖+E‖GX̂r(t)‖+E‖Gθ̂ r(t)‖
≤ E‖Ŵ r(t)‖+‖Gq̂r‖+ c2(t +1).

For each i ∈ NI , Ûr
i is nondecreasing, and so∫ ∞

0
e−γsE[Ûr

i (s)]ds ≥
∫ t+1

t
e−γsE[Ûr

i (s)]ds ≥ e−γ(t+1)E[Ûr
i (t)].

Finally, we have that

limsup
r→∞

E[Ûr
i (t)]≤ limsup

r→∞
eγ(t+1)

∫ ∞

0
e−γsE[Ûr

i (s)]ds

≤ limsup
r→∞

eγ(t+1)
∫ ∞

0
e−γsE‖Ûr(s)‖ds

≤ eγ(t+1) limsup
r→∞

∫ ∞

0
e−γsE‖Ŵ r(s)‖ds

+ eγ(t+1)γ−1 (‖Gq‖+ c2(γ−1 +1)
)
< ∞. ��

Define the process Ĥr by
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Ĥr(t) = (Ĥr,A(t), Ĥr,S(t)) = (Âr(t), Ŝr(B̄r(t))). (24)

Lemma 3. For each r, define the R+-valued process V r(t) = t +∑I
i=1 Ûr

i (t), t ≥ 0.
Then V r has a.s. continuous paths and is strictly increasing. For t ≥ 0 define V̌ r(t) =
inf{s ≥ 0 : V r(s)> t}, and consider the ‘time-transformed’ processes

W̌ r = Ŵ r(V̌ r), X̌ r = X̂ r(V̌ r), Ǔr = Ûr(V̌ r), Ȟr = Ĥr(V̌ r), θ̌ r = θ̂ r(V̌ r).

Then,

(i) The sequence (W̌ r, X̌ r, Ȟr,Ǔr,V̌ r, θ̌ r) is tight in D I+3J ×C I+1+J
+ .

(ii) If V̌ is a weak limit point of V̌ r on some probability space, then

lim
t→∞

V̌ (t) = ∞ a.s. (25)

Let V (t) = inf{s ≥ 0 : V̌ (s)> t}, then a.s. V̌ is continuous, V is right continu-
ous, and both V̌ and V are nondecreasing maps on [0,∞).

(iii) If (A,S,V̌ , Ȟ) is a weak limit point of (Âr, Ŝr,V̌ r, Ȟr) on some probability space,
then

Ȟ = (A(V̌ ),S(ρV̌ )) a.s. (26)

(iv) If (V̌ , θ̌) is a weak limit point of (V̌ r, θ̌ r) on some probability space, then θ̌(·) =
θV̌ (·).

Proof. Since Ûr is nondecreasing, V r is strictly increasing. Since Ûr(t) = rtC −
KB̂r(t), the continuity of B̂r(t) gives the continuity of V r(t). Now,

V r(t) = t +1 ·Ûr(t) = t + rt
I

∑
i=1

Ci −
I

∑
i=1

J

∑
j=1

Ki jB̂r
j(t),

and so if s ≤ t, then by (8), V r(t)−V r(s)≥ t − s. Furthermore, for each i ∈ NI ,

0 ≤ Ûr
i (t)−Ûr

i (s)≤ (V r(t)− t)− (V r(s)− s)≤V r(t)−V r(s).

We then have that

0 ≤ V̌ r(t)−V̌ r(s)≤ t − s, and 0 ≤ Ǔr
i (t)−Ǔr

i (s)≤ t − s. (27)

which gives the tightness of V̌ r and Ǔr. The tightness of X̌ r, and Ȟr now follows
from Lemma 1 and the tightness of W̌ r follows from (23) on noting that

W̌ r(t) = Gq̂r +GX̌r(t)+ θ̌ r(t)+Ǔr(t).

In order to prove the first statement in (ii) it suffices to show that limsupr→∞ P(V̌ r(t)<
m)→ 0 as t → ∞ for any m > 0. To see this, note that for t > m,
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P(V̌ r(t)< m) = P(V r(m)> t) = P

(
m+

I

∑
i=1

Ûr
i (m)> t

)

≤
I

∑
i=1

P
(

Ûr
i (m)>

t −m
I

)
≤ I

t −m

I

∑
i=1

E[Ûr
i (m)], (28)

and hence by Lemma 2, as t → ∞,

limsup
r→∞

P(V̌ r(t)< m)≤ I
t −m

I

∑
i=1

limsup
r→∞

E[Ûr
i (m)]→ 0.

Consider now the remaining statements in (ii). Continuity of V̌ is a consequence of
the continuity of V̌ r for every r. Also, since V̌ r is nondecreasing for every r, so is V̌ .
It then follows from the definition of V that it is right continuous and nondecreasing.
Finally (iii) is an immediate consequence of Lemma 1 and the definitions of Ȟr and
Ĥr. Part (iv) is immediate from Lemma 1(2) and Condition 3. ��

The following result is a key step in the proof of the first inequality in Theorem
2. Proof is given in Section 5.1.3.

Theorem 3. Let (W̌ , X̌ ,Ǔ , Ȟ,V̌ ,A,S) be weak limit points of (W̌ r, X̌ r,Ǔr, Ȟr,V̌ r, Âr, Ŝr)

on some probability space (Ω̃ ,F̃ , P̃), and let V be defined as in Lemma 3. Let

W = W̌ (V ), X = X̌(V ), U = Ǔ(V ), H = Ȟ(V ).

Then, H = (A,S(ρι)) a.s. Furthermore, there is a filtration {F̃ (t), t ≥ 0} on
(Ω̃ ,F̃ , P̃) to which (W,X ,U) is adapted and such that X is an F̃ (t)-Brownian
motion with drift 0 and covariance Σ defined in (15) and, with w = Gq, a.s.

W (t) = w+Gθ t +GX(t)+U(t), t ≥ 0. (29)

5.1.2 Proof of Theorem 2: Discounted Cost

In this section we prove the first inequality in Theorem 2. From Lemma 1 and 3,
the sequence (W̌ r, X̌ r,Ǔr, Ȟr,V̌ r, Âr, Ŝr) is tight. Suppose without loss of generality
that the sequence converges in distribution to some (W̌ , X̌ ,Ǔ , Ȟ,V̌ ,A,S) given on
some probability space (Ω̃ ,F̃ , P̃) as in Theorem 3. By appealing to Skorohod rep-
resentation theorem we can assume that the convergence holds a.s. Note that V̌ r is
continuous and the inequality in (28) and Lemma 2 show that V̌ r(t) ↑ ∞ as t → ∞.
Thus using Fubini’s theorem and changing variables

Jr
D(B

r) =
∫ ∞

0
e−γtE[h · Q̂r(t)]dt = E

[∫ ∞

0
e−γV̌

r(t)h · Q̌r(t)dV̌ r(t)
]

≥ E
[∫ ∞

0
e−γV̌

r(t)ĥ(W̌ r(t))dV̌ r(t)
]
,
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where Q̌r = Q̂r(V̌ r) and ĥ is the effective cost function defined in (14). Since for
fixed N ∈ N the map (x,y) �→ e−γy(ĥ(x)∧N) is continuous and bounded, it follows
that, for any s > 0∫ s

0
e−γV̌

r(t) (ĥ(W̌ r(t))∧N
)

dV̌ r(t)→
∫ s

0
e−γV̌ (t) (ĥ(W̌ (t))∧N

)
dV̌ (t) a.s.

as r → ∞. Thus, a.s.

liminf
r→∞

∫ ∞

0
e−γV̌

r(t)ĥ(W̌ r(t))dV̌ r(t)≥ liminf
r→∞

∫ s

0
e−γV̌

r(t) (ĥ(W̌ r(t))∧N
)

dV̌ r(t)

=
∫ s

0
e−γV̌ (t) (ĥ(W̌ (t))∧N

)
dV̌ (t).

Letting N,s → ∞, we obtain

liminf
r→∞

∫ ∞

0
e−γV̌

r(t)ĥ(W̌ r(t))dV̌ r(t)≥
∫ ∞

0
e−γV̌ (t)ĥ(W̌ (t))dV̌ (t) a.s.

Finally, using Fatou’s lemma,

JD({Br}r) = liminf
r→∞

Jr
D(B

r)≥ liminf
r→∞

E
[∫ ∞

0
e−γV̌

r(t)ĥ(W̌ r(t))dV̌ r(t)
]

≥ E
[

liminf
r→∞

∫ ∞

0
e−γV̌

r(t)ĥ(W̌ r(t))dV̌ r(t)
]

≥ E
[∫ ∞

0
e−γV̌ (t)ĥ(W̌ (t))dV̌ (t)

]
= E

[∫ ∞

0
e−γt ĥ(W (t))dt

]
= J̃D(U)≥ J̃∗

D,

where W and U are as in Theorem 3, the second equality on the last line is a con-
sequence of Theorem 3, and the final inequality uses the observation that U ∈ ˜A .
��

5.1.3 Proof of Theorem 3

In this section we provide the proof of Theorem 3. Since Br is admissible, Ûr is
G r(t)-adapted, where {G r(t), t ≥ 0} is as in Definition 3. Thus

{V̌ r(s)≤ t}= {V r(t)≥ s}=
{

I

∑
i=1

Ûr(t)≥ s− t

}
∈ G r(t).

Thus for each fixed s, V̌ r(s) is a {G r(t)}-stopping time and consequently H r(t) =
G r(V̌ r(t)), t ≥ 0, defines a filtration. With τr as in Definition 3, let σ r(t) = τr(V̌ r(t))
for r, t ≥ 0. We then have the following:
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Lemma 4. (i) σ r(t) is a stopping time with respect to the multiparameter filtration
{F r(m,n),(m,n) ∈ N2J},

(ii) H r(t) = F r(σ r(t)),
(iii) Ǔr, Ȟr,V̌ r are H r(t)-adapted.

Proof. For r, t ≥ 0 and each k ∈ N, let V̌ r
k (t)

.
=  V̌ r(t)2k + 1!/2k. Then V̌ r

k (t) is a
{G r(s),s ≥ 0}-stopping time that takes values in { j2−k, j ≥ 0}. Also V̌ r

k (t) ↓ V̌ r(t)
as k → ∞. Then σ r(t) = infk∈N τr(V̌ r

k (t)). For each (m,n) ∈ N2J ,{
τr(V̌ r

k (t))≤ (m,n)
}
=

⋃
j≥0

{
τr( j2−k)≤ (m,n)

}
∩
{

V̌ r
k (t) = j2−k

}
∈ F r(m,n)

by the definition of the stopped σ -field G r(t) = F r(τr(t)). Thus {τr(V̌ r
k (t)),k ∈

N} is a sequence of F r(m,n)-stopping times, and therefore σ r(t) is an F r(m,n)-
stopping time as well. This proves (i).

Next, it is easy to check that, for every k, F r(τr(V̌ r
k (t))) = G r(V̌ r

k (t)). Since
F r(m,n) is indexed by a discrete set, τr(t) is right-continuous in t, and V̌ r

k (t) ↓
V̌ r(t), the left hand side above goes to F r(σ r(t)) as k → ∞ and the right hand side
goes to H r(t) as k → ∞. This proves (ii).

By Definition 3, Ûr is G r(t)-adapted, and so Ǔr is adapted to G r(V̌ r(t)) =
H r(t). Since τr(t) is a F r(m,n) stopping time, it is G r(t) =F r(τr(t))-measurable
and so Ĥr is G r(t)-adapted. Thus Ȟr is H r(t)-adapted. Also since V̌ r(t) is a
{G r(s)}-stopping time, V̌ r is H r(t)-adapted. This proves (iii) and completes the
proof of the lemma. ��

We will need the following estimate. For a proof we refer to [4, Lemma 4.2].

Lemma 5. For all t ≥ 0 and k ∈ N,

sup
r≥0

max
j∈NJ

(
E[Ar

j(t)
k]+E[Sr

j(t)
k]
)
< ∞.

For r ∈ N and (m,n) = (m1, . . . ,mJ ,n1, . . . ,nJ) ∈ N2J , define

ξ r
j (m,n) = ξ r

j (m j) =
1
r

m j

∑
k=1

(1−αr
j u

r
j(k)),

and

ηr
j (m,n) = ηr

j (n j) =
1
r

n j

∑
k=1

(1−β r
j vr

j(k))

for j ∈ NJ . Then ξ r
j and ηr

j are F r(m,n)-martingales with quadratic variations

〈ξ r
j 〉(m,n) = r−2m j(αr

jσ
u,r
j )2, 〈ηr

j 〉(m,n) = r−2n j(β r
jσ

v,r
j )2,

〈ξ r
j1 ,ξ

r
j2〉(m,n) = 〈ηr

j1 ,η
r
j2〉(m,n) = 〈ξ r

j3 ,η
r
j4〉(m,n) = 0,

for all j, j1, j2, j3, j4 ∈NJ with j1 �= j2. We wil denote ξ r(m,n)= (ξ r
1(m,n), . . . ,ξ r

J (m,n))
and ηr(m,n) = (ηr

1(m,n), . . . ,ηr
J(m,n)).
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Lemma 6. For r, t ≥ 0,

Nr(t) .
= (Nr,A(t),Nr,S(t)) = (ξ r(σ r(t)),ηr(σ r(t))).

is an H r(t)-martingale.

Proof. This follows from a multiparameter version of the optional sampling theo-
rem. For details we refer to [4, pages 1992-93]. ��

The following lemma shows that the martingale in Lemma 6 is close to Ȟr as r
increases.

Lemma 7. For every T < ∞, sup0≤t≤T ‖Ȟr(t)−Nr(t)‖1
P→ 0 as r → ∞.

Proof. For each j ∈ NJ and t ≥ 0,

|Ȟr,A
j (t)−Nr,A

j (t)|= ∣∣Âr
j(V̌

r(t))−ξ r
j (σ

r(t))
∣∣

=

∣∣∣∣1
r

Ar
j(r

2V̌ r(t))− rV̌ r(t)αr
j −ξ r

j (A
r
j(r

2V̌ r(t))+1)
∣∣∣∣

=

∣∣∣∣∣∣1
r

Ar
j(r

2V̌ r(t))− rV̌ r(t)αr
j −

1
r

Ar
j(r

2V̌ r(t))+1

∑
k=1

(1−αr
j u

r
j(k))

∣∣∣∣∣∣
=
αr

j

r

∣∣∣∣∣∣ur
j(A

r
j(r

2V̌ r(t))+1)+
Ar

j(r
2V̌ r(t))

∑
k=1

ur
j(k)− r2V̌ r(t)− 1

αr
j

∣∣∣∣∣∣ .
Since Ar

j is nondecreasing,

sup
0≤s≤t

|Ȟr,A
j (s)−Nr,A

j (s)| ≤ 1
r

(
1+αr

j max
k≤Ar

j(r
2t)+1

∣∣∣∣∣ur
j(k)−

1
αr

j

∣∣∣∣∣
)
. (30)

A similar argument also gives

sup
0≤s≤t

|Ȟr,S
j (s)−Nr,S

j (s)| ≤ 1
r

(
1+β r

j max
k≤Sr

j(r
2t)+1

∣∣∣∣∣vr
j(k)−

1
β r

j

∣∣∣∣∣
)
. (31)

Using the fact that {ur
j(k)−1/αr

j}k∈N and {vr
j(k)−1/β r

j }k∈N are i.i.d. sequences of
mean zero random variables and the uniform integrability property in (2), we have
that for every c > 0 and j ∈ NJ

max
1≤k≤cr2

|ur
j(k)−1/αr

j | P→ 0 and max
1≤k≤cr2

|vr
j(k)−1/β r

j | P→ 0.

Also, by Lemma 1, r−2Ar
j(r

2t) P→ αt and r−2Sr
j(r

2t) P→ β t, uniformly on compacts.
This shows that the right hand sides of (30) and (31) go to zero in probability as
r → ∞. ��
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Now we return to the proof of Theorem 3. The first statement in the theorem is
immediate from the definitions of various processes and properties of weak conver-
gence. Also, from the definitions of Ĥr, X̂ r and Ŵ r in (24), (6), and (23), respec-
tively,

X̌ r(t) = X̂ r(V̌ r(t)) = Ȟr,A(t)− Ȟr,S(t),

and

W̌ r(t) = Ŵ r(V̌ r(t)) = Grq̂r +GrX̌r(t)+ rV̌ r(t)K(ρr −ρ)+Ǔr(t).

Taking the limit as r → ∞ along the weakly convergent subsequence of the processes
in the statement of Theorem 3,

X(t) = HA(t)−HS(t) = A(t)−S(ρt),

W (t) = Gq+Gθ t +GX(t)+U(t),

where (H,X ,W,U) are as in the statement of Theorem 3. This proves the identity in
(29). Finally we prove the adaptedness statement and the Brownian motion property
in Theorem 3. Define

F̌ (t) =
⋂
n≥1

σ
{
(Ȟ(s),Ǔ(s),V̌ (s)),s ≤ t +

1
n

}
,

so that {F̌ (t), t ≥ 0} is a right-continuous filtration. By construction, for all s, t ≥ 0,

{V (s)< t}= {V̌ (t)> s} ∈ F̌ (t),

and so by right-continuity, V (s) is a stopping time with respect to {F̌ (t), t ≥ 0} for
all s ≥ 0. Since V is nondecreasing, the stopped σ -fields F̃ (t) = F̌ (V (t)) form a fil-
tration. Also by construction, W̌ , X̌ , and Ǔ are all F̌ (t)-adapted, and thus (W,X ,U)
are F̃ (t)-adapted.

To complete the proof of Theorem 3, it remains to show that X is an F̃ (t)-
Brownian motion with drift 0 and convariance Σ . For this, if L is the differential
operator defined as

L f (x) =
1
2

J

∑
j=1
α j(α jσu

j )
2 ∂ 2 f
∂x2

j
(x)+

1
2

J

∑
j=1
β j(β jσ v

j )
2ρ j

∂ 2 f
∂x2

j+J
(x),

then it suffices to show that, for each f ∈ C ∞
b (R2J),

f (H(t))−
∫ t

0
L f (H(s))ds is an F̃ (t)-martingale. (32)

We begin with the following lemma.

Lemma 8. Suppose that for 0 ≤ s ≤ t, f ∈ C ∞
b (R2J), and any bounded continuous

function g : C ([0,s] : R2J ×RI+1
+ )→ R,
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E
[

g
(
(Ȟ,Ǔ ,V̌ )

∣∣
[0,s]

)(
f (Ȟ(t))− f (Ȟ(s))−

∫ t

s
L f (Ȟ(u))dV̌ (u)

)]
= 0, (33)

then (32) is satisfied.

Proof. Fix f ∈ C ∞
b (R2J). Let Y (t) = f (Ȟ(t))− ∫ t

0 L f (Ȟ(u))dV̌ (u), t ≥ 0. Then
from (33) Y is an F̌ (t)-martingale. Also note that Y (V (t))= f (H(t))−∫ t

0 L f (H(s))ds,
which is same as the expression in (32). Thus it suffices to show that Y (t) and
V (t) satisfy hypotheses for the optional sampling theorem. Recall that V (t) is a
finite-a.s. {F̌ (s),s ≥ 0}-stopping time. Thus if for each t ≥ 0, E|Y (V (t))|< ∞ and
E(|Y (T )|1{V (t)>T}) → 0 as T → ∞, then we are done (see, for instance, Theorem
2.2.13 of [6]).

Since f ∈ C ∞
b (R2J), there is a c ∈ (0,∞) so that | f | ∨ |L f | ≤ c, and so |Y (s)| ≤

c(1+ V̌ (s)) for each s ≥ 0. Thus for all t E|Y (V (t))| ≤ c(1+ t) < ∞, and using
Lemma 3(ii), as T → ∞,

E|Y (T )|1{V (t)>T} ≤ E|Y (T )|1{V̌ (T )<t} ≤ c(1+ t)P(V̌ (T )< t)→ 0.

This verifies the conditions for the optional sampling theorem and consequently
completes the proof. ��

In order to finish the proof of Theorem 3 we will now show that (33) holds for
all f ,g as in Lemma 8. From Lemma 7, with various processes as in the statement
of Theorem 3, by possibly taking a subsequence, as r → ∞,

(Ȟr,Nr,V̌ r,Ǔr)⇒ (Ȟ, Ȟ,V̌ ,Ǔ). (34)

Recall from Lemma 4 that for each r, (Ȟr,Ǔr,V̌ r)
∣∣
[0,s] is H r(s)-measurable and

using the continuous mapping theorem and dominated convergence theorem, it then
suffices to show that for any s ≤ t,

limsup
r→∞

∣∣∣∣E [
f (Nr(t))− f (Nr(s))−

∫ t

s
L f (Nr(u))dV̌ r(u)

∣∣∣∣H r(s)
]∣∣∣∣= 0. (35)

Partition the interval [s, t] into the times s = tr
0 < tr

1 < · · ·< tr
r2 ≤ t, where

tr
i = s+

i
r2 (t − s), for i = 0,1, . . . ,r2.

Then define the quantity

Ψ r(s, t) =
1
2

J

∑
j=1

r2

∑
i=0

[
ψu,r

j
∂ 2 f
∂x2

j
(Nr(tr

i ))
(
Ār

j(V̌
r(tr

i+1))− Ār
j(V̌

r(tr
i ))

)
+ψv,r

j
∂ 2 f
∂x2

j+J
(Nr(tr

i ))
(
S̄r

j(B̄
r
j(V̌

r(tr
i+1)))− S̄r

j(B̄
r
j)V̌

r(tr
i )))

)]
,
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where ψu,r
j = (αr

jσ
u,r
j )2 and ψv,r

j = (β r
jσ

v,r
j )2. Using the fact that V̌ r(t) ≤ t, there

are c1,c2 ∈ (0,∞) such that for r ≥ 1 and s ≤ t

E|Ψ r(s, t)|2 ≤ c1 max
j∈NJ

(
E[Ār

j(V̌
r(t))2]+E[S̄r

j(B̄
r
j(V̌

r(t)))2]
)≤ c2(t +1).

In particular, we have that {Ψ r(s, t)}r is uniformly integrable. By Lemma 1 and
(34),

(Ār
j(V̌

r), S̄r
j(B̄

r
j(V̌

r)))⇒ (α jV̌ ,β jρ jV̌ )

in D1
+. It then follows that

limsup
r→∞

E
∣∣∣∣Ψ r(s, t)−

∫ t

s
L f (Nr(u))dV̌ r(u)

∣∣∣∣= 0. (36)

Now, by Taylor’s theorem, for any s ≤ u < v ≤ t write

f (Nr(v))− f (Nr(u)) =
2J

∑
j=1

∂ f
∂x j

(Nr(u))(Nr
j (v)−Nr

j (u))

+
1
2

2J

∑
j,k=1

∂ 2 f
∂x j∂xk

(L)(Nr
j (v)−Nr

j (u))(N
r
k(v)−Nr

k(u)),

where L lies on the line segment between Nr(v) and Nr(u). From Lemma 6 Nr is an
H r(t)-martingale, and so

E[ f (Nr(v))− f (Nr(u))|H r(s)]

= E

[
1
2

2J

∑
j,k=1

∂ 2 f
∂x j∂xk

(L)(Nr
j (v)−Nr

j (u))(N
r
k(v)−Nr

k(u))

∣∣∣∣∣H r(s)

]
.

By partitioning [s, t] as before and expanding f (Nr(t))− f (Nr(s)) as a telescoping
sum, we then get

E[ f (Nr(t))− f (Nr(s))−Ψ r(s, t)|H r(s)]

=
1
2

2J

∑
j=1

r2

∑
i=0

E

[(
∂ 2 f
∂x2

j
(Lr

i )−
∂ 2 f
∂x2

j
(Nr(tr

i ))

)
(Nr

j (t
r
i+1)−Nr

j (t
r
i ))

2

∣∣∣∣∣H r(s)

]
, (37)

where Lr
i lies on the line segment bewteen Nr(tr

i+1) and Nr(tr
i ) for each i. Here we

also used the following equalities, which can easily be checked from the definition
of Nr: for s ≤ u < v,
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E[(Nr
j (v)−Nr

j (u))
2|H r(s)]

= ψu,r
j E[Ār

j(V̌
r(v))− Ār

j(V̌
r(u))|H r(s)] for 1 ≤ j ≤ J,

E[(Nr
j (v)−Nr

j (u))
2|H r(s)]

= ψv,r
j E[S̄r

j(B̄
r
j(V̌

r(v)))− S̄r
j(B̄

r
j(V̌

r(u)))|H r(s)] for J+1 ≤ j ≤ 2J,

E[(Nr
j (v)−Nr

j (u))(N
r
k(v)−Nr

k(u))|H r(s)] = 0 for j �= k.

The following lemma will allow us to finish the proof of (35).

Lemma 9. The sequence {r2(Nr
j (t

r
i+1)− Nr

j (t
r
i ))

2} j∈NJ ,i≤r2,r≥0 is uniformly inte-
grable conditional on H r(s), namely given ε > 0, there is an M < ∞ such that
for all r ∈ N, j ∈ NJ, and i = 0,1, . . . ,r2, a.s.

E
[
r2(Nr

j (t
r
i+1)−Nr

j (t
r
i ))

21{r2(Nr
j (t

r
i+1)−Nr

j (t
r
i ))

2>M}
∣∣∣H r(s)

]
≤ ε.

Proof. Let ur
j(A

r
j(r

2V̌ r(tr
i+1))+1)1{Ar

j(r
2V̌ r(tr

i+1))−Ar
j(r

2V̌ r(tr
i ))≥1}

.
= ζ r

j,i. Using the def-
inition of Nr, if j ≤ J,

r(Nr
j (t

r
i+1)−Nr

j (t
r
i ))

=

Ar
j(r

2V̌ r(tr
i+1))+1

∑
k=1

(1−αr
j u

r
j(k))−

Ar
j(r

2V̌ r(tr
i ))+1

∑
k=1

(1−αr
j u

r
j(k))

= Ar
j(r

2V̌ r(tr
i+1))−Ar

j(r
2V̌ r(tr

i ))

−αr
j

⎛⎝Ar
j(r

2V̌ r(tr
i+1))+1

∑
k=1

ur
j(k)−

Ar
j(r

2V̌ r(tr
i ))+1

∑
k=1

ur
j(k)

⎞⎠
≤ Ar

j(r
2V̌ r(tr

i+1))−Ar
j(r

2V̌ r(tr
i ))+α

r
jζ

r
j,i +α

r
j (r

2V̌ r(tr
i+1)− r2V̌ r(tr

i ))

≤ Ar
j(r

2V̌ r(tr
i+1))−Ar

j(r
2V̌ r(tr

i ))+α
r
jζ

r
j,i +α

r
j (t − s),

and so

r2(Nr
j (t

r
i+1)−Nr

j (t
r
i ))

2 ≤ 4
(
Ar

j(r
2V̌ r(tr

i+1))−Ar
j(r

2V̌ r(tr
i ))

)2
(38)

+4(αr
j )

2(ζ r
j,i)

2 +4(αr
j )

2(t − s)2.

Since a similar inequality holds when J+1 ≤ j ≤ 2J, it suffices to prove the condi-
tional uniform integrability of {(Ar

j(r
2V̌ r(tr

i+1))−Ar
j(r

2V̌ r(tr
i )))

2} j,i,r and {(ζ r
j,i)

2} j,i,r.
For the first, we have by a similar argument as in [4, page 2000] that, a.s., for any

c > 0,

P
(
Ar

j(r
2V̌ r(tr

i+1))−Ar
j(r

2V̌ r(tr
i ))> c

∣∣H r(s)
)

≤ E
[
P
(
Ar

j(t − s)+1 > c
∣∣H r(tr

i )
)∣∣H r(s)

]
≤ P(Ar

j(t − s)+1 > c).
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In particular,

E
[
(Ar

j(r
2V̌ r(tr

i+1))−Ar
j(r

2V̌ r(tr
i )))

21{
(Ar

j(r
2V̌ r(tr

i+1))−Ar
j(r

2V̌ r(tr
i )))

2>c
}∣∣∣∣H r(s)

]
≤ E

[
(Ar

j(t − s)+1)21{(Ar
j(t−s)+1)2>c}

]
,

and Lemma 5 then gives the required conditional uniform integrability.
For c > 0, let

μr
j (c) = E

[
ur

j(1)
21{ur

j(1)
2>c}

]
,

and define the process

Mr
j(m,n) = Mr

j(m j) =
m j

∑
k=1

ur
j(k)

21{ur
j(k)

2>c} −m jμr
j (c).

Let χ = 1{Ar
j(r

2V̌ r(tr
i+1))−Ar

j(r
2V̌ r(tr

i ))≥1}. Since {ur
j(k)}k∈N are i.i.d., {Mr

j(m,n)} is an

{F r(m,n)}-martingale, and therefore

(ζ r
j,i)

21{
(ζ r

j,i)
2>c

}

= χ

⎛⎝Ar
j(r

2V̌ r(tr
i+1))+1

∑
k=1

ur
j(k)

21{ur
j(k)

2>c} −
Ar

j(r
2V̌ r(tr

i+1))

∑
k=1

ur
j(k)

21{ur
j(k)

2>c}

⎞⎠
≤

Ar
j(r

2V̌ r(tr
i+1))+1

∑
k=1

ur
j(k)

21{ur
j(k)

2>c} −
Ar

j(r
2V̌ r(tr

i ))+1

∑
k=1

ur
j(k)

21{ur
j(k)

2>c}

= Mr
j(A

r
j(r

2V̌ r(tr
i+1))+1)−Mr

j(A
r
j(r

2V̌ r(tr
i ))+1)

+
(
(Ar

j(r
2V̌ r(tr

i+1))−Ar
j(r

2V̌ r(tr
i ))

)
μr

j (c).

Then by optional sampling,

E
[
(ζ r

j,i)
21{

(ζ r
j,i)

2>c
}∣∣∣∣H r(s)

]
≤ 2μr

j (c)sup
r≥0

E[Ar
j(t)+1].

By Lemma 5, supr≥0 E[Ar
j(t)+ 1] < ∞ and by the assumption in (2) we have that

supr≥0 μr
j (c) → 0 as c → ∞. This establishes the desired uniform integrability and

completes the proof. ��
Now we complete the proof of (35). It follows from the previous lemma that for

each ε > 0, there is an M = M(ε) such that a.s.

sup
r≥0

sup
i∈{0,...,r2}

E
[
r2‖Nr(tr

i+1)−Nr(tr
i )‖2

11{r2‖Nr(tr
i+1)−Nr(tr

i )‖2
1>M}

∣∣∣H r(s)
]
< ε.



Resource Sharing Networks and Brownian Control Problems 89

Since the second derivatives of f are bounded, we have from (37) that there is a
c < ∞ so that for every ε > 0,

|E[ f (Nr(t))− f (Nr(s))−Ψ r(s, t)|H r(s)]|

≤ 2cJε+
M(ε)

2

2J

∑
j=1

sup
‖x−y‖2

1≤ M
r2

∣∣∣∣∣∂ 2 f
∂x2

j
(x)− ∂ 2 f

∂x2
j
(y)

∣∣∣∣∣ .
Since f ∈ C ∞

b (R2J), letting r → ∞ followed by ε → 0 gives us that

limsup
r→∞

|E[ f (Nr(t))− f (Nr(s))−Ψ r(s, t)|H r(s)]|= 0. (39)

Together with (36) this gives (35) and completes the proof of Theorem 3. ��

5.2 Ergodic Cost

In this section we sketch the proof of the second part of Theorem 2, namely the
inequality J∗

E ≥ J̃∗
E . As for the discounted case, it suffices to show that for every

admissible sequence of control policies {Br}r ∈ A , JE({Br}r) ≥ J̃∗
E . Now fix such

a sequence and assume that

JE({Br}r) = liminf
r→∞

Jr
E(B

r)< ∞,

since otherwise the inequality is immediate. The subsequence {r′} ⊂ {r} along
which the liminf is achieved will be labeled again as {r}. With this relabeling,
JE({Br}r) = limr→∞ Jr

E(B
r). Fix δ > 0 and choose r0 ∈ N such that for all r ≥ r0,

JE({Br}r)≥ Jr
E(B

r)−δ . Given r ≥ r0, choose Tr ≥ 1 such that

Jr
E(B

r)≥ Eς ·Ûr(T )
T

+
1
T

∫ T

0
E[h · Q̂r(t)]dt −δ for all T ≥ Tr.

We assume without loss of generality that Tr → ∞ as r → ∞. Thus

Eς ·Ûr(T )
T

+
1
T

∫ T

0
E[h · Q̂r(t)]dt ≤ JE({Br}r)+2δ for all r ≥ r0 and T ≥ Tr.

(40)
For the rest of this section we assume without loss of generality that r0 = 1. For
r ∈ N and T > 0 consider P(D I+2J+I+1)-valued random variable νr,T defined as

νr,T (A) .
=

1
T

∫ V r(T )

0
δ(W̌ r(t+·),X̌ r,t (·),θ̌ r,t (·),Ǔr,t (·),V̌ r,t (·))(A)dV̌ r(t), A ⊂ D I+2J+I+1,

where for a process {ζ r(t)}t≥0, ζ r,t(·) = ζ r(t + ·)− ζ r(t). The following lemma
gives a key tightness property.
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Lemma 10. {νr,T ,r ∈N,T ≥ Tr} is a tight collection of P(D I+2J+I+1)-valued ran-
dom variables.

Proof. (Sketch) We first show that

the collection {X̌ r(t + ·)− X̌ r(t),r ∈ N, t ≥ 0} is tight. (41)

For this first note that exactly as in the proof of Lemma 1 it can be shown that the
collection {X̂ r(t + ·)− X̂ r(t),r ∈N, t ≥ 0} is C -tight in DJ . Also, as in the proof of
Lemma 3, it can be shown that {V̌ r(t + ·)−V̌ r(t),r ∈N, t ≥ 0} is tight in C 1

+. From
this it follows that

{X̂ r(V̌ r(t)+V̌ r(t + ·)−V̌ r(t))− X̂ r(V̌ r(t)),r ∈ N, t ≥ 0}

is C -tight in DJ . The statement in (41) now follows on observing that

X̂ r(V̌ r(t)+V̌ r(t + ·)−V̌ r(t))− X̂ r(V̌ r(t)) = X̌ r(t + ·)− X̌ r(t).

In a similar way it can be see that {θ̌ r(t + ·)− θ̌ r(t),r ∈ N, t ≥ 0} is C -tight in DJ .
We now argue that with

νr,T
1 (A) .

=
1
T

∫ V r(T )

0
δ(X̌ r,t (·),θ̌ r,t (·),V̌ r,t (·))(A)dV̌ r(t), A ⊂ D2J+1,

we have that

{νr,T
1 ,r ∈ N,T ≥ Tr} is tight collection of P(D2J+1) valued random variables.

(42)
For this it is enough to show that the collection {Eνr,T

1 ,r ∈ N,T ≥ Tr} is relatively
compact in P(D2J). Note that, by a similar calculation as in (28), for r ∈N, M ≥ 1
and T ≥ 1,

P(V r(T )≥ MT )≤ I
(M −1)T

I

∑
i=1

EÛr
i (T ). (43)

From (40) there is a c1 ∈ (0,∞) such that EÛr
i (T ) ≤ c1T for all T ≥ Tr and for all

r ∈N. Fix ε > 0 and choose M ≥ 1 such that c1I2/(M−1)≤ ε/2. From the tightness
of {X̌ r,t(·), θ̌ r,t(·),V̌ r,t(·))} we can find a compact K ⊂ D2J+1 such that

sup
r∈N,t≥0

P((X̌ r,t(·), θ̌ r,t(·),V̌ r,t(·)) ∈ Kc)≤ ε
2M

.

Then, for r ∈ N and T ≥ Tr
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Eνr,T
1 (Kc) = E

1
T

∫ V r(T )

0
δ(X̌ r,t (·),θ̌ r,t (·),V̌ r,t (·))(K

c)dV̌ r(t)

≤ P(V r(T )≥ MT )+E
1
T

∫ MT

0
δ(X̌ r,t (·),θ̌ r,t (·),V̌ r,t (·))(K

c)dV̌ r(t)

≤ cI2

(M −1)T
+M

ε
2M

≤ ε/2+ ε/2 = ε.

This proves the tightness statement in (42).
Next, by an argument similar to that in Lemma 3, we have the tightness of the

collection {Ǔr(t + ·)− Ǔr(t),r ∈ N, t ≥ 0}. Together with the tightness in (41),
this gives the tightness of the collection {W̌ r(t + ·)− W̌ r(t),r ∈ N, t ≥ 0}. Now
an argument similar to the one used in the proof of (42) gives the tightness of
{νr,T

2 ,r ∈ N,T ≥ Tr}, where

νr,T
2 (A) .

=
1
T

∫ V r(T )

0
δ(W̌ r(t+·)−W̌ r(t),Ǔr(t+·)−Ǔr(t))(A)dV̌ r(t), A ⊂ D2I .

In order to complete the proof of the lemma it now suffices to show that{
νr,T

3 ,r ∈ N,T ≥ Tr

}
is a tight collection of P(RI

+) valued random variables,
(44)

where

νr,T
3 =

1
T

∫ V r(T )

0
δW̌ r(t) dV̌ r(t).

For this, again, it suffices to show that the collection {Eνr,T
3 ,r ∈ N,T ≥ Tr} is rela-

tively compact in P(RI
+). However, this is immediate on observing that, for some

c2,c3 < ∞, and all r ∈ N, T ≥ Tr

E
∫
RI
+

z ·1dνr,T
3 (dz) = E

1
T

∫ V r(T )

0
W̌ r(t) ·1dV̌ r(t)

= E
1
T

∫ T

0
Ŵ r(t) ·1dt

≤ c2E
1
T

∫ T

0
h · Q̂r(t)dt ≤ c3,

where the last inequality is from (40). This completes the proof of the lemma. ��
The above lemma says that the collection {νr,Tr ,r ∈ N} is tight. Now we charac-

terize the weak limit points of νr,Tr . The proof follows along the lines of Theorem
3. We omit the details here.

Lemma 11. Let ν be a P(D I+2J+I+1)-valued random variable defined on some
probability space (Ω̃ ,F̃ , P̃) such that νr,Tr ⇒ ν as r → ∞. Let

{(w̌(t), x̌(t), θ̌(t), ǔ(t), v̌(t)), t ≥ 0}
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denote the canonical coordinate process on S = D I+2J+I+1. Then for P̃ a.e. ω , and
ν(ω) a.s., t �→ v̌(t) is continuous and v̌(t) → ∞ as t → ∞. Define, for t ≥ 0, v̄(t) .

=
inf{s ≥ 0 : v̌(s) > t} and v(t) .

= v̄(t)− v̄(0). Let w(t) .
= w̌(v(t)), x(t) .

= x̌(v(t)),
θ(t) .

= θ̌(v(t)), u(t) .
= ǔ(v(t)). Consider the mapϒ : S → S0, where S0

.
= D I+2J+I ,

defined (ν(ω) a.s. for P̃ a.e. ω) as

ϒ (w̌, x̌, θ̌ , ǔ, v̌)(t) = (w(t),x(t),θ(t),u(t)), t ≥ 0., (w̌, x̌, θ̌ , ǔ, v̌) ∈ S.

Let ν̃(ω) = ν(ω)◦ϒ−1. Abusing notation, denote the canonical coordinate process
on S0 as {(w(t),x(t),θ(t),u(t)), t ≥ 0} and let E (t) =σ{(w(s),x(s),θ(s),u(s)),s ≤
t} denote the canonical filtration. Then, for P̃-a.e. ω ∈ Ω̃ ,

(a) {x(t), t ≥ 0} is an E (t)-Brownian motion with covariance Σ , under ν̃(ω),
(b) θ(t) = θ t for all t ≥ 0, ν̃(ω) a.s.
(c) For all t ≥ 0, a.s. ν̃(ω),

w(t) = w(0)+Gθ t +Gx(t)+u(t).

(d) u∈ ˜AE where ˜AE is as introduced below Definition 5, with (Ω̃ ,F̃ , P̃,{F̃ (t)}, X̃(·))
replaced with (S0,B(S0), ν̃(ω),{E (t)},x(·)).

Now we can complete the proof of the second statement in Theorem 2. We as-
sume without loss of generality that the νr,Tr converges in distribution to some limit
ν . This ν must satisfy the properties in Lemma 11. Let νr,T

∗ denote the marginal of
νr,T given by

νr,T
∗ =

1
T

∫ V r(T )

0
δW̌ r(t+·) dV̌ r(t). (45)

By Fatou’s lemma and Lemma 11, we have that for any N ∈ (0,∞),

lim
r→∞

Jr
E(B

r)+δ ≥ liminf
r→∞

(
1
Tr

∫ Tr

0
E[h · Q̂r(t)]dt +

E[ς ·Ûr(Tr)]

Tr

)
≥ liminf

r→∞
E
[

1
Tr

∫ Tr

0
ĥ(Ŵ r(t))dt

]
≥ liminf

r→∞
E
[

1
Tr

∫ Tr

0

(
ĥ(Ŵ r(t))∧N

)
dt
]

= liminf
r→∞

E
[

1
Tr

∫ V r(Tr)

0

(
ĥ(W̌ r(t))∧N

)
dV̌ r(t)

]
= liminf

r→∞
E
[∫

DI

(
ĥ(ϕ(0))∧N

)
νr,T
∗ (dϕ)

]
.

Using the weak convergence of νr,Tr to ν , we have
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lim
r→∞

Jr
E(B

r)+δ ≥ E
[∫

RI
+

(
ĥ(x)∧N

)
ν ◦ (w̌(0))−1(dx)

]
= E

[∫
RI
+

(
ĥ(x)∧N

)
ν̃ ◦ (w(0))−1(dx)

]
,

where the last equality follows on recalling that with v in Lemma 11 satisfies v(0) =
0, ν(ω) a.s. for P̃ a.e. ω . Finally recalling the definition of J̃∗

E and sending N → ∞,
we have

JE({Br}r)+δ ≥ E
[∫

RI
+

ĥ(x)ν ◦ (w(0))−1(dx)
]
≥ J̃∗

E .

The result follows since δ > 0 is arbitrary. ��
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American Option Model and Negative Fichera

Function on Degenerate Boundary

Xiaoshan Chen, Zhuo Jin, and Qingshuo Song

Abstract We study American put option with stochastic volatility whose value
function is associated with a 2-dimensional parabolic variational inequality with de-
generate boundaries. Given the Fichera function on the boundary, we first analyze
the existences of the strong solution and the properties of the 2-dimensional mani-
fold for the free boundary. Thanks to the regularity result of the underlying PDE, we
can also provide the uniqueness of the solution by the argument of the verification
theorem together with the generalized Itos formula even though the solution may
not be second order differentiable in the space variable across the free boundary.

1 Introduction

Option pricing is one of the most important topics in the quantitative finance re-
search. Although the Black-Scholes model has been well studied, empirical evi-
dence suggests that the Black-Scholes model is inadequate to describe asset returns
and the behavior of the option markets. One possible remedy is to assume that the
volatility of the asset price also follows a stochastic process, see [9] and [10].

In the standard Black-Scholes model, a standard logarithmic change of variables
transforms the Black-Scholes equation into an equation with constant coefficients
which can be studied by a general PDE theory directly. Different from the standard
Black-Scholes PDE, the general PDE methods does not directly apply to the PDE
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associated with the option pricing underlying the stochastic volatility model in the
following cases: 1) The pricing equation is degenerate at the boundary; 2) The drift
and volatility coefficients may grows faster than linear, see [9].

In the related literatures, [9] derived a closed-form solution for the price of a Eu-
ropean call option on some specific stochastic volatility models. [6] also studied the
Black-Scholes equation of European option underlying stochastic volatility models,
and showed that the value function was the unique classical solution to a PDE with
a certain boundary behavior. Also, [2] showed a necessary and sufficient condition
on the uniqueness of classical solution to the valuation PDE of European option in
a general framework of stochastic volatility models. In contrast to the European op-
tion pricing on the stochastic volatility model, although there have been quite a few
approximate solutions and numerical approaches, such as [1, 4], the study of the ex-
istence and uniqueness of strong solution for PDE related to American option price
on the stochastic volatility model is rather limited. In particular, the unique solvabil-
ity of PDE associated with American options of finite maturity with the presence of
degenerate boundary and super-linear growth has not been studied in an appropriate
Sobolev space.

Note that, American call options with no dividend is equivalent to the European
call option. For this reason, we only consider a general framework of American
put option model with stochastic volatility whose value function is associated by a
2-dimensional parabolic variational inequality. On the other hand, in the theory of
linear PDE, boundary conditions along degenerate boundaries should not needed if
the Fichera function is nonnegative, otherwise it should be imposed, see [16]. There-
fore, we only consider the case when Fichera function is negative on the degenerate
boundary y = 0 in this paper, and leave the other case in the future study.

To resolve solvability issue, we adopt similar methodology of [3] to work on a
PDE of truncated version backward in time using appropriate penalty function and
mollification. The main difference is that [3] studies constant drift and volatility,
while the current paper considers functions of drift and volatility and the negative
Fichera function plays crucial role in the proof.

Uniqueness issue is usually tackled by comparison result implied by Ishii’s
lemma with notions of viscosity solution, see [5]. However, this approach does not
apply in this problem due to the fast growth of drift and volatility functions on un-
bounded domain. The approach to establish uniqueness in our paper is similar to the
classical verification theorem conducted to classical PDE solution. In fact, a careful
construction leads to a local regularity of the solutions in Sobolev space, and this
enables us to apply generalized Ito’s formula (see [12]) with weak derivatives. Note
that this approach not only provides uniqueness of strong solution of PDE, but also
provides that the value function of American option is exactly the unique strong
solution.

In the next section, we first introduce the generalized stochastic volatility model.
Section 3 shows the existence of strong solution to the truncated version of the
variational inequality. We characterize the free boundary in section 4. Section 5
shows that the value function of the American option price is the unique strong
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solution to the variational inequality with appropriate boundary datum. Concluding
remarks are given in section 6.

2 Stochastic volatility model

Let (Ω ,F ,P) be a filtered probability space with a filtration (Ft)t≥0 that satisfies
the usual conditions, Wt and Bt be two standard Brownian motions with correlation
ρ . Suppose the stock price follows

(Stk) dXs = Xs(rds+σ(Ys)dWs), Xt = x > 0,

and volatility follows

(Vol) dYs = μ(Ys)ds+b(Ys)dBs, Yt = y > 0.

Let Xx,t and Y y,t be dynamics satisfying (Stk) and (Vol) with respective initial con-
ditions on superscripts.

We consider an American put option underlying the asset Xs with strike K > 0
and maturity T , which has the payoff (K −Xτ)+ at the exercise time τ ∈ Tt,T . Here
Tt,T denotes the set of all stopping times in [t,T ]. Define value function of the
optimal stopping by

V (x,y, t) = sup
τ∈Tt,T

Ex,y,t [e−r(τ−t)(K −Xτ)+], (x,y, t) ∈ R̄+× R̄+× [0,T ]. (1)

Following assumptions will be imposed:

(A1) μ,σ2,b2 are locally Lipschitz continuous on R with μ(0) = σ(0) = b(0) =
0 and σ(y),b(y)> 0,σ ′(y)≥ 0 for all y > 0.
(A2) |μ|+b is at most linear growth, and (σ2)′ is at most polynomial growth.

In the above, σ ′(y) and (σ2)′(y) stand for the first and second derivatives of σ(y),
respectively. Under the assumptions (A1)–(A2), we have unique non-negative, non-
explosive strong solutions for both (Stk) and (Vol). Furthermore, Xx,t

s > 0 for all
s > t. Such a stock price model includes Heston model.

Provided that the value function V (x,y, t) is smooth enough, applying dynamic
programming principle and Itô’s formula, the value of the option V (x,y, t) formally
satisfies the variational inequality⎧⎨⎩min

{
−∂tV −LxV, V − (K − x)+

}
= 0, (x,y, t) ∈ Q := R+×R+× [0,T ),

V (x,y,T ) = (K − x)+, (x,y) ∈ R+×R+,
(2)

where

LxV =
1
2

x2σ2(y)∂xxV +ρxσ(y)b(y)∂xyV +
1
2

b2(y)∂yyV + rx∂xV +μ(y)∂yV − rV.
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On the boundary x = 0, the Fichera condition on linear parabolic equation suggests
us not to impose any boundary condition. On the boundary y = 0, the Fichera func-
tion is

F =
[
μ(y)− 1

2
ρσ(y)b(y)−b(y)b′(y)

]∣∣∣
y=0

= μ(0)− lim
y→0

b(y)b′(y).

So

(F1) when μ(0)< lim
y→0

b(y)b′(y), one has to impose the boundary condition;

(F2) when μ(0)≥ lim
y→0

b(y)b′(y), one should not impose any boundary condition.

Although the problem (2) is a variational inequality instead of linear PDE, the
Fichera condition in the linear PDE theory does not directly prove the existence
of solution to the problem (2). Throughout this paper, we study the relation between
value function (1) and PDE of (2) with an appropriate boundary data on y = 0 under
the case (F1), while the case (F2) is left in the future study.

Then, what boundary condition should be imposed on the boundary y = 0? To
proceed, we define ν := inf{s > t : Ys = 0} the first hitting time of the process Ys to
the boundary y = 0. Then for any stopping time τ > ν , we have

e−r(τ−t)(K −Xτ)+ ≤ e−r(ν−t)(K −Xν)+, (3)

thus

V (x,0, t) = sup
τ∈Tt,T

Ex,0,t [e−r(τ−t)(K −Xτ)+]≤ (K − x)+.

On the other hand, by taking τ = t,

V (x,0, t) = sup
τ∈Tt,T

Ex,0,t [e−r(τ−t)(K −Xτ)+]≥ (K − x)+.

Hence

V (x,0, t) = (K −x)+ = sup
τ∈Tt,T

Ex,0,t [e−r(τ−t)(K −Xτ)+], (x, t) ∈R+× [0,T ). (4)

Due to the non-linearity of the variational inequality (2), we may not expect the
heuristic argument in the above assuming the enough regularity on V . In addition,
Fichera condition on the boundary data is suitable only for linear second order PDE,
see [16]. Our objective in this paper is to justify the regularity of the value function
in the Sobolev space, so that the value function (1) can be characterized as the unique
solution of the variational inequality (2) and an additional boundary data (4).
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3 Solvability on the transformed problem

In order to obtain the existence of solution to the variational inequality (2) with
boundary condition (4) in Sobolev space, we consider the existence of strong so-
lution to the associated transformed problem of (2) with boundary condition (4) in
this section.

To proceed, we take a simple logarithm transformation to the variational inequal-
ity. Let s = lnx, θ = T − t, u(s,y,θ) =V (x,y, t), then

LxV =
1
2
σ2(y)∂ssu+ρσ(y)b(y)∂syu

+
1
2

b2(y)∂yyu+
(

r− 1
2
σ2(y)

)
∂su+μ(y)∂yu− ru

:= Lsu.

Thus u(s,y,θ) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

{
∂θu−Lsu, u− (K − es)+

}
= 0, (s,y,θ) ∈ Q := R×R+× (0,T ],

u(s,y,0) = (K − es)+, s ∈ R, y ∈ R+,

u(s,0,θ) = (K − es)+, s ∈ R, θ ∈ (0,T ].

(5)

Problem (5) is a variational inequality, we apply penalty approximation tech-
niques to show the existence of strong solution to (5). Suppose uε(s,y,θ) satisfies⎧⎪⎪⎨⎪⎪⎩

∂θuε −L ε
s uε +βε(uε −πε(K − es)) = 0, (s,y,θ) ∈ Q,

uε(s,y,0) = πε(K − es), s ∈ R, y ∈ R+,

uε(s,0,θ) = πε(K − es), s ∈ R, θ ∈ (0,T ].

(6)

where L ε
s u = 1

2 (σ
2(y)+ ε)∂ssu+ρ(σ(y)b(y)+ ε)∂syu+ 1

2 (b
2(y)+ ε)∂yyu+(r −

1
2σ

2(y)− 1
2ε)∂su+μ(y)∂yu− ru, and βε(ξ ) (Fig. 1.), πε(ξ ) (Fig. 2.) satisfy

βε(ξ ) ∈C2(−∞, +∞), βε(ξ )≤ 0, βε(0) =−2r(K +1), β ′
ε(ξ )≥ 0, β ′′

ε (ξ )≤ 0.

lim
ε→0

βε(ξ ) =

{
0, ξ > 0,

−∞, ξ < 0,
πε(ξ ) =

⎧⎪⎪⎨⎪⎪⎩
ξ , ξ ≥ ε,

↗, |ξ | ≤ ε,

0, ξ ≤−ε,
πε(ξ ) ∈C∞, 0 ≤ π ′

ε(ξ )≤ 1, π ′′
ε (ξ )≥ 0, lim

ε→0
πε(ξ ) = ξ+.
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Fig. 2. πε(ξ )
Since Q = (−∞,+∞)× (0,+∞)× (0,T ] is infinitely, we consider the truncated

version of (6), denote QN = (−N,N)× (0,N)× (0,T ], let uN
ε (s,y,θ) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θuN
ε −L ε

s uN
ε +βε(uN

ε −πε(K − es)) = 0, (s,y,θ) ∈ QN ,

uN
ε (s,y,0) = πε(K − es), (s,y) ∈ (−N,N)× (0,N),

uN
ε (s,0,θ) = πε(K − es), (s,θ) ∈ (−N,N)× (0,T ],

∂yuN
ε (s,N,θ) = 0, (s,θ) ∈ (−N,N)× (0,T ],

uN
ε (−N,y,θ) = πε(K − e−N), (y,θ) ∈ (0,N)× (0,T ],

∂suN
ε (N,y,θ) = 0, (y,θ) ∈ (0,N)× (0,T ].

(7)

Lemma 1. For any fixed ε, N > 0, there exists a unique solution uN
ε ∈W 2,1

p (QN) to
the problem (7), and

πε(K − es)≤ uN
ε (s,y,θ)≤ K +1, (8)

∂θuN
ε (s,y,θ)≥ 0. (9)

Proof. For any fixed ε, N > 0, it is not hard to show by the fixed point theorem that
problem (7) has a solution uN

ε ∈W 2,1
p (QN), and

|uN
ε |0 ≤C(|βε(uN

ε −πε(K − es))|0 + |πε(K − es)|0)≤C(|βε(−K −1)|+K +1)≤C.

The proof of uniqueness is a standard way as well.
Since

∂θπε(K − es)−L ε
s (πε(K − es))+βε(0)

= −1
2
(σ2(y)+ ε)(π ′′

ε (·)e2s −π ′
ε(·)es)+

(
r− 1

2
σ2(y)− 1

2
ε
)
π ′
ε(·)es + rπε(K − es)+βε(0)

≤ r(K + ε)+ r(K + ε)+βε(0)≤ 0.

Combining with the initial and boundary conditions, we know πε(K − es) is a sub-
solution of (7). Similarly we know K +1 is a supersolution of (7).

Next we will prove (9). Set uδ (s,y,θ) := uN
ε (s,y,θ +δ ), then uδ (s,y,θ) satisfies
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∂θuδ −L ε
s uδ +βε(uδ −πε(K − es)) = 0,

uδ (s,y,0) = uN
ε (s,y,δ )≥ πε(K − es) = uN

ε (s,y,0),

uδ (s,0,θ) = πε(K − es),

∂yuδ (s,N,θ) = 0,

uδ (−N,y,θ) = πε(K − e−N),

∂suδ (N,y,θ) = 0.

Applying the comparison principle, we have

uδ (s,y,θ)≥ uN
ε (s,y,θ), (s,y,θ) ∈ (−N,N)× (0,N)× (0,T −δ ],

which yields ∂θuN
ε ≥ 0.

Letting N →+∞, the existence of strong solution to the penalty problem (6) with
some estimates is given in the following theorem.

Lemma 2. For any fixed ε > 0, there exists a unique solution uε(s,y,θ)∈W 2,1
p,loc(Q)∩

C1(Q) to the problem (6) for any 1 < p <+∞, and

πε(K − es)≤ uε(s,y,θ)≤ K +1, (10)
∂θuε(s,y,θ)≥ 0, (11)
−es ≤ ∂suε(s,y,θ)≤ 0, (12)
∂yuε(s,y,θ)≥ 0. (13)

Proof. For any fixed ε > 0, R > 0, applying W 2,1
p interior estimate with part of

boundary [13] to the problem (7) (N > R), then

|uN
ε |W 2,1

p (QR)
≤ C(|βε(uN

ε −πε(K − es))|L∞(QR) + |πε(K − es)|W 2,1
p (QR∩{θ=0}))≤C,

where C depends on ε,R but is independent of N. Letting N → +∞, by the imbed-
ding theorem, we know problem (6) has a solution uε(s,y,θ) ∈W 2,1

p,loc(Q)∩C1(Q).
(10)–(11) are consequences of (8)–(9).

Now we aim to prove (12). Differentiate the equation in (6) w.r.t. s and denote
w1 = ∂suε , then{

∂θw1 −L ε
s w1 +β ′

ε(·)w1 =−β ′
ε(·)π ′

ε(·)es ≤ 0, (s,y,θ) ∈ Q,

w1(s,y,0) = w1(s,0,θ) =−π ′
ε(·)es ≤ 0.

(14)

Applying the maximum principle [17] we know w1 = ∂suε ≤ 0. In view of

(∂θ −L ε
s )(−es)+β ′

ε(·)(−es) =−β ′
ε(·)es ≤−β ′

ε(·)π ′
ε(·)es.

Combining with the initial and boundary conditions, applying the comparison prin-
ciple we have



102 Xiaoshan Chen, Zhuo Jin, and Qingshuo Song

−es ≤ w1(s,y,θ) = ∂suε(s,y,θ)≤ 0.

Finally we want to prove (13). We first differentiate (14) w.r.t. s, denote w2 =
∂ssuε , we obtain{
∂θw2 −L ε

s w2 +β ′
ε(·)w2 =−β ′

ε(·)π ′
ε(·)es +β ′

ε(·)π ′′
ε (·)e2s −β ′′

ε (·)[π ′
ε(·)es +w1]

2,

w2(s,y,0) = w2(s,0,θ) =−π ′
ε(·)es +π ′′

ε (·)e2s.
(15)

Set w3(s,y,θ) := w2(s,y,θ)−w1(s,y,θ), in view of (14) and (15){
∂θw3 −L ε

s w3 +β ′
ε(·)w3 = β ′

ε(·)π ′′
ε (·)e2s −β ′′

ε (·)[π ′
ε(·)es +w1]

2 ≥ 0,

w3(s,y,0) = w3(s,0,θ) = π ′′
ε (·)e2s ≥ 0.

Applying maximum principle we know w3(s,y,θ)≥ 0, i.e., ∂ssuε −∂suε ≥ 0.
Differentiate (6) w.r.t. y, denote w4(s,y,θ) = ∂yuε(s,y,θ). Then we get⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂θw4 −L ε
s w4 −ρ(σ ′(y)b(y)+σ(y)b′(y))∂sw4 −b(y)b′(y)∂yw4

−μ ′(y)w4 +β ′
ε(·)w4 = σ(y)σ ′(y)(∂ssuε −∂suε),

w4(s,y,0) = 0,

w4(s,0,θ)≥ 0.

Since σ ′(y) ≥ 0, uε ∈ C2,1(Q) and ∂ssuε − ∂suε ≥ 0, by maximum principle [17],
we have ∂yuε(s,y,θ)≥ 0.

Now we are able to show the solvability on the variational inequality (5) in the
Sobolev space by the approximation of a subsequence of {uε}.

Lemma 3. There exists a solution u ∈ W 2,1
p (QN

δ \ Bh) to the problem (5), where
QN
δ = (−N,N)× (δ ,N)× (0,T ], Bh = (lnK − h, lnK + h)× (0,+∞)× (0,T ] for

any N, δ , h > 0. Moreover,

(K − es)+ ≤ u(s,y,θ)≤ K +1, (16)
∂θu(s,y,θ)≥ 0, (17)
−es ≤ ∂su(s,y,θ)≤ 0, (18)
∂yu(s,y,θ)≥ 0. (19)

Proof. Since σ(y), b(y) are continuous and σ ′(y)≥ 0, in QN
1
2

, we have σ2(y)+ε ≥
σ2( 1

2 )> 0, and λ1|ξ |2 ≤ ai jξiξ j ≤Λ1|ξ |2, with Λ1, λ1 independent of ε . Applying
Cα,α/2 estimate [14] and W 2,1

p interior estimate with part of boundary [13], we have

|uε |Cα,α/2
(
QN

1
2

) ≤ C(|uε |0 + |βε(uε −πε(K − es))|0 +[πε(K − es)]Cγ (−N,N))≤C1,

|uε |W 2,1
p (QN

1
2
\Bh)

≤ C(|uε |L∞ + |βε(uε −πε(K − es))|L∞ + |(K − es)∨0|W 2,1
p (QN

1
2
\Bh)

)≤C2,
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where C1, C2 are independent of ε due to the estimate (10) and the definitions of
βε ,πε . Thus there exists a subsequence of {uε}, denote {u(1)ε }, and u(1) ∈W 2,1

p (QN
1
2
\

Bh)∩C
(
QN

1
2

)
, such that

u(1)ε (s,y,θ)⇀ u(1)(s,y,θ) in W 2,1
p (QN

1
2
\Bh) weakly,

u(1)ε (s,y,θ)→ u(1)(s,y,θ) in C
(
QN

1
2

)
uni f ormly.

In a same way, in QN
1
3

, we have σ2(y)+ ε ≥ σ2( 1
3 ), and λ2|ξ |2 ≤ ai jξiξ j ≤Λ2|ξ |2,

with Λ2, λ2 independent of ε . Thus there exists {u(2)ε } ⊆ {u(1)ε }, u(2) ∈ W 2,1
p (QN

1
3
\

Bh)∩C
(
QN

1
3

)
, such that

u(2)ε (s,y,θ)⇀ u(2)(s,y,θ) in W 2,1
p (QN

1
3
\Bh) weakly,

u(2)ε (s,y,θ)→ u(2)(s,y,θ) in C
(
QN

1
3

)
uni f ormly.

Moreover,

u(2)(s,y,θ) = u(1)(s,y,θ), (s,y,θ) ∈ QN
1
2
.

Define u(s,y,θ) = u(k)(s,y,θ), if (s,y,θ) ∈ QN
1

k+1
, abstracting diagram subsequence

{u(k)εk }, for any δ , h, N > 0, we have

u(k)εk (s,y,θ)⇀ u(s,y,θ) in W 2,1
p (QN

δ \Bh) weakly,

u(k)εk (s,y,θ)→ u(s,y,θ) in C(QN
δ ) uni f ormly,

thus u(s,y,θ) ∈ W 2,1
p (QN

δ \Bh)∩C(Q \ {y = 0}) and u(s,y,θ) satisfies the varia-
tional inequality in (5) and the initial condition.

Next we will prove the continuity on the degenerate boundary y = 0. For any
s0 ∈R\{lnK}, then there exists ε0 > 0 such that πε0(K −es0) = (K −es0)+, denote
w0(s,y,θ) = πε0(K − es)+Ayα ≥ 0, with 0 < α < 1, and A ≥ 1 to be determined,
then for any ε < ε0

∂θw0 −L ε
s w0 +βε(w0 −πε(K − es))

= −1
2
(σ2(y)+ ε)π ′′

ε0
(·)e2s − 1

2
(b2(y)+ ε)Aα(α−1)yα−2 + rπ ′

ε0
(·)es

−μ(y)αAyα−1 + rw0 +βε(πε0(K − es)−πε(K − es)+Ayα)

≥ −1
2
(σ2(y)+ ε)π ′′

ε0
(·)e2s +

1
2
(b2(y)+ ε)Aα(1−α)yα−2 −μ(y)αAyα−1 +βε(0),
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since the negative Fichera function indicates μ(0) < lim
y→0

b(y)b′(y), in addition,

b2(y) = O(y) or b2(y) = o(y) when y → 0, hence there exists δ0 > 0 small enough
and independent of ε such that

−1
2
(σ2(y)+ ε)π ′′

ε0
(·)e2s +

1
2
(b2(y)+ ε)Aα(1−α)yα−2 −μ(y)αAyα−1 +βε(0)≥ 0

for any y ∈ (0,δ0). Moreover, we can choose A large enough such that Aδα0 ≥ K+1.
Combining

πε0(K − es)+Ayα ≥ πε(K − es), ε < ε0,

applying comparison principle, we have

πε(K − es)≤ uε(s,y,θ)≤ πε0(K − es)+Ayα , (s,y,θ) ∈ R× (0,δ0)× (0,T ].

Letting ε → 0+ we have

(K − es)+ ≤ u(s,y,θ)≤ πε0(K − es)+Ayα , (s,y,θ) ∈ R× (0,δ0)× (0,T ].

In particular

(K − es0)+ ≤ u(s0,y,θ)≤ (K − es0)+ +Ayα , y ∈ (0,δ0).

Letting y → 0+, we obtain

u(s0,0,θ) = (K − es0)+, θ ∈ (0,T ],

since s0 is arbitrary, then u(s,0,θ) = (K − es)+, s ∈ R\{lnK}. Therefore u(s,y,θ)
is a solution to the problem (5). (16)–(19) are consequences of (10)–(13).

4 Characterization of free boundary to the problem (5)

Variational inequality (5) is an obstacle problem, this section aims to characterize
the free boundary arise from (5).

Lemma 4. The solution to the problem (5) satisfies

u(s,y,θ)> 0, (s,y,θ) ∈ R×R+× (0,T ].

Proof. For any fixed y0 > 0, we have⎧⎪⎪⎨⎪⎪⎩
∂θu−Lsu ≥ 0, (s,y,θ) ∈ R× (y0,+∞)× (0,T ],

u(s,y,0) = (K − es)+ ≥ 0, (s,y) ∈ R× (y0,+∞),

u(s,y0,θ)≥ (K − es)+ ≥ 0, (s,θ) ∈ R× (0,T ].
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Applying strong maximum principle, we obtain

u(s,y,θ)> 0, (s,y,θ) ∈ R× (y0,+∞)× (0,T ].

Since y0 is arbitrary, then we know

u(s,y,θ)> 0, (s,y,θ) ∈ R×R+× (0,T ].

In order to characterize the free boundary, we first define

C [u] := {(s,y,θ) : u(s,y,θ) = (K − es)+}(Coincidence set),
N [u] := {(s,y,θ) : u(s,y,θ)> (K − es)+}(Noncoincidence set).

Thanks to the estimates (16)–(19) of the solution to (5), problem (5) gives rise to
a free boundary that can be expressed as a function of (y,θ). The following three
lemmas give the existence and properties of the free boundary.

Proposition 1. There exists h(y,θ) : R+× (0,T ]→ R, such that

C [u] = {(s,y,θ) ∈ Q : s ≤ h(y,θ), y ∈ R+, θ ∈ (0,T ]}. (20)

Moreover, for any fixed y > 0, h(y,θ) is monotonic decreasing w.r.t. θ ; for any fixed
θ ∈ (0,T ], h(y,θ) is monotonic decreasing w.r.t. y.

Proof. Since (K − es)+ = 0 when s ≥ lnK, in view of Lemma 4, we have

{s ≥ lnK} ⊂ N [u], C [u]⊂ {s < lnK}.

Hence problem (5) is equivalent to the following problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

{
∂θu−Lsu, u− (K − es)

}
= 0, (s,y,θ) ∈ Q := R×R+× (0,T ],

u(s,y,0) = (K − es)+, s ∈ R, y ∈ R+,

u(s,0,θ) = (K − es)+, s ∈ R, θ ∈ (0,T ].

Together with (18), we can define

h(y,θ) := max{s ∈ R : u(s,y,θ) = (K − es)}, (y,θ) ∈ R+× (0,T ],

by the definition of h(y,θ), we know (20) is true.
Suppose h(y,θ1) = s1, notice that ∂θu(s,y,θ)≥ 0, then for any θ2 ≤ θ1,

0 ≤ u(s1,y,θ2)− (K − es1)≤ u(s1,y,θ1)− (K − es1) = 0,

from which we infer that

u(s1,y,θ2) = (K − es1), θ2 ≤ θ1.
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By the definition of h(y,θ), we know h(y,θ2) ≥ s1 = h(y,θ1), thus h(y, ·) is mono-
tonic decreasing w.r.t. θ .

Similarly, the monotonicity of h(y,θ) w.r.t. y can be deduced by virtue of
∂yu(s,y,θ)≥ 0 and the definition of h(y,θ).

Proposition 2. h(y,θ) is continuous on R+× [0,T ] with

h(y,0) := lim
θ→0+

h(y,θ) = lnK, y > 0.

Proof. We first prove h(y,θ) is continuous w.r.t. θ . Suppose not. There exists y0 >
0, θ0 > 0 such that s1 := h(y0,θ0+) < h(y0,θ0) := s2. Since h(y0,θ0+) = s1(see
Fig. 3.), then

u(s,y0,θ)> K − es, s > s1, θ > θ0.

In fact, u ∈ W 2,1
p and the embedding theorem imply that u is uniformly contin-

uous, thus there exists δ > 0, take S0 = (s1,s2)× (y0 − δ ,y0) such that U0 :=
S0 × (θ0,T ]⊆ N [u], then

∂θu−Lsu = 0, (s,y,θ) ∈U0.

Moreover, in view of h(y0,θ0) := s2, then

h(y,θ0)≥ s2, y0 −δ < y ≤ y0,

hence

u(s,y,θ0) = K − es, s ≤ s2, y0 −δ < y ≤ y0.

In particular,

u(s,y,θ0) = K − es, (s,y) ∈U0 ∩{θ = θ0},

thus

∂θu
∣∣
θ=θ0

= Lsu
∣∣
θ=θ0

=
1
2
σ2(y)(−es)+

(
r− 1

2
σ2(y)

)
(−es)− r(K − es)

= −rK < 0,

which comes to a contradiction with the fact that ∂θu ≥ 0. Hence h(y,θ) is contin-
uous w.r.t. θ .

Since h(y,θ) is monotonic decreasing w.r.t. θ , then we can define h(y,0) :=
lim
θ→0+

h(y,θ). In the same way we can prove h(y,0) = lnK.

Now we aim to prove the continuity of h(y,θ) w.r.t. y. If this is not true, there
exists θ0, y0 > 0 such that s1 := h(y0+,θ0) < h(y0,θ0) := s2. Since h(y,θ) is con-
tinuous w.r.t. θ and u(s,y,θ) ∈ C1,1,1/2(Q), take U0 := (s̃, s̄)× (y0,+∞)× (θ̃ , θ̄),
where (s̃, s̄)× (θ̃ , θ̄)⊆ (h(y0+,θ),h(y0,θ))(see Fig. 4.), then u(s,y,θ) satisfies
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∂θu−Lsu = 0, (s,y,θ) ∈U0,

u(s,y0,θ) = K − es, (s,θ) ∈U0 ∩{y = y0},
∂yu(s,y0,θ) = 0, (s,θ) ∈U0 ∩{y = y0}.

Thus

∂θu(s,y0,θ) = ∂yθu(s,y0,θ) = 0, (s,θ) ∈U0 ∩{y = y0}.

Since ∂θu ≥ 0 and ∂θ (∂θu)−Ls(∂θu) = 0 in U0, by Hopf lemma we know

∂yθu(s,y0,θ)> 0, (s,θ) ∈U0 ∩{y = y0},

or

∂θu(s,y,θ)≡ 0, (s,y,θ) ∈U0,

but both come to contradictions.
Together with the monotonicity of h(y,θ) w.r.t. y and θ , we conclude that h(y,θ)

is continuous on R+× [0,T ].

�

�

�

s1 s2

θ0

s

θ

Fig. 3. Discontinuity of h(y,θ) w.r.t. θ

�

h(y0,θ)

h(y0+,θ)

θ

�

s1

�θ0

�

s2
�

lnK

Fig. 4. Discontinuity of h(y,θ) w.r.t.

Proposition 3. The free boundary h(y,θ) satisfies

h0(y)≤ h(y,θ)< lnK, y > 0, θ ∈ (0,T ],

where h0(y) is the free boundary curve of

min{−Lsu∞(s,y), u∞(s,y)− (K − es)+}= 0, (s,y) ∈ R×R+. (21)

Proof. Since ∂θu∞(s,y) = 0, then we can rewrite (21) as⎧⎨⎩min
{
∂θu∞ −Lsu∞, u∞ − (K − es)+

}
= 0, (s,y,θ) ∈ Q,

u∞(s,y)|θ=0 = u∞(s,y)≥ (K − es)+ = u(s,y,0).

Applying the monotonicity of solution of variational inequality w.r.t. initial value,
we have
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u∞(s,y)≥ u(s,y,θ), θ ≥ 0.

By the definitions of h0(y) and h(y,θ), we know

h0(y)≤ h(y,θ).

Now we will prove h(y,θ) < lnK. Suppose not. There exists y0 > 0, θ0 > 0
such that h(y0,θ0) = lnK. Then by the monotonicity of h(y,θ) and the fact that
h(y,θ)≤ lnK, we have

u(s,y,θ) = K − es, (s,y,θ) ∈ [0, lnK]× (0,y0]× (0,θ0].

Thus

∂θu(lnK,y,θ) = ∂sθu(lnK,y,θ) = 0, (y,θ) ∈ (0,y0]× (0,θ0].

Since ∂θu(s,y,θ)≥ 0 and ∂θ (∂θu)−Ls(∂θu) = 0,s > lnK. By Hopf lemma [7] we
know

∂sθu(lnK,y,θ)> 0, (y,θ) ∈ (0,y0]× (0,θ0],

or

∂θu(s,y,θ) = 0, (s,y,θ) ∈ (lnK,+∞)× (0,y0]× (0,θ0],

but both come to contradictions.

Remark 1. The numerical result of h0(y) under Heston model is given in [20], and by
similar methods, under the assumptions (A1)–(A2), we can also obtain the existence
of h0(y).

5 Characterization of the value function

Now, we are ready to present the characterization of the value function of (1) to
the variational inequality (2) with boundary condition (4). To proceed, we present
the solvability and regularity results on the variational inequality (2) with boundary
condition (4) via the counterpart on the transformed problem obtained in the above.

Theorem 1. Suppose a bounded function v(x,y, t)∈W 2,1
p,loc(Q)∩C(Q̄) satisfies vari-

ational inequality (2) with boundary condition (4), the following assertions hold.

1. v(x,y, t) satisfies the following estimates

(K − x)+ ≤ v(x,y, t)≤ K +1, (22)
−1 ≤ ∂xv(x,y, t)≤ 0, (23)
∂yv(x,y, t)≥ 0. (24)
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2. There exists a continuous function g(y, t) : R+× [0,T ) → R+, such that for any
fixed y > 0, g(y, t) is monotonic increasing w.r.t. t; for any fixed t ∈ [0,T ), g(y, t)
is monotonic decreasing w.r.t. y with

g(y, t)< g(y,T ) = K, y > 0, t ∈ [0,T ),

and {−∂t v(x,y, t)−Lxv(x,y, t) = 0, x > g(y, t),

v(x,y, t) = (K − x)+, 0 ≤ x ≤ g(y, t).

3. Especially, v(x,y, t) ∈C2,1 when x > g(y, t).

Proof. By the transformations s= lnx,θ =T −t,u(s,y,θ)= v(x,y, t), noting x∂xv(x,y, t)=
∂su(s,y,θ) and using estimates (16), (18) and (19), we can obtain (22)–(24).

Let g(y, t) = exp{h(y,θ)}, by proposition 1–2, we can conclude 2.
For any x0 > g(y0, t0), then v(x0,y0, t0) > (K − x0)

+, since v(x,y, t) is uniformly
continuous, there exists a disk Bδ (x0,y0, t0) with center (x0,y0, t0) and radius δ such
that

v(x,y, t)> (K − x)+, (x,y, t) ∈ Bδ (x0,y0, t0).

Applying C2,1 interior estimate to

∂t v(x,y, t)+Lxv(x,y, t) = 0, (x,y, t) ∈ Bδ (x0,y0, t0),

to obtain v(x,y, t) ∈C2,1(Bδ (x0,y0, t0)), hence v(x,y, t) ∈C2,1 when x > g(y, t).

Finally, the uniqueness result is given in this below through the arguments of
verification theorem.

Theorem 2. Suppose there exists v(x,y, t) ∈ W 2,1
p,loc(Q) to the problem (2) with

boundary condition (4), then v(x,y, t) ≥ V (x,y, t). If, in addition, there exists the
region N [v] := {(x,y, t) ∈ Q,v(x,y, t)> (K − x)+} satisfies

(∂t v+Lxv)(Xs,Ys,s) = 0, s ∈ [t,τ∗],

for the stopping time τ∗ := inf{s > t : (Xs,Ys,s) /∈ N [v]}∧T . Then the variational
inequality (2) with boundary condition (4) admits a unique solution in W 2,1

p,loc(Q)

and v(x,y, t) =V (x,y, t).

Proof. Let τβx := inf{s > t : Xs ≤ 1
β or Xs ≥ β} ∧ T be the first hitting time of

the process Xs to the upper bound β or the lower bound 1
β or terminal time T ,

τβy := inf{s > t : Ys ≤ 1
β or Ys ≥ β}∧T be the first hitting time of the process Ys to

the upper bound β or the lower bound 1
β or terminal time T . Let τ ∈ T

t,τβx ∧τβy , by

the general Itô’s formula [12],
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e−r(τ−t)v(Xτ ,Yτ ,τ) = v(x,y, t)+
∫ τ

t
e−r(s−t)(∂t v+Lxv)(Xs,Ys,s)ds

+
∫ τ

t
e−r(s−t)[σ(Ys)Xs∂xvdWs +b(Ys)∂yvdBs]. (25)

Since v(x,y, t) is bounded and the Itô integrals in (25) are local martingales, hence
they are martingales. Moreover, by Theorem 1, we know v(x,y, t) satisfies ∂t v+
Lxv ≤ 0, v(Xτ ,Yτ ,τ)≥ (K −Xτ)+, hence

v(x,y, t)≥ Ex,y,t [e−r(τ−t)(K −Xτ)+], τ ∈ T
t,τβx ∧τβy .

Since Xs is a positive, non-explosive local martingale, then

lim
β→∞

τβx = T, a.s.−P. (26)

Since Ys is non-negative, non-explosive local martingale, then

lim
β→∞

τβy = ν ∧T, a.s.−P, (27)

where ν is the first hitting time of Ys to the boundary y = 0. Hence the arbitrariness
of τ ∈ T

t,τβx ∧τβy and the above two limits imply that

v(x,y, t)≥ sup
τ∈Tt,ν∧T

Ex,y,t [e−r(τ−t)(K −Xτ)+]. (28)

In view of (3), when ν < T ,

Ex,y,t [e−r(ν−t)(K −Xν)+]≥ Ex,y,t [e−r(τ−t)(K −Xτ)+], τ ∈ Tν ,T .

Together with (28), we have

v(x,y, t)≥ sup
τ∈Tt,T

Ex,y,t [e−r(τ−t)(K −Xτ)+] =V (x,y, t).

On the other hand, define τ̃βx := inf{s > t : Xs ≥ β}∧T be the first hitting time of
the process Xs to the upper bound β or terminal time T , τ̃βy := inf{s> t : Ys ≥ β}∧T
be the first hitting time of the process Ys to the upper bound β or terminal time T .
By (26) and (27) we know

lim
β→∞

τ̃βx ∧ τ̃βy = T, a.s.−P.

Together with Monotone Convergence Theorem, we obtain
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lim
β→∞

Ex,t

[
XT I{τ̃βx =T}

]
= Ex,t

[
lim
β→∞

XT I{τ̃βx =T}
]
= Ex,t

[
XT

]
, (29)

lim
β→∞

Ey,t

[
YT I{τ̃βy =T}

]
= Ey,t

[
lim
β→∞

YT I{τ̃βy =T}
]
= Ey,t

[
YT

]
. (30)

Moreover, by the definitions of τ̃βx , τ̃βy , we can have

Ex,t
[
X
τ̃βx

]
= Ex,t

[
X
τ̃βx

I{τ̃βx <T}
]
+Ex,t

[
XT I{τ̃βx =T}

]
= βP{τ̃βx < T}+Ex,t

[
XT I{τ̃βx =T}

]
.

Forcing the limit β → ∞, due to (29),

lim
β→∞

Ex,t [Xτ̃βx
] = lim

β→∞
βP{τ̃βx < T}+Ex,t [XT ].

For all β > x, since {X
τ̃βx ∧s

: s > t} is a bounded local martingale, hence it is a
martingale. So, Ex,t [Xτ̃βx

] = x for all β > x. Rearranging the above equality, we have

lim
β→∞

βP{τ̃βx < T}= x−Ex,t [XT ]≤ x. (31)

Similarly,
lim
β→∞

βP{τ̃βy < T}= y−Ey,t [YT ]≤ y. (32)

By Theorem 1 we know N [v] = {(x,y, t)∈ Q : x> g(y, t)}, noting that v(x,y, t)∈
C2,1 and ∂t v+Lxv = 0 in N [v], using the classical Itô’s formula [15] in [t,τ∗∧ τ̃βx ∧
τ̃βy ], we have

v(x,y, t) = Ex,y,t

[
e−r(τ∗∧τ̃βx ∧τ̃βy −t)v(X

τ∗∧τ̃βx ∧τ̃βy ,Yτ∗∧τ̃βx ∧τ̃βy ,τ
∗ ∧ τ̃βx ∧ τ̃βy )

]
= Ex,y,t

[
e−r(τ∗−t)v(Xτ∗ ,Yτ∗ ,τ∗)I{τ∗≤τ̃βx ∧τ̃βy }

]
+Ex,y,t

[
e−r(τ̃βx ∧τ̃βy −t)v(X

τ̃βx ∧τ̃βy ,Yτ̃βx ∧τ̃βy , τ̃
β
x ∧ τ̃βy )I{τ∗>τ̃βx ∧τ̃βy }

]
.

Forcing β →+∞, since lim
β→∞

τ̃βx ∧ τ̃βy = T ,

v(x,y, t) = Ex,y,t [e−r(τ∗−t)(K −Xτ∗)+]

+ lim
β→∞

Ex,y,t

[
e−r(τ̃βx ∧τ̃βy −t)v(X

τ̃βx ∧τ̃βy ,Yτ̃βx ∧τ̃βy , τ̃
β
x ∧ τ̃βy )I{τ∗>τ̃βx ∧τ̃βy }

]
.

In the following we show the limit lim
β→∞

Ex,y,t
[
e−r(τ̃βx ∧τ̃βy −t)v(X

τ̃βx ∧τ̃βy ,Yτ̃βx ∧τ̃βy , τ̃
β
x ∧

τ̃βy )I{τ∗>τ̃βx ∧τ̃βy }
]

in the above equality is 0. Since v(x,y, t)≤ K +1, then there exists
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g(β )= o(β ), β →+∞ such that v(X
τ̃βx ∧τ̃βy ,Yτ̃βx ∧τ̃βy , τ̃

β
x ∧ τ̃βy )≤ g(β )= o(β ), together

with (31) and (32), we can obtain

0 ≤ lim
β→∞

Ex,y,t

[
e−r(τ̃βx ∧τ̃βy −t)v(X

τ̃βx ∧τ̃βy ,Yτ̃βx ∧τ̃βy , τ̃
β
x ∧ τ̃βy )I{τ∗>τ̃βx ∧τ̃βy }

]
≤ lim

β→∞
g(β )Ex,y,t

[
e−r(τ̃βx ∧τ̃βy −t)I{τ∗>τ̃βx ∧τ̃βy }

]
≤ lim

β→∞

g(β )
β

lim
β→∞

βP{τ̃βx ∧ τ̃βy < τ∗}

≤ lim
β→∞

g(β )
β

lim
β→∞

βP{τ̃βx ∧ τ̃βy < T}= 0.

Hence v(x,y, t) = Ex,y,t [e−r(τ∗−t)(K −Xτ∗)+], therefore v(x,y, t) =V (x,y, t).

6 Conclusion

In this paper, we consider an American put option of stochastic volatility with nega-
tive Fichera function on the degenerate boundary y = 0, we impose a proper bound-
ary condition from the definition of the option pricing to show that the solution
to the associated variational inequality is unique, which is the value of the option,
and the free boundary is the optimal exercise boundary of the option. Although the
asset-price volatility coefficient may grow faster than linear growth and the domain
is unbounded, we are able to show the uniqueness by verification theorem. In this
paper we only consider the payoff function (K − x)+, but the method in this pa-
per will be useful for any nonnegative, continuous payoff function f (x) which is of
strictly sublinear growth, i.e., lim

x→+∞
f (x)

x = 0.

The problem under study belongs to a general category of stochastic control
problems, see for instance [18, 8]. Due to the nonlinearity, the numerical solution
is always an issue in the general setup, see for instance [11] for Markov chain ap-
proximation method. In particular, regarding the current formulation of variational
inequalities with Fichera functions on the boundary, it is unclear how its associated
Markov chain behaves asymptotically as the step size goes to zero, see [19]. Ap-
propriate scaling of step size at the boundary may be a key to make the obtained
Markov chain consistent to the variational problem, and it will be pursued in our
future work.
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13. O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva. Linear and Quasilinear Equations
of Parabolic Type. Translations of Mathematical Monographs, Vol. 23. American Mathemati-
cal Society, Providence, R.I., 1967.

14. G. M. Lieberman. Second Order Parabolic Differential Equations. World Scientific Publishing
Co. Inc., River Edge, N.J., 1996.

15. B. Øksendal. Stochastic Differential Equations: An Introduction with Applications. 6th ed.,
Springer-Verlag, Berlin, 2003

16. O. A. Oleinik, E. V. Radkevich. Second Order Equations With Nonnegative Characteristic
Form. Plenum Press, New York, 1973.

17. K. Tso. On an Aleksandrov-Bakel′man type maximum principle for second-order parabolic
equations. Comm. Partial Differential Equations, 10(5):543–553, 1985.

18. Jiongmin Yong and Xun Yu Zhou. Stochastic controls, volume 43 of Applications of Mathe-
matics (New York). Springer-Verlag, New York, 1999. Hamiltonian systems and HJB equa-
tions.

19. G. Yin and Q. Zhang. Discrete-time Markov chains: Two-time-scale methods and applications,
volume 55 of Applications of Mathematics (New York). Springer-Verlag, New York, 2005.
Stochastic Modelling and Applied Probability.

20. S. Zhu, and W. Chen. Should an American option be exercised earlier of later if volatility is
not assumed to ba a constant? International Journal of Theoretical and Applied Finance, 14:
1279–1297, 2011.



Continuous-Time Markov Chain and Regime

Switching Approximations with Applications to

Options Pricing

Zhenyu Cui, J. Lars Kirkby and Duy Nguyen

Abstract In this chapter, we present recent developments in using the tools of
continuous-time Markov chains for the valuation of European and path-dependent
financial derivatives. We also survey results on a newly proposed regime switching
approximation to stochastic volatility, and stochastic local volatility models. The
presented framework is part of an exciting recent stream of literature on numerical
option pricing, and offers a new perspective that combines the theory of diffusion
processes, Markov chains, and Fourier techniques. It is also elegantly connected to
partial differential equation (PDE) approaches.

1 Introduction

Markov processes are ubiquitous in finance, as they provide important building
blocks for constructing stochastic models to describe the dynamics of financial as-
sets. A representative Markov process that is widely used is the diffusion process,
which is characterized through a stochastic differential equation (SDE). Diffusion
processes evolve continuously in time and in state, and there is usually limited ana-
lytical tractability except for a few very special cases, thus an efficient and accurate
approximation method is needed. In general, there are two possible directions for
approximating a diffusion process:
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1. Time discretization: discretize the time space into a finite discrete grid of time
points, while preserving the continuous state space of the diffusion process, and
then approximate the evolution of the diffusion process through time-stepping.
Representative methods in this category include the Euler discretization as well
as higher order time-stepping schemes (see [36] for a comprehensive account
of existing methods), and the Ito-Taylor expansion method which is based on
iterative applications of the Dynkin formula and fundamental properties of in-
finitestimal generators of the diffusion process.

2. State discretization: discretize the state space into a finite discrete grid of spa-
tial points, while preserving the continuous time dimension of the diffusion
process, and then approximate the evolution of the diffusion process through a
continuous-time Markov chain (CTMC). A CTMC is a natural approximation
tool here as it evolves continuously in time, and its transition density can be
completely characterized through the rate matrix or generator matrix, which is
a (discrete-state) analogue to the infinitestimal generator of the diffusion pro-
cess.

There are pros and cons associated with either of the above two possible approxi-
mation methods, which will be discussed in details in subsequent sections. The pre-
vious (finance and economics) literature has mainly focused on the first approach,
which we briefly summarize below:

• The Euler discretization has been very popular in numerical solutions of SDEs
arising in finance, e.g. the Cox-Ingersoll-Ross (CIR) process. The convergence
properties of the discretization scheme, and careful handling of the boundary
behaviors have been discussed in the literature, see [35]. The Euler method
is also the pillar for the “simulated maximum likelihood estimation” (SMLE)
popular in financial econometrics, see [22]

• The Ito-Taylor expansion is based on a small-time expansion, and it has been
applied in parameter estimation of diffusion process (see [3]), and options pric-
ing (see [46]).

On the other hand, the second approximation approach has a relatively thinner
literature and has received much less attention from academics in finance and eco-
nomics. Thus it is our focus to survey the recent literature on CTMC approximation
methods applied to options pricing. A brief summary of the extant literature is as
follows:

• The Markov chain approximation method was first developed in the setting of
general stochastic control theory, for which it yields tractable solutions for gen-
eral Markovian control problems, see [44]. Note, however, that the main tool
employed there is the discrete-time Markov chain (DTMC). The more specific
application to finance (e.g. the Merton optimal investment and consumption
problem) has been considered in [55].

• In the realm of options pricing, to the best of authors’ knowledge, the DTMC
method was first applied in the GARCH option pricing setting, see [19, 20].
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• The above previous literature concerns the DTMC method, and some of the
more recent literature considers applying the CTMC method to both path-
independent and path-dependent options pricing, see some of the recent de-
velopments in [8, 14, 54, 71, 72, 73]. Rigorous convergence analysis for the
CTMC approximation method has been established in [47, 70] for the case
of path-independent options, and in [53, 61] for the case of a class of path-
dependent options (e.g. arithmetic Asian option and step option, which is based
on the occupation time.).

Regime switching models are popular in financial applications, such as time se-
ries modeling (see [29]), interest rate/foreign exchange rate movements (see [4]),
credit rating transitions (see [6]), economic booms and recessions (see [39]), stock
trading (see [74]) etc. It has also been popular in the options pricing and portfolio
choice literature, see for example [75, 76]. Note that most of the previous literature
mentioned above concerns the regime switching model itself. Regime switching
models are closely related to the continuous-time Markov chain. Intuitively, we can
think of a CTMC as a stochastic process making transitions among a finite number
of “regimes”. Regime switching models also reflect the idea of “random volatility”,
since we can understand the different regime levels as corresponding to different
volatility levels for the financial asset of interest. Motivated by these two insights,
there is recent development in the literature utilizing the regime switching model
as an approximation tool for continuous stochastic volatility models. The method
reduces a multi-factor stochastic volatility model to a one-dimensional diffusion
model subject to regime switching, and handy analytical expressions have been de-
veloped, see [12, 13, 14, 15, 43].

There are two major components in this chapter: first we shall describe the main
ideas behind utilizing a CTMC in approximating a diffusion process, and then dis-
cuss the applications and survey the recent relevant literature; second, we depict the
main ideas on regime switching approximation to continuous stochastic volatility
and stochastic local volatility models.

The chapter is organized as follows: Section 2 recalls the basic theory underlying
the use of a continuous time Markov chain to approximate a general diffusion pro-
cess, and then presents the main method for approximating time-changed Markov
processes. Section 3 presents the method for approximating general stochastic
volatility models by a Markov modulated diffusion process, and furthermore by a
Markov modulated CTMC for the case of stochastic local volatility models. Section
4 concludes the chapter.

2 Univariate Markov Chain Approximations

Early research in Markov chain based option pricing [9] dealt with approximating
the univariate diffusion dynamics for an underlying risky asset. Our treatment starts
with this case, and builds gradually to more complex dynamics, including general
continuous stochastic local volatility models.
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2.1 Markov Processes, Diffusion Models, and Option Pricing

Assume that we are equipped with a complete filtered probability space (Ω ,F ,F,P),
where F = {Ft}t≥0 denotes the standard filtration, and here P is the risk-neutral
measure under which we price options. Consider a real-valued (time-homogeneous)
diffusion process {St}t≥0, which satisfies the following stochastic differential equa-
tion:

dSt = μ(St)dt +σ(St)dWt , 0 ≤ t ≤ T, (1)

where Wt is a standard Brownian motion, and μ,σ : R → R are respectively drift
and diffusion functions satisfying appropriate regularity conditions so that (1) has
a unique solution1. The random process S = {St}t≥0 belongs to Markov process
class, and is often used to model the price evolution of a risky asset, for example the
stock price or the commodity price. For a rigorous and more in depth treatment of
Markov processes, the reader is invited to refer to the monograph [24]. The diffusion
characterized by (1) nests some important models in finance as special cases, such
as the geometric Brownian motion (Black-Scholes model), the Cox-Ingersoll-Ross
(CIR) process, etc. Assume that the state space for S is given by S = [0,∞), and
this is intuitive because most financial assets are positive valued. In general, we are
interested in computing the following quantity:

E[H(ST )|S0], (2)

which is a conditional expectation for some payoff function H under the risk-neutral
probability measure P. For example, when H(s) = max(s − K,0) = (s − K)+, it
represents the payoff of a European call option with expiry T , and a strike price
K > 0. This is a representative example for path-independent payoffs. As for path-
dependent derivatives, [54] consider the expectation of the following form

E[g(ST )I{τA>T}+H(SτA)I{τA≤T}|S0] (3)

with τA = inf{t ≥ 0 : St ∈ A} denoting the first time that S enters the set A, which
represents knock-in or knock-out events depending on contract specifications. As-
suming that A represents knock-out events, then (3) concerns an option that consists
of a payment g(ST ) in the case the contract has not been knocked out by time T ,
and a rebate H(SτA) if it has. This type of (path-dependent) payoff is commonly en-
countered in the options market. Other variants of barrier options include the down-
and-out, up-and-out, and double knock-out options. In particular, the expectation in
(2) is just a special case of (3) when A = /0.

For some special cases in which the probability density function of S is known,
it is possible to obtain exact analytical expressions for E[H(ST )|S0]. However, we

1 Depending on particular applications, it can be either a strong or weak solution. Usually
Lipschitz-type conditions are required for there to exist a unique strong solution (c.f. [33]). As for a
unique-in-law weak solution to exist, the Engelbert-Schimidt condition (c.f. [38]) may be imposed.
Since we are mainly interested in applications to options pricing, the existence of a unique-in-law
weak solution is sufficient for our discussions.
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note that, in general, it is difficult to compute E[H(ST )|S0] exactly for a general
diffusion model. As a result, various numerical methods are considered. Some rep-
resentative methods are numerical PDE methods (through the link provided by the
Feynman-Kac theorem), Monte Carlo simulation methods, Fast Fourier Transform
(FFT) methods (applicable only when the characteristic function of S is known), to
name just a few. In this chapter, we consider an alternative yet very general approach
through the use of continuous-time Markov chain approximations, which has been
recently proposed in [54, 14, 49, 15] and has received appreciable attention. Next,
for a bounded Borel function H, define

PtH(x) := Ex[H(St)] := E[H(St)|S0 = x]. (4)

Recall that S satisfies the Markov property:

E[H(St+r)|Ft ] = PrH(St). (5)

From (5), by taking the expectation on both sides, it is easy to see that the family of
(pricing) operators (Pt)t≥0 forms a semigroup:

Pt+rH = Pt(PrH), ∀r, t ≥ 0, and P0H = H. (6)

Let C0(S ) denote the set of continuous functions on the state space S that
vanish at infinity. To guarantee the existence of a version of S with cádlág paths
satisfying the (strong) Markov process, we assume the following Feller’s properties:

Assumption 1 S = {St}t≥0 is a Feller process on S . That is, for any H ∈ C0(S ),
the family of operators (Pt)t≥0 satisfies

• PtH ∈C0(S ) for any t ≥ 0;
• limt→0 PtH(x) = H(x) for any x ∈ S .

The family (Pt)t≥0 is determined by its infinitesimal generator L , where

L H(x) := lim
t→0+

PtH(x)−H(x)
t

, ∀H ∈C0(S ). (7)

For the diffusion given in (1), we have

L H(x) =
1
2
σ2(x)

∂ 2H
∂x2 +μ(x)

∂H
∂x

. (8)

For example, the standard Black-Scholes-Merton (BSM) model is described by
μ(S) = (r − q) · S and σ(S) := σ · S, where r,q ∈ R represent the continuous rates
of interest and dividends, respectively, and by abuse of notation σ is a constant
volatility rate.
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2.2 Markov Chain Approximation

With the basic setup in previous section, we shall discuss the construction of ap-
proximating CTMC for a particular diffusion process. In the literature, there have
been various methods in the constructions, and they mainly differ in the allocation
schemes of grid points to “fill up” the state space, see [49]. In this section, we shall
introduce a particular method to construct the approximating CTMC, and the issue
of optimal design of grids is discussed in Section 2.3. This work considers two main
directions in the CTMC approximation literature. In the first case we will approx-
imate the underlying process St directly, and we shall use n̄ to denote the number
of states in the CTMC approximating the underlying asset process. In the second
case we approximate a related (latent) stochastic factor, such as stochastic volatility,
and will use m̄ to denote the number of states in the approximating CTMC of that
stochastic factor. We start with the first approach.

Given the diffusion characterized by (1), the goal is to construct a continuous-
time Markov chain {Sn̄

t }t≥0 taking values in Sn̄ = {s1,s2, . . . ,sn̄}- the finite state-
space set, and having its dynamics “close” to those of St . Then, Sn̄

t will be used in
approximating quantities involving the original process St , such as expected values
of path functionals. For the Markov chain Sn̄

t , its transitional dynamics are described
by the rate matrix Q = [qi j]n̄×n̄ ∈ Rn̄×n̄, whose elements qi j satisfy the q-property:
(i) qii ≤ 0, qi j ≥ 0 for i �= j, and (ii) ∑ j qi j = 0,∀i = 1,2, . . . , n̄. In terms of qi j’s, the
transitional probability of the CTMC Sn̄

t is given by:

P(Sn̄
t+Δ t = s j|Sn̄

t = si,Sn̄
t ′ ,0 ≤ t ′ ≤ t) = δi j +qi jΔ t +o((Δ t)2), (9)

where in the above expression δi j denotes the Kronecker delta. In particular, the
transitional matrix is represented in the form of a matrix exponential:

P(Δ t) = exp(QΔ t) =
∞

∑
k=0

(QΔ t)k/(k!), Δ t > 0. (10)

Here the finite set Sn̄, which is the state space of the CTMC {Sn̄
t }t≥0, is carefully

chosen such that the state space of St is sufficiently covered. Details on how to
choose the grid points s1,s2, . . . ,sn̄ are given in Section 2.3. In addition, the con-
struction must guarantee that Sn̄

t weakly converges to its continuous counterpart St
under appropriate technical conditions. This is particularly helpful since it guaran-
tees that the desired expected values of well behaved path functionals converge to
the true values as the grid points are made denser in the space of St .

To this end, for each i ∈ {1,2, . . . , n̄− 1} define ki := vi+1 − vi, and let μ+(μ−)
denote respectively the positive (negative) part of the function μ . A non-uniform
finite discretization of L H(x) in (8) is given by:
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μ(si)

( −ki

ki−1(ki−1 + ki)
H(si−1)+

ki − ki−1

kiki−1
H(si)+

ki−1

ki(ki−1 + ki)
H(si+1)

)
+
σ2(si)

2

(
2

ki−1(ki−1 + ki)
H(si−1)− 2

ki−1ki
H(si)+

2
ki(ki−1 + ki)

H(si+1)

)
= qi,i−1H(si−1)+qi,iH(si)+qi,i+1H(si+1) =: L nH(s). (11)

where qi, j’s are chosen as in [49], which is recalled here

qi j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ−(si)

ki−1
+
σ2(si)− (ki−1μ−(si)+ kiμ+(si))

ki−1(ki−1 + ki)
, if j = i−1,

μ+(si)

ki
+
σ2(si)− (ki−1μ−(si)+ kiμ+(si))

ki(ki−1 + ki)
, if j = i+1,

−qi,i−1 −qi,i+1, if j = i,
0, if j �= i−1, i, i+1.

(12)

Here k := {k1,k2, . . . ,kn̄−1} is chosen such that

0 < max
1≤i≤n̄−1

{ki} ≤ min
1≤i≤n̄

{
σ2(si)

|μ(si)|
}
.

With this choice of ki’s, Q = [qi j]n̄×n̄ is a tridiagonal matrix. Moreover, we have

σ2(si)≥ max
1≤i≤n̄−1

{ki} · |μ(si)| ≥ max
1≤i≤n−1

{ki} · (μ+(si)+μ−(si))

≥ ki−1μ−(si)+ kiμ+(si). (13)

As a result, the q-property is satisfied: qi j ≥ 0,∀1 ≤ i �= j ≤ n̄, and ∑n̄
j=1 qi j = 0, i =

1, . . . , n̄. In addition, we have the following property regarding the diagonalizability
of the generator matrix Q = [qi j]n̄×n̄.

Theorem 1. (Diagonalization [15]) The tridiagonal matrix Q defined in (12) is
diagonalizable. In addition, Q has exactly n̄ simple real eigenvalues satisfying
0 ≥ λ1 > λ2 > .. . > λn̄. Hence, the transitional matrix P(t) has the following de-
composition:

P(Δ t) = ΓΓΓ eD0Δ tΓΓΓ−1 with Q = ΓΓΓD0ΓΓΓ−1, (14)

where D0 := diag(λ1,λ2, . . . ,λn̄) is a diagonal matrix of the eigenvalues of Q, ΓΓΓ =
(γi j)i, j=1,...,n̄ is a matrix whose columns are the corresponding eigenvectors, and we
write ΓΓΓ−1 = (γ̃i j)i, j=1,...,n̄.

Furthermore, under some appropriate conditions, it can be shown that Sn̄
t con-

verges weakly to St as n̄ → ∞. More specifically, there is the following result.

Theorem 2. (Weak convergence [54]) Let S be a Feller process whose infinitesimal
generator L does not vanish at zero and infinity. Let Sn̄

t be the continuous time
Markov chain with the generator given in (11). Assume that maxs∈Sn̄ |L H(s)−
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L n̄H(s)| → 0 as n̄ → ∞ for all functions H in the core of L and lims→0+ L H(s) =
0, then Sn̄

t converges weakly to St as n̄ → ∞. That is, E[H(Sn̄
T )|S0] → E[H(ST )|S0]

for all bounded continuous functions H.

As an illustration, consider the value of an European option e−rTE[H(ST )|S0]
with the payoff function H(x) = (x−K)+ for a call option and H(x) = (K − x)+

for a put option. Assume that S0 = si ∈ Sn̄, i.e., the initial value of the stock price
belongs to the state space of the CTMC, for 1 ≤ i ≤ n̄ let eeei denote the column
vector of size n̄ having the value 1 on the i-th entry and 0 elsewhere; eee′i denotes the
transpose of eeei. We have the following two results for the applications respectively
to path-independent and path-dependent options; more details can be found in [15].

Theorem 3. (European Option) The value of a European option written on ST can
be approximated by

E[e−rT H(ST )|S0 = si]≈ e−rT eee′i exp(QT )HHH(Sn̄
T ),

where HHH(Sn̄
T ) is an n̄×1 vector whose jth entry is given by H(s j).

Theorem 4. (Bermudan Option) Let Δ = T/M, where M is the number of monitor-
ing dates, and assume that S0 = si. The approximate value of a Bermudan option
with monitoring dates t0 < t1 < .. . < tM is evaluated recursively by{

BM = HHH(Sn̄
T ),

Bm = max{e−rΔ eee′i exp(QΔ)Bm+1,HHH(Sn̄
T )},m = M −1,M −2, . . . ,0.

(15)

2.3 Grid and Boundary Design

In this section, we shall describe the detailed construction of the grids, and hence the
state space of the approximating CTMC. As previously mentioned, there are a few
ways to generate the grid points, for example, a uniform grid can be constructed
from two pre-chosen left and right boundary values s1 and sn̄, and then inserting
equally-spaced grid points in between. However, intuitively the uniform grid should
not perform very well, and the reason is that it may not be equally likely for the
stochastic process to visit each point in its state space. For example, consider the
CIR process, which is mean-reverting, and by its mean-reverting property it tends
to revert to its mean level either from above or below in equilibrium. Thus it is
more likely for the CIR process to visit its long-term mean level rather than the two
boundary points. This indicates that we shall insert more grid points around places
in the state space that are more often visited, i.e., there are dense clusters of grid
points in the state space, and in general this leads to a non-uniform grid.

In the following, we construct a non-uniform grid by carefully choosing the ter-
minal values s1 and sn̄ so that the state space of St is sufficiently covered and we
manage to place more points around the important values (for example, around S0).
The choice of s1 and sn̄ depends on the boundary condition of the diffusion process.
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Assume that the state space of the diffusion is given by S = (e1,e2), then we usu-
ally take s1 = e1 and sn̄ = e2. For example, in the CIR model, S = [0,∞), and we
take s1 = 0 and sn̄ = L, where L is chosen sufficiently large. Note that the detailed
classification of the exact properties of the two boundaries (e.g. as inaccessible, exit
or regular) does not impact our choices of s1 and sn̄. One advantage of choosing s1
and sn̄ according to the boundaries of St is that we can guarantee that the approx-
imating CTMC has the same boundary for its state space. This indicates one clear
advantage of the CTMC approximation method over time-discretization methods
such as the Euler time-stepping method. It is well-known in the literature (see [52])
that the Euler time-stepping may yield a boundary bias that is hard to quantify. The
reason behind this is that the approximating process from the Euler time-stepping
may no longer have similar boundary behaviors as the original process.

After we have fixed the left and right boundaries of the grid, what remains is to
determine the spacing of the grid points. To this end, define two constants2 γ > 0
and s̄ε > 0, then we fix t = T/2, and center the grid about the mean of the process
St by: s1 := max{s̄ε , μ̄(t)− γσ̄(t)} if the domain of St is positive; otherwise s1 :=
μ̄(t)− γσ̄(t). We next choose sn̄ := μ̄(t)+γσ̄(t), and here we have defined μ̄(t) :=
E[St |S0] and σ̄(t) as the standard deviation conditional3 on S0. Finally, we generate
s2,s3, . . . ,sn̄−1 using the following procedure:

si = S0 + ᾱ sinh
(

c2
i
n̄
+ c1

(
1− i

n̄

))
, i = 2,3, . . . , n̄−1,

where

c1 = arcsinh
(

s1 −S0

ᾱ

)
, c2 = arcsinh

(
sn̄ −S0

ᾱ

)
for ᾱ < (sn̄−s1). This transformation concentrates more grid points near the critical
point S0, where the magnitude of non-uniformity of the grid is controlled by the
parameter ᾱ . More specifically, a smaller ᾱ results in a more nonuniform grid. For
numerical computations later, we choose ᾱ = (sn̄ − s1)/5. Since S0 is not likely a
member of the variance grid, we can find the bracketing index j0 such that s j0 ≤
S0 < s j0+1. Holding the points s1,s2 constant4, we then shift the remaining points
s j, j ≥ 2 by S0 − s j0 so that s j0 = S0 is now a member of the adjusted grid.

For an illustration, in Figure 1 we consider the case S ∈ [s1,s60] = [0,25] and S0 =
12.5. A non-uniform grid of size n̄ = 60 is formed using the procedure described
above. Recall that the non-uniformity of the grid is controlled by the parameter ᾱ:
the smaller the value of ᾱ , the more points are placed densely around S0, which is
evident from the plot of Figure 1. It is noted that non-uniform grid has been used
extensitively in the literate, for example, it has been utilized in forming the PDE grid

2 We can increase γ to make it large enough to sufficiently cover the domain of vt . From numerical
experimentation, we find that γ = 4.5 and and s̄ε = 0.00001 are sufficient for the models considered
in this work.
3 If moments of the variance process are unknown, the grids can be fixed using s1 = β1S0 and
sn̄ = β2S0. For example, we can take β1 = 10−3 and β2 = 4.
4 This keeps an “anchor” at the boundary in the case where S0 ≈ 0.
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(see [63]). Non-uniform grids have also been used in options pricing, for example
in [42] the authors show that non-uniform grid is more favorable as compared to the
uniform grid and helps to improve the rate of convergence. A 2-dimensional plot is
considered in Figure 2.

Rigorous convergence and error analyses for the CTMC approximation method
to option pricing, and the optimal grid design are provided respectively in [47, 70],
to which we refer the reader for more details. Regarding the prices and greeks (delta
and gamma) of continuously-monitored barrier options, we briefly summarize the
main findings in [70]:

1. If there is no grid coinciding with the barrier level, then the convergence can
only be of first order.

2. If the barrier level is part of the grid points, then the convergence is of second
order for call/put type payoffs. For digital type payoffs, it is in general of first
order unless the strike is exactly at the middle two grid points, in which case
there is second order convergence.

3. To summarize, there are the following two conditions necessary and sufficient
for achieving second order convergence for both prices and greeks:

• A grid point falls exactly at the barrier level;
• The strike price is exactly at the middle of two grid points.

Non-uniform grids that satisfy the two conditions in the third item above can be
easily constructed. In particular, the authors of [70] propose a class of piecewise
uniform grids fulfilling these two conditions that further remove convergence oscil-
lations. Hence, Richardson extrapolation can be applied to accelerate convergence
to the third order.

Fig. 1 Nonuniform grid plot with S ∈ [0,25] and n̄ = 60,S0 = 12.5, ᾱ = 25/15.

0 5 10 15 20 25
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2.4 Relation to PDE

The Markov chain approximation corresponds to a state discretization, and it is of
interest to see its connection to discretization methods of PDEs. In [70, 47], the con-
nection is established between the Markov chain approximation techniques and the
numerical solution to classic PDEs (see also [54]). Consider the time-homogeneous
diffusion as in (1), and with natural boundaries5 −∞ ≤ e1 < e2 ≤ ∞. Given a well-
behaved payoff H(·) (for example, continuous on (e1,e2)), the expected value

u(t,x) = Ex[H(St)]

satisfies the following partial differential equation (PDE)

∂tu(t,s) = μ(s)∂su(t,y)+
1
2
σ2(s)∂ssu(t,s), t > 0, s ∈ (e1,e2), (16)

u(0,s) = H(s), s ∈ (e1,e2).

Recall that the continuous process St is approximated by the CTMC Sn̄
t with state

space Sn̄ := {si}n̄
i=1. For ease of exposition, we assume (without loss of generality)

a uniform step size k ≡ ki = si − si−1. A semi-discrete approximation is made using
a central difference discretization in the space of y:

μ(s)∂su(t,s)+
1
2
σ2(s)∂ssu(t,s)

≈ μ(si)
u(t,si+1)−u(t,si−1)

2k
+

1
2
σ2(si)

u(t,si+1)−2u(t,si)+u(t,si−1)

k2 , (17)

with appropriate boundary conditions (e.g. reflecting, killing, or absorbing).
Let uk(t) be the approximate option price based on the discretization in (17).

Then from the work of [54, 47] we have that uk(t) satisfies the following (matrix-
valued) ordinary differential equation (ODE):

d
dt

uk(t) = QQQuk(t), uk(0) = Hk, (18)

where uk and Hk = [H(s1), . . . ,H(sn̄)]
% are Rn̄ column vectors, and Q is the n̄× n̄

tridiagonal generator matrix given (12) with a constant step size k. We can solve the
ODE and represent the solution as matrix exponential:

uk(t) = eQtHk. (19)

Define πkg(.) = (g(y1),g(y2), . . . ,g(yn̄))
T , and ‖A‖∞ =maxi, j |Ai, j|, and consider

the option written on the underlying process St . Let u(·) and uk(·) denote respec-

5 Note that we make the same assumptions (e.g. Assumption 2.1 to 2.3) as in [47], to which we
refer the reader for more details.



126 Zhenyu Cui, J. Lars Kirkby and Duy Nguyen

tively the true value and the approximate option value written on St and Sn̄
t , then we

have the following result:

Theorem 5. ([47]) Suppose that H is piece-wise twice continuously differentiable
(i.e., there are only a finite number of points in (e1,e2) where this is not true) and
that at any non-differentiable point s, there exists some δs > 0 such that H is Lips-
chitz continuous in (s−δs,s+δs). Consider k ∈ (0,ε), where ε is sufficiently small
such that ε ≤ δs for all non-differentiable points s. For any t > 0, there is some
constant Ct > 0 independent of k such that

|| uk(t)−πku(t, ·) ||∞ ≤Ctk2. (20)

This establishes the second order convergence from the approximate solution to
the true solution.

2.5 Additive Functionals and Exotic Options

One of the benefits of the CTMC framework is the availability of closed-form pric-
ing formulas given the relative simplicity of a finite state Markov process. Recall
the transitional rate matrix Q and the probability transitional matrix P given in Sec-
tion 2.2. For a function h : R→ R, define a diagonal matrix D := diag(d j j)n̄×n̄ with
d j j = h(s j), j = 1, . . . , n̄. The following Proposition 1 is concerned with the Laplace
transforms of discrete and continuous additive functionals defined therein. In the
following, we use M to denote number of observation points.

Proposition 1. ([14]) Define the additive functionals Bn̄
M and An̄

t for the CTMC Sn̄
t

by:

Bn̄
M :=

M

∑
m=0

h(Sn̄
tm), k ≥ 0, An̄

t :=
∫ t

0
h(Sn̄

u)du, t ≥ 0. (21)

(i) Discrete case: gd(M;x) := Ex

[
e−θBn̄

M

]
= (e−θDP(Δ))Me−θD1, where Δ :=

t/M.

(ii) Continuous case: gc(t;x) := Ex

[
e−θAn̄

t

]
= e(G−θD)t1.

Consider the the following functions which are related to Asian options:

vd(M,K,x) = Ex[(Bn̄
M −K)+], vc(t,K,x) = Ex[(An̄

t −K)+],

where Bn̄
M and An̄

t are defined in (21).

Theorem 6. (Laplace transform of Asian option [14])

(i) Discrete case: Let ld(M,θ ,x) :=
∫ ∞

0 e−θkvd(M,k,x)dk. Then for any complex
number θ satisfying Re(θ)> 0, we have
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ld(M,θ ,x) =
1
θ 2

(
e−θD exp(QΔ)

)M
e−θD111− 1

θ 2 111+
x
θ

1− e(M+1)rΔ

1− erΔ ,

where 111 is the n̄×1 vector with all entries equal to 1.
(ii) Continuous case: Let lc(t,θ ,x) =

∫ ∞
0 e−θkvc(t,k,x)dk. Then for nay complex

number θ satisfying Re(θ)> 0, we have

lc(t,θ ,x) =
1
θ 2 e(Q−θD)t111− 1

θ 2 111+
x

rθ
(ert −1).

We note that the value of a discretely monitored Asian call option is given by
e−rT

M+1 vd(M,(M +1)K,x), and similarly for a continuously monitored Asian call op-
tion. The results from Theorem 6 can be combined with numerical inverse Laplace
transform techniques (see [1]) to price an arithmetic Asian option numerically.

Remark 1. There is a recent ground-breaking paper ([8]) that obtains the double
transforms for the valuation of discretely-monitored and continuously-monitored
arithmetic Asian options in the case when the underlying follows a CTMC. Later,
[18] managed to reduce the double transforms therein to a single Laplace transform,
which yields improved numerical performance. The topic on valuation of Asian
options under different model dynamics has been of interest as reflected in recent
literature, see [42, 25, 41, 10, 37, 11].

3 Regime Switching Approximations

For some applications in finance, such as volatility modeling, it is often the case
that a multi-factor stochastic model is needed. One representative example is the
stochastic volatility model, in which both the stock price process and the stochastic
variance process (latent process that is not directly observable) are following diffu-
sion processes. Due to the leverage effect documented in the equity market, there is
usually a negative correlation between the stock price diffusion process and the vari-
ance diffusion process. It has been a challenge to decouple the non-zero correlation
between the stock price and the volatility when designing approximation schemes.
For example, it is a challenging task when carrying out Euler discretizations to the
system of SDEs in a stochastic volatility model (see [58]).

Previous literature mostly considers the CTMC approximation of a one dimen-
sional diffusion process, and here we shall describe a recent approach, which is
developed in a series of papers ([12, 13, 14]), that has expanded the approach from
univariate processes to cover multi-factor dynamics. It is based on a regime switch-
ing approximation to the stochastic volatility models, and the key insight is to sim-
plify the dynamics in such a way that a regime switching approximation can be
applied.
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3.1 Markov Modulated Dynamics

Regime switching or Markov modulated models are a natural extension of the dy-
namics in (1), allowing for state dependent drift and volatility coefficients. Here the
underlying (modulating) state is governed by a CTMC, {α(t)}t≥0, which takes val-
ues in M := {1,2, . . . , m̄}, and is specified by its generator matrix or rate matrix,
ΛΛΛ = [λi j]m̄×m̄. We denote the underlying process, which is being modulated, by Sm̄

t .
We model the log return process Xm̄

t := log(Sm̄
t /Sm̄

0 ), t ∈ [0,T ] by

dXm̄
t = μα(t)dt +σα(t)dW ∗(t), (22)

where W ∗
t is a standard Brownian motion independent of α(t), μα(t) := r − q −

1
2σ

2
α(t). In particular, regime changes coincide with changes in the state of α(t).

Between state transitions, the asset price is governed by a standard diffusion pro-
cess with constant drift and volatility coefficients. This corresponds to the following
model for the underlying:

dSm̄
t = Sm̄

t (r−q)dt +Sm̄
t σα(t)dW ∗(t). (23)

An important property of regime-switching models is that the characteristic func-
tion (ChF) of the log-return process is available in closed-form. In particular, define
the set of functions

ψ j(ξ ) = iξμ j − 1
2
ξ 2σ2

j , j = 1, . . . , m̄, (24)

which represents the characteristic exponents of Xm̄
t when each of the states is fixed.

Lemma 1. ([7]) For t > 0, the characteristic function of Xm̄
t is given by the following

matrix form

E[exp(iXm̄
t ξ )|α(0) = j0] = eee′j0 exp(t (ΛΛΛ +diag(ψ1(ξ ), . . . ,ψm̄(ξ )))1, (25)

where 1 ∈Rm̄ is a unit (column) vector, and eee j0 ∈Rm̄ is a vector of zeros, except for
the value 1 in the position α(0) = j0.

Our treatment of regime-switching models has been necessarily brief. There are
several excellent further references including the following: [34, 50, 51, 56, 57, 65,
69]. For a comprehensive treatment of regime switching models, and in particular
regime switching diffusion processes and their applications, please refer to mono-
graphs [66, 67, 68].

3.2 Stochastic Volatility

Consider the stochastic volatility model whose dynamics are of the following form:
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dSt
St

= γ(vt)dt +κ(vt)dW (1)
t ,

dvt = μv(vt)dt +σv(vt)dW (2)
t ,

(26)

where E[dW (1)
t dW (2)

t ] = ρdt with ρ ∈ (−1,1) denoting the correlation level be-
tween asset and volatility. For the model considered in (26), we assume that there
exists a constant C > 0 such that for all v1,v2 in the state space of vt

|μv(v1)−μv(v2)|+ |σv(v1)−σv(v2)| ≤C|v1−v2|, (μv(v1))
2+(σv(v1))

2 ≤C(1+v2
1).

The above conditions guarantee that there exists a unique solution vt possessing the
strong Markov property (see [26]). Moreover, we assume that σv(.) and κ(.) are
continuously differentiable, with σv(·)> 0 on the domain of vt .

We sometimes call this model the “linear” stochastic volatility model since the
stock price dynamic is linear in the stock price state variable S. The model (26) is
very general, and encompasses many well-known SV models in the literature. A
representative list of common SV models can be found in Table 1.

Heston dSt = rSt dt +
√

Vt St dW (1)
t r ∈ R

([31]) dVt = η(θ −Vt)dt +α
√

Vt dW (2)
t η ,θ ,α,v0 > 0

3/2 dSt = rSt dt +
√

Vt St dW (1)
t r ∈ R

([45]) dVt =Vt [η(θ −Vt)dt +α
√

Vt dW (2)
t ] η ,θ ,α,v0 > 0

4/2 dSt = rSt dt +St [a
√

Vt +b/
√

Vt ]dW (1)
t r ∈ R

([27]) dVt = η(θ −Vt)dt +α
√

Vt dW (2)
t a,b,η ,θ ,α,v0 > 0

Hull-White dSt = rSt dt +
√

Vt St dW (1)
t r ∈ R

([32]) dVt = αVt dt +βVt dW (2)
t β ,v0 > 0

Stein-Stein dSt = rSt dt +Vt St dW (1)
t r ∈ R

([62]) dVt = η(θ −Vt)dt +βVt dW (2)
t β ,v0 > 0

α-Hypergeometric dSt = rSt dt + eVt St dW (1)
t r ∈ R

([23]) dVt = (η−θeαVt )dt +βVt dW (2)
t β ,v0 > 0

Jacobi dSt = (r−Vt/2)dt +
√

Vt −ρ2Q(Vt)dW (1)
t r ∈ R

([2]) dVt = (η−θeαVt )dt +β
√

Q(Vt)dW (2)
t β ,v0 > 0

Table 1 Some stochastic volatility models. For Jacobi model, we have Q(v) := (v− vmin)(vmax −
v)/(

√
vmax −√

vmin)
2.

In the next subsection, we seek to single out the correlation ρ and decouple the
SDE system in (26).

3.2.1 Decoupled Dynamics

Options pricing in a general stochastic volatility model is notoriously difficult due
to the general correlation structure between the two driving Brownian motions W (1)

t

and W (2)
t . In this section, we will provide a general procedure to decouple the cor-

relation between the two Brownian motions. From the Ito’s lemma, we have
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Fig. 2 Nonuniform grid plot with (S,v) ∈ [0,25]× [0,0.5], n̄ = 60, m̄ = 60,S0 = 12.5,v0 =
0.05, ᾱS = 25/15, ᾱv = 0.5/15.

d log(St) =

(
γ(vt)− 1

2
κ2(vt)

)
dt +κ(vt)dW (1)

t . (27)

Next, define f̂ (x) :=
∫ x

c
κ(u)
σv(u)

du with c being a constant, and

h(x) := L ( f̂ (x)) = μv(x) f̂ ′(x)+
1
2
σ2

v (x) f̂ ′′(x).

Denote f (vt ,v0) := ρ( f̂ (vt)− f̂ (v0)), then we have

d f (vt ,v0) = ρd f̂ (vt) = ρh(vt)dt +ρκ(vt)dW (2)
t . (28)

Finally, define W ∗
t := W (1)

t −ρW (2)
t√

1−ρ2
, then one can easily verify that W ∗

t is a standard

Brownian motion and E[dW ∗
t dW (2)

t ] = 0, i.e., the two Brownian motions W ∗
t and

W (2)
t are independent. Next, we plug (28) into (27), and obtain

d log(St) =

(
γ(vt)− 1

2
κ2(vt)

)
dt +κ(vt)(ρdW (2)

t +
√

1−ρ2dW ∗
t )

=

(
γ(vt)− 1

2
κ2(vt)

)
dt +d f (vt ,v0)−ρh(vt)dt +

√
1−ρ2κ(vt)dW ∗

t .

Denote X̃t := log(St/S0)− f (vt ,v0), then we can rewrite (26) as
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0
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dX̃t =

(
γ(vt)− 1

2κ
2(vt)−ρh(vt)

)
dt +

√
1−ρ2κ(vt)dW ∗

t ,

dvt = μv(vt)dt +σv(vt)dW (2)
t .

(29)

Observe that the two Brownian motions in (29) are independent, and we have
successfully decoupled the correlation structure. We will refer to the process X̃t
which provides the decoupling as the auxiliary process.6

3.2.2 Regime Switching Approximation: Affine Case

Using the continuous time Markov chain approximation in Section 2, we will con-
vert (29) into a regime switching model. More specifically, for m̄ ∈ N+ we will
approximate the variance process vt by another independent finite state Markov
chain αt taking values in the state space M := {1,2, . . . , m̄} with the generator
ΛΛΛ = [λi j]m̄×m̄ obtained as in (12) using the dynamics of vt given in (29). Then the
model in (29) is reduced to

dX̃m̄
t =

(
γ(vαt ))−

1
2
κ2(vαt )−ρh(vαt )

)
dt +

√
1−ρ2κ(vαt )dW ∗

t ,

=: μX (vαt )dt +σX (vαt )dW ∗
t , (30)

and note that notation-wise vm̄
t = vαt , where vαt takes values in Sv := {v1, . . . ,vm̄}.

In particular, the diffusion coefficients depend only on vαt . As with the regime-
switching models discussed in Section 3.1, once ΛΛΛ is determined, X̃ m̄

t can be de-
scribed by its generator in each state, or equivalently by its set of characteristic
exponents

ψ̃ j(ξ ) = iξμX (v j)− 1
2
ξ 2σX (v j)

2, j = 1, . . . , m̄. (31)

From Lemma 1, the ChF of X̃ m̄
t , E (ξ ) = [E j,k], is given by

E (ξ ) := E[exp(iξ X̃ m̄
t )|α(0) = j] = eee′j exp(t (ΛΛΛ +diag(ψ̃1(ξ ), . . . , ψ̃m̄(ξ )))1.

Moreover, we can recover the ChF of the log-return approximation as

Ẽ j,k(ξ ) := E[exp(iξ · log(Sm̄
t /S0))|α(0) = j,α(t) = k]

= E j,k(ξ ) · exp(iξ · f (vk,v j)), (32)

which follows from the original representation X̃t := log(St/S0)− f (vt ,v0). The
availability of a closed form ChF is a key advantage of the approximation frame-
work, as it enables the use of highly efficient Fourier transform based approaches,
which we demonstrate in Section 3.2.3 for barrier options.

6 We note that the extension of this procedure to processes with jumps is straightforward.
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3.2.3 Recursive Option Pricing under Stochastic Volatility

Provided the decoupled regime-switching dynamics in (30), Lemma 1 provides a
closed-form characteristic function, which enables option pricing via Fourier tech-
niques. As an example, consider a barrier option with terminal payoff G(XT ) =
H(S0 exp(XT )) = H(ST ), where Xt = ln(St/S0), and fix a set of monitoring dates
tm = mΔ , m = 0, . . . ,M, where Δ = T/M. Let C denote the continuation region,
and C c the knock-out region for Xt , so the option expires worthless if it is observed
within C c at any time tm, and pays G(XT ) otherwise. For a double barrier option
with knockout barriers L and U in the space of St , C = [lx,ux] where lx := ln(L/S0)
and ux := ln(U/S0) in log space.

Barrier options can priced for the SV model defined in (26) using the Markov
chain approximation, which yields

log(Sm̄
t /S0) = X̃ m̄

t + f (vm̄
t ,v0) := Xm̄

t ,

from which Sm̄
t = S0 exp(Xm̄

t ). The barrier option price is calculated through the
following recursive procedure, starting from the known terminal values and working
backwards:⎧⎨⎩VM(Xm̄

M ,αM) = H(Xm̄
M)�{Xm̄

M∈C }
Vm(Xm̄

m ,αm) = e−rΔE
[
Vm+1(Xm̄

m+1,αm+1)�{Xm̄
m ∈C }|Xm̄

m ,αm

]
m = M −1, ...,0,

(33)
where7 Xm̄

m :=Xm̄
tm and αm =α(tm). By definition, Vm+1(Xm̄

m+1,αm+1)= 0 for Xm̄
m+1 ∈

C c = [lx,ux]
c.

Next define the transition probability matrix P(Δ) as in (10), with elements

PΔjk = P[α(t +Δ) = k|α(t) = j], j,k = 1, . . . , m̄,

which captures transitions of the volatility state. Then with αm = j and Xm̄
m = x ∈ C ,

we have for m = M −1, ...,0,

Vm(x, j) = e−rΔE
[
Vm+1(Xm̄

m+1,αm+1)|Xm̄
m = x,αm = j

]
= e−rΔ ∑

k=1,..,m̄
PΔj,kE

[
Vm+1(Xm̄

m+1,k)|Xm̄
m+1 = x,αm = j,αm+1 = k

]
= e−rΔ ∑

k=1,..,m̄
PΔj,k

∫
C

Vm+1(y,k)p j,k(y|x)dy,

where we have defined the set of transition densities for the log return process for
j,k = 1, . . . , m̄

p j,k(y|x) = P[Xm̄(Δ) ∈ y+dy|Xm̄(0) = x,α(0) = j,α(Δ) = k].

7 A European option can be priced recursively by setting C = (−∞,∞).
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As demonstrated in [43], the transition densities p j,k(y|x) can be approximated with
high efficiency using the ChF of log returns of Xm̄

Δ , Ẽ j,k(ξ ), by combing the closed
form expression in (32) with the Fourier method of [40].

3.2.4 Example: 4/2 model CTMC Approximation

Many prominent examples fall within the framework of dynamics (26), including
those of Heston [31], Hull-White [32], Stein-Stein [62], α-Hypergeometric [23],
Jacobi [2], 3/2 [45] and the 4/2 model for which we are going to illustrate in detail.
We illustrate the transform required to obtain a de-correlated representation for the
4/2 model. The reader is invited to refer to Table 1 for a list of additional models
that can also be similarly considered.

The 4/2 stochastic volatility model (without jumps) was recently proposed in
[27], with the important property that the instantaneous volatility can be uniformly
bounded away from zero (unlike Heston’s model, for example). It contains the He-
ston model (can be thought of as a “1/2” model) and the 3/2 model as special cases,
and thus earns itself the name of a “4/2” model. Extension of the 4/2 model by
adding the jump component in the underlying process can be founded in [42]. The
dynamics of the 4/2 model are given by{

dSt
St

= (r−q−λκ)dt +
[
a
√

vt +
b√
vt

]
dW (1)

t ,

dvt = η(θ − vt)dt +σv
√

vtdW (2)
t .

(34)

For this model, it is assumed that the Feller’s condition 2ηθ >σ2
v is satisfied, and for

a,b > 0, the volatility component is uniformly bounded away from zero, which fol-
lows from applying Cauchy’s inequality to [a

√
vt +

b√
vt
]≥ 2

√
a
√

vt
b√
vt
= 2

√
ab> 0

for a,b > 0. The change of variable, which will help us remove the correlation be-
tween the two stochastic processes W (1)

t , W (2)
t in (34), is given by

X̃t = log
( St

S0

)
− ρ
σv

(
a(vt − v0)+b(log(vt)− log(v0))

)
. (35)

Therefore, if we denote

μX (vt)=
(aρη
σv

− a2

2

)
vt +

(ρbσv −b2

2
− bρηθ

σv

) 1
vt
+
ρη
σv

(b−aθ)+r−q−λκ−ab,

then the dynamics in (34) can be written as{
dX̃t = μX (vt)dt +[a

√
vt +

b√
vt
]
√
(1−ρ2)dW ∗

t ,

dvt = η(θ − vt)dt +σv
√

vtdW (2)
t .

(36)

After approximating the variance process vt by a m̄-state Markov chain, and substi-
tuting it into (36), we have that the dynamics in (30) are reduced to
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dX̃m̄
t = μX (vαt )dt +

[
a
√

vαt +
b√vαt

]√
(1−ρ2)dW ∗

t , (37)

where vαt takes values in Sv = {v1 v2, . . . ,vm̄}.
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Fig. 3 Conditional transition densities of m̄ = 40 state CTMC approximation to (CIR) volatility
process vt under 4/2 (and Heston) stochastic volatility, for several values of t.

In Figure 3, we illustrate the CTMC approximation of the underlying variance
process, which in the 4/2 (and Heston) model is a Cox-Ingersol-Ross (CIR) process.
For t ∈ {1/5,1/10,1/20,1/50,1/100}, we plot the transition density of vαt , condi-
tional on v0, for the CIR process with η = 2,θ = 0.04,v0 = 0.06,ρ = −0.9,σv =
0.15. In this example, the initial variance v0 = 0.06 is higher than its longer term
mean, θ = 0.04. When t = 1/100, the density is centered about v0, and the dif-
fusive term dominates the transition probabilities, leading to a roughly symmetric
(approximately normal) transition density. As time increases up to t = 1/5, the den-
sities spread out, with more mass clustering near the long term mean θ . With just
m̄ = 40 points, the densities of the CTMC are a faithful representation of the under-
lying continuous density of vt .
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3.2.5 Example: Heston and 4/2 model option pricing

We now illustrate the application of the CTMC approximation for option pricing
under the 4/2 model discussed in Section 3.2.4, starting with the special case of
Heston’s model, which is obtained by setting a = 1 and b = 0. The recursive pricing
strategy outlined in Section 3.2.3 can be used to price European options, and in
Heston’s model reference prices can be obtained to machine precision using Fourier
techniques (e.g. [40]). The model parameters are set to be

η = 1, θ = 0.025, v0 = 0.025, ρ =−0.7, σv = 0.18.

The state space for the CTMC approximation of vt is determined as described in
Section 2.3, with the grid width parameter ᾱ = (vm̄−v1)/ζ parameterized by ζ > 0.
For ζ ≈ 1, the grid becomes uniform, while for ζ ≈ 0, the grid is tightly clustered
around the initial variance v0.
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Fig. 4 European option convergence in Heston’s model as a function of grid non-uniformity pa-
rameter ζ . T = 0.5, K = S0 = 100, r = 0.05. Ref price: 5.7574.

Figure 4 illustrates the pricing error for an at-the-money European call option
with ζ ∈ {0.8,0.4,0.2}. As is typically the case, having a more non-uniform grid
is most beneficial when the number of grid points m̄ is small. Other factors can
also influence this choice in practice, including the long term level of variance and
its relation to the initial variance, as well as the time to maturity. For example, a
short maturity option with initial variance near its longer term level will benefit the
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most from a grid which clusters around v0, while as T increases (or equivalently σv
increases) the benefit diminishes.

In the next set of experiments, we consider the 4/2 model, with base parameters

η = 1.8, θ = 0.04, v0 = 0.04, ρ =−0.7, σv = 0.1.

Table 2 illustrates the convergence in m̄ for three 4/2 models, which vary based on
the values of a and b. The first case, a = 1,b = 0, is simply Heston’s model, while
the other two cases have the additional variance term b/

√
vt from (36). Reference

prices, to which the approximations have converged within four decimal places in
the last row (m̄ = 60), are computed using m̄ = 120.

a = 1,b = 0 a = 0.5,b = 0.5v0 a = 0.5,b = 0.25v0
m̄ price error price error price error

10 6.9020 1.46e-03 6.9623 5.51e-02 5.5935 5.16e-02
20 6.8999 5.93e-04 6.9066 5.47e-04 5.5414 4.25e-04
40 6.9005 3.68e-05 6.9071 9.98e-05 5.5418 5.36e-05
60 6.9005 2.43e-06 6.9071 3.22e-05 5.5419 1.42e-05

Table 2 European call option prices under 4/2 model. T = 0.5, K = S0 = 100, r = 0.05.

3.3 Regime Switching CTMCs

In Section 3.2, we discussed the use of a CTMC to approximate one dimension of
the two-dimensional stochastic volatity model, which resulted in a regime-switching
diffusion. Taking this idea one step further, we can consider the case of a Markov
modulated CTMC, i.e., a regime switching CTMC. In this case, the n̄-state CTMC
Sn̄

t is further modulated by a second independent CTMC, {αt}t≥0, with state space
M = {1, . . . , m̄}. Then we have a RS-CTMC, denoted as Sn̄,m̄

t , of the following
form:

dSn̄,m̄
t = Sn̄,m̄

t (r−q)dt +Sn̄,m̄
t σα(t)dW ∗(t). (38)

In particular, conditioned on αt = l, the instantaneous transitions of Sn̄,m̄
t can be

described by the following generator Gl , l ∈ M :

Glh(x) := lim
δ↓0

E

[
h(Sn̄,m̄,

t+δ )|α(t) = l,Sn̄,m̄
t = x

]
−h(x)

δ
, (39)

which corresponds to a rate matrix Gl = (gl
k j)n̄×n̄. An explicit example of Gl will

be given in Section 3.4.2.
In Section 3.4, we consider the applications of regime switching Markov chain

approximation to several options pricing problems. In the following, we shall dis-
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cuss the details of the regime switching approximation in two types of models in in-
creasing order of generality: the stochastic volatility(SV) model, and the stochastic
local volatility(SLV) model. In the SV model, we utilize one approximating CTMC,
and for the case of the SLV model, there are two independent approximating CTMCs
introduced.

3.4 Stochastic Local Volatility

The proposed valuation framework is also applicable to general stochastic local
volatility models whose dynamics are given by:{

dSt = ω(St ,vt)dt +κ(vt)Γ (St)dW (1)
t ,

dvt = μv(vt)dt +σv(vt)dW (2)
t ,

(40)

where E[dW (1)
t dW (2)

t ] = ρdt with ρ ∈ (−1,1). Here we assume that ω(·, ·) : R×
R → R, κ(·) : R → R+ and Γ (·) : R → R+. Some representative local volatility
models are listed in Table 3. We make the following assumption about the Feller
property of (St ,vt).

Assumption 2 For any Φ ∈ C0(S×V), define the pricing operator PtΦ(S,v) :=
E[Φ(St ,vt)|S0 = S,v0 = v], and assume that (St ,vt) is a Feller process, i.e.,

• PtΦ ∈C0(S×V) for any t ≥ 0;
• lim

t→0
PtΦ(S,v) =Φ(S,v) for any (S,v) ∈ S×V.

The Feller property guarantees that there exists a version of the process (St ,vt)
with cádlág paths satisfying the strong Markov property. Similar to the scalar case,
the family (Pt) is determined by its infinitesimal generator L S, where

L SΦ(S,v) := lim
t→0+

(PtΦ−Φ)(S,v)
t

, (41)

for any Φ ∈C0(S×V) for which the right-hand side of (41) converges in the strong
sense.8 From (40), we can calculate

L SΦ =
[κ(v)Γ (S)]2

2
∂ 2Φ
∂S2 +ρκ(v)Γ (S)σ(v)

∂ 2Φ
∂v∂S

+

+
σ2

v (v)
2

∂ 2Φ
∂v2 +ω(S,v)

∂Φ
∂S

+μv(v)
∂Φ
∂v

. (42)

For example, for the classical SABR model, see Table 3, the generator is given by

8 Convergence is with respect to the norm ‖Φ‖ := sup(s,v)∈S×V |Φ(s,v)| on the Banach space
(C0(S×V),‖·‖). The domain of L S is dense in C0(S×V).
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L SΦ =
1
2

v2S2β ∂ 2Φ
∂S2 +ραv2Sβ

∂ 2Φ
∂v∂S

+
1
2
(αv)2 ∂ 2Φ

∂v2 .

3.4.1 Decoupled Dynamics

Define the functions g(x) :=
∫ x
.

1
Γ (u)du and f̂ (x) :=

∫ x
.

κ(u)
σv(u)

du, and let X̃t := g(St)−
ρ f̂ (vt). Then similarly to the stochastic volatility case, the dynamics in (40) can be
rewritten as⎧⎨⎩dX̃t =

(
ω(St ,vt)

Γ (St)
− Γ ′(St)

2
κ2(vt)−ρh(vt)

)
dt +

√
1−ρ2κ(vt)dW ∗

t ,

dvt = μv(vt)dt +σv(vt)dW (2)
t ,

(43)
where

h(x) := L v f (x) = μv(x) f̂ ′(x)+
1
2
σ2

v (x) f̂ ′′(x)

= μv(x)
κ(x)
σv(x)

+
1
2
(
σv(x)κ′(x)−σ ′

v(x)κ(x)
)
. (44)

We shall carry out the approximation procedure in two layers: one for the
stochastic variance process, and one for the asset price process. The first layer ap-
proximation is obtained by replacing vt with vm̄

t = vα(t), and we obtain

X̃ m̄
t := g(Sm̄

t )−ρ f̂ (vm̄
t ),

where Sm̄
t is used to denote the dependence of St on vm̄

t . Next, let

ζ0(X̃ m̄
t ,vm̄

t ) := g−1(X̃ m̄
t +ρ f (vm̄

t )),

and for any fixed state vl ∈ Sv, define

ω̃(·,vl) := ω(ζ0(·,vl),vl), Γ̃ (·,vl) := Γ (ζ0(·,vl)).

We further define:

μX (x,vl) :=
(
ω̃(x,vl)

Γ̃ (x,vl)
− Γ̃ ′(x,vl)

2
κ2(vl)−ρh(vl)

)
, (45)

where Γ̃ ′(·,vl) =Γ ′(ζ0(·,vl)). We manage to obtain the following dynamics for X̃ m̄
t

conditional on the value of vm̄
t :

dX̃m̄
t = μX (X̃ m̄

t ,vm̄
t )dt +

√
1−ρ2κ(vm̄

t )dW ∗
t . (46)
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3.4.2 Regime Switching Approximation: Linear and Nonlinear Case

The insight of [14] is to combine the RS-CTMC representation provided in Propo-
sition 2 with a Markov chain approximation for the decoupled dynamics of the SLV
model in (40). From the single layer approximation in (46), for each variance state
l ∈ M , the generator satisfies

L m̄
l ξ (x) = μX (x,vl)ξ ′(x)+

(1−ρ2)κ2(vl)

2
ξ ′′(x). (47)

We then make a second layer approximation, similarly as before. In particular, for
each l ∈ M , the rate matrix is given by Gl = (gl

k j), where

gl
k j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

μX
−(xk,vl)

δ x
k−1

+
σ̃2(vl)− [δ x

k−1μX
−(xk,vl)+δ x

k μX
+(xk,vl)]

δ x
k−1(δ

x
k−1 +δ

x
k )

, j = k−1,

μX
+(xk,vl)

δ x
k

+
σ̃2(vl)− [δ x

k−1μX
−(xk,vl)+δ x

k μX
+(xk,vl)]

δ x
k (δ

x
k−1 +δ

x
k )

, j = k+1,

−ql
k,k−1 −ql

k,k+1, j = k,
0, | j− k|> 1,

(48)
where σ̃(vl) =

√
1−ρ2κ(vl) and δ x

k = xk − xk−1 for k = 1,2, . . ..
The generator is approximated for l ∈ M ,k ∈ N by

L n̄,m̄
l ξ (xk) =

n̄

∑
j=1

gl
k jξ (x j) =

n̄

∑
j=1

gl
k j(ξ (x j)−ξ (xk)). (49)

The key insight of the paper [60] is that we can represent the RS-CTMC Sn̄,m̄
t as

a one-dimensional process, by embedding it into a Markov chain, called Yt , with an
enlarged state space SY , which is defined in the following result. The state space of
the two-dimensional process Sn̄,m̄

t is mapped bijectively to that of Yt , SY , by the func-
tion φ(·) defined below. The space SY can be interpreted as indexing m̄ consecutive
copies of SX , one for each of the modulating states l ∈ M . Thus

Proposition 2. ([60]) Suppose that {Sn̄,m̄
t , t ≥ 0} is a discrete state regime-switching

CTMC, and consider another one-dimensional CTMC {Yt , t ≥ 0} with state space
SY := {1,2, ..., n̄ · m̄} and n̄ · m̄× n̄ · m̄ transition rate matrix

G =

⎛⎜⎜⎜⎝
λ11In̄ +G1 λ12In̄ · · · λ1m̄In̄
λ21In̄ λ22In̄ +G2 · · · λ2m̄In̄

...
...

. . .
...

λm̄1In̄ λm̄2In̄ · · · λm̄m̄In̄ +Gm̄

⎞⎟⎟⎟⎠ , (50)

where In̄ is the n̄× n̄ identity matrix, Gl = (gl
k j)n̄×n̄, and ΛΛΛ = (λk, j)m̄×m̄. Define the

mapping φ : SX ×M → SY by φ(xk, l) = (l − 1) j+ k, and its inverse φ−1 : SY →
SX ×M by φ−1( j) = (xk, l) for j ∈ SY , where k is the unique integer satisfying
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j = (l −1)n̄+ k for some l ∈ {1,2, . . . , m̄}. Then we have

E

[
Ψ(Sn̄,m̄,α) | α(0) = i,Sn̄,m̄

0 = xk

]
= E[Ψ ◦φ−1(Y ) | Y0 = (i−1)n̄+ k], (51)

for any path-dependent payoff functionΨ such that the expectation on the left hand
side is finite. Here we have defined Sn̄,m̄ := (Sn̄,m̄

t )0≤t≤T , α := (α(t))0≤t≤T , and
Y := (Yt)0≤t≤T .

From this representation, [14] are able to derive closed-form pricing formulas for
European, barrier, occupation time, and Asian options. Under appropriate condi-
tions, it can be showed that (Sn̄,m̄

t ,vm̄
t ) converges weakly to (St ,vt) as n̄, m̄ → ∞. The

reader is invited to refer to [14] for more details. An extension of theoretical results
and applications to time-changed Markov processes is given in [15].

3.5 European options pricing

Vanilla option prices for the underlying ST can now be approximated with respect
to

Sn̄,m̄
T := g−1(X̃ n̄,m̄

T +ρ f (vαT )), (52)

which is the discrete-space asset process corresponding to X̃ n̄,m̄
T :

E

[
e−rT (ST −K)+

∣∣∣v0,S0

]
≈ E

[
e−rT

(
Sn̄,m̄

T −K
)+ ∣∣∣α(0) = i, X̃ n̄,m̄

0 = xk

]
,

where we assume9 that vα(0) = vi = v0 is a member of the grid for some i ∈ M ,
and X̃ n̄,m̄

0 = xk ∈ SX . From the standard CTMC theory, an explicit representation
can be obtained for a European option on Sn̄,m̄

T , in terms of the characteristics of the
one-dimensional process Yt .

Theorem 7. ([14]) Given that α(0) = i, X̃ n̄,m̄
0 = xk, for maturity T and strike K > 0,

the approximate European option price at time 0 is given by

E

[
e−rT

(
Sn̄,m̄

T −K
)+ ∣∣∣α(0) = i, X̃ n̄,m̄

0 = xk

]
= ei,xk · exp((G− rI)T ) ·H(1)

= e−rT · ei,xk · exp(GT ) ·H(1), (53)

where ei,xk is a 1× n̄m̄ vector with all entries equal to 0 except that the (i−1)n̄+ k
entry is equal to 1, and H(1) is an n̄m̄×1 vector with

H(1)
(l−1)n̄+ j =

{(
g−1(x j +ρ f (vl))−K

)+ for a call,(
K −g−1(x j +ρ f (vl))

)+ for a put.
(54)

9 These assumptions are without loss of generality in the sense that interpolation can be readily
applied otherwise. To simplify the discussion, we assume that these points are members of the grid
in what follows.
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During the calibration process, prices are required for many strikes at each maturity.
An advantage of the proposed methodology is that once the shared key component,
the matrix exponential exp(GT ), is (pre)computed and cached, which dominates the
computational cost, a spectrum of contracts with different strikes may be priced for
essentially the same cost as a single contract.

SABR dSt = vt S
β
t dW (1)

t β ∈ [0,1)
([28]) dvt = αvt dW (2)

t α,v0 > 0
λ−SABR dSt = vt S

β
t dW (1)

t β ∈ [0,1)
([30]) dvt = λ (θ − vt)dt +αvt dW (2)

t λ ,θ ,α,v0 > 0
Shifted SABR dSt = vt(St + s)βdW (1)

t β ∈ [0,1)
([5]) dvt = αvt dW (2)

t s,α ,v0 > 0
Heston-SABR dSt = rSt dt +

√
vt S

β
t dW (1)

t r ∈ R,β ∈ [0,1)
([14]) dvt = η(θ − vt)dt +α√vt dW (2)

t η ,θ ,α,v0 > 0
Quadratic SLV dSt = rSt dt +

√
vt(aS2

t +bSt + c)dW (1)
t r ∈ R,β ∈ [0,1)

([48]) dvt = η(θ − vt)dt +α√vt dW (2)
t a,η ,θ ,α,v0 > 0, 4ac > b2

Exponential SLV dSt = rSt dt +m(vt)(vL +θ exp(−λSt))dW (1)
t r ∈ R,λ ,vL ≥ 0

([14]) dvt = μ(vt)dt +σ(vt)dW (2)
t vL +θ ≥ 0

Root-Quadratic SLV dSt = rSt dt +m(vt)
√

aS2
t +bSt + c dW (1)

t r ∈ R

([14]) dvt = μ(vt)dt +σ(vt)dW (2)
t a > 0,c ≥ 0

Tan-Hyp SLV dSt = rSt dt +m(vt) tanh(βSt)dW (1)
t r ∈ R

([14]) dvt = μ(vt)dt +σ(vt)dW (2)
t β ≥ 0

Mean-reverting-SABR dSt = κ(ζ −St)dt +m(vt)S
β
t dW (1)

t r ∈ R,β ∈ [0,1)
([14]) dvt = μ(vt)dt +σ(vt)dW (2)

t κ,ζ ,v0 > 0
4/2-SABR dSt = rSt dt +Sβt [a

√
vt +b/

√
vt ]dW (1)

t r ∈ R,β ∈ [0,1)
([14]) dvt = η(θ − vt)dt +α√vt dW (2)

t a,b,η ,θ ,α,v0 > 0

Table 3 Some stochastic local volatility models

3.5.1 Example: SABR model

A now classic SLV example which has seen tremendous application in practice is
the SABR model of [30], which is specified as{

dSt = vtS
β
t dW (1)

t ,

dvt = αvtdW (2)
t ,

(55)

In particular, the variance process is governed by a geometric Brownian motion.
Given the practical nature of the SABR model, several approximation frameworks
have been introduced to efficiently estimate implied volatiles, such as the original
approach of Hagan et. al. [28], as well as the improved approximation introduced
in Antonov et. al. [5]. Traditional Monte Carlo is also widely used for this model,
especially for exotic options for which no known closed-form pricing formulas exist.

Figure 5 compares the CTMC approach introduced in [14] with each of these
methods, using the market standard implied volatilities of European options for
illustration. We see close agreement between the method of Antonov et. al. and
CTMC, while the other two methods under-perform at the wings, as is well docu-
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Fig. 5 SABR implied volatilities. α = 0.2,β = 0.1,ρ = 0,v0 = 0.1, T = 1, S0 = 0.05, r = 0.0.

mented. In addition to European options, the CTMC method can be used to price
American, Barrier, Asian, and occupation time derivatives in the SABR and other
SLV models. Additional SLV model specifications are listed in Table 3. In particu-
lar, the λ−SABR model of [30] and the Heston-SABR model studied in [14] offer
more realistic models for the variance process, as they permit mean-reversion. A
further extension of the method to the shifted SABR model has been considered in
[16].

4 Conclusions

This chapter reviews and consolidates recent research activity in the literature on ap-
plying continuous-time Markov chains to approximate stochastic processes arising
in finance. We discuss the construction, theoretical properties and numerical perfor-
mance of the CTMC approximations. We also discuss an effective regime-switching
approach to approximate the dynamics of stochastic volatility models, which en-
ables us to reduce the valuation problem to one that is concerned with a relatively
simple Markov-modulated processes. In particular, explicit valuation formulas are
obtained in terms of simple matrix expressions.

Since the CTMC approximation can be thought of as a state-space discretization,
as compared to time-discretization schemes (e.g. the Euler scheme), a promising
future research direction is to utilize this method in the efficient Monte Carlo sim-



Markov chain approximation for options pricing 143

ulation of asset prices. A first step in this direction has obtained promising results
which are reported in [17]. We believe that the CTMC approximation method will
find applications in various areas including the valuation, estimation and calibration
of stochastic models arising in financial engineering and operations research.
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Numerical Approximations for Discounted

Continuous Time Markov Decision Processes

François Dufour and Tomás Prieto-Rumeau

Abstract This paper deals with a continuous-time Markov decision process M ,
with Borel state and action spaces, under the total expected discounted cost optimal-
ity criterion. By suitably approximating an underlying probability measure with a
measure with finite support and by discretizing the action sets of the control model,
we can construct a finite state and action space Markov decision process that ap-
proximates M and that can be solved explicitly. We can derive bounds on the ap-
proximation error of the optimal discounted cost function; such bounds are written
in terms of Wasserstein and Hausdorff distances. We show a numerical application
to a queueing problem.

1 Introduction

This paper deals with the numerical approximation of a continuous-time Markov
decision process under the total expected discounted cost optimality criterion. A
typical sample path of the process under consideration consists of a piecewise con-
stant function. We will assume that the Markov decision process has Borel state
and action spaces, and its transition rates as well as the cost rate are assumed to be
bounded. We are interested in approximating numerically the corresponding optimal
discounted cost function.

Continuous-time Markov decision processes have been widely studied, at least
from a theoretical point of view. Among the most popular approaches to deal with
such problems we can cite dynamic programming and linear programming. The
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first technique establishes an optimality equation, usually referred to as the Bellman
or dynamic programming equation, from which the optimal value of the problem
and optimal policies can be derived. Under the linear programming approach, the
optimization problem is reduced to a linear problem on a space of so-called occu-
pation measures. These techniques enable to address various theoretical problems
and, in particular, they provide characterizations of the optimal value function and
the existence of optimal control policies. The above mentioned dynamic program-
ming equation and linear problem, however, cannot be explicitly solved in general.
There exist some particular problems for which the corresponding solutions can be
obtained explicitly (such as, for instance, linear quadratic control problems) but this
is not possible in general.

Hence, for practical purposes there is indeed a need of some numerical technique
to approximate the solutions of such Markov decision processes. For discrete-time
Markov decision processes, there exist several techniques to address the correspond-
ing numerical approximations. A first group of such techniques deals with a model
with discrete (say, countable or finite but large) state and action spaces. These ap-
proaches rely on stochastic approximation methods, namely, reinforcement learn-
ing, neuro-dynamic programming, approximate dynamic programs, and simulation-
based methods; the interested reader can consult [3, 5, 15, 19, 20]. The second fam-
ily of approximation techniques deals with Markov decision processes with general
(i.e., Borel) state and action spaces. The approach consists then in approximating
the control problem with a discretized Markov decision process with finite state and
action spaces. Its optimal solution is used as an approximation of the solution of the
original problem. Such methods are studied in, e.g., [6, 7, 8, 9, 18].

The continuous-time counterpart of the above described approximation tech-
niques is however less developed. In [10, 16, 17], for instance, continuous-time
control models with countable state space and unbounded transition and cost rates
are approximated by means of a sequence of finite models. It is then shown that the
optimal value functions and the optimal policies of this sequence of finite models
converge to the corresponding optimal solutions of the original control model. Av-
erage cost Markov decision processes under an approach similar to the one in the
present paper are studied in [2].

Our goal in this paper is to propose a method to approximate the optimal dis-
counted cost of a continuous-time Markov decision process M with Borel state
space X and Borel action space A. The original control model M is approximated
by a discretized control model Mk,η , for k ≥ 1 and η > 0, where:

(i) The state space of Mk,η is a finite subset Γk of X. This finite set is obtained as
follows. Under the assumption that the positive part of the transition rates of the
model M is absolutely continuous with respect to some probability measure μ
on X, we approximate μ , in the Wasserstein metric, with a measure μk with finite
support. The set Γk is precisely the support of μk. This measure is chosen such
that, as k grows, the corresponding Wasserstein distance satisfies W (μ,μk)→ 0.

(ii) The action sets A(x), for x ∈ X, are approximated with finite sets Aη(x)⊆ A(x).
The accuracy of the approximation is measured in terms of the Hausdorff dis-
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tance and we will assume that ρA(A(x),Aη(x)) ≤ η . Hence, the approximating
action sets become closer to the original ones as η → 0.

Under suitable hypotheses which will include, among others, Lipschitz conti-
nuity of the elements of the control model M , we will be able to show that the
difference between the optimal discounted cost function V ∗ of M and the optimal
discounted cost V ∗

k,η of the approximating models Mk,η is bounded, in the supre-
mum norm, by a combination of the approximation errors in the state and action
spaces, respectively. Namely, we will show that

‖V ∗ −V ∗
k,η‖ ≤ H1 ·η+H2 ·W (μ,μk)

for some constants H1,H2 > 0 and every k ≥ 1 and η > 0. One of the interesting fea-
tures of the above inequality is that it is a non asymptotic bound. Depending on the
nature of the approximation μk, we will be able to derive either explicit determinis-
tic error bounds or probabilistic bounds decreasing exponentially in probability as k
grows.

The rest of the paper is organized as follows. After introducing some notation,
the continuous-time control model M is constructed in Section 2. Our assumptions
and the basic results on discount optimality for M are studied in Section 3. Our
main results in this paper regarding the approximation of M are given in Section 4.
Finally, we show a numerical application to a queueing model in Section 5.

Notation.

The set of nonnegative integers is N and the real numbers set is R. The notations
x∨ y and x∧ y stand for the maximum and the minimum of x,y ∈ R, respectively.

Given a Borel space Y with metric dY, its Borel σ -algebra will be denoted by
B(Y). In this paper, measurability is always referred to the Borel σ -algebra. For
product spaces, we will consider the taxicab metric and we will as well consider
the product σ -algebra. For a bounded function h : Y → R we will write ‖h‖ =
supy∈Y |h(y)| for its supremum norm.

We say that a function v : Y → Z, where Y and Z are Borel spaces, is Lipschitz
continuous if there exists L ≥ 0 with

dZ(v(x),v(y))≤ L ·dY(x,y) for all x,y ∈ Y.

In this case, we will say that v is L-Lipschitz continuous.
Let B(Y), C(Y), and L(Y) denote the families of real-valued functions on Y

which are bounded and measurable, bounded and continuous, and bounded and Lip-
schitz continuous, respectively, with, obviously, L(Y)⊆ C(Y)⊆ B(Y).

We say that T : B(Y)×Z → R is a transition measure or kernel on the Borel
space Y given the Borel space Z if B �→ T (B|z) is a (signed) measure on (Y,B(Y))
for all z ∈ Z and z �→ T (B|z) is measurable for every B ∈ B(Y). For measurable
v : Y → R, we will denote by T v the function on Z defined as
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T v(z) =
∫

Y
v(y)T (dy|z) for z ∈ Z,

whenever the integral is well defined. We say that T is a stochastic kernel when
T (·|z) is a probability measure on Y for all z ∈ Z. We say that T is LT -Lipschitz
continuous for some LT ≥ 0 when, for any Lv-Lipschitz continuous function v :
Y → R, the mapping z �→ T v(z) is (LT ·Lv)-Lipschitz continuous on Z.

The Hausdorff metric, on the class of nonempty closed sets of a Borel space Z,
is defined as

ρZ(C1,C2) = sup
z1∈C1

inf
z2∈C2

{dZ(z1,z2)}∨ sup
z2∈C2

inf
z1∈C1

{dZ(z1,z2)}.

A multifunction Ψ from Y to Z is a function that associates to each y ∈ Y a
nonempty subset Ψ(y) of Z. It is said to be closed-valued when Ψ(y) is a closed
subset of Z for any y ∈ Y. A closed-valued multifunctionΨ is Lipschitz continuous
when ρZ(Ψ(x),Ψ(y))≤ LΨ ·dY(x,y) for some constant LΨ ≥ 0 and all x,y ∈ Y.

The family of probability measures on (Y,B(Y)) is denoted by P(Y). Given
y ∈ Y, the Dirac probability measure concentrated at y will be denoted by δy, that
is, δy(B) = 1B(y), where 1 denotes the indicator function of the set B ∈ B(Y). The
class of probability measures μ ∈ P(Y) with finite first moment (meaning that∫

Y dY(y,y0)μ(dy)is finite for some y0 ∈ Y) is denoted by P1(Y). Finally, we say
that μ ∈ P(Y) has a finite exponential moment if there is some γ > 0 with∫

Y
exp{γdY(y,y0)}μ(dy)< ∞

for some y0 ∈ Y. The class of all such measures is denoted by Pexp(Y). The fol-
lowing inclusions hold: Pexp(Y)⊆ P1(Y)⊆ P(Y).

The Wasserstein distance between μ and ν in P1(Y) is defined as

W (μ,ν) = sup
f

{∫
Y

f dμ−
∫

Y
f dν

}
where the sup is taken over the set of 1-Lipschitz continuous functions f : Y → R.
In particular, if f : Y → R is L f -Lipschitz continuous, then∣∣∣∫

Y
f dμ−

∫
Y

f dν
∣∣∣≤ L fW (μ,ν).

2 Definition of the Control Model

In this section we will define the control model M we will be dealing with, and we
will provide a formal construction of the corresponding controlled process.
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Elements of the Control Model

The control model M consists of the following elements.

• The state space X and the action space A are Borel spaces with metrics dX and dA.
• The family {A(x)}x∈X of nonempty measurable subsets of A stands for the ac-

tions available at each state x ∈ X. We assume that

K = {(x,a) ∈ X×A : a ∈ A(x)}

is in B(X×A) and that it contains the graph of some measurable f : X → A. Let
Ψ be the multifunction from X to A defined by x �→ A(x).

• The transition rates kernel is q(B|x,a), for B ∈ B(X) and (x,a) ∈ K. For each
fixed (x,a) ∈ K, we have that B �→ q(B|x,a) is a signed measure on X satisfying

q(B|x,a)≥ 0 when x /∈ B, and q(X|x,a) = 0.

In this paper, we will further assume that the transition rates are bounded, mean-
ing that the −q({x}|x,a) are bounded when (x,a) ∈ K. In particular, we can
choose a constant q̂ > 0 such that

sup
(x,a)∈K

{−q({x}|x,a)}< q̂. (1)

• A bounded and measurable cost rate function c : K → R.

The control model M is therefore defined by the tuple

M = (X,A,{A(x) : x ∈ X},q,c).

The positive part of the transition rates kernel q+ is defined as

q+(B|x,a) = q(B|x,a)−q({x}|x,a)1B(x) for B ∈ B(X) and (x,a) ∈ K. (2)

It indeed satisfies q+(B|x,a) ≥ 0 for all B ∈ B(X) and (x,a) ∈ K. The condi-
tion (1) that the transition rates are bounded can be equivalently formulated as
sup(x,a)∈K q+(X|x,a)< ∞.

Construction of the Process

In what follows, we address the construction of the controlled process. We augment
the state space with an isolated point: X∞ = X∪{x∞}. For each n ∈ N, let

Ωn = X× ((0,∞)×X)n × ({∞}×{x∞}
)∞

.

We define the canonical space Ω by means of
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Ω =
(
X× ((0,∞)×X)∞) ∪

⋃
n∈N

Ωn,

and we will consider the corresponding product σ -algebra F . An element of the
canonical space Ω of the form

ω = (x0, . . . ,xn,θn+1,xn+1, . . .) (3)

is interpreted in the following way. For any n ∈N, if xn ∈ X then θn+1 is the sojourn
time of the process at xn; then, either

• θn+1 < ∞ and xn+1 ∈ X is the post-jump location of the process, or
• θn+1 = ∞ and no further jumps occur. In this case we let xm = x∞ and θm = ∞ for

all m > n. Note that such an ω is in Ωn.

For each n ∈ N we define the function Xn : Ω → X∞ which associates to each
ω ∈ Ω as in (3) the state xn ∈ X∞. Similarly, the function Θn : Ω → [0,∞] is given
byΘn(ω)= θn, where we make the convention thatΘ0 is a constant functionΘ0 ≡ 0.

We also define the functions Tn onΩ taking values in [0,∞] as Tn =Θ0+ . . .+Θn.
The function T∞ = limn Tn = ∑θn is called the explosion time of the process, and
ω ∈Ω is called explosive when T∞(ω) is finite.

Finally, for each n ∈ N we let Hn = (X0,Θ1, . . . ,Θn,Xn), which assigns to each
ω ∈Ω its path up to step n, namely,

Hn(ω) = (x0,θ1,x1,θ2,x2, . . .θn,xn).

The set of all such paths is denoted by Hn.
We define a random point measure ν on (0,∞)×X. For any ω ∈ Ω , the mea-

sure ν(ω, ·) places a mass equal to one on the pairs (Tn(ω),Xn(ω)), for each n ≥ 1,
provided that Tn(ω) < ∞. In this way, knowledge of the point measure ν(ω, ·), to-
gether with the initial state x0 ∈ X, gives full knowledge of the sample path ω ∈Ω .
Formally, we write

ν(ω,dt,dx) = ∑
n≥1

I{Tn(ω)<∞}δ(Tn(ω),Xn(ω))(dt,dx).

For any t ≥ 0, we define Ft ⊆ F as the minimal σ -algebra on Ω for which the
mappings

ω �→ H0(ω) and ω �→ ν(ω,(0,s]×B), for 0 < s ≤ t and B ∈ B(X),

are measurable. To conclude, we can define the continuous-time process {ξt}t≥0
taking values in X∞ as

ξt(ω) =
{

Xn(ω), if Tn(ω)≤ t < Tn+1(ω) for some n ∈ N,
x∞, if t ≥ T∞(ω).
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Admissible Policies

The action space is also augmented with an isolated point, i.e., A∞ = A ∪ {a∞}.
The isolated action is the only action available at state x∞; hence, we define
A(x∞) = {a∞}. The transition rates q are extended to a signed kernel on X∞ given
K∪{(x∞,a∞)} by defining q({x∞}|x,a) = 0 for every (x,a)∈ K and q(·|x∞,a∞)≡ 0.
The definition of q+ in (2) is extended to the so-defined signed kernel.

An admissible control policy u is given by a sequence u = (πn)n∈N, where each
πn is a stochastic kernel on A∞ given Hn × (0,∞) that satisfies, in addition,

πn(A(xn)|hn, t) = 1 for all hn = (x0,θ1, . . . ,θn,xn) ∈ Hn and t > 0.

We will denote by U the family of all admissible control policies.
Given u ∈ U , we define a random process πt(da,ω), for t > 0, taking values in

P(A∞) as follows:

πt(da,ω) = ∑
n∈N

I{Tn(ω)<t≤Tn+1(ω}πn(da|Hn(ω), t −Tn(ω))+1{t≥T∞(ω)}δa∞(da).

Observe that {πt} is an {Ft}-predictable random process.
By hypothesis, the set F of measurable functions f : X → A such that f (x)∈ A(x)

for all x ∈ X is nonempty. Any f ∈ F can be extended to a function from X∞
to A∞ by letting f (x∞) = a∞. We can associate to any such f ∈ F the control
policy u = (πn)n∈N ∈ U such that πn(B|hn, t) = δ f (xn)(B) for all n ∈ N, hn =
(x0,θ1, . . . ,θn,xn) ∈ Hn, t > 0, and B ∈ B(A∞). We will identify f ∈ F with the
above defined policy and hence we have F ⊆ U . We will refer to f ∈ F as to a
deterministic stationary policy.

The Controlled Stochastic Process

Let u = (πn)n∈N ∈ U be an admissible control policy. Given Γ ∈ B(X∞), n ∈ N,
hn = (x0,θ1,x1, . . . ,θn,xn) ∈ Hn, and t > 0, we define the intensity of the jumps

λn(Γ ,hn, t) =
∫

A∞
q+(Γ |xn,a)πn(da|hn, t),

and the jump rate as

Λn(Γ ,hn, t) =
∫ t

0
λn(Γ ,hn,s)ds.

Now, given Γ ∈ B((0,∞]×X∞), n ∈ N, and hn = (x0,θ1,x1, . . . ,θn,xn) ∈ Hn, we
consider the stochastic kernel Gn on (0,∞]×X∞ given Hn is defined by

Gn(Γ |hn) = 1Γ (∞,x∞)
[
1{x∞}(xn)+1X(xn)e−Λn(X,hn,∞)

]
+1X(xn)

∫
Γ∩((0,∞)×X)

λn(dx,hn, t)e−Λn(X,hn,t)dt.
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The interpretation is the following: given the path of the process hn ∈ Hn up to
step n, the kernel Gn gives the (conditional) distribution of the sojourn time θn+1
and the post-jump location xn+1.

We can now use Remark 3.43 in [12] to establish that, given an initial state x ∈ X

and an admissible control policy u ∈ U , there exists a probability measure Px,u on
(Ω ,F ) with

Px,u{X0 = x}= 1

and such that, in addition, for any Γ ∈ B((0,∞]×X∞) and n ∈ N

Px,u{(Θn+1,Xn+1) ∈ Γ | Hn}= Gn(Γ |Hn)

almost surely. This probability measure indeed models the controlled process {ξt}
under the policy u. The corresponding expectation operator is denoted by Ex,u.

Remark 1. It is important to mention that under the condition that the transition
rates are bounded (see (1)), the sample paths ω of the process are non-explosive
with probability one, meaning that for any initial state and any control policy we
have Px,u{T∞ < ∞}= 0; see, e.g., [14, Theorem 1].

3 Assumptions and Basic Results

In this section we introduce the total expected discounted cost optimality criterion.
We also state our assumptions on M and prove some important preliminary facts
on the dynamic programming equation.

The Discount Optimality Criterion

Let α > 0 be a given discount rate. The total expected discounted cost of the admis-
sible control policy u ∈ U when the initial state of the system is x ∈ X is defined
as

V (x,u) = Ex,u
[∫ ∞

0
e−αs

∫
A(ξs)

c(ξs,a)πs(da)ds
]
.

It is well defined and finite because the cost rate function c is bounded. In particular,
|V (x,u)| ≤ ‖c‖/α for any x ∈ X and u ∈ U .

The optimal total expected discounted cost function is

V ∗(x) = inf
u∈U

V (x,u) for x ∈ X.

We say that an admissible control policy u∗ ∈ U is optimal when V ∗(x) =V (x,u∗)
for every x ∈ X. We also have ‖V ∗‖ ≤ ‖c‖/α .
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Assumptions

In Assumption 1 below we will use the following notation. We define the stochastic
kernel Q on X given K as

Q(dy|x,a) = 1
q̂
·q(dy|x,a)+δx(dy) for any (x,a) ∈ K, (4)

where q̂ > 0 is taken from in (1). It is easily seen that for every B ∈ B(X) and
(x,a) ∈ K we have Q(B|x,a)≥ 0, and also that Q(X|x,a) = 1.

Assumption 1. (i) The cost function c is in L(K), with Lipschitz constant Lc.
(ii) The multifunctionΨ is compact-valued and LΨ -Lipschitz continuous.

(iii) If v ∈ C(X) then qv ∈ C(K) or, equivalently, Qv ∈ C(K).
(iv) The stochastic kernel Q is LQ-Lipschitz continuous.
(v) The Lipschitz constants above and the discount rate satisfy

α > q̂
(
LQ(1+LΨ )−1

)
.

We say that a function v ∈ B(X) is a solution of the dynamic programming equa-
tion if it satisfies

αv(x) = inf
a∈A(x)

{
c(x,a)+

∫
X

v(y)q(dy|x,a)
}

for each x ∈ X.

Moreover, we say that f ∈ F attains the minimum in the dynamic programming
equation when

αv(x) = c(x, f (x))+
∫

X
v(y)q(dy|x, f (x)) for each x ∈ X.

Our next result characterizes the optimal discounted cost function V ∗ as the so-
lution of the dynamic programming equation and it explores further properties. The
proof of this result follows standard arguments and it will be omitted; see, for in-
stance, Theorem 4 in [14] or Lemma 2.1 in [2].

Theorem 1. Suppose that the control model M satisfies Assumption 1.

(i) The optimal discounted cost function V ∗ is the unique solution in B(X) of the
dynamic programming equation, i.e.,

αV ∗(x) = min
a∈A(x)

{
c(x,a)+

∫
X

V ∗(y)q(dy|x,a)
}

for each x ∈ X.

(ii) Any f ∈ F attaining the minimum in the dynamic programming equation, and
such f indeed exist, is an optimal deterministic stationary policy (that is why we
write min instead of sup in (i) above).

(iii) The optimal discounted cost function V ∗ is in L(X) with ‖V ∗‖ ≤ ‖c‖/α and
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LV ∗ =
Lc(1+LΨ )

α+ q̂(1−LQ(1+LΨ ))
.

Note that the dynamic programming equation can be equivalently written as

V ∗(x) = inf
a∈A(x)

{
c(x,a)
α+ q̂

+
q̂

α+ q̂

∫
X

V ∗(y)Q(dy|x,a)
}

for each x ∈ X,

and so it can be characterized as a fixed point TV ∗ =V ∗ of the operator T defined,
for v ∈ B(X), as

T v(x) = inf
a∈A(x)

{
c(x,a)
α+ q̂

+
q̂

α+ q̂

∫
X

v(y)Q(dy|x,a)
}

for each x ∈ X. (5)

It is worth noting that T is a contraction operator with ‖T v−Tu‖ ≤ q̂
α+q̂‖v−u‖.

4 Approximation Results

In this section we are going to approximate the control model M , which we will
subsequently call the original control model, by means of discretized control models
Mk,η , indexed by an integer k ≥ 1 and η > 0. We will call Mk,η the approximating
control model.

At this point, it is useful to recall the definition of the positive part q+ of the
transition rates kernel q, given in (2):

q+(B|x,a) = q(B|x,a)−q({x}|x,a)1B(x) for B ∈ B(X) and (x,a) ∈ K.

The above definition implies that for any (x,a) ∈ K we have q+({x}|x,a) = 0 and
so q+(X|x,a) =−q({x}|x,a). In particular, given v ∈ B(X) we have∫

X
v(y)q(dy|x,a) =

∫
X

v(y)q+(dy|x,a)− v(x)q+(X|x,a)

=
∫

X

(
v(y)− v(x)

)
q+(dy|x,a) (6)

for each (x,a) ∈ K.
Assumptions 2(i)–(ii) below impose that the kernel q+ is absolutely continuous

with respect to some probability measure μ for a sufficiently regular density func-
tion; this will allow us to discretize the state space. The condition in Assumption
2(iii) will be needed to discretize the action sets.

Assumption 2. There exist a probability measure μ ∈ P1(X) and a nonnegative
function p ∈ B(X×K) such that:

(i) For every B ∈ B(X) and (x,a) ∈ K
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q+(B|x,a) =
∫

B
p(y|x,a)μ(dy).

(ii) There exists some Lp > 0 such that the function p(·|x, ·) is Lp-Lipschitz continu-
ous on X×A(x) for each x ∈ X.

(iii) For every η > 0 and x ∈ X, there exists a finite set Aη(x) ⊆ A(x) such that the
multifunction defined on X by x �→ Aη(x) is Borel-measurable and

ρA

(
A(x),Aη(x)

)≤ η .

Given η > 0, we will denote by Kη the graph of the multifunction x �→ Aη(x)
which, as a consequence of Proposition D.4 in [11], is a measurable subset of X×A.
Moreover, the sets Aη(x) being compact (they are finite) the set Fη of functions
f : X → A such that f (x) ∈ Aη(x) for all x ∈ X is not empty; see [13].

Under this assumption, the transition rates of the control model M can be written

q(B|x,a) =
∫

B
p(y|x,a)μ(dy)−1B(x)

∫
X

p(y|x,a)μ(dy) (7)

for B ∈ B(X) and (x,a) ∈ K.

Construction of the Approximating Model Mk,η

For each k ≥ 1, let μk ∈ P(X) be a probability measure with finite support Γk ⊆ X.
For interpretation purposes, one may think of μk as a probability measure supported
on k points in X, and such that W (μ,μk)→ 0 as k → ∞. Our next definition uses the
sets Aη(x) given in Assumption 2.

Definition 1. Given k ≥ 1 and η > 0, define the continuous-time control model

Mk,η = (X,A,{Aη(x) : x ∈ X},qk,c)

where
qk(B|x,a) =

∫
B

p(y|x,a)μk(dy)−1B(x) ·
∫

X
p(y|x,a)μk(dy), (8)

for B ∈ B(X) and (x,a) ∈ Kη .

Observe that qk in (8) is the analogous of (7) where we have just replaced μ
with μk. Note that qk is indeed a transition rate kernel on X given Kη because, for
B ∈ B(X) and (x,a) ∈ Kη , we have qk(X|x,a) = 0 and qk(B|x,a) ≥ 0 whenever
x /∈ B. Note that for any (x,a) ∈ Kη

−qk({x}|x,a) ≤
∫

X
p(y|x,a)μk(dy)

≤
∫

X
p(y|x,a)μ(dy)+LpW (μ,μk) (9)

= −q({x}|x,a)+LpW (μ,μk), (10)
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where in (9) we make use of Lipschitz continuity of p(·|x,a), and so the control
models Mk,η have bounded transition rates as well.

There is a slight abuse of notation in the definition of qk in (8) because, although
the expression given in (8) is valid for any (x,a) ∈ K, in fact we will only consider
it for (x,a) ∈ Kη . We prefer, however, to keep the notation qk instead of the more
cumbersome qk,η . Finally, we maintain the notation c for the cost rate function of
Mk,η which is defined on Kη .

The construction of the controlled stochastic process carried out in Section 2 can
be done for the control models Mk,η . In particular, we can construct the family
of admissible control policies Uη ⊇ Fη , and the existence of the corresponding
probability measure P

x,u
k,η on the canonical space, for a given initial state x ∈ X and

a control policy u ∈ Uη , follows as well.

Remark 2. In view of (6) and the definition of qk we can write, for v ∈ B(X),∫
X

v(y)q(dy|x,a) =
∫

X

(
v(y)− v(x)

)
p(y|x,a)μ(dy)

for any (x,a) ∈ K, while for every (x,a) ∈ Kη we have∫
X

v(y)qk(dy|x,a) =
∫

X
(v(y)− v(x)

)
p(y|x,a)μk(dy).

Regarding the control model Mk,η , it is worth mentioning that the first jump of
the process (if it ever occurs) necessarily takes the process to the support Γk of μk,
and the process will remain thereafter in Γk.

Similarly, given the discount rate α > 0, we can define the corresponding optimal
discounted cost function on X, which we will denote by V ∗

k,η . Our next result is
proved using standard arguments.

Proposition 1. Suppose that Assumptions 1 and 2 hold. Then for every k ≥ 1 and
η > 0, the control model Mk,η satisfies the following properties.

(i) The optimal discounted cost function V ∗
k,η is the unique solution in B(X) of the

dynamic programming equation

αV ∗
k,η(x) = min

a∈Aη (x)

{
c(x,a)+

∫
X

V ∗
k,η(y)qk(dy|x,a)

}
for each x ∈ X.

(ii) Any f ∈ Fη attaining the minimum in the dynamic programming equation (and
such f indeed exist) is an optimal deterministic stationary policy for Mk,η .

We define the constant (recall (1))

d=
1

Lp
·
(

q̂− sup
(x,a)∈K

{−q({x}|x,a)})> 0 (11)

and suppose now that the probability measure μk is such that W (μ,μk) ≤ d. In
particular, by (10), this implies that
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sup
(x,a)∈Kη

{−qk({x}|x,a)}< q̂

which is analogous to (1). Then we can define a stochastic kernel on X given Kη by
means of (cf. (4))

Qk(dy|x,a) = 1
q̂
·qk(dy|x,a)+δx(dy).

We indeed have, for any (x,a) ∈ Kη , that Qk(B|x,a) ≥ 0 for all B ∈ B(X) and
also that Qk(X|x,a) = 1. The dynamic programming equation for the control model
Mk,η can thus be written as a fixed point V ∗

k,η = Tk,ηV ∗
k,η of the operator

Tk,ηv(x) = min
a∈Aη (x)

{
c(x,a)
α+ q̂

+
q̂

α+ q̂

∫
X

v(y)Qk(dy|x,a)
}

for each x ∈ X. (12)

As for the operator T defined in Section 3, we have that Tk,η is a contraction operator
on B(X) with modulus q̂

α+q̂ .
Our next result compares the operators T and Tk,η when they are applied to a

Lv-Lipschitz continuous function v ∈ L(X).

Lemma 1. Suppose that Assumptions 1 and 2 are satisfied. Consider the control
model Mk,η , where we assume that W (μ,μk) ≤ d. Under these conditions, for any
v ∈ L(X) we have

‖T v−Tk,ηv‖ ≤ Lc +2||v||Lp

α+ q̂
·η+

2||v||Lp + ||p||Lv

α+ q̂
·W (μ,μk).

Proof. Fix x ∈ X. There exists some a ∈ Aη(x) attaining the minimum in the defi-
nition of Tk,ηv(x) (see (12)). Hence, since a ∈ A(x) as well, we have

T v(x)−Tk,ηv(x) ≤ q̂
α+ q̂

[∫
X

v(y)Q(dy|x,a)−
∫

X
v(y)Qk(dy|x,a)

]
=

1
α+ q̂

[∫
X

v(y)q(dy|x,a)−
∫

X
v(y)qk(dy|x,a)

]
=

1
α+ q̂

[∫
X
(v(y)− v(x))p(y|x,a)μ(dy)

−
∫

X
(v(y)− v(x))p(y|x,a)μk(dy)

]
,

where the last equation is derived from Remark 2. The functions y �→ v(y)− v(x)
and y �→ p(y|x,a) are both bounded and Lipschitz continuous; hence, their product
is (2||v||Lp + ||p||Lv)-Lipschitz continuous. We conclude that

T v(x)−Tk,ηv(x)≤ 1
α+ q̂

· (2||v||Lp + ||p||Lv)W (μ,μk). (13)
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Conversely, suppose that a ∈ A(x) attains the minimum in the definition of T v(x)
in (5). Let a′ ∈ Aη(x) be the closest point in Aη(x) to a ∈ A(x) with, therefore,
dA(a,a′)≤ η . We have that Tk,ηv(x)−T v(x) is less than or equal to

c(x,a′)− c(x,a)
α+ q̂

+
q̂

α+ q̂

[∫
X

v(y)Qk(dy|x,a′)−
∫

X
v(y)Q(dy|x,a)

]
.

Regarding the first term we have |c(x,a′)− c(x,a)| ≤ Lcη . The second term equals

1
α+ q̂

[∫
X
(v(y)− v(x))p(y|x,a′)μk(dy)−

∫
X
(v(y)− v(x))p(y|x,a)μ(dy)

]
.

Adding and substracting
∫
(v(y)− v(x))p(y|x,a′)μ(dy) we obtain∫

X
(v(y)− v(x))p(y|x,a′)μk(dy)−

∫
X
(v(y)− v(x))p(y|x,a′)μ(dy)

≤ (2||v||Lp + ||p||Lp)W (μ,μk)

arguing as previously, and we also obtain∫
X
(v(y)− v(x))(p(y|x,a′)− p(y|x,a))μ(dy)≤ 2||v||Lpη .

Summarizing, we have shown that

Tk,ηv(x)−T v(x)≤ Lc +2||v||Lp

α+ q̂
·η+

2||v||Lp + ||p||Lv

α+ q̂
·W (μ,μk).

Combined with (13), we obtain the desired result. ��
We define the constant H1 and H2 as follows:

H1 =
Lc

α
+

2||c||Lp

α2

H2 =
2||c||Lp

α2 +
||p||Lc(1+LΨ )

α(α+ q̂(1−LQ(1+LΨ )))
.

We are now ready to state our main result in the paper.

Theorem 2. Suppose that Assumptions 1 and 2 hold and consider the control
model Mk,η . For every η > 0 and any k ≥ 1 with W (μ,μk)≤ d we have

‖V ∗ −V ∗
k,η‖ ≤ H1 ·η+H2 ·W (μ,μk).

Proof. Observe that, the optimal discounted cost functions V ∗ and V ∗
k,η being the

respective fixed points of the operators T and Tk,η , we obtain
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‖V ∗ −V ∗
k,η‖ = ‖TV ∗ −Tk,ηV ∗

k,η‖
≤ ‖TV ∗ −Tk,ηV ∗‖+‖Tk,ηV ∗ −Tk,ηV ∗

k,η‖
≤ ‖TV ∗ −Tk,ηV ∗‖+ q̂

α+ q̂
‖V ∗ −V ∗

k,η‖,

and so
‖V ∗ −V ∗

k,η‖ ≤ α+ q̂
α

‖TV ∗ −Tk,ηV ∗‖.
In Lemma 1 we derived bounds on ‖TV ∗ −Tk,ηV ∗‖, where we know that the func-
tion V ∗ is in L(X): its supremum norm satisfies ‖V ∗‖ ≤ ‖c‖/α and its Lipschitz
constant LV ∗ is given in Theorem 1(iii). The result readily follows. ��

The important feature of the constants H1 and H2 is that they depend on the
original data of the control model M . Hence, for a given precision ε > 0 it is possi-
ble to determine explicitly the values of η > 0 and W (μ,μk) needed to achieve the
accuracy ‖V ∗ −V ∗

k,η‖ ≤ ε .
Now we address the numerical applicability of the approximation method.

Theorem 3. Under Assumptions 1 and 2, given η > 0 and k ≥ 1 with W (μ,μk)≤ d,
the optimal discounted cost V ∗

k,η(x) of the control model Mk,η can be explicitly
computed for any x ∈ X.

Proof. For the model Mk,η , starting from arbitrary x ∈ X the first jump of the con-
trolled process leads it to the support Γk of μk, and the process will remain in Γk
afterwards. Hence, if the initial state of the system is in Γk, the control model Mk,η
indeed behaves as a finite state and action system, with state space Γk and action sets
Aη(x), for each x ∈ Γk.

Therefore, the optimal discounted cost function V ∗
k,η can be explicitly computed

on Γk. To see this, just use the fixed point equation V ∗
k,η = Tk,ηV ∗

k,η (recall (12)),
which is, on Γk, the dynamic programming equation of a discounted discrete-time
Markov decision process with finite state and action spaces. This equation can be
solved explicitly by using, for instance, the policy iteration algorithm, which con-
verges in a finite number of steps.

Once we have determined V ∗
k,η on Γk, let us show how to compute V ∗

k,η(x) for any
x ∈ X that is not in Γk. A careful inspection of the dynamic programming equation
in Proposition 1(i) at x shows that it takes the form

0 = min
a∈Aη (x)

{F(a)−V ∗
k,η(x)G(a)} (14)

where
F(a) = c(x,a)+ ∑

y∈Γk

V ∗
k,η(y)p(y|x,a)μk({y})

and
G(a) = α+ ∑

y∈Γk

p(y|x,a)μk({y}),
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that is, F and G depend on a and on the previously computed V ∗
k,η(y) for y ∈Γk. The

solution of (14) is
V ∗

k,η(x) = min
a∈Aη (x)

{
F(a)/G(a)

}
.

Hence, given any x ∈ X, it is possible to compute explicitly V ∗
k,η(x). ��

Now we discuss how to approximate the probability measure μ ∈ P1(X) in the
Wasserstein distance by means of probability measures with finite support.

Deterministic Approximations

Proposition 2. Given μ ∈ P1(X) and ε > 0, there exists a probability measure
ν ∈ P(X) with finite support such that W (μ,ν)≤ ε .

For the proof of this result we refer to [1, Proposition 1.1]. It is based on cov-
ering the Borel space X with balls of small radius. The construction of ν given in
Proposition 2 controls tightly the distance W (μ,ν) but there is not an a priori bound
on the number of points in the support of ν , which is related to the dimension of X.

Empirical Approximations

Given μ ∈ P1(X), consider now the probability space (X∞,B(X∞),Pμ) which is
the probability space related to sampling a sequence {ζn}n≥1 of i.i.d. random vari-
able on X with distribution μ . For each n ≥ 1, the empirical probability measure
obtained from the first n samples is a random probability measure on X supported
on (at most) n points:

μn =
1
n ∑δζi .

Our next result is taken from Corollary 2.5 in [4].

Proposition 3. Given μ ∈ Pexp(X) and ε > 0 there exist positive constants Cε and
Dε such that

Pμ{W (μ,μn)> ε} ≤Cε exp{−Dεn} for all n ≥ 1.

With the so-defined empirical approach, we obtain convergence in probability at
an exponential speed. Moreover, we control the number of points in the support of
the measure μn but we do not have a priori knowledge of the constants Cε and Dε ,
which depend on the dimension of X.

We thus observe a sort of duality between the deterministic and the empirical
approaches concerning, on one hand, the accuracy of the approximation and, on
the other hand, the number of points in the support of the approximating measure
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needed to achieve this accuracy. Neither approach can, of course, avoid the influ-
ence of the dimension of X. Concerning both the deterministic and the empirical
approaches we have the following result.

Theorem 4. Suppose that the control model M satisfies Assumptions 1 and 2.

(i) [The deterministic approach]
If μ ∈ P1(X) then for any ε > 0 there exist η > 0 and μk ∈ P(X) with finite
support such that ‖V ∗ −V ∗

k,η‖ ≤ ε .
(ii) [The empirical approach]

If μ ∈ Pexp(X) then for any ε > 0 there exist constants η > 0, C, and D such
that

Pμ{‖V ∗ −V ∗
k,η‖> ε} ≤ Cexp{−Dk} for all k ≥ 1,

where μk is the empirical probability measure for a sample of size k.

Proof. (i). To prove this part, just choose η = ε
2H1

and choose a probability measure
μk with finite support such that W (μ,μk)≤ d∧ ε

2H2
. The result readily follows from

Theorem 2.
(ii). Choose again η = ε

2H1
and, for the constant ε ′ = d∧ ε

2H2
consider C = Cε ′

and D = Dε ′ taken from Proposition 3. We deduce from Theorem 2 the following
inclusion of sets (of X∞) for any k ≥ 1

{||V ∗ −V ∗
k,η ||> ε} ⊆ {W (μ,μk)> ε ′}.

The result now follows. ��

5 Numerical example

We consider a queueing system M with finite capacity. For some constant C > 0 let
X = [0,C] be the state space. The action space is an interval A = [am,aM]⊂ R, and
we put A(x) = A for each x ∈ X. The transition rates of the system are defined as

q(B|x,a) =
∫

B∩(x,C]
2(y− x)dy+a1B(0)− (a+(C− x)2)1B(x)

for any (x,a) ∈ K and B ∈ B(X). The cost rate function c is a function in L(K),
while the discount rate is some α > 0.

Proposition 4. The queueing system M satisfies Assumptions 1 and 2 provided that

α+am > (1+C)(2C+1). (15)

Proof. In the state space X we will consider the usual metric on (0,C], that is,
dX(x,y) = |x− y| for 0 < x,y ≤ C, and we define dX(0,x) = 1+ x for 0 < x ≤ C.
This is equivalent to identify the point 0 with −1. We need to do so to avoid discon-
tinuities at 0. In A we consider the usual metric.
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Note that the transition rates of the system are indeed bounded, and we can
choose

q̂ > sup
(x,a)∈K

{−q({x}|x,a)}= aM +C2.

Assumptions 1(i)–(iii) are easy to verify. In particular, note that the Lipschitz con-
stant of the action sets multifunction is LΨ = 0. To check Assumption 1(iv), given
v ∈ L(X) we must determine the Lipschitz constant of Qv. To this end, observe that
we can assume that v(0) = 0. We thus have

Qv(x,a) =
1
q̂

∫ C

x
2v(y)(y− x)du+ v(x)

(
1− (C− x)2 +a

q̂

)
for (x,a) ∈ K.

Some elementary calculations (for details, consult [2, Section 5]) yield that the
stochastic kernel Q is indeed Lipschitz continuous with

LQ = 1− am

q̂
+

(1+C)(2C+1)
q̂

.

Finally, Assumption 1(v) follows directly from (15). Hence, we have shown that the
queueing system M satisfies Assumption 1.

Now we turn our attention to Assumption 2. Given B ∈ B(X), 0 ≤ x ≤ C, and
a ∈ A, the positive part of the transition rates q is given by

q+(B|x,a) =

⎧⎪⎪⎨⎪⎪⎩
∫

B∩(x,C]
2(y− x)dy+a1B(0) if x > 0∫

B∩(0,C]
2ydy if x = 0.

We fix an arbitrary 0 < β < 1 and we define the probability measure μ on X as

μ(dy) = βδ0(dy)+(1−β ) · 1
C
λ (dy),

where λ is the Lebesgue measure on (0,C]. It is straightforward to check that the
density function p defined, for 0 < x ≤C as

p(y|x,a) =
{

2C
1−β (y− x)+ if 0 < y ≤C and a ∈ A

a
β if y = 0 and a ∈ A,

and for x = 0 as

p(y|0,a) =
{

2C
1−β y if 0 < y ≤C and a ∈ A

0 if y = 0 and a ∈ A,

satisfies the requirements of Assumption 2(i). The so-defined function p is bounded
and Lipschitz continuous in (y,a) ∈ X×A uniformly in x ∈ X. Note that the partic-
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ular metric we have considered in X avoids the discontinuity of p(·|x,a) at 0 when
x > 0. We have thus established Assumptions 2(i)–(ii).

Regarding Assumption 2(iii) we will only consider values of η less than one.
Hence, for any 0 < η < 1 and x ∈ X, the set Aη(x) consists of [1/η ] + 1 equally
spaced points in A, that is,

Aη(x) =
{

am + j(aM −am)/[1/η ]
}

j=0,1,...,[1/η ].

In the sequel we will simply write Aη since the above defined sets do not depend
on x ∈ X. It is easy to check that ρA(A,Aη) ≤ η . This completes the proof of the
proposition. ��

Given k ≥ 1, the probability measure μk ∈ P(X) is defined as

μk(dy) = βδ0(dy)+(1−β )1
k

k

∑
j=1
δx j(dy)

for some x1, . . . ,xk ∈ (0,C]. The measure μk should be a good approximation in the
Wasserstein metric of the measure μ . So, if we follow the so-called deterministic
approach described above (recall Proposition 2) then we will let x j = jC/k for 1 ≤
j ≤ k, which yields

W (μ,μk) =
(1−β )C

2k
.

If, on the other hand, we follow the empirical approach (recall Proposition 3) then
the {x j}1≤ j≤k will be obtained by sampling k i.i.d. random variables uniformly dis-
tributed on (0,C].

Let us now determine the transition rates of the control model Mk,η . We denote
by Γk = {x0,x1, . . . ,xk} the support of the measure μk, where we let x0 = 0. Starting
from some (xi,a) for 1 ≤ i ≤ k and a ∈ Aη , recalling (8) and the definition of the
density function p given above, it can be seen that

qk({x j}|xi,a) = 2(x j − xi)
+C/k for 1 ≤ j ≤ k with i �= j,

while qk({0}|xi,a) = a for 1 ≤ i ≤ k. Starting from (0,a) for a ∈ Aη we obtain

qk({x j}|0,a) = 2x jC/k for 1 ≤ j ≤ k.

Finally, starting from (x,a) ∈ Kη with x /∈ Γk we have

qk({x j}|x,a) = 2(x j − x)+C/k for 1 ≤ j ≤ k, and qk({0}|x,a) = a.

The value of qk({x}|x,a) is obtained just by imposing qk(X|x,a) = 0.
It is worth noting that the particular value of q̂ is irrelevant for the control models

M and Mk,η . Hence, the constant d in (11) can be arbitrarily large, and so the
condition that W (μ,μk)≤ d is not needed for this queueing model.
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Numerical Experimentation

For the values of the parameters of the queueing system we choose C = 1, A= [7,8],
and c(x,a) = (1− x)(10− a). By Proposition 4, we can choose any discount rate
α > 0. For our numerical calculations we will let α = 0.1.

Given k ≥ 1, for the discretization of the state space we choose 0 = x0 < x1 <
.. . < xk points as described previously. Regarding the action space, we let η = 1/k,
so that we place k + 1 equally spaced points in A. So, the approximating control
model will be simply denoted by Mk.

As a consequence of Theorem 3, we are now in position to determine V ∗
k (x)

explicitly for any x ∈ X.

The Deterministic Approach

Given k ≥ 1, we consider the finite support Γk of μk consisting of the points i ·C/k
for 0 ≤ i ≤ k. The actions are discretized as described previously. We can compute
explicitly the optimal discounted cost V ∗

k (0) of the model Mk for the initial state 0.
We know that W (μ,μk) =

(1−β )C
2k . Since we have chosen η = 1/k, we derive

from Theorem 2 that the error when approximating V ∗(0) is of order 1/k, that is

|V ∗
k (0)−V ∗(0)|= O(1/k). (16)

We perform the calculations for k taking the values k = 50,100,150,200, . . . ,1000.
For the 20 corresponding values of k we perform a linear regression analysis of the
form

V ∗
k (0)∼ γ0 + γ1

1
k

for some values γ0,γ1 ∈ R.
Figure 1 shows the results: in red we display the 20 values of V ∗

k (0), while the
solid blue line shows the regression line (a hyperbole since the axis of the abscissa
displays k). This yields the regression coefficients

γ̂0 = 18.4668 and γ̂1 =−2.3694

with an almost perfect fit (the coefficient of determination is practically equal to
one):

max
k=50,...,1000

∣∣V ∗
k (0)−18.4668+2.3694/k

∣∣= 3 ·10−5.

The estimator of V ∗(0) is thus γ̂0 = 18.4668. We conclude empirically that the
bound (16) is tight even for relatively small values of k, and we can provide an
explicit estimation of the multiplicative constant in the O term, namely

|V ∗
k (0)−V ∗(0)| � 2.3694

k
.
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Fig. 1 Fitting V ∗
k (0)∼ γ0 + γ1/k.

Most importantly, the above approximation is non-asymptotic in the sense that it is
valid for relatively small values of k.

The Empirical Approach

Let ζ1, . . . ,ζk be i.i.d. random variables uniformly distributed on (0,C]. With Γk, the
support of μk, consisting of the point 0 and the k values of samples, we can explicitly
compute the optimal discounted cost of the approximating model Mk at the initial
state 0, that is, we can determine V ∗

k (0). Note that the so-defined V ∗
k (0) is in fact

a random variable since it depends on the particular sample that is observed. The
random variable V ∗

k (0) is thus interpreted as an estimator of the optimal discounted
cost V ∗(0) of the original control model M .

We take 10000 independent samples of size k of the random variables ζ1, . . . ,ζk,
and hence we have at hand 10000 independent realizations of the random variable
V ∗

k (0). This analysis is carried out for the values of k = 10,20, . . . ,120.
Figure 2 displays the density estimation for k = 30,60,90,120. Namely, we fit

a density based on normal kernels to the 10000 observations, so as to obtain an
estimation of the density of the random variable V ∗

k (0). We see that the density
functions have approximately the same mode and they become sharper as k grows.
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Fig. 2 Estimation of the density function of V ∗
k (0).

In Table 1, for several values of k, we give the mean and the standard deviation of
the corresponding sample of size 10000 of the random variable V ∗

k (0). Note that the
means are very stable, while the standard deviation decreases as k grows. The values
of the mean are consistent with the approximation γ̂0 obtained with the deterministic
approach.

Table 1 Sample mean and standard deviation of the V ∗
k (0).

k = 30 k = 60 k = 90 k = 120

Mean 18.4715 18.4688 18.4667 18.4693
Std. Dev. 0.2375 0.1685 0.1403 0.1192

From Theorem 4 we know that, given ε > 0, there exist some positive constants
Cε and Dε such that

Pμ{|V ∗
k (0)−V ∗(0)|> ε} ≤ Cε exp{−Dεk} for all k ≥ 1. (17)

To check this inequality, we intend to approximate Pμ{|V ∗
k (0)−V ∗(0)|> ε}, but

note that V ∗(0) is in fact unknown. However, we can replace it with the mean ṽ of
the 10000 observations of V ∗

120(0) (which is presumably the most precise estimation
of v∗ we have at hand). For the particular case of the simulations we have made, we
will let ṽ = 18.4693. Moreover, the distribution of V ∗

k (0) is not known, although we
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have 10000 realizations of this random variable. Hence, we will compute for how
many of the 10000 samples we have |V ∗

k (0)− ṽ| > ε and then we will divide it by
10000, so as to obtain the estimation pk,ε ∼ Pμ{|V ∗

k (0)−V ∗(0)|> ε}.

10 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

=0.05
linear fit
=0.1

linear fit
=0.2

linear fit
=0.4

linear fit

Fig. 3 Linear regression − log pk,ε ∼ aε +bεk.

For a choice of four values for the parameter ε , namely, ε = 0.05, 0.1, 0.2, 0.4
we perform a linear regression of the form

− log pk,ε ∼ aε +bεk for k = 10,20, . . . ,120

(here, note that ε remains fixed while k varies).

Table 2 Linear fit of − log pk,ε .

ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.4

R-squared 0.9806 0.9910 0.9935 0.9968
ordinate aε 0.0971 0.1882 0.3740 0.6775
slope bε 0.0025 0.0062 0.0167 0.0546

Table 2 shows the coefficient of determination and the coefficients of the regres-
sion analysis for the particular sample we have taken, while in Figure 3 we show the
corresponding linear fit. The linear fit is indeed very good and it yields the approxi-
mations for the estimation error shown in Table 3.
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Table 3 Approximation of the estimation error Pμ{|V ∗
k (0)−V ∗(0)|> ε}.

ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.4

0.9074 · e−0.0025k 0.8285 · e−0.0062k 0.6880 · e−0.0167k 0.5079 · e−0.0546k

This shows, empirically, not only that the bound (17) is satisfied, but that it is
a tight bound. It is worth stressing that this is a non-asymptotic bound, which is
accurate even for small values of the sample size k. The multiplicative constants Cε
are reasonably low and they show the expected behavior (they decrease as ε grows),
while the constant Dε in the exponent grows with ε , which was also to be expected.
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Some Linear-Quadratic Stochastic Differential

Games Driven by State Dependent

Gauss-Volterra Processes�

Tyrone E. Duncan and Bozenna Pasik-Duncan

Abstract In this paper a two player zero sum stochastic differential game in a fi-
nite dimensional space having a linear stochastic equation with a state dependent
Gauss-Volterra noise is formulated and solved with a quadratic payoff for the two
players and a finite time horizon. The control strategies are continuous linear state
feedbacks. A Nash equilibrium is verified for the game and the two optimal strate-
gies are obtained using a direct method that does not require solving nonlinear par-
tial differential equations or forward-backward stochastic differential equations. The
Gauss-Volterra processes are singular integrals of a standard Brownian motion and
include various types of fractional Brownian motions as well as some other Gaus-
sian processes.

Keywords. Stochastic differential games, fractional Brownian motions, Gauss-
Volterra processes
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1 Introduction

A major difficulty for a solution of a stochastic differential game is determining ex-
plicit optimal strategies for the players. This difficulty is significantly increased if
the noise process and thereby the state process are not Markov processes or mar-
tingales. The method used in this paper to determine the optimal strategies that are
continuous feedback operators is direct so it does not require solving partial differ-
ential equations or special types of forward-backward stochastic differential equa-
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tions. The noise processes are assumed to be scalar Gauss-Volterra processes that
enter the stochastic equation as a product with the state so the noise is state depen-
dent. These processes are represented as singular integrals of stochastic integrals
with respect to a standard Brownian motion and they include fractional Brownian
motions for the Hurst parameter H ∈ ( 1

2 ,1), Liouville fractional Brownian motions
and multi-fractional Brownian motions.

A significant amount of literature exists for determining optimal strategies for
stochastic differential games as well as general treatises e.g. [2], [18]. Isaacs [15]
obtained a pair of nonlinear partial differential equations that become one equa-
tion if the game has a value e.g. [12] though the noise is required to be a Markov
process to use these PDE methods. Another approach is to solve an appropriate
forward-backward stochastic differential equation e.g. [13]. If the players’ strategies
are determined from the family of adapted processes of the state then the optimal
strategies for these Gauss-Volterra processes will typically be functionals of the past
of the state e.g. [6], [5]. Since these strategies are often not desirable practically, it is
natural to restrict the strategies to be linear feedback functions of the system state to
provide practicality. This latter choice of strategies is made for the present work. The
authors are not aware of any other results for stochastic differential games driven by
general Gauss-Volterra processes. This work was motivated by the optimal control
results in [9] and the stochastic differential game results in [5].

2 Stochastic Differential Game Formulation

Initially the stochastic equation for the two person differential game is given. The
state of the game is described by the following stochastic equation.

dX(t) = A(t)X(t)dt +B(t)U(t)dt +C(t)V (t)dt +σ(t)X(t)db(t) (1)
X(0) = x0 (2)

where X(t) ∈ Rn, A(t) ∈ L (Rn,Rn), B(t) ∈ L (Rn,Rk1), U(t) ∈ Rk1 , C(t) ∈
L (Rk2 ,Rn), V (t) ∈Rk2 ,σ(t) ∈R, A,B,C,σ are continuous functions, (k1,k2) are
positive integers, (b(t), t ≥ 0), is a real-valued Gauss-Volterra stochastic process
that is defined subsequently, x0 ∈Rn.

The payoff functional, JT , is defined as

JT (U,V ) = E[
∫ T

0
(〈Q(t)X(t),X(t)〉+ 〈R(t)U(t),U(t)〉 (3)

− 〈S(t)V (t),V (t)〉)dt + 〈GX(T ),X(T )〉]

where Q,R,S are continuous, symmetric and positive linear transformations and G
is positive and symmetric.

Player 1 with strategy U seeks to minimize JT and player 2 with strategy V seeks
to maximize JT . The families of strategies, U and V , for the two players are defined
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now.
(A1)
U = {U : [0,T ]→Rk1 where U(t) = K1(t)X(t) and K1 is continuous}
V = {V : [0,T ]→Rk2 where V (t) = K2(t)X(t) and K2 is continuous}
Thus the strategies are restricted to be continuous linear feedbacks. The Riccati
equation used to obtain optimal strategies for the two players for this stochastic
differential game is

dP(t)
dt

= −AT P−PA+PBR−1BT P−PCS−1CT P−Q+αP (4)

P(0) = G (5)

where α is defined subsequently. It is assumed that the Riccati equation has a
unique, positive solution. Note that this Riccati equation differs from the standard
one for a linear stochastic equation with a Brownian motion and a quadratic payoff.
A sufficient condition for the uniqueness and positivity of the solution of the Riccati
equation is that BR−1BT −CS−1CT > 0.

A definition of a Gauss-Volterra process is given now with some examples to
indicate its range of applicability. The scalar process (b(t), t ≥ 0) is a Gauss-Volterra
process with zero mean, that can be described by its covariance function, R, as

R(t,s) = E[b(t)b(s)] :=
∫ min(t,s)

0
K(t,r)K(s,r)dr (6)

where the kernel K : R2
+ → R satisfies the following four conditions

• (K1) K(t,s) = 0 for s > t, K(0,0) = 0, and K(t, ·) ∈ L2(0, t) for each t ∈ R+.
• (K2) For each T > 0 there are positive constants C,β such that∫ T

0
(K(t,r)−K(s,r))2dr ≤C|t − s|β , t,s ∈ (0,T ]. (7)

• (K3) (i) K = K(t,s) is differentiable in the first variable in {0 < s < t < ∞}, both
K and ∂

∂ t K are continuous and K(s+,s) = 0 for each s ∈ [0,∞)

(ii) | ∂K
∂ t (t,s)| ≤ cT (t − s)α−1( t

s )
α

(iii)
∫ t

0(K(t,u))2du ≤ cT (t − s)1−2α

on the set {0 < s < t < T}, T < ∞, for some constants cT > 0 and α ∈ (0, 1
2 ).

• (K4) Let α(t) := ∂
∂ t (

∫ t
0(K

∗
t σ)2(r)dr) and assume that α ∈C(R+) where α is in

the Riccati equation (4) and

(K ∗
T ϕ)(s) := K(s+,s)ϕ(s)+

∫ T

s
ϕ(r)K(dr,s) (8)

and K ∗
T is injective.

If σ is a constant then α simplifies as follows
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α(t) = σ2 ∂
∂ t

R(t, t) (9)

where R is the covariance function. The kernel K has causality and continuity prop-
erties from the above first two conditions. It is assumed that there is a real-valued
standard Wiener process (W (t), t ≥ 0) such that

b(t) =
∫ t

0
K(t,r)dW (r), t ∈ R+ (10)

(conditions when a Volterra process admits such a representation (10) have been
obtained, cf. [11], [14]). From (K2) it easily follows by the Kolmogorov sample path
continuity test that (b(t), t ≥ 0) has a continuous modification, which is the version
that is chosen for the subsequent discussion. It is assumed that for all s ∈ [0,T ),
T > 0, K(·,s) has bounded variation on the interval (s,T ) and∫ T

0
|K|((s,T ],s)2ds < ∞ (11)

where |K| denotes the variation of K. Three examples of Gauss-Volterra processes
are
(i) A fractional Brownian motion (FBM) with the Hurst parameter H ∈ ( 1

2 ,1). In
this case

K(t,s) = CHs1/2−H
∫ t

s
(u− s)H−3/2uH−1/2du, s < t, (12)

= 0 t ≤ s.

The kernel satisfies conditions (K1)–(K3) with α = H − 1
2 .

ii) The Liouville fractional Brownian motion (LFBM, cf. [3]) for H ∈ ( 1
2 ,1), in

which case

K(t,s) =CH(t − s)H− 1
2 1(0,t](s), t > s, t,s ∈ R+ (13)

satisfies (K1)–(K3) with α = H − 1
2 .

iii) The multifractional Brownian motion (MBM). A simplified version analogous
to LFBM in the above Example (ii) is considered. The kernel K : R+×R+ →R+ is
defined as

K(t,s) = (t − s)H(t)− 1
2 1(0,t](s), t,s ∈ R+,

where H : R+ → [ 1
2 ,1) is the “time-dependent Hurst parameter”.

The evolution operator to determine the solution for (1) can be factored as de-
scribed now. Let TK1,K2(t,s), t ≥ s be the evolution operator for the linear operator
family (A(t)+B(t)K1(t)+C(t)K2(t)− 1

2α(t)I, t ≥ 0). There is an additional term
for the solution of (1) that depends explicitly on the noise term (b(t), t ≥ 0) as fol-
lows
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Tb(t) = exp(
∫ t

0
σ(t)db(t)) (14)

The (Wiener-type) stochastic integral in the exponential can be simply defined from
Malliavin calculus.

The evolution operator for the solution of (1) is the product of the above two
evolution operators, TK1,K2 and Tb. The product of the last term in Tk1,K2 and the
operator Tb is the solution of a geometric stochastic equation for (b(t), t ≥ 0) using
the Ito formula in [1] in analogy to the well known solution for a geometric equation
for a Brownian motion and its solution that provides a geometric Brownian motion.

3 Optimal Strategies

The main result in this paper is the following theorem that provides optimal feed-
back gain control strategies for the two players and shows that these strategies form
a Nash equilibrium in the families of admissible strategies..

Theorem 1. Let K1-K4 be satisfied. The stochastic differential game described by
the equation (1) and the payoff functional (3) for the families of strategies (A1) has
optimal feedback strategies, (K∗

1 ,K
∗
2 ), given by

K∗
1 (t) = −R−1(t)B(t)P(t) (15)

K∗
2 (t) = S−1(t)C(t)P(t) (16)

for t ∈ [0,T ]. The optimal payoff, JT (U∗,V ∗), where U∗ = K∗
1 X ,V ∗ = K∗

2 X , is

JT (U∗,V ∗) = 〈P(0)x0,x0〉 (17)

where P is the unique positive, symmetric solution of the Riccati equation (4). These
two optimal strategies form a Nash equilibrium for this stochastic differential game.

Proof. The determination of the optimal strategies for the two players follows the
methods in [5] for a Brownian motion noise using the Riccati equation (4). Let
Y (t) = 〈P(t)X(t),X(t)〉 for t ≥ 0. Apply the Ito formula [1] to (Y (t), t ≥ 0) to obtain
the following equality.

Y (T )−Y (0) =
∫ T

0
[2((〈P(t)X(t),A(t)X(t)〉+ 〈P(t)X(t),B(t)K1(t)X(t)

+C(t)K2(t)X(t)〉)dt + 〈P(t)X(t),σ(t)X(t)〉db(t))

+〈dP
dt

X(t),X(t)〉dt −α(t)〈X(t),X(t)〉dt] (18)

Using the Riccati equation to replace dP
dt and adding and subtracting

〈RX ,X〉− 〈SX ,X〉 in the integrand (18) it follows that the payoff has the following
expression.
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JT (K1,K2) = E

∫ T

0
|R 1

2 (K1X +R−1BPX)|2 −|S 1
2 (K2X −S−1CPX)|2dt

+2E
∫ T

0
〈PX ,X〉σdb+ 〈P(0)x0,xo〉 (19)

The stochastic integral term in (19) has expectation zero because the stochastic in-
tegral is a Skorokhod integral so the minimization and the maximization for the two
players are clear and thus the optimal strategies are

K∗
1 (t) = −R−1(t)B(t)P(t) (20)

K∗
2 (t) = S−1(t)C(t)P(t) (21)

The optimal payoff follows from (19). Furthermore it follows from (19) that these
feedback strategies form a Nash equilibrium and this completes the proof.

4 Concluding Remarks

The result on optimal strategies in this paper demonstrates that optimal strategies
can be obtained for a wide variety of Gaussian processes. A natural generalization
of this stochastic game problem is to consider some noise processes that are not
Gaussian. Probably the simplest of these processes is the family of Rosenblatt pro-
cesses e.g. [17]. Some initial work on linear-quadratic control with an infinite time
horizon for these latter processes is given in [4]. Furthermore it seems that these
results can be extended to mean field games following [10].
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Correlated Equilibria for Infinite Horizon

Nonzero-Sum Stochastic Differential Games

Beatris A. Escobedo-Trujillo and Héctor Jasso-Fuentes

Abstract This chapter is about two-person nonzero-sum stochastic differential
games with discounted and long-run average (a.k.a. ergodic) payoffs. Our aim is
to give conditions for the existence of feedback correlated randomized equilibria for
each aforementioned payoff that are natural generalizations of the well-known Nash
equilibria. To do so, we rewrite our original problem in terms of an auxiliary zero-
sum game, so that the way to find correlated equilibria is based on some properties
of this later game. Key ingredients to achieve the desired results are the continuity
properties of the payoffs.

1 Introduction

Nash equilibrium is a very useful concept in game theory, however it is well known
that under standard conditions the existence of Nash equilibria in nonzero-sum
games with uncountable state-action spaces is not necessarily guarantied within the
set of randomized strategies.

During the past decades, there has been works that have dealt to game models
with particular features in order to ensure the existence of Nash equilibria; for in-
stance, games with an additive structure (see, e.g. [8, 16, 17]). Other works have
explored an alternative method, which consists of “relaxing” the idea of Nash equi-
librium. The idea is to extend the set of strategies into a bigger one, giving rise to
the concept of correlated strategies as well as to the concept of correlated equilib-
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Departamento de Matemáticas, CINVESTAV-IPN. Apartado Postal 14-740, México. D.F., 07000,
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ria (see e.g. [4, 5, 20, 21]). This approach is the one we have focused on in this
manuscript, whose details will be explained in later sections.

Recall that the Nash equilibrium concept means that if one player tries to alter
his strategy unilaterally, he cannot improve his performance by such a change. If
players choose their strategies according to the Nash equilibrium concept, they are
said to play non-cooperatively, i.e., each player is only interested in maximizing his
own utility. The correlated equilibrium concept means that all players, before taking
a decision over the strategies, receive a global (or joint) recommendation, that is
drawn randomly according to a joint distribution μ , then no player has an incentive
to divert from the recommendation, provided that all other players follow theirs.

The main distinguishing feature of the concept of correlated equilibrium, unlike
the definition of Nash equilibrium is that those recommendations do not need to
be independent; i.e., the joint distributions do not need to be a product of marginal
distributions. It turns out that a correlated equilibrium μ is a Nash equilibrium if and
only if μ is a product measure.

It is well recognized that correlated equilibria were introduced by Aumman in
1974 for nonzero-sum games in normal form, extending the Nash equilibrium con-
cept, [4, 5]. There exists a vast number of manuscripts that are focused on corre-
lated strategies concept providing conditions for the existence of correlated equilib-
ria [4, 5, 10, 20, 21, 22, 23, 24], this is, in some part, because it is easier to prove the
existence and characterize correlated equilibria compared with Nash equilibria.

The work is inspired by the paper [20] which deals with correlated relaxed equi-
libria in nonzero-sum linear differential games with finite-horizon payoffs. Our aim
here is to prove the existence of feedback correlated equilibria for a more general dy-
namic when the payoffs are of the (infinite horizon) discounted and average type. A
key point to obtain our desired equilibria is to guarantee the continuity to both payoff
functions (discounted and average payoffs) within the set of correlated strategies.

Although we restrict ourselves to the case of two players, its relatively easy to
extend our results to the more general context of N players.

The main novelty of the manuscript lies in the fact that we are working with
infinite-horizon (discounted and ergodic) payoff criteria under a considerable gen-
eral diffusion process. Furthermore, the set of correlated equilibria are shown to be
feedback, meaning that they are dependent on the current state of the game. To the
best of our knowledge, this treatment has not been already studied in the current
literature.

This chapter is organized as follows: In section 2, we introduce both the game
and the payoffs we are trying to optimize. We also define the Nash equilibrium
concept. Section 3 is devoted to the introduction of correlated strategies. We extend
the domain of our payoffs over these strategies and will prove the continuity of those
criteria. By last, in section 4 we introduce the concept of correlated equilibria and
prove the existence of them. To do so, we rewrite the original game as a zero-sum
game and we explore some of its properties. Correlated equilibria will be obtained
through the use of some min-max theorems as well as for the continuity of our
payoffs.
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Notation and terminology.

• For some m, n ∈ N, let O ⊂ Rm and V ⊂ Rn be given open and Borel sets, re-
spectively. We define:

– Wl,p(O) the Sobolev space consisting of all real-valued measurable functions
h on O such that Dλh exists for all |λ | ≤ l in the weak sense and it belongs to
Lp(O), where

Dλh :=
∂ |λ |h

∂xλ1
1 , . . . ,∂xλm

m
with λ = (λ1, · · · ,λm), and |λ | :=

m

∑
i=1
λi.

– Ck(O) the space of all real-valued continuous functions on O with continuous
l-th partial derivative in xi ∈ R, for i = 1, ...,m, l = 0,1, ...,k. In particular,
when k = 0, C0(O) stands for the space of real–valued continuous functions
on O .

– Ck,β (O) the subspace of Ck(O) consisting of all those functions h such that
Dλh satisfies a Hölder condition with exponent β ∈ (0,1], for all |λ | ≤ k.

– Cb(O×V ) the space consisting of all continuous bounded functions on O×V .

• For vectors x and matrices A we use the usual Euclidean norms

|x|2 := ∑
i

x2
i and |A|2 := Tr(AA

′
) = ∑

i, j
A2

i j,

where A
′

and Tr(·) denote the transpose and the trace of a square matrix, respec-
tively.

• For any two strategies, say π1 and π2, the notation π1 ×π2 means the product
measure associated to this pair.

2 The game model

Consider an m−dimensional diffusion process x(·) controlled by two players and
evolving according to the stochastic differential equation

dx(t) = b(x(t),u1(t),u2(t))dt +σ(x(t))dW (t), x(0) = x0, (1)

where b : Rm ×U1 ×U2 → Rm, σ : Rm → Rm×d are given functions, and W (·) is
a d-dimensional standard Brownian motion. The sets U1 ⊂ Rm1 and U2 ⊂ Rm2 are
Borel sets called the action set for player 1 and player 2, respectively. Moreover, for
k = 1,2, uk(·) is a non-anticipative Uk−valued stochastic process representing the
control actions of player k at each time t ≥ 0.

For (u1,u2) ∈U1 ×U2, and h in W2,p(Rm), let
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Lu1,u2h(x) :=
m

∑
i=1

bi(x,u1,u2)
∂h
∂xi

(x)+
1
2

m

∑
i, j

ai j(x)
∂ 2h
∂xi∂x j

(x), (2)

where bi is the i–th component of b, and ai j is the (i, j)–component of the matrix
a(·) := σ(·)σ ′(·).

Let us now proceed to define the sets of strategies allowed for each player.
Randomized Markov strategies. Let B(U1) be the Borel σ−algebra of U1 ,

and let P(U1) be the space of probability measures on U1. In the same way, we
define B(U2) and P(U2) associated to player 2.

Definition 1. A randomized Markov strategy for player k (k = 1,2) is defined as a
family πk := {πk

t : t > 0} of stochastic kernels on B(Uk)×Rm; that is:

(a) for each t ≥ 0 and x ∈ Rm, πk
t (·|x) is in P(Uk), satisfying πk

t (Uk|x) = 1;
(b) for each D ∈ B(Uk) and t ≥ 0, πk

t (D|·) is a Borel function on Rm; and
(c) for each B ∈ B(Uk) and x ∈ Rm, the function t �→ πk

t (B|x) is a Borel measur-
able function.

Definition 2. A randomized strategy πk = {πk
t : t ≥ 0} (k = 1,2) is said to be sta-

tionary if there is a stochastic kernel πk on B(Uk)×Rm such that πk
t (·|x) = πk(·|x)

for all x ∈ Rm, t ≥ 0.

The set of randomized stationary strategies for player k is denoted by Πk, k = 1,2.
Next we define the payoff functions that each player wants to “optimize.’’
Payoff rates. For each player k = 1,2, let rk :Rm×U1×U2 →R be a measurable

function, which we will call the payoff rate of player k; in this sense, at each t ≥ 0,
rk(x(t),u1,u2) is the payoff of player k at time t, when the actions u1 ∈ U1 and
u2 ∈U2 are decided by players 1 and 2, respectively.

Throughout this manuscript we will use the notation π1 × π2, representing the
product measure of π1 and π2.

Let the function ψ be either b or rk, k = 1,2. When players use a stationary
randomized strategy (π1 ×π2) ∈Π1 ×Π2, we write:

ψ(x,π1 ×π2) :=
∫

U1

∫
U2

ψ(x,u1,u2)π1(du1|x)π2(du2|x), x ∈ Rm.

With the above notation, the infinitesimal generator (2) is written as

Lπ
1×π2

h(x) :=
m

∑
i=1

bi(x,π1 ×π2)
∂h
∂xi

(x)+
1
2

m

∑
i, j

ai j(x)
∂ 2h
∂xi∂x j

(x), x ∈ Rm.

Assume for the moment the existence of the probability measure Pπ
1×π2

x for each
x ∈ Rm and π1 ×π2 ∈ Π1 ×Π2, associated to the process x(·). We will also denote
by Eπ

1×π2
x (·) its respective expectation. Next define the payoff criteria each player

would be interested to optimize.
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Definition 3 (Discounted payoff criterion). Let α > 0, and consider the payoff
rates r1 and r2. For each player k = 1,2, the expected α−discounted payoff for
player k when players use the strategy (π1 ×π2) ∈ Π1 ×Π2 given the initial state
x ∈ Rm, is

Vk(x,π1 ×π2) := Eπ
1×π2

x

[∫ ∞

0
e−αt rk(x(t),π1 ×π2)dt

]
. (3)

Definition 4 (Average payoff criterion). For each player k = 1,2, the expected av-
erage payoff for player k when players use the strategy (π1 ×π2) ∈ Π1 ×Π2 given
the initial state x ∈ Rm, is

Jk(x,π1 ×π2) := liminf
T→∞

1
T
Eπ

1×π2

x

[∫ T

0
rk(x(t),π1 ×π2)dt

]
. (4)

In a noncooperative N-person nonzero-sum stochastic differential game, each
player tries to maximize (or minimize) his/her individual performance criterion (in
particular, criteria of type (3) and (4)). A Nash equilibrium, in this case, is a strategy
such that once it is chosen by the players, no player will profit unilaterally by simply
changing his/her own strategy. More specifically, in the maximization context, we
have the next definition:

Definition 5 (Nash equilibrium). Let Fk, k = 1,2, be either the discounted payoff in
(3) or the average payoff (4). A randomized pair of strategies (π1∗ ×π2∗ ) ∈Π1 ×Π2
is a Nash equilibrium if and only if

F1(x,π1
∗ ×π2

∗ )≥ F1(x,π1 ×π2
∗ ), ∀ π1 ∈Π1,

F2(x,π1
∗ ×π2

∗ )≥ F2(x,π1
∗ ×π2), ∀ π2 ∈Π2.

It is also well recognized that the existence of Nash equilibria in nonzero-sum
games with uncountable state-action spaces is not necessarily guarantied in the set of
randomized policiesΠ1×Π2 under standard conditions (for example, the conditions
established in this chapter); however, such existence is achieved under special cases.
For instance, we can assume the drift b in the dynamic (1) and the payoff rates
rk both satisfy an additive structure property (see, for instance, [8, 16, 17]). One
alternative to avoid restrictive assumptions to the model, is to extend the concept of
Nash equilibrium into a bigger set of Π1 ×Π2, which entails, in particular, to the
concept of correlated strategies and its corresponding correlated equilibrium.

In the next section we will provide, among other things, conditions so that the
dynamic (1) can attain a unique solution in some sense and that the payoffs in (3)
and (4) are finite valued on the set of correlated strategies.
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3 Correlated strategies.

In this work we extend the set of strategies available to the players. These strategies
allow players to correlate their decisions during a pre-play communication process
(see Section 4).

Definition 6 (Correlated strategy). A correlated (stationary) randomized strategy
μ is a stochastic kernel on B(U1 ×U2)×Rm such that:

(a) for each x ∈ Rm, μ(·|x) is a joined probability measure on U1 ×U2 and such
that μ(U1 ×U2|x) = 1.

(b) For each D ∈ B(U1 ×U2), μ(D|·) is Borel measurable on Rm.

We will denote by Γ the set of all correlated randomized strategies. On the other
hand, the marginal distributions of μ are defined as:

μ1(B1|x) := μ(B1 ×U2|x) and μ2(B2|x) := μ(U1 ×B2|x),

for each Borel set Bk ∈ B(Uk), k = 1,2, and x ∈ Rm.
Let ψ be either b, r1 or r2. When players use a correlated strategy μ ∈ Γ , we

write
ψ(x,μ) :=

∫
U1×U2

ψ(x,u1,u2)μ(d(u1,u2)|x),

Furthermore, the generator (2) turns out to be

Lμh(x) :=
m

∑
i=1

bi(x,μ)
∂h
∂xi

(x)+
1
2

m

∑
i, j

ai j(x)
∂ 2h
∂xi∂x j

(x), x ∈ Rm. (5)

We denote by Γk the set of k-marginal measures associated to Γ , for k = 1,2.

Remark 1. Throughout this work we will assume that the players choose only ran-
domized stationary strategies. The reason is that, even when it is possible to work in
a more general class of strategies (for instance that of the so-named non-anticipative
policies), our present hypotheses (stated later on) ensure the existence of optimal
policies in the class of stationary strategies for all players. Further, it is worth to
mention that recurrence and ergodicity properties of the state system (1) can be eas-
ily verified through the use of stationary strategies, but for general non-anticipative
strategies, the corresponding state system might be time-inhomogeneous; a fact that
can be hard to handle.

Assumption 1 Recall the elements of the dynamic (1). We assume:

(a) The action sets U1 and U2 are compact.
(b) The function b : Rm ×U1 ×U2 → Rm satisfies the following conditions:

(i) it is continuous on Rm ×U1 ×U2.
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(ii) it satisfies a Lipschitz condition uniformly in (u1,u2) ∈U1 ×U2; that is, there
exists a positive constant K1 such that, for all x,y ∈ Rm,

sup
(u1,u2)∈U1×U2

|b(x,u1,u2)−b(y,u1,u2)| ≤ K1|x− y|.

(c) There exists a positive constant K2 such that for all x,y ∈ Rm,

|σ(x)−σ(y)| ≤ K2|x− y|.

(d) (Uniform ellipticity). The matrix a(x) = σ(x)σ ′(x) satisfies that, for some
constant c0 > 0

xa(y)x′ ≥ c0|x|2 for all x,y ∈ Rm.

Remark 2. (a) Assumption 1 ensures that there exists an almost surely unique
strong solution of (1), for each strategy μ ∈Γ , which is a Markov–Feller process
and whose infinitesimal generator coincides with Lμ in (5). (For more details, see
the arguments of [2, Theorem 2.2.7]).

(b) The aforementioned existence and uniqueness remain valid for special types
of joint kernels of either form μ = π1 ×π2, or μ = π1 × μ2 or μ = μ1 ×π2, for
every π1 ∈ Π1, π2 ∈ Π2 μ1 ∈ Γ1, μ2 ∈ Γ2. This implies that the dynamic (1) is
well defined even when a usual pair of strategies (π1 × π2) ∈ Π1 ×Π2 as that
introduced in Definition 2 is applied.

The following assumption is a Lyapunov–like condition that guaranties, in par-
ticular, that the discounted payoff criterion (3) is finite, among other facts such as
the positive recurrence property of the diffusion (1) and the existence of an invariant
measure, each of them for a suitable type of controls (or strategies) u1(·) and u2(·).
Assumption 2 There exists a function w ∈ C2(Rm), with w ≥ 1, and constants d ≥
c > 0 such that

(i) lim|x|→∞ w(x) = +∞, and
(ii) Lu1,u2 w(x)≤−cw(x)+d for each (u1,u2) ∈U1 ×U2 and x ∈ Rm.

Remark 3. An easy application of Ito’s formula to ectw(x(t)) along with Assumption
2(ii), give us that

sup
μ∈Γ

Eμx (w(x(t))≤ e−ctw(x)+
d
c
(1− e−ct).

Definition 7. Let w ≥ 1 be the function in Assumption 2 and O ⊂Rm be an open set.
We define the Banach space Bw(O) consisting of real–valued measurable functions
h on O with finite w–norm defined as follows:

‖h‖w := sup
x∈O

|h(x)|
w(x)

.

We also include another set of hypotheses related to the payoffs rk that uses the
above definition.
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Assumption 3 (a) The function rk(x,u1,u2) is continuous on Rm ×U1 ×U2 and
locally Lipschitz in x uniformly with respect to (u1,u2) ∈ U1 ×U2; that is, for
each R > 0, there exists a constant K(R)> 0 such that

sup
(u1,u2)∈U1×U2

|rk(x,u1,u2)− rk(y,u1,u2)| ≤ K(R)|x− y| for all |x|, |y| ≤ R.

(b) rk(·,u1,u2) is in Bw(R
m) uniformly in (u1,u2); that is, there exists M > 0 such

that for all x ∈ Rm

sup
(u1,u2)∈U1×U2

|rk(x,u1,u2)| ≤ Mw(x).

We will extend the discounted payoff criteria (3) and (4) on the set Γ .
Extended discounted criterion: Given rk as in Assumption 3, k = 1,2, and for

any initial state x ∈ Rm, the extended α−discounted payoff for player k when the
strategy μ ∈ Γ is applied is defined as

Vk(x,μ) := Eμx

[∫ ∞

0
e−αt rk(x(t),μ)dt

]
. (6)

The following proposition is a direct consequence of Assumptions 2, 3(b), and
Remark 3, so we shall omit the proof; similar arguments can be founded in [9,
Proposition 9.1].

Proposition 1. Under the Assumptions 1, 2, 3, the payoff (6) belongs to the space
Bw(R

m) for each correlated strategy μ; in fact, for each x in Rm we have

|Vk (x,μ)| ≤ M(α)w(x) (7)

with M(α) := M (α+d)
αc . Here, c and d are the constants in Assumption 2(b), and M

is the constant in Assumption 3(b).

Extended average criterion: Let rk be as in Assumption 3, k = 1,2, and x ∈Rm.
We define the extended average payoff for player k when the strategy μ ∈ Γ is used
and initial state x, as follows

Jk(x,μ) := liminf
T→∞

1
T
Eμx

[∫ T

0
rk(x(t),μ)dt

]
. (8)

Note that the above limit always exists. Actually, we will impose an ergodicity
condition so that this limit becomes a constant in some sense.

From the arguments in [2, 12], for each μ ∈Γ , the Markov process x(·) is positive
recurrent and admits a unique invariant probability measure ημ , for which

ημ(w) :=
∫
Rm

w(x)ημ(dx)< ∞, (9)
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where w is the function defined in Assumption 2. The next assumption corresponds
to the well-known assymptotic behaviour of x(t) when t goes to the infinite. Suffi-
cient conditions for this assumption can be seen in Theorem 2.7 in [14].

Assumption 4 For every μ ∈ Γ , the process x(·) is uniformly w-exponentially er-
godic; that is, there exist positive constants k1 and k2 such that

sup
μ∈Γ

∣∣Eμx [ν(x(t))]−ημ(ν)∣∣≤ k1‖ν‖we−k2tw(x), (10)

for all x ∈ Rm, t ≥ 0, and ν ∈ Bw(R
m).

In (10), the notation ημ(ν) has the same meaning as (9) with ν instead of w.

Remark 4. Under Assumptions 1, 2, 3, and 4, the extended average payoff criterion
(8) satisfies the following: For each k = 1,2:

(a) Jk(x,μ) =
∫
Rm rk(y,μ)ημ(dy), for all x ∈ Rm, μ ∈ Γ ; actually the limit in (8)

does exist in a strong sense (i.e., liminf = limsup) and does not depend on the
initial condition x.

(b) supμ∈Γ |Jk(x,μ)| ≤ M · d/c, , for all x ∈ Rm, with M and d,c the constants
appearing in our previous Assumptions 3 and 2, respectively.

For a proof of these two assertions, we can quote Section 3 in [9] or Section 2 in
[14].

3.1 Continuity properties

In this part we will ensure that the functions μ �→ Vk(x,μ) and μ �→ Jk(x,μ) are
continuous. To this end, we endow the set Γ with the topology of joint strategies
(see e.g. [3, Lemma 3.4] or [6]).

Definition 8 (Topology of join strategies). We say that a sequence {μn : n =

1,2, ...} ⊂ Γ converges to μ ∈ Γ (and we will denote such convergence as μn
W→ μ)

if and only if for all h ∈ Cb(R
m ×U1 ×U2) and g ∈ L1(Rm)∫

Rm
g(x)

∫
U1×U2

h(x,u1,u2)μn(d(u1,u2)|x)dx −→
n→∞∫

Rm
g(x)

∫
U1×U2

h(x,u1,u2)μ(d(u1,u2)|x)dx.

Remark 5. The space Γ is a convex compact metric space endowed with the pre-
vious topology; see [25, Theorem IV.3.11] or [6, Section 3]. Furthermore, as was
mentioned in [16, Remark 2.11(b)], the set Π1 ×Π2 is compact too. The convexity
of this last product set easily follows from the convexity of Πk, k = 1,2.

The following proposition gives a characterization for the α-discounted reward
(6). For a proof we quote [15, Proposition 3.1.5].
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Proposition 2. Assume that the Assumptions 1, 2, 3 hold true. Then, for every
μ ∈ Γ , the associated total expected α-discounted function Vk(·,μ) (k = 1,2) is
in W2,p(Rm)∩Bw(R

m) and it satisfies the equation

αVk(x,μ) = rk(x,μ)+LμVk(x,μ). (11)

Conversely, if some function ϕk ∈W2,p(Rn)∩Bw(R
m) verifies (11), then

ϕk(x) =Vk(x,μ) for all x ∈ Rm.

Moreover, if the equality in (11) is replaced by “≤” or “≥′′, then (11) holds with
the respective inequality.

The following result addresses a continuity property of the total expected α-
discounted payoffs.

Proposition 3 (Continuity of Vk). For k = 1,2, the mapping μ �−→Vk(x,μ) is con-
tinuous on Γ , for each x ∈ Rm.

Proof. Let {μn} ∈ Γ such that μn
W→ μ . Observe that Proposition 2 ensures that, for

each n ≥ 1, Vk(x,μn) satisfies the equation

αVk(x,μn) = rk(x,μn)+LμnVk(x,μn) x ∈ Rm. (12)

This last equation in terms of the operator L μn
α given in (30) becomes

0 = L μn
α Vk(x,μn) x ∈ Rm. (13)

Next we will check that the hypotheses (a)-(e) of Theorem 2 provided in the
appendix of this chapter are satisfied.

(a) This hypothesis trivially follows from (13) (or by (12)).
(b) To prove this hypotheses, let R> 0, and take the ball BR := {x ∈Rm | |x|< R}.

By [13, Theorem 9.11], there exists a constant C0 independent of R such that, for
a fixed p > m (m being the dimension of (1)), we have

‖Vk(·,μn)‖W2,p(BR)
≤ C0

(‖Vk(·,μn)‖Lp(B2R) +‖rk(·,μn)‖Lp(B2R)

)
≤ C0

(
M(α)‖w‖Lp(B2R) +M‖w‖Lp(B2R)

)
≤ C0 (M(α)+M) |B̄2R|1/p max

x∈B̄2R

w(x)< ∞,

where |B̄2R| represents the volume of the closed ball with radious 2R, and M and
M(α) are the constants in Assumption 3(b) and in (7), respectively.

(c)-(e) The parts (c) and (d) of Theorem 2 trivially hold by taking ξn ≡ 0 and
αn ≡ α , whereas that part (e) is part of our hypotheses.

Then, for k = 1,2, we get the existence of a function hk
μ ∈ W2,p(BR) together with

a subsequence {n j} such that Vk(·,μn j) → hk
μ(·) uniformly in BR and pointwise on

Rm as j → ∞ and μn j
W→ μ . Furthermore, hk

μ satisfies
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αhk
μ(x) = rk(x,μ)+Lμhk

μ(x), x ∈ BR.

Since the radious R> 0 was arbitrary, we can extend our analysis to all of x ∈Rm.
Thus, Proposition 2 asserts that hk

μ(x) actually coincides with Vk(x,μ). This proves
the continuity of Vk. �

We are going to focus on the continuity of the extended average payoff (8). To
begin with, we shall use a characterization of this criterion, whose proof is identical
to that in [14, Lemma 4.1] (see also [9, Proposition 5.1]).

Proposition 4 (Poisson equation). For each k = 1,2, and each fixed strategy μ ∈Γ ,
we denote by gk(μ) :=

∫
Rm rk(y,μ)ημ(dy). Then, under the Assumptions 1, 2, 3, and

4, there exists a function ϕk
μ ∈ W2,p(Rn)∩Bw(R

m), such that the pair (gk(μ),ϕk
μ)

satisfies the so-named Poisson equation

gk(μ) = rk(x,μ)+Lμϕk
μ(x), k = 1,2, x ∈ Rm, (14)

as long with the transversality condition∫
Rm
ϕk
μ(x)ημ(dx) = 0. (15)

Moreover, gk(μ) is equal to the extended average payoff Jk(x,μ), for all x ∈ Rm.

Now let us show the continuity of gk(μ):

Proposition 5 (Continuity of gk). For k = 1,2, the mapping μ �−→ gk(μ) is contin-
uous on Γ .

Proof. The proof is similar to that given in Proposition 3. Indeed, take again a ball
BR for some R > 0 and use μn ∈ Γ such that μn

W→ μ . By Proposition 4, for each
n the pair (gk(μn),ϕk

μn) satisfies the equation (14) with ϕk
μn ∈W2,p(Rm)∩Bw(R

m).
This equation in terms of operator L μn

α in (30) becomes

gk(μn) = L μn
0 ϕk

μn(x). (16)

We will check that hypotheses (a)-(e) of Theorem 2 are satisfied. For this end, note
by Assumption 3(b) and Proposition 4, that the functions rk(·,μn) and ϕk

μn are both
in Bw(R

m). Thus, using again the result in [13, Theorem 9.11], we can ensure the
existence of some C̄0 (independent of R) such that

||ϕk
μn ||W2,p(BR)

≤ C̄0(||ϕk
μn ||Lp(B2R) + ||rk(·,μn)||Lp(B2R)

≤ C̄0(M1||w||Lp(B2R) +M||w||Lp(B2R))

≤ C̄0(M1 +M)|B2R|1/p max
x∈B2R

w(x)< ∞, (17)

where |B2R| is defined as in the proof of Proposition 3 and M1 is some given con-
stant. The hypotheses (a) and (b) follows from (16) and (17), respectively. As for
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part (c), we take ξn = gk(μn) and noting that |gk(μn)| ≤ Md/c (see Remark 4(b)),
we get the existence of a constant gk such that gk(μn) → gk (under a suitable sub-
sequence), hence part (c) of Theorem 2 trivially holds. Also, part (d) is satisfied by
taking αn ≡ 0. Part (e) is part of our hypotheses. In this way, Theorem 2 ensures
the existence of a function ϕk

μ ∈ W2,p(BR) together with a subsequence {n j} such

that ϕk
μn j

(·)→ ϕk
μ(·) uniformly in BR and pointwise on Rm as j → ∞ and μn j

W→ μ .

Moreover, ϕk
μ satisfies

gk = rk(x,μ)+Lμϕk
μ(x) = 0, x ∈ BR. (18)

Since the radious R > 0 was arbitrary, we can extend our analysis to all of x ∈ Rm.
Finally, let ϕk

μ(·) be the bias function of μ , see [9, Definition 5.1]. By [9, Propo-
sition 5.1], the pair (gk(μ),ϕk

μ(·)) is the unique solution of the Poisson equation
(14), i.e., ϕk

μ(·) = ϕk
μ(·)+ c for some constant c ∈ R, and gk = gk(μ). This implies

that
gk(μ) = rk(·,μ)+L μϕk

μ(x) = 0 x ∈ Rm.

Furthermore, [9, Proposition 5.1] also ensures that the bias ϕk
μ(·) satisfies the

transversality condition (15). Hence, a simple use of Proposition 4 provides us the
continuity of the mapping μ �−→ gk(μ) on Γ . �

4 Correlated equilibria

As mentioned in [20], a correlated strategy limits the freedom of the players in
selecting their strategies, because a process of pre-play communication is needed to
carry out a correlated strategy. However, any player is free to choose any strategy,
regardless of the results of the communication process.

Suppose that a correlated strategy μ ∈Γ is fixed by the players during a pre-play
communication process. Then players make their final decisions independently of
each other. As a consequence, we obtain the following cases.

1. Both players accept μ ∈ Γ , then the system (1) evolves by applying the control
strategy μ .

2. Both players do not accept μ ∈Γ , then the system (1) evolves according to some
(π1,π2) ∈Π1 ×Π2 ⊂ Γ .

3. Player 1 does not accept μ ∈ Γ and decides to use a stationary randomized
strategy π1 ∈ Π 1 instead, while player 2 approves the use of μ . Then, π1 and
μ are taken into account and the system (1) evolves with the control strategy
(π1,μ2) ∈Π1 ×Γ2 ⊂ Γ , with μ2 as the marginal distribution of μ on U2.

4. Player 2 does not accept μ ∈ Γ and decides to use a stationary randomized
strategy π2 ∈ Π 2 instead, while player 1 approves the use of μ . Then, π2

and μ are taken into account and the system (1) evolves according to the pair
(μ1,π2) ∈ Γ1 ×Π2, with μ1 as the marginal distribution of μ on U1.
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The next definition extends the concept of a Nash equilibrium for the larger set
of join strategies Γ .

Definition 9 (Correlated equilibria). Let Fk be either payoffs Vk or Jk, defined in
(6) and (8), respectively. A correlated randomized strategy μ ∈ Γ is a correlated
equilibrium for the extended payoff Fk if and only if

F1(x,μ)≥ F1(x,π1 ×μ2) ∀ π1 ∈Π1,

F2(x,μ)≥ F2(x,μ1 ×π2) ∀ π2 ∈Π2.

Existence of correlated equilibria always exists under our present hypotheses as
it is established next:

Theorem 1. (a) Under Assumptions 1, 2, and 3, there exists a correlated equilib-
rium associated to the payoff Vk in (6).

(b) If Assumption 4 is also considered, then the existence of a correlated equilib-
rium for the payoff Jk in (8) is also achieved.

To prove this theorem, we are going to describe some auxiliary results.
The auxiliary zero-sum game: Consider the set

Θ =
{
(π1 ×π2,λ1,λ2) : λ1,λ2 > 0, λ1 +λ2 = 1, π1 ×π2 ∈Π1 ×Π2

}
.

We assume that we have two virtual players, say players A and B, so that the set of
correlated randomized strategies Γ is the set of strategies for player A, whereas that
Θ is the set of strategies for player B. The common payoff for both players is given
by

GF(x,μ,π1 ×π2,λ1,λ2) :=

λ1

[∫
U1×U2

F1(x,u1,u2)μ(d(u1,u2)|x)−
∫

U1×U2

F1(x,u1,u2)π1(du1|x)μ2(du2|x)
]

+λ2

[∫
U1×U2

F2(x,u1,u2)μ(d(u1,u2)|x)−
∫

U1×U2

F2(x,u1,u2)μ1(du1|x)π2(du2|x)
]
,

(19)

where Fk denotes either Vk or Jk, for k = 1,2 and the subscript F of G simply refers
the dependence of G with the F ′

k s.
In virtue of the notation in (6) or (8), the payoff given in (19) can be rewritten as

GF(x,μ,π1 ×π2,λ1,λ2) = λ1
[
F1(x,μ)−F1

(
x,π1 ×μ2

)]
+ λ2

[
F2(x,μ)−F2

(
x,μ1 ×π2)]. (20)

Value of the game: In zero-sum games, the functions

U(x) := inf
(π1×π2,λ1,λ2)∈Θ

sup
μ∈Γ

GF(x,μ,π1 ×π2,λ1,λ2) and

L(x) := sup
μ∈Γ

inf
(π1×π2,λ1,λ2)∈Θ

GF(x,μ,π1 ×π2,λ1,λ2),
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play an important role. The function L is called the game’s lower value, and U is the
game’s upper value. Clearly, we have L≤ U. If the upper and lower values coincide,
then the game is said to have a value, and the value of the game, denoted as V, is the
common value of L and U, i.e.,

V := L= U.

Definition 10. Let X be a nonempty Hausdorff space and let g : X �→ R be a real-
valued function. We say that g is affine-like function if and only if, for every x1,x2 ∈
X and β ∈ [0,1], there exists xβ ∈ X such that g(xβ ) = βg(x1)+(1−β )g(x2).

The following proposition shows some properties of the payoff functions GV and
GJ .

Proposition 6. (a) Suppose that Assumptions 1, 2 and 3 hold true. Then, the map-
ping μ �→ GV (·,μ, ·, ·, ·) is continuous and affine-like on Γ . Furthermore, the
mapping (π1 ×π2,λ1,λ2) �→ GV (·, ·,π1 ×π2,λ1,λ2) is affine-like onΘ .

(b) If in addition Assumption 4 is satisfied, then the same assertion in (a) is true
for the payoff GJ.

Proof. (a) First, let us prove the continuity: Consider the sequence {μn} ⊂ Γ such
that μn

W→ μ . Observe that

0 ≤ |GV (x,μn,π1 ×π2,λ1,λ2)−GV (x,μ,π1 ×π2,λ1,λ2)|
≤ λ1|V1(x,μn)−V1(x,μ)|+λ2|V2(x,μn)−V2(x,μ)|+λ1|V1(x,π1 ×μ2n)

−V1(x,π1 ×μ2)|+λ2|V2(x,μ1n ×π2)−V2(x,μ1 ×π2)|. (21)

Then, in virtue of Proposition 3, the terms in the right-hand side of (21) converge to
zero as μn

W→ μ . So, GV is continuous in Γ .
On the other hand, it is well-known that the discount payoff Vk can be seen as

a linear mapping between rk and the so-named occupation measure ν [x;μ]; i.e.,
Vk(x,μ) =

∫
rk dν [x;μ], for every x ∈ Rm and μ ∈ Γ , where ν [x;μ] is defined as∫

rk ν [x;μ] = αEμx
[∫ ∞

0
e−αt

∫
U1×U2

rk(x(t),u1,u2)μ
(
d(u2,u2)|x(t)

)
dt
]
. (22)

The details of this last fact can be extracted from page 1191 in [11] or from page
102 in [7]. Then by rewritting the payoff function Vk in the way of (22), it can be
proved (see, for instance [11], page 1195) that, for any two strategies μ,μ ∈ Γ and
β ∈ [0,1], there exists another μβ ∈ Γ so that

ν [x;μβ ] = βν [x;μ]+ (1−β )ν [x;μ]. (23)

This last property together with (22) yield that Vk(x,μβ )= βVk(x,μ)+(1−β )Vk(x,μ)
and the choice of μβ is independent of k = 1,2. With the previous ingredients, let
us use the strategy μβ ∈ Γ obtained by the affine-like property for both criteria V1
and V2, for some arbitrary choose of two strategies μ,μ ∈ Γ and β ∈ [0,1]. Then,
the following is satisfied
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GV (x,μβ ,π1 ×π2,λ1,λ2) = λ1
[
V1(x,μβ )−V1

(
x,π1 ×μβ2 )

]
+

λ2
[
V2(x,μβ )−V2

(
x,μβ1 ×π2)]

= λ1
[{βV1(x,μ)+(1−β )V1(x,μ)}−V1

(
x,π1 ×μβ2 )

]
+

+λ2
[{βV2(x,μ)+(1−β )V2(x,μ)}−V2

(
x,μβ1 ×π2)].

(24)

In addition, by following the same arguments of page 1195 in [11], it can be also
verified that

V1
(
x,π1 ×μβ2 ) = βV1

(
x,π1 ×μ2)+(1−β )V1

(
x,π1 ×μ2) and

V2
(
x,μβ1 ×π2)= βV2

(
x,μ1 ×π2)+(1−β )V2

(
x,μ1 ×π2). (25)

Combining (25) with (24) we deduce

GV (x,μβ ,π1 ×π2,λ1,λ2) = βGV (x,μ,π1 ×π2,λ1,λ2)

+(1−β )GV (x,μ,π1 ×π2,λ1,λ2),

for all (π1 ×π2,λ1,λ2) ∈Θ . This proves the affine-like property of GV on Γ .
On the other hand, for any β ∈ [0,1] and any (π1 ×π2,λ1,λ2), (π1 ×π2,λ 1,λ 2)

∈Θ consider the following strategies πk
β ∈Πk and constants λβk ∈ R (k = 1,2):

πk
β :=

βλkπk +(1−β )λ kπk

βλk +(1−β )λ k
, and λβk := βλk +(1−β )λ k.

Plugging these elements into GV , it is easy to check that for each μ ∈Γ and x ∈Rm,

GV (x,μ,π1
β ×π2

β ,λ
β
1 ,λ

β
2 ) = βGV (x,μ,π1 ×π2,λ1,λ2)+

(1−β )GV (x,μ,π1 ×π2,λ 1,λ 2).

This proves that GV is affine-like onΘ .
(b) As for the continuity of GJ on Γ , the proof is the same as in part (a), the only

difference lies in replacing Vk by Jk and just use Proposition 5 in lieu of Proposition
3. Furthermore, there are works asserting that the average payoff Jk (k = 1,2) can
be rewritten in terms of an occupation measure ρ[μ]; i.e., for all x ∈ Rm and each
μ ∈ Γ , Jk(x,μ) =

∫
rkdρ[μ], where ρ[μ](dy,du) := ημ(dy)μ(du|y), with ημ being

the invariant measure defined in (9) (for further details see for instance, [2], page
87 or [7], page 91). Using the argumets as in page 92 of [7], we can obtain exactly
the same property as (23) for ρ rather that ν . Then, it is straightforward that the
mapping μ �→ Jk(·,μ) is affine-like on Γ . To prove the affine-like property of GJ ,
we proceed in the same way as (24). We can use also the same procedures of page
92 of [7] to get a similar relation of (25) associated to Jk. These previous properties
would prove that GJ is affine-like on Γ after doing basic estimates. The proof that
GJ is affine-like onΘ is similar to the one presented for GV so we shall omit it. �
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Proposition 7. The upper value U is nonnegative.

Proof. Clearly we know that

sup
μ∈Γ

GF(·,μ,π1 ×π2,λ1,λ2)≥ GF(·,μ,π1 ×π2,λ1,λ2)

∀ μ ∈ Γ , (π1 ×π2,λ1,λ2) ∈Θ .

Then taking in particular μ̂ := π1 ×π2, we obtain that GF(·, μ̂,π1 ×π2,λ1,λ2) = 0.
Therefore,

sup
μ∈Γ

GF(·,μ,π1 ×π2,λ1,λ2)≥ GF(·, μ̂,π1 ×π2,λ1,λ2) = 0,

∀ (π1 ×π2,λ1,λ2) ∈Θ .

This implies that

U(·) := inf
(π1×π2,λ1,λ2)∈Θ

sup
μ∈Γ

GF(·,μ,π1 ×π2,λ1,λ2) ≥ 0. (26)

�

Proof of Theorem 1. (a) First note that Proposition 6 gives the hypotheses to get
the Isaac’s condition (see, for instance pages 108-109 in [20])

inf
(π1×π2,λ1,λ2)∈Θ

sup
μ∈Γ

GV (x,μ,π1 ×π2,λ1,λ2) =

= sup
μ∈Γ

inf
(π1×π2,λ1,λ2)∈Θ

GV (x,μ,π1 ×π2,λ1,λ2), x ∈ Rm. (27)

Relations (27) and (26) gives us that

sup
μ∈Γ

inf
(π1×π2,λ1,λ2)∈Θ

GV (x,μ,π1 ×π2,λ1,λ2)≥ 0 ∀ x ∈ Rm.

As μ �→ GV (·,μ, ·, ·, ·) is continuous, then it easy to verify that

μ �→ inf
(π1×π2,λ1,λ2)∈Θ

GV (·,μ,π1 ×π2,λ1,λ2)

is upper semi-continuous. This last property together with the compactness of Γ
imply the existence of μ∗ ∈ Γ (that depends only of x ∈ Rm) such that

GV (x,μ∗,π1 ×π2,λ1,λ2)≥ 0, ∀ (π1 ×π2,λ1,λ2) ∈Θ , x ∈ Rm. (28)

In virtue of (28), if we let λ2 → 0 in (19) or (20) (yielding that λ1 → 1), we get

V1(x,μ∗)−V1(x,π1 ×μ∗
2 )≥ 0, for all π1 ∈Π 1.

Similarly, by letting λ1 → 0 (yielding that λ2 → 1), we can also deduce
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V2(x,μ∗)−V2(x,μ∗
1 ×π2)≥ 0 for all π2 ∈Π 2.

Thus, from the Definition 9, μ∗ ∈ Γ becomes a correlated equilibrium.
The proof of part (b) is identical than (a), the only difference lies in the fact that

we need Assumption 4 as an extra hypothesis to guarantee the continuity for GJ . �

Appendix

The main objective of this appendix is to prove that the convergence μn
W→ μ , αn →

α , and hn → h (this later convergence in a suitable sense), yield that, for each k =
1,2,

lim
n→∞

{
rk(·,μn)+Lμnhn −αnhn

}
= rk(·,μ)+Lμh−αh. (29)

Let O be an open, bounded and connected subset of Rm. We denote the closure
of this set by Ō .

For every x ∈ Rm, μ ∈ Γ , α > 0, h in W2,p(O), we define

Ψ̂(x,μ,α;h) := rk (x,μ)+
n

∑
i=1

bi(x,μ)
∂h
∂xi

(x)−αh(x),

L μ
α h(x) := Ψ̂(x,μ,α;h)+

1
2

m

∑
i, j=1

ai j(x)
∂ 2h
∂xi∂x j

(x), (30)

where bi is the i-th component of the function b defined in (1) and a as in Assump-
tion 1(d).

The following theorem establishes the limit result referred in (29).

Theorem 2. Let O be a bounded C 2 domain. Suppose that there exist sequences
{hn} ∈W2,p(O), {ξn} ∈ Lp(O), with p > m (m is the dimension of (1)), {μn} ∈ Γ ,
and {αn} ≥ 0, satisfying the following:

(a) L μn
αn hn = ξn in O for n = 1,2, . . .

(b) There exists a constant M̃1 such that ‖hn‖W2,p(O) ≤ M̃1 for n = 1,2, . . .
(c) ξn converges in Lp(O) to some function ξ .
(d) αn converges to some constant α ≥ 0.
(e) μn

W→ μ ∈ Γ .

Then, there exist a function h ∈W2,p(O) and a subsequence {nr} ⊂ {1,2, . . .} such
that hnr → h in the norm of C1,η(Ō) for η < 1− m

p as r → ∞. Moreover,

L μ
α h = ξ in O. (31)

Proof. We first show that there exist a function h in W2,p(O) and a subsequence
{nr} ⊂ {1,2, ...} such that, as r → ∞, hnr → h weakly in W2,p(O) and strongly in
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C1,η(Ō). Namely, since W2,p(O) is reflexive (see [1, Theorem 3.5]), then, using
Theorem 1.17 in the same reference [1], the ball

H :=
{

h ∈W2,p(O) : ‖h‖W2,p(O) ≤ M̃
}

(32)

is weakly sequentially compact. On the other hand, since p>m, by [1, Theorem 6.2,
Part III], the imbedding W2,p(O) ↪→C1,η(Ō), for 0 ≤ η < 1− m

p is compact; hence,
it is also continuous, and thus the set H in (32) is relatively compact in C1,η(Ō). This
fact ensures the existence of a function h ∈ W2,p(O) and a subsequence {hnr} ≡
{hn} ⊂ H such that

hn → h weakly in W2,p(O) and strongly in C1,η(Ō). (33)

The second step is to show that, as n → ∞,∫
O

g(x)Ψ̂(x,μn,αn, ;hn)dx →
∫

O
g(x)Ψ̂(x,μ,α;h)dx for all g ∈ L1(O). (34)

To this end, given x ∈ O , k = 1,2, functions h ∈ W2,p(O) and hn ∈ H, μ,μn ∈ Γ ,
and constants αn, α ≥ 0, the following holds for all g ∈ L1(O).

∣∣∣∣∫
O

g(x)Ψ̂(x,μn,αn;hn)dx−
∫

O
g(x)Ψ̂(x,μ,α;h)dx

∣∣∣∣
≤
∣∣∣∣∫

O
g(x) [rk(x,μn)− rk(x,μ)]dx

∣∣∣∣
+

m

∑
i=1

∣∣∣∣∫
O

g(x)
[

bi(x,μn)
∂hn

∂xi
(x)−bi(x,μ)

∂h
∂xi

(x)
]

dx
∣∣∣∣

+

∣∣∣∣∫
O

g(x) [αnhn(x)−αh(x)]dx
∣∣∣∣

≤
∣∣∣∣∫

O
g(x)rk(x,μn)dx−

∫
O

g(x)rk(x,μ)dx
∣∣∣∣

+
m

∑
i=1

∣∣∣∣∫
O

g(x)
∂hn

∂xi
(x) [bi(x,μn)−bi(x,μ)]dx

∣∣∣∣
+

m

∑
i=1

∣∣∣∣∫
O

g(x)bi(x,μn)

[
∂hn

∂xi
(x)− ∂h

∂xi
(x)

]
dx
∣∣∣∣+ |αn −α|

∣∣∣∣∫
O

g(x)hn(x)dx
∣∣∣∣

+α
∣∣∣∣∫

O
g(x) [hn(x)−h(x)]dx

∣∣∣∣ .
Since the embedding W2,p(O) ↪→ C1,η(Ō) is continuous, hypothesis (b) together
with the definition of the norm ‖ ·‖C1,η (Ō), imply that there is a constant M̄ > 0 such
that

max
{
|hn|, max

1≤i≤m

∣∣∣∣∂hn

∂xi

∣∣∣∣}≤ ‖hn‖C1,η (Ō) ≤ M̄ ‖hn‖W2,p(O) ≤ M̄M̃1.
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On the other hand, it is easy to verify that Assumptions 1 and 3, yield that
|b(·,μ)|+ |rk(·,μ)| ≤ K(Ō). Hence,∣∣∣∣∫

O
g(x)Ψ̂(x,μn,αn;hn)dx−

∫
O

g(x)Ψ̂(x,μ,α;h)dx
∣∣∣∣≤∣∣∣∣∫

O
g(x)rk(x,μn)dx−

∫
O

g(x)rk(x,μ)dx
∣∣∣∣

+M̄M̃1m max
1≤i≤m

∣∣∣∣∫
O

g(x) [bi(x,μn)−bi(x,μ)]dx
∣∣∣∣

+‖g‖L1(O) ‖hn −h‖C1,η (Ō) (mK(Ō)+α)+ |αn −α|M̄M̃1 ‖g‖L1(O) . (35)

Observe that rk(·,μ) k = 1,2, and bi(·,μ) i = 1, · · · ,m are bounded on Ō . Then,
hypotheses (d) to (e), together with (33), lead to the right hand side of (35) goes to
zero as n → ∞, thus proving (34).

The existence of the constant K(Ō) used for the analysis in (35) can be also used
to get also that |σ(x)| ≤ K(Ō), then we can affirm that for each g in L

p
p−1 (O),

1
2

∣∣∣∫O g(x)
[
∑m

i, j=1 ai j(x) ∂ 2hn
∂xi∂x j

(x)−∑m
i, j=1 ai j(x) ∂ 2h

∂xi∂x j
(x)

]
dx
∣∣∣

≤ m2

2

[
K(Ō)

]2 ∑m
i, j=1

∣∣∣∫O g(x)
[
∂ 2hn
∂xi∂x j

(x)− ∂ 2h
∂xi∂x j

(x)
]

dx
∣∣∣ . (36)

Thus the weak convergence of {hn} to h in W2,p(O) yields that the right–hand side
of (36) converges to zero as n → ∞. Notice also that the convergence of (34) is
also valid for all g ∈ L

p
p−1 (O). The reason is because L

p
p−1 (O)⊂ L1(O) (recall the

Lebesgue measure on O is bounded). This last fact together with (36) and hypothesis
(c), yield that for every g in L

p
p−1 (O),∫

O
g(x)

[
L μ
α h(x)−ξ (x)]dx = lim

n→∞

∫
O

g(x)
[
L μn
αn (x)−ξn(x)

]
dx = 0.

The above limit, along with Theorem 2.10 in [18], implies (31), i.e.

L μ
α h = ξ in O.

This completes the proof. �
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Lattice Dynamical Systems in the Biological

Sciences

Xiaoying Han and Peter E. Kloeden

Abstract This chapter focuses on dynamical behavior of lattice models arising in
the biological sciences, in particular, attractors for such systems. Three types of lat-
tice dynamical systems are investigated; they are lattice reaction-diffusion systems,
Hopfield neural lattice systems, and neural field lattice systems. For each system
the existence of a global, nonautonomous, or random attractor is shown. The up-
per semi continuity of attractors for the Hopfield neural lattice model and the upper
semi continuity of numerical attractors are also discussed.

1 Introduction

A lattice dynamical system corresponding to a reaction-diffusion equation on the
one-dimensional domain R

∂u(x, t)
∂ t

= ν
∂ 2u(x, t)
∂x2 −λu+ f (u(x, t))+g(x), with λ ,ν > 0,

is obtained by using a finite difference quotient to discretize the Laplacian operator.
More precisely, applying a spatial scaling ui(t) = u(iΔx, t) and setting the scaled
step size Δx to 1 leads to the infinite dimensional system of ordinary differential
equations called a lattice dynamical system (LDS),

dui

dt
= ν (ui−1 −2ui +ui+1)−λui + f (ui)+gi, i ∈ Z, (1)
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where ui and gi correspond to u(i, t) and g(i), respectively, for each i ∈ Z.
Not all LDS originate from discretizing an underlying partial differential equa-

tion (PDE) as above. In fact, they exist naturally in applications where the spa-
tial structure has a discrete character, such as cellular neural networks [22, 23, 24],
chemical reaction theory [28, 48, 55], and living cell systems [10, 11, 50, 51, 61, 62].
Moreover, LDS can be interpreted as an infinite-dimensional ordinary differential
equation, functional differential equation, or an evolution equation on sequence
spaces and hence allow clear insight into the dynamics of the models even when
their corresponding PDEs are analytically intractable. Such advantages make stud-
ies on LDS attractive and important.

Sequence spaces

One typical technique to study LDS is to first reformulate them as ordinary differ-
ential equations on an appropriate sequence space. The most widely used sequence
space is the Hilbert space of real-valued square summable bi-infinite sequences �2

with norm and inner product

‖uuu‖ :=

(
∑
i∈Z

u2
i

)1/2

, (uuu,vvv) := ∑
i∈Z

uivi for uuu = (ui)i∈Z, vvv = (vi)i∈Z ∈ �2.

Similarly, �∞ is the Banach space of real-valued bounded bi-infinite sequences with
norm ‖uuu‖∞ := supi∈Z |ui|.

Since ui → 0 as i →±∞ for uuu = (ui)i∈Z ∈ �2, the Hilbert space �2 does not include
traveling wave solutions or solutions with just bounded components. This excludes
a large number of applications with non-vanishing values at distant. Weighted se-
quence spaces were introduced to handle such dynamical behaviour. For greater
applicability these will be defined for weighted space of bi-infinite real-valued se-
quences with vectorial indices i= (i1, · · · , id) ∈ Zd .

In particular, given a bounded positive sequence of weights (ρi)i∈Zd , define the
linear space

�p
ρ :=

{
uuu = (ui)i∈Zd : ∑

i∈Zd

ρiu
p
i < ∞, ui ∈ R

}
with the norm

‖uuu‖ρ,p :=

(
∑
i∈Zd

ρiu
p
i

)1/p

for uuu = (ui)i∈Zd ∈ �p
ρ .

Then �p
ρ is a separable Banach space [41]. In particular, when p= 2, �2

ρ is a separable
Hilbert space with the inner product and norm

〈uuu,vvv〉 := ∑
i∈Zd

ρiuivi, ‖uuu‖ρ :=
√

∑
i∈Zd

ρiu2
i for uuu=(ui)i∈Zd ∈ �2

ρ , vvv=(vi)i∈Zd ∈ �2
ρ .
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The weights ρi are often assumed to satisfy

Assumption 1 ρi > 0 for all i ∈ Zd and ρΣ := ∑
i∈Zd

ρi < ∞.

It is straightforward to show that �2
ρ contains bi-infinite sequences with just bounded

components and that �2 ⊆ �∞ ⊆ �2
ρ .

A brief literature review

Extensive studies have been done regarding various aspects of solutions of LDS,
that can be mainly classified into three categories, traveling wave solutions (see e.g.,
[3, 7, 11, 12, 19, 20, 30, 32, 45, 56, 57, 59, 73]), chaotic properties of solutions (see
e.g., [21, 27, 63]), and long term behavior of solutions (see, e.g., [1, 9, 49, 65, 70,
69, 71, 72]). More recently, nonautonomous and stochastic LDS have been studied
by Abdallah [2], Bates et al. [8], Caraballo & Lu [14], Caraballo et al., [15, 16],
Fan & Wang [29], Han [33] and references therein, Huang [46], Wang [66], Zhao &
Zhou [68], amongst others.

Most studies on LDS in the literature consider the linear diffusion operator
ui+1 − 2ui + ui−1 as in (1). In the biological context such an operator assumes the
simplest tri-diagonal interconnection structure that allows only uniform linear diffu-
sion among cells within the nearest neighborhood, i.e., each cell interacts only with
the cells which are adjacent to it in a uniform manner. These assumptions exclude
numerous applications with different interconnection structures at different com-
ponents (see, e.g., [18, 22, 24, 23, 60]), among which neural networks are a very
important example.

The main focus of this chapter is the existence of attractors for LDS arising from
biological sciences. Each of the systems considered in this chapter has a different
character from those considered in the literature. It is well-known that the existence
of attractors usually relies on the existence of closed absorbing sets and asymptotic
compactness of the underlying dynamical system. For the reader’s convenience be-
low we recall the definition of attractors and state the well-known results on exis-
tence of attractors, pullback attractors, and random attractors, along with the def-
inition of asymptotic compactness. The reader is referred to [5, 13, 53] for basic
concepts and theory of nonautonomous and random dynamical systems.

In what follows, let X be a complete metric space and let dist denote the Haus-
dorff semi-distance of X given by dist(A,B) = supa∈A infb∈B |a−b|X for A,B ⊂ X.

Definition 1. A nonempty subset A is called a global attractor for a semigroup
(dynamical system) of continuous operator {S (t)}t≥0 on X if

(i) A is compact;
(ii) A is invariant under S , i.e., S (t)A = A for each t ≥ 0;

(iii) A attracts every bounded sets of X, i.e., limt→∞ dist(S (t)X ,A ) = 0 for any
bounded set X ∈ X.
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Definition 2. A family of sets A = {A(t)}t∈R is called a pullback attractor for a con-
tinuous two-parameter semigroup (nonautonomous dynamical system) {ϕ(t, t0)}t≥t0
on X if

(i) A(t) is compact for all t ∈ R;
(ii) A is invariant under ϕ , i.e., ϕ(t, t0)A(t0) = A(t) for all t ≥ t0;

(iii) A pullback attracts all families of bounded subsets of X, i.e.,

lim
t0→−∞

dist(ϕ(t, t0)X(t0),A(t)) = 0 for any fixed t ∈ R.

Definition 3. A random set ω �→ A (ω) is called a global random attractor for a
continuous random dynamical system {ψ(t,ω)}t≥0,ω∈Ω on X if

(i) A (ω) is a compact set of X for a.e. ω ∈Ω ;
(ii) A is invariant under ψ , i.e., ψ(t,ω)A (ω) = A (θtω) for all t ≥ 0 and a.e.

ω ∈Ω ;
(iii) A pullback attracts all families of tempered random sets of X, i.e.,

lim
t→∞

dist(ψ(t,θ−tω)X(θ−tω),A (ω)) = 0 for any X ∈ D(X) and a.e.ω ∈Ω ,

where D(X) denotes the set of all tempered random sets of X.

Proposition 1. Let {S (t)}t≥0 be a semigroup (dynamical system) of continuous
operator on X. If {S (t)}t≥0 has a bounded absorbing set Λ and is asymptotically
compact, i.e., {S (tn)xn} is precompact in X for every bounded sequence {xn} in X
and tn → ∞, then {S (t)}t≥0 has a global attractor in X.

Proposition 2. Let {ϕ(t, t0)}t≥t0 be a continuous two-parameter semigroup (nonau-
tonomous dynamical system) on X. If {ϕ(t, t0)}t≥t0 has a family of compact pullback
absorbing sets ΛΛΛ = {Λ(t)}t∈R and is asymptotically compact, i.e., for all τ ∈R the
sequence {ϕ(tn,τ− tn)xn} has a convergent subsequence in X for every tn → ∞ and
xn ∈Λ(τ− tn), then {ϕ(t, t0)}t≥t0 has a pullback attractor.

Proposition 3. Let {ψ(t,ω)}t≥0,ω∈Ω be a continuous random dynamical system
with state space X. If {ψ(t,ω)}t≥0,ω∈Ω has a tempered random closed absorb-
ing set Λ(ω) and is asymptotically compact, i.e., for a.e. ω ∈ Ω each sequence
xn ∈ ψ(tn,θ−tnω)Λ(θ−tnω) with tn → ∞ has a convergence subsequence in X, then
{ψ(t,ω)}t≥0,ω∈Ω has a unique global random attractor.

Outline of this chapter

We are interested in the dynamical behaviour of lattice models that arise in the bio-
logical sciences, in particular, the existence of attractors in such system. The chapter
only considers models that we have investigated and will include nonautonomous,
random and set-valued attractors as well as the usual autonomous ones. The chapter
is organized as follows. Section 2 introduces the original work on reaction-diffusion
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LDS and discusses numerical approximation of attractors for reaction-diffusion
LDS. In Section 3 a recently studied reaction-diffusion LDS with delayed recovery
is introduced. In Section 4 and 5 we study Hopfield type neural lattice models and
neural field lattice models arising from discretization of neural field PDE models,
respectively. In the end some closing remarks are given in Section 6.

2 Reaction-diffusion lattice models

Reaction-diffusion lattice models are obtained from discretizing a reaction-diffusion
type PDE on a one-dimensional domain; they are LDS with the leading operator
A : �2 → �2 defined by

(Auuu)i = ui−1 −2ui +ui+1, i ∈ Z. (2)

Define the operators B,B∗ : �2 → �2 by

(Buuu)i = ui+1 −ui, (B∗uuu)i = ui−1 −ui, i ∈ Z.

Then it is straightforward to check that −A= BB∗ = B∗B and that (B∗uuu,vvv) = (uuu,Bvvv)
for any uuu, vvv ∈ �2, and hence (Auuu,uuu) = −‖Buuu‖2 ≤ 0 for any uuu ∈ �2. Note that in �2

this means A is negative definite since ‖Buuu‖ = 0 implies that all components ui are
identical and hence uuu is zero in �2.

2.1 Classical techniques for reaction-diffusion LDS

The original paper on the LDS (1) with the operator A by Bates, Lu & Wang [9]
has had a seminal influence on the investigation of attractors in LDS. There it was
assumed that ggg = (gi)i∈Z ∈ �2 and f is a smooth nonlinear function satisfying

Assumption 2 s f (s)≥ 0 for all s ∈ R.

Note that Assumption 2 implies f (0) = 0 since f is smooth. Then for any uuu ∈ �2,
F(uuu) := ( f (ui))i∈Z ∈ �2 and hence the LDS (1) can be written as an ODE on �2:

duuu(t)
dt

= νAuuu−λuuu+F(uuu)+ggg. (3)

Assumption 2 also implies that F is locally Lipschitz from �2 to �2. In addi-
tion it was shown that given any initial condition uuu(0) = uuuo = (uo,i)i∈Z and T > 0,
a solution of (3) is always bounded on t ∈ [0,T ]. Standard existence and unique-
ness theorems for ODEs on Banach spaces (see e.g., Deimling [26]) ensure the
global existence and uniqueness of a solution uuu(t;uuuo) ∈ C ([0,∞), �2) for the equa-
tion (3). Moreover, the solution uuu(t;uuuo) defines a semigroup (i.e., autonomous semi-
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dynamical system) {S (t)}t≥0 that maps �2 to �2 by

S (t)uuuo = uuu(t;uuu0), t ≥ 0.

Existence of an absorbing set

It is easy to show that the semi-group {S (t)}t≥0 on �2 has a positive invariant
absorbing set. In fact, taking the inner product of (3) with uuu ∈ �2 gives

d
dt

‖uuu‖2 +2ν‖Buuu‖2
2 +2λ‖uuu‖2

2 = 2(F(uuu),uuu)+2(ggg,uuu)≤−λ‖uuu‖2 +
1
λ
‖ggg‖2,

and hence
d
dt

‖uuu‖2 ≤−λ‖uuu‖2 +
1
λ
‖ggg‖2.

The Gronwall inequality then gives

‖uuu(t)‖2 ≤ ‖uuuo‖2e−λ t +
1
λ
‖ggg‖2

Hence the closed and bounded subset of �2

Λ :=
{

uuu ∈ �2 : ‖uuu(t)‖2 ≤ 1+
1
λ
‖ggg‖2

}
is a positively invariant absorbing set for the semi-group {S (t)}t≥0 on �2.

Asymptotic compactness

A significant contribution of the paper [9] was to show that the semi-group {S (t)}t≥0
generated by the LDS (3) is asymptotically compact, from which it follows that
{S (t)}t≥0 has a global attractor A in �2. Their method of proof has since been
adapted and used repeatedly in a large number of other papers including all of those
discussed in this chapter. The key step of the proof is to derive an asymptotic tail
estimate for the solution uuu(t;uuuo) of the LDS in Λ .

Lemma 1. For every ε > 0 there exist T (ε) > 0 and I(ε) ∈ N such that

∑
|i|>I(ε)

|uuu(t;uuuo)i|2 ≤ ε2

for all uuuo ∈ Λ and t ≥ T (ε).

The proof utilizes a smooth cut-off function ξm : Z+ → [0,1] with
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ξm(|i|) := ξ
( |i|
m

)
for m ∈ Z+, i ∈ Z where ξ (s)

⎧⎨⎩
= 0, 0 ≤ s ≤ 1
∈ [0,1], 1 ≤ s ≤ 2
= 1, s ≥ 2

. (4)

For a large fixed m (eventually determined in the proof) multiplying equation (1) by
vi(t) = ξm(|i|)ui(t) and summing over i ∈ Z gives

1
2

d
dt ∑

i∈Z
ξm(|i|)|ui(t)|2 +ν(Buuu,Bvvv)+λ ∑

i∈Z
ξm(|i|)|ui(t)|2

= ∑
i∈Z
ξm(|i|)ui(t) f (ui(t))ui(t)+ ∑

i∈Z
ξm(|i|)gi.

After some skillful estimates this leads to

d
dt ∑

i∈Z
ξm(|i|)|ui(t)|2 +λ ∑

i∈Z
ξm(|i|)|ui(t)|2 ≤ C

m
+

1
λ ∑

|i|≥m

g2
i ≤ 1

2
ε

for m ≥ I(ε) since ggg = (gi)i∈Z ∈ �2. Finally, by the Gronwall inequality,

∑
|i|≥2m

|ui(t)|2 ≤ ∑
i∈Z
ξm(|i|)|ui(t)|2 ≤ ε

for t ≥ T (ε) (to handle the initial condition) and m ≥ I(ε).
To obtain asymptotic compactness a sequence uuu(tn;uuuo,n) with uuuo,n ∈ Λ and tn →

∞ is considered. Since Λ is closed and bounded convex subset of the Hilbert space
�2 it is weakly compact. This gives a weakly convergent subsequence with a limit
in Λ . The asymptotic tail estimate is then used to separate a finite number of terms
from the small tail to show that the weak limit is in fact a strong limit. The existence
of a global attractor then follows from Proposition 1. The reader is urged to study
[9] carefully, where everything is clearly explained.

Finite dimensional approximations

Bates, Lu & Wang [9] also show that the 2N + 1-dimensional approximations of
the lattice system (1) also have global attractors AN which converge upper semi
continuously to the attractor A in the Hausdorff semi-distance on �2, i.e.,

lim
N→∞

dist�2 (AN ,A ) = 0. (5)

There they consider vectors xxx = (x−N , · · · ,x0, · · · ,xN ) in R2N+1 which can be ex-
tended naturally to elements of �2 with components set to zero for indices |i| > N.
The proof of upper semi continuous convergence uses similar ideas to those for the
tail estimates above.
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Note that do not simply truncate the LDS (1) but assume that it has periodic
boundary conditions, i.e., with xN (t) = x−N−1(t) and x−N (t) = xN+1(t). Specifically,
they consider the finite-dimensional system of ODEs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx−N

dt
= ν

(
xN −2x−N + x−N+1

)−λx−N + f (x−N )+g−N ,

...
dxi

dt
= ν (xi−1 −2xi + xi+1)−λxi + fi(xi)+gi, i =−N +1, · · · ,N −1,
...

dxN

dt
= ν

(
xN−1 −2xN + x−N

)−λxN + f (xN )+gN .

(6)

2.2 Numerical approximation of lattice attractors

A general theorem of Kloeden & Lorenz [52] (see also [36]) can be applied to
conclude that a one-step numerical scheme with constant time stepsize h applied to
the ODE system (6) has an attractor A (h)

N
, which converges upper semi continuously

to AN for each N, i.e.,

lim
h→0+

distR2N+1

(
A (h)

N
,AN

)
= 0. (7)

Thus, combining the convergences (5) and (7), we see that A (h)
N

can be used as an
approximation for the lattice attractor A for the LDS (1) when h is small enough
and N is large enough.

Han, Kloeden & Sonner [39] also consider the numerical approximation of the
attractor of the LDS (1). They focus on the implicit Euler scheme (IES) and first
apply it to ODE (3) in the space �2, where it has the form

uuu(h)n+1 = uuu(h)n +hAuuu(h)n+1 −hλuuu(h)n+1 +hF
(

uuu(h)n+1

)
+hggg, n ∈ N, uuuo ∈ �2. (8)

They show that the IES (8) is uniquely solvable for small enough stepsize, hence
generates a discrete-time semi-dynamical system. Moreover, this numerical system
has an absorbing sets and an attractor A

(h)
∞ , which converges upper semi continu-

ously to A as h → 0+.
The attractor A

(h)
∞ is useful for theoretical purposes, but actual computations

must be done in finite dimensions. In [39] the implicit Euler scheme is also applied
to the finite dimensional system of ODEs (6) and shown to have an attractor A (h)

N
.

By a compactness argument similar to the asymptotic tail estimates, it is shown that
the attractors A (h)

N
converge upper semi continuously to A

(h)
∞ for a fixed stepsize h,

i.e.,
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lim
N→∞

dist�2

(
A (h)

N
,A

)
= 0.

Notice that the finite dimensional IES have common range of step-sizes and com-
mon absorbing set when extended to �2, which is independent of the dimension
2N +1.

There are thus two paths for computing an approximation of the LDS attractor,
essentially first approximating space then time or approximating time then space.
This is illustrated in Figure 1.

A (h)
N

AN

A
(h)

∞ A

N
→

∞

II

N
→

∞

IV

h → 0+

III

h → 0+

I

Fig. 1 Convergence paths for the approximated numerical attractor to the analytical attractor.

3 A lattice reaction-diffusion model with delayed recovery

Motivated by the appearance of switching effects and recovery delays in systems of
excitable cells [47, 64] and time-dependent structure of reactions, Han & Kloeden
[34] studied a non-autonomous LDS with a reaction term which is switched off
when a certain threshold is exceeded and restored after a suitable recovery time:

u̇i = ν(Auuu)i + fi(t,ui) ·h(Θi − max
−τ≤s≤0

ui(t + s)), i ∈ Z, t > t0 (9)

ui(s) = φi(s− t0), ∀s ∈ [t0 − τ, t0], i ∈ Z, t0 ∈ R.

Here ν > 0 is reciprocal of the inter-cellular resistance [50], (Auuu)i is the dis-
cretized Laplacian operator as in (2), and h is the heaviside function defined by

h(x) =
{

1, x ≥ 0
0, x < 0 . (10)

For each i ∈Z: ui ∈R represents the membrane potential of the cell at the i-th active
site; Θi ∈ R is the threshold triggering the switch-off at the i-th site; ui(t + ·) ∈



210 Xiaoying Han and Peter E. Kloeden

C ([−τ,0],R) is the segment of ui on time interval [t − τ, t] where τ is a positive
constant representing the time-delay.

The LDS (23) describes a reaction-diffusion system with or without delay de-
pending on the maximum value achieved at each location during the past τ period
of time. More specifically, each ui evolves with respect to a reaction-diffusion equa-
tion with a delay in the reaction term as long as ui stays below the threshold Θi
starting from t0. Once the value of ui reaches or exceedsΘi at some time, the reac-
tion will be switched off, and stay off for at least τ period of time. The delay in the
reaction term can be recovered later, when ui evolves back to smaller values thanΘi
and remains smaller thanΘi for more than τ period of time.

The novelty and difficulty of system (9) lies in that the switching off and on of the
reaction term leads to a relaxation effect, essentially multiplication by a Heaviside
function, and thus to the formulation of the system as a set-valued system, i.e.,
inclusion differential equation. In view of the recovery time prescribed between
switching off and back on again introduces a delay term, which appears only upper
semi continuously.

Existence of solutions

Consider the function spaces

E1 = C ([−τ,0],R), EC = C ([−τ,0], �2), E∞ = C ([−τ,0], �∞),

with norms

‖ · ‖E1 = max
s∈[−τ,0]

| · (s)|, ‖ · ‖EC
= max

s∈[−τ ,0]
‖ · (s)‖, ‖ · ‖E∞ = max

s∈[−τ,0]
‖ · (s)‖∞.

In addition, denote by EB = CB(R, �2) the space of all continuous bounded func-
tions from R into �2 with norm ‖ · ‖EB

= ∑t∈R ‖ · (t)‖.
Denote by uuut = (uit)i∈Z where uit(s) = ui(t + s), s ∈ [−τ,0] and define the set-

valued mapping F : R×EC → P(�2) by F(t,uuut) := (Fi(t,uit))i∈Z, where

Fi(t,uit) =

⎧⎪⎪⎨⎪⎪⎩
fi(t,ui), maxs∈[−τ,0] uit(s)<Θi

fi(t,ui) · [0,1], maxs∈[−τ,0] uit(s) =Θi

0, maxs∈[−τ,0] uit(s)>Θi

Writing the initial condition as φφφ(·) := (φi(·))i∈Z, then the lattice equation (9) can
be written as the delay differential inclusion equation

duuu
dt

∈ νAuuu+F(t,uuut), uuu(s) = φφφ(s− t0), ∀s ∈ [t0 − τ, t0]. (11)

Recall that the bounded linear operator A : �2 → �2 defined by (2) generates a
uniformly continuous semigroup {S (t)}t≥0.
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Definition 4. A continuous function uuu : [t0,T ] → �2 is called a (strong) solution of
problem (11) if there exists a selection function

f(t) ∈MF :=
{
f ∈ L 1(t0,T ;�2) : f(t) ∈ F(t,uuut), for a.e. t ∈ [t0,T ]

}
such that uuu is a (strong) solution to the corresponding auxiliary problem, i.e., if uuu
is absolutely continuous on any compact subinterval of [t0,T ] with uuu(t0) = uuuo and
uuu′(t) = νAuuu(t)+ f(t) in �2 for Lebesgue-a.e. t ∈ (t0,T ).

To ensure equation (11) has a (strong) solution, the following assumptions on
functions fi are imposed in [34]:

Assumption 3 fi : R→ R is continuous in t for each i ∈ Z;

Assumption 4 there exists a constant a ≥ 0, and bbb(t) = (bi(t))i∈Z ∈ EB such that

f 2
i (t,x)≤ ax2 +b2

i (t), ∀s ∈ R;

Assumption 5 for any x ∈ R, there exist δ > 0 and LLL(t) = (Li(t))i∈Z ∈ EB such
that

| fi(t,y)− fi(t,x)| ≤ |Li(t)||y− x|, i ∈ Z

for all |y− x|< δ .

It is straightforward to show that the map F :R×EC →P(�2) is bounded, closed
and convex, but more difficult to show that F is upper semi-continuous. To that end,
the integer set Z is divided into three time-dependent sub-indices,

Jh
0 =

{
i ∈ Z : max

s∈[−τ,0]
hi(s)>Θi

}
,

Jh
1 =

{
i ∈ Z : max

s∈[−τ,0]
hi(s)<Θi

}
,

Jh
Θ =

{
i ∈ Z : max

s∈[−τ,0]
hi(s) =Θi

}
,

on each of which it was shown that dist�2(F(t,h1),F(t,h2)) is small provided ‖h1 −
h2‖EC

is small. The next theorem then follows from known results on differential
inclusion equations in Banach spaces.

Theorem 1. Assume that Assumptions 3 – 5 hold. Then for any t0 ∈R, problem (11)
has at least one solution, uuu(·) = uuu(·; t0,φφφ). Moreover, the solutions define a two-
parameter set-valued semi-group or nonautonomous set-valued dynamical system
ϕ on EC by

ϕ(t, t0)φφφ = {uuut(·; t0,φφφ) ∈ EC : uuu(·) is a solution to (11) with φφφ ∈ EC }.
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Existence of a global attractor

To obtain the existence of a global attractor the following dissipative conditions are
needed:

Assumption 6 there exists α > 0 with α2 > a > 0 and βββ (t) := (βi(t))i∈Z ∈ HB

such that
fi(t,x)x ≤−αx2 +β 2

i (t), i ∈ Z.

Under Assumptions 3 – 6 it can be shown that every solution uuu(·) to (11) satisfies

‖uuut‖2
EC

≤ ‖φφφ‖2
EC

eλ (τ+t0−t) +
2α‖β‖2 +‖b‖2

λ

(
1− eλ (t0−t)

)
.

Hence the closed and bounded set

Λ :=
{

u ∈ EC : ‖u‖2
EC

≤ 1+
2α‖β‖2 +‖b‖2

λ

}
is a positive invariant absorbing set for ϕ .

Asymptotic tail estimations can also be constructed by using the cut-off func-
tion ξ defined in (4), but estimations have to be done separately on the three time-
dependent sub-indices Jh

0 , Jh
1 and Jh

Θ respectively. Then a modification of asymptotic
compactness arguments in [9] shows that ϕ is asymptotic compact. It then follows
from Proposition 2 that the nonautonomous dynamical system {ϕ(t, t0)}t≥t0 has a
pullback attractor in EC .

4 Hopfield neural lattice models

In 1984 John Hopfield [44] introduced a system of n ordinary differential equations
(ODEs) to model the interaction between a network of n neurons. It has since found
many diverse applications and, in particular, is one of the most popular mathematical
models for investigating neural networks in artificial intelligence. It is now referred
to as the Hopfield neural network and given by

μi
dui(t)

dt
=−ui(t)

γi
+

n

∑
j=1
λi, j f j(u j(t))+gi, i = 1, ...,n, (12)

where ui represents the voltage on the input of the ith neuron at time t; μi > 0 and
γi > 0 represents the neuron amplifier input capacitance and resistance of the ith
neuron, respectively; and gi is the constant external forcing on the ith neuron.

Here n is the total number of neurons coupled by an n× n matrix (λi, j)1≤i, j≤n,
where λi, j represents the connection strength between the ith and the jth the neuron.
More precisely, for each pair of i, j = 1, . . ., n, λi, j is the synapse efficacy between
neurons i and j, and thus λi, j > 0 (λi, j < 0, resp.) means the output of neuron j ex-
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cites (inhibits, resp.) neuron i. The term λi, j f j(u j(t)) represents the electric current
input to neuron i due to the present potential of neuron j, in which the function f j is
neuron activation functions and assumed to be a sigmoid type function.

We are interested in studying dynamics of the above Hopfield neural network
model when its size becomes increasingly large, i.e., n → ∞. To this end, we extend
the n dimensional ODE system (12) to an infinite dimensional lattice system, that
models the dynamics of an infinite number of neurons indexed by i ∈ Z, in which
each neuron is still connected with other neurons within its finite n neighborhood.
More precisely, the ith neuron is connected to the (i− n)th, · · · , (i+ n)th neurons
through the strength matrix (λi, j)i−n≤ j≤i+n and the activation functions f j for j =
i−n, · · · , i+n. System (12) then becomes the following LDS, namely the Hopfield
neural lattice model:

μi
dui(t)

dt
=−ui(t)

γi
+

i+n

∑
j=i−n

λi, j f j(u j(t))+gi, i ∈ Z. (13)

The model parameters are assumed to satisfy:

Assumption 7 the efficacy between each pair of neurons is finite, i.e., there exists
Mλ > 0 such that

sup
i, j∈Z

∣∣λi, j
∣∣≤ Mλ ;

Assumption 8 the neuron amplifier input capacitance and resistance are uniformly
bounded, i.e., there exist positive constants mμ , Mν , mγ , and Mγ , such that

mμ ≤ μi ≤ Mμ , mγ ≤ γi ≤ Mγ , ∀ i ∈ Z.

For existence of a global solution and global attractor, the forcing term and the
neuron activation function are assumed to satisfy:

Assumption 9 the neuron activation function satisfies fi ∈ C 1(R,R) and fi(0) = 0
for all i ∈ Z. Moreover, there exists a continuous non-decreasing function L(r) ∈
C (R+,R+) such that

sup
i∈Z

max
s∈[−r,r]

∣∣ f ′i (s)
∣∣≤ L(r) ∀ r ∈ R+;

Assumption 10 for each i ∈ Z there exist α > 0 and βββ = (βi)i∈Z ∈ �2 such that

s fi(s)≤−αs2 +β 2
i , ∀ s ∈ R.

Assumption 11 the aggregated forcing on the whole network is finite in the sense
that (gi)i∈Z ∈ �2.



214 Xiaoying Han and Peter E. Kloeden

Existence of solutions

Note that Assumption 9 essentially requires each neuron activation function fi to be
locally Lipschitz continuous uniformly in i ∈ Z. In fact, given any uuu = (ui)i∈Z ∈ �2,
for each i ∈ Z there exists ζi ∈ R with |ζi| ≤ |ui| such that

| fi(ui)|= | f ′i (ζi)ui| ≤ L(|ui|)|ui| ≤ L(‖uuu‖)|ui|, ∀ i ∈ Z. (14)

Given any uuu = (ui)i∈Z, define the operators Γ uuu = ((Γ uuu)i)i∈Z, Fuuu = ((Fuuu)i)i∈Z
and function ggg by

(Γ uuu)i =
ui

γiμi
; (Fuuu)i =

i+n

∑
j=i+n

λi, j

μi
f j(u j); ggg =

(
gi

μi

)
i∈Z

. (15)

By Assumption 8 and 11, ggg ∈ �2 and Γ : �2 → �2. Moreover, by the inequality (14),

‖Fuuu‖2 = ∑
i∈Z

(
i+n

∑
j=i+n

λi, j

μi
f j(u j)

)2

≤ M2
λ

m2
μ

∑
i∈Z

(
i+n

∑
j=i+n

f j(u j)

)2

≤ M2
λ

m2
μ

∑
i∈Z

[(2n+1)L(‖uuu‖)|ui|]2 = (2n+1)2 M2
λ

m2
μ

L2(‖uuu‖) · ‖uuu‖2,

which implies that F maps �2 to �2. Therefore the LDS (13) can be written as an
ODE on �2:

duuu
dt

=−Γ uuu+Fuuu+ggg := P(uuu) (16)

It follows from Assumptions 8 and 9 that P(uuu) is locally Lipschitz and thus given
any initial condition uuuo = (uo,i)i∈Z the equation (16) has a unique local solution
uuu(t;uuuo) ∈ C ([0,T ]�2). The dissipativity condition 10 ensures that the local solution
uuu(t;uuuo) is always bounded on t ∈ [0,T ] for every finite T . Hence the solution uuu(t;uuuo)
of equation (16) exists globally in time, i.e., uuu(t;uuuo) ∈ C ([0,∞), �2). Moreover, the
solution depends continuously on the initial data. Therefore the solution uuu(t;uuuo)
defines a continuous dynamical system {S (t)}t≥0 that maps �2 to �2 by

S (t)uuuo = uuu(t;uuu0), t ≥ 0, uuuo ∈ �2.

Existence of attractor

To construct an absorbing set for {S (t)}t≥0, multiply the (13) by ui(t) and sum
over all i ∈ Z to obtain

1
2

d‖uuu(t)‖2

dt
=−∑

i∈Z

u2
i

μiγi
+ ∑

i∈Z

ui

μi

i+n

∑
j=i−n

λi, j f j(u j)+ ∑
i∈Z

ui

μi
gi.
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The main technical difficulty is to estimate the term ∑i∈Z
ui
μi

∑i+n
j=i−nλi, j f j(u j), be-

cause each λi, j can be either positive or negative and thus the dissipativity of f j
may either stay dissipative or give rise to a growth. Thus the exciting neuron pairs
(λi, j > 0) and inhibiting neuron pairs (λi, j < 0) have to be analyzed separately. An-
other difficulty comes from the mismatched product term ui f j(u j), to which the
dissipative assumption 10 is not directly applicable. In fact,

ui f j(u j) = (ui −u j) f j(u j)+u j f j(u j)≤ L

(
u2

j +
Lu2

i
2α

+
αu2

j

2L

)
−αu2

j +β
2
j

≤ −α
2

u2
j +Lu2

j +
L2

2α
u2

i +β
2
j , ∀ i, j ∈ Z. (17)

To avoid further complications assume that L(r) ≡ L, then the following Lemma
holds [43].

Lemma 2. Assume that assumptions 7–11 hold. Then the continuous dynamical sys-
tem {S (t)}t≥0 generated by solutions to the system (16) has a positive invariant
bounded absorbing set Λ provided

inf
i∈Z

min
| j−i|≤n
λi, j>0

λi, j > 0 and
1

MμMγ
+(2n+1)

[
αmλ
Mμ

− LMλ
mμ

(
9
2
+

L
α

)]
> 0.

The asymptotic compactness ofΛ under {S (t)}t≥0 is also established following
a tail estimate by using a continuous, increasing and sub-additive cut-off function
ξm : Z+ → [0,1] satisfying (4). The existence of a global attractor then follows from
Proposition 1.

Upper semi continuous convergence of attractors

The upper semi continuity of global attractors is of crucial importance when numer-
ical simulations of an LDS are sought. More precisely, a numerical simulation of an
(infinite dimensional) LDS requires a simplified finite dimensional approximation
of the original infinite system, and the convergence of the global attractor ensures
that numerical solutions based on the simplified finite dimensional system mimic
the solutions for the infinite lattice system in the limit.

To investigate the upper semi continuity of the global attractor for syste (13), con-
sider the following (2N + 1)-dimensional system of ODEs obtained from directly
truncating the lattice system (13):

μi
d
dt

ui(t) =−ui(t)
γi

+
i+n

∑
j=i−n

λi, j f j(u j(t))+gi, i =−N, · · · ,0, · · · ,N. (18)

Since every neuron is interacting with 2n neurons in the neighborhood ordered by
their indices, we assume that N ≥ n to capture enough dynamics of the network.
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In order for the finite-dimensional ODE system (18) to be well-posed, boundary
conditions, i.e., on terms out of the range i =−N, · · · ,N, need to be imposed. Here
we assume a Dirichlet type boundary conditions:

Assumption 12 ui(t)≡ 0 for i =−N −n, · · · ,−N −1 and i = N +1, · · · ,N +n.

For any N ∈ N, denote by u(t) = (u−N , . . . ,u0 , . . . ,uN ) ∈ R2N+1, and

Γ N :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
μ−Nγ−N

0 . . . 0 0

0 − 1
μ−N+1γ−N+1

0 . . . 0

...
...

. . .
...

0 0 . . . 0 − 1
μNγN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R(2N+1)×(2N+1).

In addition, let

gggN =

(
g−N

μ−N
, . . . ,

gN

μN

)
∈ R2N+1.

Then under Assumption 12 and 9 the (2N + 1)-dimensional ODE system (18) be-
comes

du(t)
dt

= Γ Nu+FN(u)+gggN , (19)

where FN(u) = (FN
i (u))i=−N,···N is defined by

FN
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
μi

i+n

∑
j=−N

λi, j f j(u j), i =−N, · · · ,−N +n−1

1
μi

i+n

∑
j=i−n

λi, j f j(u j), i =−N +n, · · · ,N −n

1
μi

N

∑
j=i−n

λi, j f j(u j), i = N −n+1, · · · ,N

.

The above ODE system is well-posed and thus given any initial condition u(0) =
uo with uo = (uo,N , · · · ,uo,0, · · · ,uo,N)∈R2N+1, the equation (19) has a unique solu-
tion u(t;uo)∈C ([0,∞),R2N+1)∩C 1((0,∞),R2N+1). Moreover, the solution defines
a dynamical system {SN (t)}t≥0 that maps R2N+1 to R2N+1 by SN (t)uo = u(t;uo).

To construct an absorbing set, denoting by | · | the Euclidean norm of R2N+1 and
taking the inner product of (19) with u in R2N+1 to get
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1
2

d
dt

|u(t)|2 = −
N

∑
i=−N

1
μiγi

u2
i (t)+

N

∑
i=−N

ui

μiγi
gi +

−N+n−1

∑
i=−N

ui

μi

i+n

∑
j=−N

λi, j f j(u j)︸ ︷︷ ︸
(i)

+
N−n

∑
i=−N+n

ui

μi

i+n

∑
j=i−n

λi, j f j(u j)︸ ︷︷ ︸
(ii)

+
N

∑
i=N−n+1

ui

μi

N

∑
j=i−n

λi, j f j(u j)︸ ︷︷ ︸
(iii)

,

in which

−
N

∑
i=−N

1
μiγi

u2
i (t)+

N

∑
i=−N

ui

μiγi
gi ≤− 1

2MμMγ
|u(t)|2 + MμMγ

2m2
γ

|gggN |2.

Then using Assumption 9 with L(r) ≡ L, Assumption 10, the inequality (17), and
computing terms with λi, j > 0 and λi, j < 0 separately we have

(i) ≤ −αmλ
Mμ

n|u(t)|2 + 3LMλ
2mμ

n|u(t)|2 + LMλ
mμ

n

(
L
α
+1

)−N+n−1

∑
i=−N

u2
i +

nMλ
mμ

‖βββ‖2

(ii) ≤ 3LMλ
2mμ

(2n+1)|u(t)|2 + LMλ
mμ

(2n+1)
(

L
α
+1

) N−n

∑
i=−N+n

u2
i +

(2n+1)Mλ
mμ

‖βββ‖2,

(iii) ≤ −αmλ
Mμ

n|u(t)|2 + 3LMλ
2mμ

n|u(t)|2 + LMλ
mμ

n

(
L
α
+1

) N

∑
i=N−n+1

u2
i +

nMλ
mμ

‖βββ‖2.

Summarizing the above results in

1
2

d
dt

|u(t)|2 ≤−C|u(t)|2 + MμMγ

2m2
γ

‖ggg‖2 +(4n+1)
Mλ
mμ

‖βββ‖2,

where
C =

1
2MμMγ

+2n
αmλ
Mμ

− 3LMλ
2mμ

(4n+1)− LMλ
mμ

(2n+1).

Therefore, provided C > 0, the dynamical system {SN (t)}t≥0 has an absorbing set
in R2N+1

ΛN :=

{
u ∈ R2N+1 : |uuu| ≤ MμMγ

4Cm2
γ
‖ggg‖2 +

4n+1
2C

Mλ
mμ

‖βββ‖2 +1

}
.

Notice thatΛN depends only on model parameters, but not N. It then follows directly
from Proposition 1 that the dynamical system {SN (t)}t≥0 has a global attractor
AN ⊂ΛN . Moreover, using a contradiction argument, it can be shown that the global
attractors AN , with natural embedding in �2, converge to the global attractor A of
the LDS (13) upper semi continuously, as N → ∞. More precisely,



218 Xiaoying Han and Peter E. Kloeden

lim
N→∞

dist�2(AN ,A ) = 0,

where dist�2(AN ,A ) = supa∈AN
dist�2(a,A ) = supa∈AN

infb∈A ‖a−b‖ .

A random Hopfield neural lattice model

To take into account random perturbations of the environment, we introduce a noise
in the equations in (12) by replacing each constant input gi by a random forcing
gi(θtω) represented by a measure-preserving driving dynamical system {θt}t∈R act-
ing on a probability space (Ω ,F ,P). For basic concepts of the driving dynamical
system {θt}t∈R and random dynamical system the reader is referred to [5]. The LDS
(13) then becomes

μi
dui(t)

dt
=−ui(t)

γi
+

i+n

∑
j=i−n

λi, j f j(u j(t))+gi(θtω), i ∈ Z. (20)

The assumptions 8 through 10 remain the same, but due to the randomness of gi,
Assumption 11 needs to be replaced by

Assumption 13 (gi(ω))i∈Z ∈ �2, ∀ ω ∈Ω .

The LDS (20) can then be written as a random ordinary differential equation
(RODE) on �2:

duuu
dt

=−Γ uuu+Fuuu+ggg(θtω), (21)

where Γ uuu and Fuuu are as defined in (15) and ggg(θtω) := (gi(θtω)/γi)i∈Z.
Following similar computations for the ODE (16) and using existence theorem

for RODEs [35], it can be shown that given initial condition uuu(t0)= uuuo ∈ �2, a unique
solution uuu(·; t0,ω,uuuo) ∈ C ([t0,∞), �2) for (21) exists globally in time for any t0 ∈ R

and ω ∈Ω . Moreover the solution is continuous in uuuo ∈ �2 and satisfies

uuu(t + t0; t0,ω,uuuo) = uuu(t;0,θt0ω,uuuo), ∀ t ≥ 0, uuuo ∈ �2, ω ∈Ω .

Therefore the solution of the RODE (21) defines a continuous random dynamical
system {ψ(t,ω)}t≥0,ω∈Ω by

ψ(t,ω)uuuo = uuu(t;0,ω,uuuo), ∀ t ≥ 0, uuuo ∈ �2, ω ∈Ω .

The major difference in obtaining the existence of a random absorbing set for the
random dynamical system {ψ(t,ω)}t≥0,ω∈Ω defined by the solution of (21) and the
existence of an absorbing set for the dynamical system {S (t)}t≥0 defined by the
solution of (16) is due to the random forcing ggg(θtω). More precisely, all estimations
for {ψ(t,ω)}t≥0,ω∈Ω need to be done in the pullback sense, i.e., with the initial time
t0 → −∞ and current time t held fixed. The reader is referred to [35] and [13] and
references therein for detailed explanations of pullback and forward attraction. In
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[42] it was shown that

‖ψ(t,θ−tω,uuuo)‖2 ≤ e−ct‖uuuo‖2 +2(2n+1)
Mλ
mμc

‖βββ‖2

+
MμMγ

m2
μ

∫ 0

−t
∑
i∈Z

g2
i (θsω)e−c(t−s)ds,

where c is a positive constant depend on Mμ , mμ , Mλ , mλ , Mγ , n, and α in Assump-
tion 10. Due to Assumption 13,

∫ 0
−t ∑i∈Z g2

i (θsω)e−c(t−s)ds is a tempered random
variable and thus the random dynamical system {ψ(t,ω)}t≥0,ω∈Ω possesses a ran-
dom tempered absorbing set

Λ(ω) =

⎧⎨⎩uuu ∈ �2 : ‖uuu‖ ≤
(

2(2n+1)
Mλ
mμc

‖βββ‖2 +
MμMγ

m2
μ

I (θtω)

)1/2
⎫⎬⎭ ,

where

I (θtω) =
∫ 0

−t
∑
i∈Z

g2
i (θsω)e−c(t−s)ds.

The asymptotic compactness of Λ(ω) under the RDS {ψ(t,ω)}t≥0,ω∈Ω can also
be shown by using the cut-off function ξm and computations analog to those for
the LDS (13), and the existence of a random attractor then follows directly from
Proposition 3.

5 Neural field lattice models

Neural field models are often represented as evolution equations generated as con-
tinuum limits of computational models of neural field theory. They are tissue level
models that describe the spatio-temporal evolution of coarse grained variables such
as synaptic or firing rate activity in populations of neurons. See Coombes et al. [25]
and the literature therein. A particularly influential model is that proposed by S.
Amari in [4] (see also Chapter 3 of Coombes et al. [25] by Amari):

∂tu(t,x) =−u(t,x)+
∫
Ω

K(x− y)h(u(t,y)−Θ)dy, x ∈Ω ⊂ R, (22)

where Θ > 0 is a given threshold and h(x) = 1 for x ≥ 0 and h(x) = 0 for x < 0 is
the Heaviside function as defined in (10).

The continuum neural models may lose their validity in capturing detailed dy-
namics at discrete sites when the discrete structures of neural systems become dom-
inant. Lattice models can then used to describe dynamics at each site of the neural
field (see, e.g., [30, 37]. In particular, Han & Kloeden [37] introduced and investi-
gated the following lattice version of the Amari model with time-depending external
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forcing:

d
dt

ui(t) = fi(ui(t))+ ∑
j∈Zd

ki,jh(uj(t)−Θ)+gi(t), i ∈ Zd . (23)

The infinite dimensional matrix (ki,j)i,j∈Zd in (23) is the discrete counterpart of
the kernel function K in (22) and the term ki,jH(uj(t)− θ) describes the nonlocal
interactions between the ith and jth neurons. More precisely, the membrane potential
of the ith neuron is affected by those neurons with membrane potential above a
certain thresholdΘ . The matrix (ki,j)i,j∈Zd is assumed to satisfy

Assumption 14 ki,j ≥ 0, and ∑j∈Zd ki,j ≤ κ for all i, j ∈ Zd for some κ > 0,

which essentially puts a constraint on the aggregate structure of the interactions
among neurons.

The main difficulty to analyze the above LDS lies in the discontinuity introduced
by the heaviside function h. One way to handle such discontinuity is to replace the
Heaviside function by a set-valued mapping χ defined on R:

χ(s) =

⎧⎪⎨⎪⎩
{0}, s < 0,

[0,1], s = 0,

{1}, s > 0,

s ∈ R. (24)

Then the lattice system (23) can be reformulated as the lattice differential inclusion

dui(t)
dt

∈ fi(ui(t))+ ∑
j∈Zd

ki,jχ(uj(t)−Θ)+gi(t). (25)

Another way to handle the discontinuity is to approximate the Heaviside function
by a simplifying sigmoidal function such as

σε(s) =
1

1+ e−s/ε , s ∈ R, 0 < ε < 1. (26)

This avoids the need to introduce a differential inclusion as above.

5.1 Neural field lattice inclusion model

In this subsection we summarize the analysis to obtain an attractor for the lattice
differential inclusion (25) given in [37]. To include a wider range of solutions, we
study the system (25) in the weighted space of bi-infinite sequences �2

ρ as defined in
Section 1 with the weights ρi’s satisfying Assumption 1.

For each i ∈ Zd the function fi is assumed to satisfy
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Assumption 15 fi : R → R is continuously differentiable with weighted equi-
locally bounded derivatives, i.e., there exists a non-decreasing function L(·) ∈
C (R+,R+) such that

max
s∈[−r,r]

| f ′i(s)| ≤ L(ρir), ∀r ∈ R+, i ∈ Zd ;

Assumption 16 fi(0) = 0 and there exist constants α > 0 and βββ := (βi)i∈Zd ∈ �2
ρ

such that
s fi(s)≤−α|s|2 +β 2

i , ∀s ∈ R, ∀ i ∈ Zd .

In addition, the time-dependent forcing term gi(t) is assumed to satisfy:

Assumption 17 ggg(·) :=(gi(·))i∈Zd ∈CB(R, �2
ρ) and ḡ(·)∈L 1

loc(R)∩L 2(R, �2
ρ),

where ḡ(t) := supi∈Zd |gi(t)|.
For uuu ∈ �2

ρ define the reaction operator F by F(uuu) = ( fi(ui))i∈Zd . Then under
Assumption 15, F maps �2

ρ to �2
ρ and is locally Lipschitz with

‖F(uuu)−F(vvv)‖ρ ≤ L(
√ρΣ (‖uuu‖ρ +‖vvv‖ρ))‖uuu− vvv‖ρ .

Define the interconnection term as the the set-valued operator H(uuu) := (Hi(uuu))i∈Zd

for every uuu = (ui)i∈Zd ∈ �2
ρ given componentwise by

Hi(uuu) = ∑
j∈Zd

ki,jχ (uj−Θ) ,

where χ is the set-valued mapping defined in (24). Then by Assumption 1 and 14
the operator H maps an element in �2

ρ into a set in �2
ρ .

The lattice differential inclusion (25) can be rewritten as a differential inclusion
on �2

ρ as
u̇uu(t) ∈G(uuu(t), t) := F(uuu(t))+H(uuu(t))+ggg(t). (27)

Solutions of the above differential inclusion is defined componentwise as follows.

Definition 5. An absolutely continuous function uuu(t) = (ui(t))i∈Zd : [t0, t0 +T ) →
�2
ρ is called a solution to the differential inclusion (27) if

u̇i(t) ∈ fi(ui(t))+Hi(uuu(t))+gi(t), ∀ i ∈ Zd , a.e..

Existence theorems in the literature for an inclusion like (27) require the set-valued
mapping H to be upper semicontinuous in the space �2

ρ .
It is quite easy to show that the components Hi are upper semicontinuous on �2

ρ .
However, the weighted norm of the space �2

ρ makes it difficult to extend this result
to the full mapping. Instead Han & Kloeden [37] constructed a solution as the limit
of solutions of approximating systems, summarized below.
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Approximation of the set-valued operator

Let Zd
N :=

{
i= (i1, . . . , id) ∈ Zd : |i1|, . . . , |id | ≤ N

}
and define the truncated set-

valued operator

HN
i (uuu) = ∑

j∈Zd
N

ki,jχ (uj−Θ) , uuu = (ui)i∈Zd ∈ �2
ρ .

Lemma 3. For every i ∈ Zd, the set-valued mapping uuu �→ HN
i (uuu) is upper semi

continuous from �2
ρ into the nonempty compact convex subsets of R1, i.e.,

distR1
(
HN
i (uuu

n),HN
i (ûuu)

)→ 0 as uuun → ûuu in �2
ρ .

The proof uses the inequality for nonempty compact subsets of Rd

distRd (A1 +B1,A2 +B2)≤ distRd (A1,A2)+distRd (B1,B2)

and the fact that HN
i is the finite sum of terms involving the upper semi continuous

set-valued mapping s �→ χ(s−Θ).

Lemma 4. For each i ∈ Zd and every ε > 0 there exists N(ε) such that

distR1
(
Hi(uuu),HN

i (uuu)
)≤ ε for all N ≥N(ε, i), uuu ∈ �2

ρ .

To prove this write Hi(uuu) :=HN
i (uuu)+EN

i (uuu), where EN
i (uuu) := ∑j∈Zd\Zd

N
ki,jχ (uj−Θ).

Then for each i ∈ Zd and all uuu ∈ �2
ρ

distR1
(
Hi(uuu),HN

i (uuu)
)
= distR1

(
HN
i (uuu)+EN

i (uuu),H
N
i (uuu)+{0})

≤ distR1
(
EN
i (uuu),{0})≤ ∑

j∈Zd\Zd
N

ki,j ≤ ε ∀ N ≥N(ε),

because ‖|χ (uj−Θ)‖| ≤ 1 for all uuu ∈ �2
ρ .

Finite dimensional lattice inclusion

For each i∈Zd
N and uuuN(t) = (uN

i (t))i∈Zd
N
∈R(2N+1)d consider the finite dimensional

lattice inclusion

d
dt

uN
i (t) ∈GN

i (uuu
N(t), t) := fi(uN

i (t))+HN
i (uuu

N(t))+gi(t).

The set-valued mapping GN
i (uuu

N , t) is nonempty, compact, convex valued as well
as upper semicontinuous in uuuN and measurable in t. Moreover, it satisfies a bounded
growth condition. Hence by standard existence theorems for finite dimensional in-
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clusions, e.g., see Aubin & Cellina [6], there exists a solution

uuuN(t; t0,uuuN
o ) = (uuuN

i (t; t0,uuu
N
o ))i∈Zd

N
.

This implies that for each i ∈ Zd
N there exists a selection σN

i (t) ∈ HN
i (uuu

N(t; t0,uuuN
o )),

a.e., that is such that

d
dt

uN
i (t; t0,uuu

N
o ) = fi(uN

i (t; t0,uuu
N
o ))+σ

N
i (t)+gi(t), i ∈ Zd

N , a.e..

Componentwise convergent subsequence

First, extend the solution uuuN(t; t0,uuuN
o ) = (uN

i (t; t0,uuu
N
o ))i∈Zd

N
to vvvN(t) = (vN

i (t))i∈Zd in

�2
ρ with zero elements and modify σN

i , gi similarly. Then vvvN(t) satisfies the infinite
dimensional lattice ODE, a.e.,

d
dt

vN
i (t) = fi(vN

i (t))+ σ̃
N
i (t)+gN

i (t), i ∈ Zd .

It follows from the properties of the coefficients functions that

|vN
i (t)| ≤ μi,T ,

∣∣∣∣ d
dt

vN
i (t)

∣∣∣∣≤ μ̃i,T for all t ∈ [t0, t0 +T ], N ∈ N, i ∈ Zd
N,

i.e., {vN
i (·)}N∈N is uniformly bounded and equi-Lipschitz continuous on [t0, t0 +T ]

for each i ∈ Zd . Hence the Ascoli-Arzelà Theorem for each i ∈ Zd , there is a v∗i (·)
∈ C ([t0, t0 +T ],R+) and a convergent subsequence {vNn

i (·)}m∈N and such that

vNn
i (·)→ v∗i (·) in C ([t0, t0 +T ],R+) and

d
dt

vNn
i (·)→ d

dt
v∗i (·) in L 1([t0, t0 +T ],R).

The limit function v∗i (·) shares the equi-Lipschitz continuity of the subsequence
{vNn

i (·)}n∈N and hence is absolutely continuous on [t0, t0 +T ].
The argument above can be strengthened to obtain a common diagonal subse-

quence that converges for all i ∈ Zd .

Convergent subsequence in �2
ρ

By the dissipativity Assumption 16 and more work it can be shown that for some
CT > 0

‖vvvN(t)‖ρ ≤CT ,

∥∥∥∥ d
dt

vvvN(t)
∥∥∥∥2

ρ
≤CT ∀t ∈ [t0, t0 +T ], N ∈ N.
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Hence by Ascoli-Arzelà Theorem in C ([t0, t0 + T ], �2
ρ) there exists a v̂vv(·) ∈

C ([t0, t0 +T ], �2
ρ) and a convergent subseqence {vvvNn(·)}n∈N such that

sup
t∈[t0,t0+T ]

∥∥vvvNn(t)− v̂vv(t)
∥∥
ρ → 0 as n → ∞.

Equivalence of limit points

It can be assumed that the two convergent subsequences above for the component-
wise limit are the same. Since vvvNn(t) → v̂vv(t) in �2

ρ , ∀ ε > 0 ∃ N(ε) such that∥∥vvvNn(t)− v̂vv(t)
∥∥2
ρ = ∑

i∈Zd

ρi
∣∣vNn

i (t)− v̂i(t)
∣∣2 < ε2, n ≥ N(ε).

It then follows that∣∣vNn
i (t)− v̂i(t)

∣∣< ε/
√
ρi, n ≥ N(ε), i ∈ Zd .

Thus, for every fixed i ∈ Zd ,

|v̂i(t)− v∗i (t)| ≤
∣∣vNn

i (t)− v∗i (t)
∣∣+ ∣∣vNn

i (t)− v∗i (t)
∣∣≤ ε/

√
ρi+ ε.

Thus v̂i(t) = v∗i (t) for every i ∈ Zd and t ∈ [t0, t0 +T ].

The limit as solution of the lattice inclusion

Rearranging the ODE for the convergent subsequence {vvvNn(·)}n∈N gives

σNn
i (t) =

d
dt

vNn
i (t)− fi(v

Nn
i (t))−gi(t), i ∈ Zd , a.e.,

so with the limits v∗i (·) constructed above define

σ∗
i (t) :=

d
dt

v∗i (t)− fi(v∗i (t))−gi(t), i ∈ Zd , a.e.. (28)

The terms on the right side of the above equation converge in L 1([t0, t0 +T ],R) for
each i ∈ Zd . Hence σNn

i (·)→ σ∗
i (·) in L 1([t0, t0 +T ],R) as n → ∞ for each i ∈ Zd .

It remains to show that σ∗
i (t) ∈ Hi(vvv∗(t)) each i ∈ Zd . In fact, for each N ∈ N

distR (σ∗
i (t),Hi(vvv∗(t)))≤

∣∣σ∗
i (t)−σNn

i (t)
∣∣+distR

(
σNn
i (t),HN

i (vvv
Nn(t))

)
+distR

(
HN
i (vvv

Nn(t)),HN
i (vvv

∗(t))
)
+distR

(
HN
i (vvv

∗(t)),Hi(vvv∗(t))
)
.

Estimating the integral of each term from t0 to t0 +T then gives
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t0
distR (σ∗

i (t),Hi(vvv∗(t)))dt = 0,

from which it follows that σ∗
i (t) ∈ Hi(vvv∗(t)) for t ∈ [t0, t0 + T ] a.e.. Finally, the

equation (28) for σ∗
i can be rewritten as

d
dt

v∗i (t) = fi(v∗i (t))+σ
∗
i (t)+gi(t), i ∈ Zd , a.e..

Since σ∗
i (t) ∈ Hi(vvv∗(t)) this implies that vvv∗(t) =

(
v∗i (t))

)
i∈Zd is a solution of the

lattice differential inclusion (25). This completes the existence proof.

Remark 1. The proof is rather long and indirect. However, it generalizes without
difficulty to include delay and random terms.

Nonautonomous set-valued dynamical system

The attainability set for the lattice inclusion

ϕ(t, t0,uuuo) :=
{

vvv ∈ �2
ρ : ∃a solution uuu(·; t0,uuuo) with

uuu(t0; t0,uuuo) = uuuo such that vvv = uuu(t; t0,uuuo)
}

generates a two-parameter set-valued semi-group or nonautonomous set-valued dy-
namical system. Under the above Assumptions ϕ(t, t0,uuuo) is a nonempty compact
subset of �2

ρ for any t > t0 and uuuo = (ui,o)i∈Zd ∈ �ρ . Moreover, the set-valued map-
ping uuuo �→ ϕ(t, t0,uuuo) is upper semi continuous in uuuo in �ρ for any t ≥ t0.

It follows from the dissipativity Assumption 16 that the set-valued dynamical
system ϕ(t, t0,uuuo) has a nonautonomous pullback absorbing family of closed and
bounded component sets

Λ(t) :=
{

uuu ∈ �2
ρ : ‖uuu‖2

ρ ≤ R(t)
}
, ∀t ∈ R,

where

R(t) :=
2
α

(
‖β‖2

ρ +
κ2

α
ρΣ +ρΣ

∫ t

−∞
ḡ2(s)e−α(t−s)ds

)
+1.

These sets Λ(t), t ∈ R, are positively invariant, i.e., S (t, t0,Λ(t0)) ⊂ Λ(t) for all
t ≥ t0.

Recall [53] that a pullback attractor A = {A(t)}t∈R for S consists of nonempty
compact subsets A(t) of �2

ρ which are invariant, i.e., ϕ (t, t0,A(t0)) = A(t) for all
t ≥ t0, and pullback attract the absorbing family, i.e.,

lim
s→∞

dist�2
ρ
(ϕ(t, t − s,Λ(t − s)),A(t)) = 0.



226 Xiaoying Han and Peter E. Kloeden

The asymptotic tails and asymptotic compactness argument of Bates, Lu & Wang
[9] can be adapted to show that the set-valued dynamical system ϕ(t, t0,uuuo) is
asymptotically upper semi compact. From this it follows that the set-valued dynam-
ical system ϕ(t, t0,uuuo) systems generated by the neural lattice model (25) possesses
a unique pullback attractor A = {A(t)}t∈R with components given by

A(t) =
⋂
s≥0

⋃
t≥t0+s

ϕ(t, t0,Λ(t0)).

Forward omega limit sets

Pullback attractors involve information about the dynamics of the system in the past.
They need not be asymptotically stable. Nonautonomous omega limit sets involve
information about the dynamics in the future.

The lattice inclusion system ϕ(t, t0,uuuo) also has a positively invariant forward
absorbing set

Λ0 :=
{

uuu ∈ �2
ρ : ‖uuu‖2

ρ ≤ R0

}
where

R0 :=
2
α

(
‖β‖2

ρ +
κ2

α
ρΣ + ĝ

)
+1, ĝ := sup

t≥0
e−αt

∫ t

t0
‖ggg(s)‖2

ρeαsds < ∞.

Similarly to the pullback case it can be shown that ϕ(t, t0,uuuo) is forward asymp-
totic compact in Λ0. Hence for each t0 ∈ R the nonautonomous omega limit set

ωt0,Λ0 =
{

uuu ∈ �2
ρ : ∃ tn → ∞,uuun ∈ ϕ(tn, t0,Λ0),uuun → uuu as n → ∞

}
which is a nonempty and compact subset of Λ0. Moreover,

dist�2
ρ

(
ϕ(tn, t0,Λ0),ωt0,Λ0

)→ 0 as t → ∞.

5.2 Neural field lattice model with sigmoidal function

In this subsection we approximate the Heaviside function H in (23) by the sigmoidal
function σε defined as in (26). Note that this sigmoidal function is globally Lipschitz
with the Lipschitz constant Lσ = 1

ε . Replacing H by σε and assuming constant
external forcing gi in (23) results in

dui
dt

= fi(ui)+ ∑
j∈Zd

ki,jσε(uj(t)−Θ)+gi, i ∈ Zd . (29)
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The lattice differential equation (29) and lattice differential inclusion (23) can be
connected through an inflated lattice differential inclusion

dui(t)
dt

∈ fi(ui(t))+Hεi (uuu(t))+gi, i ∈ Zd , (30)

where

Hεi (uuu) := ∑
j∈Zd

ki,jχε (uj−Θ) with χε(s) =

⎧⎪⎨⎪⎩
[0,ε], s <−b(ε),

[0,1], −b(ε)≤ s ≤ b(ε),

[1− ε,1], s > b(ε),

s ∈ R

where b(ε) > 0 solves the algebraic equation

σε(b(ε)) = 1− ε, i.e.,
1

1+ e−b(ε)/ε = 1− ε.

Under Assumption 15, 16 and

Assumption 18 ggg := (gi)i∈Zd ∈ �2
ρ ,

Han, Kloeden & Wang [40] showed that the Heaviside system (23), the inflated
system (30) and the sigmoidal system (29), have global attractors A, Aε and A ε ,
respectively with

A = A 0 ⊂ A ε , Aε ⊂ A ε , ∀ ε ∈ [0,1]

Moreover,

dist�2
ρ
(A ε ,A )→ 0, and dist�2

ρ
(Aε ,A )→ 0 as ε → 0.

With the consideration that delays are often included in neural field models to
account for the transmission time of signals between neurons (see, e.g., [58]), Wang,
Kloeden &Yang [67] considered the autonomous neural field lattice system with the
sigmoidal function and delays

d
dt

ui(t) = fi(ui(t))+ ∑
j∈Zd

ki,jσε(uj(t − τi,j)−Θ)+gi, i ∈ Zd . (31)

The delays τi,j > 0 are assumed to be uniformly bounded, i.e., satisfy

Assumption 19 there exists a constant τ ∈ (0,∞) that 0 ≤ τi,j ≤ τ for all i ∈ Zd .

Denote by Eρ the Banach space C ([−τ,0], �2
ρ) of all continuous functions

from [−τ,0] to �2
ρ with the norm ‖ · ‖Eρ = maxs∈[−τ,0] ‖ · (s)‖ρ . For any uuu(t) =

(ui(t))i∈Zd ∈ �2
ρ , uuut represents the segment in Eρ defined by uuut(s) = uuu(t + s) for

s ∈ [−τ,0].
Similar to the previous subsection, let F(uuu) := ( fi(ui))i∈Zd and ggg = (gi)i∈Zd . In

addition, for any ηηη = (ηi)i∈Zd ∈ Eρ define the interaction operator Kτ by Kτ(ηηη) =
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(Kτ,i(ηηη))i∈Zd by

Kτ,i(ηηη) = ∑
j∈Zd

ki,jσε(ηj(−τi,j)−θ), ∀i ∈ Zd .

Then the operator Kτ maps Eρ to �2
ρ . As a result, the lattice delay differential equa-

tion (31) can be written as a functional differential equation on �2
ρ :

d
dt

uuu(t) = Gτ(t,uuut) := F(uuu)+Kτ(uuut)+ggg. (32)

To ensure that the operator Kτ : Eρ → �2
ρ is Lipschitz continuous, assume that

Assumption 20 there exists a constant κ̃ > 0 such ∑
j∈Zd

k2
i, j
ρ j

≤ κ̃ for each i ∈ Zd.

Let Assumption 1, 15, 16, 18 and 20 hold. Then given any inital data ui(s) =
φi(s) for s ∈ [−τ,0] with φφφ(·) = (φi(·))i∈Zd ∈ Eρ the existence and uniqueness
of solutions to the delay differential equation (32) follows directly from a result of
Caraballo et al. [17]. Moreover, the defines continuous semigroup {S (t)}t≥0 : ×Eρ
→ Eρ by

S (t,φφφ) = uuut(·;φφφ), s ∈ [−τ,0]
where uuu(t;φφφ) is the unique solution to (32) with uuu(s) = φφφ(s) for s ∈ [−τ,0]

Existence of a global attractor

Using Assumption 16 it is straightforward to derive the estimate

‖uuut‖2
Eρ ≤ R1e−αt‖φφφ‖2

Eρ +R2,

where
R1 := eατ , R2 :=

2
α

(
‖βββ‖2

ρ +
1
α
(
ρΣ κ

2 +‖ggg‖2
ρ
))

.

Therefore the closed and bounded set

Λ :=
{
ηηη ∈ Eρ : ‖φφφ‖Eρ ≤

√
1+R2

}
is absorbing and positive invariant for the semigroup {S (t)}t≥0.

Finally, the asymptotic compactness of the semigroup {S (t)}t≥0 can be shown
in a similar way to Bates, Lu & Wang [9] with an asymptotic tails estimates. It then
follows that the semigroup {S (t)}t≥0 generated by the delay lattice system (32)
has a global attractor A in Eρ .

Remark 2. The solutions of the lattice model with sigmoidal function approximate
those of the model with the Heaviside function, and thus provide an alternative
method of showing their existence [40].
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Remark 3. If Assumption 20 guaranteeing uniqueness of solutions does not hold,
then the lattice model (31) generates a set-valued semi-dynamical system, which
can be shown to have a global attractor using essentially the same proof.

6 Closing remarks

Three types of lattice dynamical systems arising from the biological sciences are
investigated; they are lattice reaction-diffusion systems, Hopfield neural lattice sys-
tems, and neural field lattice systems. The lattice reaction-diffusion system has the
traditional discretized Laplacian operator that models the simplest tri-diagonal inter-
connection structure. But the delayed recovery brings discontinuity and thus the sys-
tem has to be formulated as a differential inclusion on Banach spaces. The Hopfield
neural lattice systems have finite neighborhood nonlinear interconnection structures,
and the neural field lattice systems have global linear interconnection structures. The
main tools to study all the systems are the theory of global, non-autonomous, or ran-
dom attractors.

Though not included in this chapter, lattice systems modeled using the p-
Laplacian div

(|∇u|p−2∇u
)

or the p(x)-Laplacian div
(
|∇u|p(x)−2∇u

)
, also involve

interesting nonlinear connections and are of potential interest in the biological sci-
ences (see, e.g., [54, 60]). The central difference version of the (scalar) p-Laplacian
operator is

(Γ uuu)i := |Bui|p−2 Bui −|B∗ui|p−2 B∗ui, i ∈ Z (33)

with p ≥ 2. (The case p = 2 reduces to the usual Laplacian case.)
Based on a reaction-diffusion counterpart of (1) with the Laplacian replaced by

the p-Laplacian, Gu & Kloeden [31] proposed and investigated non-autonomous
p-Laplacian lattice system

dui(t)
dt

= ν |ui+1 −ui|p−2(ui+1 −ui)−ν |ui −ui−1|p−2(ui −ui−1)−λui − fi(t,ui),

and established the existence and uniqueness of solutions and the existence of a
nonautonomous pullback attractor [53] in �2, under similar assumptions to those
above. It is still an open problem to extend the results in [31] to the larger space �p.

The p(x)-Laplacian operator div
(
|∇u|p(x)−2∇u

)
has been used in the continuum

context to model a wide range of nonlinear and state dependent diffusive structures.
Partial differential equations with the p(x)-Laplacian on a bounded smooth domain
Ω ∈ Rn are studied (see, e.g., [54]) in the Musielak-Orlicz space space

Lp(·)(Ω) :=
{

uuu :Ω → R : u is measurable,
∫
Ω
|uuu(x)|p(x)dx < ∞

}
,

with the exponent function p(·)∈C (Ω̄) satisfying 1 < minx∈Ω p(x)≤ maxx∈Ω p(x).
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The discretized version of the scalar p(x)-Laplacian operator gives a generalized
version of the operator Γ defined in (33) for variable exponents is given by

(Γpppuuu)i := |B∗ui|pi−2 [(Bpi)(B∗ui) ln |B∗ui|+(pi −1)BB∗ui] ,

where the exponent function p(·) has also been discretized to a real valued bi-infinite
sequences ppp = (pi)i∈Z, which is assumed to satyisfy

1 < p− := inf
i∈Z

pi ≤ p+ := sup
i∈Z

pi < ∞.

The corresponding discrete Musielak-Orlicz space �ppp of real valued bi-infinite se-
quences is given by

�ppp :=

{
uuu = (ui)i∈Z : ∑

i∈Z
|ui|pi < ∞

}
,

which is a Banach space with the norm

‖uuu‖ppp := inf
{
λ > 0 : ρ

( uuu
λ

)
≤ 1

}
, ρ(uuu) := ∑

i∈Z
|ui|pi .

See Han, Kloeden & Simsen [38]. The investigation of LDS on the space �ppp is
completely open.
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Balancing Prevention and Suppression of Forest

Fires with Fuel Management as a Stock

Betsy Heines and Suzanne Lenhart and Charles Sims

Abstract To study the effects of prevention and suppression on the occurrence of
large forest fires, we incorporate the stochasticity of the time of a forest fire into
our model and corresponding optimal control problem. In our model, the effects of
prevention management spending accumulate over time. Our goal is to determine
the optimal combination of the prevention management spending rate over time
and one-time suppression spending which would maximize the expected value of a
forest. By choosing a hazard function for the random variable for the time of fire, we
can convert our stochastic problem into a deterministic problem. We illustrate our
results numerically using the 2011 Las Conchas Fire example. Overall, our results
support the importance of prevention efforts.

1 Introduction

The number of acres being burned in U.S. forests each year is increasing [19]. Fires
are larger and more severe, on average, and the cost to suppress and extinguish
these large fires is rising [19, 6]. Recent fire suppression and exclusion policies have
resulted in dense forests with more ladder fuels [3]. Additionally, many controlled
wildland fires have not been allowed, leading to more continuous, dense forests
and severe fires [9, 1]. In particular, fire-adapted ecosystems, where low-intensity
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surface fires were a common occurrence and were regenerative, now experience
high-severity, stand-replacing fires where most of the trees are killed [9].

Alternative fuels management methods to control flammability include mechan-
ical, chemical, or biological means [15]. Roughly 67 millions acres of forest need
fuels management [30]. Some current fuels management practices include mechan-
ical thinning and prescribed burning[20]. There is evidence for the value of fuels
management treatments to reduce fire hazard and the size of large fire events [1, 34].
Currently, fire suppression spending is higher than expenditures on hazardous fuels
reduction [11]. Issues of smoke, conservation of species, and lack of societal ac-
ceptance negatively affect the implementation of fuels management [33, 31]. More
economic analysis concerning the effectiveness of such management strategies is
needed [10, 13, 15].

Economic considerations enter into fire management plans in a variety of ways
[17]. Mercer et al. [16] use a dynamic stochastic programming model. Linear-
integer optimization on a standard-response model examined combined features of
fuels management alternatives and initial wildfire suppression attack resource de-
ployment [15]. Minas et al. [18] used a deterministic integer programming model
combining fuel treatment and fire suppression planning.

However, none of these studies consider how trade-offs between fire prevention
and suppression are shaped by associated uncertainties. In particular, the timing of
fires is unknown, which causes uncertainty in the benefits of fire prevention efforts.
In a review paper of fire management plans, Milne et al. discussed challenges of
including risk and uncertainty in fire management decisions [17]. In a recent paper
[8], the authors considered the economic trade-offs between fire prevention man-
agement and fire suppression when the time of fire is stochastic, but the past history
of prevention spending has no effect on the acres burned and subsequent damages
from a fire that ignites today. To make the effects of the prevention efforts more real-

istic, we extend this work to allow the effects of prevention management spending
to accumulate over time in a cumulative prevention management stock. The non-
timber damages and the acres burned are a function of the cumulative prevention
management stock over time.

Reed developed a method for management strategies of a resource vulnerable to
random collapse [24, 25, 26, 27, 4]. His method [28] converted a stochastic problem,
due to the random time of collapse, into a deterministic optimal control problem
(with ordinary differential equations) and was applied to forestry [24, 25], inva-
sive species [5], and infectious diseases [2, 12]. We use Reed’s method to consider
optimal prevention spending when the time of fire is stochastic and the effects of
prevention management spending accumulate in a stock.

In the next section, we formulate the model and the corresponding optimal con-
trol problem with management of prevention efforts and suppression spending.
Then, we illustrate numerical results for an example motivated by the 2011 Los
Conchas Fire in New Mexico. We close with some conclusions and possible exten-
sions.
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2 Model and Control Formulation

While including the uncertainty of the time of fire [17], we want to allow for cumu-
lative effects of prevention management efforts. Our goal is to determine strategies
to maximize the expected net present value of the forest over a finite time horizon.
We start by solving for the optimal ex post fire suppression spending at the time of
the fire. Using that, we then solve for the optimal ex ante fire prevention spending.

The fire event itself is taken to be instantaneous, since the time for doing sup-
pression action is short compared to our underlying time frame. The cumulative
prevention management stock exactly at the time of fire will decrease the damages
and the number of acres burned. We are concentrating our model to represent large,
high-severity fires.

In a forest with Ā acres, let A(t) be the number of unburned acres in a forest at
time t, where t is less than τ , the random time when a fire occurs. The non-timber
net benefits B per unit time is a function of the number of unburned acres in the
forest, B = B

(
A(t)

)
. Non-timber benefits include supporting and cultural ecosystem

services provided by the forest. Thus B captures the benefits of unburned acres net
of lost ecosystem services from lack of fire. Assume the next fire in the forest occurs
at random time τ with 0 < τ < T . Before time τ , the present value of the net benefit
from the forest is given by∫ τ

0

[
B
(
A(t)

)− (
ah(t)+

ε
2

h2(t)
)]

e−rtdt, (1)

where h(t) is the prevention management effort rate. Note that in the integrand of
the objective functional we include a quadratic cost term. The terms ah(t)+ ε

2 h2(t)
represent the cost of the prevention efforts.

The number of unburned acres A(t) before τ satisfies:

A′(t) = δ
(
Ā−A(t)

)
with A(0) = A0 ≤ Ā, (2)

where δ represents the regeneration rate of the forest, and is given by:

A(t) = Ā− (Ā−A0)e−δ t . (3)

2.1 Ex Post Fire Suppression

The accumulation of benefits from prevention management h over time is the cumu-
lative prevention management stock z(t), which satisfies this differential equation

z′(t) = h(t)− γz(t) with z(0) = z0. (4)

The cumulative prevention management stock z increases with prevention manage-
ment effort rate h and decays at of rate of γ proportional to the current level of z.
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Decay in the prevention management stock captures regrowth of vegetation and re-
accumulation of fuels that naturally occurs following fuel management. Thus, z(t)
reflects cumulative benefits of prevention management spending while also captur-
ing the impermanence of prevention management treatments.

The number of acres destroyed in the fire, K, is represented by:

K = K
(
z(τ),x(τ)

)
, (5)

where the ex post fire suppression expenditures at the time of the fire is x(τ). We
assume K is decreasing with respect to increases in cumulative prevention manage-
ment stock and suppression spending; i.e. ∂K

∂ z < 0 and ∂K
∂x < 0.

Let Â(t), the number of unburned acres in the forest following a fire at time τ , be
expressed as

Â(τ) = A(τ)−K
(
z(τ),x(τ)

)
. (6)

As in [8], we assume that another large, high-severity fire does not occur in our
finite time horizon [0,T ]. After the fire, the number of unburned acres Â in the forest
increases according to the differential equation

Â′(t) = δ
(
Ā− Â(t)

)
with Â(τ) = A(τ)−K

(
z(τ),x(τ)

)
, (7)

and is explicitly given by

Â(t) = Ā−
(

Ā−
(

A(τ)−K
(
z(τ),x(τ)

)))
e−δ (t−τ). (8)

The damages are a function of the number of acres destroyed in the fire:

D = D
(

K
(
z(τ),x(τ)

))
, (9)

which includes impacts to surrounding buildings and roads. We assume that larger
fires have more impact: ∂D

∂K > 0. Damages can be decreased by prevention and sup-
pression actions: ∂D

∂ z < 0 and ∂D
∂x < 0.

The function describing the flow of benefits before and after the fire is the same,
even though we distinguish between unburned acres before the fire and unburned
acres after the fire, A and Â, respectively. The net present value of the forest follow-
ing a fire is given by:∫ T

τ
B
(
Â(t)

)
e−rtdt −

[
D
(

K
(
z(τ),x(τ)

))
+ x(τ)

]
e−rτ , (10)

subject to (8) and x(τ)≥ 0. Assuming at most a single fire event in our time horizon,
there is no incentive to invest in prevention following a fire.

The value of the forest after the fire, with e−rτ factored out, is given by
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JW
(
τ,A(τ),z(τ),x(τ)

)
=
∫ T

τ
B
(
Â(t)

)
e−r(t−τ)dt −

[
D
(

K
(
z(τ),x(τ)

))
+ x(τ)

]
.

(11)

Note that JW is a function of A(τ) and not Â(τ) because Â is determined by the
boundary condition containing A(τ) and the differential equation (7) with a depen-
dence on K, the number of acres burned. Given a time of fire τ , the optimal ex post
value of the forest is the solution to

sup
x(τ)

∫ T

τ
B
(
Â(t)

)
e−r(t−τ)dt −

[
D
(

K
(
z(τ),x(τ)

))
+ x(τ)

]
subject to x(τ)≥ 0, (12)

where Â(t) = Ā−
(

Ā−
(

A(τ)−K
(
z(τ),x(τ)

)))
e−δ (t−τ), (13)

with x(τ) being a real-valued scalar representing suppression spending. With x∗(τ),
the optimal suppression spending, the maximized ex post value of the forest for a
given τ , A(τ), and z(τ) is henceforth denoted by

JW ∗(τ,A(τ),z(τ))= JW
(
τ,A(τ),z(τ),x∗(τ)

)
. (14)

From our assumptions on D and K, the cumulative prevention management stock
increases the value of the forest following a fire:

∂JW ∗(τ,A(τ),z(τ))
∂ z

> 0. (15)

Once our functional forms are chosen we explicitly determine x∗(τ).

2.2 Ex Ante Fire Prevention

If the time of fire τ < T , then the total value of the forest over [0,T ] is given by the
sum of the net value of the forest before the fire and the net value of the forest after
the fire up to time T ,∫ τ

0

[
B
(
A(t)

)− (
ah(t)+

ε
2

h2(t)
)]

e−rtdt+

∫ T

τ
B
(
Â(t)

)
e−rtdt −

[
D
(

K
(
z(τ),x(τ)

))
+ x(τ)

]
e−rτ ,

where A(t) is given by (3) and Â(t) is given by (8).
If the time of the first fire is τ ≥ T , then we take the time of fire to be τ = T and

the value of the forest would be
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∫ T

0

[
B
(
A(t)

)− (
ah(t)+

ε
2

h2(t)
)]

e−rtdt, (16)

where A(t) is given by (3). In this case, we recognize that a fire will eventually occur,
but because it does not occur within the time horizon [0,T ) we do not subtract the
instantaneous suppression costs or cost of damages to built structures.

In summary, the value of the forest can be represented by the piecewise function

V (A0,τ,h,z)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ τ
0

[
B
(
A(t)

)− (
ah(t)+ ε

2 h2(t)
)]

e−rtdt + e−rτJW ∗(τ,A(τ),z(τ))
if τ < T

∫ T
0

[
B
(
A(t)

)− (
ah(t)+ ε

2 h2(t)
)]

e−rtdt

if τ = T,
(17)

where A(t) is given by (3). Note that Â is completely contained within JW ∗.
When the large fire event will occur is unknown. The time of fire τ is a realization

of the mixed-type random variable (RV) T , which is characterized by the hazard
function ψ ,

ψ = lim
Δ t→0

{
Pr(fire in [t, t +Δ t)|no fire up to t)

Δ t

}
. (18)

The hazard function gives the conditional probability that a fire will occur at a time t
given that no fire has occurred up to that time and it relates to the ecological concept
of a fire return interval [7]. Our hazard function is taken to be a function of the ex
ante cumulative prevention management stock,

ψ = ψ
(
z(t)

)
. (19)

We also assume ∂ψ
∂ z < 0.

The survivor function S(t), the probability of the forest surviving to time t with
no fire, is:

S(t) = e−
∫ t

0 ψ
(

z(s)
)

ds. (20)

with S(0) = 1. We assume that the integral representing the cumulative hazard,∫ ∞
0 ψ

(
z(s)

)
ds diverges to positive ∞ and S(∞) = 0. The corresponding cumulative

distribution function for T is

FT (τ) =

{
1−S(τ) if τ < T
1 if τ = T.

(21)

with a possible discontinuity at time T . The probability density function for T ∈
[0,T ) is
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fT (t) = ψ
(
z(t)

)
S(t). (22)

For T = T , we have

P(T = T ) = FT (T )−FT (T−) (23)

= 1− (
1−S(T )

)
= S(T ).

If τ = T , no costs other those resulting from prevention management efforts are
considered. Our goal is to determine the prevention management effort rate h(t)≥ 0
which maximizes the net present value of the forest over [0,T ] using deterministic
optimal control. Using Reed’s techniques, we convert this stochastic problem to
deterministic by taking the expectation of (17) with respect to the random variable
T and introducing a state variable to represent cumulative hazard [28].

The expected net present value of the forest over [0,T ], is given by

J(h) = ET

{
V (A0,τ,h,z)

}
=

∫ T

0

[∫ τ

0

[
B
(
A(t)

)−ah(t)− ε
2

h2(t)
)]

e−rtdt (24)

+ JW ∗(τ,A(τ),z(τ))e−rτ
]
ψ
(
z(τ)

)
S(τ)dτ

+S(T )
∫ T

0

[
B
(
A(t)

)− (
ah(t)+

ε
2

h2(t)
)]

e−rtdt, (25)

which becomes

J(h) =
∫ T

0

[
B
(
A(t)

)− (
ah(t)+

ε
2

h2(t)
)
+ψ

(
z(t)

)
JW ∗(t,A(t),z(t))]S(t)e−rtdt.

(26)

By introducing a new state variable y to represent cumulative hazard, our problem
becomes deterministic. The cumulative hazard y satisfies

y′(t) = ψ
(
z(t)

)
with y(0) = 0, (27)

with y(0) = 0 coming from S(0) = 1. Now we have this relationship:

S(t) = e−y(t), (28)

and this allows us to rewrite (26) with our new state variable y.
Our deterministic optimal control problem can be expressed as
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sup
h∈U

∫ T

0

[
B
(
A(t)

)− (
ah(t)+

ε
2

h2(t)
)
+ψ

(
z(t)

)
JW ∗(t,A(t),z(t))]e−rt−y(t)dt

(29)

with y′(t) = ψ
(
z(t)

)
and y(0) = 0, z′(t) = h(t)− γz(t) and z(0) = z0, (30)

where
U =

{
h : [0,T ]→ [0,M]|h is Lebesgue measurable

}
, (31)

and
A(t) = Ā− (Ā−A0)e−δ t . (32)

Thus, our control problem with stochastic time of fire has been converted to a deter-
ministic optimal control problem.

2.3 Choosing Functional Forms

We now choose explicit functional forms for B, K, D, and ψ . The benefits function
B is chosen as:

B
(
A(t)

)
= B1A(t), (33)

where parameter B1 ≥ 0. The number of acres completely burned by the fire, K, is
given by

K(z,x) =
k

(k1 + z)(k2 + x)
, (34)

with parameters k > 0 and k1,k2 ≥ 1, where k is related to the size of a fire. The cost
of damaged structures is directly proportional to K:

D
(
K(z,x)

)
= cK(z,x) =

ck
(k1 + z)(k2 + x)

, (35)

with parameter c ≥ 0 as the cost of damages in millions of dollars per thousand acres
burned.

Using [28, 24, 2, 5], the hazard function ψ , is chosen as

ψ
(
z(t)

)
= be−vz(t). (36)

The parameter 0 < b < 1 represents the constant hazard rate when there is no pre-
vention management effort. The constant v > 0 reflects the effectiveness of z(t) on
reducing hazard.

With these functional forms, we optimize the value of the forest after the fire JW .
Using the solution to the state differential equation for Â(t) above, we integrate the
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flow of benefits from the time of fire τ to the end of our time horizon T and obtain
ex post value of the forest

JW
(
τ,A(τ),z(τ),x(τ)

)
=

B1Ā
r

(
1− e−r(T−τ)

)
− B1

(
Ā−A(τ)

)
δ + r

(
1− e−(δ+r)(T−τ)

)
−K

(
z(τ),x(τ)

)[ B1

δ + r

(
1− e−(δ+r)(T−τ)

)
+ c

]
− x(τ). (37)

We maximize JW
(
τ,A(τ),z(τ),x(τ)

)
with respect to the suppression cost x(τ).

Scalar optimization gives {
x∗(τ) = 0 if ∂JW

∂x(τ) < 0

x∗(τ)≥ 0 if ∂JW
∂x(τ) = 0.

(38)

Using K a function of x, we obtain

∂JW
∂x

=

[
B1

δ + r

(
1− e−(δ+r)(T−τ)

)
+ c

]
k

(k1 + z)(k2 + x)2 −1. (39)

Using one case with ∂JW
∂x(τ) = 0 and x∗(τ) ≥ 0, and another case with ∂JW

∂x(τ) < 0 and
x∗(τ) = 0, the optimal suppression spending becomes

x∗
(
τ,z(τ)

)
= max

{
0,

√
k(

k1 + z(τ)
)[ B1

δ + r

(
1− e−(δ+r)(T−τ)

)
+ c

]
− k2

}
, (40)

and the optimal value of the forest following a fire becomes

JW ∗(τ,A(τ),z(τ))= JW
(
τ,A(τ),z(τ),x∗

(
τ,z(τ)

))
. (41)

We note that ∂
2JW
∂x2 ≤ 0 and so the JW ∗ value is a maximum of JW (37).

We present the optimality system for our new optimal control problem. Let H
represent the Hamiltonian with adjoints, λ1(t) and λ2(t), corresponding to the state
variables y and z respectively:

H =
[
B
(
A(t)

)− (
ah(t)+

ε
2

h2(t)
)
+ψ

(
z(t)

)
JW ∗(t,A(t),z(t))]e−rt−y(t)

+λ1(t)ψ
(
z(t)

)
+λ2(t)

(
h(t)− γz(t)

)
. (42)

The conditional current-value Hamiltonian is given by H = ert+y(t)H. Thus,
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H = B
(
A(t)

)− (
ah(t)+

ε
2

h2(t)
)
+ψ

(
z(t)

)
JW ∗(t,A(t),z(t))

+ρ1(t)ψ
(
z(t)

)
+ρ2(t)

(
h(t)− γz(t)

)
, (43)

and the corresponding conditional current-value adjoint equations by

ρi(t) = ert+y(t)λi(t), (44)

for i = 1,2.
The conditional current-value adjoint differential equations are

ρ ′
1(t) =

(
r+ψ

(
z(t)

))
ρ1(t)+B

(
A(t)

)− (
ah(t)+

ε
2

h2(t)
)

+ψ
(
z(t)

)
JW ∗(t,A(t),z(t)), (45)

and

ρ ′
2(t) =

(
r+ γ+ψ

(
z(t)

))
ρ2(t)−ψ

(
z(t)

)∂JW ∗

∂ z

− JW ∗(t,A(t),z(t))∂ψ
∂ z

−ρ1(t)
∂ψ
∂ z

, (46)

with transversality conditions

ρ1(T ) = 0 and ρ2(T ) = 0. (47)

Using

∂H

∂h
=−a− εh(t)+ρ2(t), (48)

and the bounds on the control 0 ≤ h(t)≤ M, we have

h∗(t) = min

{
M,max

{
0,
ρ2(t)−a

ε

}}
. (49)

The concavity condition for a maximization is valid:

∂ 2H

∂h2 =−ε < 0. (50)

The hazard function ψ is nonlinear in z, as is the function JW ∗(t,A(t),z(t)),
which represents the optimal value of the forest following a forest fire. We utilize
the fact that Pontryagin’s Maximum Principle (PMP) states that the optimal control
maximizes the Hamiltonian with respect to the control h pointwise at each t to nu-
merically determine the optimal control [14]. An iterative method is used, starting
with an initial guess for h, which gives x from (40). Then the state y followed by the
adjoint ρ are solved numerically. A new control h is obtained by maximizing the
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Hamiltonian pointwise at each time step using the MATLAB function ‘fminbnd’.
Using an updated h, we compare our current variables with the previous values and
continue to iterate until convergence occurs. We justify the use of PMP for our max-
imization problem since the existence of an optimal control pair is standard for this
system.

Table 1: The table below includes the parameter values chosen to reflect the 2011
Las Conchas Fire.

Parameter Units Value Justification

Ā acres(1000) 1700 size of SFNF, BNM, VCNP

r /time 0.04 standard discount rate

k acres(1000)×$2/time 7000 k ≈ size of fire× suppression $

k1 $ (mil.)/time 1 assumed

k2 $ (mil.)/time 1 assumed

δ /time 0.05 Pipo: 70-250 years to mature

b ——– 0.2 high frequency of fires in region

c $ (mil.)/ 0.1 114 buildings destroyed,

acres(1000) 156,000 acres burned

B1 $ (mil.)/time 0.02 calculated from x∗ formula

v ——— 1 assumed

3 Numerical Results for Las Conchas Fire

Now that we have formulated our optimal control problem and the associated opti-
mality system, we solve it numerically for a specific example using data from the
2011 Las Conchas Fire. A fallen power line started this fire on June 26, 2011, and
the fire burned over the summer through parts of Santa Fe National Forest, Bande-
lier National Monument, and Valles Caldera National Preserve near Los Alamos,
New Mexico. The fire was contained at the beginning of August 2011 [22, 32].
Over 150,000 acres burned and over $40 million were spent on fire suppression
[22, 32, 37]. In addition to suppression costs, over 110 structures were damaged
[22, 32]. Parameter choices are summarized in Table 1.

The parameter Ā represents the “size of the forest” in units of thousands of acres,
which was approxmately 1,700 for this event. [21, 36, 38].

The parameter δ represents the regeneration rate of the forest following a fire. We
choose δ based on the dominant tree type in the forest, which in the Santa Fe Na-
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Fig. 1: The plots above contain the h∗,x∗, and S results of our optimal control prob-
lem using the Las Conchas Fire parameter set. For comparison, in each plot we in-
clude the case with optimal prevention management spending h∗ and the case with
no prevention spending h = 0.

tional Forest is Ponderosa Pine (Pipo) [35]. Assuming that the number of unburned
acres was reduced by half, we choose a value for δ so that the number of unburned
acres after 100 years has approximately returned to Ā, giving δ = 0.05. The discount
rate is chosen to be r = 0.04 [29]. The parameter b represents the background fire
hazard. To capture the probability that large, high-severity fires happen frequently
in the region, we set b = 0.2 [39].

The parameters k,k1, and k2 in the function K need to be set to approximate the
$40M spent on suppression and the 157 acres burned. For simplicity we choose
k1 = k2 = 1 and k = 7,000.

From the literature, we choose v = 1 in the hazard function [25, 2]. The parame-
ter c represents the cost of damages to structures in millions of dollars per thousand
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acres burned. Since 114 buildings were damaged [32] our estimate for D is $17.2
million. Using the number of acres destroyed in the fire, K = 157, then c ≈ D

K be-
comes c = 0.1.

To decide the parameter B1, representing the flow of non-timber benefits, [23].
We use our equation (40) to determine B1 based on our other parameter choices
and the amount of money spent on suppression. Using the amount of suppression
spending as approximately optimal for x∗ and using z(τ) = 0,τ = 0, and T = 500,
we take B1 = 0.02 . For the quadratic cost parameter, we choose ε = 2 and a = 1 for
our illustration.

The parameter M is the upper bound on prevention management spending h. We
choose M = B1Ā = 34. That is, we stipulate that prevention management spending
rate h is never greater than the flow of benefits when the forest is entirely unburned.
We do not vary this parameter because in all cases tested, this upper bound is not
reached by h∗ and does not even come close to it.

The parameter γ gives the rate of decay for cumulative prevention management
stock. We choose a few values to examine that represent a few different scenarios.
Choosing values close to zero indicates a slow decline of stock, while larger values
for γ indicate a quick decline of the benefits of prevention management efforts.
Thus, we solve our optimal control problem using γ = 0.5,1,5 and let our baseline
value for the parameter be γ = 1 when we vary some parameters.

The parameter z0 is the initial condition for the cumulative prevention manage-
ment stock. Its value can be used to reflect whether or not, or to what extent, there
have been prevention management efforts in an area prior to the application of our
optimal control problem. We compare a few values for z0, choosing z0 = 0,1,5. Set-
ting the initial condition to zero implies that no prevention management efforts have
been recently made in the forest. We let z0 = 0 be our baseline value.

For this problem, we consider a time horizon of T = 5.
The selection of these parameters is scenario driven. We perform a local sensi-

tivity analysis where we consider several different parameter scenarios by varying
one parameter and holding the others constant at their stated baseline values. In par-
ticular, we vary z0 and γ because they directly relate to the cumulative prevention
management stock z. We also vary the initial condition for the number of unburned
acres A0.

First, we consider the results when our optimal control problem is solved at the
baseline values for γ and z0 and we vary the initial condition for the number of
unburned acres with A0 = 0.5Ā, Ā. The results can be found in Table 2 and Figure
2. In the case when A0 = 0.5Ā, the expected net present value of the forest for 5
years is $60.85 M and in the case when A0 = Ā, the expected net present value of
the forest is $130.5 M. Of course, because there are fewer unburned acres A in the
forest in the case when A0 = 0.5Ā and benefits are a function of unburned acres, it
is not surprising that the expected net present value of the forest J(h∗) is less in the
case where A0 = 0.5Ā. Also contributing to this difference in values for J(h∗) is that,
in the case of A0 = 0.5Ā, there is more spending on prevention management than
in the case where A0 = Ā. Moreover, the higher level of prevention management
spending in the case where A0 = 0.5Ā leads to a greater accumulation of prevention
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Fig. 2: The plots above show the results of our optimal control problem with two
different initial conditions for the number of healthy acres in the forest A0. We use
A0 = 0.5Ā and A0 = Ā and compare prevention management spending h∗, suppres-
sion spending x∗, and cumulative prevention management stock z∗.
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Table 2: The table above gives the value of the objective functional J(h∗) evaluated
at the optimal control for the different parameter scenarios tested.

Parameter J(h∗) ($M)

A0 = 0.5Ā 60.85

A0 = Ā 130.50

γ = 0.5 135.42

γ = 1 130.50

γ = 5 118.04

z0 = 0 130.50

z0 = 1 134.69

z0 = 5 140.52

management stock z∗, which explains the lower optimal suppression spending x∗ as
∂x∗
∂ z < 0.

Next, we consider the results when the decay rate γ is varied, with A0 = Ā and
z0 = 0. See Figure 3 and the corresponding rows in Table 2. As the rate of decay γ of
cumulative prevention management stock increases the expected net present value
of the forest J(h∗) decreases. In the case where γ is largest, prevention spending h∗
is lowest, along with the value of the forest J(h∗).

Let’s examine the solution to the state differential equation for z to try and gain a
better understanding of this state variable:

z(t) = z0e−γt +
∫ t

0
e−γ(t−s)h(s)ds. (51)

Let’s suppose, for instance, that prevention management spending is constant with
h =C, and let’s suppose that z0 = 0. Then with a simple calculation we see that

z(t) =
C
γ

(
1− e−γt

)
. (52)

This suggests that prevention management spending needs to be relatively high in
order for stock to accumulate in a meaningful way. For instance, in the case where
γ = 5, even if h = 2M per year, the cumulative prevention management stock would
never rise above 0.4 and hence would not be very effective at reducing suppression
costs or hazard. In this case a very high decay rate γ for cumulative stock is “worse”
than if the the effects of prevention management spending were instantaneous. Thus,
in cases where the rate of decay is very high, the utility of prevention management
spending is greatly decreased. As we can see in our quick example with h constant,
γ >> 1 has a substantial effect on how prevention spending contributes to the stock.

In the large γ case when γ = 5 (see Figure 3), optimal prevention management
spending h∗ is approximately constant at $0.6M for the first 4.5 years of the 5 year
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Fig. 3: The plots show the results of our optimal control problem with three dif-
ferent values for the parameter γ , which controls the rate of decay of cumulative
prevention management stock z . We use γ = 0.5, γ = 1, and γ = 5 and compare
prevention management spending h∗, suppression spending x∗, and cumulative pre-
vention management stock z∗.
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time horizon. The cumulative prevention management stock z∗ is very low, around
$0.1 M, which is expected due to our previous analysis. In the case when γ = 1,
optimal prevention spending begins near $2 million and reduces to roughly $1 mil-
lion after one year. During this first year prevention management spending is less
than in the case when γ = 0.5. After one year, h∗ is larger in the case when γ = 1.
As can be seen for the prevention stock z∗, a smaller rate of decay γ = 0.5 allows
for a quick accumulation of stock, which stays relatively high, even with decreasing
levels of optimal prevention management spending. As is seen, different values of γ
have a varying effect on prevention management spending, meaning that there is not
a strict monotonic relationship between the value of γ and the level of prevention
management spending h∗.

Finally, we vary the parameter for the initial condition for cumulative prevention
management stock z0. We use values z0 = 0,1,5 and let A0 = Ā and γ = 1. As seen
in Figure 4, initially prevention management spending h∗ is higher for lower values
of initial cumulative prevention management stock z0. However, near t = 3 these
three trajectories begin to coincide. Unsurprisingly, the three different x∗ and z∗
trajectories all come together near the same time. Thus, it appears that for this given
set of parameters, there is an optimal stock level, and despite the value chosen for
the initial stock level z0, prevention management h∗ is chosen so that the optimal
stock level is eventually reached. As we see in Table 2 the expected net present
value of the forest J(h∗) increases with increasing values for z0. This is likely due
to a lower prevention management spending rate h∗ in the cases for larger values of
z0.

Table 3: In this table we list the value of the objective functional evaluated at the
optimal control for three different cases.

Case J(h∗) $M

w/ stock, w/ quad. cost: z0 = 1,γ = 1 134.69

no stock, w/ quad. cost 134.05

no stock, no quad. cost 141.47

We wish to compare our optimal control problem with cumulative prevention
management stock to an optimal control problem where the effects of prevention
management spending are taken to be instantaneous as in [8]. This optimal control
problem with instantaneous effects of prevention spending is given by:

max
h∈U

∫ T

0

[
B(Ā)− (

ah(t)+
ε
2

h2(t)
)
+ψ

(
h(t)

)
JW ∗(t,h(t))]e−rt−y(t)dt (53)

subject to y′(t) = ψ
(
h(t)

)
with y(0) = 0,

h(t)≥ 0, (54)
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Fig. 4: The plots show the results of our optimal control problem with three different
initial conditions for cumulative prevention management stock z0. We use z0 = 0,
z0 = 1, and z0 = 5 and compare prevention management spending h∗, suppression
spending x∗, and cumulative prevention management stock z∗.
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Fig. 5: Results from three different optimal control problems are displayed: with cu-
mulative prevention management stock and quadratic cost term, no cumulative pre-
vention management stock and quadratic cost term, and no cumulative prevention
management stock and no quadratic cost term. We use z0 = 1,γ = 1, and A0 = Ā.
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where
U =

{
h : [0,T ]→ [0,∞)|h is piecewise continuous

}
. (55)

This optimal control problem was derived in a similar way as our cumulative pre-
vention management stock optimal control problem.

The results for the case comparisons are contained in Table 3 and Figure 5. We
also include comparisons to a optimal control problem with no stock and that does
not include a quadratic cost term in the objective functional. For the case with cu-
mulative stock, we choose z0 = 1 and γ = 1. We choose z0 = 1 because we want
to closely match the situation in the optimal control problem without cumulative
stock so that direct comparisons can be made. We choose a nonzero initial condi-
tion for cumulative stock z because in the instantaneous prevention effects optimal
control problem, prevention management spending is effective immediately. In con-
trast, stock takes time to accumulate. Thus, if we choose z0 = 0 it will take time for
stock to accumulate and be effective; this is not reflective of the no stock situation.
By choosing z0 = 1, we allow the cumulative stock z to affect the hazard and number
of acres burned in the fire early in the time horizon in a way similar to the problem
without cumulative prevention stock. As is seen in Table 3, the values of the objec-
tive functional evaluated at the optimal control are nearly equal in the cases where
the quadratic cost is considered. One significant difference between these cases is
that in the cumulative stock case, optimal prevention management spending h∗ de-
creases to zero as we approach the end of the time horizon. This is because h∗, given
by (49), is determined by adjoint equation ρ2(t) which has transversality condition
ρ2(T ) = 0. Hence, unless we were to include a salvage term to change this, h∗ will
always be pulled to zero at t = T in the case including cumulative stock.

We also can compare the quadratic cost case without stock to the case without
quadratic cost (also without stock). As seen in Figure 5, in the case when there is not
a quadratic cost term, optimal prevention management spending is nearly double the
case when there is a quadratic cost term. Moreover, the expected value of the forest
J(h∗) is greater in the case when the quadratic cost term is not incorporated. Thus,
the inclusion of a quadratic cost term in the objective functional has a substantial
impact on the solution to our optimal control problem with cumulative prevention
management stock.

Furthermore, because we chose γ = 1, stock is not accumulating over time be-
cause prevention management spending h∗ is slightly less than one. Thus, over the
first three years of the time horizon, the stock z∗ stays approximately constant near
one. Let’s compare this case to the case where γ = 0.5. In Figure 6 (with quadratic
cost) , we can see that with a lower rate of decay γ , cumulative prevention man-
agement stock is able to accumulate over time rather than remaining approximately
constant even as prevention management spending h∗ decreases. This in turn leads
to a greater expected value of the forest. In particular, we see that J(h∗) = $140.5M
in the case when γ = 0.5. Therefore, given that the rate of decay γ of cumulative pre-
vention management stock is small enough to allow for meaningful accumulation of
prevention management stock, it is possible to realize lower prevention management
spending levels and an increased value of the forest.
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Fig. 6: In the plots above (using quadratic costs), we compare optimal prevention
management stock h∗, optimal suppression spending x∗, and optimal cumulative
prevention management stock z∗ in the cumulative prevention management stock
optimal control problem for two different values for the stock decay parameter:
γ = 0.5,1. Here, we take z0 = 1 in both cases.
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4 Conclusions

To investigate economic tradeoffs between fuels management spending and sup-
pression spending with uncertain timing of large fire events, we formulate an op-
timal control problem with stochastic time of fire and convert it to a deterministic
optimal control problem using Reed’s method. We present numerical results from
our optimal control problem applied to a parameter set based on a recent fire event
in New Mexico with a local sensitivity analysis for three selected parameters.

Our goal is to examine the economic trade-offs between prevention management
spending and suppression spending with a cumulative prevention management stock
state variable. The inclusion of this state variable allowed for the effects of preven-
tion management spending to accumulate over time or decay very rapidly, depend-
ing on the choice for γ .

Numerically, we solve this optimal control problem by maximizing the condi-
tional current-value Hamiltonian point-wise to determine h∗. We varied the param-
eters A0,z0, and γ to examine their local effect on the expected value of the forest
J(h∗) and corresponding controls and stock z. Larger values for the initial condi-
tion A0 for the number of unburned acres led to increased values for J(h∗) and a
decreased prevention management spending rate h∗. Larger values of initial cumu-
lative prevention management stock z0 also led to larger values of J(h∗) as less
prevention management spending h∗ was required. Increased values for the rate of
stock decay γ led to decreased values for J(h∗) with mixed results for its effects on
h∗. Also, when varying the initial cumulative prevention management stock z0, we
see that all trajectories eventually merge to one trajectory over time.

In order to make comparisons between our optimal control problem with in-
stantaneous prevention management effects and our optimal control problem with
cumulative prevention management effects, we construct an intermediate optimal
control problem assuming instantaneous prevention management effects with an
additional quadratic cost term in the objective functional. We conclude from our
work that given a small enough rate of decay γ for cumulative prevention manage-
ment stock, less prevention management spending h∗ is required and the expected
net present value of the forest J(h∗) is increased from the cases when γ is large
and when stock is not considered. Thus, in cases when the cumulative prevention
management stock decays too quickly, less is spent on prevention management as it
is not worth the investment. Additionally, we see that the quadratic cost term in the
objective functional has a substantial effect on the prevention management spending
rate h∗.

There are extensions to be considered in this work, as well as other numerical
methods may be applied in cases with longer time intervals and with removal of the
quadratic cost term with cumulative prevention stock. We could consider the size of
the fire to be stochastic or model explicitly the spread of the fire in space.
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A Free-Model Characterization of the

Asymptotic Certainty Equivalent by the

Arrow-Pratt Index

Daniel Hernández-Hernández and Erick Treviño-Aguilar

Abstract This work concerns with the asymptotic behavior of the optimal wealth
process, measured through the certainty equivalent of utility functions with conver-
gent Arrow-Pratt risk aversion index, which we call regular. It is proved that, when
the time horizon converges to infinity, the value function is independent of the ini-
tial capital. Moreover, when the performance is measured by another regular utility
function with the same asymptotic Arrow-Pratt risk aversion index, the constant
optimal value is the same, and the sets of optimal investment strategies coincide.
Interestingly, these results do not depend on a model specification.

1 Introduction

A sector of financial industry provides advisement on investment decisions for re-
tirement of an individual or at an institutional level for a pension fund. There are
some rules of thumb. According to [1], a first rule of thumb (RT1) is to encourage
young investors to take more risk than older investors. A second rule of thumb (RT2)
is that conservative investors should take portfolios with higher shares of bonds than
stocks, under the hypothesis that bonds are less risky than stocks. There is empiri-
cal evidence that both rules are common practice and mature households take less
shares of stocks in comparison with younger households; see e.g., [2]. A third rule
of thumb (RT3) dwells on the implementation of constant capital proportions in-
vestment strategies.
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México, e-mail: erick.trevino@ugto.mx

© Springer Nature Switzerland AG 2019
G. Yin and Q. Zhang (eds.), Modeling, Stochastic Control, 
Optimization, and Applications, The IMA Volumes in
Mathematics and its Applications 164,
https://doi.org/10.1007/978-3-030-25498-8_12

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25498-8_12&amp;domain=pdf


262 Daniel Hernández-Hernández and Erick Treviño-Aguilar

There are at least two theories on which the design of a portfolio is based. Leav-
ing horizon effects aside for a moment, according to Markowitz’s classic theory,
the efficient portfolio maximizes returns for a fixed level of volatility and this gen-
erates the efficient frontier of return-volatility. The investor chooses the risk level,
namely, the volatility and in this form expresses his preferences. There is an alterna-
tive formulation to Markowitz’s criterion of maximizing returns subject to a volatil-
ity constraint which also gives an equivalent way to express preferences of risk.
In fact, through the introduction of a Lagrange multiplier. The connection between
these two formulations derives from the decreasing function connecting Lagrange
multipliers with levels of risk. In this context, the Lagrange multiplier has the in-
terpretation of an index of risk aversion: The higher the multiplier, the higher the
penalization to risk, and thus, the lower the risk tolerance accepted.

Markowitz’s theory notwithstanding its normative nature, incorporates risk pref-
erences, and in its Lagrangian formulation has a “formal” connection with utility
theory. Indeed, the Arrow-Pratt absolute risk aversion index scales the marginal
utility gain of a marginal move from a completely riskless financial position to hold
risky assets; see Section 3 for a classical result in this direction. Thus, up to error
terms in a Taylor expansion, a utility maximizer also maximizes Markowitz’s prob-
lem in his Lagrangian formulation. In a sense which we precise below, this is the
case for the asymptotic utility maximization problem which we study here:

supliminf
T→∞

1
r(T)

Eu

(
Xc,ξ
T

)
,

where Eu denotes the certainty equivalent with respect to a utility function u and Xc,ξ
T

denotes the capital at time T generated by following an investment strategy ξ and
savings L and r is a growth rate. The supremum is taken over a suitable class of ad-
missible strategies. Portfolio wealth together with savings are seen as the founding
sources for retirement. Savings can be seen as a cumulative proportion of income,
with a fixed rate. Thus, savings are exogenously specified but are part of the crite-
rion since utility is measured from both, savings and portfolio wealth. We will show
for a class of ‘regular’ utility functions that the only characteristic determining an
optimal allocation is the asymptotic behavior of the Arrow-Pratt absolute risk aver-
sion index with no restrictions for the underlying model. Thus, two regular utility
functions with the same asymptotical index have the same optimal portfolios. We
will prove this for risk aversion parameters in the interval (−∞,0). In order to estab-
lish our main results, we study the family of exponential utilities parameterized by
its risk aversion index and establish continuity properties with respect to this index.

After this introduction, the paper is organized as follows. In Section 2, we re-
call some results about the stability of the problem of utility maximization in which
different elements of the problem’s data are subject to a perturbation, such as time
horizon or the utility function. This background puts in perspective the analysis in
this paper, since our results can be seen as related to stability when a given utility
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function is approximating, as measured by an asymptotic index, a benchmark ex-
ponential utility function. Section 3 is about the Arrow-Pratt absolute risk aversion
index. Section 4 presents our asymptotic utility maximization problem. In Section
5, our main results are presented, in which a complete characterization of the solu-
tion to our utility problem through the Arrow-Pratt index is given. To this end, the
exponential utility with different risk aversions will be instrumental. In Section 6,
we explore the rules of thumb in diffusion models. We will see that there is certain
evidence supporting them but strongly depending on the specification of the model.

2 Stability of expected utility.

We are interested in an asymptotic utility problem in which time horizon converges
to infinity. However, for the sake of discussion let us start with a fixed finite hori-
zon. Larsen and Žitković [3] motivates with Hadamard [4] well-posedness criteria,
meaning that when a new problem is presented, the existence and uniqueness of a
solution, together with the analysis of the sensitivity with respect to changes in input
data, should be studied. In order to be more specific, for the problem of expected
utility maximization, existence and uniqueness results have been obtained under
rather general conditions, while a deeper understanding of the sensitivity problem
is still needed. Accordingly, [3] study stability of expected utility with respect to
small market price of risk deviations. In their Theorem 2.12, they show under ap-
propriate conditions that expected utility and its optimal trading strategy are jointly
continuous with respect to initial wealth and market price of risk. In this direction
Hernández and Schied [5] study the problem of robustness when the drift term of
price is changed for the logarithmic utility function. Stability with respect to market
price of risk is again taken up by Mostovyi and Sirbu [6] in which Taylor expansions
of second order for value functions around optimal trading strategies are developed.
Interestingly, their analysis is based on Taylor expansions where the (relative) coef-
ficient of risk aversion is an important element.

Take a family of utility functions Uδ : R → R, with δ ≥ 0. Xing [7] con-
siders a finite horizon T and the family of expected utilities with finite horizon:
δ → supE[Uδ (XT )], where the supremum is taken over a suitable family of invest-
ment strategies. He shows that pointwise continuity of the family with respect to
δ , yields continuity of expected utility and convergence of optimal strategies in a
suitable sense.

The previously cited papers study, in a finite horizon, stability of expected utility
with respect to perturbations in initial wealth, the utility function and market price
of risk. Let us now focus on stability with respect to forward movements of the hori-
zon. In this regard, the best known results are on ‘Turnpike Theory’. McKenzie [8]
recognizes three different classes of results in this theory. The prototype theorems
in the first and second classes compare strategies under optimality for finite versus
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infinite horizons and aim to establish convergence. McKenzie [8] traces back the la-
bel “Turnpike” to Dorfman et al. [9, Chapter 12] and attributes to them the first such
theorems in the first class. It should be mentioned that the main motivation is that
of capital accumulation on von Neumann [10] model which yields the difference
between the first and the second class through the concept of “support prices”. The
third class compares optimal strategies in infinite horizons with respect to different
starting wealths. Notice that in the three classes, theorems concern stability of ex-
pected utility with respect to perturbations on horizon and initial wealth. A relative
to Turnpike Theory is known as ‘portfolio turnpike theory’ and can be traced back
to Mossin [11]. He shows that isoelastic utility functions (also known as power util-
ities or constant relative risk aversion utilities) allow for optimal myopic strategies:
Optimal strategies independent of the horizon and initial wealth. The converse is
also true. Thus, if optimal strategies are myopic then utilities must be isoelastic. An
asymptotic version of such result is given by Huberman and Ross [12]. Thus, if the
relative risk aversion index converges to a constant (so that the absolute risk aver-
sion index converges to zero), then the optimal strategy will also converge to that
of an isoelastic utility. Extensions in continuous time include Cox and Huang [13],
Huang and Zariphopoulou [14], Dybvig et al. [15].

Let Ũ be an isoelastic utility function so that Ũ(x) := xp/p with p ∈ (−∞,1)/{0}
(for p = 0 let Ũ(x) = log(x)). Let U be a utility function with

lim
x→∞

U ′(x)
Ũ ′(x)

= 1.

Let XT (resp. X̃T) denote the optimal portfolio with respect to U (resp. Ũ) for a finite
horizon T. Let rTu = XT

u (X̃T
u )−1 andΠT

z =
∫ z

0 (r
T
u−)−1drTu . Under general conditions,

Guasoni et al. [16] show that

1. limT→∞PT(supu∈[0,T]
∣∣rTu −1

∣∣≥ ε) = 0.
2. limT→∞PT([Π ,Π ]T ≥ ε) = 0,

for a suitable “myopic” family of probability measures {PT}T which under further
conditions can be taken as restrictions of a unique probability measure P on a given
stochastic basis. For the certainty equivalent Guasoni et al. [17, Theorem 2.4] show
the asymptotic result

lim
T→∞

U−1(EP[U(X̃T
T )])

U−1(EP[U(XT
T )])

= 1.

We will show that a regular utility function converges in a suitable sense to an
exponential utility function and this last function determines the expected asymp-
totic certainty equivalent together with the family of optimal investment strategies.
Thus, optimal strategies of regular utility functions are completely determined by
its asymptotical Arrow-Pratt risk aversion index. In particular, for any regular utility
function the asymptotic certainty equivalent and the optimal trading strategies are
independent of the initial wealth. In this sense, we can see the results in this paper
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as turnpike theorems in which we move out of isoelastic utility and thus, of zero
asymptotic absolute risk aversion.

3 Arrow-Pratt index

We start this section with a few definitions.

Definition 1. A utility function is defined as a non-decreasing concave function u :
R→ R. When a utility function u is of class C2 we define the function

Au(x) :=
u′′(x)
u′(x)

. (1)

The well-known Arrow-Pratt absolute risk aversion function is in our notation equal
to −Au. Here it will be more convenient to work with minus the Arrow-Pratt func-
tion, thus our function A. If the limit

A[u] := lim
x→∞

Au(x), (2)

exists, and is a negative real number, then we say that u is a regular utility function
with asymptotic absolute risk aversion A[u].

Remark 1. A utility function u with Hyperbolic Absolute Risk Aversion (HARA)
index is regular. It satisfies for constants a and b

Au(x) =
1

ax+b
.

If a = 0 then the utility function has Constant Absolute Risk Aversion (CARA)
with A[u] = b−1. In this class, we find the exponential utility 1−eλx, with λ < 0. If
a �= 0 then A[u] = 0. Such is the case of power utilities γ−1xγ and logarithmic utility
function log(x).

Consider an agent taking decisions based on a utility function u. Assume he starts
with an initial capital x and must compare between a loss without uncertainty so its
capital reduces to x − π or a risky situation in which its capital reduces to x+ Z
where Z is random with E[Z] = 0. In this situation, the indifference price of Z given
the initial capital x, denoted π = π(x,Z), satisfies

u(x−π) = E[u(x+Z)]. (3)

In this case, he will be indifferent between holding the capital x − π or the risky
asset x+Z. Taylor approximations on both sides of equation (3) result in:

u(x)−πu′(x)+o(π2) = E[u(x)+Zu′(x)+
1
2

Z2u′′(x)+o(Z3)]. (4)
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Then, up-to second and third order errors:

π =−1
2

u′′(x)
u′(x)

σ2(Z), (5)

where σ2(Z) denotes the variance of Z. Thus, the indifference price is proportional
to the variance of Z and the function Au.

The argument based on Taylor polynomials is well known in the seminal works
of Arrow [19] and Pratt [18]. We give a version and formalize the intuition of (4)
in the next result. The proof follows a well-known path and it is included in 6.4 in
order to illustrate the relevance of our class of regular utility functions.

Definition 2. The certainty equivalent of a random variable Y with respect to the
utility function u is given by

Eu(Y ) := u−1(E[u(Y )]). (6)

Proposition 1. Let Z be a random variable uniformly bounded from below with
E[Z] = 0 and E[|Z|3]< ∞. Let u be a regular utility function of class C3 with∣∣∣A′

u(x)u
′
(x)

∣∣∣≤ k, (7)

for a constant k. Then

lim
t↘0

Eu(x+ tZ)− x
t2E[Z2]

=
1
2

Au(x).

The next result is an extension for non-bounded random variables of Cavazos
and Hernández [20, Theorem 4.1].

Theorem 1. Let u and v be two regular utility functions. Take x0 ∈ (0,∞). Assume
that for all x ∈ (x0,∞) we have Au(x) ≥ Av(x). Then, for Y a random variable with
Y ≥ x0 a.s. we have

Eu(Y )≥ Ev(Y ). (8)

Proof. For Y as in the statement of the theorem and n ∈ N we have

Eu(Y ∧n)≥ Ev(Y ∧n),

due to [20, Theorem 4.1]. Now we can just take the limit as n ↗ ∞ to see that

Eu(Y )≥ Ev(Y ),

by monotone convergence theorem.
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4 Maximization of asymptotic utility

In this section we introduce our asymptotic utility problem. To this end, we fix a
continuous function r : [0,∞)→ [0,∞) with limT→∞ r(T) = ∞ and a non-decreasing
function L : [0,∞)→ [0,∞) with

lim
T→∞

L(T) = ∞. (9)

Let (Ω ,F ,P) be a probability space where a filtration F is defined. Let S be
a Rd+1-valued semimartingale price process defined on this probability space; see
e.g., Protter [21] for details on semimartingales and its integration theory. Let A
denote the class of admissible strategies defined as predictable stochastic processes
ξ taking values in Rd+1 that are integrable with respect to S and the integral is
uniformly bounded from below by a constant; ξt should be interpreted as the number
of shares hold al time t of the underlying asset S. For ξ ∈ A and c > 0 we will use
the notation

Xc,ξ
T := c+

∫ T

0
ξs ·dSs +L(T); (10)

here “·” represents the inner product on Rd+1. Note that L is going to be fixed
throughout the paper and therefore, there is no need to include it in the notation of
Xc,ξ . For a regular utility function u, an admissible strategy ξ ∈ A and c > 0, let

Ku(c,ξ ) := liminf
T→∞

1
r(T)

Eu

(
Xc,ξ
T

)
. (11)

Our main goal is to characterize the value function:

Ku(c) := sup
ξ∈A

Ku(c,ξ ). (12)

A few remarks are in order.

Remark 2. It is also possible to consider limsup in the definition of Ku(c,ξ ). How-
ever, liminf will be better for our approach here. See the proof of Theorem 3. It also
has a financial motivation as it expresses a conservative point of view: It considers
the worst fluctuations on windows of time [0,T].
Other papers studying related problems to our criterion (12) show that we can take
limsup without changing the result; see e.g., [20]. However, we expect this robust-
ness to depend on the model and we want to keep our discussion free of a model
specification.

Remark 3. The first part c+
∫
ξ ·dS in the definition (10) represents the gains gen-

erated by following a self-financing investment strategy ξ and is well common in
finance. The second half given by the function L represents a cumulative fraction of
income from the point of view of a small investor who is planning investment for
retirement. We will show that the choice of the optimal strategy for regular utility
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functions is independent of L, as long as it diverges as in our assumption (9), but not
too fast:

lim
T→∞

L(T)
r(T)

= 0. (13)

Remark 4. If we insist on quantifying utility only from the wealth generated by a
portfolio, then it is necessary to restrict to strategies able to generate wealths con-
verging (in some sense) to infinity. Note that an arbitrage-free model does not ex-
clude the possibility of portfolios with exponential growth. This is the case of a
model driven by an Ornstein-Uhlenbeck process see e.g., Föllmer and Schacher-
mayer [22]. In discrete time this has been proved for stationary ergodic processes;
see Dempster et al. [23]. But then again, this will depend on the model. The study
of utility maximization under models driven by Ornstein-Uhlenbeck process in [22]
motivates our consideration of a general rate function r. Indeed, they show that the
certainty equivalent growth rate can be faster than just taking the identity function
r(T) = T.

Alternatively, we could assume that one of the assets, say S0, is of the form eat

and thus diverges to ∞. This is a common assumption in portfolio turnpike literature;
see e.g. [12] and [16]. This however introduces a constraint in the model and requires
to isolate portfolios from A . Thus, we prefer our more simple specification.

5 Parametric families of utilities.

In this section we present our main results, which are summarized as follows: For
regular utility functions, the value function K is constant, thus, independent of the
initial capital and characterized by the asymptotical Arrow-Pratt index. Moreover,
given an arbitrary regular utility function and an exponential utility function with
the same asymptotical Arrow-Pratt index, it can be concluded that they have the
same set of optimal investment strategies.

5.1 Continuous families of utilities.

Definition 3. A collection of utility functions { fα}α∈(−∞,0) with

A[ fα ] = α, (14)

will be called a parametric family of utilities. A parametric family of utilities is
continuous with respect to asymptotic risk aversion if

• For any sequence {αn}n∈N ⊂ (−∞,0) converging to α ∈ (−∞,0) and c > 0 we
have

lim
n→∞

K fαn (c) = K fα (c). (15)
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In this case, we will simply say that the family is continuous.

The class of continuous families of utilities is interesting in regard to the follow-
ing result.

Theorem 2. Let { fα}α∈(−∞,0) be a continuous parametric family of utilities. Take a
regular utility function u and c > 0. Then, for α = A[u] we have

K fα (c) = Ku(c). (16)

Proof. Take an element ξ ∈ A . Then, for ε ∈ (0,−α), we have

liminf
T→∞

1
r(T)

E fα−ε (X
c,ξ
T )≤ liminf

T→∞

1
r(T)

Eu(X
c,ξ
T )

≤ liminf
T→∞

1
r(T)

E fα+ε (X
c,ξ
T ),

(17)

due to the monotonicity property of Theorem 1, the property (9) of L, and our defini-
tion of A . We now take supremum in (17) over ξ ∈A on all sides of the inequalities
to obtain

K fα−ε (c)≤ Ku(c)≤ K fα+ε (c). (18)

We take the limit as ε ↘ 0 in (18) to see that (16) holds true, due to the continuity
property (15) of the family { fα}α∈(−∞,0).

5.2 Exponential utilities

For λ ∈ (−∞,0), let

fλ (x) :=−eλx

gλ (y) :=
1
λ

log(−y).
(19)

Note that gλ is the inverse function of fλ . Let { fλ}−∞<λ<0 be the family determined
by (19) with family of inverse functions {gλ}−∞<λ<0. Note also that for fλ the ab-
solute risk aversion function is constant: A fλ (x) = λ . Thus, A[ fλ ] = λ .

Recall the notation Xc,ξ
T in equation (10) and the value function Ku defined in

equation (12). For our parametric family of exponential utilities we will write Kλ

instead of K fλ . Thus, for c > 0

Kλ (c) = sup
ξ∈A

liminf
T→∞

1
r(T)

{
1
λ

log
(

E
[

eλXc,ξ
T

])}
=

1
λ

inf
ξ∈A

limsup
T→∞

1
r(T)

{
log

(
E
[

eλXc,ξ
T

])}
.

(20)
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We note for future reference that

Kλ (c) =
1
λ

inf
ξ∈A

limsup
T→∞

1
r(T)

{
log

(
eλcE

[
eλX0,ξ

T

])}
= Kλ (0).

(21)

Lemma 1. For c > 0 fixed, the function

λ → λKλ (c), (22)

is convex on (−∞,0).

Proof. Take ξ 1,ξ 2 ∈ A , α ∈ (0,1) and λ 1,λ 2 ∈ (−∞,0). Let λ 3 := λ 1α+λ 2(1−
α). We define ξ 3 as the convex combination

ξ 3 := ξ 1 λ 1α
λ 3 +ξ 2 λ 2(1−α)

λ 3 .

It is clear that ξ 3 ∈ A . Now we proceed as in the proof of Lemma 2.2.5 in Dembo
and Zeitouni [24]. We have

E
[

eλ
3Xc,ξ3

T

]
= E

[
eαλ

1Xc,ξ1
T e(1−α)λ

2Xc,ξ2
T

]
≤ E

[
eλ

1Xc,ξ1
T

]α
E
[

eλ
2Xc,ξ2

T

]1−α
.

(23)

Now we take logarithm on the first and the last terms of (23) to see that

logE
[

eλ
3Xc,ξ3

T

]
≤ α logE

[
eλ

1Xc,ξ1
T

]
+(1−α) logE

[
eλ

2Xc,ξ2
T

]
. (24)

In view of (20), the inequality (24) yields the convexity of (22).

Theorem 3. The exponential family of utilities is continuous and for any regular
utility function u we have

Ku(c) = Kλ (c), for c > 0, (25)

with λ = A[u]. Moreover, Ku(·) is a constant function.

Proof. For c > 0 fixed, the function

λ → λKλ (c),

is convex in (−∞,0) due to Lemma 1. Thus, the function

λ → Kλ (c),
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is continuous. As a consequence, the exponential family of utilities is continuous as
in Definition 3 and by Theorem 2 we see that for the regular utility function u

Ku(c) = Kλ (c),

with λ = A[u]. The equality Kλ (c) = Kλ (0) is just (21) and shows that Ku(·) is a
constant function.

Theorem 4. Let u be a regular utility function. Take c > 0. Let λ = A[u]. An invest-
ment strategy ξ ∗ ∈ A is optimal for Kλ (c) so that

Kλ (c) = liminf
T→∞

1
r(T)

{
1
λ

log
(

E
[

eλXc,ξ∗
T

])}
if and only if it is also optimal for Ku(c):

Ku(c) = liminf
T→∞

1
r(T)

{
u−1

(
E
[
u
(

Xc,ξ ∗
T

)])}
.

Proof. Let ξ ∗ ∈ A be an optimal strategy for Ku(c). The function

λ → liminf
T→∞

1
r(T)

Eλ (X
c,ξ ∗
T ) (26)

is convex in the interval (−∞,0). Indeed, this follows easily from the inequality
(23) by taking ξ 1 = ξ 2 = ξ ∗. As a consequence, the function (26) is continuous on
(−∞,0).

Put ξ = ξ ∗ in the inequality (17) and then take the limit ε ↘ 0 to see that

liminf
T→∞

1
r(T)

{
u−1

(
E
[
u
(

Xc,ξ ∗
T

)])}
= liminf

T→∞

1
r(T)

{
1
λ

log
(

E
[

eλXc,ξ∗
T

])}
,

due to the continuity of the function (26). The optimality of ξ ∗ for Kλ (c) is now
consequence of Theorem 3. The other direction follows similarly.

Remark 5. Let us see Theorems 3 and 4 in the perspective of Turnpike Theorems. A
regular utility function u must satisfy that A[u] = limx→∞ Au(x) exists as a negative
real number. In this case for ε > 0 with A[u]+ ε < 0, there exists xε > 0 such that
for x ≥ xε it holds that |Au(x)−A[u]| < ε . But then, the equality u′′ = Auu′ yields
the estimation

u′(xε)e(A[u]−ε)(x−xε ) ≤ u′(x)≤ u′(xε)e(A[u]+ε)(x−xε ), (27)

due to Gronwall’s inequality; see Ethier and Kurtz [25, Theorem A.5.1]. In partic-
ular we see that u′ converges to zero and as fast as eA[u]x and the same is true for
u′′. Thus, our definition of a regular utility function incorporates the usual condition
of marginal utility convergence towards the benchmark utility function (in Turnpike
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Theory, the isoelastic utility, in the present paper, the exponential utility). Our con-
dition involves also the second derivative and allows for a stronger characterization
of optimal investment strategies.

6 Common practices under the perspective of diffusion models

In addition to the value function Kλ , it will be useful to introduce the finite horizon
exponential utility maximization problem

uT(x) := sup
ξ∈A

E
[
−exp

{
λ
(

x+
∫ T

0
ξdS

)}]
,

with λ ∈ (−∞,0), together with the limit function

Kλ ,+(x) :=
1
λ

limsup
T→∞

1
r(T)

log(−uT(x)) . (28)

It is clear that Kλ ,+ dominates from above the function Kλ defined above in (20).

Throughout this section we shall be restricted to the case when there is only one
risky asset. It should be noted that in the definition of uT the function L defined
in Section 4 (see (9)) does not appear. The reason for removing this term from the
definition of the wealth process Xx,ξ

T in (10) is that we shall be working first with
finite horizon problems and then, when the limit as T → ∞ is taken, we can use
hypothesis (13).

6.1 Rules of thumb under geometric Brownian motion

Let {St}0≤t≤T be the price process in the Black-Scholes model without drift. Thus
St = eσWt with σ > 0 and {Wt}0≤t≤T a Brownian motion. The unique martingale
probability measure Q of S has density

ZT = exp
{
−σ

2
WT− 1

8
σ2T

}
and is a crucial element in the solution of exponential utility maximization uT(x).
Let us recall briefly the solution provided by Föllmer and Schachermayer [22] for
this problem. A warning to the reader about notation is the following. In this paper
we take λ to be negative whereas [22] consider λ to be positive and exponential
utility is then −e−λ t . We keep our notation with the appropriate adjustments. The
optimal wealth is given by
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Xλ
T = x− 1

λ
[HT(Q | P)− logZT],

where
HT(Q | P) = EQ [logZT]

denotes the relative entropy of Q with respect to P on FT. The maximal expected
utility at time T is given by

uT(x) =−exp{λx−HT(Q | P)},

while the certainty equivalent is equal to x− 1
λ HT(Q | P). In this case there is an

explicit expression for the entropy

HT(Q | P) =
1
8
σ2T, (29)

see [22, Proposition 5.4].

The investment strategy ξλ which represents Xλ
T as x+

∫ T
0 ξλt dSt is explicitly

given by ξλ = 1
|λ |ξ

∗, with

ξ ∗
t :=

1
2St

; (30)

see [22, Proposition 5.5]. Thus, the optimal strategy is myopic in that it does not
depend on the horizon T. Let us see the consequences of this property in regard to
our problem Kλ and the rules of thumb. First of all, note that we have a process
{ξλt }t∈[0,∞) which is defined on the whole interval [0,∞) and defines and optimal
investment strategy in each period [0,T]. It is not an element of A but it does not
increase the value under appropriate conditions; see [26, Theorem 2.2 and Lemma
5.1]. Thus, Kλ = Kλ ,+ and

Kλ ,+(x) =
1
λ

lim
T→∞

1
T

log[−uT(x)] =
1

8 |λ |σ
2. (31)

From the explicit form of the optimal strategy we see that more risk aversion
from the investor indeed yields less from the risky asset in the portfolio. Thus, mak-
ing out sense of the second rule of thumb RT2: less shares of stocks for conservative
investors, if conservative means smaller absolute risk aversion index. How about
RT1 in which youngsters should take more risk, tantamount of more stock shares?.
There are two possible formulations. The first is just considering that young people
will perceive a safer world, interpreting this as smaller |λ |, and then, RT2 justifies
RT1. The second possibility is in which the horizon T plays a role, since it is longer
for youngsters. However, for our asymptotic problem and under geometric Brown-
ian motion, the horizon does not play a role since the optimal investment strategy is
myopic. Hence, RT1 requires to start with the prior assumption that young people
decide under lower λ ’s, and thus, in the language of Samuelson [27] are willing to
take more “businessmen risk” in comparison to older people.
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6.2 Constant proportions under geometric Brownian motion

Another common practice is to implement investment strategies defined by constant
proportions of capital. So we want to have an estimation of the certainty equiva-
lent for this class. Results of the previous section demonstrate that such strategies
are non-optimal. Yet, its performance is unclear and is what we study in this section.

A portfolio value Xx0,ϖ associated with a constant proportion of capital type of
strategy ϖ satisfies

Xx0,ϖ = x0 exp
{∫ ϖ

S
dS− 1

2

∫ ϖ2

S2 d 〈S〉
}

= x0 exp
{
ϖ(

∫
σdW +

1
2

d 〈σW 〉)− 1
2

∫
ϖ2d 〈σW 〉

}
= x0 exp

{
ϖσW +

1
2
〈σW 〉(ϖ −ϖ2)

}
,

the first equality is just equation (37) in the appendix. In particular, the growth rate
of Xx0,ϖ is given by

lim
T→∞

1
T

logXx0,ϖ
T = ϖ lim

T→∞

1
T

log(ST)+ lim
T→∞

1
T

1
2
〈σW 〉T (ϖ −ϖ2)

=
1
2
σ2(ϖ −ϖ2).

Thus, the optimal constant proportion is given by ϖ = 1
2 which maximizes logarith-

mic utility.

In the next result, the asymptotic certainty equivalent of constant proportions is
estimated from below.

Proposition 2. For ε > 0, let
ϖε =

ε
8+2ε

. (32)

Let Xε be the capital generated by a strategy of the constant proportion of capital
ϖε . Then

lim
T→∞

1
λT

logE[eλXεT ]≥ 1
|λ |

1
2

1
4+ ε

σ2.

Proof. For a fixed constant proportion ϖ , let Xϖ be the portfolio generated by the
strategy of constant proportion ϖ . We use the notation β := 1

2Tσ
2(ϖ −ϖ2), r :=

|λ |x0eβ . For a > 0 we let A := a loga−a log(|λ |x0)−a and ψ = a
r . We have
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E[eλXϖT ] = E
[

exp{−rψϖσWT}exp
{

sup
z∈R

(
rψϖσz− reϖσz)}]

= exp{r(ψ logψ−ψ)}E [exp{−rψϖσWT}]

= exp{r(ψ logψ−ψ)}exp
{

1
2
T(rψϖσ)2

}
= exp

{
A−aβ +

1
2
T(aϖσ)2

}
= exp

{
A+

1
2

aϖσ2T(aϖ +ϖ −1)
}
.

(33)

As a consequence

lim
T→∞

1
λT

logE[eλXϖT ]≥ lim
T→∞

1
λT

(
A+

1
2

aϖσ2T(aϖ +ϖ −1)
)

=
1

2λ
σ2aϖ (aϖ +ϖ −1) .

A simple substitution shows that for ε > 0, a = 4
ε and ϖ = ε

8+2ε , we indeed have

aϖ (aϖ +ϖ −1) =
−1

4+ ε
.

Remark 6. Strategies holding constant proportions are non-optimal but Proposition
2 shows that they are close to the optimal growth of certainty equivalent (31). They
are commonly used. Implementation costs of a more complex strategy together with
‘near-optimality’ might motivate a better perspective of such strategies.

6.3 Rules of thumb under a factor model

Fix a two dimensional Brownian motion (W 1,W 2). For θ ∈ [0,1], the process Y is
defined by

dY = g(Y )dt +β (Y )[θdW 1 +
√

1−θ 2dW 2].

The process Y is an exogenous factor driving the coefficients of the price process S
with dynamic

dS = μ(S,Y )dt + γ(S,Y )dW 1. (34)

The dynamic of a portfolio takes the form

dX = ξdS.

For a given ξ , let Qξ be the probability measure with density dQξ
dP = M where
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M := E

{
λ
∫
ξγ(S,Y )dW 1

}
,

and E denotes the Dooleans-Dade exponential. We want to minimize E[eλXT ]. In
order to give a dynamical programming approach to this minimization problem we
follow Fleming and Soner [28, Section VI.8], and to this end, the notation ρ =−λ
will be more convenient. We have

E[eλXT ]

=EQξ

[
1

MT
eλXT

]
=EQξ

[
exp

{
−λ

∫ T

0
ξγdW 1 +

1
2
λ 2

∫ T

0
(ξγ)2dt

}
exp

{
λ
∫ T

0
ξγdW 1 +λ

∫ T

0
ξμdt

}]
=EQξ

[
exp

{
ρ
∫ T

0
�(ξ ,S,Y )dt

}]
,

where
�(ξ ,s,y) :=−ξμ(s,y)+ ρ

2
(ξγ(s,y))2.

Under Qξ the processes S and Y follow the dynamic(
dS
dY

)
= f (ξ ,S,Y )dt +ρ− 1

2σ ·
(

dW̃ 1

dW 2

)
,

where W̃ 1 =W 1 +ρ
∫
ξγ(S,Y )dt is a Qξ -Brownian motion and

f =
(
μ−ργ2ξ

g−θρβγξ
)

σ = ρ
1
2

(
γ 0
θβ

√
1−θ 2β

)
.

We also put

a = σσ tr = ρ
(
γ2 θβγ
θβγ β 2

)
.

Let Φ denote the value function of our minimization problem. The logarithmic
transformed function V = 1

ρ logΦ satisfies under suitable conditions a dynamic pro-
gramming equation: −Vt + H̄(V ) = 0, where the Hamiltonian H̄ is as in [28, Section
VI.8, Equation (8.11)]. It takes the form

H̄[V ] =−L[V ]− ˜̃H[V ],

where the operators ˜̃H and L are, respectively,
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˜̃H[V ] := inf
ξ

[−ργ2ξVs −θρβγξVy + �
]

L[V ] := μVs +gVy +
1
2
γ2Vss +θβγVys +

1
2
β 2Vyy +

1
2

DV tr(a)trDV.

An optimal feedback control takes the form

ξ ∗ =Vs +θ
β
γ

Vy +
1
ρ
μ
γ2 . (35)

Here we do not pursue to prove the existence of a solution to the dynamic equa-
tion, which can be done; see e.g., Nagai [29]. Instead, we compare the form of the
optimal strategy with the rules of thumb.

It should be clear, due to the form (35) of the optimal strategy, that under the
dynamic (34), the rules of thumb will be confirmed or rejected according to different
choices of the coefficients. So let us choose some options. Take for concreteness
μ ≥ 0. Then, RT2 in which conservative investors should hold less shares of stocks
makes sense in the region where the partial derivatives Vs and Vy decrease with ρ .
Paradoxically, this relationship is inverted as soon as μ < 0. If θ = 0, then there
is no interaction between the randomness (W 1,W 2) in Y and S, and the optimal
strategy is pretty much determined by the market price of risk and volatility. Thus,
the second term in the right hand side of (35) appears as a correction factor due to
this interaction. In the special case in which μ only depends on Y , as in Bachelier’s
model, we will have that V does not depend on S and then the optimal solution is
again myopic and therefore Kλ = Kλ ,+.

6.4 Concluding remarks

In this paper we studied an asymptotic utility problem for a wide class of utility
functions and showed that the solution is characterized through the behavior at in-
finity of the Arrow-Pratt absolute risk aversion index. Taking into account our argu-
ments’ simplicity, the interest of the results here presented lies on the one hand on
its free-model scope, and on the other, on highlighting, from a new point of view,
the role of the Arrow-Pratt index on portfolio decisions.

Acknowledgements The work of the first author was partially supported by Conacyt under grant
254166.
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Appendix

Stochastic Logarithm and portfolio proportions.

For a continuous semimartingale Z, the stochastic logarithm is defined by

L (Z) :=
∫ dZ

Z
. (36)

We will characterize investment strategies ξ that yield a constant proportion ϖ
of the capital. This means that

ϖ =
ξS

x+
∫
ξdS

,

remains constant along the time. Then, for Xt = x+
∫ t

0 ξzdSz we have

Xt = x+
∫ ϖXz

Sz
dSz.

Therefore, X solves the following dynamic

dL (X) = ϖdL (S).

Thus

X = xE
(∫

ϖ
dS
S

)
, (37)

where
E (Z) = eZ− 1

2 〈Z〉,

denotes the Dooleans-Dade exponential of the continuous semimartingale Z.

Proof of Proposition 1.

Proof. 1. Let
J(t) := E[u(x+ tZ)]−u(x)

and

R(t) :=
∫ x+tZ

x
(x+ tZ − s)2u

′′′
(s)ds.

Note that for t fixed, R(t) is clearly a measurable function. A Taylor expansion
of second order shows
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J(t) = tu′(x)E[Z]+
t2

2
u′′(x)E[Z2]+

1
2

E[R(t)]

=
t2

2
u′′(x)E[Z2]+

1
2

E [R(t)] .
(38)

Let

R
′
(t) :=

∫ u(x)+J(t)

u(x)
(u(x)+ J(t)− s)u

′′
(s)ds.

A first order Taylor expansion shows that

u−1(E[u(x+ tZ)]) = x+
1

u′
(x)

J(t)+R
′
(t).

Then

u−1(E[u(x+ tZ)]) = x+
u′′(x)
u′
(x)

t2

2
E[Z2]+

1
2u′

(x)
E[R(t)]+R

′
(t)

= x+ t2E[Z2]
Au(x)

2
+

1
2u′

(x)
E[R(t)]+R

′
(t).

2. There exists a random variable η depending on t with η+ ≤ Z+ and η− ≤ Z−
and

R(t) = tZ(tZ − tη)2u
′′′
(x+ tη). (39)

Let us prove the claim. Assume without loss of generality that Z is non negative.
For t and x fixed, the functions h,k :Ω ×R defined by

h(ω,y) =
∫ x+ty

x
(x+ tZ(ω)− s)2u

′′′
(s)ds

k(ω,y) = tZ(ω)(tZ(ω)− ty)2u
′′′
(x+ ty)

are clearly measurable in ω and continuous in y. Thus, they are Caratheodory
functions. In particular, α(ω) = h(ω,Z(ω)) is measurable; see Rockafellar and
Wets [30][Example 14.29, Corollary 14.34]. The correspondence

F(ω) = {r ∈ [0,Z(ω)]}∩{r | k(ω,r)≤ α(ω)}∩{r | −k(ω,r)≤−α(ω)}
= {r ∈ [0,Z(ω)]}∩{r | k(ω,r) = α(ω)},

is clearly closed-valued. Let us see that it is measurable. Indeed, F is defined as
the intersection of correspondences, which are level-set mappings and then, are
measurable; see [30][Proposition 14.33]. The intersection of closed-valued mea-
surable correspondences is closed-valued and measurable; see [30][Proposition
14.11]. Thus, F is measurable.
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For each ω the set F(ω) is non-empty (this is just the integral mean value
theorem). As a consequence, there exists a measurable selection of F ; see
[30][Corollary 14.6]. This is the required random variable η .

A simple computation shows that

u
′′′
= (A

′
u +A2

u)u
′
. (40)

Then u
′′′

is a bounded function, due to our assumption (7) that A
′
uu

′
is a bounded

function, that u is a regular function and thus Au is a bounded function and u
′

converges to zero; see (27). The boundedness of u
′′′

together with (39) yields the
existence of a constant k with

E[|R(t)|]≤ kt3E
[
|Z|3

]
.

Thus limt↘0 R(t)/t2 = 0. The same is true for R′: limt↘0 R′(t)/t2 = 0, which can
be proved similarly.
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Binary Mean Field Stochastic Games:
Stationary Equilibria and Comparative Statics

Minyi Huang and Yan Ma

Abstract This paper considers mean field games in a multi-agent Markov decision
process (MDP) framework. Each player has a continuum state and binary action,
and benefits from the improvement of the condition of the overall population. Based
on an infinite horizon discounted individual cost, we show existence of a stationary
equilibrium, and prove its uniqueness under a positive externality condition. We
further analyze comparative statics of the stationary equilibrium by quantitatively
determining the impact of the effort cost.

1 Introduction

Mean field game theory provides a powerful methodology for reducing complexity
in the analysis and design of strategies in large population dynamic games [25, 30,
37]. Following ideas in statistical physics, it takes a continuum approach to specify
the aggregate impact of many individually insignificant players and solves a special
stochastic optimal control problem from the point of view of a representative player.
By this methodology, one may construct a set of decentralized strategies for the
original large but finite population model and show its ε-Nash equilibrium property
[25, 26, 30]. A related solution notion in Markov decision models is the oblivious
equilibrium [55]. The readers are referred to [12, 16, 17, 18, 19] for an overview on
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mean field game theory and further references. For mean field type optimal control,
see [12, 56], but the analysis in these models only involves a single decision maker.

Dynamic games within an MDP setting originated from the work of Shapley and
are called stochastic games [21, 50]. Their mean field game extension has been stud-
ied in the literature; see e.g. [3, 13, 46, 55]. Continuous time mean field games with
finite state space can be found in [22, 35]. Our previous work [27, 28] studied a
class of mean field games in a multi-agent Markov decision process (MDP) frame-
work. The players in [27] have continuum state spaces and binary action spaces,
and have coupling through their costs. The state of each player is used to model its
risk (or unfitness) level, which has random increase if no active control is taken.
Naturally, the one-stage cost of a player is an increasing function of its own state
apart from coupling with others. The motivation of this modeling framework comes
from applications including network security investment games and flue vaccination
games [34, 38, 40]; when the one-stage cost is an increasing function of the pop-
ulation average state, it reflects positive externalities. Markov decision processes
with binary action spaces also arise in control of queues and machine replacement
problems [4, 10]. Binary choice models have formed a subject of significant inter-
est [8, 15, 48, 49, 54]. Our game model has connection with anonymous sequential
games [33], which combine stochastic game modeling with a continuum of players.
In anonymous sequential games one determines the equilibrium as a joint state-
action distribution of the population and leaves the individual strategies unspecified
[33, Sec. 4], although there is an interpretation of randomized actions for players
sharing a given state.

For both anonymous games and MDP based mean field games, stationary solu-
tions with discount have been studied in the literature [3, 33]. These works give more
focus on fixed point analysis to prove the existence of a stationary distribution. This
approach does not address ergodic behavior of individuals or the population while
assuming the population starts from the steady-state distribution at the initial time.
Thus, there is a need to examine whether the individuals collectively have the ability
to move into that distribution at all when they have a general initial distribution. Our
ergodic analysis based approach will provide justification of the stationary solution
regarding the population’s ability to settle down around the limiting distribution.

The previous work [27, 28] studied the finite horizon mean field game by show-
ing existence of a solution with threshold policies, and under an infinite horizon
discounted cost further proved there is at most one stationary equilibrium for which
existence was not established. A similar continuous time modeling is introduced in
[57], which addresses Poisson state jumps and impulse control. It should be noted
that except for linear-quadratic models [9, 26, 31, 39, 43], mean field games rarely
have closed-form solutions and often rely on heavy numerical computations. Within
this context, the consideration of structured solutions, such as threshold policies, is
of particular interest from the point of view of efficient computation and simple
implementation. Under such a policy, the individual states evolve as regenerative
processes [6, 51].

By exploiting stochastic monotonicity, this paper adopts more general state tran-
sition assumptions than in [27, 28] and continues the analysis on the stationary equa-
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tion system. The first contribution of the present paper is the proof of the existence
of a stationary equilibrium. Our analysis depends on checking the continuous de-
pendence of the limiting state distribution on the threshold parameter in the best
response. The existence and uniqueness analysis in this paper has appeared in a
preliminary form in the conference paper [29].

A key parameter in our game model is the effort cost. Intuitively, this parameter
is a disincentive indicator of an individual for taking active efforts, and in turn will
further impact the mean field forming the ambient environment of that agent. This
suggests that we can study a family of mean field games parametrized by the effort
costs and compare their solution behaviors. We address this in the setup of com-
parative statics, which have a long history in the economic literature [24, 42, 47]
and operations research [53] and provide the primary means to analyze the effect of
model parameter variations. For dynamic models, such as economic growth mod-
els, the analysis follows similar ideas and is sometimes called comparative dynamics
[5, 11, 45, 47] by comparing two dynamic equilibria. In control and optimization,
such studies are usually called sensitivity analysis [14, 20, 32]. For comparative
statics in large static games and mean field games, see [1, 2]. Our analysis is accom-
plished by performing perturbation analysis around the equilibrium of the mean
field game.

The paper is organized as follows. Section 2 introduces the mean field stochastic
game. The best response is analyzed in Section 3. Section 4 proves existence and
uniqueness of stationary equilibria. Comparative statics are analyzed in Section 5.
Section 6 concludes the paper.

2 The Markov Decision Process Model

2.1 Dynamics and Costs

The system consists of N players denoted by Ai, 1 ≤ i ≤ N. At time t ∈ Z+ =
{0,1,2, . . .}, the state of Ai is denoted by xi

t , and its action by ai
t . For simplicity, we

consider a population of homogeneous (or symmetric) players. Each player has state
space S = [0,1] and action space A = {a0,a1}. A value of S may be interpreted as
a risk or unfitness level. A player can either take inaction (as a0) or make an active
effort (as a1). For an interval I, let B(I) denote the Borel σ -algebra of I.

The state of each player evolves as a controlled Markov process, which is affected
only by its own action. For t ≥ 0 and x ∈ S, the state has a transition kernel specified
by

P(xi
t+1 ∈ B|xi

t = x,ai
t = a0) = Q0(B|x), (1)

P(xi
t+1 = 0|xi

t = x,ai
t = a1) = 1, (2)
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where Q0(·|x) is a stochastic kernel defined for B ∈ B(S) and Q0([x,1]|x) = 1. By
the structure of Q0, the state of the player deteriorates if no active control is taken.
The vector process (x1

t , . . .xN
t ) constitutes a controlled Markov process in higher

dimension with its transition kernel defining a product measure on (B(S))N for
given (x1

t , · · · ,xN
t ,a1

t , . . . ,a
N
t ).

Define the population average state x(N)
t = 1

N ∑N
i=1 xi

t . The one stage cost of Ai is

c(xi
t ,x

(N)
t ,ai

t) = R(xi
t ,x

(N)
t )+ γ1{ai

t=a1},

where γ > 0 and γ1{ai
t=a1} is the effort cost. The function R ≥ 0 is defined on S× S

and models the risk-related cost. Let ν i denote the strategy of Ai. We introduce the
infinite horizon discounted cost

Ji(x1
0, . . . ,x

N
0 ,ν1, . . . ,νN) = E

∞

∑
t=0

β t c(xi
t ,x

(N)
t ,ai

t), 1 ≤ i ≤ N. (3)

The standard methodology of mean field games may be applied by approximating

{x(N)
t ,t ≥ 0} by a deterministic sequence {zt ,t ≥ 0} which depends on the initial

condition of the system. One may solve the limiting optimal control problem of
Ai and derive a dynamic programming equation for its value function denoted by
vi(t,x,(zk)∞

k=0), whose dependence on t is due to the time-varying sequence {zt ,t ≥
0}. Subsequently one derives another equation for the mean field {zt , t ≥ 0} by
averaging the individual states across the population. This approach, however, has
the drawback of heavy computational load.

2.2 Stationary Equilibrium

We are interested in a steady-state form of the solution of the mean field game
starting with {zt ,t ≥ 0}. Such steady state equations provide information on the long
time behavior of the solution and are of interest in their own right. They may also
be used for approximation purposes to compute strategies efficiently. We introduce
the system

v(x) = min
[
β
∫ 1

0
v(y)Q0(dy|x)+ R(x,z), β v(0)+ R(x,z)+ γ

]
, (4)

z =
∫ 1

0
xμ(dx), (5)

where μ is a probability measure on S. We say (v,z,μ ,ai(·)) is a stationary equilib-
rium to (4)-(5) if i) the feedback policy ai(·), as a mapping from S to {a0,a1}, is the
best response with respect to z in (4), ii) given an initial distribution of xi

0, {xi
t ,t ≥ 0}

under the policy ai has its distribution converging (under a total variation norm or
only weakly) to the stationary distribution (or called limiting distribution) μ .
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We may interpret v as the value function of an MDP with cost J̄i(xi
0,z,ν

i) =
E ∑∞

t=0 β tc(xi
t ,z,a

i
t). An alternative way to interpret (4)-(5) is that the initial state of

Ai has been sampled according to the “right” distribution μ , and that z is obtained
by averaging an infinite number of such initial values by the law of large numbers
[52]. A similar solution notion is adopted in [2, 3] but ergodicity is not part of their
solution specification.

Let the probability measure μk be the distribution of R-valued random vari-
able Zk, k = 1,2. We say μ2 stochastically dominates μ1, and denote μ1 ≤st μ2,
if μ2((y,∞)) ≥ μ1((y,∞)) (or equivalently, P(Z2 > y) ≥ P(Z1 > y)) for all y. It is
well known [44] that μ1 ≤st μ2 if and only if∫

ψ(y)μ1(dy) ≤
∫

ψ(y)μ2(dy) (6)

for all increasing function ψ (not necessarily strictly increasing) for which the two
integrals are finite. A stochastic kernel Q(B|x), 0 ≤ x ≤ 1, B ∈ B(S), is said to be
strictly stochastically increasing if ϕ(x) :=

∫
S ψ(y)Q(dy|x) is strictly increasing in

x ∈ S for any strictly increasing function ψ : [0,1] →R for which the integral is nec-
essarily finite. Q(·|x) is said to be weakly continuous if ϕ is continuous whenever
ψ is continuous.

Let {Yt ,t ≥ 0} be a Markov process with state space [0,1], transition kernel
Q0(·|x) and initial state Y0 = 0. So each of its trajectories is monotonically in-
creasing. Define τθ

Q0
= inf{t|Yt ≥ θ} for θ ∈ (0,1). It is clear that τθ1

Q0
≤ τθ2

Q0
for

0 < θ1 < θ2 < 1.
The following assumptions are introduced.

(A1) {xi
0, i ≥ 1} are i.i.d. random variables taking values in S.

(A2) R(x,z) is a continuous function on S× S. For each fixed z, R(·,z) is strictly
increasing.

(A3) i) Q0(·|x) satisfies Q0([x,1]|x) = 1 for any x, and is strictly stochastically in-
creasing; ii) Q0(dy|x) is weakly continuous and has a positive probability density
q(y|x) for each fixed x < 1; iii) for any small 0 < δ < 1, infx Q0([1−δ ,1]|x) > 0.

(A4) R(x, ·) is increasing for each fixed x.
(A5) limθ↑1 Eτθ

Q0
= ∞.

(A3)-iii) will be used to ensure the uniform ergodicity of the controlled Markov
process. In fact, under (A3) we can show Eτθ

Q0
< ∞. The following condition is a

special case of (A3).

(A3′) There exists a random variable such that Q0(·|x) is equal to the law of
x+(x−1)ξ for some random variable ξ with probability density fξ (x) > 0, a.e.
x ∈ S.

When (A3′) holds, we can verify (A5) by analyzing the stopping time τξ =
inf{t|∏t

s=1 ξs ≤ 1 − θ}, where {ξs,s ≥ 1} is a sequence of i.i.d. random variables
with probability density fξ . For existence analysis of the mean field game, (A5) will
be used to ensure continuity of the mean field when the threshold θ approaches 1.
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Proposition 1 The two conditions are equivalent:
i) μ1 ≤st μ2, and μ1 �= μ2;
ii)
∫
R

φ(y)μ1(dy) <
∫
R

φ(y)μ2(dy) for all strictly increasing function φ for which
both integrals are finite.

Proof. Assume i) holds. By [44, Theorem 1.2.16], we have

φ(Z1) ≤st φ(Z2), (7)

and so Eφ(Z1) ≤ Eφ(Z2). Since μ1 �= μ2, there exists y0 such that P(Z1 > y0) �=
P(Z2 > y0). Take r such that φ(y0) = r. Then

P(φ(Z1) > r) �= P(φ(Z2) > r). (8)

If Eφ(Z1) = Eφ(Z2) were true, by (7) and [44, Theorem 1.2.9], φ(Z1) and φ(Z2)
would have the same distribution, which contradicts (8). We conclude Eφ(Z1) <
Eφ(Z2), which is equivalent to ii).

Next we show ii) implies i). Let ψ be any increasing function satisfying (6)
with two finite integrals. When ii) holds, we take φε = ψ + εy

1+|y| , ε > 0. Then∫
φε μ1(dy) <

∫
φε μ2(dy) holds for all ε > 0. Letting ε → 0, then (6) follows and

μ1 ≤st μ2. It is clear μ1 �= μ2. 	


3 Best Response

For this section we assume (A1)-(A3). We take any fixed z ∈ [0,1] and consider (4)
as a separate equation, which is rewritten below:

v(x) = min
{

β
∫ 1

0
v(y)Q0(dy|x)+ R(x,z), β v(0)+ R(x,z)+ γ

}
. (9)

Here z is not required to satisfy (5). In relation to the mean field game, the resulting
optimal policy will be called the best response with respect to z. Denote G(x) =∫ 1

0 v(y)Q0(dy|x).
Lemma 1. i) Equation (9) has a unique solution v ∈ C([0,1],R).

ii) v is strictly increasing.
iii) The optimal policy is determined as follows:

a) If β G(1) < β v(0)+ γ , ai(x) ≡ a0.
b) If β G(1) = β v(0)+ γ , ai(1) = a1 and ai(x) = a0 for x < 1.
c) If β G(0) ≥ β v(0)+ γ , ai(x) ≡ a1.
d) If β G(0) < β v(0)+ γ < ρG(1), there exists a unique x∗ ∈ (0,1) and ai is a

threshold policy with parameter x∗, i.e., ai(x) = a1 if x ≥ x∗ and ai(x) = a0 if x < x∗.

Proof. Define the dynamic programming operator
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(L g)(x) = min
{

β
∫ 1

0
g(y)Q0(dy|x)+ R(x,z), β g(0)+ R(x,z)+ γ

}
, (10)

which is from C([0,1],R) to itself. The proving method in [27], [28, Lemma 6],
which assumed (A3′), can be extended to the present equation (9) in a straightfor-
ward manner.

In particular, for the proof of ii) and iii), we obtain progressively stronger prop-
erties of v and G. First, denoting g0 = 0 and gk+1 = L gk for k ≥ 0, we use a suc-
cessive approximation procedure to show that v is increasing, which implies that G
is continuous and increasing by weak continuity and monotonicity of Q0. Since R
is strictly increasing in x, by the right hand side of (9), we show that v is strictly
increasing, which implies the same property for G by strict monotonicity of Q0. 	


For the optimal policy specified in part iii) of Lemma 1, we can formally denote
the threshold parameters for the corresponding cases: a) θ = 1+, b) θ = 1, c) θ =
0, and d) θ = x∗. Such a policy will be called a θ -threshold policy. We give the
condition for θ = 0 in the best response.

Lemma 2. For γ > 0 and v solving (9),

β G(0) ≥ β v(0)+ γ (11)

holds if and only if

γ ≤ β
∫ 1

0
R(y,z)Q0(dy|0)− β R(0,z). (12)

Proof. We show necessity first. Suppose (11) holds. Note that G(x) is strictly in-
creasing on [0,1]. Equation (9) reduces to

v(x) = β v(0)+ R(x,z)+ γ, (13)

β G(x) ≥ β v(0)+ γ, ∀x. (14)

From (13), we uniquely solve

v(0) =
1

1 − β
[R(0,z)+ γ], v(x) =

β
1 − β

[R(0,z)+ γ]+ R(x,z)+ γ, (15)

which combined with (14) implies (12).
We continue to show sufficiency. If γ > 0 satisfies (12), we use (15) to construct

v and verify (13) and (14). So v is the unique solution of (9) satisfying (11). 	

The next lemma gives the condition for θ = 1+ in the best response.

Lemma 3. For γ > 0 and v solving (9), we have

β G(1) < β v(0)+ γ (16)

if and only if
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γ > β [Vβ (1)−Vβ(0)], (17)

where Vβ (x) ∈ C([0,1],R) is the unique solution of

Vβ (x) = β
∫ 1

0
Vβ (y)Q0(dy|x)+ R(x,z). (18)

Proof. By Banach’s fixed point theorem, we can show that (18) has a unique so-

lution. Next, by a successive approximation {V (k)
β ,k ≥ 0} with V (0)

β = 0 in the
fixed point equation, we can further show that Vβ is strictly increasing. Moreover,∫ 1

0 Vβ (y)Q0(dy|x) is increasing in x by monotonicity of Q0.
We show necessity. Since G is strictly increasing, (16) implies that the right hand

side of (9) now reduces to the first term within the parentheses and that v = Vβ . So
(17) follows.

To show sufficiency, suppose (17) holds. We have

β
∫ 1

0
Vβ (y)Q0(dy|x) ≤ βVβ (1) < βVβ (0)+ γ, ∀x.

Therefore, v := Vβ gives the unique solution of (9) and β G(1) < β v(0)+ γ . 	

Example 1. Let R(x,z) = x(c+z), where c > 0. Take Q0(·|x) as uniform distribution
on [x,1]. Then (18) reduces to

Vβ (x) =
β

1 − x

∫ 1

x
Vβ (y)dy + R(x,z).

Define φ(x) =
∫ 1

x Vβ (y)dy, x ∈ [0,1]. Then φ ′(x) = − β
1−xφ(x) − R(x,z) holds and

we solve

φ(x) = (1 − x)β
∫ 1

x

R(s,z)
(1 − s)β ds,

where the right hand side converges to 0 as x → 1−. We further obtain

Vβ (x) = β (1 − x)β−1
∫ 1

x

R(s,z)
(1 − s)β ds+ R(x,z)

for x ∈ [0,1), and the right hand side has the limit R(1,z)
1−β as x → 1−. This gives a

well defined Vβ ∈ C([0,1],R). Therefore, Vβ (0) = β (c+z)
(1−β )(2−β ) . Then (17) reduces to

γ > 2β (c+z)
2−β .
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4 Existence of Stationary Equilibria

Assume (A1)-(A5) for this section. Define the class P0 of probability measures
on S as follows: ν ∈ P0 if there exist a constant cν ≥ 0 and a Borel measurable
function g(x) ≥ 0 defined on [0,1] such that

ν(B) =
∫

B
g(x)dx + cν1B(0),

where B ∈ B(S) and 1B is the indicator function of B. When restricted to (0,1], ν is
absolutely continuous with respect to the Lebesgue measure μLeb.

Let X be a random variable with distribution ν ∈ P0. Set xi
t = X . Define Y0 = xi

t+1
by applying ai

t ≡ a0. Further define Y1 = xi
t+1 by applying the r-threshold policy ai

t
with r ∈ (0,1).

Lemma 4. The distribution νi of Yi is in P0 for i = 0,1.

Proof. Let q(y|x) denote the density function of Q0(·|x) for x ∈ [0,1), where
q(y|x) = 0 for y < x. Denote

g0(y) =
∫

0≤x<y
q(y|x)ν(dx), y ∈ (0,1),

and
g1(y) =

∫
0≤x<y∧r

q(y|x)ν(dx), y ∈ (0,1).

Then it can be checked that

P(Y0 ∈ B) =
∫

B
g0(y)dy, P(Y1 ∈ B) =

∫
B

g1(y)dy + P(X ≥ r)1B(0).

This completes the lemma. 	

In order to show that (4)-(5) has a solution, we define a mapping Γ : S → S by

the following rule. For z ∈ [0,1], we solve (4) to obtain a well defined threshold
θ (z) ∈ [0,1]∪ {1+}, which in turn determines a limiting distribution μθ(z) of the
closed-loop state process xi

t by Lemma A.1. Define

Γ (z) =
∫ 1

0
xμθ(z)(dx).

If Γ has a fixed point, we obtain a solution to (4)-(5).
We analyze the case where the best response gives a strictly positive threshold.

Assume

γ > β max
z∈[0,1]

∫ 1

0
[R(y,z)− R(0,z)]Q0(dy|0). (19)
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Note that under a zero threshold policy, the behavior of the state process is sensitive
to a positive perturbation of the threshold. The above condition ensures that the zero
threshold will not occur, and this will ensure continuity of Γ to facilitate the fixed
point analysis.

Lemma 5. Assume (19). Then Γ (z) is continuous on [0,1].

Proof. Let z0 ∈ [0,1] be fixed, giving a corresponding threshold parameter θ0 when
(9) is solved using z0. We check continuity at z0 and consider 3 cases.

Case i) θ0 ∈ (0,1). Let π0 be the stationary distribution with the θ0-threshold
policy. Consider any fixed ε > 0. There exists ε1 such that for all θ ∈ (θ0 − ε1,θ0 +
ε1) ⊂ (0,1), |∫ 1

0 xπ(dx) − ∫ 1
0 xπ0(dx)| < ε , where π is the stationary distribution

associated with θ . This follows since limθ→θ0 ‖π −π0‖TV = 0 by Lemma A.3. Now
by the continuous dependence of the solution of the dynamic programming equation
on z, we can select a sufficiently small δ > 0 such that for all |z−z0| < δ , z generates
a threshold parameter θ ∈ (θ0 − ε1,θ0 + ε1), which implies |Γ (z)−Γ (z0)| ≤ ε .

Case ii) z0 gives θ0 = 1. Then Γ (z0) = 1. Fix any ε > 0. Then we can show there
exists ε1 such that for all θ ∈ (1 − ε1,1), the associated stationary distribution πθ
gives |Γ (z0)− ∫ 1

0 xπθ (dx)| < ε , where we use (A5) and the right hand side of (C.1)
to estimate a lower bound for

∫ 1
0 xπθ (dx). Now, there exists δ > 0 such that any z

satisfying |z − z0| < δ gives a threshold θ either in (1 − ε1,1) or equal to 1 or 1+;
for each case, we have |Γ (z0)− ∫ 1

0 xπθ (dx)| < ε .
Case iii) z0 gives θ0 = 1+. Then there exists δ > 0 such that any z satisfying

|z− z0| < δ gives a threshold parameter θ = 1+. Then Γ (z) = Γ (z0) = 1. 	

Theorem 1. Assume (19). There exists a stationary equilibrium to (4)-(5).

Proof. Since Γ is a continuous function from [0,1] to [0,1] by Lemma 5, the theo-
rem follows from Brouwer’s fixed point theorem. 	


Let xi,θ
t and πθ denote the state process and its stationary distribution, respec-

tively, under a θ -threshold policy. Denote z(θ ) =
∫ 1

0 xπθ (dx). We have the first
comparison theorem on monotonicity.

Lemma 6. z(θ1) ≤ z(θ2) for 0 < θ1 < θ2 < 1.

Proof. By the ergodicity of {xi,θl
t ,t ≥ 0} in Lemma A.2, we have the representation

z(θl) = limk→∞
1
k ∑k−1

t=0 xi,θl
t w.p.1. Lemma C.2 implies z(θ1) ≤ z(θ2). 	


To establish uniqueness, we consider R(x,z) = R1(x)R2(z), where R1 ≥ 0 and
R2 ≥ 0, and which satisfies (A1)-(A5). We further make the following assumption.

(A6) R2 > 0 is strictly increasing on S.

This assumption indicates positive externalities since an individual benefits from
the decrease of the population average state. This condition has a crucial role in the
uniqueness analysis.

Given the product form of R, now (9) takes the form:
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V (x) =min
[
β
∫ 1

0
V (y)Q0(dy|x)+ R1(x)R2(z), βV (0)+ R1(x)R2(z)+ γ

]
.

Consider 0 ≤ z2 < z1 ≤ 1 and

Vl(x) =min
[
β
∫ 1

0
Vl(y)Q0(dy|x)+ R1(x)R2(zl), βVl(0)+ R1(x)R2(zl)+ γ

]
.

(20)

Denote the optimal policy as a threshold policy with parameter θl in [0,1] or equal
to 1+, where we follow the interpretation in Section 3 if θl = 1+. We state the
second comparison theorem about the threshold parameters under different mean
field parameters zl .

Theorem 2. θ1 and θ2 in (20) are specified according to the following scenarios:
i) If θ1 = 0, then we have either θ2 ∈ [0,1] or θ2 = 1+.
ii) If θ1 ∈ (0,1), we have either a) θ2 ∈ (θ1,1), or b) θ2 = 1, or c) θ2 = 1+.
iii) If θ1 = 1, θ2 = 1+.
iv) If θ1 = 1+, θ2 = 1+.

Proof. Since R2(z1) > R2(z2) > 0, we divide both sides of (20) by R2(zl) and define
γl = γ

R2(zl)
. Then 0 < γ1 < γ2. The dynamic programming equation reduces to (D.2).

Subsequently, the optimal policy is determined according to Lemma D.4. 	

Corollary 1. Assume (A6) in addition to the assumptions in Theorem 1. Then the
system (4)-(5) has a unique stationary equilibrium.

Proof. The proof is similar to [27, 28], which assumed (A3′). 	
.

5 Comparative Statics

This section assumes (A1)-A(6). Consider the two solution systems⎧⎪⎨⎪⎩
v̄(x) = min

[
β
∫ 1

0
v̄(y)Q0(dy|x)+ R1(x)R2(z̄), β v̄(0)+ R1(x)R2(z̄)+ γ̄

]
,

z̄ =
∫ 1

0
xμ̄(dx),

(21)

and⎧⎪⎨⎪⎩
v(x) = min

[
β
∫ 1

0
v(y)Q0(dy|x)+ R1(x)R2(z), β v(0)+ R1(x)R2(z)+ γ

]
,

z =
∫ 1

0
xμ(dx).

(22)
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Suppose γ̄ satisfies (19). By Corollary 1, (21) has a unique solution denoted by
(v̄, z̄, μ̄ , θ̄ ), where θ̄ is the threshold parameter. We further assume θ̄ ∈ (0,1). Sup-
pose γ > γ̄ . Then we can uniquely solve (v,z,μ ,θ ). The next theorem presents a
result on monotone comparative statics [53].

Theorem 3. If γ > γ̄ , we have

θ > θ̄ , z > z̄, v > v̄.

Proof. We prove by contraction. Assume θ ≤ θ̄ . Then by Lemma 6, z ≤ z̄, and
therefore, γ

R2(z) > γ̄
R2(z̄)

. By the method of proving Theorem 2, we would establish

θ > θ̄ , which contradicts the assumption θ ≤ θ̄ . We conclude θ > θ̄ . By Lemma 6
and Remark B.1, we have z > z̄. For (21), we use value iteration to approximate v̄
by an increasing sequence of functions v̄k with v̄0 = 0. Similarly, v is approximated
by vk with v0 = 0. By induction, we have vk ≥ v̄k for all k. This proves v ≥ v̄.

Next, we have β v(0)+ R1(x)R2(z)+ γ > β v̄(0)+ R1(x)R2(z̄)+ γ̄ on [0,1], and
β
∫ 1

0 v(y)Q0(dy|x)+R1(x)R2(z) > β
∫ 1

0 v̄(y)Q0(dy|x)+R1(x)R2(z̄) on (0,1]. By the
method in [27, Lemma 2], we have v > v̄ on (0,1]. Then

∫ 1
0 v(y)Q0(dy|0) >∫ 1

0 v̄(y)Q0(dy|0). This further implies v(0) > v̄(0). 	

Remark 1. It is possible to have θ = 1+ in Theorem 3.

By a continuity argument, we can further show limγ→γ̄ (|θ − θ̄ | + |z − z̄| +
supx |v(x) − v̄(x)|) = 0. In the analysis below, we take γ = γ̄ + ε for some small
ε > 0. For this section, we further introduce the following assumption.

(A7) For γ > γ̄ , (v,z,θ ) has the representation

v(x) = v̄(x)+ εw(x)+ o(ε), 0 ≤ x ≤ 1, (23)

z = z̄+ εzγ + o(ε), (24)

θ = θ̄ + εθγ + o(ε), (25)

where v,z,θ are solved depending on the parameter γ and w is a function defined
on [0,1]. The derivatives zγ and θγ at γ̄ exist, and R2(z) is differentiable on [0,1].
For 0 ≤ x < 1, the probability density function q(y|x), y ∈ [x,1], for Q0(dy|x) is

continuous on {(x,y)|0 ≤ x ≤ y < 1}. Moreover, ∂q(y|x)
∂x exists and is continuous

in (x,y).

We aim to provide a characterization of w,zγ ,θγ .

Theorem 4. The function w satisfies

w(x) =

⎧⎨⎩β
∫ 1

0
w(y)Q0(dy|x)+ R1(x)R′

2(z̄)zγ , 0 ≤ x ≤ θ̄ ,

β w(0)+ R1(x)R′
2(z̄)zγ + 1, θ̄ < x ≤ 1.

(26)

Proof. We have
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v̄(x) = β
∫ 1

0
v̄(y)Q0(dy|x)+ R1(x)R2(z̄), x ∈ [0, θ̄ ]

and

v(x) = β
∫ 1

0
v(y)Q0(dy|x)+ R1(x)R2(z), x ∈ [0,θ ].

Note that θ > θ̄ . For any fixed x ∈ [0, θ̄ ], we have

v(x)− v̄(x) = β
∫ 1

0
(v(y)− v̄(y))Q0(dy|x)+ R1(x)(R2(z)− R2(z̄)).

Then the equation of w(x) for x ∈ [0, θ̄ ] is derived. We similarly treat the case x ∈
(θ̄ ,1]. 	


Remark 2. In general w has discontinuity at x = θ̄ , so that β
∫ 1

0 w(y)Q0(dy|θ̄ ) �=
β w(0)+1. We give some interpretation. Let the value function be written as v(x,γ)
to explicitly indicate γ . Let the rectangle [0,1]× [γa,γb] be a region of interest in
which (x,γ) varies so that the value function defines a continuous surface. Then
(θ ,γ) starts at (θ̄ , γ̄) and traces out the curve of an increasing function along which
the expression of the value function has a switch, and the value function surface
may be visualized as two pieces glued together along the curve in a non-smooth
way. The value of w amounts to finding on the surface the directional derivative in
the direction of γ; and therefore, discontinuity may occur at x = θ̄ .

To better understand the solution of (26), we consider the general equation

W (x) =

⎧⎨⎩β
∫ 1

0
W (y)Q0(dy|x)+ R1(x)R′

2(z0)c0, 0 ≤ x ≤ θ0,

βW (0)+ R1(x)R′
2(z0)c0 + 1, θ0 < x ≤ 1,

(27)

where c0, z0 ∈ [0,1] and θ0 ∈ (0,1) are arbitrarily chosen and fixed. Let B([0,1],R)
be the Banach space of bounded Borel measurable functions with norm ‖g‖ =
supx |g(x)|. By a contraction mapping, we can show (27) has a unique solution
W ∈ B([0,1],R).

We continue to characterize the sensitivity θγ of the threshold. Recall the partial

derivative ∂q(y|x)
∂x .

Lemma 7. We have

β
[∫ 1

θ̄
v̄(y)

∂q(y|θ̄ )
∂x

dy − v̄(θ̄ )q(θ̄ |θ̄ )
]
θγ = 1 + β w(0)− β

∫ 1

θ̄
w(y)Q0(dy|θ̄ ).

(28)

Proof. Write γ = γ̄ + ε . By the property of the threshold, we have

β
∫ 1

θ̄
v̄(y)Q0(dy|θ̄ ) = β v̄(0)+ γ̄, β

∫ 1

θ
v(y)Q0(dy|θ ) = β v(0)+ γ̄ + ε.
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Note that θ > θ̄ . We check

Δ :=
∫ 1

θ
v(y)Q0(dy|θ )−

∫ 1

θ̄
v̄(y)Q0(dy|θ̄)

=
∫ 1

θ
v(y)Q0(dy|θ )−

∫ 1

θ
v̄(y)Q0(dy|θ̄)−

∫ θ

θ̄
v̄(y)Q0(dy|θ̄ )

=
∫ 1

θ
v(y)Q0(dy|θ )−

∫ 1

θ
v̄(y)Q0(dy|θ )

+
∫ 1

θ
v̄(y)Q0(dy|θ )−

∫ 1

θ
v̄(y)Q0(dy|θ̄ )−

∫ θ

θ̄
v̄(y)Q0(dy|θ̄ )

=ε
∫ 1

θ
w(y)q(y|θ )dy +(θ − θ̄)

∫ 1

θ
v̄(y)[∂q(y|θ )/∂x]dy − (θ − θ̄)v̄(θ̄ )q(θ̄ |θ̄ )

+ o(ε + |θ − θ̄ |)

=ε
∫ 1

θ̄
w(y)q(y|θ̄ )dy +(θ − θ̄)

∫ 1

θ̄
v̄(y)[∂q(y|θ̄ )/∂x]dy − (θ − θ̄)v̄(θ̄ )q(θ̄ |θ̄ )

+ o(ε + |θ − θ̄ |).

Note that
β Δ = β [v(0)− v̄(0)]+ ε.

We derive

β
∫ 1

θ̄
w(y)Q0(dy|θ̄ )+ β θγ

∫ 1

θ̄
v̄(y)

∂q(y|θ̄ )
∂x

dy − β v̄(θ̄ )q(θ̄ |θ̄)θγ = β w(0)+ 1.

This completes the proof. 	

Lemma 8. Given the threshold θ̄ ∈ (0,1), the stationary distribution μ̄ has a prob-
ability density function (p.d.f.) p(x) on (0,1], and μ̄({0}) = π0, where (p,π0) is
determined by

π0 =
∫ 1

θ̄
p(x)dx, (29)

p(x) =

⎧⎪⎨⎪⎩
∫ x

0
q(x|y)p(y)dy + π0q(x|0), 0 ≤ x < θ̄ ,∫ θ̄

0
q(x|y)p(y)dy + π0q(x|0), θ̄ ≤ x ≤ 1.

(30)

Proof. Let δ0 be the dirac measure at x = 0. For any Borel subset B ⊂ [0,1], we have
μ̄(B) =

∫ 1
0 [Q0(B|y)1(y<θ̄) +δ0(B)1(y≥θ̄)]μ̄(dy). Then it can be checked that (p,π0)

satisfying the above equations determines the stationary distribution. Now we show
there exists a unique solution. Let π0 > 0 be a constant to be determined. Consider
the Volterra integral equation

p(x) =
∫ x

0
q(x|y)p(y)dy + π0q(x|0), 0 ≤ x ≤ θ̄ , (31)
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and we obtain a unique solution p in C([0, θ̄ ],R) (see e.g. [36, p.33]). In fact p is a

nonnegative function with
∫ θ̄

0 p(x)dx > 0. Subsequently, we further determine p ≥ 0
on [θ̄ ,1] by (30). The solution p on [0,1] depends linearly on π0 and so there exists
a unique π0 such that

∫ 1
0 p(x)dx + π0 = 1. After we uniquely solve p for (30), we

integrate both sides of this equation on [0,1] and obtain
∫ 1

0 p(x)dx =
∫ θ̄

0 p(x)dx+π0,
which implies that (29) is satisfied. 	


5.1 Special Case

Now we suppose Q0(dy|x) has uniform distribution on [x,1] for all fixed 0 ≤ x < 1,
and R(x,z) = R1(x)R2(z) = x(c + z), where R1(x) = x, R2(z) = c + z and c > 0. In
this case, (A2)-(A6) are satisfied. For (21), we have

v̄(x) =

⎧⎨⎩
β

1 − x

∫ 1

x
v̄(y)dy + R1(x)R2(z̄), 0 ≤ x ≤ θ̄ ,

β v̄(0)+ R1(x)R2(z̄)+ γ̄, θ̄ ≤ x ≤ 1.
(32)

Denote ϕ(x) =
∫ 1

x v̄(y)dy. Then

ϕ̇(x) = − β
1 − x

ϕ − R1(x)R2(z̄), 0 ≤ x ≤ θ̄ .

Taking the initial condition ϕ(0), we have

ϕ(x) = ϕ(0)(1 − x)β − (1 − x)β
∫ x

0

R1(τ)R2(z̄)
(1 − τ)β dτ.

On [0, θ̄ ],

v̄(x) = (1 − x)β−1v̄(0)− β (1 − x)β−1
∫ x

0

R1(τ)R2(z̄)
(1 − τ)β dτ + R1(x)R2(z̄)

= (1 − x)β−1
[
v̄(0)− β (c + z̄)

(1 − β )(2 − β )

]
+(c + z̄)

[ β
(1 − β )(2 − β )

+
2x

2 − β

]
.

By the continuity of v̄ and its form on [θ̄ ,1], we have

v̄(θ̄ ) = β v̄(0)+ θ̄(z̄+ c)+ γ̄. (33)

Hence,

[(1 − θ̄)β−1 − β ]v̄(0) =
β (c + z̄)[(1 − θ̄)β−1 − 1]

(1 − β )(2 − β )
− β (c + z̄)θ̄

2 − β
+ γ̄. (34)

On the other hand, since v̄ is increasing and θ̄ is the threshold, we have
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v̄(θ̄ ) = β
∫ 1

θ̄
[β v̄(0)+ (c + z)y + γ̄]

1

1 − θ̄
dy +(c + z̄)θ̄

= β 2v̄(0)+ β γ̄ +
β (c + z̄)

2
+(

β
2

+ 1)(c + z̄)θ̄ ,

which combined with (33) gives

β
2

(c + z̄)(1 + θ̄) = (β v̄(0)+ γ̄)(1 − β ). (35)

Given the special form of Q0(dy|x), (26) becomes

w(x) =

⎧⎨⎩
β

1 − x

∫ 1

x
w(y)dy + R1(x)R′

2(z̄)zγ , 0 ≤ x ≤ θ̄ ,

β w(0)+ R1(x)R′
2(z̄)zγ + 1, θ̄ < x ≤ 1.

(36)

The computation of w now reduces to uniquely solving w(0). By the expression of
w on [0, θ̄ ], we have

w(θ̄ ) = β
∫ 1

θ̄
w(y)Q0(dy|θ̄)+ R1(θ̄ )R′

2(z̄)zγ

= β 2w(0)+ β + R1(θ̄ )R′
2(z̄)zγ +

β R′
2(z̄)zγ

1 − θ̄

∫ 1

θ̄
R1(y)dy

= β 2w(0)+ β + θ̄zγ + β zγ
1 + θ̄

2
. (37)

For x ∈ [0, θ̄ ], we further write

w(x) =
β

1 − x

∫ 1

x
w(y)dy + R1(x)R′

2(z̄)zγ ,

and solve

w(x) = (1 − x)β−1w(0)+ zγx − β zγ

[ (1 − x)β−1

(1 − β )(2 − β )
− 1

1 − β
+

1 − x
2 − β

]
,

which further gives

w(θ̄ ) = (1 − θ̄)β−1w(0)+ zγ θ̄ − β zγ

[ (1 − θ̄)β−1

(1 − β )(2 − β )
− 1

1 − β
+

1 − θ̄
2 − β

]
. (38)

By (37)–(38), we have

[β −1(1 − θ̄)β−1 − β ]w(0) = 1 + zγ

(1 + θ̄
2

+
(1 − θ̄)β−1

(1 − β )(2 − β )
+

1 − θ̄
2 − β

− 1
1 − β

)
.

(39)

Now from (30) we have
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p(x) =

⎧⎪⎪⎨⎪⎪⎩
∫ x

0

1
1 − y

p(y)dy + π0, 0 ≤ x < θ̄ ,∫ θ̄

0

1
1 − y

p(y)dy + π0, θ̄ ≤ x ≤ 1,

which determines

p(x) =

⎧⎨⎩
π0

1 − x
, 0 ≤ x < θ̄ ,

π0

1 − θ̄
, θ̄ ≤ x ≤ 1,

where π0 = 1
2−ln(1−θ̄) . We determine the mean field

z̄ =
∫ θ̄

0
xp(x)dx +

∫ 1

θ̄
xp(x)dx = π0

(1 − θ̄
2

− ln(1 − θ̄)
)
. (40)

We further obtain dz
dγ at γ̄ as

zγ =
ln(1 − θ̄)− 3 + 4

1−θ̄
2[2 − ln(1 − θ̄)]2

θγ . (41)

We note that a perturbation analysis directly based on the general case (30) is more
complicated.

Now (28) reduces to[ β
1 − θ̄

∫ 1

θ̄

v̄(y)
1 − θ̄

dy − β v̄(θ̄ )
1 − θ̄

]
θγ = 1 + β w(0)− β

∫ 1

θ̄

w(y)
1 − θ̄

dy.

By the expression of v̄ in (32) and w in (36) at θ = θ̄ , we obtain

(1 − β )v̄(θ̄ )− θ̄(c + z̄)
1 − θ̄

θγ = 1 + β w(0)− w(θ̄)+ θ̄zγ .

Recalling (33) and (37), we have

(1 − β )[β v̄(0)+ γ̄]− β θ̄(z̄+ c)
1 − θ̄

θγ − β (1 − β )w(0)+
1 + θ̄

2
β zγ = 1 − β . (42)

By combining (34), (35) and (40), we have

v̄(0) = [(1 − θ̄)β−1 − β ]−1
[β (c + z̄)[(1 − θ̄)β−1 − 1]

(1 − β )(2 − β )
− β (c + z̄)θ̄

2 − β
+ γ̄
]
, (43)

θ̄ =
2(1 − β )(β v̄(0)+ γ̄)

β (c + z̄)
− 1, (44)

z̄ =
1

2 − ln(1 − θ̄)

(1 − θ̄
2

− ln(1 − θ̄)
)
. (45)
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Fig. 1 Value function v and perturbation function w

Next, combining (39), (41) and (42), we obtain

(1 − β )[β v̄(0)+ γ̄]− β θ̄(z̄+ c)
1 − θ̄

θγ − β (1 − β )w(0)+
1 + θ̄

2
β zγ = 1 − β , (46)

[β −1(1 − θ̄)β−1 − β ]w(0) = 1 + zγ

(1 + θ̄
2

+
(1 − θ̄)β−1

(1 − β )(2 − β )
+

1 − θ̄
2 − β

− 1
1 − β

)
,

(47)

zγ =
ln(1 − θ̄)− 3 + 4

1−θ̄
2[2 − ln(1 − θ̄)]2

θγ . (48)

After (v̄(0), z̄, θ̄ ) has been determined from (43)-(45), the above gives a linear equa-
tion system with unknowns w(0), θγ and zγ .

Example 2. We take R1(x) = x and R2(z) = 0.5 + z, γ̄ = 0.5. We numerically solve
(43)-(45) to obtain v̄(0) = 3.497854, θ̄ = 0.485162, z̄ = 0.345854, and (46)-(48)
to obtain w(0) = 4.563055, θγ = 1.162861, zγ = 0.336380. The curves of v(x) and
w(x) are displayed in Fig. 1, where w has a discontinuity at x = θ̄ as discussed
in Remark 2. The positive value of θγ implies the threshold increases with γ , as
asserted in Theorem 3.

6 Conclusion

This paper considers mean field games in a framework of binary Markov decision
processes (MDP) and establishes existence and uniqueness of stationary equilib-
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ria. The resulting policy has a threshold structure. We further analyze comparative
statics to address the impact of parameter variations in the model.

For future research, there are some potentially interesting extensions. One may
consider a heterogenous population and study the emergence of free-riders who
care more about their own effort costs and have less incentive to contribute to the
common benefit of the population. Another modelling of a quite different nature
involves negative externalities where other players’ improvement brings more pres-
sure on the player in question. For instance, this arises in competitions for market
share. The modelling and analysis of the agent behavior will be of interest.

Appendix A: Preliminaries on Ergodicity

Assume (A3). The next two lemmas determine the limiting distribution of the state
process under threshold policies.

Lemma A.1. i) If θ = 0, then the distribution of xi
t remains to be the dirac measure

δ0 for all t ≥ 1, for any xi
0.

ii) If θ = 1 or θ = 1+, the distribution of xi
t converges to the dirac measure δ1

weakly.

Proof. Part i) is obvious and part ii) follows from (A3). 	


Let xi,θ
t denote the state process generated by the θ -threshold policy with θ ∈

(0,1), and let Pt
θ (x, ·) be the distribution of xi,θ

t given xi,θ
0 = x.

Lemma A.2. For θ ∈ (0,1), {xi,θ
t ,t ≥ 0} is uniformly ergodic with stationary prob-

ability distribution πθ , i.e.,

sup
x∈S

‖Pt
θ (x, ·)− πθ‖TV ≤ Krt , (A.1)

for some constants K > 0 and r ∈ (0,1), where ‖ ·‖TV is the total variation norm of
signed measures.

Proof. The proof is similar to that of the ergodicity theorem in [27], which assumed
(A3′). We use (A3)-iii) to estimate r. 	


We take Cs = {0} as a small set and θ ∈ (0,1). The θ -threshold policy gives

P(xi,θ
2 = 0|xi,θ

0 = 0) ≥
∫ 1

θ
q(y|0)dy =: ε0. (A.2)

So for any Borel set B, P(xi,θ
2 ∈ B|xi,θ

0 = 0)≥ ε0δ0(B), where δ0 is the dirac measure.
For θ ′ in a small neighborhood of θ , we can ensure that the θ ′-threshold policy gives

P(xi,θ ′
2 ∈ B|xi,θ ′

0 = 0) ≥ ε0

2
δ0(B). (A.3)
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Lemma A.3. Suppose θ ,θ ′ ∈ (0,1) for two threshold policies. Let the correspond-
ing stationary distributions of the state process by π and π ′. Then

lim
θ ′→θ

‖π ′ − π‖TV = 0.

Proof. Fix θ ∈ (0,1). By (A.3) and [41], there exist a neighborhood I0 = (θ −
κ0,θ + κ0) ⊂ (0,1) and two constants C, r ∈ (0,1) such that for all θ ′ ∈ I0,

‖Pt
θ (x, ·)− π‖TV ≤ Crt , ‖Pt

θ ′(x, ·)− π ′‖TV ≤ Crt , ∀x ∈ [0,1].

Subsequently,

‖π ′ − π‖TV ≤ ‖Pt
θ ′(0, ·)− Pt

θ(0, ·)‖TV + 2Crt.

For any given ε > 0, fix a large k0 such that 2Crk0 ≤ ε/2. We show for all θ ′ suffi-
ciently close to θ ,

‖Pk0
θ ′ (0, ·)− Pk0

θ (0, ·)‖TV ≤ ε/2.

Given two probability measures μt , μ ′
t , define the probability measures μt+1 and

μ ′
t+1,

μt+1(B) =
∫

S
Pθ (y,B)μt (dy), μ ′

t+1(B) =
∫

S
Pθ ′(y,B)μ ′

t (dy),

for Borel set B ⊂ [0,1]. Then

|μt+1(B)− μ ′
t+1(B)| ≤ |

∫
S

Pθ (y,B)μt(dy)−
∫

S
Pθ ′(y,B)μt(dy)|

+ |
∫

S
Pθ ′(y,B)μt(dy)−

∫
S

Pθ ′(y,B)μ ′
t (dy)|

=: D1 + D2.

We have

D2 =
∣∣∣∫

S
Pθ ′(y,B)μt (dy)−

∫
S

Pθ ′(y,B)μ ′
t (dy)

∣∣∣≤ 2‖μt − μ ′
t ‖TV.

Denote θ = min{θ ,θ ′} and θ = max{θ ,θ ′}. Then

D1 =
∣∣∣−∫

[θ ,θ)
Q0(B|y)μt(dy)+ 1B(0)μt([θ ,θ ))

∣∣∣≤ μt([θ ,θ )).

Setting μ0 = μ ′
0 = δ0, then μt = Pt

θ (0, ·), μ ′
t = Pt

θ ′(0, ·). Hence,

|Pt+1
θ ′ (0,B)− Pt+1

θ (0,B)| ≤ 2‖Pt
θ ′(0, ·)− Pt

θ(0, ·)‖TV + Pt
θ (0, [θ ,θ )), (A.4)

which implies

‖Pt+1
θ ′ (0, ·)− Pt+1

θ (0, ·)‖TV ≤ 4‖Pt
θ ′(0, ·)− Pt

θ (0, ·)‖TV + 2Pt
θ(0, [θ ,θ ′)). (A.5)
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For μ0 = μ ′
0 = δ0, we have P1

θ (0, ·) = P1
θ ′(0, ·). It is clear from (A.5) and Lemma 4

that for each t ≥ 1,

lim
θ ′→θ

‖Pt
θ ′(0, ·)− Pt

θ (0, ·)‖TV = 0, lim
θ ′→θ

Pt
θ (0, [θ ,θ )) = 0.

Therefore, for the fixed k0, there exists δ > 0 such that for all θ ′ satisfying |θ ′−θ | <
δ , ‖Pk0

θ ′ (0, ·)− Pk0
θ (0, ·)‖TV < ε

2 and ‖π ′ − π‖TV ≤ ε . The lemma follows. 	


Appendix B: Cycle Average of A Regenerative Process

Let 0 < r < r′ < 1. Consider a Markov process {Yt , t ≥ 0} with state space [0,1]
and transition kernel QY (·|y) which satisfies QY ([y,1]|y) = 1 for any y ∈ [0,1] and is
stochastically increasing. Suppose Y0 ≡ y0 < r. Define the stopping times

τ = inf{t|Yt ≥ r}, τ ′ = inf{t|Yt ≥ r′}.

Lemma B.1. If Eτ < ∞, then E ∑τ
t=0 Yt < ∞ and

E ∑τ
t=0 Yt

1 + Eτ
=

EY0 + EY1 + ∑∞
k=1 E(Yk+11{Yk<r})

2 + ∑∞
k=1 P(Yk < r)

. (B.1)

Proof. Since 0 ≤Yt ≤ 1 w.p. 1, E ∑τ
t=0 Yt ≤ 1+Eτ . It is clear that {τ ≥ k} = {Yk−1 <

r} for k ≥ 1. We have

Eτ =
∞

∑
k=1

P(τ ≥ k) = 1 +
∞

∑
k=1

P(Yk < r), (B.2)

and

E
τ

∑
t=0

Yt = E
∞

∑
k=1

(
k

∑
t=0

Yt

)
1{τ=k}

= EY0 + EY1 +
∞

∑
k=2

E(Yk1{τ≥k})

= EY0 + EY1 +
∞

∑
k=1

E(Yk+11{Yk<r}).

The lemma follows. 	

Lemma B.2. Assume Eτ ′ < ∞. We have

E ∑τ
t=0 Yt

1 + Eτ
≤ E ∑τ ′

t=0 Yt

1 + Eτ ′ . (B.3)

Proof. Eτ < ∞ since τ ≤ τ ′ w.p.1. For k ≥ 1, denote
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pk = P(Yk < r), ηk = P(r ≤ Yk < r′),
mk = E(Yk+11{Yk<r}), Δk = E(Yk+11{r≤Yk<r′}).

By Lemma B.1,

E ∑τ
t=0 Yt

1 + Eτ
=

EY0 + EY1 + ∑∞
k=1 mk

2 + ∑∞
k=1 pk

,

E ∑τ ′
t=0 Yt

1 + Eτ ′ =
EY0 + EY1 + ∑∞

k=1(mk + Δk)
2 + ∑∞

k=1(pk + ηk)
.

So (B.3) is equivalent to

(EY0 + EY1 +
∞

∑
k=1

mk)(
∞

∑
k=1

ηk) ≤ (
∞

∑
k=1

Δk)(2 +
∞

∑
k=1

pk). (B.4)

By the stochastic monotonicity of QY , we have

E[Yk+11{Yk<r}|Yk] = 1{Yk<r}
∫ 1

0
yQY (dy|Yk)

≤ 1{Yk<r}
∫ 1

0
yQY (dy|r) =: cr1{Yk<r}.

Note that

cr =
∫

y≥r
yQY (dy|r) ≥ r. (B.5)

Moreover,

E[Yk+11{r≤Yk<r′}|Yk] = 1{r≤Yk<r′}
∫ 1

0
yQY (dy|Yk)

≥ cr1{r≤Yk<r′}.

It follows that

mk = E[Yk+11{Yk<r}] ≤ cr pk, Δk = E[Yk+11{r≤Yk<r′}] ≥ crηk. (B.6)

Since Y0 = y0 < r,

E[Y1|Y0] =
∫ 1

0
yQY (dy|Y0) ≤ cr.

Hence, E(Y0 +Y1) ≤ r + cr. By (B.6) and (B.5),
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(EY0 + EY1 +
∞

∑
k=1

mk)(
∞

∑
k=1

ηk)− (
∞

∑
k=1

Δk)(2 +
∞

∑
k=1

pk)

≤(r + cr + cr

∞

∑
k=1

pk)(
∞

∑
k=1

ηk)− cr(
∞

∑
k=1

ηk)(2 +
∞

∑
k=1

pk)

=(r − cr)
∞

∑
k=1

ηk ≤ 0,

which establishes (B.4). 	

Remark B.1. If for each y ∈ [0,1), QY (dx|y) has probability density function qY (x|y)>
0 for x ∈ (y,1), then cr > r and ηk > 0 for all k ≥ 1. In this case, a strict inequality
holds for (B.3). 	


Appendix C

We assume (A3). Let {xi,θ
t ,t ≥ 0} be the Markov chain generated by a θ -threshold

policy with 0 < θ < 1, where xi,θ
0 is given. By Lemma A.2, {xi,θ

t ,t ≥ 0} is ergodic.
We next define an auxiliary Markov chain {Yt ,t ≥ 0} with Y0 = 0 and the same
transition kernel as xi,θ

t . Denote St = ∑t
i=0 Yi for t ≥ 0. Define τ = inf{t|Yt ≥ θ}.

Lemma C.1. We have

lim
k→∞

1
k

k−1

∑
t=0

Yt =
ESτ

1 + Eτ
w.p.1. (C.1)

Proof. By (A3), we can show Eτ < ∞. Since {Yt , t ≥ 0} has the same transition
probability kernel as {xi,θ

t ,t ≥ 0}, it is ergodic, and therefore the left hand side of
(C.1) has a constant limit w.p.1. Define T0 = 0 and Tn as the time for {Yt ,t ≥ 0} to
return to state 0 for the nth time. So T1 = τ +1. Define Bn = ∑Tn−1

t=Tn−1
Yt for n ≥ 1. We

observe that {Yt ,t ≥ 0} is a regenerative process (see e.g. [6, 51] and [7, Theorem
4]) with regeneration times {Tn,n ≥ 1} and that {Bn,n ≥ 1} is a sequence of i.i.d.
random variables. Note that B1 = Sτ is the sum of τ +1 terms. By the strong law of
large numbers for regenerative processes [6, pp. 177], the lemma follows. 	


Suppose 0 < θ < θ ′ < 1. Then there exist two constants Cθ ,Cθ ′ such that

lim
k→∞

1
k

k−1

∑
t=0

xi,θ
t = Cθ , lim

k→∞

1
k

k−1

∑
t=0

xi,θ ′
t = Cθ ′ , w.p.1.

Lemma C.2. We have Cθ ≤ Cθ ′ .

Proof. Due to the ergodicity of the Markov chain, Cθ (resp., Cθ ′ ) does not depend

on xi,θ
0 (resp., xi,θ ′

0 ). Therefore, limk→∞
1
k ∑k−1

t=0 Yt = Cθ w.p.1. The lemma follows
from Lemmas C.1 and B.2. 	
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Appendix D: An Auxiliary MDP

Assume (A3). This appendix introduces an auxiliary control problem to show the
effect of the effort cost on the threshold parameter of the optimal policy. The state
and control processes {(xi

t ,a
i
t),t ≥ 0} are specified by (1)-(2). The cost has the form

Jr
i = E

∞

∑
t=0

ρ t(R1(xi
t)+ r1{ai

t=a1}
)
, (D.1)

where R1 is continuous and strictly increasing on [0,1] and ρ ∈ (0,1), r ∈ (0,∞).
Let r take two different values 0 < γ1 < γ2 and write the corresponding dynamic
programming equation

vl(x) = min

{
ρ
∫ 1

0
vl(y)Q0(dy|x)+ R1(x), ρvl(0)+ R1(x)+ γl

}
, l = 1,2, x ∈ S.

(D.2)

By the method in proving Lemma 1, it can be shown that there exists a unique
solution vl ∈ C([0,1],R) and that the optimal policy ai,l(x) is a threshold policy. If
ρ
∫ 1

0 vl(y)Q0(dy|1) < ρvl(0)+γl, ai,l(x) ≡ a0, and we follow the notation in Section
3 to denote the threshold θl = 1+. Otherwise, ai,l(x) is a θl-threshold policy with
θl ∈ [0,1], i.e., ai,l(x) = a1 if x ≥ θl , and ai,l(x) = a0 if x < θl .

Lemma D.1. If θ1 ∈ (0,1), θ2 �= θ1.

Proof. We prove by contradiction. Suppose for some θ ∈ (0,1),

θ1 = θ2 = θ . (D.3)

Under (D.3), the resulting optimal policy leads to the representation (see e.g. [23,
pp. 22])

vl(x) = E
∞

∑
t=0

ρ t
[
R1(xi

t)+ γl1{ai
t=a1}

]
, l = 1,2,

where {xi
t ,t ≥ 0} is generated by the θ -threshold policy ai

t(x
i
t) and xi

0 = x. Denote
δ21 = γ2 − γ1.

For fixed x ≥ θ and xi
0 = x, denote the resulting optimal state and control pro-

cesses by {(x̂i
t , â

i
t),t ≥ 0}. Then âi

0 = a1 w.p.1., and

v2(x)− v1(x) = δ21 + δ21E
∞

∑
t=1

ρ t1{âi
t=a1}, x ≥ θ .

Next consider xi
0 = 0 and denote the optimal state and control processes by

{(x̌i
t , ǎ

i
t),t ≥ 0}. Then

v2(0)− v1(0) = δ21E
∞

∑
t=0

ρ t1{ǎi
t=a1} =: Δ .



Binary Mean Field Stochastic Games: Stationary Equilibria and Comparative Statics 307

It is clear that x̂i
1 = 0 w.p.1. By the optimality principle, {(x̂i

t , â
i
t),t ≥ 1} may be

interpreted as the optimal state and control processes of the MDP with initial state 0
at t = 1. Hence the two processes {(x̂i

t , â
i
t),t ≥ 1} and {(x̌i

t , ǎ
i
t), t ≥ 0}, where x̌i

0 = 0,
have the same finite dimensional distributions. In particular, âi

t+1 and ǎi
t have the

same distribution for t ≥ 0. Therefore,

E
∞

∑
t=1

ρ t−11{âi
t=a1} = E

∞

∑
t=0

ρ t1{ǎi
t=a1}.

It follows that

v2(x)− v1(x) = δ21 + ρΔ , ∀x ≥ θ . (D.4)

Combining (D.2) and (D.3) gives

ρ
∫ 1

0
vl(y)Q0(dy|θ ) = ρvl(0)+ γl, l = 1,2,

which implies

ρ
∫ 1

0
[v2(x)− v1(x)]Q0(dx|θ ) = δ21 + ρΔ . (D.5)

By Q0([0,θ )|θ ) = 0 and (D.4), (D.5) further yields ρ(δ21 +ρΔ) = δ21 +ρΔ , which
is impossible since 0 < ρ < 1 and δ21 + ρΔ > 0. Therefore, (D.3) does not hold.
This completes the proof. 	


For the MDP with cost (D.1), we continue to analyze the dynamic programming
equation

vr(x) = min
[
ρ
∫ 1

0
vr(y)Q0(dy|x)+ R1(x), ρvr(0)+ R1(x)+ r

]
. (D.6)

For each fixed r ∈ (0,∞), we obtain the optimal policy as a threshold policy with
threshold parameter θ (r). By evaluating the cost (D.1) associated with the two poli-
cies ai

t(x
i
t) ≡ a0 and ai

t(x
i
t) ≡ a1, respectively, we have the prior estimate

vr(x) ≤ min

{
R1(1)
1 − ρ

, R1(x)+
r + ρR1(0)

1 − ρ

}
. (D.7)

On the other hand, let {xi
t ,t ≥ 0} with xi

0 = x be generated by any fixed Markov
policy. Then

E
∞

∑
t=0

ρ t(R1(xi
t)+ r1{ai

t=a1}) ≥ R1(x)+
∞

∑
t=1

ρ tR1(0),

which implies
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vr(x) ≥ R1(x)+
ρR1(0)
1 − ρ

. (D.8)

If r > ρR1(1)
1−ρ , it follows from (D.7) that

ρ
∫ 1

0
vr(y)Q0(dy|x) < ρvr(0)+ r, ∀x, (D.9)

i.e., θ (r) = 1+.

Lemma D.2. There exists δ > 0 such that for all 0 < r < δ ,

ρ
∫ 1

0
vr(y)Q0(dy|x) > ρvr(0)+ r, ∀x, (D.10)

and so θ (r) = 0.

Proof. By (D.8),

ρ
∫ 1

0
vr(y)Q0(dy|x) ≥ ρ

∫ 1

0
R1(y)Q0(dy|x)+

ρ2R1(0)
1 − ρ

≥ ρ
∫ 1

0
R1(y)Q0(dy|0)+

ρ2R1(0)
1 − ρ

,

and (D.7) gives

ρvr(0)+ r ≤ ρR1(0)
1 − ρ

+
r

1 − ρ
.

Since R1(x) is strictly increasing,

CR1 :=
∫ 1

0
R1(y)Q0(dy|0)− R1(0) > 0.

And we have

ρ
∫ 1

0
vr(y)Q0(dy|x)− (ρvr(0)+ r) ≥ ρCR1 − r

1 − ρ
.

It suffices to take δ = ρ(1 − ρ)CR1. 	

Define the nonempty sets

Ra0 = {r > 0|(D.9) hods}, Ra1 = {r > 0|(D.10) holds}.

Remark D.1. We have (ρR1(1)
1−ρ ,∞) ⊂ Ra0 and (0,δ ) ⊂ Ra1 .

Lemma D.3. Let (r,vr) be the parameter and the associated solution in (D.6).
i) If r > 0 satisfies
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ρ
∫ 1

0
vr(y)Q0(dy|x) ≤ ρvr(0)+ r, ∀x, (D.11)

then any r′ > r is in Ra0 .
ii) If r > 0 satisfies

ρ
∫ 1

0
vr(y)Q0(dy|x) ≥ ρvr(0)+ r, ∀x, (D.12)

then any r′ ∈ (0,r) is in Ra1 .

Proof. i) For r′ > r, vr′ is uniquely solved from (D.6) with r′ in place of r. We can
use (D.11) to verify

vr(x) = min

[
ρ
∫ 1

0
vr(y)Q0(dy|x)+ R1(x), ρvr(0)+ R1(x)+ r′

]
.

Hence vr′ = vr for all x ∈ [0,1]. It follows that ρ
∫ 1

0 vr′(y)Q0(dy|x) < ρvr′(0)+ r′ for
all x. Hence r′ ∈ Ra0 .

ii) By (D.6) and (D.12), vr(0) = R1(0)+r
1−ρ , and subsequently,

vr(x) = ρvr(0)+ R1(x)+ r =
ρR1(0)+ r

1 − ρ
+ R1(x).

By substituting vr(0) and vr(x) into (D.12), we obtain

ρR1(0)+ r ≤ ρ
∫ 1

0
R1(y)Q0(dy|x), ∀x. (D.13)

Now for 0 < r′ < r, we construct vr′(x), as a candidate solution to (D.6) with r
replaced by r′, to satisfy

vr′(0) = ρvr′(0)+ R1(0)+ r′, vr′(x) = ρvr′(0)+ R1(x)+ r′, (D.14)

which gives

vr′(x) =
ρR1(0)+ r′

1 − ρ
+ R1(x). (D.15)

We show that vr′(x) in (D.15) satisfies

ρvr′(0)+ r′ < ρ
∫ 1

0
vr′(y)Q0(dy|x), ∀x, (D.16)

which is equivalent to ρR1(0) + r′ < ρ
∫ 1

0 R1(y)Q0(dy|x) for all x, which in turn
follows from (D.13). By (D.14) and (D.16), vr′ indeed satisfies (D.6) with r replaced
by r′. So r′ ∈ Ra1 . 	


Further define
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r = supRa1 , r = infRa0 .

Lemma D.4. i) r satisfies ρ
∫ 1

0 vr(y)Q0(dy|0) = ρvr(0)+ r, and θ (r) = 0.
ii) r satisfies ρ

∫ 1
0 vr(y)Q0(dy|1) = ρvr(1) = ρvr(0)+ r, and θ (r) = 1.

iii) We have 0 < r < r < ∞.
iv) The threshold θ (r) as a function of r ∈ (0,∞) is continuous and strictly in-

creasing on [r,r].

Proof. i)-ii) By Lemmas D.2 and D.3, we have 0 < r ≤ ∞ and 0 ≤ r < ∞. Assume
r = ∞; then Ra1 = (0,∞) giving Ra0 = /0, a contradiction. So 0 < r < ∞. For δ > 0
in Lemma D.2, we have (0,δ ) ⊂ Ra1 . Therefore, 0 < r̄ < ∞. Note that vr depends
on the parameter r continuously, i.e., lim|r′−r|→0 supx |vr′(x)− vr(x)| = 0. Hence

ρ
∫ 1

0
vr(y)Q0(dy|0) ≥ ρvr(0)+ r.

Now assume

ρ
∫ 1

0
vr(y)Q0(dy|0) > ρvr(0)+ r. (D.17)

Then there exists a sufficiently small ε > 0 such that (D.17) still holds when (r +
ε,vr+ε) replaces (r,vr); since g(x) =

∫ 1
0 vr+ε(y)Q0(dy|x) is increasing in x, then

r +ε ∈ Ra1 , which is impossible. Hence (D.17) does not hold, and this proves i). ii)
can be shown in a similar manner.

To show iii), assume

0 < r < r < ∞. (D.18)

Then, recalling Remark D.1, there exist r′ ∈ Ra0 and r′′ ∈ Ra1 such that

0 < r < r′ < r′′ < r < ∞.

By Lemma D.3-i), r′′ ∈ Ra0 , and then r′′ ∈ Ra0 ∩Ra1 = /0, which is impossible.
Therefore, (D.18) does not hold and we conclude 0 < r ≤ r < ∞. We further assume
r = r. Then i)-ii) would imply

∫ 1
0 vr(y)Q0(dy|0) = vr(1), which is impossible since

vr is strictly increasing on [0,1] and (A3) holds. This proves iii).
iv) By the definition of r and r, it can be shown using (D.6) that θ (r) ∈ (0,1) for

r ∈ (r,r). By the continuous dependence of the function vr(·) on r and the method of
proving [27, Lemma 10], we can show the continuity of θ (r) on (0,1), and further
show limr→r+ θ (r) = 0 and limr→r− θ (r) = 1. So θ (r) is continuous on [r,r]. If θ (r)
were not strictly increasing on [r,r], there would exist r < r1 < r2 < r such that

θ (r1) ≥ θ (r2). (D.19)

If θ (r1) > θ (r2) in (D.19), by the continuity of θ (r), θ (r) = 0, θ (r) = 1, and the
intermediate value theorem we may find r′ ∈ (r,r1) such that θ (r′

1) = θ (r2). Next,
we replace r1 by r′

1. Thus if θ (r) is not strictly increasing, we may find r1 < r2 from
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(r,r) such that θ (r1) = θ (r2) ∈ (0,1), which is a contradiction to Lemma D.1. This
proves iv). 	

Remark D.2. By Lemmas D.3 and D.4, Ra1 = (0,r) and Ra0 = (r,∞).
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Equivalence of Fluid Models for Gt/GI/N +GI
Queues

Weining Kang and Guodong Pang

Abstract Three different fluid model formulations have been recently developed
for Gt/GI/N +GI queues, including a two-parameter fluid model in Whitt (2006)
by tracking elapsed service and patience times of each customer, a measure-valued
fluid model in Kang and Ramanan (2010) and its extension in Zuñiga (2014) by
tracking elapsed service and patience times of each customer, and a measure-valued
fluid model in Zhang (2013) by tracking residual service and patience times of each
customer. We show that, under general initial conditions, the first two fluid model
formulations tracking elapsed times (Whitt’s and Kang and Ramanan’s fluid models)
are equivalent and can be used to describe the same Gt/GI/N +GI queue when
the service and patience time distributions have densities, whereas, Zuñiga’s fluid
model and Zhang’s fluid model are equivalent only when the initial conditions for
the Gt/GI/N +GI queue satisfy certain assumptions. We identify these conditions
under which Zuñiga’s fluid model and Zhang’s fluid model can be derived from each
other for the same system. The equivalence properties discovered provide important
implications for the understanding of the recent development for non-Markovian
many-server queues.

1 Introduction

Many-server queueing models with abandonment have attracted substantial atten-
tion because of their appealing applications to customer contact centers and health-
care; see, e.g., [2], [3], [4], [6], and references therein. In the Gt/GI/N+GI model,
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there are N parallel servers, and customers arrive with a time-varying arrival rate,
require i.i.d. service times, and have i.i.d. patience times; the arrival process, service
and patience times are assumed to be mutually independent. The service discipline
is first-come-first-served (FCFS) and non-idling, that is, no server will idle whenever
there is a customer in queue.

Because of the difficulty in the exact analysis of such stochastic systems, fluid
models have been recently developed to approximate the system dynamics and per-
formance measures in a many-server heavy-traffic regime, where the arrival rate
and the number of servers get large and service and patience time distributions are
fixed. The conventional approach of using total number of customers in the system
to describe system dynamics is insufficient to give a complete description and study
some performance measures. Thus, measure-valued and two-parameter processes
that track elapsed or residual service and patience times of each customer have been
recently used to study these stochastic models.

Whitt [21] pioneered the use of two-parameter processes to describe the system
dynamics (Definition 1). In particular, Q(t,y) represents the number of customers in
queue at time t that have waited for less than or equal to y, and B(t,y) represents the
number of customers in service at time t that have received service for less than or
equal to y. His idea is to represent these two-parameter processes as integrals of their
densities q(t,y) and b(t,y) with respect to y (if they exist), respectively, which satisfy
two fundamental evolution equations ((2.14) and (2.15) in [21]), respectively. A
queue boundary process plays an important role in determining the real fluid queue
size: the two-parameter density function q(t,y) becomes zero for y beyond the queue
boundary at each time t. This approach is generalized to study the Gt/GI/Nt +GI
model with both time-varying arrival rates and numbers of servers [12] and [13].

Kang and Ramanan [10], following Kaspi and Ramanan [11], used two measure-
valued processes to describe the service and queueing dynamics, one tracking the
amount of time each customer has been in service, and the other tracking the amount
of time each customer has spent in a potential queue, where all customers enter the
potential queue upon arrival, and stay there until their patience times run out. The
potential queue includes customers waiting in the real queue as well as those that
have entered service or even departed but whose patience times have not run out.
They also use a frontier waiting-time process to track the waiting time of the cus-
tomer in front of the queue at each time. This frontier waiting-time process is used
to determine the real fluid queue dynamics from the measure-valued process for the
potential queue. The description of system dynamics is then completed by the bal-
ance equations for the fluid content processes associated with the queue, the service
station and the entire system, as well as the non-idling condition; see Definition 2.

We summarize these two approaches of tracking elapsed service and patience
times by stating that the two-parameter process approach in Whitt [21] describes
the system dynamics by the densities and rates, while the measure-valued process
approach in Kang and Ramanan [10] describes the system dynamics by the distri-
butions and counting processes directly. The existence and uniqueness of Whitt’s
two-parameter fluid model are shown in discrete time under the assumption that
the service and patience times have densities in [21]. They also follow, as a special
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case, from the existence and uniqueness results established in [12, 13] of the two-
parameter fluid model for Gt/GI/Nt +GI queueing model with both time-varying
arrival rates and numbers of servers under the assumptions that the system only
alternates between overloaded and underloaded regimes (with a finite number of
alternations in each finite time interval) and that the service and patience time dis-
tributions have piecewise continuous densities. The existence and uniqueness of
Kang-Ramanan’s fluid model are established in [10] via the fluid limits and more
recently in [7] via the characterization of fluid model solution directly under the as-
sumptions that the service time distribution Gs has density and the hazard rate func-
tion hr of patience times is a.e. locally bounded. Zuñiga [23] has recently extended
Kang-Ramanan’s fluid model for general service time distributions and continuous
patience time distributions.

One would expect that the two approaches are equivalent since they are different
formulations for the same Gt/GI/N+GI queue. Our first main result is to establish
this equivalence in Theorem 1: first, a set of two-parameter fluid equations derived
from the measure-valued fluid model satisfies the fluid model equations in [21] (see
Proposition 4.1), and second, a set of measure-valued fluid equations derived from
the two-parameter fluid model satisfies the fluid model equations in [10] (see Propo-
sition 4.2). The equivalence property we establish provides a proof for the conjec-
ture on the existence and uniqueness of Whitt’s two-parameter fluid model under
the assumption that the service and patience time distributions have densities (Con-
jecture 2.2 in [21]). The two-parameter process formulation depends critically on
the existence of the densities of the service and patience time distributions, since
the densities of the two-parameter processes may not exist for general service and
patience time distributions (see Remark 4).

Aa a different approach, the system dynamics of Gt/GI/N+GI queues can also
be described by tracking residual service and patience times. It was conjectured in
Section 3.3.2 of Kaspi and Ramanan [11] (in the case of no abandonment) that a
measure-valued fluid model that tracks customers’ residual service times and pa-
tience times can also be formulated in parallel to the fluid model tracking elapsed
times. One advantage of considering a fluid model tracking residual times is that it
enables us to easily analyze some performance measures, such as the system work-
load at any given time, which rely directly on the customers’ residual service times;
see, e.g., [5, 19] for infinite-server models and [11] for Gt/GI/N queues. Such a
fluid model tracking residual times, if suitably formulated, should be also equiva-
lent to the above three fluid models tracking elapsed times.

Zhang [22] provided a fluid model tracking residual times for the G/GI/N +GI
model with a constant arrival rate (Definition 4). Instead of using the potential queue
as described in the fluid models tracking elapsed times, Zhang’s model uses a vir-
tual queue to describe the queueing dynamics, where all customers enter the vir-
tual queue upon arrival and stay there until their time to enter service, which may
include customers whose patience times have run out already. The existence and
uniqueness of this fluid model are shown assuming continuous service time dis-
tribution and Lipschitz continuous patience time distributions [22]. We study the
relationship of Zhang’s fluid model with the above three fluid models, in particular,
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focusing on Zuñiga’s fluid model, and find that they are not entirely equivalent for-
mulations for the G/GI/N+GI queue under general initial conditions; see Remarks
6-8 in Section 3.3. The disparity lies in the initial conditions assumed for those fluid
models, in particular, the assumptions imposed on the initial contents in the virtual
queue and in service in Zhang’s fluid model. For example, in Kang-Ramanan and
Zuñiga’s fluid models, it is required that the residual service time of initial content
in ν0(dx) should have distribution with density gs(x+ ·)/Ḡs(x), whereas, in Zhang’s
fluid model, there is no requirement on the distribution of the residual service time
of initial content in service. We identify the set of necessary and sufficient condi-
tions on the initial contents for the equivalence of Zhang’s fluid model and the above
three fluid models (Theorems 2 and 3 and Corollary 3.1). It is important to note that
in comparison of these different fluid models, they should start with the same input
data including the initial conditions.

On the other hand, from Kang-Ramanan and Zuñiga’s fluid models, we obtain
measure-valued fluid processes tracking residual service and patience times, which,
together with the same input data as in those two fluid models, describe the service
and real queueing dynamics of the same Gt/GI/N +GI systems. These processes
tracking residual times play an important bridging role in the discussion of the non-
equivalence of Zhang’s fluid model and the fluid models tracking elapsed times.

These equivalence properties established in the paper are significant to under-
stand the fluid dynamics of the Gt/GI/N +GI model from different perspectives.
They help to unify the different approaches in the literature, and also highlight their
differences and limitations. They provide the flexibility of choosing the most conve-
nient approach among the different formulations, tracking elapsed or residual times,
and the possibility of applying results from one formulation to another. Some prop-
erties established with one approach can then be directly applied to other models by
the equivalence relationship. We illustrate this by two examples. First, an asymp-
totic periodic property is proved in [15] for the two-parameter fluid model tracking
elapsed times for the Gt/Mt/Nt +GIt queueing model, and thus, should also hold
for the associated measure-valued fluid models tracking elapsed and residual times
(in the special case of Gt/M/N +GI queues). Second, it is important to show that
for a fluid model, the fluid solutions converge uniformly to the steady state over
all possible initial states. That has been a difficult task for general non-Markovian
many-server models. Thus, the equivalence property in this paper paves the way
to show this with possibly any of the fluid models, whichever most convenient (see
[16] for some recent attempts in this direction). In addition, the equivalence property
results in an algorithm to compute two-parameter processes and relevant quantities
under the most general conditions that cannot be computed by previous methods
(see [9] and its extension in [17] to fluid models of Gt/GI/N+GI queues under the
least-patient first service discipline).

Although these equivalence properties are established for the fluid limits of the
associated fluid-scaled stochastic processes in the queueing model, it is conceiv-
able that the proofs for the convergence to these fluid limits may also be unified.
The two-parameter approach proves the convergence in the functional space DD =
D([0,∞),D([0,∞),R)) endowed with the Skorokhod J1 topology. The measure-
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valued approach proves the convergence in the measure-valued functional space
D([0,∞),M ([0,∞))) where M ([0,∞)) is the space of Radon measures on R+ en-
dowed with the Borel σ -algebra. Tracking elapsed times enables us to use martin-
gale arguments [10], but tracking residual times uses a different approach to prove
the convergence [22]. So it is interesting to ask how these different approaches to es-
tablish the convergence are related and what would be the most general assumptions
on the system primitives. We believe that these equivalence and coupling properties
are useful in the study of other non-Markovian many-server queueing systems and
networks.

Organization of the paper. The rest of the paper is organized as follows. We finish
this section with some notation. In Section 2, we first review the definitions of the
three fluid models tracking elapsed times, and then show their equivalence (Theorem
1), whose proof is given in Section 4. In Section 3, we first state and discuss the fluid
measure-valued processes tracking residual times derived from Kang-Ramanan and
Zuñiga’s fluid models in Section 3.1. We then review Zhang’s fluid model in Section
3.2 and discuss its connection with the three fluid models tracking elapsed times in
Section 3.3.

Notation. We use R and R+ to denote the spaces of real numbers and nonneg-
ative real numbers, respectively. Given any metric space S, Cb(S) is the space of
bounded, continuous real-valued functions on S. Let Cc(R+) be the space of con-
tinuous real-valued functions on R+ with compact support. Given a Radon measure
ξ on [0,H) and an interval [a,b] ⊂ [0,H), we will use ξ [a,b] to denote ξ ([a,b]).
Let Dabs

[0,∞)(M [0,H)) denote the set of measure-valued processes µ with values in

M [0,H), the space of Radon measures on [0,H), such that for any t ≥ 0, the mea-
sure

∫ t
0 µs(·)ds is absolutely continuous with respect to the Lebesgue measure on

[0,H). Let D[0,∞)(R) be the space of real-valued cádlág functions on [0,∞). For
each real-valued function f defined on [0,∞), let f+ and f− be the positive and the
negative parts of f , respectively, that is, f+(t) = f (t)∨ 0 and f−(t) = −( f (t)∧ 0)
for each t ≥ 0.

2 Fluid models tracking elapsed times

In the Gt/GI/N +GI fluid models, we let E(t) represent the cumulative amount of
fluid content (representing customers) entering the system in the time interval (0, t]
for each t > 0. Assume that E is a non-decreasing function defined on [0,∞) with
the density function λ (·)≥ 0, that is,

E(t) =
∫ t

0
λ (s)ds, t ≥ 0. (1)

Let Gs and Gr denote the service and patience time distribution functions, respec-
tively. We assume that Gs(0+) = Gr(0+) = 0. Let
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Hr .
= inf{x ∈ R+ : Gr(x) = 1}, Hs .

= inf{x ∈ R+ : Gs(x) = 1}.

Then Hr and Hs are right supports of Gr and Gs, respectively.

2.1 Whitt’s two-parameter fluid model

In this section we state a modified version of the two-parameter fluid model in Whitt
[21]. We assume that the functions Gs and Gr have density functions gs and gr

on [0,∞), respectively. Let the hazard rate functions of Gs and Gr be defined as
hr .

= gr/Ḡr on [0,Hr) and hs .
= gs/Ḡs on [0,Hs), respectively, where Ḡr = 1−Gr

and Ḡs = 1−Gs.
Let the two-parameter processes B(t,y) be the amount of fluid content in service

at time t that has been in service for less than or equal to y units of time, Q̃(t,y) be
the amount of fluid content in the potential queue at time t that has been in potential
queue for less than or equal to y units of time, which may include the fluid content
that has entered service or even departed by time t, and Q(t,y) be the portion of
Q̃(t,y) that excludes the fluid content which has entered service by time t. Then it is
obvious that B(t,∞) is the total fluid content in service and Q(t,∞) is the total fluid
content in queue waiting for service.

It is assumed that these three processes are Lebesgue integrable on [0,∞) with
densities b(t,y), q̃(t,y) and q(t,y) with respect to the second component y, that is,

B(t,y) =
∫ y

0
b(t,x)dx ≤ 1, Q̃(t,y) =

∫ y

0
q̃(t,x)dx ≥ 0, (2)

Q(t,y) =
∫ y

0
q(t,x)dx ≥ 0.

Let q̃(0,x) = q(0,x) as a function in x have support in [0,Hr) and b(0,x) as a func-
tion in x have support in [0,Hs). Note that in [21], it is not explicitly stated that the
service and patience time distributions Gs and Gr can be of finite support.

Definition 1. A pair of functions (B(t,y),Q(t,y)) is a two-parameter fluid model
tracking elapsed times with the input data (λ (·), q̃(0,x),b(0,x)) if it satisfies the
following conditions.

(i) The service density function b(t,x) satisfies

b(t + u,x+ u) = b(t,x)
Ḡs(x+ u)

Ḡs(x)
, x ∈ [0,Hs), t ≥ 0, u > 0. (3)

(ii) The potential queue density function q̃(t,x) satisfies

q̃(t + u,x+ u) = q̃(t,x)
Ḡr(x+ u)

Ḡr(x)
, x ∈ [0,Hr), t ≥ 0, u > 0. (4)
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(iii) There exists a queue boundary function w(t) such that Q̃(t,w(t)) = Q(t,∞)
and then the queue density function q(t,x) satisfies

q(t,x) =

{
q̃(t,x), x ≤ w(t),

0, x > w(t).
(5)

(iv) The density functions b(t,x), q̃(t,x) and q(t,x) satisfy the following bound-
ary properties:

b(t,0) =


λ (t), if B(t,∞)< 1,

σ(t)∧λ (t), if B(t,∞) = 1, and Q(t,∞) = 0,

σ(t), if B(t,∞) = 1, and Q(t,∞)> 0,

(6)

q̃(t,0) = λ (t), (7)

and

q(t,0) =


λ (t), if Q(t,∞)> 0 (w(t)> 0),

λ (t)− (σ(t)∧λ (t)), if B(t,∞) = 1, and Q(t,∞) = 0,

0, if B(t,∞)< 1,

(8)

where
σ(t) =

∫
[0,Hs)

b(t,x)hs(x)dx, t ≥ 0. (9)

(v) The densities λ (t), q(t,x), b(t,x) and α(t) satisfy the balance equation:∫ t

0
λ (s)ds+

∫ ∞

0
q(0,x)dx =

∫ ∞

0
q(t,x)dx+

∫ t

0
b(s,0)ds+

∫ t

0
α(s)ds, (10)

where
α(t) =

∫
[0,Hr)

q(t,x)hr(x)dx, t ≥ 0. (11)

(vi) The densities b(t,x), q(t,x) satisfy the non-idling condition:(∫ ∞

0
(b(t,x)+ q(t,x))dx− 1

)+
=

∫ ∞

0
q(t,x)dx, (12)(∫ ∞

0
(b(t,x)+ q(t,x))dx

)
∧1 =

∫ ∞

0
b(t,x)dx, (13)(∫ ∞

0
b(t,x)dx− 1

)∫ ∞

0
q(t,x)dx = 0. (14)

In [21], equations (3) and (4) are called the first and second fundamental evo-
lution equations, respectively. Note that the first fundamental evolution equation
(3) essentially says that the fluid content in service that has not completed service
remains in service. Similarly, the second fundamental evolution equation (4) es-
sentially says that the fluid content in the potential queue that has not reached its
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patience time remains in the potential queue. For each time t, the queue boundary
quantity w(t) divides the fluid content in the potential queue into two portions. The
fluid content on the left side of w(t) is still in queue waiting for service and the fluid
content on the right side of w(t) has entered service or even departed. The quantities
b(t,0), q̃(t,0), q(t,0) in condition (iv) above are exactly the rates at time t at which
the fluid content enters service, the potential queue and the queue, respectively. The
quantities σ(t) in (9) and α(t) in (11) are precisely the total service rate and the
total abandonment rate at each time t, respectively. At last, the balance equation
(10) is implicit in the definition of the fluid model in [21] and stated in equation
(6) in [12]. We remark that the non-idling condition (vi) is implicit in [21], but is
explicitly stated in a subsequent paper by Liu and Whitt [12]. We also remark that if
λ (t)> 0, then the no-idling conditions in (12)–(14) are redundant, since they can be
derived by the conditions in (6)–(8). Indeed, notice from (8) that q(t,0) = 0 when
B(t)< 1 and q(t,0) = λ (t)> 0 when Q(t)> 0. Thus, B(t)< 1 and Q(t)> 0 cannot
happen at the same time since λ (t) > 0. This will also imply that B(t) = X(t)∧ 1
and Q(t) = (X(t)− 1)+ for all t ≥ 0.

Remark 1. (Existence and uniqueness of Whitt’s fluid model.) Whitt [21] has shown
the existence and uniqueness of the two-parameter fluid model for Gt/GI/N +
GI queues in discrete time by proving a functional weak law of large numbers
(FWLLN), and conjectured them in continuous time (cf. Conjecture 2.2 of [21]).
The existence and uniqueness of the two-parameter fluid model for Gt/GI/Nt +GI
queues with time-dependent staffing are shown in Liu and Whitt [12, 13], by an
explicit characterization of the solution to the fluid model in [12] and by proving
an FWLLN in [13], under the additional assumptions that the system only alter-
nates between overloaded and underloaded regimes (with a finite number of alter-
nations in each finite time interval) and that the service and patience time distribu-
tions have piecewise continuous densities. Thus, by specializing their argument to
Gt/GI/N +GI queues, the conjecture is proved but with the previously mentioned
additional assumptions.

In this paper, we prove the conjecture under the assumption that the service and
patience time distributions have densities, without assuming, a priori, that the sys-
tem only alternates between overloaded and underloaded regimes, by applying the
equivalence between the two fluid models in Definitions 1 and 2 established in The-
orem 1 below and the existence and uniqueness of Kang-Ramanan’s fluid model es-
tablished in [7, 10]. We remark that the existence of the densities of the service and
patience time distributions is critical for the formulation of Whitt’s two-parameter
fluid model, because the densities of B(t,y) and Q(t,y) with respect to y may not
exist when the service and/or patience time distributions are general (see Remark
4).
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2.2 Kang-Ramanan’s measure-valued fluid model

In this section, we state the measure-valued fluid model in Kang and Ramanan [10].
They use two measure-valued processes to describe the service and queueing dy-
namics. Let νt be a nonnegative finite measure on [0,∞) with support in [0,Hs)
such that νt(dx), x ∈ [0,Hs), represents the amount of fluid content of customers
in service whose time spent in service by time t lies in the range [x,x+ dx). Let
ηt be another nonnegative finite measure on [0,∞) with support in [0,Hr) such that
ηt(dx), x ∈ [0,Hr), represents the amount of fluid content in the potential queue
whose time spent there by time t lies in the range [x,x+ dx), where the potential
queue is an artificial queue that includes the fluid content of customers in queue
waiting for service and also the fluid content of customers that has entered service
or even departed, but whose patience time has not been reached.

We assume that the functions Gs and Gr have density functions gs and gr on
[0,∞), respectively. Let S0 denote the set of triples (η ,ν,x) such that 1−ν[0,Hs) =
[1− x]+ and ν[0,Hs)+η [0,Hr) = x, where η is a non-negative finite measure on
[0,∞) with support in [0,Hr), ν is a non-negative finite measure on [0,∞) with sup-
port in [0,Hs), and x ∈ R+. The set S0 represents all possible measures of (η ,ν)
and values of x that the initial state of the measure-valued fluid model (η ,ν,X) can
take, satisfying the non-idling condition.

Definition 2. A triple of functions (η ,ν,X) is a measure-valued fluid model track-
ing elapsed times with the input data (λ (·),η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈
S0 if it satisfies the following equations. For every ψ ∈ Cb(R+) and t ≥ 0,∫ ∞

0
ψ(x)ηt(dx) =

∫
[0,Hr)

ψ(x+ t)
Ḡr(x+ t)

Ḡr(x)
η0(dx)+

∫ t

0
ψ(t − s)Ḡr(t − s)λ (s)ds,

(15)∫ ∞

0
ψ(x)νt (dx) =

∫
[0,Hs)

ψ(x+ t)
Ḡs(x+ t)

Ḡs(x)
ν0(dx)+

∫
[0,t]

ψ(t − s)Ḡs(t − s)dK(s),

(16)
where

K(t) = B(t)+D(t)−B(0) = νt [0,Hs)+D(t)−ν0[0,H
s), (17)

D(t) =
∫ t

0

(∫
[0,Hs)

hs(x)νs(dx)

)
ds, (18)

E(t)+Q(0) = Q(t)+K(t)+R(t), (19)

R(t) =
∫ t

0

(∫
[0,χ(s)]

hr(x)ηs(dx)

)
ds, (20)

χ(s) = inf{x ∈ [0,Hr) : ηs[0,x]≥ Q(s)}, (21)

Q(t) = (X(t)− 1)+, (22)
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B(t) = νt [0,∞) = X(t)∧1 = 1− (1−X(t))+, (23)

and
Q(t)(1−B(t)) = 0. (24)

In this fluid model, B(t) represents the total fluid content of customers in service,
Q(t) represents the total fluid content of customers in queue waiting for service,
and X(t) represents the total fluid content of customers in the system at each time t.
Then, by (22) and (23),

X(t) = B(t)+Q(t). (25)

The additional quantities K(t), R(t), D(t), χ(t) can naturally be interpreted, respec-
tively, as the cumulative amount of fluid content that has entered service by time t,
the cumulative amount of fluid content that has abandoned from the queue by time
t, the amount of fluid content that has departed the system after service completion
by time t, and the waiting time of the fluid content at the head of the queue at time
t, that is, the fluid content in queue with the longest waiting time.

For completeness, we now provide an intuitive explanation for these fluid equa-
tions. The equation (15) governs the evolution of the measure-valued process ηt .
Note that when x≤ t, the amount of fluid content ηt(dx) is the fraction of the amount
of fluid content λ (t − x) arriving to the system at time t − x and whose time in the
system since its arrival is more than x by time t. It is easy to see that this fraction
equals to Ḡr(x). When x > t, the amount of fluid content ηt(dx) is the fraction of
the amount of fluid content η0(d(x− t)) initially in queue and whose waiting time is
more than x by time t given that it is more than x− t at time 0. This fraction equals to
Ḡr(x)/Ḡr(x− t). This shows that (15) holds. A similar observation yields (16). The
equations (17)–(19) are simply mass conservation equations for the queue and the
server station, respectively. Since νs(dx), x ∈ [0,s], represents the amount of fluid
content in service whose time in service lies in the range [x,x+ dx) at time s, and
hs(x) represents the fraction of the amount of fluid content with time in service x
(that is, with service time no less than x) that would depart from the system while
having time in service in [x,x+dx). Hence, it is natural to expect

∫
[0,Hs) hs(x)νs(dx)

to represent the departure rate of fluid content from the fluid system at time s and
thus, expect (18) holds. A similar explanation can be applied to (20) except that,
to consider the real reneging rate, we can only consider x < χ(s) since all the fluid
content with the time in the system more than χ(s) has entered service by time s.
The equation (24) represents the usual non-idling condition.

By adding (19) and (17) together and using (25), we see that

E(t)+X(0) = X(t)+R(t)+D(t). (26)

By the representations of E , R and D in (1), (20) and (18), we have from (26) that X
is absolutely continuous. In turn, using the fact that |[n− a]+− [n− b]+| ≤ |a− b|,
it is easy to see from (23) and (17) that B and then K are absolutely continuous. So
there exists a Lebesgue integrable function κ such that

K(t) =
∫ t

0
κ(s)ds, t ≥ 0. (27)
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By (17) and (18), the process K has the following representation:

K(t) = B(t)−B(0)+
∫ t

0

(∫
[0,Hs)

hs(x)νs(dx)

)
ds. (28)

Then it follows from the same argument as in deriving (3.12) of [11] that the process
κ satisfies for a.e. t ∈R+,

κ(t) =


λ (t) if X(t)< 1,
λ (t)∧

∫
[0,Hs) hs(x)νt (dx) if X(t) = 1,∫

[0,Hs) hs(x)νt(dx) if X(t)> 1.
(29)

Remark 2. (Existence and uniqueness of Kang-Ramanan’s fluid model.) Under the
assumptions that the hazard rate functions hr and hs are either bounded or lower
semi-continuous, Kang and Ramanan [10] established the existence of the measure-
valued fluid model in Definition 2 by proving an FWLLN and also showed its
uniqueness via the fluid model characterization. The existence and uniqueness of
Kang-Ramanan’s fluid model directly from the characterization of its solution is
established in Kang [7], under the weaker assumptions that the service time distri-
bution Gs has density and the hazard rate function hr is a.e. locally bounded.

Now we state our first result on the equivalence between the two fluid models
described in Definitions 1 and 2. Its proof is deferred to Section 4. As a consequence,
it also gives a proof for Conjecture 2.2 of [21] under the assumption that the service
and patience time distributions have densities and hr is a.e. locally bounded.

Theorem 1. Existence and uniqueness of Whitt’s fluid model in Definition 1 is
equivalent to existence and uniqueness of Kang-Ramanan’s fluid model in Defi-
nition 2 for the Gt/GI/N + GI queue with the time-dependent arrival rate λ (·)
and the initial data (η0,ν0,X(0)) ∈ S0, where η0(dx) = q̃(0,x)dx = q(0,x)dx and
ν0(dx) = b(0,x)dx.

2.3 Zuñiga’s fluid model

Recently, Zuñiga [23] extended Kang-Ramanan’s fluid model without assuming that
the patience time distribution Gr and service time distribution Gs have densities.
In this section, we state this extended Kang-Ramanan’s fluid model and establish
some useful properties on certain quantities in the model, which are needed in the
subsequent analysis.

Define a measure Mr on [0,Hr] by

dMr(x)
.
= 1{x<Hr}Ḡr(x−)−1dGr(x)+ 1{Gr(Hr−)<1}δHr(dx),

and a measure Ms on [0,Hs] by
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dMs(x)
.
= 1{x<Hs}Ḡs(x−)−1dGs(x)+ 1{Gs(Hs−)<1}δHs(dx).

Note that in Zuñiga [23], it is assumed that Gr is continuous on [0,∞) in As-
sumption 2.1 therein. Thus, in Zuñiga’s fluid model stated in Definition 3.4 of [23],
the measure Mr (in Definition 3.4 of [23], the author uses Hr instead), the extra
term 1{Gr(Hr−)<1}δHr (dx) is not needed. Since here we do not make the continuity
assumption on Gr in the following definition, we need to add this term just like the
similar term in Ms.

D[0,∞)(R) is a solution to an extended Kang-Ramanan’s measure-valued fluid model
with the input data (λ (·),η0,ν0,X(0)) such that (η0,ν0,X(0))∈S0 if qt and pt , the
densities of

∫ t
0 νs(·)ds and

∫ t
0 ηs(·)ds, respectively, satisfy the following conditions.

There exist K(·), a process of bounded variation started at 0, χ(·), B(·), Q(·), D(·),
R(·) such that for every ψ ∈ Cb(R+) and t ≥ 0, (15)–(17), (19), (21)–(24) hold and

D(t) =
∫
[0,Hs]

qt(x)dMs(x), (30)

R(t) =
∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}ds ps(x)dMr(x), (31)

where the integral with respect to ps(x) is defined as a Lebesgue-Stieltjes integral in
s.

Remark 3. Zuñiga’s fluid model stated in Definition 3 is equivalent to Defini-
tion 3.4 of [23] due to Lemma 4.1 and Remark 4.2 of [23] and the given input
data (λ (·),η0,ν0,X(0)). The main difference of Zuñiga’s fluid model from Kang-
Ramanan’s fluid model in Definition 2 is that the processes D and R satisfy (30) and
(31) instead of (18) and (20) due to the lack of existence of densities of Gs and Gr,
respectively. By Lemma 4.1 of [23], the densities qt and pt can be written as

qt(x) = Ḡs(x−)K((t − x)+)+
∫
[(x−t)+ ,x)

Ḡs(x−)

Ḡs(y)
ν0(dy), (32)

and

pt(x) = Ḡr(x−)E((t − x)+)+
∫
[(x−t)+,x)

Ḡr(x−)

Ḡr(y)
η0(dy). (33)

When Gs and Gr are assumed to have densities, gr and gs, respectively, Zuñiga’s
fluid model is reduced to Kang-Ramanan’s fluid model. Zuñiga’s fluid model admits
a unique solution (established in Theorem 3.5 via an FWLLN and Theorem 4.4 via
the characterization of the fluid model in [23]) under the assumptions that Gr is
continuous, η0 is diffuse, and ν0 is diffuse if Gs is not continuous (Assumption 3.1
of [23]).

We end this section by showing the following critical lemma for Zuñiga’s fluid
model in Definition 3, which will be used in Section 3 in discussing the relationship

Definition 3. A triple of processes (η ,ν,X)∈Dabs
[0,∞)(M [0,Hr))×Dabs

[0,∞)(M [0,Hs))×
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of the fluid models tracking elapsed times stated in this section and a fluid model
tracking residual times stated in Section 3.2.

Lemma 1. In Definition 3, the processes D and R have the following representa-
tions: for each t ≥ 0,

D(t) =
∫
[0,Hs)

Gs(y+ t)−Gs(y)

Ḡs(y)
ν0(dy)+

∫ t

0
Gs(t − s)dK(s), (34)

R(t) =
∫
[0,Hr)

(∫
(y,y+t]

1{y≤χ(x−y)−(x−y)}dGr(x)

)
Ḡr(y)−1η0(dy)

+
∫ t

0

∫
[0,Hr ]

1{x≤s∧χ(s)}λ (s− x)dGr(x)ds. (35)

Moreover, the process K(t) is non-decreasing and the process χ(t) satisfies the fol-
lowing property:

χ(t)− χ(s)≤ t − s whenever 0 ≤ s < t < ∞. (36)

Remark 4. It is evident that the representation of the process D in (34) implies that
D(t) is not absolute continuous when the service time distribution does not have
density. Thus, we cannot write the total service rate (departure rate) as in (9). Al-
though the two-parameter processes B(t,y), Q̃(t,y) and Q(t,y) can be obtained as
in (2) from the Zuñiga’s fluid model (νt ,ηt ,X) in Definition 3, their densities with
respect to y may not exist and the associated two-parameter fluid model using den-
sities b(t,x) and q(t,x) cannot be formulated with the densities as in Definition 1.

Proof of Lemma 1. By (30) and (32), applying interchange of the order of integration
and integration by parts, we easily obtain (34). To show R(t) in (35), from (31) and
(33), we obtain that for each t ≥ 0,

R(t) =
∫
[0,Hr ]

∫ t

0
1{x≤χ(s)∧s}Ḡ

r(x−)λ (s− x)dsdMr(x) (37)

+

∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}ds

(∫
[(x−s)+,x)

Ḡr(x−)

Ḡr(y)
η0(dy)

)
dMr(x)

=

∫ t

0

∫
[0,Hr ]

1{x≤χ(s)∧s}λ (s− x)Ḡr(x−)dMr(x)ds

+
∫
[0,Hr ]

∫
[0,x∧t]

1{x≤χ(s)}ds

(∫
[x−s,Hr)

1{y<x}
Ḡr(x−)

Ḡr(y)
η0(dy)

)
dMr(x)

=

∫ t

0

∫
[0,Hr ]

1{x≤χ(s)∧s}λ (s− x)Ḡr(x−)dMr(x)ds

+

∫
[0,Hr ]

∫
[[x−t]+ ,x]

1{x≤χ(x−s)}1{s<x}
Ḡr(x−)

Ḡr(s)
η0(ds)dMr(x),
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=

∫ t

0

∫
[0,Hr ]

1{x≤s∧χ(s)}λ (s− x)Ḡr(x−)dMr(x)ds

+

∫
[0,Hr)

(∫
(y,y+t]

1{y≤χ(x−y)−(x−y)}Ḡr(x−)dMr(x)

)
Ḡr(y)−1η0(dy)

=

∫ t

0

∫
[0,Hr ]

1{x≤s∧χ(s)}λ (s− x)dGr(x)ds

+

∫
[0,Hr)

(∫
(y,y+t]

1{y≤χ(x−y)−(x−y)}dGr(x)

)
Ḡr(y)−1η0(dy),

where the second term in the second equality follows from Theorem 3.6.1 of
[1] with X = [[x − t]+,x] Y = [0,x ∧ t], f (s) = x − s and µ such that µ [a,b] =∫
[a,b)

1{y<x}

Ḡr(y)
η0(dy) and the last equality follows from the interchange of the order

of integrations.
We next prove the non-decreasing property of K(t). It follows from this represen-

tation of R(t) in (35) that Lemma 4.4 of [10] holds, that is, for any 0 ≤ a ≤ b < ∞,
if Q(t) = 0 (equivalently, χ(t) = 0) for all t ∈ [a,b], then R(b)−R(a) = 0. Then
the proof for the non-decreasing property of K(t) will follow the same argument in
Lemma 4.5 in [10] using (37).

We now prove the property of χ(t) in (36). By a similar argument as in Lemma
3.4 of [10] on time shifts, to prove the lemma, without loss of generality, we may
assume that s = 0 in (36). Suppose that the property of χ(t) in (36) does not hold,
that is, there is a time t2 > 0 such that χ(t2)> χ(0)+ t2. Let

t1
.
= sup{u ≤ t2 : χ(u)≤ χ(0)+ u}.

Then χ(t1−)≤ χ(0)+ t1 and for each u ∈ [t1, t2],

χ(u)≥ χ(0)+ u ≥ χ(t1−)+ (u− t1) and χ(t2)> χ(t1−)+ (t2 − t1). (38)

By (37), it is clear that R(t)− R(t−) ≥ 0 for each t > 0. By applying the above
display and time shift at t1, we have

R(t2)−R(t1)

=

∫
[0,Hr)

(∫
(y,y+t2−t1]

1{y≤χ(t1+x−y)−(x−y)}dGr(x)

)
Ḡr(y)−1ηt1(dy)

+

∫ t2−t1

0

(∫
[0,Hr ]

1{u≤s∧χ(t1+s)}λ (t1 + s− u)dGr(u)

)
ds.

It follows from (38) that s∧ χ(t1 + s) = s and χ(t1 + s)− s ≥ χ(t1−) for each s ∈
(0, t2 − t1]. Hence the above display implies that

R(t2)−R(t1−)

≥

∫
[0,Hr)

(∫
(y,y+t2−t1]

1{y≤χ(t1−)}dGr(x)

)
Ḡr(y)−1ηt1(dy)
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+

∫ t2−t1

0

(∫
[0,Hr ]

1{u≤s}λ (t1 + s− u)dGr(u)

)
ds

=

∫
[0,Hr)

1{y≤χ(t1−)}
Gr(y+ t2 − t1)−Gr(y)

Ḡr(y)
ηt1(dy)

+

∫ t2−t1

0
Gr(t2 − t1 − u)λ (t1 + u)du,

where and the second term on the right hand side of the last display follows from
Proposition 0.4.5 of [20]. Since (19) holds for Zuñiga’s fluid model (η ,ν,X) and K
is non-decreasing, then the above three displays imply that

Q(t2) = Q(t1−)+ (E(t2)−E(t1−))− (R(t2)−R(t1−))− (K(t2)−K(t1−))

≤ ηt1 [0,χ(t1−)]+

∫ t2

t1
λ (u)du−

∫ t2−t1

0
Gr(t2 − t1 − u)λ (t1 + u)du

−

∫
[0,Hr)

1[0,χ(t1−)](x)
Gr(x+(t2 − t1))−Gr(x)

Ḡr(x)
ηt1(dx)

=
∫ t2−t1

0
Ḡr(t2 − t1 − u)λ (t1 + u)du

+
∫
[0,Hr)

1[0,χ(t1−)+(t2−t1)](x+(t2 − t1))
Ḡr(x+(t2 − t1))

Ḡr(x)
ηt1(dx)

= ηt2 [0,χ(t1−)+ (t2− t1)],

where the last inequality follows from (15). From this and the definition of χ , we
have χ(t2)≤ χ(t1−)+(t2 − t1), which contradicts (38). Thus, the lemma is proved.

3 Measure-valued fluid models tracking residual times

We first state the two measure-valued processes tracking residual times that arise
from Zuñiga’s fluid model for the same Gt/GI/N +GI queueing system in Section
3.1. Here we do not define a new fluid model tracking residual times, but only in-
troduce the two processes themselves. We then state Zhang’s fluid model in Section
3.2, and discuss its connection with the three fluid models tracking elapsed times in
Section 3.3. The two measure-valued processes tracking residual times introduced
in Section 3.1 play an important bridging role in making the connection.
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3.1 Measure-valued processes tracking residual times from
Zuñiga’s fluid model

Zuñiga’s fluid model naturally gives rise to the following two measure-valued pro-
cesses νℓ

t and ηℓ
t . For each t ≥ 0, clearly the mapping

ψ 7→
∫
[0,Hs)

(∫
(y+t,∞)

ψ(x− y− t)

Ḡs(y)
dGs(x)

)
ν0(dy)

+

∫
[0,t]

(∫
(t−s,∞)

ψ(x− t + s)dGs(x)

)
dK(s)

is a positive linear functional on Cc(R+) since K is non-decreasing by Lemma 1.
Then by Riesz-Markov-Kakutani representation theorem, there is a unique regular
Borel measure νℓ

t with support [0,Hs) such that for every ψ ∈ Cb(R+),∫ ∞

0
ψ(x)νℓ

t (dx) =
∫
[0,Hs)

(∫
(y+t,∞)

ψ(x− y− t)

Ḡs(y)
dGs(x)

)
ν0(dy)

+

∫ t

0

(∫
(t−s,∞)

ψ(x− t+ s)dGs(x)

)
dK(s). (1)

Similarly, for each t ≥ 0, there is a unique regular Borel measure ηℓ
t with support

[0,Hr) such that for every ψ ∈ Cb(R+),∫ ∞

0
ψ(x)ηℓ

t (dx) = 1{ς(t)≤0}

∫
[0,−ς(t)]

(∫
(y+t,∞)

ψ(x− y− t)

Ḡr(y)
dGr(x)

)
η0(dy)

+

∫ t

ς+(t)

(∫
(t−s,∞)

ψ(x− t + s)dGr(x)

)
λ (s)ds, (2)

where
ς(t) = t − χ(t). (3)

Since χ(t) represents the elapsed patience time of the fluid content of customers that
has been in queue the longest at time t, then the quantity ς(t) can be interpreted as
the arrival time of the fluid content of customers that has been in queue the longest
at time t. It is clear that ς(t)≤ t for each t ≥ 0. At time 0, ς(0) =−χ(0) represents
the arrival time of the oldest fluid content in queue initially, and thus, it follow from
(21) that

ς(0) =− inf{x ∈ [0,Hr) : η0[0,x)≥ X(0)−ν0[0,H
s)}. (4)

We first argue that νℓ and ηℓ are two measure-valued processes tracking residual
times of fluid content of customers in service and in queue, respectively.

For each z ≥ 0, by plugging ψ(x) = 1(z,∞)(x) into (1) and (2), we have

νℓ
t (z,∞) =

∫
[0,Hs)

Ḡs(y+ t + z)

Ḡs(y)
ν0(dy) (5)
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+

∫
[0,t]

Ḡs(t − s+ z)dK(s),

ηℓ
t (z,∞) = 1{ς(t)≤0}

∫
[0,−ς(t)]

Ḡr(y+ t + z)

Ḡr(y)
η0(dy) (6)

+

∫ t

ς+(t)
Ḡr(t − s+ z)λ (s)ds.

By (15) and (16), we obtain

ηt+z[z,χ(t)+ z] =
∫
[0,Hr)

1[z,χ(t)+z](y+ t+ z)
Ḡr(y+ t + z)

Ḡr(y)
ν0(dy)

+
∫ t

0
1[z,χ(t)+z](t + z− s)Ḡr(t + z− s)λ (s)ds

= 1{ς(t)≤0}

∫
[0,−ς(t)]

Ḡr(y+ t + z)

Ḡr(y)
η0(dy)

+
∫ t

ς+(t)
Ḡr(t − s+ z)λ (s)ds,

and

νt+z[z,∞) =

∫
[0,Hs)

Ḡs(y+ t + z)

Ḡs(y)
ν0(dy)+

∫
[0,t]

Ḡs(t + z− s)dK(s).

Hence, we obtained the following coupling property between (ν,η) and (νℓ,ηℓ):

νℓ
t (z,∞) = νt+z[z,∞) and ηℓ

t (z,∞) = ηt+z[z,χ(t)+ z], quadz ≥ 0. (7)

Intuitively, νt+z[z,∞) represents the amount of fluid content in service at time t + z
with elapsed service time at least z, which is precisely the amount of fluid content
in service at time t that will still be in service at time t + z and then is equal to the
amount of fluid content in service at time t that has residual service time greater
than z. (Note that the fluid content in service at time t that has residual service
time exactly equal to z will depart from service and hence will not be in service
at time t + z.) Thus, by the first equality in (7), νℓ

t (z,∞) represents the amount of
fluid content in service at time t that has residual service time greater than z, that
is, νℓ

t keeps track of the residual time of fluid content in service at time t. Similarly,
ηt+z[z,χ(t) + z] represents the amount of fluid content in the potential queue at
time t + z with elapsed patience time between z and χ(t) + z, which is precisely
the amount of fluid content in queue at time t that will not abandon by time t + z.
This amount of fluid content is equal to the amount of fluid content that has residual
patience time more than z units of time at time t and then is represented by ηℓ

t (z,∞)
by the second equality in (7). Then ηℓ

t keeps track of the residual patience times of
customers in queue at time t.

When t = 0, (5), (6) and (7) become: for each z ≥ 0,
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νℓ
0(z,∞) =

∫
[0,Hs)

Ḡs(y+ z)

Ḡs(y)
ν0(dy) = νz[z,∞), (8)

ηℓ
0(z,∞) = 1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ z)

Ḡr(y)
η0(dy) = ηz[z,χ(0)+ z]. (9)

Remark 5. When Gr and Gs have densities gr and gs, respectively, (1) and (2) are
equivalent to the following representations:∫ ∞

0
ψ(x)νℓ

t (dx) =
∫
[0,Hs)

(∫ ∞

0

gs(y+ t + x)

Ḡs(y)
ψ(x)dx

)
ν0(dy)

+

∫
[0,t]

(∫ ∞

0
gs(t − s+ x)ψ(x)dx

)
dK(s), (10)

∫ ∞

0
ψ(x)ηℓ

t (dx) = 1{ς(t)≤0}

∫
[0,−ς(t)]

(∫ ∞

0

gr(y+ t + x)

Ḡr(y)
ψ(x)dx

)
η0(dy)

+
∫ t

ς+(t)

(∫ ∞

0
gr(t − s+ x)ψ(x)dx

)
λ (s)ds. (11)

In this case, for each t ≥ 0, the two measures ηℓ
t and νℓ

t have densities bℓ(t,x) and
qt(t,x), respectively, which can be expressed as

bℓ(t,y) =
∫
[0,Hs)

gs(x+ t + y)

Ḡs(x)
ν0(dx)+

∫
[0,t]

gs(y+ t − u)dK(u), (12)

and

qℓ(t,y) = 1{ς(t)≤0}

∫
[0,−ς(t)]

gr(x+ t + y)

Ḡr(x)
η0(dx)+

∫ t

ς+(t)
gr(y+ t −u)λ (u)du. (13)

3.2 Zhang’s fluid model

Zhang [22] uses a so-called virtual queue to describe the queueing dynamics, in-
stead of the potential queue used in the three fluid models in Section 2. In the def-
initions of both potential and virtual queues, all customers enter them upon arrival.
The difference between them lies in how customers depart. Customers can leave the
potential queue only when their patience expires, that is, at the instant when their
remaining patience times are zeros. Whereas, customers can only leave the virtual
queue in their turns of service. Customers in the virtual queue may have already run
out of patience (i.e., the remaining patience time is negative) at their turns of ser-
vice. Whenever a server becomes free, the server will check the oldest customer in
the virtual queue. If the customer being checked has not abandoned yet (its remain-
ing patience time is still positive), then the server will start serving this customer
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and this customer is removed from the virtual queue, and otherwise, this customer
is simply removed from the virtual queue and the server will turn to check the next
oldest customer. We now state Zhang’s fluid model.

Definition 4. (Zhang’s fluid model in [22].) Assume that the fluid arrival rate λ (t)=
λ for each t ≥ 0, where λ > 0 is a constant. A pair of measure-valued processes
(R,Z ) is a solution to the fluid model if the following conditions are satisfied:

(i) (R,Z ) satisfies the following two equations:

Rt(Cx) = λ
∫ t

t−Qv(t)/λ
Ḡr(t + x− s)ds, x ∈R, (14)

and

Zt (Cx) = Z0(Cx + t)+
∫ t

0
Ḡr(Qv(s)/λ )Ḡs(t + x− s)dLv(s), x ∈ R+, (15)

where Cx
.
= (x,∞) for x ∈ R, Qv(t) = Rt(R) is of bounded variation and Lv(t) =

λ t −Qv(t);
(ii) the non-idling conditions in (23) and (24) hold for B(t) = Zt(R+), Q(t) =

Rt(R+) and X(t) = B(t)+Q(t);
(iii) the initial condition (R0,Z0) satisfies

R0(Cx) = λ
∫ Qv(0)/λ

0
Ḡr(x+ s)ds, x ∈ R, and Z0({0}) = 0, (16)

and the non-idling condition at time 0 in (23) and (24).

In Zhang’s fluid model, Rt(Cx) can be interpreted as the fluid content of cus-
tomers in the virtual queue with residual patience times strictly bigger than x and
Zt(Cx) can be interpreted as the fluid content of customers in service with residual
service times strictly bigger than x at each time t. Then Q(t), B(t), Qv(t) and Lv(t)
represent, respectively, the total fluid content of the real queue at time t, the total
fluid content of customers in service at time t, the total fluid content in the virtual
queue at time t, and the cumulative customers removed from the virtual queue by
time t. The existence and uniqueness of Zhang’s fluid model are proved in Theorem
3.1 of [22] by an explicit characterization of its solution, under the assumptions that
the service time distribution Gs is continuous and the patience time distribution Gr

is Lipschitz continuous.

3.3 Connection between Zhang’s fluid model and the three fluid
models in Section 2

Among the three fluid models in Section 2, we have showed in Theorem 1 that
Whitt’s fluid model is equivalent to Kang-Ramanan fluid model and in Remark 3
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that Zuñiga’s fluid model extends Kang-Ramanan’s fluid model by relaxing the as-
sumption on the existence of densities of Gr and Gs. Since Zhang’s fluid model
keeps track of customers’ residual times and does not need Gr and Gs to have den-
sities ([22] does assume that Gs is continuous and Gr is Lipschitz continuous to
establish existence and uniqueness), while Zuñiga’s fluid model keeps track of cus-
tomers’ elapsed times and also does not need Gr and Gs to have densities, it is natural
to question if Zhang’s fluid model and Zuñiga’s fluid model are in fact equivalent
in describing system dynamics of the same Gt/GI/N +GI queues. If so, this will
enable researchers to borrow results from either one of the two to study the system
performance of Gt/GI/N +GI queues.

In this section we provide a detailed discussion on Zhang’s fluid model in con-
nection with Zuñiga’s fluid model (and hence Kang-Ramanan’s fluid model and
Whitt’s fluid model). The three fluid models in Section 2 allow time-varying arrival
rate λ (·), whereas, Zhang’s fluid model requires a constant arrival rate λ . Thus the
discussion in this section will focus on the three formulations with a constant ar-
rival rate. It is important that these formulations must have the same system input
data including the initial conditions when making the comparisons. We first show
by a series of remarks that Zhang’s fluid model is not entirely equivalent to the
three fluid models tracking elapsed times for the same G/GI/N +GI queueing sys-
tem under general initial conditions, that is, Zhang’s fluid model and the three fluid
models tracking elapsed times may not be formulated simultaneously for the same
G/GI/N +GI queueing system under certain general initial conditions.

Remark 6. (On the arrival rate.) The imposed condition on R0 in Zhang’s fluid
model requires that the initial fluid content of customers in the virtual queue de-
pends on the arrival rate λ after time 0, whereas in real life applications, the cus-
tomers’ arrival patterns before time 0 and after time 0 are likely different. Thus,
Zhang’s fluid model may not be appropriate for those applications. In contrast, the
three fluid models tracking elapsed times do not have this restriction.

Remark 7. (The initial condition on R0.) Zhang’s fluid model requires that the sys-
tem initial condition R0 satisfies (16), that is,

R0(Cx) = λ
∫ Qv(0)/λ

0
Ḡr(x+ s)ds, x ∈ R. (17)

Let R
+
0 be the restriction of R0 on [0,∞). Then R

+
0 keeps track of the residual

patience times of the fluid content of customers initially in queue. So if Zhang’s
fluid model were equivalent to Zuñiga’s fluid model for the same G/GI/N +GI
queueing system assuming a constant arrival rate, we must have R

+
0 = ηℓ

0 in (9),
that is,

R
+
0 (Cx) = 1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ x)

Ḡr(y)
η0(dy), ∀x ≥ 0,

where η0 is the initial condition for the η in Definition 3, and then
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λ
∫ Qv(0)/λ

0
Ḡr(x+ s)ds = 1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ x)

Ḡr(y)
η0(dy), ∀x ≥ 0. (18)

We first note that there may not be a unique η0 satisfying (18) for the given R0. For
example, when Gr has density gr(x) = e−x, x ∈ R+,

1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ x)

Ḡr(y)
η0(dy) = 1{ς(0)≤0}e

−xη0[0,−ς(0)],

and

λ
∫ Qv(0)/λ

0
Ḡr(x+ s)ds = λ e−x

(
1− e−Qv(0)/λ

)
.

Thus, any η0 satisfying 1{ς(0)≤0}η0[0,−ς(0)] = λ (1− e−Qv(0)/λ ) will satisfy (18).
Moreover, it is clear that the above display (18) does not hold for an arbitrary

initial condition η0. For example, if η0(dx) = λ †Ḡr(x)dx for some positive λ † 6= λ ,
then

1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ x)

Ḡr(y)
η0(dy)

= λ †1{ς(0)≤0}

∫
[0,−ς(0)]

Ḡr(y+ x)dy,

which is not equal to R
+
0 (Cx) in (17) even if −ς(0) = Qv(0)/λ . Thus, for a fluid

G/GI/N+GI queueing system with a constant arrival rate λ after time 0, the initial
conditions η0(dx) = λ †Ḡr(x)dx for λ † 6= λ and (ν0,X(0)) such that (η0,ν0,X(0))∈
S0, Zuñiga’s fluid model can be well formulated, but there is no corresponding
Zhang’s fluid model (R,Z ) that describes the same system.

Remark 8. (The initial condition on Z0.) Zhang’s fluid model only requires that
Z0({0}) = 0. This condition is rather general. We show by an example that for a
G/GI/N +GI queueing system, although Zhang’s fluid model can be formulated
with that initial condition Z0, there may not exist an (unique) initial measure ν0 to
formulate a corresponding Zuñiga’s fluid model for the same system.

Consider the service time distribution Gs being exponential with unit rate, that is,
gs(x) = e−x, x ∈ R+. Let Z0 be the measure that tracks the residual service times
of fluid content of customers initially in service and satisfies Z0({0}) = 0, and
assume that Zhang’s fluid model can be formulated with Z0. Suppose that Zuñiga’s
fluid model can also be formulated for some measure ν0, which tracks the elapsed
service times of fluid content of customers initially in service. By (8), if Zhang’s
fluid model and Zuñiga’s fluid model were equivalent, Z0 and ν0 must satisfy the
following equation:

Z0(Cx) =

∫
[0,Hs)

Ḡs(y+ x)

Ḡs(y)
ν0(dy) = ν0[0,H

s)e−x, x ≥ 0.
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If the given Z0 satisfies Z0(Cx) = ce−x for some constant c > 0, then any such
measure ν0 in Zuñiga’s fluid model satisfying c = ν0[0,Hs) will satisfy the above
display. However, on the other hand, if the given Z0, satisfying Z0({0}) = 0, does
not have an exponential density, then this contradicts the above equation resulting
from the equivalence, and implies that no corresponding measure ν0 can be found
for Zuñiga’s fluid model to be well formulated for the given queueing system.

From the discussion in Remarks 6, 7 and 8, it is clear that the class of fluid
many-server queueing systems where Zhang’s fluid model can be formulated is not
the same as the class of fluid many-server queueing systems where Zuñiga’s fluid
model (and hence Kang-Ramanan’s fluid model and Whitt’s fluid model) can be
formulated.

We next look more closely into the conditions on fluid G/GI/N +GI queueing
systems where Zhang’s fluid model and the three fluid models tracking elapsed times
can all be used to describe the system dynamics for the same system. To simplify the
exposition, we focus on Zhang’s fluid model and Zuñiga’s fluid model. Our findings
are stated in the following two theorems.

Theorem 2. Given a Zhang’s fluid model (R,Z ) for a G/GI/N +GI queueing
system with arrival rate λ , there exists a Zuñiga’s fluid model (η ,ν,X) for the same
queueing system with the input data (λ ,η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈ S0

with
η0(dx)

.
= λ 1[0,Qv(0)/λ ](x)Ḡ

r(x)dx, (19)

if and only if, for the given Z0, ν0 satisfying

Z0(Cx) =

∫
[0,Hs)

Ḡs(y+ x)

Ḡs(y)
ν0(dy), x ≥ 0. (20)

Proof. The “only if” part follows directly from the discussion in Remark 8. We now
focus on “if” part.

Let η0 be as given in (19). For each t ≥ 0, the following mapping

ψ 7→

∫
[0,Hr)

ψ(x+ t)
Ḡr(x+ t)

Ḡr(x)
η0(dx)+λ

∫ t

0
ψ(t − s)Ḡr(t − s)ds

is a positive linear functional on Cc(R+). Then by Riesz-Markov-Kakutani repre-
sentation theorem, there is a unique regular Borel measure ηt on R+ such that (15)
holds. It is clear that ηt has support [0,Hr).

For each t ≥ 0, define

K(t)
.
=

∫ t

0
Ḡr(Qv(s)/λ )dLv(s) and R(t)

.
= λ

∫ t

0
Gr(Qv(s)/λ )ds.

Then, for each t ≥ 0, with the above K and the given ν0 satisfying (20), the mapping

ψ 7→

∫
[0,Hs)

ψ(x+ t)
Ḡs(x+ t)

Ḡs(x)
ν0(dx)+

∫
[0,t]

ψ(t − s)Ḡs(t − s)dK(s)
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is a positive linear functional on Cc(R+). By Riesz-Markov-Kakutani representation
theorem, there is a unique regular Borel measure νt that satisfies (16). Let B, Q, X
be the associated processes in Zhang’s fluid model and for each t ≥ 0, define

D(t)
.
=

∫
[0,Hs)

Gs(y+ t)−Gs(y)

Ḡs(y)
ν0(dy)+

∫ t

0
Gs(t − s)dK(s).

We show that (η ,ν,X) satisfies Definition 3.
From (14), it is clear that

Q(t) = Rt(R+) = λ
∫ t

t−Qv(t)/λ
Ḡr(t − s)ds = λ Gr

d(Qv(t)/λ ), (21)

where Gr
d(x) =

∫ x
0 Ḡr(s)ds. It is established in the proof of Theorem 3.1 of [22]

that Q(t)/λ < Gr
d(∞) = Gr

d(H
r). Then it follows that Qv(t)/λ < Hr. Since Qv is of

bounded variation by (14), it follows that Q is also of bounded variation and by the
chain rule formula (Proposition 4.6 in Chapter 0 of [20])

Q(t) = Q(0)+
∫ t

0
Ḡr(Qv(s)/λ )dQv(s).

Thus, by the definition of K and the above display for Q(t),

K(t) = Q(0)−

(
Q(t)−λ

∫ t

0
Ḡr(Qv(s)/λ )ds

)
= Q(0)−

(
Q(t)−λ

∫ t

0
Ḡr((Gr

d)
−1(Q(s)/λ ))ds

)
.

Then it follows from Lemma A.3 of [22] that K is non-decreasing. Simple calcula-
tion also shows that

Q(t)+K(t)+R(t)

= Q(0)+
∫ t

0
Ḡr(Qv(s)/λ )dQv(s)+

∫ t

0
Ḡr(Qv(s)/λ )d(λ s−Qv(s))

+λ
∫ t

0
Gr(Qv(s)/λ )ds

= Q(0)+λ t,

which establishes (19). For each t ≥ 0, define χ(t) by the right hand side of (21). It
follows from the construction of ηt and the given η0 in (19) that

Q(t) = ηt [0,χ(t)] = λ
∫ [χ(t)−t]+∧Qv(0)/λ

0
Ḡr(x+ t)dx

+λ
∫ t

[t−χ(t)]+
Ḡr(t − s)ds. (22)
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When χ(t)> t, the above display is reduced to

Q(t)/λ =
∫ χ(t)∧(t+Qv(0)/λ )

0
Ḡr(s)ds.

Comparing this with (21), we have Qv(t)/λ = χ(t)∧(t+Qv(0)/λ ). When χ(t)≤ t,

the display in (22) is reduced to Q(t)/λ =
∫ χ(t)

0 Ḡr(s)ds and hence Qv(t)/λ = χ(t).
Combining the two cases, we have for each t ≥ 0,

Qv(t)/λ = χ(t)∧ (t +Qv(0)/λ ). (23)

For each t ≥ 0, it follows from (19) and the definition of Mr that∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}ds

(∫
[(x−s)+,x)

Ḡr(x−)

Ḡr(y)
η0(dy)

)
dMr(x)

+λ
∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)∧s}Ḡ
r(x−)dsdMr(x)

= λ
∫
[0,Hr ]

∫
[0,x∧t]

1{x≤χ(s)}ds

(∫
[x−s,x)

Ḡr(x−)

Ḡr(y)
1[0,Qv(0)/λ ](y)Ḡ

r(y)dy

)
dMr(x)

+λ
∫
[0,t]

∫
[0,Hr ]

1{x≤χ(s)∧s}dGr(x)ds

= λ
∫
[0,Hr ]

∫ t∧x

0
1{x≤χ(s)}ds

(∫
[x−s,x)

1[0,Qv(0)/λ ](y)dy

)
dGr(x)

+λ
∫ t

0
Gr(χ(s)∧ s)ds

= λ
∫
[0,Hr ]

∫ t

0
1{s≤x≤χ(s)}1[0,Qv(0)/λ ](x− s)dsdGr(x)

+λ
∫ t

0
Gr(χ(s)∧ s)ds

= λ
∫ t

0
Gr(χ(s)∧ (s+Qv(0)/λ ))ds = λ

∫ t

0
Gr(Qv(s)/λ )ds,

where the second to the last equality follows from the fact that

1{s≤x≤χ(s)}1[0,Qv(0)/λ ](x−s)= 1{s≤x≤χ(s)∧(s+Qv(0)/λ )}= 1{s∧χ(s)≤x≤χ(s)∧(s+Qv(0)/λ )},

and the last equality follows from (23). This, together with the definition of R(t) and
(33), implies that (31) holds.

By using (4.5) of [23], we obtain∫
[0,Hs]

(
Ḡs(x−)K([t − x]+)+

∫ x

[x−t]+

Ḡs(x−)

Ḡs(y)
ν0(dy)

)
dMs(x)

=

∫
[0,Hs)

Gs(y+ t)−Gs(y)

Ḡs(y)
ν0(dy)+

∫ t

0
Gs(t − s)dK(s)
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which is equal to the process D(t) by definition, and implies that (30) holds.
For each t ≥ 0, (17) holds by applying interchange of the order of integration

to (16) and using the definitions of D and B. The properties (22)–(24) follow from
property (ii) of Zhang’s fluid model. Thus, this completes the proof that (η ,ν,X) is
a Zuñiga’s fluid model satisfying Definition 3. Clearly from the construction, both
the given Zhang’s fluid model and the constructed Zuñiga’s fluid model describe the
same G/GI/N +GI queueing system.

Theorem 3. Given a Zuñiga’s fluid model (η ,ν,X) for a G/GI/N +GI queueing
system with the input data (λ ,η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈ S0, there
exists a Zhang’s fluid model (R,Z ) for the same queueing system with arrival rate
λ if and only if η0 satisfies the following condition: for each t ≥ 0, there exists a
solution zt , independent of x ≥ 0, to the equation in z:

λ
∫ z

t∧χ(t)
Ḡr(x+ s)ds = 1{χ(t)≥t}

∫
[0,χ(t)−t]

Ḡr(y+ t + x)

Ḡr(y)
η0(dy), (24)

such that

λ
∫ t

0
Gr(zs)ds = λ

∫ t

0
Gr(χ(s)∧ s)ds

+
∫
[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)

)
Ḡr(y)−1η0(dy). (25)

In this case, Z0 can be chosen as defined by (20) for the given ν0, and R0 can be
chosen as defined by (16) for Qv(0) = z0λ , where z0 is the solution, independent of
x ≥ 0, that satisfies (24) for t = 0.

Remark 9. When Gr has a density gr, the conditions (24) and (25) can be replaced
as follows: for each t ≥ 0, there exists a solution zt , independent of x ≥ 0, to the
equation in z:

λ Gr(x+ z) = λ Gr(x+ t ∧ χ(t))+ 1{χ(t)≥t}

∫
[0,χ(t)−t]

gr(y+ t+ x)

Ḡr(y)
η0(dy). (26)

In fact, (24) follows from (26) directly by integrating both sides of (24) in x. It
follows from (26) with x = 0 that

λ
∫ t

0
Gr(χ(s)∧ s)ds

+
∫
[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)

)
Ḡr(y)−1η0(dy)

= λ
∫ t

0
Gr(χ(s)∧ s)ds

+
∫
[0,Hr)

(∫ t

0
1{y≤χ(x)−x}gr(x+ y)dx

)
Ḡr(y)−1η0(dy)
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= λ
∫ t

0
Gr(χ(s)∧ s)ds+

∫ t

0
λ (Ḡr(s∧ χ(s))− Ḡr(zs))ds

= λ
∫ t

0
Gr(zs)ds.

Thus, (25) holds.

Proof of Theorem 3. We first show the “only if” part. Recall that in Zhang’s fluid
model, R

+
t , the restriction of Rt on [0,∞), tracks the residual patience times of the

fluid content of customers in queue at time t. If there exists a Zhang’s fluid model
(R,Z ) to describe the same G/GI/N+GI queueing system together with Zuñiga’s
fluid model (η ,ν,X), the measure Rt must satisfies (see (6))

Rt(Cx) = 1{χ(t)≥t}

∫
[0,χ(t)−t]

Ḡr(y+ t + x)

Ḡr(y)
η0(dy)+λ

∫ t∧χ(t)

0
Ḡr(s+ x)ds,

for each t ≥ 0 and x ≥ 0, and hence η0 must satisfy that for each t ≥ 0 and x ≥ 0,

λ
∫ Qv(t)/λ

t∧χ(t)
Ḡr(x+ s)ds = 1{χ(t)≥t}

∫
[0,χ(t)−t]

Ḡr(y+ t + x)

Ḡr(y)
η0(dy). (27)

When t = 0, (27) is reduced to

R0(Cx) = 1{χ(0)≥0}

∫
[0,χ(0)]

Ḡr(y+ x)

Ḡr(y)
η0(dy), x ≥ 0, (28)

which is discussed in Remark 7. Moreover, in Zhang’s fluid model, since customers
in queue will renege when their residual patience times reach zero, then by differ-
entiating (14) in x and letting x = 0, we have the abandonment rate at time t is given
by

λ
(
Ḡr(x)− Ḡr(x+Qv(t)/λ )

)
|x=0= Gr(Qv(t)/λ ).

Then R(t), the cumulative abandonment by time t, is given by
∫ t

0 Gr(Qv(s)/λ )ds.
On the other hand, by Zuñiga’s fluid model, R(t) is given by (35). Then η0 must
also satisfy that for each t > 0,

λ
∫ t

0
Gr(Qv(s)/λ )ds = λ

∫ t

0
Gr(χ(s)∧ s)ds (29)

+

∫
[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)

)
Ḡr(y)−1η0(dy).

Note that for each t ≥ 0, Qv(t) satisfies (24) and (25), independent of x ≥ 0. Hence
the “only if” part is established.

For the “if” part, let Z0 and R0 be defined as in the statement of the theorem.
It is clear that the defined R0 and η0 satisfy (28) and (R0,Z0) satisfies property
(iii) of Zhang’s fluid model. Let χ(t), B(t), Q(t), K(t), D(t), R(t) be the associated
auxiliary processes from Zuñiga’s fluid model (η ,ν,X). For each t > 0, define
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Qv(t)
.
= λ zt and Lv(t)

.
= λ t −Qv(t),

where zt is the solution, independent of x ≥ 0, that satisfies (24) and (25). Define
Rt and Zt by the right hand sides of (14) and (15), respectively. We show that the
pair of processes (R,Z ) satisfies Zhang’s fluid model. In fact, it suffices to verify
conditions (i) and (ii) of Zhang’s fluid model.

From the definition of Qv(t), we have for each x ≥ 0,

λ
∫ Qv(t)/λ

t∧χ(t)
Ḡr(x+ s)ds = 1{χ(t)≥t}

∫
[0,χ(t)−t]

Ḡr(y+ t + x)

Ḡr(y)
η0(dy).

Combining this, the construction of R and (15), we have

Rt(R+) = 1{χ(t)≥t}

∫
[0,χ(t)−t]

Ḡr(y+ t)

Ḡr(y)
η0(dy)+λ

∫ t∧χ(t)

0
Ḡr(s)ds

= ηt [0,χ(t)] = Q(t). (30)

Since Q(t) is of bounded variation by (19), the previous display implies that Qv and
hence Lv are also of bounded variation. Thus, condition (i) of Zhang’s fluid model
holds.

Next we show that condition (ii) of Zhang’s fluid model holds for B∗(t) =
Zt(R+), Q∗(t) = Rt(R+) and X∗(t) = B∗(t)+Q∗(t). Note that for each t ≥ 0, we
have showed that Q∗(t) = Q(t). By using the definition of B∗, the construction of
Z and the property of Z0, we have

B∗(t) = Zt(R+)

= Z0(Ct)+
∫ t

0
Ḡr(Qv(s)/λ )Ḡs(t − s)dLv(s)

=
∫
[0,Hs)

Ḡs(y+ t)

Ḡs(y)
ν0(dy)+

∫ t

0
Ḡr(Qv(s)/λ )Ḡs(t − s)dLv(s). (31)

By (35), (25) and λ (t) = λ for each t ≥ 0, we have

R(t) =
∫
[0,Hr)

(∫
(y,y+t]

1{y≤χ(x−y)−(x−y)}dGr(x)

)
Ḡr(y)−1η0(dy)

+λ
∫ t

0

∫
[0,Hr ]

1{x≤s∧χ(s)}dGr(x)ds

=
∫
[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)

)
Ḡr(y)−1η0(dy)

+λ
∫ t

0
Gr(χ(s)∧ s)ds

= λ
∫ t

0
Gr(Qv(s)/λ )ds.

In addition, since Gr
d(Qv(t)/λ ) = Q(t)/λ by (30), by the chain rule formula,
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Q(t) = Q(0)+
∫ t

0
Ḡr(Qv(s)/λ )dQv(s).

These, together with (19), imply that

K(t) = λ t +Q(0)−Q(t)−R(t) =
∫ t

0
Ḡr(Qv(s)/λ )dLv(s).

Hence, by (31), B∗(t) = B(t) and then X∗(t) = X(t). Since B,Q,X satisfy (22)–
(24), then B∗,Q∗,X∗ satisfy condition (ii) of Zhang’s fluid model. This completes
the proof that (R,Z ) is a Zhang’s fluid model. Clearly from the construction, both
the given Zuñiga’s fluid model and the constructed Zhang’s fluid model describe the
same G/GI/N +GI queueing system.

Corollary 3.1 Given a Zuñiga’s fluid model (η ,ν,X) for a G/GI/N +GI queue-
ing system with the input data (λ ,η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈ S0 and
η0(dx) = λ 1[0,a](x)Ḡ

r(x)dx for some a ≥ 0, then one can construct a Zhang’s fluid
model (R,Z ) for the same queueing system with arrival rate λ , Z0 defined by (20)
for the given ν0, and R0 defined by (16) for Qv(0) = aλ .

Proof. It suffices to check that the given η0 satisfies (24) and (25). Note that for the
given η0, the equation in (24) becomes∫ z

t∧χ(t)
Ḡr(x+ s)ds = 1{χ(t)≥t}

∫ t+(χ(t)−t)∧a

t
Ḡr(s+ x)ds.

For t ≥ 0 such that χ(t)≥ t, we can choose zt = t +(χ(t)− t)∧a and for t ≥ 0 such
that χ(t)< t, we can choose zt = χ(t). Clearly, in either case, zt does not depend on
x ≥ 0. Now we show that zt satisfies (25). Note that for the given η0, by (37),∫

[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)

)
Ḡr(y)−1η0(dy)

=

∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}ds

(∫
[(x−s)+,x)

Ḡr(x−)

Ḡr(y)
η0(dy)

)
dMr(x)

= λ
∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}ds

(∫ x

(x−s)+
1[0,a](y)dy

)
dGr(x)

= λ
∫
[0,Hr ]

∫
[0,t]

1{x≤χ(s)}1{s<x≤s+a}dsdGr(x)

= λ
∫ t

0
(Gr(χ(s)∧ (s+ a))−Gr(s∧ χ(s)))ds.

It follows that

λ
∫ t

0
Gr(χ(s)∧ s)ds

+

∫
[0,Hr)

(∫
(y,y+t]

1{x≤χ(x−y)}dGr(x)

)
Ḡr(y)−1η0(dy)
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= λ
∫ t

0
Gr(χ(s)∧ s)ds+λ

∫ t

0
(Gr(χ(s)∧ (s+ a))−Gr(s∧ χ(s)))ds

= λ
∫ t

0
1{χ(s)≥s} (G

r(s)+Gr(χ(s)∧ (s+ a))−Gr(s))ds

+λ
∫ t

0
1{χ(s)<s}G

r(χ(s))ds

= λ
∫ t

0
Gr(zs)ds.

Thus, (25) holds for the choice of zt and hence the corollary follows directly from
Lemma 3.

4 Proof of Theorem 2.1

In this section, we prove Theorem 1, the equivalence between the two fluid models
tracking elapsed times described in Sections 2.2 and 2.1. We first derive a set of two-
parameter fluid equations from a measure-valued fluid model (η ,ν,X) in Definition
2 and show that it is a two-parameter fluid model; see Proposition 4.1. We then
derive a set of measure-valued fluid equations from a two-parameter fluid model
(B(t,y),Q(t,y)) in Definition 1 and show that it is a measure-valued fluid model;
see Proposition 4.2. Thus we conclude that the existence and uniqueness of the two
fluid models are equivalent.

Recall that χ(t) in (21) represents the waiting time of the fluid content at the
head of the queue. Namely, the fluid content in the potential queue must be in queue
waiting for service if the waiting time is less than χ(t), but must have abandoned
otherwise. By the FCFS service discipline, the definition of the potential queue and
the role of w(t), we see that

χ(t) = w(t). (1)

We also observe that evidently, for each y ≥ 0,

B(t,y) = νt [0,y], Q̃(t,y) = ηt [0,y], and Q(t,y) = ηt [0,y∧ χ(t)]. (2)

We first start with the measure-valued fluid model (η ,ν,X) in Definition 2, and
show that the two-parameter processes (B(t,y),Q(t,y)) in (2) satisfy Definition 1.
For this we need to assume that η0 and ν0 have densities q̃(0,x) and b(0,x), respec-
tively, since they are required in the definition of the two-parameter fluid model.

Proposition 4.1 Let (η ,ν,X) be a measure-valued fluid model tracking elapsed
times with the input data (λ (·),η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈S0. Suppose
that η0 and ν0 have densities q̃(0,x) and b(0,x), respectively. Then, (B(t,y),Q(t,y))
given by (2) is a two-parameter fluid model tracking elapsed times with the input
data (λ (·), q̃(0,x),b(0,x)) and q(0,x) = q̃(0,x).
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Proof. Let (η ,ν,X) be a measure-valued fluid model tracking elapsed times with the
input data (λ (·),η0,ν0,X(0)) such that (η0,ν0,X(0))∈S0 and η0 and ν0 have den-
sities q̃(0,x) and b(0,x), respectively. Since b(0,x) and q̃(0,x) denote the densities
of ν0 and η0, respectively, it follows that b(0,x) = 0 for each x ≥ Hs and q̃(0,x) = 0
for each x ≥ Hr. For each t ≥ 0 and y ≥ 0, by letting ψy(x) = 1(0 ≤ x ≤ y) in (15)
and (16), respectively (Corollary 4.2 in [10] shows that (15) and (16) hold for any
bounded Borel measurable function ψ .), B(t,y) and Q̃(t,y) satisfy the following
equations, respectively:

B(t,y) =
∫ (y−t)+∧Hs

0

Ḡs(x+ t)

Ḡs(x)
b(0,x)dx+

∫ t

(t−y)+
Ḡs(t − s)κ(s)ds

=
∫ (y−t)+∧Hs

0

Ḡs(x+ t)

Ḡs(x)
b(0,x)dx+

∫ y∧t

0
Ḡs(s)κ(t − s)ds, (3)

Q̃(t,y) =
∫ (y−t)+∧Hr

0

Ḡr(x+ t)

Ḡr(x)
q̃(0,x)dx+

∫ t

(t−y)+
Ḡr(t − s)λ (s)ds

=

∫ (y−t)+∧Hr

0

Ḡr(x+ t)

Ḡr(x)
q̃(0,x)dx+

∫ y∧t

0
Ḡr(s)λ (t − s)ds. (4)

Then from (3) and (4), B(t,y) and Q̃(t,y) have densities b(t,y) and q̃(t,y), respec-
tively, with the representation:

b(t,y) =


Ḡs(y)κ(t − y) if y < t ∧Hs,

Ḡs(y)
Ḡs(y−t)

b(0,y− t) if t < y < t +Hs,

0 otherwise,

(5)

and

q̃(t,y) =


Ḡr(y)λ (t − y) if y < t ∧Hr,

Ḡr(y)
Ḡr(y−t)

q̃(0,y− t) if t < y < t +Hr,

0 otherwise.

(6)

From this, it is easy to check that the two fundamental evolution equations in (3)
and (4) are satisfied. It is clear from the last equation in (2) that Q(t,y) satisfies the
following equation:

Q(t,y) =
∫ (y∧χ(t)−t)+∧Hr

0

Ḡr(x+ t)

Ḡr(x)
q̃(0,x)dx+

∫ y∧χ(t)∧t

0
Ḡr(s)λ (t − s)ds, (7)

Then, by comparing with (4), we have that

Q(t,y) =

{
Q̃(t,y) if y < χ(t),
Q(t) if y ≥ χ(t). (8)
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Now, define q(t,y) by

q(t,y) =


q̃(t,y) if y < χ(t),
0 if y > χ(t),
λ (t)−λ (t)∧

∫
[0,Hs) hs(x)b(t,x)dx if y = χ(t), B(t) = 1,

0 if y = χ(t),B(t)< 1.

(9)

Note that ∫ y

0
q(t,x)dx =

∫ y

0
q̃(t,x)dx = Q̃(t,y) = Q(t,y), if y < χ(t),

and ∫ y

0
q(t,x)dx =

∫ χ(t)

0
q̃(t,x)dx = Q̃(t,χ(t)) = Q(t) = Q(t,y), if y ≥ χ(t).

Thus, q(t,y) is a density function of Q(t,y). Since (η0,ν0,X(0)) ∈ S0, it is clear
that q(0,x) = q̃(t,x).

From (20) and (21), we obtain the following expression of R(t) using the process
Q̃(t,y) in (4),

R(t) =
∫ t

0

(∫ χ(s)∧Hr

0
hr(x)ηs(dx)

)
ds (10)

=

∫ t

0

(∫ (χ(s)−s)+∧Hr

0

gr(x+ s)

Ḡr(x)
q̃(0,x)dx+

∫ s∧χ(s)

0
gr(x)λ (s− x)dx

)
ds

=

∫ t

0

(∫ χ(s)∧Hr

0
hr(x)Q̃(t,dx)

)
ds,

and from (18), we obtain the following expression of D(t) using the process B(t,y)
in (3),

D(t) =
∫ t

0

(∫
[0,Hs)

hs(x)νs(dx)

)
ds (11)

=

∫ t

0

(∫
[0,Hs)

gs(x+ s)

Ḡs(x)
b(0,x)dx+

∫ s

0
gs(x)κ(s− x)dx

)
ds

=

∫ t

0

(∫
[0,Hs)

hs(x)B(t,dx)

)
ds.

From (10), (11) and (8), we can see that D(t) and R(t) have densities σ(t) and α(t),
respectively, and they satisfy (9), that is,

σ(t) =
∫
[0,Hs)

b(t,x)hs(x)dx, α(t) =
∫
[0,Hr)

q(t,x)hr(x)dx, t ≥ 0. (12)
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To complete the proof, it is enough to show that b(t,0), q̃(t,0) and q(t,0) from
(5), (6) and (9) satisfy (6), (7) and (8), respectively. Note that b(t,0) = κ(t) by (5).
Combining this with (29) and (12), b(t,0) satisfies (6). By (6), q̃(t,0) = λ (t) and
then satisfies (7). On the other hand, from (9) and (12),

q(t,0) =


q̃(t,0) = λ (t) if 0 < χ(t),
λ (t)−λ (t)∧σ(t) if 0 = χ(t), B(t) = 1,
0 if 0 = χ(t), B(t)< 1.

(13)

This implies that q(t,0) satisfies (8). Finally, the rate balance equation (10) fol-
lows from the balance equation (19), by noting that Q(t) =

∫ ∞
0 q(t,x)dx, K(t) =∫ t

0 b(s,0)ds and R(t) =
∫ t

0 α(s)ds.

We next show that a set of measure-valued equations (ν,η ,X) derived from a
two-parameter fluid model in Definition 1 satisfies Definition 2.

Proposition 4.2 Let (B(t,y),Q(t,y)) be a two-parameter fluid model tracking elapsed
times with the input data (λ (·), q̃(0,x),b(0,x)) and q(0,x) = q̃(0,x). For each
t ≥ 0, let ηt [0,y]

.
= Q̃(t,y) and νt [0,y]

.
= B(t,y) for each y ≥ 0 and define X(t)

.
=

B(t,∞)+Q(t,∞). Then, (η ,ν,X) is a measure-valued fluid model tracking elapsed
times with the input data (λ (·),η0,ν0,X(0)) such that (η0,ν0,X(0)) ∈ S0.

Proof. Fix (B(t,y),Q(t,y)) and the triple of functions (η ,ν,X) defined from it. It is
clear from the two fundamental evolution equations (3) and (4) that for each t ≥ 0,
q̃(t,x) as a function in x has support in [0,Hr) and b(t,x) as a function in x has
support in [0,Hs). It then follows that ηt has support in [0,Hr) and νt has support in
[0,Hs) for each t ≥ 0. Also it is clear that (η0,ν0,X(0)) ∈ S0.

We first show that ν satisfies (16). For every ψ ∈ Cb(R+) and t ≥ 0,∫ ∞

0
ψ(x)νt(dx) =

∫ ∞

0
ψ(x)b(t,x)dx =

∫ t

0
ψ(x)b(t,x)dx+

∫ ∞

t
ψ(x)b(t,x)dx. (14)

For the first term on the right-hand side of (14), we can use the first fundamental
evolution equation (3) to yield that∫ t

0
ψ(x)b(t,x)dx =

∫ t

0
ψ(x)b(t−x,0)

Ḡs(x)

Ḡs(0)
dx=

∫ t

0
ψ(x)Ḡs(x)b(t−x,0)dx. (15)

For the second term on the right-hand side of (14), another application of the first
fundamental evolution equation (3) yields that∫ ∞

t
ψ(x)b(t,x)dx =

∫ Hs

t∧Hs
ψ(x)b(t,x)dx (16)

=
∫ Hs

t∧Hs
ψ(x)b(0,x− t)

Ḡs(x)

Ḡs(x− t)
dx

=

∫ t∨Hs−t

0
ψ(x+ t)

Ḡs(x+ t)

Ḡs(x)
b(0,x)dx
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=

∫ Hs

0
ψ(x+ t)

Ḡs(x+ t)

Ḡs(x)
b(0,x)dx.

The last equality in (16) follows from the fact that Ḡs(x+ t) = 0 if x ∈ (t ∨Hs −
t,Hs). For each t ≥ 0, let

K(t)
.
=

∫ t

0
b(s,0)ds. (17)

Combining the above four displays, we obtain that ν satisfies (16). An analogous
argument using the second fundamental evolution equation (4) shows that∫ ∞

0
ψ(x)ηt(dx) =

∫ ∞

0
ψ(x)q̃(t,x)dx (18)

=

∫ t

0
ψ(x)q̃(t,x)dx+

∫ ∞

t
ψ(x)q̃(t,x)dx

=

∫ t

0
ψ(x)Ḡr(x)q̃(t − x,0)dx+

∫ Hr

0
ψ(x+ t)

Ḡr(x+ t)

Ḡr(x)
q̃(0,x)dx.

By (7), q̃(t − x,0) = λ (t − x). Thus, η satisfies (15).
Next, for each t ≥ 0, define B(t)

.
= B(t,∞), Q(t)

.
= Q(t,∞), D(t)

.
=

∫ t
0 σ(x)dx,

R(t)
.
=

∫ t
0 α(x)dx. From (9), D satisfies (18). From (9) again, (5) and (1), R satisfies

(20). Since ν satisfies (16), by choosing ψ = 1 in (16), we have

B(t) =
∫ Hs

0

Ḡs(x+ t)

Ḡs(x)
ν0(dx)+

∫ t

0
Ḡs(t − s)dK(s)

and by choosing ψ = hs in (16), we have

D(t) =
∫ t

0

∫ Hs

0
b(s,x)hs(x)dxds

=

∫ t

0

(∫ Hs

0

gs(x+ s)

Ḡs(x)
ν0(dx)+

∫ s

0
gs(s− x)dK(x)

)
ds

=
∫ Hs

0

Ḡs(x)− Ḡs(x+ t)

Ḡs(x)
ν0(dx)+

∫ t

0

∫ s

0
gs(s− x)dK(x)ds

= B(0)−
∫ Hs

0

Ḡs(x+ t)

Ḡs(x)
ν0(dx)+

∫ t

0
Gs(t − s)dK(s)

= B(0)−B(t)+K(t).

This shows that (17) is satisfied. The relationship (10) directly implies that (19).
Now, (21) follows directly from (1). Finally the non-idling conditions in (22)–

(24) directly follows from those in (12)–(14). This completes the proof of the propo-
sition.
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Stochastic HJB Equations and Regular Singular

Points∗

Arthur J Krener

Abstract We consider finite and infinite horizon, stochastic, smooth optimal con-
trol problems in continuous time where the coefficients of the white Gaussian noise
terms in the dynamics vanish at the origin. For infinite horizon problems we show
how the Taylor polynomials of the optimal cost and the optimal feedback can be
computed degree by degree. The degree two part of the optimal cost and the de-
gree one part of the optimal feedback are found by solving new stochastic algebraic
Riccati equations (SARE). If SARE is solvable the higher degree terms can be fou-
uding by solving linear algebraic equations. This is a generaliztion of the work of
Al’brekht who showed how the Taylor polynomials of the optimal cost and the op-
timal feedback for deterministic problems can be computed degree by degree. For
finite horizon problems we show how the Taylor polynomials of the optimal cost
and the optimal feedback can also be computed degree by degree. The degree two
part of the optimal cost and the degree one part of the optimal feedback are found by
solving stochastic differential Riccati equations (SDRE). The higher degree terms
can be found by solving linear differential equations.

1 Introduction

Euler solved some second order, linear, variable coefficient ODEs by power series
around a regular singular point [2]. The equations that he considered are of the form

P(x)
d2y
dx2 +Q(x)

dy
dx

+R(x)y = 0 (1)
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and this ODE has a regular singular point at x = 0 if P(x) = O(x)2 and Q(x) = O(x).
If we divide by P(x) then we obtain

d2y
dx2 + p(x)

dy
dx

+q(x)y = 0

where p(x) = Q(x)
P(x) and q(x) = R(x)

P(x) .

Because P(x) = O(x)2 the coefficients p(x) and q(x) can be singular at x = 0.
Suppose that we have the series expansion

xp(x) =
∞

∑
n=0

pnxn, x2q(x) =
∞

∑
n=0

qnxn

Euler assumed that for some ρ the solution had a power series expansion of the form

y(x) =
∞

∑
n=0

anxρ+n

y′(x) =
∞

∑
n=0

(ρ+n)anxρ+n−1

y′′(x) =
∞

∑
n=0

(ρ+n)(ρ+n−1)anxρ+n−2

He plugged these series into the ODE (1) and collected the coefficient of xρ to get
the so-called indicial equation

F(ρ) = p0ρ(ρ−1)+q0ρ+ r0 = 0

This quadratic has two possibly complex roots ρ1,ρ2 and corresponding to each root
there is a series solution of ODE. For each root setting the coefficient of xρ+n equal
to zero yields the recursion relation.

F(ρ+n)an +
n−1

∑
k=0

ak ((ρ+ k)pn−k +qn−k) = 0

so if F(ρ + n) �= 0 we can solve for an as a function of ak, 0 ≤ k < n. Assuming
F(ρi + n) is never zero this yields a series solution to the ODE for each ρi that
depends on its first coefficient a0. The sum of these two solutions each depending
on a free constant yields the general solution to the ODE.

More recently Al’brekht [1] considered an infinite horizon, deterministic optimal
control problem

min
u(·)

∫ ∞

0
l(x,u) dt

subject to
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ẋ = f (x,u)

x(0) = x0

It is well-known if the optimal cost π(x0) and optimal feedback u(t) = κ(x(t))
exist and are smooth then they satisfy the Hamilton-Jacobi-Bellman Equations
(HJB)

0 = minu

{
∂π
∂x

(x) f (x,u)+ l(x,u)
}

κ(x) = argminu

{
∂π
∂x

(x) f (x,u)+ l(x,u)
}

If the quantity to be minimized is smooth with repect to u then the HJB equations
imply that

0 =
∂π
∂x

(x) f (x,κ(x))+ l(x,κ(x))

0 =
∂π
∂x

(x)
∂ f
∂u

(x,κ(x))+
∂ l
∂u

(x,κ(x))

We call these the simplified HJB equations. Of course the simplified HJB equations
do not imply the HJB equations if the quantity to be minimized is not strictly convex
in u.

Al’brekht assumed that l(x,u) and f (x,u) and are smooth and have Taylor poly-
nomial expansions

l(x,u) =
1
2
(
x′Qx+2x′Su+u′Ru

)
+ l[3](x,u)+ l[4](x,u)

+ . . .+ l[d+1](x,u)+O(x,u)d+2

f (x,u) = Fx+Gu+ f [2](x,u)+ f [3](x,u)+ . . .+ f [d](x,u)+O(x,u)d+1

and the unknowns π(x) and κ(x) have similar Taylor polynomial expansions

π(x,u) =
1
2

x′Px+π [3](x)+π [3](x)+ . . .+π [d+1](x)+O(x)d+2

κ(x) = Kx+κ [2](x)+κ [3](x)+ . . .+κ [d](x)+O(x)d+1

He plugged these into the simplified HJB equations and solved degree by degree.
At the leading degrees, two in the first simplified HJB equation and one in the second
simplified HJB equation, he obtained the familiar LQR equations

0 = F ′P+PF +Q− (PG+S)R−1(G′P+S′)
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0 = K′R+(PG+S)

Then he derived linear recursion relations for the higher degree terms,
π [3](x),κ [2](x),π [4](x),κ [3](x), . . ..

The reason why Al’brekht’s method succeeds is that the first simplified HJB
equations has a regular singular point at x = 0. One indication of this is the coef-
ficient f (x,κ(x)) of ∂π

∂x (x) vanishes at x = 0. But this is not the only place where
∂π
∂x (x) appears. The second simplified HJB equation allows us to express κ(x) in
terms of ∂π

∂x (x). When we plug this into the first simplified HJB equation we get a
nonlinear first order PDE where ∂π

∂x (x) appears quadratically in the Lagrangian. To
have a regular singular point at x = 0 we must have ∂π

∂x = O(x) and π(x) must be
O(x)2.

This paper extends Al’brekht’s Method to stochastic, infinite horizon optimal
control problems in continuous time. We also extend Al’brekht’s Method to stochas-
tic, finite horizon optimal control problems in continuous time. To do so we must
make the assumption that the coefficients of noises are of order O(x,u). Stochastic
HJB equations are nonlinear, second order PDEs. This assumption ensures that co-
efficients of the second partial derivatives of π(x) are of order O(x,u)2 and so such
stochastic HJB PDEs have reguar singular points at the origin.

The rest of this paper is organized as follows. In the next section we study the
simplest example of the problems that we are considering, linear quadratic regula-
tors with bilinear noise. These lead to new type of algebraic Ricacati equation which
may or may not have a solution. In Section 3 we give an example of this. Section 4
presents the extension of Al’brekht’s method to stochastic, infinte horizon optimal
control problems that are not linear-quadratic but where the coefficients of the noise
are O(x,u). Section 5 contains an example of such a problem where the Taylor poly-
nomials of the optimal cost and the optimal feedback are computed to degrees six
and five respectively by the extension of Al’brekht’s method. In Section 6 we turn
to stochastic optimal control problems over finite horizons where the coefficients
of the noise are again O(x,u). At the lowest degrees these problems lead to a type
of stochastic differential Riccati that is well-know. What is new is that the higher
degree terms of the optimal cost and the optimal feedback can be computed degree
by degree by solving linear ODEs. We conclude in Section 7 and we close with
acknowledgements.

2 Linear Quadratic Regulator with Bilinear Noise

The simplest version of the problems of interest is an infinite horizon, stochastic
Linear Quadratic Regulator with Bilinear Noise (LQGB),

min
u(·)

1
2

E
∫ ∞

0

(
x′Qx+2x′Su+u′Ru

)
dt
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subject to

dx = (Fx+Gu) dt +
r

∑
k=1

(Ckx+Dku) dwk

x(0) = x0

In a previous version of this paper [4] we studied the case with Dk = 0.
The state x is n dimensional, the control u is m dimensional and

w(t) = (w1(t), . . . ,wr(t))′ is standard r dimensional Brownian motion. The matrices
are sized accordingly, in particular, Ck is an n×n matrix and Dk is an n×m matrix
for each k = 1, . . . ,r.

To the best of our knowledge such problems have not been considered before.
The finite horizon version of this problem can be found in Chapter 6 of the excellent
treatise by Yong and Zhou [6]. We will also treat finite horizon problems in Section
6 but not in the same generality as Yong and Zhou. Throughout this note we will re-
quire that the coefficient of the noise is O(x,u). Yong and Zhou allow the coefficient
to be O(1) in their linear-quadratic problems. The reason why we require O(x,u) is
that then the associated stochastic Hamilton-Jacobi-Bellman equations for nonlin-
ear extensions of LQGB have regular singular points at the origin. Hence they are
amenable to solution by power series techniques. If the noise is O(1) these power se-
ries techniques have closure problems, the equations for lower degree terms depend
on higher degree terms. If the coefficients of the noise is O(x,u) then the equations
can be solved degree by degree.

A first order partial differential equation with independent variable x has a regular
singular point at x = 0 if the coefficients the first order partial derivatives are O(x).
A second order partial differential equation has a regular singular point at x = 0 if
the coefficients the first order partial derivatives are O(x) and the coefficients the
second order partial derivatives are O(x)2. For more on regular singular points we
refer the reader to [2].

If we can find a smooth scalar valued function π(x) and a smooth m vector valued
κ(x) satisfying the stochastic Hamilton-Jacobi-Bellman equations (SHJB)

0 = minu

{
∂π
∂x

(x)(Fx+Gu)+
1
2
(
x′Qx+2x′Su+u′Ru

)
+

1
2

r

∑
k=1

(x′C′
k +u′D′

k)
∂ 2π
∂x2 (x)(Ckx+Dku)

}
(2)

κ(x) = argminu

{
∂π
∂x

(x)(Fx+Gu)+
1
2
(
x′Qx+2x′Su+u′Ru

)
+

1
2

r

∑
k=1

(x′C′
k +u′D′

k)
∂ 2π
∂x2 (x)(Ckx+Dku)

}
(3)

then by a standard verification argument [3] one can show that π(x0) is the optimal
cost of starting at x0 and u(0) = κ(x0) is the optimal control at x0.
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We make the standard assumptions of deterministic LQR,

1. The matrix [
Q S
S′ R

]
is nonnegative definite.

2. The matrix R is positive definite.
3. The pair F , G is stabilizable.
4. The pair Q1/2, F is detectable.

Because of the linear dynamics and quadratic cost, we expect that π(x) is a
quadratic function of x and κ(x) is a linear function of x,

π(x) =
1
2

x′Px

κ(x) = Kx

Then the stochastic Hamilton-Jacobi-Bellman equations (2, 3) simplify to

0 = F ′P+PF +Q+∑
k

C′
kPCk −K′

(
R+∑

k
D′

kPDk

)
K (4)

K = −
(

R+∑
k

D′
kPDk

)−1(
G′P+S+∑

k
D′

kPCk

)
(5)

We call these equations (4, 5 the Stochastic Algebraic Riccati Equations (SARE).
They reduce to the deterministic Algebraic Riccati Equations (ARE) if Ck = 0 and
Dk = 0 for all k..

Here is an iterative method for solving SARE. Let P(0) be the solution of the
deterministic ARE

0 = P(0)F +F ′P(0) +Q− (P(0)G+S)R−1(G′P(0) +S′)

and K(0) be given by

K(0) = −R−1(G′P+S′)

Given P(τ−1) define

Q(τ) = Q+
r

∑
k=1

C′
kP(τ−1)Ck

R(τ) = R+
r

∑
k=1

D′
kP(τ−1)Dk

S(τ) = S+
r

∑
k=1

C′
kP(τ−1)Dk
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Let P(τ) be the solution of

0 = P(τ)F +F ′P(τ) +Q(τ)− (P(τ)G+S(τ))R
−1
(τ)(G

′P(τ) +S′
(τ))

and

K(τ) = −R−1
(τ)

(
G′P(τ) +S′

(τ)

)
If the iteration on P(τ) nearly converges, that is, for some τ , P(τ) ≈ P(τ−1) then

P(τ) and K(τ) are approximate solutions to SARE
The solution P of the deterministic ARE is the kernel of the optimal cost of a

deterministic LQR and since[
Q S
S′ R

]
≤
[

Q(τ−1) S(τ−1)
S′
(τ−1) R(τ−1)

]
≤
[

Q(τ) S(τ)
S′
(τ) R(τ)

]
it follows that P(0) ≤ P(τ−1) ≤ P(τ), the iteration is monotonically increasing. We
have found computationally, using MATLAB’s are.m, that if matrices Ck and Dk
are not too big then the iteration conveges. But if the Ck and Dk are about the same
size as F and G or larger then the iteration can diverge. Further study of this issue is
needed. The iteration does converge in the following simple example.

Another issue which deserves further study is whether the first and second stan-
dard assumptions of deterministic LQR can be weakened. It is known [6] that finite
horizon stochastic LQR problems with indefinite or even negative definite R can
have finite solutions when the control enters the coefficient of the noise. One might
think that if R is negative definite then by using larger and larger control actions one
could drive the quantity to be minimized to negative infinity. But the volatility in x
cause by large control actions can cause the quadratic terms in x to get very large
thereby canceling the negative effect of the quadratic terms in u. The reason why
can be seen in the above iteration. For some τ∗ > 0 it may happen that[

Q(τ∗) S(τ∗)
S′
(τ∗) R(τ∗)

]
≥ 0

R(τ∗) > 0

then this will happen for all τ > τ∗ even though this might not be true when τ = 0.
For such problems in the above iteration one should use a solver like MATLAB’s
are.m that can handle them.

3 LQGB Example

Here is a simple example with n = 2,m = 1,r = 2.
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min
u

1
2

∫ ∞

0
‖x‖2 +u2 dt

subject to

dx1 = x2 dt +0.1x1 dw1

dx2 = u dt +0.1(x2 +u) dw2

In other words

Q =

[
1 0
0 1

]
, S =

[
0
1

]
, R = 1

F =

[
0 1
0 0

]
, G =

[
0
1

]
C1 =

[
0.1 0
0 0

]
, C2 =

[
0 0
0 0.1

]
D1 =

[
0
0

]
, D2 =

[
0

0.1

]
The solution of the noiseless ARE is

P =

[
1.7321 1.000
1.000 1.7321

]
K = −[ 1.0000 1.7321

]
The eigenvalues of the noiseless closed loop matrix F +GK are −0.8660±0.5000i.

Using are.m the above iteration converges to the solution of the noisy SARE in
eight iterations, the solution is

P =

[
1.7625 1.0176
1.0176 1.7524

]
K = −[1.0176 1.7524

]
The eigenvalues of the noisy closed loop matrix F +GK are −0.8762±0.4999i.

As expected the noisy system is more difficult to control than the noiseless sys-
tem. It should be noted that the above iteration diverged to infinity when the noise
coefficients were increased from 0.1 to 1.

4 Nonlinear Infinite Horizon HJB

Suppose the problem is not linear-quadratic, the dynamics is given by an Ito equa-
tion
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dx = f (x,u) dt +
r

∑
k=1

γk(x,u) dwk

and the criterion to be minimized is

min
u(·)

E
∫ ∞

0
l(x,u) dt

We assume that f (x,u),γk(x,u), l(x,u) are smooth functions that have Taylor
polynomial expansions around x = 0,u = 0,

f (x,u) = Fx+Gu+ f [2](x,u)+ . . .+ f [d](x,u)+O(x,u)d+1

γk(x,u) = Ckx+Dku+ γ [2]k (x,u)+ . . .+ γ [d]k (x,u)+O(x)d+1

l(x,u) =
1
2
(
x′Qx+2x′Su+u′Ru

)
+ l[3](x,u)+ . . .+ l[d+1](x,u)+O(x,u)d+2

where [d] indicates the homogeneous polynomial terms of degree d.
The stochastic Hamilton-Jacobi-Bellman equations are

0 = minu

{
∂π
∂x

(x) f (x,u)+ l(x,u)

+
1
2

r

∑
k=1

γ ′k(x,u)
∂ 2π
∂x2 (x)γk(x,u)

}
(6)

κ(x) = argminu

{
∂π
∂x

(x) f (x,u)+ l(x,u)

+
1
2

r

∑
k=1

γ ′k(x,u)
∂ 2π
∂x2 (x)γk(x,u)

}
(7)

If the control enters the dynamics affinely,

f (x,u) = f 0(x)+ f u(x)u

γk(x,u) = γ0
k (x)+ γ

u
k (x)u

and l(x,u) is always strictly convex in u for every x then the quantity to be minimized
in (6) is strictly convex in u.

Whether (6) is strictly convex or not because it is smooth, the HJB equations (6,
7) imply

0 =
∂π
∂x

(x) f (x,κ(x))+ l(x,κ(x)) (8)

+
1
2

r

∑
k=1

γ ′k(x,κ(x))
∂ 2π
∂x2 (x)γk(x,κ(x))

0 =
∂π
∂x

(x)
∂ f
∂u

(x,κ(x))+
∂ l
∂u

(x,κ(x)) (9)
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+
r

∑
k=1

γ ′k(x,κ(x))
∂ 2π
∂x2 (x)

∂γk

∂u
(x,κ(x))

These are the simplified stochastic HJB equations. Of course when (6) is not strictly
convex in u these equations do not imply the stochastic HJB equations because of
the possibility of multiple local minima.

Because f (x,u) = O(x,u) and γk(x,u) = O(x,u), (8) has a regular singular
point at x = 0,u = 0 and so is amenable to power series solution techniques. If
γk(x,u) = O(1) then there is persistent noise that must be overcome by persistent
control action. Presumably then the infinite horizon optimal cost is infinite.

Following Al’brekht [1] we assume that the optimal cost and the optimal feed-
back have Taylor polynomial expansions

π(x) =
1
2

x′Px+π [3](x)+ . . .+π [d+1](x)+O(x)d+2

κ(x) = Kx+κ [2](x)+ . . .+κ [d](x)+O(x)d+1

We plug all these expansions into the simplified SHJB equations (8, 9). At lowest
degrees, degree two in (8) and degree one in (9) we get the familiar SARE (4, 5.

If (4, 5 are solvable then we may proceed to the next degrees, degree three in (8)
and degree two in (9).

0 =
∂π [3]

∂x
(x)(F +GK)x+ x′P f [2](x,Kx)+ l[3](x,Kx) (10)

+
1
2 ∑

k
x′(C′

k +K′D′
k)
∂ 2π [3]

∂x2 (x)(Ck +DkK)x

+∑
k

x′(C′
k +K′Dk)Pγ

[2]
k (x,Kx)

0 =
∂π [3]

∂x
(x)G+ x′P

∂ f [2]

∂u
(x,Kx)+

∂ l[3]

∂u
(x,Kx) (11)

+∑
k

x′(Ck +DkK)′
(

P
∂γ [2]k
∂u

(x,Kx)+
∂ 2π [3]

∂x2 (x)Dk

)

+∑
k
γ [2]k (x,Kx)PDk +(κ [2](x))′

(
R+∑

k
D′

kPDk

)

Notice the first equation (10) is a square linear equation for the unknown π [3](x), the
other unknown κ [2](x) does not appear in it. If we can solve the first equation (10)
for π [3](x) and if R+∑k DkPDk is invertible. then we can solve the second equation
(11) for κ [2](x).

In the deterministic case the eigenvalues of the linear operator

π [3](x) �→ ∂π [3]

∂x
(x)(F +GK)x (12)
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are the sums of three eigenvalues of F +GK. Under the standard LQR assumptions
all the eigenvalues of F +GK are in the open left half plane so any sum of three
eigenvalues of F +GK is different from zero and the operator (12) is invertible.

In the stochastic case the relevant linear operator is a sum of two operators

π [3](x) �→ ∂π [3]

∂x
(x)(F +GK)x (13)

+
1
2 ∑

k
x′(C′

k +K′D′
k)
∂ 2π [3]

∂x2 (x)(Ck +DkK)x

Consider a simple version of the second operator, for some C,

π [3](x) �→ 1
2

x′C′ ∂ 2π [3]

∂x2 (x)Cx (14)

Suppose C has a complete set of left eigenpairs, λi ∈CI, wi ∈CI1×n for i = 1, . . . ,n,

wiC = λiwi

Then the eigenvalues of (14) are of the form λi1λi2 + λi2λi3 + λi3λi1 and the cor-
responding eigenvectors are (wi1x)(wi2x)(wi3x) for for 1 ≤ i1 ≤ i2 ≤ i3. But this
analysis does not completely clarify whether the operator (13) is invertible. Here is
one case where we know it is invertible.

Consider the space of cubic polynomials π(x). We can norm this space using the
standard L2 norm on the vector of coefficients of π(x) which we denote by ‖π(x)‖.
Then there is an induced norm on operators like (12), (13) and

π [3](x) �→ 1
2 ∑

k
x′(C′

k +K′Dk)
∂ 2π [3]

∂x2 (x)(Ck +DkK)x

Since the operator (12) is invertible its inverse has an operator norm ρ < ∞. If all
the eigenvalues of F +GK have real parts less that −τ then 1

ρ ≥ 3τ . Let σ be the
supremum operator norms of Ck +DkK for k = 1. . . . ,r. Then from the discussion
above we know that the operator norm of (15) is bounded above by 3rσ2

2

Lemma 1. If τ > rσ2

2 then the operator (13) is invertible.

Proof. Suppose (13) is not invertible then there exist a cubic polynomial π(x) �= 0
such that

∂π [3]

∂x
(x)(F +GK)x = −1

2 ∑
k

x′(C′
k +K′Dk)

∂ 2π [3]

∂x2 (x)(Ck +DkK)x

so ∥∥∥∥∥∂π [3]∂x
(x)(F +GK)x

∥∥∥∥∥=
∥∥∥∥∥1

2 ∑
k

x′(C′
k +K′Dk)

∂ 2π [3]

∂x2 (x)(Ck +DkK)x

∥∥∥∥∥
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But we know that∥∥∥∥∥∂π [3]∂x
(x)(F +GK)x

∥∥∥∥∥≥ 1
ρ
‖π(x)‖ ≥ 3τ‖π(x)‖> 3rσ2

2
‖π(x)‖

while ∥∥∥∥∥1
2 ∑

k
x′(C′

k +K′Dk)
∂ 2π [3]

∂x2 (x)(Ck +DkK)x

∥∥∥∥∥≤ 3rσ2

2
‖π(x)‖

The takeaway message from this lemma is that if the nonzero entries of Ck,Dk
are small relative to the nonzero entries of F,G then we can expect that (13) will be
invertible.

There are at least two ways to try solve (10), the iterative approach or the direct
approach. The iterative approach takes advantage of the MATLAB software hjb.m
that we have written to solve the deterministic version of these equations [5]. This
suggests an iteration scheme similar to the above for solving SARE. Let π [3]

(0) be the

solution of the deteministic version of (10) where Ck = 0, Dk = 0. Given π [3]
(τ−1)(x)

define

l[3]
(τ)(x,u) = l[3](x,u)+

1
2 ∑

k
x′(C′

k +K′Dk)
∂ 2π [3]τ−1

∂x2 (x)(Ck +DkK)x

+∑
k

x′(C′
k +K′Dk)Pγ

[2]
k (x,u)

and let π [3]
(τ) be the solution of

0 =
∂π [3]

(τ)

∂x
(x)(F +GK)x+ x′P f [2](x,Kx)+ l[3]

(τ)(x,Kx)

If this iteration converges then we have the solution to (10). More recently we
have written software to find the Talor polynomials of π(x) and κ(x) directly, see
shjb.m in our Nonlinear Systems Toolbox [5].

If (10) is solvable then solving (11) for κ [2](x) is straightforward assuming that
R+∑k(Ck +DkK)′P(Ck +DkK) is invertible. If these equations are solvable then
we can move on to the equations for π [4](x) and κ [3](x) and higher degrees.

It should be noted that if the Lagrangian is an even function and the dynamics
is an odd function then the optimal cost π(x) is an even function and the optimal
feedback κ(x) is an odd function.
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5 Nonlinear Example

Here is a simple example with n = 2,m = 1,r = 3. Consider a pendulum of length
1 m and mass 1 kg orbiting approximately 400 kilometers above Earth on the Inter-
national Space Station (ISS). The ”gravity constant” at this height is approximately
g = 8.7 m/sec2. The pendulum can be controlled by a torque u that can be ap-
plied at the pivot and there is damping at the pivot with linear damping constant
c = 0.1 kg/sec and cubic damping constant c3 = 0.05 kg sec/m2. Let x1 denote
the angle of pendulum measured counter clockwise from the outward pointing ray
from the center of the Earth and let x2 denote the angular velocity. The determistic
equations of motion are

ẋ1 = x2

ẋ2 = lgsinx1 − c1x2 − c3x3
2 +u

But the shape of the earth is not a perfect sphere and its density is not uniform so
there are fluctuations in the ”gravity constant”. We set these fluctuations at around
one percent although they are probably smaller. There might also be fluctuations in
the damping constants of around one percent. Further assume that the commanded
torque is not always realized and the relative error in the actual torque fluctuates
around one percent. We model these stochastically by three white noises

dx1 = x2 dt

dx2 =
(
lgsinx1 − c1x2 − c3x3

2 +u
)

dt

+0.01lgsinx1 dw1 −0.01(c1x2 + c3x3
2) dw2 +0.01u dw3

This is an example about how stochastic models with noise coefficients of order
O(x,u) can arise. If the noise is modeling an uncertain environment then its co-
efficients are likely to be O(1). But if it is the model that is uncertain then noise
coefficients are likely to be O(x,u).

The goal is to find a feedback u = κ(x) that stabilizes the pendulum to straight
up in spite of the noises so we take the criterion to be

min
u

1
2

∫ ∞

0
‖x‖2 +u2 dt

Then

F =

[
0 1

8.7 0.1

]
, G =

[
0
1

]
,

Q =

[
1 0
0 1

]
, R = 1, S =

[
0
0

]
C1 =

[
0 0

0.087 0

]
, C2 =

[
0 0
0 −0.001

]
, C3 =

[
0 0
0 0

]
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D1 =

[
0
0

]
, D2 =

[
0
0

]
, D3 =

[
0

0.01

]
Because the Lagrangian is an even function and the dynamics is an odd function

of x,u, we know that π(x) is an even function of x and κ(x) is an odd function of x.
We have computed the optimal cost π(x) to degree 6 and the optimal feedback

κ(x) to degree 5,

π(x) = 26.7042x2
1 +17.4701x1x2 +2.9488x2

2

−4.6153x4
1 −2.9012x3

1x2 −0.5535x2
1x2

2 −0.0802x1x3
2 −0.0157x4

2

0.3361x6
1 +0.1468x5

1x2 −0.0015x4
1x2

2 −0.0077x3
1x3

2

−0.0022x2
1x4

2 −0.0003x1x5
2 +0.000025058x6

2

κ(x) = −17.4598x1 −5.8941x2

+2.8995x3
1 +1.1064x2

1x2 +0.2404x1x2
2 +0.0628x3

2

−0.1467x5
1 +0.0031x4

1x2 +0.0232x3
1x2

2

+0.0089x2
1x3

2 +0.0014x1x4
2 −0.0002x5

2

Fig. 1 Taylor approximations of sin(x)

In making this computation we are approximating sinx1 by its Taylor polynomi-
als

sinx1 = x1 − x3
1

6
+

x5
1

120
+ · · ·

The alternating signs of the odd terms in these polynomials are reflected in the
nearly alternating signs in the Taylor polynomials of the optimal cost π(x) and op-
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timal feedback κ(x). If we take a first degree approximation to sinx1 we are over-
estimating the gravitational force pulling the pendulum from its upright position
pointing so π [2(x) overestimates the optimal cost and the feedback u = κ [1](x) is
stronger than it needs to be. The latter could be a problem if there is a bound on the
magnitude of u that we ignored in the analysis. If we take a third degree approxima-
tion to sinx1 then π [2](x)+π [4](x) underestimates the optimal cost and the feedback
u = κ [1](x)+κ [3](x) is weaker than it needs to be. If we take a fifth degree approxi-
mation to sinx1 then π [2](x)+π [4](x)+π [6](x) overestimates the optimal cost but by
a smaller margin than π [2(x). The feedback u= κ [1](x)+κ [3](x)+κ [5](x) is stronger
than it needs to be but by a smaller margin than u= κ [1](x). This smaller margin may
be important if there is a saturation limit on the control. Moreover since the quintic
feedback is less aggressive than the linear feedback this may be advantageous in
contolling a more complcated like a double pendulum.

6 Finite Horizon Stochastic Nonlinear Optimal Control Problem

Consider the finite horizon stochastic nonlinear optimal control problem,

min
u(·)

E
{∫ T

0
l(t,x,u) dt +πT (x(T ))

}

subject to

dx = f (t,x,u)dt +
r

∑
k=1

γk(t,x,u)dwk

x(0) = x0

Again we assume that f , l,γk,πT are sufficiently smooth.
If they exist and are smooth the optimal cost π(t,x) of starting at x at time t and

the optimal feedback u(t) = κ(t,x(t)) satisfy the time dependent Hamilton-Jacobi-
Bellman equations (HJB)

0 = minu

{
∂π
∂ t

(t,x)+
∂π
∂x

(t,x) f (t,x,u)+ l(t,x,u)

+
1
2

k

∑
l=1
γ ′k(t,x,u)

∂ 2π
∂x2 (t,x)γk(t,x,u)

}

0 = argminu

{
∂π
∂x

(t,x) f (t,x,u)+ l(t,x,u)

+
1
2

r

∑
k=1

γ ′k(t,x,u)
∂ 2π
∂x2 (t,x)γk(t,x,u)

}
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If the quantity to be minimized is strictly convex in u then HJB equations simplify
to

0 =
∂π
∂ t

(t,x)+
∂π
∂x

(t,x) f (t,x,κ(x))+ l(t,x,κ(x))

+
1
2

r

∑
k=1

γ ′k(t,x,κ(x))
∂ 2π
∂x2 (t,x)γk(t,x,κ(x)) (1)

0 =
∂π
∂x

(x)
∂ f
∂u

(t,x,κ(x))+
∂ l
∂u

(t,x,κ(x)) (2)

+
r

∑
k=1

γ ′k(t,x,κ(x))
∂ 2π
∂x2 (x)

∂γk

∂u
(t,x,κ(x))

Even if the quantity to be minimized is not convex in u then HJB equations imply
these simplified equations but not necessarily vice versa.

These simplified equations are integrated backward in time from the final condi-
tion

π(T,x) = πT (x) (3)

Again we assume that we have the following Taylor expansions

f (t,x,u) = F(t)x+G(t)u+ f [2](t,x,u)+ f [3](t,x,u)+ . . .

l(t,x,u) =
1
2
(
x′Q(t)x+2x′S(t)u+u′R(t)u

)
+ l[3](t,x,u)+ l[4](t,x,u)+ . . .

γk(t,x,u) = Ck(t)x+Dk(t)u+ γ
[2]
k (t,x,u)+ γ [3]k (t,x,u)+ . . .

πT (x) =
1
2

x′PT x+π [3]T (x)+π [4]T (x)+ . . .

π(t,x) =
1
2

x′P(t)x+π [3](t,x)+π [4](t,x)+ . . .

κ(t,x) = K(t)x+κ [2](t,x)+κ [3](t,x)+ . . .

where [r] indicates terms of homogeneous degree r in x,u with coefficients that are
continuous functions of t.

The key assumption is that γk(t,0,0) = 0 for then (1) has a regular singular point
at x = 0 and so is amenable to power series methods.

We plug these expansions into the simplified time dependent HJB equations and
collect terms of lowest degree, that is, degree two in (1), degree one in (2) and degree
two in (3).

0 = Ṗ(t)+P(t)F(t)+F ′(t)P(t)+Q(t)−K′(t)R(t)K(t)

+∑
k

(
C′

k(t)+K′(t)D′
k(t)
)

P(t)(Ck(t)+Dk(t)K(t))
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K(t) = −
(

R(t)+
r

∑
k=1

D′
k(t)P(t)Dk(t)

)−1

(G′(t)P(t)+S(t))

P(T ) = PT

We call these equations the stochastic differential Riccati equations (SDRE). Sim-
ilar equations in more generality can be found in [6] but since we are interested in
nonlinear problems we require that γk(t,x,u) = O(x,u) so that the stochastic HJB
equations have a regular singular point at the origin.

If SDRE are solvable we may proceed to the next degrees, degree three in (1),
and degree two in (3).

0 =
∂π [3]

∂ t
(t,x)+

∂π [3]

∂x
(t,x)(F(t)+G(t)K(t))x

+x′P(t) f [2](t,x,K(t)x)+ l[3](t,x,Kx)

+
1
2 ∑

k
x′C′

k(t)
∂ 2π [3]

∂x2 (t,x)(Ck +Dk(t)K(t))(t)x

+∑
k

x′
(
C′

k(t)+K′(t)D′
k(t)
)

P(t)γ [2]k (t,x)

0 =
∂π [3]

∂x
(t,x)G(t)+ x′P(t)

∂ f [2]

∂u
(t,x,K(t)x)+

∂ l[3]

∂u
(t,x,K(t)x)

+ ∑
k

x′(Ck(t)+Dk(t)K(t))′
(

P(t)
∂γ [2]k
∂u

(x,K(t)x)+
∂ 2π [3]

∂x2 (x)Dk(t)

)

+ ∑
k
γ [2]k (x,K(t)x)P(t)Dk(t)+(κ [2](t,x))′

(
R(t)+∑

k
D′

k(t)PDk(t)

)

Notice again the unknown κ [2](t,x) does not appear in the first equation which is
linear ode for π [3](t,x) running backward in time from the terminal condition,

π [3](t,x) = π [3]T (x)

After we have solved it then the second equation for κ [2](t,x) is easily solved be-
cause of the standard assumption that R(t) is invertible and hence
R(t)+G′(t)P(t +1)G(t)+∑k D′

k(t)P(t)Dk(t) is invertible.
The higher degree terms can be found in a similar fashion.
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7 Conclusion

We have considered nonlinear continuous time stochastic optimal control problems
over infinite and finite horizons under the assumption the coefficients of the noise
terms are O(x,u). This assumption implies that corresponding Hamilton-Jacobi-
Bellman equations have regular singular points at the origin and so we can compute
the Taylor polynomials of the optimal cost and optimal feedback degree by degree.
At the lowest degrees, two in optimal cost and one in the optimal feedback, we ob-
tained Riccati equations. The infinite horizon Riccati equation is a new algebraic
equation while the finite horizon Riccati equation is a familiar differential equa-
tion. The infinite horizon higher degree terms are found by solving linear algebraic
equations while the finite horizon higher degree terms are found by solving linear
differential equations. We have written general purpose MATLAB code to solve the
algebraic equations.
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Information Diffusion in Social Networks:

Friendship Paradox Based Models and

Statistical Inference

Vikram Krishnamurthy and Buddhika Nettasinghe

Abstract Dynamic models and statistical inference for the diffusion of information
in social networks is an area which has witnessed remarkable progress in the last
decade due to the proliferation of social networks. Modeling and inference of dif-
fusion of information has applications in targeted advertising and marketing, fore-
casting elections, predicting investor sentiment and identifying epidemic outbreaks.
This chapter discusses three important aspects related to information diffusion in
social networks: (i) How does observation bias due to the friendship paradox (on
average your friends have more friends than you do) and monophilic contagion (in-
fluence of friends of friends) affect the information diffusion dynamics? (ii) How
can social networks adapt their structural connectivity depending on the state of in-
formation diffusion? (iii) How one can estimate the state of the network induced
by information diffusion? The motivation for these three topics stems from recent
results in network science and social sensing.

1 Introduction

Information diffusion refers to how the opinions (states) of individual nodes in a
social network (graph) evolve with time. The two phenomena that give rise to infor-
mation diffusion in social networks are contagion and homophily. Contagion-based
diffusions are driven by influence of neighbors whereas homophily-based diffusions

Vikram Krishnamurthy
Cornell Tech and School of Electrical & Computer Engineering, Cornell University
e-mail: vikramk@cornell.edu

Buddhika Nettasinghe
Cornell Tech and School of Electrical & Computer Engineering, Cornell University
e-mail: dwn26@cornell.edu

This research was supported by the Army Research Office under grant W911NF-17-1-0335 and
National Science Foundation under grant 1714180.

© Springer Nature Switzerland AG 2019
G. Yin and Q. Zhang (eds.), Modeling, Stochastic Control, 
Optimization, and Applications, The IMA Volumes in
Mathematics and its Applications 164,
https://doi.org/10.1007/978-3-030-25498-8_16

369

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25498-8_16&amp;domain=pdf


370 Vikram Krishnamurthy and Buddhika Nettasinghe

are driven by properties of nodes (which are correlated among neighbors) [3, 63, 84].
Dynamic models and statistical inference for such information diffusion processes
in social networks (such as news, innovations, cultural fads, etc) has witnessed re-
markable progress in the last decade due to the proliferation of social media net-
works such as Facebook, Twitter, YouTube, Snapchat and also online reputation
systems such as Yelp and Tripadvisor. Models and inference methods for informa-
tion diffusion in social networks are useful in a wide range of applications including
selecting influential individuals for targeted advertising and marketing [41, 68, 83],
localization of natural disasters [82], forecasting elections [69] and predicting sen-
timent of investors in financial markets [75, 8]. For example, [4] shows that models
based on the rate of Tweets for a particular product can outperform market-based
prediction methods.

This chapter deals with the contagion-based information diffusion in large scale
social networks. In such contagion-based information diffusion (henceforth referred
to as information diffusion) processes, states (which represent opinions, voting in-
tentions, purchase of a product, etc.) of individuals in the network evolve over time
as a probabilistic function of the states of their neighbors. Popular models for study-
ing information diffusion processes over networks include Susceptible-Infected
(SI), Susceptible-Infected-Susceptible (SIS), Susceptible-Infected-Recovered (SIR)
and Susceptible-Exposed-Infected-Recovered (SEIR) [32, 14]. Apart from these
models, several recent works also investigated information diffusions using real-
world social network datasets: [80] studied the spread of hashtags on Twitter, [6]
conducted larges scale field experiments to identify the causal effects of peer in-
fluence in information diffusion, [56] studied how the network structure affects dy-
namics of information flow using Digg and Twitter datasets to track how interest in
new stories spread over them.

Main Topics and Organization

In this chapter, we consider a discrete time version of the SIS model on an undirected
network which involves two steps (detailed in Sec. 2) at each time instant. In the first
step, a randomly sampled individual (agent) m from the population observes d(m)
(degree of m) number of randomly selected agents (neighbors of m). In the second
step, based on the d(m) observations, the state of agent m evolves probabilistically
to one of the two possible states: infected or susceptible.

In the context of this discrete time SIS model, next, we briefly discuss the main
topics studied in this chapter, motivation for studying them and how they are orga-
nized throughout this chapter. Further, how the main topics discussed in different
sections are interconnected with each other and unified under the main theme of
dynamic modeling and statistical inference of information diffusion processes is
illustrated in Fig. 1.
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SIS Model – Sec. 2

Step 1 – Sample a node m

Step 2 – Update m's state
based on her neighbors

Effects of Friendship Paradox – Sec. 3

Sec 3.1 - Effect of Friends Evolving 
(instead of nodes) in Step 1 of SIS model

Sec 3.2 - Effect of Two-hop (Monophilic) 
Contagion in the Step 2 of the SIS model

Dynamic Model

Statistical Inference

Case 1 - Slow Diffusion

Sec. 5 - Friendship Paradox
based estimation of the
infected fraction of nodes

Case 2 - Fast Diffusion

Sec. 6 – Non-linear Bayesian
filtering to estimate
population state

Reactive Network – Sec. 4
(State Dependent Network 

Evolution)

Fig. 1: Block diagram illustrating the main topics covered and their organization
in this chapter. The main topics are unified under the central theme of dynamic
modeling and statistical inference of information diffusion processes over social
networks.

1. Friendship Paradox based Variants of the SIS model

The first topic (Sec. 3) studies the effects of friendship paradox on the SIS model.
The friendship paradox refers to a graph theoretic consequence that was introduced
in 1991 by Scott. L. Feld in [17]. Feld’s original statement of the friendship paradox
is “on average, the number of friends of a random friend is always greater than or
equal to the number of friends of a random individual”. Here, a random friend refers
to a random end node Y of a randomly chosen edge (a pair of friends) in the network.
This friendship paradox is formally stated as follows:

Theorem 1 (Friendship Paradox [17]). Let G = (V,E) be an undirected graph,
X be a node chosen uniformly from V and, Y be a uniformly chosen node from a
uniformly chosen edge e ∈ E. Then,

E{d(Y )} ≥ E{d(X)}, (1)

where, d(X) denotes the degree of X.

Studying the friendship paradox (Theorem 1) based variants of the SIS model is
motivated by the following two assumptions made in most works (for example, see
[59, 39, 60, 77, 40]) related to SIS models.
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i. Each node is equally likely to update its state at each time instant i.e. uniform
nodes are sampled in the first step of the SIS model.

ii. Individuals decide whether to get infected or not based only on their (immedi-
ate) neighbors’ states.

In real world social networks (e.g. Facebook or Twitter), the frequency with
which a node updates her state (e.g. opinion) depends on the number of her social
interactions (i.e. degree) according to recent findings [35]. This contradicts the as-
sumption i. As a solution, Sec. 3.1 studies the modified SIS model where the state of
a random friend (instead of a random node) evolves at each time instant. This mod-
ification to the standard SIS model reflects the fact that high degree nodes evolve
more often in real world social networks. The main result of Sec. 3.1 shows that this
modification results in different dynamics (compared to the standard SIS model)
but, with the same critical thresholds (which determine if the information diffusion
process will eventually die away or not) on the parameters of the SIS model.

Further, it has been shown in several recent works (e.g. [2, 18]) that the individ-
uals’ attributes and decisions in real world social networks are affected by two-hop
neighbors (i.e. friends of friends). This two-hop neighbors’ effects in real world
networks are ignored in the assumption ii of the standard SIS model. As an alterna-
tive, Sec. 3.2 considers the case where friends of friends influences the state evolu-
tions instead of friends. We refer to this two-hop influence as monophilic contagion
since the correlation between two-hop nodes is called monophily1 [2]. Main result
of Sec. 3.2 shows that information diffusion processes under monophilic contagion
(decision to adopt a product, an idea, etc. is based on two-hop neighbors) spreads
more easily (i.e. has a smaller critical threshold) compared to information diffu-
sion under non-monophilic contagion (one-hop influence) as a result of the friend-
ship paradox2. This result also suggests that talking to random friends of friends
could be more efficient (compared to talking to random friends) in spreading ru-
mors, news, etc. The well known friendship paradox based immunization approach
[12] that immunizes random friends (instead of random nodes) relies on a similar
argument: random friends have larger degrees (compared to random nodes) and are
more critical to the spreading of a disease.

2. SIS Model and Reactive Networks: Collective Dynamics

Modeling a network as a deterministic graph does not capture information diffu-
sion processes in real world networks. Several works proposed and analyzed evolv-
ing graph models: [73] studied the adaptive susceptible-infected-susceptible (ASIS)
model where susceptible individuals are allowed to temporarily cut edges connect-
ing them to infected nodes in order to prevent the spread of the infection, [76] ana-
lyzed the stability of epidemic processes over time-varying networks and provides

1 The concept of monophily presented in [2] does not give a causal interpretation but only the
correlation between two-hop neighbors of an undirected graph. What we consider is monophilic
contagion (motivated by monophily): the information diffusion caused by the influence of two hop
neighbors in an undirected network.
2 Effects of the friendship paradox on information diffusion have been considered in [54, 5, 55].
However, the effect of friendship paradox on information diffusion under monophilic contagion
(two-hop influence) has not been explored in the literature to the best of our knowledge.
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sufficient conditions for convergence, [74] studied a SIS process over a static contact
network where the nodes have partial information about the epidemic state and react
by limiting their interactions with their neighbors when they believe the epidemic is
currently prevalent. These serve as the motivation for Sec. 4 where the underlying
network is modeled as a reactive network: a random graph process whose transition
probabilities at each time instant depend on the state of the information diffusion
process. The main result of Sec. 4 shows that, when the network is a reactive net-
work which randomly evolves depending on the state of the information diffusion,
the collective dynamics of the network and the diffusion process can be approxi-
mated (under some assumptions) by an ordinary differential equation (ODE) with an
algebraic constraint. From a statistical modeling and machine learning perspective,
the importance of this result relies on the fact that it provides a simple deterministic
approximation of the collective stochastic dynamics of a complex system (an SIS
process on a random graph, both evolving on the same time scale).

3. Estimating the Population State under Slow and Fast Information Diffusion

Sec. 5 and Sec. 6 deal with estimating the population states induced by the SIS
model under two cases:

1. the information diffusion is slow and hence states of nodes can be treated as
fixed for the purpose of the estimating the population state

2. the information diffusion is fast and hence, states of nodes cannot be treated as
fixed for the purpose of estimation.

Case 1 - Polling under slow information diffusion

Polling is the method of asking a question from randomly (according to some dis-
tribution) sampled individuals and averaging their responses [26]. Therefore, the
accuracy of a poll depends on two factors: (i) - method of sampling respondents
for the poll (ii) - question presented to the sampled individuals. For example, when
forecasting the outcome of an election, asking people Who do you think will win?”
(expectation polling) is better compared to Who will you vote for?” (intent polling)
[81]. This is due to the fact that an individual will name the candidate that is most
popular among her friends in expectation polling (and thus summarizing a number
of individuals in the social network) instead of providing her own voting intention.
Motivated by such polling approaches, Sec. 5 presents two friendship paradox based
polling algorithms that aim to estimate the fraction of infected individuals by query-
ing random friends instead of random individuals. Since random friends have more
friends (and hence, have more observations) than random individuals on average, the
proposed methods yield a better (in a mean squared error sense) estimate compared
to intent polling as well as expectation polling with random nodes.

Case 2 - Bayesian filtering under fast information diffusion

Friendship paradox based polling algorithms in Sec. 5 assume that information dif-
fusion takes place on a slower time scale compared to the time taken to poll the
individuals. Hence, for the purpose of the polling algorithm, the states of the in-
dividuals can be treated as fixed. However, such approaches are not applicable in
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situations where the information diffusion takes place on the same time scale as the
time scale on which individuals are polled i.e. cases where measurement (polling)
process takes place on the same time scale as the one on which the information
spreads. Further, the information diffusion process constitute a non-linear (in the
states) dynamical system as we show subsequently in Sec. 2. Hence applying opti-
mal filtering algorithms such as Kalman filter is not possible. These facts motivate
the non-linear filtering algorithm discussed in Sec. 6 which recursively (with each
new measurement) computes the conditional mean of the state of the information
diffusion (given the observations).

Summary

The main topics explored in this chapter bring together two important aspects re-
lated to a stochastic dynamical system mentioned at the beginning of this chapter:
dynamic modeling and statistical inference. In terms of the dynamic modeling as-
pect (which is covered in Sec. Sec. 2, Sec. 3 and Sec. 4), we are interested in under-
standing how changes to the standard SIS-model can result in different dynamics
and stationary states. In terms of statistical inference (covered in Sec. 5 and Sec.
6), we are interested in estimating the underlying state of the population induced by
the model. Fig. 1 illustrates how these topics are organized in this chapter and are
interconnected under the unifying theme. Rather than delving into detailed proofs,
our aim in this chapter is to stress several novel insights.

2 Mean-Field Dynamics of SIS Model and Friendship Paradox

Mean-field dynamics refers to a simplified model of a (stochastic) system where the
stochastic dynamics are replaced by deterministic dynamics. Much of this research
is based on the seminal work of Kurtz [52] on population dynamics models. In this
section, we first discuss how mean-field dynamics can be used as a deterministic
model of a SIS diffusion process over an undirected network. Since an SIS diffusion
over a social network is a Markov process whose state space grows exponentially
with the number of individuals, mean-field dynamics offers a deterministic model
that is analytically tractable [59, 60, 39, 46]. Then, several recent generalizations of
the original version of the friendship paradox are presented. The purpose of mean-
field dynamics and the friendship paradox results discussed in this section is to study
(in Sec. 3) how friendship paradox based changes to the standard SIS model (e.g.
random friends evolving instead of random nodes in the step 1 of SIS model) can
result in different mean-field dynamics and critical thresholds.
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2.1 Discrete time SIS Model

Consider a social network represented by an undirected graph G = (V,E) where
V = {1,2, . . . ,M} denotes the set of nodes. At each discrete time instant n, a node
v ∈V of the network can take the state s(v)n ∈ {0,1} where, 0 denotes the susceptible
state and 1 denotes the infected state. The degree d(v) ∈ {1, . . . ,D} of a node v ∈V
is the number of nodes connected to v and, M(k) denotes the total number of nodes
with degree k. Then, the degree distribution P(k) = M(k)

M is the probability that a
randomly selected node has degree k. Further, we also define the population state
x̄n(k) as the fraction of nodes with degree k that are infected (state 1) at time n i.e.

x̄n(k) =
1

M(k) ∑
v∈V

1{d(v)=k,s(v)n =1}, k = 1, . . . ,D. (2)

For this setting, we adopt the SIS model used in [46, 47] which is as follows
briefly.
Discrete Time SIS Model: At each discrete time instant n,
Step 1: A node m ∈V is chosen with uniform probability pX (m) = 1/M where, M

is the number of nodes in the graph.
Step 2: The state s(v)n ∈ {0,1} of the sampled node m (in Step 1) evolves to s(v)n+1 ∈

{0,1} with transition probabilities that depend on the degree of m, number of
infected neighbors of m, population state of the network x̄n

3 and the current
state of s(m)

n .

Note that the above model is a Markov chain with a state space consisting of 2M

states (since each of the M nodes can be either infected or susceptible at any time
instant). Due to this exponentially large state space, the discrete time SIS model is
not mathematically tractable. However, we are interested only in the fraction of the
infected nodes (as opposed to the exact state out of the 2M states) and therefore, it is
sufficient to focus on the dynamics of the population state x̄n defined in (2) instead
of the exact state of the infection.

2.2 Mean-Field Dynamics Model

Mean-field dynamics has been used in literature (e.g. [59, 60, 39, 52, 46]) as a
useful means of obtaining a tractable deterministic model of the dynamics of the
population state x̄n. The following result from [46] shows how mean-field dynamics
model closely approximates the stochastic dynamics of the true population state x̄n.

3 x̄n(k) is the fraction of infected nodes with degree k i.e. x̄n(k) =
M1(k)
M(k) where M1(k) is the number

of infected nodes with degree k and M(k) is the number of nodes with degree k.
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Theorem 2 (Mean-Field Dynamics). With M denoting the number of nodes in the
network:

1. The population state defined in (2) evolves according to the following stochastic
difference equation driven by a martingale difference process ζ :

x̄n+1(k) = x̄n(k)+
1
M
[P01(k, x̄n)−P10(k, x̄n)]+ζn (3)

Here,

P01(k, x̄n) = (1− x̄n(k))P(sm
n+1 = 1|sm

n = 0,d(m) = k, x̄n) (4)
P10(k, x̄n) = x̄n(k)P(sm

n+1 = 0|sm
n = 1,d(m) = k, x̄n). (5)

are the scaled transition probabilities of the states and, ζn is a martingale dif-
ference process with ||ζn||2 ≤ Γ

M for some positive constant Γ .
2. Consider the mean-field dynamics process associated with the population state:

xn+1(k) = xn(k)+
1
M

(
P01(k,xn)−P10(k,xn)

)
(6)

where, P01(k,xn) and P10(k,xn) are defined in (4), (5) and initial state x0 =
x̄0. Then, for a time horizon of T points, the deviation between the mean-field
dynamics (6) and the actual population state x̄n of the SIS model satisfies

P{ max
0≤n≤T

||xn − x̄n||∞ ≥ ε} ≤C1 exp(−C2ε2M) (7)

for some positive constants C1,C2 providing T = O(M).

The first part of Theorem 2 is the classical martingale representation of a Markov
chain (which is the population state x̄n). Note from (3) that the dynamics of the
population state x̄n resemble a stochastic approximation recursion (new state is the
old state plus a noisy term). Hence, the trajectory of the population state x̄n should
converge (weakly) to the deterministic trajectory given by the ODE corresponding
to the mean-field dynamics in (6) as the size of the network M goes to infinity i.e.
the step size of the stochastic approximation algorithm goes to zero (for details,
see [45, 53]). Second part of the Theorem 2 provides an exponential bound on the
deviation of the mean-field dynamics model from the actual population state for
a finite length of the sample path. In the subsequent sections of this chapter, the
mean-field approximation (6) is utilized to explore the topics outlined in Sec. 1.

2.3 Friendship Paradox

Recall that the friendship paradox (Theorem 1) is a comparison between the average
degrees of a random individual X and a random friend Y . This subsection reviews
recent generalizations and extensions of the friendship paradox stated in Theorem 1.
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The original version of the friendship paradox (Theorem 1) can be described
more generally in terms of likelihood ratio ordering as follows:

Theorem 3 (Friendship Paradox - Version 1 [9]). Let G = (V,E) be an undirected
graph, X be a node chosen uniformly from V and, Y be a uniformly chosen node from
a uniformly chosen edge e ∈ E. Then,

d(Y )≥lr d(X), (8)

where, ≥lr denotes the likelihood ratio dominance4.

Theorem 4 (based on [9]) states that a similar result holds when the degrees of a
random node X and a random friend Z of a random node X are compared as well.

Theorem 4 (Friendship Paradox - Version 2 [9]). Let G = (V,E) be an undirected
graph, X be a node chosen uniformly from V and, Z be a uniformly chosen neighbor
of a uniformly chosen node from V . Then,

d(Z)≥ f osd d(X) (9)

where, ≥ f osd denotes the first order stochastic dominance5.

The intuition behind the two versions of the friendship paradox (Theorems 3 and
4) stems from the fact that individuals with a large number of friends (high degree
nodes) appear as the friends of a large number of individuals. Therefore, high degree
nodes contributes to an increase in the average number of friends of friends. On the
other hand, individuals with smaller number of friends appear as friends of a smaller
number of individuals. Hence, they do not cause a significant change in the average
number of friends of friends.

Friendship paradox, which in essence is a sampling bias observed in undirected
social networks has gained attention as a useful tool for estimation and detection
problems in social networks. For example, [16] proposes to utilize friendship para-
dox as a sampling method for reduced variance estimation of a heavy-tailed degree
distribution, [11, 20, 85] explore how the friendship paradox can be used for detect-
ing a contagious outbreak quickly, [83, 54, 37, 42, 51] utilizes friendship paradox for
maximizing influence in a social network, [69] proposes friendship paradox based
algorithms for efficiently polling a social network (e.g. to forecast an election) in a
social network, [38] studies how the friendship paradox in a game theoretic setting
can systematically bias the individual perceptions.

4 A discrete random variable Y (with a probability mass function fY ) likelihood ratio dominates a
discrete random variable X (with a probability mass function fX ), denoted Y ≥lr X if, fY (n)/ fX (n)
is an increasing function of n. Further, likelihood ratio dominance implies larger mean. Therefore,
Theorem 3 implies that E{d(Y )} ≥ E{d(X)} as stated in Theorem 1.
5 A discrete random variable Y (with a cumulative distribution function FY ) first order stochasti-
cally dominates a discrete random variable X (with a cumulative distribution function FX ), denoted
Y ≥ f osd X if, FY (n)≤ FX (n), for all n. Further, first order stochastic dominance implies larger
mean. Hence, Theorem 4 implies that E{d(Z)} ≥ E{d(X)}.
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Several generalizations, extensions and consequences of friendship paradox have
also been proposed in the literature. [15] shows how friendship paradox can be gen-
eralized to other attributes (apart from the degree) such as income and happiness
when there exists a positive correlation between the attribute and the degree. Re-
lated to this work, [33] showed that certain other graph based centrality measures
such as eigenvector centrality and Katz centrality (under certain assumptions) ex-
hibit a version of the friendship paradox, leading to the statement “your friends
are more important than you, on average”. [34] extended the concept of friendship
paradox to directed networks and empirically showed that four versions of friend-
ship paradox which compare the expected in- and out- degrees of random friends
and random followers to expected degree of a random node can exist in directed
social networks such as Twitter. [57] discusses “majority illusion” an observation
bias that stems from friendship paradox which makes many individuals in a social
network to observe that a majority of their neighbors are in a particular state (e.g.
possesses an iPhone), even when that state is globally rare. Similarly, [5, 43, 7, 19]
also discuss various other generalizations and consequences of friendship paradox.

3 Effects of Friendship Paradox on SIS Model

Sec. 2 reviewed the discrete time SIS model that involves two steps and, showed
how mean-field dynamics can be used as a deterministic model of an SIS infor-
mation diffusion process. In the context of the SIS model, the aim of this section
is to explore how changes (motivated by examples discussed in Sec. 1) to the first
step (sampling a node m) and the second step (m updates its state probabilistically
based on the states of neighbors) of the standard SIS model are reflected in the de-
terministic mean-field dynamics model and its critical threshold. The changes to the
standard SIS model (Sec. 2.1) that we explore are motivated by friendship paradox
in the sense that we consider 1 - random friends (instead of random nodes) are sam-
pled in the first step, 2 - state of the sampled node is updated based on the states of
friends of friends (instead of immediate friends).

3.1 Effect of the Sampling Distribution in the Step 1 of the SIS
Model

Recall from Sec. 2.3 that we distinguished between three sampling methods for a
network G = (V,E): a random node X , a random friend Y and, a random friend Z of
a random node. Further, recall that in the discrete-time SIS model explained in Sec.
2.1, the node m that whose state evolves is sampled uniformly from V i.e. m d

= X .
This section studies the effect of random friends (Y or Z) evolving at each time
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instant instead of random nodes (X) i.e. the cases where m d
= Y or m d

= Z. Following
is the main result in this section:

Theorem 5. Consider the discrete time SIS model presented in Sec. 2.1.
1. If the node m is a random end Y of random link i.e. node m with degree d(m) is

chosen with probability pY (m) = d(m)
∑v∈V d(v) , then the stochastic dynamics of the

SIS model can be approximated by,

xn+1(k) = xn(k)+
1
M

k
k̄

(
P01(k,xn)−P10(k,xn)

)
, (10)

where k̄ is the average degree of the graph G = (V,E).
2. If the node m is a random neighbor Z of a random node X, then the stochastic

dynamics of the SIS model can be approximated by,

xn+1(k) = xn(k)+
1
M

(
∑
k′

P(k)
P(k′)

P(k|k′)
)(

P01(k,xn)−P10(k,xn)
)
, (11)

where k̄ is the average degree of the graph G = (V,E), P is the degree distribu-
tion and P(k|k′) is the probability that a random neighbor of a degree k′ node is
of degree k. Further, if the network is a degree-uncorrelated network i.e. P(k|k′)
does not depend on k′, then (11) will be the same as (10).

Theorem 5 is proved in [70]. Theorem 5 shows that, if the node m sampled in
the step 1 of the SIS model (explained in Sec. 2.1), is chosen to be a random friend
or a random friend of a random node, then different elements xn(k) of the mean-
field approximation evolves at different rates. This result allows us to model the
dynamics of the population state in the more involved case where, frequency of the
evolution of an individual is proportional his/her degree (part 1 - e.g. high degree
nodes change opinions more frequently due to higher exposure) and also depends on
the degree correlation (part 2 - e.g. nodes being connected to other similar/different
degree nodes changes the frequency of changing the opinion).

Remark 1 (Invariance of the critical thresholds to the sampling distribution in step
1). The stationary condition for the mean-field dynamics is obtained by setting
xn+1(k)− xn(k) = 0 for all k ≥ 1. Comparing (6) with (10) and (11), it can be seen
that this condition yields the same expression P01(k,xn)−P10(k,xn) = 0, for all three
sampling methods (random node - X , random end of a random link Y and, a random
neighbor Z of a random node). Hence, the critical thresholds of the SIS model are
invariant to the distribution from which the node m is sampled in step 1. This leads
us to Sec. 3.2 where, modifications to the step 2 of the SIS model are analyzed in
terms of the critical thresholds.
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3.2 Critical Thresholds for Unbiased-degree Networks

In Sec. 3.1 of this paper, we focused on step 1 of the SIS model (namely, distribu-
tion with which the node m is drawn at each time instant) and, showed that different
sampling methods for selecting the node m result in different mean-field dynamics
with the same stationary conditions. In contrast, the focus of this subsection is on the
step 2 of the SIS model (namely, the probabilistic evolution of the state of the node
m sampled in step 1) and, how changes to step 2 would result in different stationary
conditions and critical thresholds. More specifically, we are interested in under-
standing the effects on the SIS information diffusion process caused by monophilic
contagion: node m’s state evolves based on the states of random friends of friends
(two-hop neighbors). This should be contrasted to the standard SIS information dif-
fusion processes based on non-monophilic contagion where, evolution of node m’s
state is based on states of random friends (one-hop neighbors).

3.2.1 Critical Thresholds of Information Diffusion Process under Monophilic

and Non-Monophilic Contagion Rules

Recall the SIS model reviewed in Sec. 2.1 again. We limit our attention to the case
of unbiased-degree networks and viral adoption rules discussed in [61].

Unbiased-degree network: In an unbiased-degree network, neighbors of agent m
sampled in the step 1 of the SIS model are d(m) (degree of agent m) number of
uniformly sampled agents (similar in distribution to the random variable X) from
the network. Therefore, in an unbiased-degree network, any agent is equally likely
to be a neighbor of the sampled (in the step 1 of the SIS model) agent m.

Viral adoption rules6: If the sampled agent m (in the step 1 of the SIS model)
is an infected agent, she becomes susceptible with a constant probability δ . If the
sampled agent m (in the step 1 of the SIS model) is a susceptible (state 0) agent, she
samples d(m) (degree of m) number of other agents X1,X2, . . . ,Xd(m) (neighbors of
m in the unbiased-degree network) from the network and, updates her state (infected
or susceptible) based on one of the following rules:
Case 1 - Non-monophilic contagion: For each sampled neighbor Xi, m observes

the state of Xi. Hence, agent m observes the states of d(m) number of random
nodes. Let aX

m denote the number of infected agents among X1, . . . ,Xd(m). Then,

the susceptible agent m becomes infected with probability νaX
m

D where, 0 ≤ ν ≤ 1
is a constant and D is the largest degree of the network.

Case 2 - Monophilic contagion: For each sampled neighbor Xi, m observes the
state of a random friend Zi ∈ N (Xi) of that neighbor. Hence, agent m observes

6 The two rules (case 1 and case 2) are called viral adoption rules as they consider the total number
of infected nodes (denoted by aX

m and aZ
m in case 1 and case 2 respectively) in the sample in contrast

to the persuasive adoption rules that consider the fraction of infected nodes in the sample [60].
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the states of d(m) number of random friends Z1, . . . ,Zd(m) of random nodes
X1, . . . ,Xd(m). Let aZ

m be the number of infected agents among Z1, . . . ,Zd(m).

Then, the susceptible agent m becomes infected with probability νaZ
m

D where,
0 ≤ ν ≤ 1 is a constant and D is the largest degree of the network.

In order to compare the non-monophilic and monophilic contagion rules, we look
at the conditions on the model parameters for which, each rule leads to a positive
fraction of infected nodes starting from a small fraction of infected nodes i.e. a
positive stationary solution to the mean-field dynamics (6). The main result is the
following (proof given in [70]):

Theorem 6. Consider the SIS model described in Sec. 2.1. Define the effective
spreading rate as λ = ν

δ and let X be a random node and Z be a random friend
of X.

1. Under the non-monophilic contagion rule (Case 1), the mean-field dynamics
equation (6) takes the form,

xn+1(k) = xn(k)+
1
M

(
(1− xn(k))

νkθX
n

D
− xn(k)δ

)
(12)

where,

θX
n = ∑

k
P(k)xn(k) (13)

is the probability that a randomly chosen node X at time n is infected. Further,
there exists a positive stationary solution to the mean field dynamics (12) for
case 1 if and only if

λ >
D

E{d(X)} = λ ∗
X (14)

2. Under the monophilic contagion rule (Case 2), the mean-field dynamics equa-
tion (6) takes the form,

xn+1(k) = xn(k)+
1
M

(
(1− xn(k))

νkθZ
n

D
− xn(k)δ

)
(15)

where,

θZ
n = ∑

k

(
∑
k′

P(k′)P(k|k′)
)

xn(k) (16)

is the probability that a randomly chosen friend Z of a randomly chosen node X
at time n is infected7. Further, there exists a positive stationary solution to the
mean field dynamics (15) if and only if

7 We use P(k|k′) to denote the conditional probability that a node with degree k′ is connected to
a node with degree k. More specifically P(k|k′) = e(k,k′)

q(k) where e(k,k′) is the joint degree distribu-
tion of the network and q(k) is the marginal distribution that gives the probability of random end
(denoted by random variable Y in Theorem 1) of random link having degree k. We also use σq to
denote the variance of q(k) in subsequent sections.
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λ >
D

E{d(Z)} = λ ∗
Z (17)

The proof of the first part of Theorem 6 is inspired by [60, 61] that consider the
unbiased degree networks with non-monophilic adoption rules and continuous-time
evolutions (as opposed to the discrete time case considered here). The main purpose
of the first part is to provide a comparison of the non-monophilic adoption rule with
the monophilic adoption rule (part 2) under the same setting. Theorem 6 allows us
to analyze the effects of friendship paradox and degree-assortativity on the diffusion
process as discussed in the next subsection.

3.2.2 Effects of Friendship Paradox and Degree Correlation on Information

Diffusion under Monophilic Contagion

0 5 10 15 20
0

0.5

1

(a) CDFs of the of the degree d(Z) of a ran-
dom friend Z of a random node for three
networks with same degree distribution but
different assortativity rkk values. Note that
the CDFs are point-wise increasing with rkk
showing that E{d(Z)} decreases with rkk.

    

              
            

rkk < 0 rkk = 0 rkk > 0 

   

 
 

 
 

 

(b) Variation of the stationary fraction ρ
of infected nodes with the effective spread-
ing rate λ for the case 1 (blue) and case 2
(red), illustrating the ordering of the critical
thresholds of cases 1,2 and the effect of as-
sortativity.

Fig. 2: Comparison of non-monophilic and monophilic contagion rules and the ef-
fect of assortativity on the critical thresholds of the monophilic contagion.

Theorem 6 showed that the critical thresholds of the mean-filed dynamics equa-
tion (6) for the two rules (non-monophilic and monophilic contagion) are different.
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Following is an immediate corollary of Theorem 6 which gives the ordering of these
critical thresholds using the friendship paradox stated in Theorem 1.

Corollary 1. The critical thresholds λ ∗
X ,λ ∗

Z in (14), (17) for the cases of non-
monophilic (case 1) and monophilic (case 2) contagion rules satisfy

λ ∗
Z ≤ λ ∗

X . (18)

Corollary 1 shows that in the case of information diffusion under monophilic con-
tagion rule, it is easier (smaller effective spreading rate) for the information to spread
to a positive fraction of the agents as a result of the friendship paradox. Hence, ob-
serving random friends of random neighbors makes it easier for the information to
spread instead of dying away (in unbiased-degree networks). This shows how friend-
ship paradox can affect information diffusion over a network under monophilic con-
tagion.

Remark 2. If we interpret an individual’s second-hop connections as weak-ties, then
Theorem 6 and Corollary 1 can be interpreted as results showing the importance of
weak-ties in information diffusion (in the context of a SIS model and an unbiased-
degree network). See the seminal works in [78, 28] for the definitions and impor-
tance of weak-ties in the sociology context.

The ordering λ ∗
Z ≤ λ ∗

X of the critical thresholds in Corollary 1 holds irrespective
of any other network property. However, the magnitude of the difference of the crit-
ical thresholds λ ∗

X −λ ∗
Z depends on the neighbor-degree correlation (assortativity)

coefficient defined as,

rkk =
1
σ2

q
∑
k,k′

kk′
(

e(k,k′)−q(k)q(k′)
)

(19)

using the notation defined in Footnote 7. To intuitively understand this, consider
a star graph that has a negative assortativity coefficient (as all low degree nodes
are connected to the only high degree node). Therefore, a randomly chosen node
X from the star graph has a much smaller expected degree E{d(X)} than the ex-
pected degree E{d(Z)} of a random friend Z of the random node X compared to the
case where the network has a positive assortativity coefficient. This phenomenon
is further illustrated in Fig. 2a using three networks with the same degree distribu-
tion but different assortativity coefficients obtained using Newman’s edge rewiring
procedure [71].

Consider the stationary fraction of the infected nodes

ρ = ∑
k

P(k)x(k) (20)

where P(k) is the degree distribution and x(k),k = 1, . . . ,D are the stationary states
of the mean-field dynamics in (6). Fig. 2b illustrates how the stationary fraction
of the infected nodes varies with the effective spreading rate λ for case 1 and 2,
showing the difference between the two cases and the effect of assortativity.



384 Vikram Krishnamurthy and Buddhika Nettasinghe

4 Collective Dynamics of SIS-Model and Reactive Networks

So far in Sec. 2 and Sec. 3, the underlying social network on which the information
diffusion takes place was treated as a deterministic graph and, the mean-field dy-
namics equation (6) was used to approximate the SIS-model. This section explores
the more general case where the underlying social network also randomly evolve
at each time step n (of the SIS-model) in a manner that depends on the population
state x̄n. Our aim is to obtain a tractable model that represents the collective dynam-
ics of the SIS-model and the evolving graph process. As explained in Sec. 1 with
examples, the motivation for this problem comes from the real world networks that
evolves depending on the state of information diffusion on them. In order to state
the main result, we first define a reactive network and state our assumptions.

Definition 1 (Reactive Network). A reactive network is a Markovian graph process
{Gn}n≥0 with a state space G = {G1, . . . ,GN} consisting of N graphs and transition
probabilities Px̄n parameterized by the population state x̄n i.e. Gn+1 ∼ Px̄n( · |Gn).

In Definition 1, the parameterization of the transition probabilities by the pop-
ulation state x̄n represents the (functional) dependency of the graph process on the
current state of the SIS information diffusion process. The term reactive network de-
notes this functional dependency of the graph evolution on the population state. We
assume the following two conditions on the reactive graph process (Definition 1).

Assumption 1 Each graph Gi ∈ G , i = 1, . . . ,N has the same number of nodes
and the same degree distribution P(k) but different conditional degree distributions
PG1(k|k′), . . . ,PGN (k|k′).
Assumption 2 The transition probability matrix Px̄n of the reactive network {Gn}n≥0
(Definition 1) is irreducible and aperiodic with a unique stationary distribution πx̄n

for all values of the population state x̄n.

The first assumption imposes the constraint that each graph in the state space has
the same degree distribution P(k) but different conditional degree distributions. Re-
call (from Footnote 7) that the conditional degree distribution PGi(k|k′) is the prob-
ability that a node (in graph Gi) with degree k′ is connected to a node with degree k.
Assumption 1 implies that the state space consists of networks which are different
to each other in terms of the higher order properties such as assortativity. Hence,
the reactive network (Definition 1) under Assumption 1 represents for example, a
network which performs edge re-wiring [71] to change the assortativity depending
on the state of a product spreading on it. Under Assumption 1, the number of nodes
M(k) with degree k will remain the same at each time instant n and hence, the new
population state at each time instant can still be expressed as the old population state
plus an update term as in Theorem 2. Assumption 2 is standard in Markov chains
and it ensures the convergence to a unique stationary distribution.

The main result of this section is the following (proof is in [70]).
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Theorem 7 (Collective Dynamics of SIS-model and Reactive Network). Con-
sider a reactive network {Gn}n≥0 (Definition 1) with state space G and transition
probabilities Px̄n( · |Gn) (parameterized by the population state x̄n) satisfying the As-
sumptions 1 and 2. Let the kth element of the vector H(xn,Gn) be

Hk(xn,Gn) = (1− xn(k))
νkθZ

n

D
− xn(k)δ where, (21)

θZ
n = ∑

k

(
∑
k′

P(k′)PGn(k|k′)
)

xn(k). (22)

Further, assume that H(x,Gi) is Lipschitz continuous in x for all Gi ∈ G . Then, the
sequence of the population state vectors {x̄n}n≥0 generated by the SIS model under
monophilic contagion over the reactive network converges weakly to the trajectory
of the deterministic differential equation

dx
dt

= EG∼πx{H(x,G)} (ODE) (23)

P′
xπx = πx. (algebraic constraint) (24)

Theorem 7 asserts that the dynamics of the population state of the SIS diffusion
(under monophilic contagion) on a reactive network can be approximated by an
ODE (23) with an algebraic constraint (24). The core idea behind this result (and
the proof that leads to it) can also be understood as follows in order to gain some
intuition. Due to the Assumption 1, the mean-field dynamics

xn+1 = xn +
1
M

H(xn,Gn) (25)

can be used to model the evolution of the population state of the SIS process over
network despite the fact that it is evolving. Then, as the number of nodes M becomes
large (i.e. the scaling factor 1

M goes to zero), the sequence {xn}n≥0 evolves on a
slow time scale compared to the reactive network {Gn}n≥0. In other words, it will
be a system where {xn}n≥0 evolves on a slow time scale (due to the large M) and
{Gn}n≥0 evolves on a fast time scale. Stochastic averaging theory results (used in
the proof) for such two time scale problems state that, the fast dynamics of the
reactive network {Gn}n≥0 can be approximated by their average on the slow time
scale of the population state {xn}n≥0. In other words, H(xn,Gn) can be replaced
by EG∼πxn {H(xn,G)} which is the average of the update term with respect to the
stationary distribution πxn of the Markov chain and thus yielding the ODE (23). The
algebraic constraint (24) follows from the fact that πx is the eigenvector with unit
eigenvalue of transpose of the parameterized transition probability matrix Px.

From a statistical modeling perspective, Theorem 7 provides a useful means of
approximating the complex dynamics of two interdependent stochastic processes
(information diffusion process and the stochastic graph process) by an ODE (23)
whose trajectory x(t) at each time instant t > 0 is constrained by the algebraic con-
dition (24). Further, having an algebraic constraint restricts the number of possible
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sample paths of the population state vector {x̄n}n≥0. Hence, from a statistical infer-
ence/filtering perspective, this makes estimation/prediction of the population state
easier. For example, the algebraic condition can be used in Bayesian filtering algo-
rithms (such as the one discussed in Sec. 6) for the population state to obtain more
accurate results.

5 Friendship Paradox based Polling for Networks

In Sec. 3 and Sec. 4, the effects of the friendship paradox on SIS-model and the ef-
fects of state dependent network evolutions were discussed. In contrast, this section
deals with polling: estimating the fraction of infected (state denoted by 1) individu-
als

ρ̄n = ∑
k

P(k)xn(k) (26)

at a given time instant n, using the responses (to some query) of b sampled indi-
viduals from the network. It is assumed that the information diffusion is slow and
the states of nodes remain unchanged during the estimation task. In other words, we
assume that the information diffusion takes place on a slower time scale compared
to the time it take to estimate ρ̄n.

Notation: Since we consider the case of estimating the fraction of infected nodes
at a given time instant n, we omit the subscript denoting time and use ρ̄ and s(·) to
denote the infected fraction of nodes and state of nodes respectively (at the given
time instant n) in this section.

Motivation and Related Work: Recall that in intent polling8, a set S of nodes are
obtained by uniform sampling with replacement and then, the average of the labels
s(u) of nodes u ∈ S

Ib =
∑u∈S s(u)

|S| , (27)

is used as the estimate (called intent polling estimate henceforth) of the fraction ρ̄
of infected individuals. The main limitation of intent polling is that the sample size
needed to achieve an ε- additive error is O( 1

ε2 )[13]. The algorithms presented in
this section are motivated by two recently proposed methods, namely “expectation
polling” [81] and “social sampling” [13], that attempt to overcome this limitation in
intent polling. Firstly, in expectation polling [81], each sampled individual is asked
to provide an estimate about the state held by the majority of the individuals in the
network (e.g. asking “What do you think the state of the majority is?”). Then, each
sampled individual will look at his/her neighbors and provide an answer (1 or 0)

8 This method is called intent polling because, in the case of predicting the outcome of an election,
this is equivalent to asking the voting intention of sampled individuals i.e. asking “Who are you
going to vote for in the upcoming election?”) [81].
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based on the state held by the majority of them. This method is more efficient (in
terms of sample size) compared to the intent polling method since each sample now
provides the putative response of a neighborhood9,10. Secondly, in social sampling
[13], the response of each sampled individual is a function of the states, degrees
and the sampling probabilities of his/her neighbors. [13] provides several unbiased
estimators for the fraction ρ̄ using this method and, establishes bounds for their
variances. The main limitation of social sampling method (compared to friendship
paradox based algorithms in Sec. 5) is that it requires the sampled individuals to
know a significant amount of information about their neighbors (apart from just their
labels), the graph and the sampling process (employed by the pollster). Therefore, a
practical implementation of social sampling in the setting of estimating the fraction
of infected individuals at a given time instant is not practically feasible. These facts
motivate the polling method called neighborhood expectation polling (NEP) [69]
which we present next.

In NEP, a set S ⊂V of individuals from the social network G= (V,E) are selected
and asked,

“What is your estimate of the fraction of people with label 1?”.

When trying to estimate an unknown quantity about the world, any individual nat-
urally looks at his/her neighbors. Therefore, each sampled individual s ∈ S would
provide the fraction of their neighbors N (s), with label 1. In other words, the re-
sponse of the individual s ∈ S for the NEP query would be,

q(s) =
|{u ∈ N (s) : s(u) = 1}|

|N (s)| . (28)

Then, the average of all the responses ∑s∈S q(s)
|S| is used as the NEP estimate of the

fraction ρ̄ .

Why call it NEP? The term neighborhood expectation polling is derived, from the
fact that the response q(v) of each sampled individual v ∈ S is the expected label
value among her neighbors i.e. q(v) = E{s(U)} where, U is a random neighbor of
the sampled individual v ∈ S.

Why (not) use NEP? NEP is substantially different to classical intent polling where,
each sampled individual is asked “What is your label?”. In intent polling, the re-
sponse of each sampled individual v ∈ S is his/her label s(v). In contrast, in NEP, the
response q(v) of each sampled individual v ∈ S is a function of his/her neighbor-
hood (defined by the underlying graph G) as well as the labels of his/her neighbors.

9 Intent polling and expectation polling have been considered intensively in literature, mostly in
the context of forecasting elections and, it is generally accepted that expectation polling is more
efficient compared to intent polling [27, 26, 66, 67, 62].
10 [47, 45] discuss how expectation polling can give rise to misinformation propagation in social
learning and, propose Bayesian filtering methods to eliminate the misinformation propagation.
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(a) Network G1: labels are highly correlated with the degrees of nodes

(b) Network G2: nodes with the same label are clustered (depicting Homophily)

(c) Network G3: a large regular graph with uniformly at random assigned labels

Fig. 3: Consider the case of uniformly sampling nodes and obtaining responses q(s)
of sampled nodes s ∈ S about the fraction of red (i.e. label 1) nodes in the network.
In graph G1 of Fig. 3a, most nodes have their only neighbor to be of color red
even though most of the nodes in the network are of color blue. Hence, uniformly
sampling nodes for NEP in this case would result in a highly biased estimate. In
graph G2 of Fig. 3b, approximately half the nodes have only a red neighbor and, rest
of the nodes have only a blue neighbor. Hence, uniformly sampling nodes for NEP
in this case would result in an estimate with a large variance. In graph G3 of Fig. 3c,
average of the NEP responses q(v) of nodes is approximately equal to the fraction
of nodes with red labels. Further, q(v) does not vary largely among nodes. Hence,
uniformly sampling nodes for NEP in this case would result in an accurate estimate.
Similar examples can also be found in [13]. The figure highlights the importance of
exploiting network structure and node labels when sampling nodes for NEP.
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Therefore, depending on the graph G, function s(·) and the method of obtaining the
samples S, NEP might produce either,

I an estimate with a larger MSE compared to intent polling (e.g. networks in Fig.
3a and Fig. 3b shows when uniform sampling of individuals for NEP might not
work), or,

II an estimate with a smaller MSE compared to intent polling (e.g. network in
Fig. 3c shows when uniform sampling of individuals for NEP might work)

These two possible outcomes highlight the importance of using the available infor-
mation about the graph G and the function s(·) (which represent the states at the time
of the estimation), when selecting the set S of individuals in NEP. This lead us to
the friendship paradox based NEP algorithms.

5.1 NEP Algorithms Based on Friendship Paradox

In this subsection, we consider randomized methods for selecting individuals for
NEP based on the concept of friendship paradox explained in Sec. 2.3.

5.1.1 Case 1 - Sampling friends using random walks

In this section, we consider the case where the graph G = (V,E) is not known ini-
tially, but sequential exploration of the graph is possible using multiple random
walks over the nodes of the graph. A motivating example is a massive online so-
cial network where the fraction of user profiles indicating infection needs to be
estimated (e.g. profiles mentioning symptoms of a disease). Web-crawling (using
random walks) approaches are widely used to obtain samples from such massive
online social networks without requiring the global knowledge of the full network
graph [58, 22, 79, 23, 64].

Algorithm 1: NEP with Random Walk Based Sampling
Input: b number of samples {v1,v2, . . . ,vb} ⊂V .
Output: Estimate T b

RW of the of the fraction ρ̄ of nodes with label 1.

1. Initialize b random walks on the social network starting from v1,v2, . . . ,vb.
2. Run each random walk for a N steps and then collect sample S = {si, . . . ,sb} where, si ∈V is

collected from ith random walk.
3. Query each s ∈ S to obtain q(s) and, compute the estimate

T b
RW =

∑s∈S q(s)
b

of the fraction ρ̄ of nodes with label 1.
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Algorithm 1 was proposed in [69] for estimating the fraction of infected individ-
uals ρ̄ defined in (26). The intuition behind Algorithm 1 stems from the fact that
the stationary distribution of a random walk on an undirected graph is uniform over
the set of neighbors [1]. Therefore, Algorithm 1 obtains a set S of b neighbors inde-
pendently (for sufficiently large N) from the graph G = (V,E) in step 2. Then, the
response q(s) of each sampled individual s ∈ S for the NEP query is used to compute
the estimate T b

RW in step 3. According to the friendship paradox (Theorem 1), using
uniformly sampled neighbors is equivalent to using more nodes due to the fact that
random neighbors have more neighbors than random nodes on average. Hence, it is
intuitive that the performance of this method should have a smaller MSE compared
to the method of NEP with uniformly sampled nodes and intent polling method. In
Sec. 5.2, we verify this claim theoretically and explore the conditions on the state
function s(·) and the properties of the graph G for the estimator T b

RW to be more
accurate compared to the intent polling method.

5.1.2 Case 2 - Sampling a Random Friend of a Random Individual

Here we assume that the graph G = (V,E) is not known and it is not possible to
crawl the graph (using random walks). It is further assumed that a set of uniform
samples S = {s1, . . . ,sb} from the set of nodes V can be obtained and, each sampled
individual si ∈ S has the ability to answer the question ”What is your (random)
friend’s estimate of the fraction of individuals with label 1?”.

A motivating example for case 2 is the situation where random individuals are
requested to answer survey questions for an incentive. In most such cases, the poll-
ster does not have any information about the structural connectivity of the queried
individuals and, will only be able to obtain their answer for a question.

For this case, Algorithm 2 was proposed in [69] to obtain an estimate of the
fraction ρ̄ of individuals with label 1 defined in (26).

Algorithm 2: NEP using Friends of Uniformly Sampled Nodes
Input: b number of uniform samples S = {s1,s2, . . . ,sb} ⊂V .
Output: Estimate T b

FN of the of the fraction ρ̄ of the individuals with label 1.

1. Ask each si ∈ S to provide q(ui) for some randomly chosen neighbor ui ∈ N (si).
2. Compute the estimate,

T b
FN =

∑b
i=1 q(ui)

b
of the fraction ρ̄ of the individuals with label 1.

In Algorithm 2, each uniformly sampled individual is asked the question ”What
is your (random) friend’s estimate of the fraction of individuals with state 1?”.
Then, each sampled node si ∈ S would provide q(ui) for some randomly chosen
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ui ∈ N (si). The theoretical reasoning behind this method comes from Theorem 4
in Section 2 which states that, a random friend of a randomly chosen individual has
more friends than a randomly chosen individual on average11. Therefore, intuitively
this method should result in a smaller MSE compared to the method of NEP with
uniformly sampled nodes and intent polling method.

5.2 Analysis of the Estimates Obtained via Algorithms 1 and 2

Algorithm 1 and Algorithm 2 presented in Sec. 5.1 query random friends and ran-
dom friends of random nodes (denoted by Y,Z in Theorem 1 and Theorem 4) re-
spectively, exploiting the friendship paradox.

In this context, the aim of this subsection is to present the following results (proof
can be found in [69]):
1. Theorem 8 motivates using friendship paradox based NEP algorithms (as op-

posed to NEP with uniformly sampled nodes)
2. Theorem 9 relates bias and variance of the estimate T b

RW obtained using Al-
gorithm 1 to the properties of the network. Then, Corollary 2 gives sufficient
conditions for T b

RW to be an unbiased estimate with a smaller mean squared er-
ror (MSE) compared to intent polling method where, MSE of an estimate T of
a parameter ρ̄ is defined as

MSE{T}= E{(T − ρ̄)2} (29)

= Bias{T}2 +Var{T} (30)

3. Theorem 10 motivates the use of friendship paradox based sampling methods
when the sampling budget b is small

Theorem 8. If the label f (v) of each node v ∈ V is independently and identically
distributed then,

MSE{T b
FN} ≤ MSE{T b

UN} (31)

MSE{T b
RW} ≤ MSE{T b

UN} (32)

where, MSE denotes mean square error defined in (30), T b
UN is the NEP estimate

with b uniformly sampled nodes and, T b
RW ,T b

FN are the estimates obtained using
Algorithm 1 and Algorithm 2 respectively.

Theorem 8 shows that friendship paradox based sampling always has a smaller mean
squared error when the node labels are independently and identically distributed

11 It should be noted that this does not follow from the original version of friendship paradox
(Theorem 1) since the random friend is not a uniformly chosen neighbor from the set of all 2|E|
neighbors. Instead, the response now comes from a random neighbor conditioned to be a friend of
the sampled node.
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(iid). This motivates the use of friendship paradox based NEP methods (Algorithm 1
and Algorithm 2) instead of uniform sampling based NEP. In the subsequent results,
we show that the superiority of friendship paradox based NEP algorithms over the
widely used intent polling method holds for conditions less stringent than the iid
assumption.

Next, we formally quantify the bias Bias(T b
RW ) and the variance Var(T b

RW ) of the
estimator T b

RW obtained via Algorithm 1 as the random walk length N goes to infinity
and then, compare it with the widely used intent polling method.

Theorem 9. Let X be a random node and (U,Y ) be a random link sampled from a
connected graph. Then, as N tends to infinity, the bias Bias(T b

RW ) and the variance
Var(T b

RW ) of the estimate T b
RW , obtained via Algorithm 1 are given by,

Bias(T b
RW ) = E{s(Y )}−E{s(X)} (33)

=
Cov{s(X),d(X)}

E{d(X)} (34)

Var{T b
RW}= 1

b
Cov{s(Y ),q(U)}. (35)

Theorem 9 provides insights into the properties of the networks for which, NEP
based Algorithm 2 provides a better estimate compared to the intent polling method.
Eq. (33) of Theorem 9 shows that, the bias of the estimate T b

RW is the difference be-
tween the expected label value at a random friend, Y and the expected value at a
random individual, X . Further, (34) shows that it is proportional to the covariance
between the degree d(X) and the state s(X) of a randomly chosen node X . An imme-
diate consequence of this result is the following corollary, which gives a sufficient
condition for the estimate T b

RW to be unbiased and, also have a smaller variance (and
therefore, a smaller MSE) compared to intent polling.

Corollary 2. If the label s(X) and the degree d(X) are uncorrelated and the graph
is connected, the following statements hold as N tends to infinity:

1. The estimate T b
RW , obtained via Algorithm 1 is unbiased for ρ̄ i.e.

E{T b
RW}= ρ̄ (36)

2. The estimate T b
RW , obtained via Algorithm 1 is more efficient compared to intent

polling estimate I in (27) i.e.

MSE{T b
RW} ≤ MSE{Ib} (37)

where, MSE denotes mean square error defined in (30).

Theorem 9 also shows that the variance of the estimate T b
RW is the covariance of the

state s(Y ) of a random friend Y and the response q(U) of her random friend U .
The following result gives sufficient conditions for T b

RW to be a more efficient (in
an MSE sense) estimator compared to intent polling method (even in the presence
of bias) when the sampling budget b = 1.
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Theorem 10. Assume that the graph is connected and the sampling budget b = 1.
Then, as N tends to infinity, the estimate T b

RW has a smaller MSE compared to the
intent polling estimate I, defined in (27), if

E{d(X)|s(X) = 1} ≤ E{d(X)|s(X) = 0} and ρ̄ ≤ 0.5 (38)

or
E{d(X)|s(X)} ≥ E{d(X)|s(X) = 0} and ρ̄ ≥ 0.5. (39)

Theorem 10 shows that, if the expected degree of an individual with state 1 is larger
(smaller) compared to the expected degree of an individual with opinion 0 and, the
expected state in the network is above (below) half then, MSE of the estimate T b

RW
is smaller than intent polling estimate I in (27) when the pollster can query only one
individual. This helps the pollster to incorporate prior knowledge about the current
state of the diffusion and the structure of the network to decide whether its suitable
to use NEP based Algorithm 1 (over the intent polling method).

5.3 Numerical Examples

In this section, results (based on [69]) illustrating the performance of Algorithms 1
and 2 are provided. The aim of these numerical simulations is to evaluate the depen-
dence of the accuracy (MSE) of the estimate of ρ̄ on the following three properties
related to the network and the state of the information diffusion:

1. Degree distribution P(k) (which is the probability that a randomly chosen node
has k neighbors).

2. Neighbor Degree correlation (assortativity) coefficient rkk defined in (19)

3. Degree-label correlation coefficient

pks =
1

σkσs
∑
k

k
(
P(s(X) = 1,d(X) = k)−P(sX = 1)P(k)

)
(40)

where, σk,σs are the standard deviations of the degree distribution P(k) and the
state (label) distribution respectively and, P(s,k) is the joint distribution of the
states and degrees of nodes.

A detailed discussion about these metrics and their effects can be found in [57].

Simulation Setup: [69] evaluated Algorithms 1, 2 on networks with 5000 nodes ob-
tained using two models: configuration mode [65] and Erdős-Rényi (G(n,p)) model
[72] that result in a power-law degree distribution and a Poisson degree distribu-
tion respectively. Further, the assortativity coefficient and degree-label correlation
coefficient of the networks obtained using these models were modified to different
values (while preserving the degree distribution) by using Newman’s edge rewiring
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procedure [71] and label swapping procedure [57]. Then, the MSE of the algorithms
(on the obtained networks) were estimated by averaging the squared error of the es-
timates over 500 independent iterations for each value of the sampling budget b
from 1 to 50. The resulting MSE values for the network obtained using configura-
tion model (with a power-law degree distribution) are shown in Fig. 4 and Fig. 5 for
power-law coefficient values α = 2.1 and α = 2.4 respectively. Similarly, resulting
MSE values for the network obtained from the Erdős-Rényi model (with a Poisson
degree distribution) are shown in Fig. 6.

In the case of Erdős-Rényi graphs, only the assortativity coefficient rkk = 0 is
considered as it cannot be changed significantly due to the homogeneity in the de-
gree distribution (see [69] for more details on the simulation procedure).
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Fig. 4: MSE of the estimates obtained using Algorithm 1 (T b
RW ), Algorithm 2 (T b

FN)
and intent polling method (Ib) versus the sampling budget b, for a power-law graph
with parameter α = 2.1 with different values of assortativity coefficient rkk and
degree-label correlation coefficient pks. This figure shows that, for power-law net-
works, the proposed friendship paradox based NEP methods have smaller mean
squared error compared to classical intent polling method under general conditions.
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Fig. 5: MSE of the estimates obtained using Algorithm 1 (T b
RW ), Algorithm 2 (T b

FN)
and intent polling method (Ib) versus the sampling budget b, for a power-law graph
with parameter α = 2.4 with different values of the assortativity coefficient rkk and
degree-label correlation coefficient pks. This figure shows that, for power-law net-
works, the proposed friendship paradox based NEP methods have smaller mean
squared error compared to classical intent polling method under general conditions.
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Fig. 6: MSE of the estimates obtained using Algorithm 1 (T b
RW ), Algorithm 2 (T b

FN)
and intent polling method (Ib) versus the sampling budget b, for a Erdős-Rényi
graph with parameter average degree 50 with assortativity coefficient rkk = 0 and
different values of degree-label correlation coefficient pks. This figure shows that,
for ER graphs, the proposed friendship paradox based NEP method as well as the
greedy deterministic sample selection method result in better performance com-
pared to the intent polling method.
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5.4 Discussion of the Results

In this subsection, the main findings of the numerical simulation studies (under the
setup described in Sec. 5.3) and how they relate to the theoretical results are dis-
cussed. Further, how these findings can be useful to identify the best possible algo-
rithm (out of Algorithms 1, Algorithm 2 and the alternative intent polling method)
depending on the context is discussed.

5.4.1 Power-law Graphs

Intent Polling vs. Friendship Paradox Based Polling: In the numerical results
(shown in Fig. 4, Fig. 5 and Fig. 6), Algorithm 1 and Algorithm 2 outperform the
intent polling method (in terms of the MSE) when the degree-label correlation pks =
0. This outcome agrees with Corollary 2. When pks is non-zero, Algorithm 2 has a
smaller MSE than intent polling in the examples we considered while Algorithm 1
has a smaller MSE than intent polling for small sampling budgets (b ≤ 30). Hence,
our numerical results indicate that friendship paradox based polling methods have
a smaller MSE in contexts where the sampling budget b is smaller compared to the
number of nodes in the network (which is set to 5000 in our simulation).

Effect of the Heavy-Tails: Comparing Fig. 4 with Fig. 5 shows that the MSE
of the Algorithm 1 and Algorithm 2 are smaller in the network with power-law
coefficient α = 2.1 compared to the network with power-law coefficient α = 2.4
that we considered in the simulations. The difference of the MSE in the two cases
(α = 2.1 and α = 2.4) is more visible for Algorithm 2 compared to Algorithm 1.
Hence, this observation suggests that friendship paradox based algorithms are more
suitable to contexts where it is known that the underlying network has a heavy tailed
degree distribution.

Effect of the Assortativity of the Network: Many different joint degree distri-
butions e(k,k′) can yield the same neighbor degree distribution q(k) (which is the
marginal distribution of e(k,k′) as defined in Footnote 7). This marginal distribution
q(k) does not capture the joint variation of the degrees a random pair of neighbors.
In Algorithm 1 (which samples neighbors uniformly), the degree distribution of the
samples (i.e. queried nodes) is the neighbor degree distribution q(k). Hence, the per-
formance is not affected by the assortativity coefficient rkk, which captures the joint
variation of the degrees of a random pair of neighbors. This is apparent in Fig. 5
where, each column (corresponding to different rkk values) has approximately same
MSE for Algorithm 1. However, it can be seen that, the MSE of Algorithm 2 (that
samples random friends Z of random nodes) increases with assortativity rkk due to
the fact that the distribution of degree d(Z) of a random friend Z of a random node
is a function of the joint degree distribution. In order to highlight this further, Fig.
7 illustrates the effect of the neighbor degree correlation rkk on the distribution of
d(Z) (and the invariance of the distribution of d(Y ) to rkk). This numerical result
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indicates that, if it is apriori known that the network is disassortative (rkk < 0), the
Algorithm 2 is a more suitable choice for polling (compared to Algorithm 1).

When to use friendship paradox based NEP? Both theoretical (Theorem 10) as
well as numerical results (Fig. 5, Fig. 6) show that friendship paradox based NEP
methods outperform classical intent polling method when the sampling budget is
small compared to the size of the network (which is the case in many applications
related to polling). Further, the absence of degree-label correlation and the presence
of assortativity improves the performance of friendship paradox based polling meth-
ods. These analytical results and numerical simulation studies provide the pollster
the ability to decide which algorithm to be deployed using the available information
about the network and the sampling budget.

5.4.2 Erdős-Rényi Graphs

Erdős-Rényi (G(n, p)) model starts with n vertices and then connects any two ver-
tices with probability p resulting in an average degree of (n−1)p. From the Fig. 6,
it can be seen that both Algorithm 1 and Algorithm 2 yield a smaller MSE than the
intent polling method for the Erdős-Rényi network that we considered (which has
p = 0.01 and n = 5000). Further, Algorithm 1 and Algorithm 2 both have approxi-
mately equal MSE in the case of the Erdős-Rényi network we considered. This is a
result of the fact that distributions of the degree d(Y ) of a random neighbor Y and
the distribution of the degree d(Z) of a random neighbor Z of a random node are
approximately equal when the neighbor degree correlation is zero.

6 Non-Linear Bayesian Filtering for Estimating Population State

Sec. 5 discussed algorithms to estimate the fraction of infected (state 1) individuals
in the case of slow diffusion dynamics where node states can be treated as fixed for
the purpose of estimation. However, treating the node states as fixed is not realistic
when the diffusion takes place on the same time scale as the one on which individu-
als are polled (i.e. measurements are collected). Further, the non-linear dynamics (6)
of the information diffusion rules out the possibility of applying standard Bayesian
filtering methods such as Kalman filter to recursively update the population state es-
timate with new measurements [45]. This section presents the non-linear Bayesian
filtering method proposed in [46] which computes an optimal (in a mean-squared er-
ror sense) estimate of the population state with each new measurement. The method
consists of two steps at each time instant:

1. sample nodes from the network to obtain a noisy estimate of the population
state

2. use the noisy estimate to compute the posterior distribution and then compute
the new conditional mean of the estimate.
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Fig. 7: The cumulative distribution functions (CDF) of the degrees d(X),d(Y ),d(Z)
of a random node (X), a random friend (Y ) and a random friend (Z) of a random node
respectively, for three graphs with the same degree distribution (power-law distri-
bution with a coefficient α = 2.4) but different neighbor-degree correlation coeffi-
cients rkk, generated using the Newman’s edge rewiring procedure. This illustrates
that E{d(Z)} ≥ E{d(Y )} for rkk ≤ 0 (Fig. 7a) and vice-versa. Further, this figure
also shows how the distributions of d(X),d(Y ) remain invariant to the changes in
the joint degree distribution e(k,k′) that preserve the degree distribution P(k).

6.1 Sampling

We first consider sampling the social network G = (V,E) described in Sec. 2.1 for
the purpose collecting measurements to estimate the population state xn at time n.
We assume that the degree distribution P(·) of the underlying network is known.
Note that friendship paradox based NEP algorithms (presented in Sec. 5 for estimat-
ing the scalar valued fraction of infected nodes) can be easily extended for obtaining
such (noisy) measurements of population state vector xn. For example, at each time
instant n, a random friend can be sampled and asked to provide an estimate of the
population state xn based on her neighbors. Apart from such extensions of friend-
ship paradox based NEP methods, we discuss two other widely used methods for
sampling large networks for the purpose of obtaining an empirical estimate of xn.

6.1.1 Uniform Sampling

At each time n, ν(k) individuals are sampled12 independently and uniformly from
the population M(k) comprising of agents with degree k. Thus, a uniformly dis-
tributed independent sequence of nodes, denoted by {ml , l ∈ {1,2, . . . ,ν(k)}}, is
generated from the population M(k). From these independent samples, the empiri-
cal infected population state x̂n(k) of degree k nodes at each time n is

12 For large population where M(d) is large, sampling with and without replacement are equivalent.
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x̂n(k) =
1
ν(k)

ν(k)

∑
l=1

1(s(ml)
n = 1). (41)

At each time n, x̂n can be viewed as noisy observation of the infected population
state xn.

6.1.2 MCMC Based Respondent-Driven Sampling (RDS)

Respondent-driven sampling (RDS) was introduced by Heckathorn [29, 30] as an
approach for sampling from hidden populations in social networks and has gained
enormous popularity in recent years. In RDS sampling, current sample members
recruit future sample members. The RDS procedure is as follows: A small number
of people in the target population serve as seeds. After participating in the study,
the seeds recruit other people they know through the social network in the target
population. The sampling continues according to this procedure with current sample
members recruiting the next wave of sample members until the desired sampling
size is reached.

RDS can be viewed as a form of Markov Chain Monte Carlo (MCMC) sampling.
Let {ml , l ∈ {1,2, . . . ,ν(k)}} be the realization of an aperiodic irreducible Markov
chain with state space M(k) comprising of nodes of degree k. This Markov chain
models the individuals of degree k that are sampled, namely, the first individual m1 is
sampled and then recruits the second individual m2 to be sampled, who then recruits
m3 and so on. Instead of the independent sample estimator (41), an asymptotically
unbiased MCMC estimate is computed as

∑ν(k)
l=1

1(s
(ml )
n =1)
π(ml)

∑ν(k)
l=1

1
π(ml)

(42)

where π(m), m ∈ M(k), denotes the stationary distribution of the Markov chain ml .
In RDS, the transition matrix and, hence, the stationary distribution π in the

estimate (42) is specified as follows: Assume that edges between any two nodes i and
j have symmetric weights Wi j (i.e., Wi j =Wji). Node i recruits node j with transition
probability Wi j/∑ j Wi j. Then, it can be easily seen that the stationary distribution
is π(i) = ∑ j∈V Wi j/∑i∈V, j∈V Wi j. Using this stationary distribution along with (42)
yields the RDS algorithm. Since a Markov chain over a non-bipartite connected
undirected network is aperiodic, the initial seed for RDS can be picked arbitrarily,
and the estimate (42) is asymptotically unbiased [24].

The key outcome of this subsection is that by the central limit theorem (for an
irreducible aperiodic finite state Markov chain), the estimate of the probability that a
node is infected in a large population (given its degree) is asymptotically Gaussian.
For a sufficiently large number of samples, observation of the infected population
state is approximately Gaussian, and the sample observations can be expressed as
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yn =Cxn + vn (43)

where vn ∼ N (0,R) is the observation noise with the covariance matrix R and
observation matrix C dependent on the sampling process and xn ∈RD is the infected
population state and evolves according to the polynomial dynamics (6).

6.2 Non-linear filter and PCRLB for Bayesian Tracking of
Infected Populations

In Sec. 2, the mean field dynamics for the population state as a system with polyno-
mial dynamics (6) was discussed. Linear Gaussian observations (43) can be obtained
by sampling the network as outlined in Sec. 6.1. In this subsection, we consider
Bayesian filtering for recursively estimating the infected population state xn in large
networks. We first describe how to express the mean field dynamics (6) in a form
amenable to employing the non-linear filter described in [31].

6.2.1 Mean Field Polynomial Dynamics

Consider a D-dimensional polynomial vector f (x) ∈ RD:

f (x) = A0 +A1x+A2xx′+A3xxx′+ . . . (44)

where the co-coefficients A0,A1, . . . ,Ai are dimension 1,2, . . . ,(i+ 1) tensors, re-
spectively. Note that Aixx . . .x′ is a vector with rth entry given by

Aixx . . .x′(r) = ∑
j1, j2, j3,..., ji

Ai(r, j1, j2, . . . , ji)x j1x j2 . . .x ji

where Ai(r, j1, j2, . . . , ji) is the r, j1, j2, . . . , ji entry of tensor Ai and x j is the jth entry
of x. Because (6) has polynomial dynamics, it can be expressed in the form of (44)
by constructing the tensors Ai. We refer the reader to [46] for the exact forms of
these equations.

6.2.2 Optimal Filter for Polynomial Dynamics

With the mean-field dynamics (6) expressed in the form (44), we are now ready
to describe the optimal filter to estimate the infected population state. Optimal
Bayesian filtering refers to recursively computing the conditional density (posterior)
p(xn|Yn), for n = 1,2, · · · , where Yn denotes the observation sequence y1, . . . ,yn.
From this posterior density, the conditional mean estimate E{xn|Yn} can be com-
puted by integration. (The term optimal refers to the fact that the conditional
mean estimate is the minimum variance estimate). In general for nonlinear or non-
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Gaussian systems, there is no finite dimensional filtering algorithm, that is, the pos-
terior p(xn|Yn) does not have a finite dimensional statistic. However, it is shown in
[31] that for Gaussian systems with polynomial dynamics, one can devise a finite
dimensional filter (based on the Kalman filter) to compute the conditional mean
estimate. That is, Bayes rule can be implemented exactly (without numerical ap-
proximation) to compute the posterior, and the conditional mean can be computed
from the posterior. Therefore, to estimate the infected population state using the
sampled observations (43), we employ this optimal filter.

The non-linear filter prediction and update equations are given as:
Prediction step:

x̂−n = E{xn|Yn−1}= E{ f (xn−1)|Yn−1} (45)

H−
n = E{(xn − x̂n)(xn − x̂n)

′|Yn−1}
= E{( f (xn−1)−E{ f (xn−1)|Yn−1}+ vn−1)

× ( f (xn−1)−E{ f (xn−1)|Yn−1}+ vn−1)
′|Yn−1}

= E{ f (xn−1) f (xn−1)
′|Yn−1}−E{ f (xn−1)|Yn−1}

×E{ f (xn−1)|Yn−1}′+Qn−1

where Yn = {Yn−1,yn} denotes the observation process; H−
n denotes the priori state

co-variance estimate at time n; and vn denotes the Gaussian state noise at time n,
with covariance Qn.

The filter is initialized with mean x̂0 and covariance H−
0 . The filter relies upon

being able to compute the expectation E{ f (xn−1) f ′(xn−1)|Yn−1} in terms of x̂n−1
and H−

n . When f (·) is a polynomial, f (xn−1) f (xn−1)
′ is a function of xn−1, and the

conditional expectations in (46) can be expressed only in terms of x̂n−1 and H−
n ,

permitting a closed form13 prediction step.
Update step:

x̂n = E{xn|Yn}= x̂−n +H−
n C′(Rn +CH−

n C′)−1(yn −Cx̂−n )

Kn = H−
n C′(Rn +CH−

n C′)−1

Hn = (I −KnC)H−
n (I −KnC)′+KnRnK′

n (46)

where x̂n denotes the conditional mean estimate of the state and Hn the associated
conditional covariance at time n. C denotes the state observation matrix; Rn denotes
the observation noise co-variance matrix; Kn denotes the filter gain; and I denotes
the identity matrix.

Since the dynamics of (6) are polynomial, the prediction and update steps of (45)
and (46) can be implemented without approximation. These expressions constitute

13 For an explicit implementation of such a filter for a third order system with an exact priori update
equation for H−

n and x̂−n , see [31].
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the optimal non-linear filter and can be used to track the evolving infected popula-
tion state.

7 Summary and Discussion

This chapter discussed in detail, three interrelated topics in information diffusion in
social networks under the central theme of dynamic modeling and statistical infer-
ence of SIS models.

First, Sec. 3 showed that the effect of high degree nodes updating their states
(infected or susceptible) more frequently is reflected in the update term of the de-
terministic mean-field dynamics model and, does not affect the critical thresholds
which decide if the information diffusion process will eventually die out or spread
to a non-zero fraction of individuals. Secondly, the case where two-hop neighbors
are influencing the evolution of states in the SIS model was discussed. This two-hop
neighbor influence, called monophilic contagion, was shown to make the SIS in-
formation diffusion easier (by lowering the critical thresholds). Sec. 4 extended the
mean-field model to the case where the underlying social network randomly evolves
depending on the state of the information diffusion. How the collective dynamics of
such a process can be modeled by a deterministic ordinary differential equation with
an algebraic constraint was discussed.

Related to the statistical inference aspect of the SIS information diffusion pro-
cesses, how the state of the underlying population (induced by the SIS model) can
be estimated was explored under two cases. Firstly, for the case where the dynamics
of the SIS model is slower (and hence node states can be treated as fixed for esti-
mation purpose) compared to measurement collection (polling), friendship paradox
based polling algorithms to estimate the fraction of infected nodes were discussed.
Such algorithms can outperform classical polling methods such as intent polling by
lowering the variance of the estimate. Secondly, for the case where the dynamics of
the SIS model evolve on the same time scale as the measurement collection process,
a non-linear Bayesian filtering algorithm which harvests the polynomial dynamics
of the SIS model was discussed. This filtering algorithm is an optimal filter which
updates the state estimate with each new measurement.

Future research directions: The topics discussed in this chapter yield interesting
directions for future research in information diffusion processes. The nodes were
treated as non-strategic decision makers in this chapter i.e. their decisions to up-
date the states are not strategic. The changes in the dynamics and critical thresholds
yielded by the case where nodes are strategic utility maximizers is an interesting
direction for future research. Also, this chapter focused on the case where the under-
lying network is an undirected graph. The mean-field dynamics of diffusion based
on two-hop contagion, effects of friendship paradox and filtering in directed graphs
(such as Twitter) is an interesting research direction to be explored. There is also
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substantial motivation to evaluate SIS models using real data; some preliminary re-
sults applied to YouTube appear in [36, 49].

Topics beyond the scope of the chapter: Since the current chapter dealt with SIS
contagions that are modeled using mean-field dynamics, several important topics
related to the diffusion of information in social networks are beyond the scope of
the current chapter. These include: social learning [44, 50, 10], data incest [48],
influence maximization [41], strategic agents and game theoretic learning [21, 38]
and, inferring the network structure using diffusion traces [25].
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Portfolio Optimization Using Regime-Switching
Stochastic Interest Rate and Stochastic Volatility
Models

R.H. Liu and D. Ren

Abstract This paper considers the continuous-time portfolio optimization problem
with both stochastic interest rate and stochastic volatility in regime-switching mod-
els, where a regime-switching Vasicek model is assumed for the interest rate and a
regime-switching Heston model is assumed for the stock price. We use the dynamic
programming approach to solve this stochastic optimal control problem. Under suit-
able assumptions, we prove a verification theorem. We then derive a closed-form so-
lution of the associated Hamilton-Jacobi-Bellman (HJB) equation for a power utility
function and a special choice of some model parameters. We prove the optimality
of the closed-form solution by verifying the required conditions as stated in the ver-
ification theorem. We present a numerical example to show the optimal portfolio
policies and value functions in different regimes.

1 Introduction

Portfolio optimization with regime-switching has attracted much attention in recent
years in the financial mathematics community. A continuous-time Markov chain
is often embedded into the asset price models in order to capture the dynamical
change of the asset prices across different stages of business cycles. The presence
of regime-switching in market behavior has been examined by many researchers
and well documented in the literature. For example, empirical studies have provided
substantial support for including regime-switching in equity models [5], interest rate
models [1] and stochastic volatility models [9].
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The problem of portfolio selection via utility maximization in regime-switching
models has been studied in a number of papers. For example, [2, 3, 10] considered
the problem of maximizing the expected utility from terminal wealth for a market
with one stock and one bond, where the interest rate, the return rate and the volatility
of the stock are all dependent on an external Markov chain. [11] considered a simi-
lar problem with one bond and multiple stocks by assuming that the return rates of
the stocks are governed by an unobservable Markov chain which can be estimated
by using the method of hidden Markov model (HMM) filtering. [4] added an option
into the portfolio and considered the problem of maximizing the expected utility
of the terminal wealth with regime-switching. [15] first completed the market by
introducing a set of Markovian jump securities and then solved the problem of max-
imizing the expected utility from terminal wealth in this enlarged market. In a recent
paper [13] we considered the optimal portfolio problem with stochastic interest rate
where a regime-switching Vasicek model is assumed for the interest rate. [13] ex-
tended the model and results developed in [6] to the more general regime-switching
models for both asset prices and interest rate.

In this work we continue to study the portfolio optimization problem in regime-
switching models by further taking stochastic volatility into consideration. Aiming
to explore the impact of transitions in macroeconomic conditions on the optimal de-
cisions of an investor who is facing risks from both stock volatility and interest rate,
we assume that the stock price follows a regime-switching Heston model and the
interest rate is governed by a regime-switching Vasicek model. We solve this utility
maximization control problem by using the dynamic programming approach. We
prove a verification theorem under suitable assumptions. We then consider a power
utility function and derive a closed-form solution for the optimal portfolio policy
and the value function with special choices of some model parameters (see Section
4 for details). We verify that the required conditions in the verification theorem are
satisfied by the closed-form solution and therefore establish the optimality of the
solution. We note that the portfolio optimization problem using Heston model for
stochastic volatility in the absence of regime-switching has been considered in the
literature. For example, [7] solved the problem of maximizing utility from termi-
nal wealth with respect to a power utility function using a Heston model for the
stock price and a constant interest rate. [8] considered the problem by using a Cox-
Ingersoll-Ross (CIR) model for the volatility process and another CIR model for the
interest rate and derived a closed-form solution for the case when the stock price
and volatility are driven by the same Brownian motion. Our results presented in
this paper extend the related studies in the literature to the regime-switching models
and provide insights to the portfolio behavior subject to changing macroeconomic
conditions.

The paper is organized as follows. The optimal portfolio problem in regime-
switching market with both stochastic interest rate and stochastic volatility is for-
mulated in Section 2. The associated Hamilton-Jacobi-Bellman (HJB) equation is
presented. A verification theorem is established in Section 3. Closed-form solution
is derived in Section 4 for a regime-switching power utility function and a special
choice of some model parameters. The conditions required in the verification theo-
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rem of Section 3 is verified and hence the optimality of the closed-form solution is
proved. A numerical example is provided in Section 5 to show the impact of regime-
switching on the optimal portfolio decisions. Section 6 provides further remarks and
concludes the paper.

2 Formulation of the Portfolio Optimization Problem

As commonly done in literature, we consider our problem in a complete probability
space (Ω ,F ,P). Let α(t) be a continuous-time Markov chain taking values in a
finite set M := {1, . . . ,m0} to model the random regime-switching, where m0 > 0
is a fixed integer specifying the total number of market regimes. The intensity matrix
(or the generator) Q = (qi j)m0×m0 of α(t) is assumed given. It is known that qi j’s
satisfy: (I) qi j ≥ 0 if i �= j; (II) qii ≤ 0 and qii = −∑ j �=i qi j for each i = 1, . . . ,m0.
In addition, Let I(t) = (I{α(t)=1}, . . . , I{α(t)=m0})� ∈ Rm0 , where IA is the indicator
function of the subset A. Then, in view of [14, Lemma 2.4], the process Mα defined
by

Mα(t) := I(t)−
∫ t

0
Q�I(s)ds (1)

is an m0-dimensional martingale with respect to the filtration generated by the
Markov chain {α(t),t ≥ 0}.

Both stock price and interest rate are assumed to depend on the market regime
α(t). Specifically, The interest rate r(t) follows a regime-switching Vasicek model
given by

dr(t) = [a(α(t))− b(α(t))r(t)]dt + σr(α(t))dW b(t), (2)

where the coefficients a(α(t)),b(α(t)) and σr(α(t)) are all regime-dependent, and
W b(t) is an one-dimensional standard Brownian motion. We assume that a(i) > 0,
b(i) > 0 and σr(i) > 0 for all i ∈ M .

The stock price S(t) follows a regime-switching Heston model given by

dS(t) = S(t)
[
(r(t)+ λs(α(t))z(t))dt + σs(α(t))

√
z(t)dW s(t)

]
, (3)

dz(t) = [θ (α(t))− η(α(t))z(t)]dt + σz(α(t))
√

z(t)dW z(t), (4)

where λs(α(t))z(t) is the risk premium of the stock, σs(α(t))
√

z(t) is the volatil-
ity of the stock, and W s(t) and W z(t) are two one-dimensional standard Brownian
motions. Assume that λs(i), σs(i), θ (i), η(i) and σz(i) are positive for all i ∈ M .

Let ρ be the correlation coefficient between W s(t) and W z(t), i.e., dW s(t)dW z(t)
= ρdt. Let W b be uncorrelated to W s and W z. We also assume that α(t) is indepen-
dent of the Brownian motions W s(t),W b(t) and W z(t).

We consider a market with one bond and one stock. The bond price B(t) follows

dB(t) = B(t)r(t)dt, (5)
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where the interest rate r(t) is given by (2).
In this work we aim to tackle the classical problem of finding the optimal allo-

cation of the wealth between the stock and the bond, where the stock and bond are
governed by the regime-switching models (3)-(5). Let π(t) denote the percentage of
total wealth invested in the stock at time t. Then the percentage of wealth invested
in the bond is 1 − π(t). Let X(t) denote the wealth at time t. Then X(t) satisfies the
following stochastic differential equation (SDE):

dX(t) = X(t) [r(t)+ π(t)λs(α(t))z(t)]dt + X(t)π(t)σs(α(t))
√

z(t)dW s(t). (6)

Let O = (R+)2 ×R, and Q = [t0,T ]×O . Take any initial data (t0,X(t0),z(t0),
r(t0),α(t0)) = (t0,x0,z0,r0, i) ∈ Q×M , we introduce the admissible control in the
following definition.

Definition 2.1 A stochastic process π(·) := {π(t) : t0 ≤ t ≤ T} is an admissible con-
trol with respect to the initial data (t0,x0,z0,r0, i) if the following three conditions
are satisfied:

1. π(·) is progressively measurable;
2. For this π(·), the SDE (6) has a path-wise unique solution {Xπ(t)}t∈[t0,T ];
3. Xπ ≥ 0.

Let At0x0z0r0i denote the set of admissible controls for the initial data (t0,x0,z0,r0, i).
We consider a regime-dependent utility function U(x, i) with the properties: for

each i ∈ M , U(0, i) = 0, U ′(x, i) > 0, U ′′(x, i) < 0 for x > 0, limx→0+ U ′(x, i) = ∞,
limx→∞ U ′(x, i) = 0, where U ′ and U ′′ denote the first and second order derivatives
of U with respect to x.

Define the objective function J by

J(t0,x0,z0,r0, i;π(·)) = Et0x0z0r0i [U(Xπ(T ),α(T ))] , (7)

where T > 0 is the investment horizon,Et0x0z0r0i denotes the conditional expectation
given X(t0) = x0,Z(t0) = z0,r(t0) = r0 and α(t0) = i, and Xπ(T ) is the solution of
the wealth equation (6) at time T when the control π(·) is being used, given by

Xπ(T ) = x0 exp

{∫ T

t0

[
λs(α(s))π(s)z(s)+ r(s)− 1

2
σ2

s (α(s))π2
s (s)z(s)

]
ds

+
∫ T

t0
σs(α(s))π(s)

√
z(s)dW s(s)

}
.

(8)

The value function is defined as

V (t0,x0,z0,r0, i) = sup
π(·)∈At0x0z0r0i

J(t0,x0,z0,r0, i;π(·)), (9)

with the terminal condition: V (T,x,z,r, i) = U(x, i), for all x ∈ R+,z ∈ R+,r ∈ R
and i ∈ M .
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For notation simplicity, in what follows, we denote v(t,x,z,r, i) by v(i) for i ∈ M .
Define the operator L π(·) by:

L
π(v(i)) = vt(i)+ xrvx(i)+ [a(i)− b(i)r]vr(i)+

1
2

σ2
r (i)vrr(i)+ [θ (i)− η(i)z]vz(i)

+
1
2

σ2
z (i)zvzz(i)+

[
xπλs(i)zvx(i)+

1
2

x2π2σ2
s (i)zvxx(i)

+ ρπσs(i)σz(i)xzvxz(i)
]
+ ∑

j �=i

qi j [v( j)− v(i)] = 0, i = 1, . . . ,m0.

(10)
Then the HJB equation associated with the optimal control problem (7)-(9) is the
following system of m0 coupled nonlinear partial differential equations:

sup
π∈R

L
π(v(i))

=vt(i)+ xrvx(i)+ [a(i)− b(i)r]vr(i)+
1
2

σ2
r (i)vrr(i)+ [θ (i)− η(i)z]vz(i)

+
1
2

σ2
z (i)zvzz(i)+ ∑

j �=i

qi j [v( j)− v(i)]

+ sup
π∈R

{
xπλs(i)zvx(i)+

1
2

x2π2σ2
s (i)zvxx(i)+ ρπσs(i)σz(i)xzvxz(i)

}
=0, i = 1, . . . ,m0,

(11)

with the terminal condition

v(T,x,z,r, i) = U(x, i), ∀(x,z,r, i) ∈ O ×M . (12)

Note that if vxx(i) < 0, then the maximizer of (11), denoted by π∗(t, i), is given
by:

π∗(t, i) = − λs(i)vx(i)
xσ2

s (i)vxx(i)
− ρσz(i)vxz(i)

xσs(i)vxx(i)
. (13)

3 Verification Theorem

In this section we establish a verification theorem for the optimal control problem
formulated in Section 2.

Theorem 3.1. Let v ∈C1,2([t0,T ]×O ×M ) be a positive solution of the HJB equa-
tion (11) with the terminal condition (12). Then

(a) v(t0,x0,z0,r0, i) ≥ Et0x0z0r0i [U(Xπ(T ),α(T ))] , for all π(·) ∈ At0x0z0r0i.
(b) Moreover, assume that the control π∗(·) given in (13) is an admissible control

(i.e., π∗(·) ∈ At0x0z0r0i) and satisfies
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E
t0x0z0r0i

[∫ T

t0
(π∗(s, i))2 ds

]
< ∞, for all i ∈ M , (14)

and for any sequences of stopping times {τn}n∈N+ with t0 ≤ τn ≤ T , the se-
quence v(τn,X∗(τn),z(τn),r(τn),α(τn)) is uniformly integrable. Then π∗(·) is
an optimal control to the optimization problem (7)-(9), i.e.,

v(t0,x0,z0,r0, i) = Et0x0z0r0i [U(X∗(T ),α(T )] . (15)

Here X∗(·) is the unique solution of the equation (6) when the control π∗(·) is
being used.

Proof of Theorem 3.1. For notation simplicity, in the following proof, we let π(s)=
π(s,α(s)) and π∗(s) = π∗(s,α(s)).

Part (a). Let v be a positive solution of the HJB equation (11), and π(·) be
any admissible controls in At0x0z0r0i. By assumption v ∈ C1,2([t0,T ] × O × M ),
we apply the generalized Itô’s formula for RCLL semimartingales to the process
v(s,X(s),z(s),r(s),α(s)) to get

dv(s,X(s),z(s),r(s),α(s))
=L

π v(s,X(s),z(s),r(s),α(s))ds

+ vx(s,X(s),z(s),r(s),α(s))X(s)π(s)σs(α(s))
√

z(s)dW s(s)

+ vz(s,X(s),z(s),r(s),α(s))σz(α(s))
√

z(s)dW z(s)

+ vr(s,X(s),z(s),r(s),α(s))σr (α(s))dW b(s)

+
m0

∑
j=1

v(s,X(s),z(s),r(s), j)dMα
j (s),

(16)

where Mα
j is the jth component of the martingale Mα defined by (1).

Taking any t ∈ [t0,T ] and integrating (16) from t0 to t, we have:

v(t,X(t),z(t),r(t),α(t))

=v(t0,X(t0),z(t0),r(t0),α(t0))+
∫ t

t0
L

π v(s,X(s),z(s),r(s),α(s))ds

+
∫ t

t0
vx(s,X(s),z(s),r(s),α(s))X(s)π(s)σs(α(s))

√
z(s)dW s(s)

+
∫ t

t0
vz(s,X(s),z(s),r(s),α(s))σz(α(s))

√
z(s)dW z(s)

+
∫ t

t0
vr(s,X(s),z(s),r(s),α(s))σr (α(s))dW b(s)

+
m0

∑
j=1

∫ t

t0
v(s,X(s),z(s),r(s), j)dMα

j (s) (17)

≤v(t0,X(t0),z(t0),r(t0),α(t0))



Portfolio Optimization in Regime-Switching Models 413

+
∫ t

t0
vx(s,X(s),z(s),r(s),α(s))X(s)π(s)σs(α(s))

√
z(s)dW s(s)

+
∫ t

t0
vz(s,X(s),z(s),r(s),α(s))σz(α(s))

√
z(s)dW z(s)

+
∫ t

t0
vr(s,X(s),z(s),r(s),α(s))σr (α(s))dW b(s)

+
m0

∑
j=1

∫ t

t0
v(s,X(s),z(s),r(s), j)dMα

j (s), (18)

where the inequality holds because L π v(s,X(s),z(s),r(s),α(s)) ≤ 0 by (11).
Denote the right-hand side of the previous inequality by Yt , then Y := {Yt}t∈[t0,T ]

is a local martingale. Moreover, since v is positive, so is Y , then the positive local
martingale Y is a supermartingale. Taking expectations both sides of the previous
inequality and letting t = T , we obtain:

E
t0x0z0r0i[v(T,X(T ),z(T ),r(T ),α(T ))] ≤ Et0x0z0r0i[YT ]

≤ Yt0 = v(t0,X(t0),z(t0),r(t0),α(t0)).

Part (a) then follows by the terminal condition (12).

Part (b). Now we consider the control π∗(·) given in (13).
Take an arbitrary integer n such that 0 < 1

n < T − t0. Define

On = O ∩
{

(x,z,r) : ‖(x,z,r)‖ < n, dist((x,z,r),∂O) >
1
n

}
. (19)

Let τn be the first exit time of (t,X∗(t),z(t),r(t)) from [t0,T − 1/n)×On, i.e.,

τn = inf{t ≥ t0 : (t,X∗(t),z(t),r(t)) /∈ [t0,T − 1/n)×On}. (20)

Note that τn ≤ T − 1/n < T .
Since L π∗

v(s,X∗(s),z(s),r(s),α(s)) = 0, by the similar arguments leading to
(18), we can get

v(τn,X
∗(τn),z(τn),r(τn),α(τn))

= v(t0,X∗(t0),z(t0),r(t0),α(t0))

+
∫ τn

t0
vx(s,X∗(s),z(s),r(s),α(s))X∗(s)π∗(s)σs(α(s))

√
z(s)dW s(s)

+
∫ τn

t0
vz(s,X∗(s),z(s),r(s),α(s))σz(α(s))

√
z(s)dW z(s)

+
∫ τn

t0
vr(s,X∗(s),z(s),r(s),α(s))σr (α(s))dW b(s)

+
m0

∑
j=1

∫ τn

t0
v(s,X∗(s),z(s),r(s), j)dMα

j (s). (21)
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Next we show that the expectation of each of the four stochastic integrals in (21)
is zero.

For the first stochastic integral, since v ∈ C1,2, then vx(s,X∗(s),z(s),r(s),α(s)) is
bounded for all s ∈ [t0,τn], so do X∗(s),σs(α(s)) and z(s). Hence for some positive
constant C1:

E
t0x0z0r0i

∫ τn

t0

[
vx(s,X∗(s),z(s),r(s),α(s))X∗(s)π∗(s)σs(α(s))

√
z(s)
]2

ds

≤ C1 E
t0x0z0r0i

∫ τn

t0
|π∗(s)|2ds (22)

≤ C1 E
t0x0z0r0i

∫ T

t0
|π∗(s)|2ds (23)

< ∞. ( by assumption (14)) (24)

It follows that

E
t0x0z0r0i

∫ τn

t0
vx(s,X∗(s),z(s),r(s),α(s))X∗(s)π∗(s)σs(α(s))

√
z(s)dW s(s) = 0.

Similarly, the expectations of the last three stochastic integrals are also zeros, by
the boundedness of vz(s,X∗(s),z(s),r(s),α(s)), σz(α(s)), z(s), vr(s,X∗(s),z(s),r(s),
α(s)), σr(α(s)) and v(s,X∗(s),z(s),r(s), j) for s ∈ [t0,τn] and all j ∈ M .

Taking expectation in (21), we obtain

E
t0x0z0r0iv(τn,X

∗(τn),z(τn),r(τn),α(τn))
= v(t0,X∗(t0),z(t0),r(t0),α(t0)). (25)

Now let n → ∞. By noting that τn → T a.s., v is continuous, and the assumption
that the sequence v(τn,X∗(τn),z(τn),r(τn),α(τn)) is uniformly integrable, it follows
that

lim
n→∞

E
t0x0z0r0iv(τn,X

∗(τn),z(τn),r(τn),α(τn))

= E
t0x0z0r0iv(T,X∗(T ),z(T ),r(T ),α(T )) (26)

= v(t0,X∗(t0),z(t0),r(t0),α(t0)). (27)

The proof of (15) is completed by the terminal condition (12).
�

4 Closed-form Solution for A Power Utility Function

For the purpose of deriving a closed-form solution and verifying the verification
Theorem 3.1, in this section, we consider a power utility function and let the param-
eter b,η and σz in the models (2)-(4) be regime independent. That is, for all regime
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states i ∈ M ,

b(i) = b, η(i) = η , σz(i) = σz, for some constants b, η and σz.

Moreover, let σs(i) = ksλs(i), i ∈ M for some positive constant ks.
The regime-dependent power utility function U takes the form:

U(x, i) =
δ (i)

γ
xγ , (0 < γ < 1; δ (i) > 0, ∀i ∈ M ), (28)

which, obviously, satisfies all the properties assumed in Section 2. Then the corre-
sponding value function (9) for the considered optimization problem becomes:

V (t0,x0,z0,r0, i) = sup
π(·)∈At0x0z0r0 i

E
t0x0z0r0i

[
δ (α(T ))

γ
X γ

T

]
. (29)

We take the following ansatz for the solution v of the HJB equation (11): for each
i ∈ M , ⎧⎪⎨⎪⎩

v(i) = xγ g(t, i)eβ1(t)r+β2(t)z,

g(T, i) = δ (i)
γ ,

β1(T ) = β2(T ) = 0,

(30)

where the function g(t, i),β1(t) and β2(t) are determined next.
Substituting (13) and (30) into the HJB equation (11), we obtain a system of

ordinary differential equations (ODE) for the functions g(t, i), β1(t) and β2(t):

gt(t, i)+ h(t, i)g(t, i)+ rg(t, i)
[
β ′

1(t)− bβ1(t)+ γ
]

+ zg(t, i)
[

β ′
2(t)+

(1 − γ + γρ2)σ2
z

2(1 − γ)
·β 2

2 (t)+
(

γρσz

(1 − γ)ks
− η
)

β2(t)+
γ

2(1 − γ)k2
s

]
+ ∑

j �=i

qi j[g(t, j)− g(t, i)] = 0

(31)
for i = 1, . . . ,m0, where

h(t, i) = a(i)β1(t)+
1
2

σ2
r (i)β 2

1 (t)+ θ (i)β2(t). (32)

Since the ODE (31) holds for all r ≥ 0 and z ≥ 0, it is necessary that

β ′
1(t)−bβ1(t)+ γ = 0, (33)

β ′
2(t)+

(1− γ + γρ2)σ 2
z

2(1− γ)
· β 2

2 (t)+
(

γρσz

(1− γ)ks
−η
)

β2(t)+
γ

2(1− γ)k2
s

= 0. (34)

Using the condition β1(T ) = 0, the solution β1(t) of (33) is:

β1(t) =
γ
b
[1 − e−b(T−t)]. (35)
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To solve β2(t), rewrite the ODE (34) as

dβ2(t)
(1−γ+γρ2)σ 2

z
2(1−γ) ·β 2

2 (t)+
(

γρσz
(1−γ)ks

− η
)

β2(t)+ γ
2(1−γ)k2

s

= −dt. (36)

Note that the denominator of the left-hand side of (36) is a quadratic form of β2(t),
whose determinant is

Δβ2
=
(

γρσz

(1 − γ)ks
− η
)2

− 4

(
(1 − γ + γρ2)σ2

z

2(1 − γ)

)(
γ

2(1 − γ)k2
s

)
=

−[η2k2
s + 2ρηksσz + σ2

z

]
γ + η2k2

s

(1 − γ)k2
s

. (37)

Since γ < 1, then Δβ2
> 0 if and only if

−[η2k2
s + 2ρηksσz + σ2

z

]
γ + η2k2

s > 0. (38)

Furthermore, observe that, for ρ ≥ −1:

η2k2
s + 2ρηksσz + σ2

z ≥ η2k2
s − 2ηksσz + σ2

z = (ηks − σz)2 ≥ 0.

Therefore, Δβ2
> 0 if and only if

γ < min

{
1,

η2k2
s

η2k2
s + 2ρηksσz + σ2

z

}
. (39)

Under the assumption (39), the ODE (36) can be written as:

dβ2(t)
(1−γ+γρ2)σ 2

z
2(1−γ) (β2(t)− κ1)(β2(t)− κ2)

= −dt, (40)

with

κ1 =
−γρσz/ks +(1 − γ)η +(1 − γ)

√
Δβ2

(1 − γ + γρ2)σ2
z

> κ2,

κ2 =
−γρσz/ks +(1 − γ)η − (1 − γ)

√
Δβ2

(1 − γ + γρ2)σ2
z

.

(41)

Furthermore, if
γρσz

(1 − γ)ks
− η < 0, (42)

then κ2 > 0.
The solution β2(t) of (40), combining with β2(T ) = 0, is:

β2(t) =
γ

(1 − γ + γρ2)k2
s σ2

z
· e

√
Δβ2

(T−t) − 1

e
√

Δβ2
(T−t)κ1 − κ2

. (43)
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Note that (31) becomes a system of m0 ordinary differential equations (ODE)
given by

gt(t, i)+ h(t, i)g(t, i)+
m0

∑
j=1

qi jg(t, j) = 0 (44)

for i = 1, . . . ,m0, where we rewrite ∑ j �=i qi j[g(t, j) − g(t, i)] as ∑m0
j=1 qi jg(t, j) by

using the property qii = −∑ j �=i qi j.
To solve for g(t, i), we rewrite the ODE system (44) together with the terminal

condition into the following vector form:⎧⎨⎩G′(t)+ H(t)G(t) = 0,

G(T ) =
1
γ

Δ ,
(45)

where

G(t) =

⎛⎜⎜⎜⎝
g(t,1)
g(t,2)

...
g(t,m0)

⎞⎟⎟⎟⎠ , Δ =

⎛⎜⎜⎜⎝
δ (1)
δ (2)

...
δ (m0)

⎞⎟⎟⎟⎠ , (46)

and

H(t) =

⎛⎜⎜⎜⎝
h(t,1)+ q11 q12 · · · q1m0

q21 h(t,2)+ q22 · · · q2m0
...

...
. . .

...
qm01 · · · qm0(m0−1) h(t,m0)+ qm0m0

⎞⎟⎟⎟⎠ . (47)

By the continuity of β1(t), β2(t) and hence the continuity of h(t, i) for each i, the
solution of (45) exists and takes the form:

G(t) =
1
γ

e
∫ T

t H(s)dsΔ . (48)

Using (30) and (43), (13) becomes

π∗(t, i) =
1

(1 − γ)k2
s λs(i)

+
ρσz

(1 − γ)ksλs(i)
β2(t) (49)

=
1

(1 − γ)k2
s λs(i)

+
ργ

(1 − γ)(1 − γ + γρ2)k3
s λs(i)σz

· e
√

Δβ2
(T−t) − 1

e
√

Δβ2
(T−t)κ1 − κ2

. (50)

In what follows we will show that π∗(t,α(t)) given in (50) is indeed an optimal
control of the considered optimization problem. Before that, it is helpful to provide
some interpretations of π∗.

1. π∗ depends on time t through the term (T − t), and also on the regime state α(t)
at t through the term λs.

2. The first term in π∗ is of the same form of the stock allocation for a classi-
cal Merton’s problem for each fixed regime i, with stock’s risk premium being
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λs(i)z(t), and stock’s volatility being ksλs(i)
√

z(t) (by deliberately ignoring the
stochasticity of z).

3. Recalling that 0 < γ < 1, and observing that

1 − γ + γρ2 = 1 − γ(1 − ρ2) ≥ 1 − (1 − ρ2) = ρ2 ≥ 0,

(Note: the equalities in the previous two “≥” do not hold at the same time.)

e
√

Δβ2
(T−t) − 1 ≥ 0, and e

√
Δβ2

(T−t)κ1 − κ2 > 0,
(51)

the second term in π∗ may be positive, negative or zero, depending on the sign
of ρ – the correlation between W s and W z. In particular, when ρ = 0, i.e., W s

and W z are uncorrelated, π∗ equals to the Merton’s result.
More specifically, if the two Brownian motion W s and W z are positively cor-
related, our model allocates more on stock than the classical Merton’s model;
while if W s and W z are negatively correlated, our model allocates less on stock
than the Merton’s model.

4. As t approaches to the terminal time T , π∗ approaches to the Merton’s result.
5. When γ approaches to 0, π∗ also approaches to the Merton’s result.

Theorem 4.1. For the power utility U(x, i) = δ (i)
γ xγ , (0 < γ < 1; δ (i) > 0), under

the assumptions (39) and (42), the control π∗(·) given in (50) is an optimal control
to the optimization problem (7)-(9), and the value function is given as in (30):

V (t0,x0,z0,r0, i) = xγ
0 ·g(t0, i)exp{β1(t0)r0 + β2(t0)z0} ,

with β1(·) defined in (35), β2(·) defined in (43), and g(·, i) being the i−th component
of the vector G(·) in (48) .

Proof of Theorem 4.1. To prove this theorem, it suffices to check that all assump-
tions in Theorem 3.1 are satisfied.

(i) Based on the previous calculation and the positivity of g(·, ·), v defined in (30)
is obviously a positive solution of the HJB equation (11) with the terminal
condition (12), and v ∈ C1,2([t0,T ]×O ×M ).

(ii) To show that π∗(·) given in (50) satisfies (14), i.e.,

E
t0x0z0r0i

[∫ T

t0
(π∗(s, i))2 ds

]
< ∞, for all i ∈ M . (52)

Straightforward calculation shows that β2(t) < β̂2 =
γ

(1 − γ + γρ2)k2
s σ2

z κ1
for

all t ∈ [t0,T ]. Then

π∗(t, i) =
1

(1 − γ)k2
s λs(i)

+
ρσz

(1 − γ)ksλs(i)
β2(t) (53)

<
1

(1 − γ)k2
s λs(i)

+
ρσz

(1 − γ)ksλs(i)
β̂2, (54)
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which implies (14) naturally.
(iii) To show that π∗(·) given in (50) is an admissible control.

a. π∗(·) is obviously progressively measurable.
b. For this π∗(·), the SDE (6) has a path-wise unique solution X∗, given by:

X∗(t) = x0 exp

{∫ t

t0

[
λs(α(s))π∗(s)z(s)+ r(s)− 1

2
σ2

s (α(s))(π∗(s))2

× z(s)
]
ds+

∫ t

t0
σs(α(s))π∗(s)

√
z(s)dW s(s)

}
,

(55)
which is obviously nonnegative.

By Definition 2.1, π∗(·) is an admissible control.
(iv) To show that for any sequences of stopping times {τn}n∈N+ with t0 ≤ τn ≤ T ,

the sequence v(τn,X∗(τn),z(τn),r(τn),α(τn)) is uniformly integrable, with

v(t,x,z,r, i) = xγ ·g(t, i)exp{β1(t)r + β2(t)z} . (56)

For brevity, we denote v(t,X∗(t),z(t),r(t),α(t)) by v∗
t , v(τn,X∗(τn),z(τn),r(τn),

α(τn)) by v∗
τn

, and X∗(τn) by X∗
n in the following arguments.

To show the uniform integrability of v∗
τn

, it suffices to show that:

sup
n≥1
E

t0x0z0r0i [(v∗
τn

)q]
< ∞, for some q > 1. (57)

By (55) and (56), for any q > 1, we have:

(v∗
t )

q =(x0)γq · (g(t,α(t)))q Y (t)exp{qβ2(t)z(t)} (58)

× exp

{∫ t

t0
γq

[
λs(α(s))π∗(s)z(s)− 1

2
σ2

s (α(s))(π∗(s))2 z(s)
]

ds

+
∫ t

t0
γqσs(α(s))π∗(s)

√
z(s)dW s(s)

}
≤(x0)γq · (g(t,α(t)))q Y (t)exp{qβ̂2z(t)} (59)

× exp

{∫ t

t0
γq

[
λs(α(s))π∗(s)z(s)− 1

2
σ2

s (α(s))(π∗(s))2 z(s)
]

ds

+
∫ t

t0
γqσs(α(s))π∗(s)

√
z(s)dW s(s)

}
,

where



420 R.H. Liu and D. Ren

Y (t) =exp

{∫ t

t0
γqr(s)ds+ qβ1(t)r(t)

}
,

β̂2 =
γ

(1 − γ + γρ2)k2
s σ2

z κ1
,

and the inequality (59) holds since β2(t) < β̂2 and z(t) > 0 for all t.
By (4),

z(t) = z(t0)+
∫ t

t0
[θ (α(s))− η(α(s))z(s)]ds+

∫ t

t0
σz(α(s))

√
z(s)dW z(s).

(60)
Then (59) can be rewritten as:

(x0)γq · (g(t,α(t)))q Y (t)

× exp

{
qβ̂2

[
z(t0)+

∫ t

t0
[θ (α(s))− η(α(s))z(s)]ds

+
∫ t

t0
σz(α(s))

√
z(s)dW z(s)

]
+
∫ t

t0
γq

[
λs(α(s))π∗(s)z(s)− 1

2
σ2

s (α(s))(π∗(s))2 z(s)
]

ds

+
∫ t

t0
γqσs(α(s))π∗(s)

√
z(s)dW s(s)

}

=(x0)γq · (g(t,α(t)))q exp

{
qβ̂2

[
z(t0)+

∫ t

t0
θ (α(s))ds

]}
(61)

×Y(t)M(t)exp

{∫ t

t0
qζ (s)z(s)ds

}
,

where

M(t) =exp

{
qβ̂2

∫ t

t0
σz(α(s))

√
z(s)dW z(s)

+
∫ t

t0
γqσs(α(s))π∗(s)

√
z(s)dW s(s) (62)

+
∫ t

t0

[
− q2β̂ 2

2

2
σ2

z (α(s))z(s)− γ2q2

2
σ2

s (α(s))(π∗(s))2z(s)

− ρβ̂2γq2σz(α(s))σs(α(s))π∗(s)z(s)

]
ds

}
,

ζ (s) =γλs(α(s))π∗(s)+
(

γ2q − γ
2

)
σ2

s (α(s))(π∗(s))2 (63)
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− β̂2η(α(s))+
qβ̂ 2

2

2
σ2

z (α(s))+ ρβ̂2γqσz(α(s))σs(α(s))π∗(s)

=

[
γ2

2
σ2

s (α(s))(π∗(s))2 +
β̂ 2

2

2
σ2

z (α(s))

+ ρβ̂2γσz(α(s))σs(α(s))π∗(s)

]
q (64)

+
[
γλs(α(s))π∗(s)− γ

2
σ2

s (α(s))(π∗(s))2 − β̂2η(α(s))
]
.

When q = 1, by plugging the form of π∗(s) given in (49), ζ (s) becomes:

ζ (s)|q=1 =− γρ2σ2
z (α(s))

2(1 − γ)
β 2

2 (s)+
γβ̂2ρ2σ2

z (α(s))
1 − γ

β2(s)

+
γ + 2γβ̂2ρksσz(α(s))

2(1 − γ)k2
s

− β̂2(2η(α(s))− β̂2σ2
z (α(s)))

2
. (65)

Treating (65) as a quadratic form in β2(s), and recalling that β2(s) < β̂2,
straightforward calculation implies that

ζ (s)|q=1 < ζ (s)|q=1,β2(s)=β̂2
= 0 (66)

On the other hand, note that ζ (s) is linear in q; and by recalling that ρ ∈
[−1,1], the coefficient of q is:

γ2

2
σ2

s (α(s))(π∗(s))2 +
β̂ 2

2

2
σ2

z (α(s))+ ρβ̂2γσz(α(s))σs(α(s))π∗(s) (67)

≥1
2

[
β̂2σz(α(s))− γσs(α(s))|π∗(s)|

]2 ≥ 0, (68)

Therefore, there exists some q > 1 such that ζ (s) < 0 for all s, implying that

the last term exp

{∫ t

t0
qζ (s)z(s)ds

}
in (61) is less than 1. Together with (59)

and (61), it follows that,

(v∗
t )

q ≤ (x0)γq · (g(t,α(t)))q (69)

×exp

{
qβ̂2

[
z(t0)+

∫ t

t0
θ (α(s))ds

]}
Y (t)M(t) (70)

≤ C3(t)Y (t)M(t), (71)

where C3(t) is some positive deterministic term which is bounded on [t0,T ].
Note that Y (t) and M(t) are uncorrelated, by (2) and (4), and the assumption
that W b is uncorrelated to W s and W z, then

E
t0x0z0r0i[(v∗

t )
q] ≤ C3(t)Et0x0z0r0i[Y (t)]Et0x0z0r0i[M(t)] (72)
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In view of [13, Eq. (3.36) and (3.41)], we have Et0x0z0r0i[supt0≤t≤T Y (t)] < ∞.
On the other hand, note that M is a positive local martingale, hence a super-
martingale with M(t0) = 1. By the optional stopping theorem (OS), we have
that for all stopping time τn with t0 ≤ τn ≤ T :

sup
n≥1
E

t0x0z0r0i[(v∗
τn

)q] ≤ sup
t∈[t0,T ]

C3(t) · supEt0x0z0r0i[Y (τn)] < ∞. (73)

Therefore, (57) follows, and this completes the proof of Theorem 4.1.

5 A Numerical Example

In this section we present a numerical example to show the different optimal port-
folio policies and different value functions in different market regimes. The results
clearly indicate the important role played by the regime-switching as introduced in
the market models.

In the example we consider a market with two regimes (m0 = 2). The generator
of the Markov chain α(·) is given by

Q =
(−q12 q12

q21 −q21

)
,

where q12 and q21 are the switching rates from regime 1 to regime 2 and from regime
2 to regime 1, respectively. We set q12 = 3 and q21 = 4, implying that on average
the market switches three times per year from regime 1 to regime 2 and four times
from regime 2 to regime 1.

The various model parameters used in the numerical example are chosen as the
following: for the interest rate model (2), a(1) = 0.16, a(2) = 0.08, b(1) = b(2) =
2, σr(1) = 0.03, σr(2) = 0.05; for the regime-switching Heston model (3)-(4) for
the stock price and volatility, σs(1) = 0.3, σs(2) = 0.5, θ (1) = 0.2, θ (2) = 0.4,
η(1) = η(2) = 2, σz(1) = σz(2) = 0.3, and [λs(1),λs(2)] = [σs(1),σs(2)]/ks with
ks = 7, the correlation coefficient ρ between W s(t) and W z(t) is ρ = −0.5. Note that

σs and λs satisfy 0 < σs(1) < σs(2), 0 < λs(1) < λs(2) and λs(2)
σ 2

s (2) < λs(1)
σ 2

s (1) . In view
of the discussions in [12, section 5], we may treat regime 1 as a bull market and
regime 2 a bear market. The utility functions for the two regimes are U(x,1) = 4x0.5

and U(x,2) = 2x0.5, respectively (that is, γ = 0.5, δ (1) = 2, δ (2) = 1 in (28)). The
investment horizon is set to T = 1(year). Straightforward calculation shows that the
assumptions (39) and (42) are both satisfied.

The optimal stock allocations π∗(t,1) and π∗(t,2) as given in (50) are displayed
in Fig. 1. We see from the displayed optimal controls that π∗(t,1) is always bigger
than π∗(t,2). This indicates, as expected, that the investor should always invest a
larger percentage of his/her wealth in the stock in the bull market (regime 1) and
a smaller percentage in the bear market (regime 2). Note that the market regime
may change at any time, then the investor should change his/her portfolio accord-
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Fig. 1 Optimal percentages of wealth in stock (two regimes). The values of parameters are: a(1) =
0.16, a(2) = 0.08, b(1) = b(2) = 2, σr(1) = 0.03 and σr(2) = 0.05 in equation (2); σs(1) = 0.3,
σs(2) = 0.5, θ (1) = 0.2, θ(2) = 0.4, η(1) = η(2) = 2, σz(1) = σz(2) = 0.3, and [λs(1),λs(2)] =
[σs(1),σs(2)]/ks with ks = 7, in equations (3) and (4). The correlation coefficient ρ between W s(t)
and W z(t) is ρ = −0.5, and γ = 0.5, δ (1) = 2, δ (2) = 1 in the utility function (28). The investment
horizon is T = 1, and the initial time t0 = 0.

ingly at the time when a regime-switching occurs. For example, at t = 0.5, we have
π∗(0.5,1) = 0.9492 and π∗(0.5,2) = 0.5695 from the calculation. As a result, if the
regime switches from bull to bear market at t = 0.5, then the investor should reduces
his/her investment in the stock from 94.92% to 56.95% of the total wealth (conse-
quently, his/her investment in the bond would increase from 5.08% to 43.05%.)
Fig. 1 also shows that the optimal percentages have only slight changes as time t
changes. Indeed, π∗(t,1) increases from π∗(0,1) = 0.9480 to π∗(1,1) = 0.9524 and
π∗(t,2) increases from π∗(0,2) = 0.5688 to π∗(1,2) = 0.5714. Hence, the regime-
switching has the major impact on the portfolio allocation.

The value functions V (t,x,z,r,1) and V (t,x,z,r,2) are displayed in Fig. 2. The
surfaces in the upper panel show V as functions of time t and interest rate r while
the wealth and variance are fixed at x = 1 and z = 0.2; The surfaces in the middle
panel show V as functions of time t and variance z while the wealth and interest rate
are fixed at x = 1 and r = 0.05; The surfaces in the lower panel show V as functions
of time t and wealth x while the variance and interest rate are fixed at z = 0.2 and
r = 0.05. We can clearly see that the value functions are different in different market
regimes.
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Fig. 2 Value functions (two regimes), with the same parameter values as in Fig.1.

6 Concluding Remarks

We have studied in this paper the portfolio optimization via utility maximization us-
ing regime-switching models where a regime-switching Vasicek model is assumed
for the interest rate and a regime-switching Heston model is used for the stock price.
We have used the dynamic programming approach to obtain a verification result for
the formulated stochastic optimal control problem. We have derived a closed-form
solution of the associated Hamilton-Jacobi-Bellman (HJB) equation for a power
utility function and a special choice of some model parameters, and proved the
optimality of the constructed control policy. Including a Markov chain for regime-
switching in the market models can better describe the market changes under dif-
ferent macroeconomic conditions and the obtained results can help us better under-
stand the optimal investment decision an investor should follow in different market
conditions.

We note that it would be extremely difficult, if not impossible to find a closed-
form solution for the general HJB equation (11) and other types of utility function.
In fact, to establish the regularity properties of the value function is a very chal-
lenging job. For the future research, we are interested in establishing the viscosity



Portfolio Optimization in Regime-Switching Models 425

solution property of the value function to the HJB equation and developing conver-
gent numerical algorithm.
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On Optimal Stopping and Impulse Control with
Constraint

J.L. Menaldi and M. Robin

Abstract The optimal stopping and impulse control problems for a Markov-Feller
process are considered when the controls are allowed only when a signal arrives.
This is referred to as control problems with constraint. In [28, 29, 30], the HJB
equation was solved and an optimal control (for the optimal stopping problem, the
discounted impulse control problem and the ergodic impulse control problem, re-
spectively) was obtained, under suitable conditions, including a setting on a com-
pact metric state space. In this work, we extend most of the results to the situation
where the state space of the Markov process is locally compact.

Keywords: Markov-Feller processes, information constraints, impulse control, con-
trol by interventions, ergodic control.
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1 Introduction

A considerable literature has been devoted to optimal stopping and impulse control
of Markov processes (e.g., see the references in Bensoussan and Lions [3, 4], Ben-
soussan [2], Davis [10]). A relatively small part of this literature concerns problems
where constraints are imposed on the admissible stopping times. In the present pa-
per, we address optimal stopping and impulse control problems of a Markov process
xt when the stopping times must satisfy a constraint, namely, the control is allowed
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to take place only at the jump times of a given process yt , these times representing
the arrival of a signal.

For instance, the system evolves according to a diffusion process xt and the sig-
nal yt is a Poisson process as in Dupuis and Wang [11], where an optimal stopping
problem is studied, with an application to finance. In this example, thanks to the
memoryless property of the exponential distribution, the yt process does not appear
as such. It is interesting to notice that, in the usual (unconstrained) case, the dy-
namic programming leads to the variational inequality max{−Au+αu,u−ψ}= 0,
where A is the infinitesimal generator of xt and ψ is the stopping cost (with run-
ning cost f = 0). However, in the constrained case, this becomes the equation
−Au+αu+λ [u−ψ ]+= 0, where λ is the intensity of the Poisson process (which
is assumed independent from xt ). As soon as the intervals between the jumps of yt

are not exponentially distributed, the control problem must be formulated with the
couple (xt ,yt) and the generator of this two-component process intervenes in the
HJB equation.

Such problems has been studied in [28, 29, 30], when the process xt takes values
in a metric compact space E and yt = t − τn, where {τn} is an increasing sequence
of instants such that Tn = τn − τn−1, for n ≥ 1 are, conditionally to xt , IID random
variables. Using an auxiliary discrete time problem in a systematic way, some re-
sults have been obtained for optimal stopping and impulse control (with discounted
and ergodic cots). Several applications of optimal stopping with constraint have
been studied where the decision times are related to availability of some assets (see
Lempa [23] and references therein). More generally, portfolio problems with trans-
action costs could give rise to impulse control with constraint. Moreover, we can
consider applications in simple hybrid models (with the signal being the ‘discrete’
variable, see last section).

The main aim of the present work is to extend the previous results to the case
of a locally compact Polish space, considering the three categories of problems:
optimal stopping, impulse control with discounted cost as well as ergodic cost. We
also mention further extensions and how some generalizations of the present model
is related to hybrid models.

Without pretending to be comprehensive, let us mention (a) that references re-
lated to optimal stopping with constraint include also Liang [25] who studied par-
ticular cases of the model considered here and (b) that other class of (analogue)
constraint have been considered, e.g., in Egloff and Leippold [12]. Moreover, for
impulse control with constraint, we found only a few references, Brémaud [7, 8],
Liang and Wei [26], and Wang [39]. A different kind of constraint is considered
in Costa et al. [9], where the constraints are written as infinite horizon expected
discounted costs.

The paper is organized as follows. In section 2, we introduce notations, defini-
tions and preliminary properties of the uncontrolled process, which is the two com-
ponents process (xt ,yt). Section 3 presents the definition of the optimal stopping
problem and its solution. Section 4 describes the process controlled by impulses
and the assumptions, which are used for both discounted cost and ergodic cost. In
section 5, the impulse control problem with discounted cost is solved via the HJB
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equation. In section 6, we present the ergodic cost problem and its solution. Some
extension are mentioned in section 7 and in section 8 we discuss the links with
hybrid models.

2 The Uncontrolled Process

Let us begin with some notations, definitions, comments, and preliminary proper-
ties.
Basic Notations:

• R
+ = [0,∞[, E a locally compact, separable and complete metric space (in short,

a locally compact Polish space), and also N0 = {0,1, . . .} (i.e., natural numbers
and 0), N0 = N0 ∪{∞}, R

+
= [0,∞];

• B(Z) the Borel σ -algebra of sets in Z, B(Z) the space of real-valued Borel and
bounded functions on Z, Cb(Z) the space of real-valued continuous and bounded
functions on Z, C0(Z) real-valued continuous functions vanishing at infinity on
Z, i.e., a real-valued continuous function v belongs to C0(Z) if and only if for
every ε > 0 there exists a compact set K of Z such that |v(z)| < ε for every z in
ZrK1, and also, if necessary, B+(Z), C+

b (Z), C+
0 (Z) for non-negative functions;

usually either Z = E or Z = E ×R
+;

• the canonical space D(R+,Z) of cad-lag functions, with its canonical process
zt(ω) = ω(t) for any ω ∈ D(R+,Z), and its canonical filtration F

0 = {F 0
t : t ≥

0}, F 0
t = σ(zs : 0 ≤ s ≤ t).

Assumption 2.1 Let (Ω ,F,xt ,yt ,Pxy) be a (realization of a) strong and normal ho-
mogeneous Markov process , on Ω = D(R+,E ×R

+) with its canonical filtration
universally completed F= {Ft : t ≥ 0} with F∞ = F , where (xt ,yt) is the canoni-
cal process having values in E×R

+, and Exy (or Ex,y when a confusion may arrive)
denotes the expectation relative to Pxy.

a) It is also assumed that xt is a Markov process by itself (referred as the reduced
state), with a C0-semigroup Φx(t) (i.e., Φx(t)C0(E) ⊂ C0(E), ∀t ≥ 0), and in-
finitesimal generator Ax with domain D(Ax)⊂C0(E).

b) The process yt (referred to as the signal process) has jumps to zero at times
τ1, . . . ,τn → ∞ and yt = t − τn for τn ≤ t < τn+1 (i.e., τ1 is the time of the first
jump –to zero– of yt , each jump is ‘the signal’ and yt is exactly the ‘time elapsed
since the last jump or signal’), and if y0 = 0 and τ0 = 0 then it is assumed that
conditionally to xt , the intervals between jumps Tn = τn − τn−1 are indepen-
dent, identically distributed random variables with a non-negative continuous
and bounded intensity function λ (x,y), which is such that there exists a constant
K > 0 satisfying Ex0{τ1} ≤ K, for any x in E. ⊓⊔

1 Typically E = R
d and this means that v(z)→ 0 as |z| → ∞.
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Remark 2.1. Actually, we begin with a realization of the reduced state process xt on
the canonical space D(R+,E) and the signal process yt is constructed based on the
given intensity λ (x,y), and this procedure yields a C0(E ×R

+)-semigroup denoted
by Φxy(t). Thus, in view of Palczewski and Stettner [34], all this implies that both
semigroups Φx(t) and Φxy(t) have the Feller property, i.e., Φxy(t)Cb(E) ⊂ Cb(E)
and Φxy(t)Cb(E ×R

+)⊂Cb(E ×R
+), and since only a strong and normal Markov

process is assumed, the semigroup Φxy(t) is (initially) acting on B(E ×R
+) and

so, weak (or stochastic) continuity is deduced from the assumption of a cad-lag
realization, which means that

(x,y, t) 7→ Exy{h(xt ,yt)} is a continuous function, (1)

for any h in Cb(E ×R
+). In [28, 29, 30] a probabilistic construction of the sig-

nal process yt was described, but there are other ways to constructing Φxy(t).
For instances, begin with the process (xt , ỹt) with ỹt = y+ t having infinitesimal
generator A0 = Ax + ∂y and a C0(E ×R

+)-semigroup. Then, add the perturba-
tion Bh(x,y) = λ (x,y)[h(x,0)− h(x,y)], which is a bounded operator generating a
C0(E ×R

+)-semigroup, with domain D(B) = C0(E ×R
+). Hence Axy = A0 + B

generates a C0(E ×R
+)-semigroup, with D(Axy) = D(A0), e.g., see Ethier and

Kurtz [13, Section 1.7, pp. 37–40, Thm 7.1]. Therefore Axy will also denote the
weak infinitesimal generator in Cb(E ×R

+), in several places of the following sec-
tions. ⊓⊔

Remark 2.2. Note that Assumption 2.1 (b) on the signal process yt means, in partic-
ular, that

Px0
{

Tn ∈ (t, t + dt) | xs, 0 ≤ s ≤ t
}
= λ (xt , t)exp

(
−

∫ t

0
λ (xs,s)ds

)
, (2)

and then it is deduced that Φxy(t) has an infinitesimal generator Axy = Ax +Ay with

Ayϕ(x,y) = ∂yϕ(x,y)+λ (x,y)[ϕ(x,0)−ϕ(x,y)], (3)

and recall that ∂y denotes the derivative with respect to y, and that λ ≥ 0 and λ ∈
Cb(E ×R

+). Moreover, using the law of T1 as in (2) and the Feller property of
(xt ,yt), it is also deduced that

(x,y) 7→ Exy
{

e−ατ1g(xτ1)
}

belongs to Cb(E ×R
+), (4)

for any g in Cb(E) and any α ≥ 0. Note that if y0 = y then τ1 is random variable
independent of T1,T2, . . . with distribution Px0{T1 ∈ · |y0 = y}. Furthermore, in turn,
by applying Dynkin’s formula to Axyϕ(x,y)+αϕ(x,y) = f (x,y), it follows that

(x,y) 7→ Exy

{∫ τ1

0
e−αt f (xt ,yt)dt

}
is in Cb(E ×R

+), (5)

for any f in Cb(E ×R
+) and any α > 0. ⊓⊔
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Remark 2.3. Note that because λ (x,y) is bounded (it suffices for y near 0), there
exists a constant a such that Px0{τ1 ≥ a > 0} ≥ a > 0, for any x in E . Moreover,
from Assumption 2.1 (b) on the signal process yt we have

Ex0{τ1}= Ex0

{∫ ∞

0
tλ (xt , t)exp

(
−

∫ t

0
λ (xs,s)ds

)
dt
}
,

so if λ (x,y) ≤ k1 < ∞, for every y ≥ 0, and x ∈ E , then Ex0{τ1} ≥ a1 = 1/k1..
Also, the condition Ex0{τ1} ≤ a2 is satisfied if, for instance λ (x,y) ≥ k0 > 0 for
y ≥ y0, x ∈ E , then a2 = y0 +1/k0. Moreover, since λ (x,y) is a continuous function
in E ×R

+, the continuity of Exy{τ1} follows. ⊓⊔

Definition 2.1 (with comments). If the evolution ė = −αt in [0,1] is added to the
homogeneous Markov process {(xt ,yt) : t ≥ 0} then the expression

{(Xn,en) = (xτn ,e
−ατn), n = 0,1, . . .}, (6)

with e0 = 1, τ0 = 0 and X0 = x, becomes a homogeneous Markov chain in ]0,1]×E
with respect to the filtration G = {Gn : n = 0,1, . . .} obtained from F, namely, Gn =
Fτn . Note that {xτn : n≥ 0} is also a Markov chain with respect to Gn. In this context,
if

τ = inf{t > 0 : yt = 0}, (7)

is considered as a functional on Ω , then the sequence of signals (i.e., the instants of
jumps for yt ) is defined by recurrence

τk+1 = inf{t > τk : yt = 0}, ∀k = 1,2, . . . , (8)

with τ1 = τ , and by convenience, set τ0 = 0. Let us also mention that Remark 2.3
yields: there exists a constant a1 such that

Px0{τ ≥ a1 > 0} ≥ a1 > 0, ∀x ∈ E, (9)

and by Assumption 2.1, there exists another constant a2 > 0 such that

Ex0{τ} ≤ a2, ∀x ∈ E. (10)

It is also valid,

0 < a1 ≤ τ(x) := Ex0{τ} ≤ a2, ∀x ∈ E, (11)

for some real numbers a1,a2. An F-stopping time θ > 0 satisfying yθ = 0 when
θ <∞ is called an admissible stopping time, in other words, if and only if there exists
a discrete (i.e., N0-valued) G-stopping time η such that θ = τη with the convention
that τ∞ = ∞. Moreover, if the condition θ > 0 (or equivalently η ≥ 1) is dropped
then θ is called a zero-admissible stopping time. ⊓⊔
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3 Optimal Stopping with Constraint

This section is an extension of [28] to a locally compact space E .

3.1 Setting-up

The usual optimal stopping problems as presented above is well known, but our
interest here is to restrict the stopping action (of the controller) to certain instants
when a signal arrives. As discussed in the previous section, the state of the dynamic
system is a homogeneous Markov process {(xt ,yt) : t ∈ R

+} with values in the
locally compact Polish space E ×R

+, satisfying the Feller conditions (1). Suppose
that

f ∈Cb(E ×R
+), ψ ∈Cb(E), α > 0, (12)

where f (x,y) is the running cost, ψ(x) is the terminal cost, and α is the discount
factor.

Thus, for any stopping time θ

Jxy(θ ,ψ) = Exy

{∫ θ

0
e−αt f (xt ,yt)dt + e−αθψ(xθ )

}
, (13)

is the cost function with the optimal cost

u(x,y) = inf
{

Jxy(θ ,ψ) : θ > 0, yθ = 0
}
, (14)

i.e., θ is any admissible stopping time, as defined in Section 2. Also, it is defined an
auxiliary problem with optimal cost

u0(x,y) = inf
{

Jxy(θ ,ψ) : yθ = 0
}
, (15)

which provides a homogeneous Markovian model. Since u(x,y) = u0(x,y) for any
x ∈ E and y > 0, it may be convenient to write u0(x) = u0(x,0) as long as no confu-
sion arrives.

Remark 3.1. Both costs u(x,y) and u0(x,y) represent the optimization over all stop-
ping times that occur when the signal arrives, the difference is that for y = 0 and t=0
(i.e., when the first signal arrives at the beginning), the control action is allowed for
the optimal cost u0(x,0), but it is not allowed for the optimal cost u(x,0), i.e., one
may say that for u(x,0) the ‘controller is (so to speak) always ‘late’ (at the begin-
ning and arriving simultaneously with the signal) and control is not possible. One
may consider even an alternative situation, where with a certain probability (inde-
pendently of (xt ,yt), for instance) the control is allowed, and therefore, the optimal
cost (in the simplest case) would be a convex combination of u(x,0) and u0(x,0).
Clearly, all this comment will apply later, for the impulse control problem. ⊓⊔
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The Dynamic Programming Principle shows (heuristically) that

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατ min{ψ ,u}(xτ ,yτ)

}
, (16)

with τ = inf{t > 0 : yt = 0} being the first jump of yt , and

u0(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ ,yτ )

}
, y > 0,

u0(x,0) = min
{
Ex0

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ ,yτ)

}
,ψ(x)

}
,

(17)

are the corresponding Hamilton-Jacobi-Bellman (HJB) equations, which are re-
ferred to as variational inequalities (VI) in a weak form. Also, both problems are
(logically) related by the condition

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ ,yτ)

}
. (18)

Thus, yτ = 0 implies

u0(x) = min
{

ψ(x),Ex0
{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ )

}}
,

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατ min{ψ ,u}(xτ ,0)

}
,

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ)

}
,

i.e., if u0(x) is known then the above equalities yield u(x,y) and u0(x,y).

3.2 Solving the VI

By means of (6), the continuous-time cost Jx0(θ ,ψ) with f = 0 and a stopping time
θ = τη can be written as

Jx0(θ ,ψ) = Ex0
{

e−αθ ψ(xθ )
}

= E
{

eη ψ(Xη) | e0 = 1,X0 = x
}

:= K1x(η ,ψ), (19)

for any discrete stopping time η relative to the Markov chain, i.e., where η has
values in N0 = and the convention τ∞ = ∞, and the last equality is the definition
of the discrete cost K1x(η ,ψ). This means that the optimal cost u0(x) is also the
optimal cost of a discrete-time stopping time problem relative to the homogeneous
Markov chain (certainly, there are several other ways of considering an equivalent
problem in discrete-time), i.e, u0(x) = inf{K1x(η ,ψ) : η ≥ 0}. This yields
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u0(x) = min
{

ψ(x),Ex0e−ατ u0(xτ)
}

(20)

as the HJB equation for u0(x), when f = 0.

Theorem 3.1. Under Assumption 2.1 and (12), the VI (17) and (16) have each a
unique solution in Cb(E ×R

+), which are the optimal costs (14) and (15), respec-
tively. Moreover, the first admissible exit time of the continuation region is optimal,
i.e., the discrete stopping times

θ̂ = inf
{

t > 0 : u(xt ,yt)≤ ψ(xt ,yt), yt = 0},

θ̂0 = inf
{

t ≥ 0 : u0(xt ,yt) = ψ(xt ,yt), yt = 0}
(21)

are optimal, namely, u(x,y) = Jxy(θ̂ ,ψ) and u0(x,y) = Jxy(θ̂0,ψ). Furthermore, the
relation (18) holds. ⊓⊔

Proof. This result is proved in [28] when E is compact, and it is valid under the
assumptions in Section 2 with the same arguments, and therefore, only the main
idea and comments are presented.

First, let us mention that the translation

u 7−→ u−Exy

{∫ ∞

0
e−αt f (xt ,yt)dt

}
(and similarly with u0) reduces to a zero running cost, i.e., in all this section we may
assume f = 0 without any lost of generality, only the terminal cost ψ is relevant.
Also, Assumption 2.1(b) on the signal and the inequality

(1− e−αa)Px0{τ ≥ a}= (1− e−αa)Px0
{

1− e−ατ ≥ 1− e−αa}
≤ 1−Ex0

{
e−ατ}, ∀a > 0,

imply Ex0{e−ατ} ≤ 1− (1− e−αa1)a0 := k1 < 1. This is used to solve the VI

u0(x) = min
{
Ex0

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ)

}
,ψ(x)

}
,

by means of a fixed point for a contraction operator. Then, some martingale argu-
ments are used to establish that u0(x) is indeed the optimal cost of a discrete-time
optimal stopping time problem relative to a Markov chain (6), where the first exit
time of the continuation region {x : u0(x)<ψ(x)} is optimal. Next, this is connected
with the continuous-time problem and the conclusion follows.

If the function u0(x,y) belongs to the domain D(Axy) then VI becomes

Axyu0(x,y)−αu0(x)+ f (x,y) = 0, ∀(x,y) ∈ E×]0,∞[,

min
{

Axyu0(x,y)−αu0(x)+ f (x,y),ψ(x)−u0(x,y)
}
= 0, ∀(x,y)∈E×{0},

where Axy is the infinitesimal generator. It may be proved that this is indeed the
case when ψ also belongs to D(Axy), but only continuity is usually not sufficient.
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However, the optimal cost u given by (14) belongs to D(Axy) and the VI (16) is
equivalent to

−Axyu(x,y)+αu(x,y)+λ (x,y)[u(x,0)−ψ(x,y)]+ = f (x,y), (22)

for any (x,y) in E × [0,∞[, where λ (x,y) is the jump-intensity as discussed in the
previous section. Also remark u0 = min{u,ψ}, which makes clear that u0(x,y) may
not belong to the domain D(Axy)⊂Cb(E × [0,∞[).

Remark 3.2. The VI/HJB equation (22) is similar to the penalized equation of the
unconstrained problem, e.g., see Bensoussan and Lions [3]. Similarly, using the
same method as in the penalized problem, if λ goes to infinity (uniformly) then the
solution uλ converges to the solution (which is a function of x only) of the classical
variational inequality of the unconstrained problem. ⊓⊔

There are some references regarding the stopping time problem with Poisson
constraint (e.g., Dupuis and Wang [11], Lempa [23], Liang and Wei [26]), while
there are many more about the usual or standard stopping times problem (e.g., the
books by Bensoussan and Lions [3], Peskir and Shiryaev [35], among several others
books and papers).

4 Impulse Controlled Process

This section describes the controlled process and assumptions common to both, the
discounted problem and the ergodic problem, as treated in the next two sections.

4.1 Controlled Process

For a detailed construction we refer to Bensoussan and Lions [4] (see also Davis [10],
Lepeltier and Marchal [24], Robin [36], Stettner [38]).

Let us consider Ω ∞ = [D(R+;E ×R
+)]∞, and define F 0

t = Ft and F
n+1
t =

F n
t ⊗Ft , for n ≥ 0, where Ft is the universal completion of the canonical filtration

as previously.
An arbitrary impulse control ν (not necessarily admissible at this stage) is a

sequence (θn,ξn)n≥1, where θn is a stopping time of F
n−1
t , θn ≥ θn−1, and the

impulse ξn is F
n−1
θn

measurable random variable with values in E .

The coordinate in Ω ∞ has the form (x0
t ,y

0
t ,x

1
t ,y

1
t , . . . ,x

n
t ,y

n
t , . . .), and for any im-

pulse control ν there exists a probability Pν
xy on Ω ∞ such that the evolution of

the controlled process (xν
t ,y

ν
t ) is given by the coordinates (xn

t ,y
n
t ) of Ω ∞ when

θn ≤ t < θn+1, n ≥ 0 (setting θ0 = 0), i.e., (xν
t ,y

ν
t ) = (xn

t ,y
n
t ) for θn ≤ t < θn+1.

Note that clearly (xν
t ,y

ν
t ) is defined for any t ≥ 0, but (xi

t ,y
i
t) is only used for any

t ≥ θi, and (xi−1
θi

,yi−1
θi

) is the state at time θi just before the impulse (or jump) to
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(ξi,yi−1
θi

) = (xi
θi
,yi

θi
), as long as θi < ∞. For the sake of simplicity, we will not al-

ways indicate, in the sequel, the dependency of (xν
t ,y

ν
t ) with respect to ν . A Markov

impulse control ν is identified by a closed subset S of E ×R
+ and a Borel mea-

surable function (x,y) 7→ ξ (x,y) from S into C = E ×R
+
r S, with the following

meaning: intervene only when the the process (xt ,yt) is leaving the continuation re-
gion C and then apply an impulse ξ (x,y), while in the stopping region S, moving
back the process to the continuation region C, i.e., θi+1 = inf{t > θi : (xi

t ,y
i
t) ∈ S},

with the convention that inf{ /0} = ∞, and ξi+1 = ξ (xi
θi+1

,yi
θi+1

), for any i ≥ 0, as
long as θi < ∞.

Now, the admissible controls are defined as follows, recalling that τn are the
arrival times of signal

Definition 4.1. (i) As mentioned earlier, a stopping time θ is called ‘admissible’ if
almost surely there exists n = η(ω)≥ 1 such that θ (ω) = τη(ω)(ω), or equivalently
if θ satisfies θ > 0 and yθ = 0 a.s.
(ii) An impulse control ν = {(θi,ξi), i ≥ 1} as above is called ‘admissible’, if each
θi is admissible (i.e., θi > 0 and yθi = 0), and ξi ∈ Γ (xi−1

θi
). The set of admissible

impulse controls is denoted by V .
(iii) If θ1 = 0 is allowed, then ν is called ‘zero-admissible’. The set of zero-
admissible impulse controls is denoted by V0.
(iv) An ‘admissible Markov’ impulse control corresponds to a stopping region
S= S0×{0}with S0 ⊂E , and an impulse function satisfying ξ (x,0)= ξ0(x)∈Γ (x),
for any x ∈ S0, and therefore, θi = τ i

ηi
and ηi+1 = inf{k > ηi : xi

τ i
k
∈ S0}, with τ0

0 = 0,

τ i
k = inf{t > τ i

k−1 : yi
t = 0}, for any k ≥ i ≥ 1. ⊓⊔

The discrete time impulse control problem has been consider in Bensoussan [2],
Stettner [37]. As seen later, it will be useful to consider an auxiliary problem in
discrete time, for the Markov chain Xn = xτn , with the filtration G = {Gn,n ≥ 0},
Gn = F n−1

τn
. The impulses occurs at the stopping times ηk with values in the set

N = {0,1,2, . . .} and are related to θk by ηi = inf{k ≥ 1 : θk = τk} for admissible
controls {θk} and similarly for zero-admissible controls. Thus,

Definition 4.2. If ν = {(ηi,ξi), i ≥ 1} is a sequence of G-stopping times and Gηi-
measurable random variables ξi, with ξi ∈ Γ (xτηi

), ηi increasing and ηi →+∞ a.s.,
then ν is referred to as an ‘admissible discrete time’ impulse control if η1 ≥ 1.
If ηi ≥ 0 is allowed, this is referred as an ‘zero-admissible discrete time’ impulse
control. ⊓⊔

4.2 Common Assumptions

It is assumed that there are a running cost f (x,y) and a cost-per-impulse c(x,ξ )
satisfying

f : E ×R
+ → R

+ bounded and continuous, α > 0,

c : E ×E → [c0,+∞[, c0 > 0, bounded and continuous,
(23)
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where the discount factor is not used within the ergodic contest. Moreover, for any
x ∈ E , the possible impulses must be in Γ (x) = {ξ ∈ E : (x,ξ ) ∈ Γ }, where Γ is a
given analytic set in E ×E such that for every x in E the following properties hold
true

/0 6= Γ (x) is compact2, ∀ξ ∈ Γ (x), Γ (ξ )⊂ Γ (x), and

c(x,ξ )+ c(ξ ,ξ ′)≥ c(x,ξ ′), ∀ξ ∈ Γ (x), ∀ξ ′ ∈ Γ (ξ )⊂ Γ (x).
(24)

Finally, defining the operator M

Mv(x) = inf
ξ∈Γ (x)

{
c(x,ξ )+ v(ξ )

}
, (25)

it is assumed that

M maps Cb(E) into Cb(E), and there exists a measurable

selector ξ̂ (x) = ξ̂ (x,v) realizing the infimum in Mv(x), ∀x,v.
(26)

Remark 4.1. (a) The last condition in (24) is to ensure that simultaneous impulses
is never optimal. (b) (26) requires some regularity property of Γ (x), e.g., see
Davis [10]. (c) It is possible (but not necessary) that x belongs to Γ (x), actually,
even Γ (x) = E whenever E is compact. However, an impulse occurs when the sys-
tem moves from a state x to another state ξ 6= x, i.e., it suffices to avoid (or not to
allow) impulses that moves x to itself, since they have a higher cost. ⊓⊔

5 Discounted Cost

This section is an extension of [29] to a locally compact space E .

5.1 HJB Equation

The discounted cost of an impulse control (or policy) ν = {(θi,ξi) : i ≥ 1)} is given
by

Jx,y(ν) = E
ν
x,y

{∫ ∞

0
e−αt f (xt ,yt)dt +

∞

∑
i=0

e−αθic(xi−1
θi

,ξi)
}
, (27)

where E
ν
xy is the Pν

xy-expectation of the process under the impulse control ν with

initial conditions (x0,y0) = (x,y), and xi−1
θi

is the value of the process just before
the impulse. Note that the process {yt : t ≥ 0} is not subject to any impulse, and the
condition yθ = 0 determines admissibility of the impulse time θ .

2 compactness is not really necessary, but it is convenient
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Thus, the optimal cost is defined by

u(x,y) = inf
{

Jx,y(ν) : ν ∈ V
}
, ∀(x,y) ∈ E × [0,∞[, (28)

and its associated auxiliary impulse control problem (referred to as the ‘time-
homogeneous’ impulse control) with an optimal cost given by

u0(x,y) = inf
{

Jx,y(ν) : ν ∈ V0
}
, ∀(x,y) ∈ E × [0,∞[. (29)

As with the optimal stopping time problems, since u(x,y) = u0(x,y) for any x ∈ E
and y > 0, it may be convenient to write u0(x) = u0(x,0) as long as no confusion
arrives.

The Dynamic Programming Principle shows (heuristically), see [29, Section 3]
that

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατ min{Mu,u}(xτ ,yτ)

}
, (30)

and

u0(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ ,yτ )

}
, y > 0,

u0(x) = min
{
Ex0

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ)

}
,Mu0(x)

}
,

(31)

are the corresponding Hamilton-Jacobi-Bellman (HJB) equations, which are re-
ferred to as quasi-variational inequalities (QVI) in a weak form. Note that M is
an operator in the variable x alone, so that Mu(x,y) = [Mu(·,y)](x). In any case,
min{Mu,u}(xτ ,yτ ) = min{Mu,u}(xτ ,0), because yτ = 0. Also, both problems are
related (logically) by the condition

u(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατu0(xτ)

}
, (32)

and so, if u0(x) is known then the last equality yields u(x,y) and u0(x,y). The opti-
mal cost u0(x) can be expressed as a discrete-time optimal impulse control similar to
Bensoussan [2, Chapter 8, 89–132] (ignoring the constraint), but this not necessary
for the analysis, since everything is based on the results obtained for the optimal
stopping time problems discussed in section 3.

5.2 Solving the QVI

Define

u0(x,y) = Exy

{∫ ∞

0
e−αt f (xt ,yt)dt

}
, ∀(x,y) ∈ E ×R

+, (33)
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This function u0 is the cost of no intervention, i.e., when the controller choose not
to apply any impulse to the system. Since all cost are supposed nonnegative, the
interval

Cb(u
0,Z) = {v ∈Cb(E ×R

+) : 0 ≤ v ≤ u0}, (34)

for either Z = E ×R
+ or Z = E , contains the optimal cost either u or u0, given by

either (28) or (29).
To find a solution to the QVIs (30) and (31) set u0 = u0

0 = u0 and consider the
schemes

un(x,y) = Exy

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατ min{Mun−1,un}(xτ ,0)

}
,

un
0(x) = min

{
Ex0

{∫ τ

0
e−αt f (xt ,yt)dt + e−ατun

0(xτ)
}
,Mun−1

0 (x)
}
,

for n≥ 1, i.e., a sequence of optimal stopping times problems with constraint. Based
on Theorem 3.1, each VI has a unique solution either u(x,y) in Cb(E ×R

+) or un
0 in

Cb(E) satisfying either/or

un(x,y) = inf
θ
Exy

{∫ θ

0
e−αt f (xt ,yt)dt + e−αθ Mun−1(xθ ,0)

}
,

un
0(x) = inf

θ
Ex0

{∫ θ

0
e−αt f (xt ,yt)dt + e−αθMun−1

0 (xθ )
}
,

(35)

where the minimization is over all admissible (or zero-admissible) stopping times
θ .

As in [29, Thms 4.2 and 4.3], we have

Theorem 5.1. Let us suppose Assumption 2.1 and (23), (24), (26). Then each of the
sequences of functions {un

0} and {un} defined above, is monotone decreasing to the
unique solution u in Cb(u0,E ×R

+) and the solution u0 in Cb(u0,E), of the QVIs
(30) and (31). Moreover, the estimate: there exist constants C > 0, 0 < r < 1 such
that

|un(x,y)− u(x,y)|+ |un
0(x,y)− u0(x,y)| ≤Crn, ∀(x,y) ∈ E ×R

+,

for all n ≥ 1, as well as the relations (32),

u(x,y) = inf
θ
Exy

{∫ θ

0
e−αt f (xt ,yt)dt + e−αθ Mu(xθ ,0)

}
,

u0(x) = inf
θ
Ex0

{∫ θ

0
e−αt f (xt ,yt)dt + e−αθMu0(xθ )

}
,

hold true, where the minimization is over (zero-)admissible stopping times θ . Fur-
thermore, un and u belong to the domain D(Ax,y)⊂Cb(E × [0,∞[) of the infinitesi-
mal generator Ax,y, and u(x,y)
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−Ax,yu(x,y)+αu(x,y)+λ (x,y)
[
u(x,0)− (Mu(·,0))(x)

]+
=

= f (x,y), ∀(x,y) ∈ E ×R
+,

−Ax,yun(x,y)+αu(x,y)+λ (x,y)
[
un(x,0)− (Mun−1(·,0))(x)

]+
=

= f (x,y), ∀(x,y) ∈ E ×R
+, ∀n ≥ 1,

are equivalent to the corresponding QVI and VI.

Proof. Only a short idea of the main points in the proof are mentioned. First, a de-
creasing and concave mapping is defined with the expressions in (35), and following
an argument similar to the one used in Hanouzet and Joly [16], the exponential con-
vergence/estimate is proved and a fixed point (solving the QVIs) is obtained. At this
point, the remaining assertions are obtained with a little more work.

In the following Theorem, all assertions are written for the optimal cost (28), but
a similar result holds true for the other optimal cost (29), with the zero-admissible
impulse controls.

Theorem 5.2. Under the assumptions as in Theorem 5.1, the unique solution of the
QVI equation (30) is the optimal cost (28), i.e., u(x,y) = inf

{
Jx,y(ν) : ν ∈ V

}
, for

every (x,y) in E ×R
+. Moreover, the first admissible exit time of the continuation

region provides an optimal impulse control.

Proof. The arguments are the same as in [29, Thms 4.4 & 4.5], there are no changes
in assuming only E locally compact (instead of compact), only the compactness of
Γ (x) is necessary. Most of the discussion involves some martingale properties.

Note that if u is the optimal cost then (1) the continuation region [u < Mu] is
defined as all (x,y) in E ×R

+ such that u(x,y)< Mu(x,0), (2) the optimal jump-to
is a Borel minimizer ξ̂ (x) of Mu(x,0), i.e., x 7→ ξ̂ (x) is a Borel functions from E
into Γ (x) and c(x, ξ̂ (x))+ u(ξ̂ (x),0) = Mu(x,0), for every x in E., and (3) the first
exit time of [u < Mu] is defined as

θ̂(x,y,s) = inf
{

t > s : u(xt−s,yt−s) = Mu(xt−s,0), yt−s = 0
}
,

and θ̂ (x,y,s) = ∞ if u(xt−s,yt−s)< Mu(xt−s,0) for every t > s such that yt = 0. Note
that he Markov process t 7→ (xt−s,yt−s), for t ≥ s, represents the initial condition
(xs,ys) = (x,y). Moreover, the continuity ensures that

u(xθ̂(x,y,s)−s,0) = c
(
xθ̂(x,y,s)−s, ξ̂ (xθ̂(x,y,s)−s)

)
+ u

(
ξ̂ (xθ̂ (x,y,s)−s),0

)
,

whenever θ̂ (x,y,s) < ∞.
Therefore, the evolution under the above feedback (or Markov impulse control

as in Definition 4.1-iv) and initial conditions (x,y) is as follows:
(1) first θ1 = θ̂ (x,y,0) and ξ1 = ξ̂ (xθ1) when θ1 < ∞ (we may use an isolated

‘coffin’ state ∂ to set x∞ = ∂ and ξ̂ (∂ ) = ∂ ),
(2) next θk+1 = θ̂ (ξk,0,ϑk), for any k ≥ 1.
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This is an optimal admissible impulse control ν̂ = {(θk,ξk) : k ≥ 1}, which is proved
in the same way as for the case E compact.

6 Ergodic Cost

This section is an extension of [30] to a locally compact space E .

6.1 Setting-up

We define the average cost to be minimized, as

JT (0,x,y,ν) = E
ν
xy

{∫ T

0
f (xν

s ,y
ν
s )ds+∑

i
1θi≤T c(xi−1

θi
,ξi)

}
,

J(x,y,ν) = liminf
T→∞

1
T

JT (0,x,y,ν),
(36)

the ergodic control problem is to characterize

µ(x,y) = inf
ν∈V

J(x,y,ν), (37)

and to find an optimal control. The auxiliary problem is concerned with

µ0(x,y) = inf
ν∈V0

J̃(x,y,ν), with

J̃(x,y,ν) = liminf
n→∞

1
Eν

xy{τn}
Jτn(0,x,y,ν),

(38)

and Jτn(0,x,y,ν) as in (36) with T = τn. Actually, as seen later, µ(x,y) = µ0(x,y) is
a constant.

The Dynamic Programming Principle shows (heuristically, see [30, Section 3]
that, with w0(x) = w0(x,0),

w0(x) = min
{
Ex0

{∫ τ

0
[ f (xt ,yt)− µ0]dt +w0(xτ)

}
,Mw0(x)

}
,

w0(x,y) = Exy

{∫ τ

0
[ f (xt ,yt)− µ0]dt +w0(xτ)

}
,

(39)

are the corresponding Hamilton-Jacobi-Bellman (HJB) equations in a weak form
with two unknowns µ0 and w0. Note that M is an operator in the variable x alone,
so that Mw0(x,y) = [Mw0(·,y)](x) as given by (25). Also, both problems are related
(logically) by the condition
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w(x,y) = Exy

{∫ τ

0
[ f (xt ,yt)− µ0]dt +w0(xτ)

}
, (40)

and so, if w0(x) is known then the last/first equality yields w(x,y) and w0(x,y).
Recall that τ is defined by (7) and that since w(x,y) = w0(x,y) for any x ∈ E and
y> 0, it may be convenient to write w0(x) =w0(x,0) as long as no confusion arrives.
Note that the functions w(x,y) and w0(x) may be called potentials, and a priori, they
are not costs, but they are used to determine an optimal control.

6.2 Solving the HJB

An important point to mention is to remark that the HJB equation (39) is equivalent
to

w0(x) = min
{

Mw0(x), ℓ(x)− µ0τ(x)+Pw0(x)
}
, (41)

where

ℓ(x) = Ex0

{∫ τ

0
f (xs,ys)ds

}
, τ(x) = Ex0{τ}, (42)

with τ as in (7), and in view of the property (4),

Ph(x) = Ex0{h(xτ)}, (43)

defines the operator P on Cb(E). Note that (10) yields

0 ≤ ℓ(x)≤ a2‖ f‖. (44)

Moreover, from the Feller property of xt and the law of τ , it follows that ℓ(x) is
continuous.

In addition to the hypotheses of Sections 2 and 4, we assume that there exists a
positive measure m on E such that

m(E)> 0 and P(x,U)≥ m(U), ∀U ∈ B(E), (45)

where P(x,U) =Ex01U(xτ), with τ defined by (7), and B(E) is the Borel σ -algebra
on E .

Remark 6.1. From

P(x,U) = Ex0

{∫ ∞

0
λ (xt , t)exp

(
−

∫ t

0
λ (xs,s)ds

)
1U(xt)dt

}
.

and Remark 2.3, one can check that (45) is satisfied when the transition probability
of xt has a density with respect to a probability on E satisfying: for every ε > 0 there
exists k(ε) such that
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p(x, t,x′)≥ k(ε)> 0, on E × [ε,∞[×E. (46)

This is the case, for instance, for periodic diffusion processes, see Bensoussan [1],
and for reflected diffusion processes with jumps, see Garroni and Menaldi [14, 15]
(which is also valid for reflected diffusion processes without jumps). Furthermore,
a simple example for E locally compact is provided by a pure jump process with
generator

Axg(x) = b(x)
{∫

E
g(z)q(x,dz)− g(x)

}
.

One can check that (45) is satisfied if, for instance, 0 < k0 ≤ λ (x,y)≤ k1, 0 < b1 ≤
b(x)≤ b2, q(x,B)≥ m0(B) for a positive measure m0, with with m0(E)> 0. ⊓⊔

Lemma 6.1. Under assumption (45), there exist a positive measure γ on E, and a
constant 0 < β < 1 such that P(x,B) ≥ τ(x)γ(B), for every B ∈ B(E), any x ∈ E,
with τ(x)γ(E)> 1−β . ⊓⊔

Theorem 6.1. Under Assumption 2.1 and (23), (24), (26), as well as (45), there
exists a solution (µ0,w0) in R

+×Cb(E) of (41), and therefore, of (39). ⊓⊔

For details of the Lemma 6.1 and Theorem 6.1 proofs, note that Kurano [21, 22]
results hold true for a locally compact space E , and refer to [30, Lem 4.1 and Thm
4.2]. For instance, the assumptions (45) and (11) imply

P1B(x) =: P(x,B)≥ τ(x)γ(x), ∀B ∈ B(E),

with γ(B) = m(B)/a2 and any β in ]0,1[ such that 1− β < m(E)a1/a2. Now, the
HJB equation (41) can be written as

w0(x) = inf
ξ∈Γ (x)∪{x}

{
ℓ(ξ )+1ξ 6=xc(x,ξ )− µ0τ(ξ )+Pw0(ξ )

}
.

Since P′(x,dz) := P(x,dz)− τ(x)γ(dz) satisfies P′(x,E)< β < 1, the operator

Rv(x) = inf
ξ∈Γ (x)∪{x}

{
ℓ(ξ )+1ξ 6=xc(x,ξ )+Pw0(ξ )− τ(ξ )

∫
E

v(z)γ(dz)
}

is a contraction on Cb(E) having a unique fixed point w0, and moreover, w0 ≥ 0
because ℓ(x) ≥ 0 and c(x,ξ ) > 0. Thus, (µ0,w0) is a solution, where µ0 := γ(w0),
the integral of w0 with respect to γ(·) on E .

Remark 6.2. When λ does not depends on x, the function τ(x) is constant and (41)
is the HJB equation of a standard discrete time impulse control problem as studied
in Stettner [37, Section 4] for Γ (x) = Γ fixed. ⊓⊔

Then, we have

Theorem 6.2. Under the assumptions as in Theorem 6.1, the constant µ0 obtained
in Theorem 6.1 satisfies
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µ0 = inf
{

J̃(x,0,ν) : ν ∈ V0
}

and there exists an optimal feedback control based on the exit times of the continu-
ation region [w0 < Mw0].

Proof. First, by means of Theorem 6.1 when Γ (x) = {x} (which means ‘no con-
trol’), we show that there exists ( j,h) ∈ R

+×Cb(E) solution of

h(x) = ℓ(x)− jτ(x)+Ph.

Note that assumption (45) implies that P has a unique invariant probability denoted
by ζ0(dx), see the book Hernández-Lerma [17, Section 3.3, pp. 56–61].

Thus, there are two cases: µ0 = j and µ0 < j. First, for µ0 = j, from the equation
for h and the fact that Xn = xτn is a Markov chain, we have

j = liminf
n

1
Ex0{τn}

Ex0

{n−1

∑
i=0

ℓ(Xi)
}

= liminf
n

1
Ex0{τn}

Ex0

{∫ τn

0
f (xt ,yt)dt

}
= J̃(x,0,ν),

with ν = 0, i.e., no impulse at all. Then, as in [30, Thm 5.1] we have µ0 ≤ J̃(x,0,ν),
for every ν in V0, i.e., µ0 ≤ j. Therefore, if µ0 = j then

µ0 = inf
{

J̃(x,0,ν) : ν ∈ V0}= j = J̃(x,0,0),

and ν = 0, i.e., ‘no impulses at all’, is optimal.
Next, the case µ0 < j is treated as in [30, Thm 5.1], with w̃(x) = w0(x)− h(x),

ℓ̃(x) = ( j − µ0)τ(x), w̃ = min{Mw̃, ℓ̃+Pw̃}. Indeed, using the results in Bensous-
san [2, Section 7.4, pp. 74–77], we show that this discrete time problem has an
optimal control ν̂ = {(η̂i, ξ̂i) : i ≥ 1} given by

η̂i = inf{n ≥ η̂i−1 : w0(Xn) = Mw0(Xn)},

where Xn is the controlled Markov chain and ξ̂i = ξ̂ (Xη̂i
) with a measurable selector

ξ̂ (x) realizing the infimum in Mw0(x). This is translated in continuous time as θ̂i =

τη̂i
and ξ̂i = ξ̂ (xθ̂i

).

Remark 6.3. It is clear that the previous argument about ( j,h) shows that the hy-
pothesis (5.1) in our previous paper [30] is not really necessary, and therefore, it is
a small improvement on it. ⊓⊔

Theorem 6.3. Under the assumptions as in Theorem 6.1, the constant µ0 obtained
in Theorem 6.1 satisfies

µ0 = inf
{

J(x,0,ν) : ν ∈ V
}
= J(x,y, ν̂),

where ν̂ is obtained by τ-translations from the optimal control in Theorem 6.2.
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Proof. (sketch) The first step is to show that w(x,y) defined by (40) satisfied

−Axyw(x,y)+λ (x,y)[w(x,0)−Mw(x,0)]+ = f (x,y)− µ0

Actually, this is not surprising in view of the results for the discounted case, but the
proof is somewhat cumbersome, see [30, Proposition 5.5].

This implies that the process

MT =

∫ T

0
[ f (xt ,yt)− µ0]dt +w(xT ,yT ), T ≥ 0

is a submartingale, and the argument is completed as in [30].

Remark 6.4 (Ergodic cost: A more general ergodic assumption). The assumption
(45) is not satisfied, in general, for diffusion processes in the whole space, and thus,
it is perhaps, relatively restrictive. A ‘localized’ substitute for (45) could be the
assumption:

(i) there exist a closed set C, an open set D, C ⊂ D ⊂ E , and a constant β0 ∈]0,1[
as well as a probability m satisfying 0 < m(C)< 1 = m(D) and such that P(x,B)≥
β0m(B), for every B ∈ B(E), any x ∈ E; and

(ii) there exist a continuous function W : E → [1,∞[, and constant β ∈]0,1[ such
that PW is continuous and PW (x)≤ βW (x)+β01C

∫
C W (z)m(dz), for every x ∈ E .

An adaptation of Jaskiewicz [19] allows us to obtain a solution (µ0,w0) of (41),
with w0 in the weighted-space

CW(E) =

{
g continuous and sup

x

{ |g(x)|
W (x)

}
< ∞

}
,

and to obtain Theorem 6.2, under some additional technical assumptions. Also, The-
orem 6.3 can be obtained under the additional assumption

E
{

e−k0tW (xt)
}
≤W (x), ∀x ∈ E, t > 0,

where λ (x,y)≥ k0 > 0 for every x,y. A detailed analysis will be in a paper in prepa-
ration [31] together with examples satisfying the various assumptions. This analysis
is based on several references (e.g., Hernández-Lerma and Lasserre [18], Meyn and
Tweedie [33, 32], among others). ⊓⊔

7 Extension

As in [28, 29, 30] let us mention some possible extensions:

• A variable discount factor α(x,y) instead of α constant, as well as a finite-
horizon cost.



446 J.L. Menaldi and M. Robin

• Letting the discount factor α → 0 in the optimal discounted costs uα(x,y) and
uα(x) = uα(x,0) = uα

0 (x,0) we expect to obtain ergodic costs, e.g., if µα =
αuα(x) and wα

0 (x) = uα(x)− uα(x0) then µα → µ0 and wα
0 (x) → w0(x), but

this is still something to be properly shown, when Γ (x) is not reduced to a fixed
compact.

• A quantify signal, e.g, yt has jumps back to {0,1,2} instead of only {0} with
the following meaning: there are three classes of impulse controls V0 ⊂ V1 ⊂ V2

that are enabled only and accordingly to the value of yt (some more details are
necessary for a convenient example). In this case, instead (7), the signals are
given by the functional

τ = inf{t > 0 : yt ∈ I}, (47)

where a prototype is I = {0,1,2}. In this case, the Markov chain will include
also yτn , i.e., (Zn,en) = (xτn ,yτn ,e

−ατn). We may think that as the waiting-time
passes (indicated or represented by the process yt ) the necessity of ‘controlling’
increases and impulses to other regions (that previously were not allowed) be-
comes enabled, i.e., when i < yt < i+1 then only the class Vi of impulse controls
is available, which produces an impulse back to some y = j < i+ 1. Actually, a
detailed example may be needed, and this is not discussed here.
In this case, jumps should be always backward, i.e., yt may jumps only to the
values 0,1 or 2 that are smaller that the value of yt . Certainly, what is accom-
plished for three values could be applied for any finite number of values, and
perhaps ‘extrapolate’ to infinite many values (as long as they are isolated values).
Thus, ψ(x,y) makes sense for the optimal stopping time problem (without any
changes!) but the analysis within the impulse control could give some interesting
surprises.

• For stopping time problems, recall that several extensions are possible, in par-
ticular the use of data with polynomial growth (instead of bounded). However,
there are some extra complications for the impulse control problems.

8 Hybrid Models

The state of a continuous-time hybrid model has a continuous-type variable x (with
cad-lag paths) and a discrete-type variable n (with cad-lag piecewise constant paths).
The ‘signal’ is represented by the ‘jumps’ of nt , and in general, this signal enable
any possible change in the setting of the model, not only the ‘possibility of control-
ling’ as studied in this paper (an others). The general idea is that the usual evolution
of the system is described by the component xt , and ‘once in a while’ (or under
some specific conditions) a discrete transition (i.e., a jump of nt occurs) and ev-
erything may change, and the evolution continues thereafter. With this in mind, the
signal (to act, e.g., to control the system as in our model) is given by the ‘hitting
time’ of a set of states S, i.e., τ = inf{t > 0 : (xt ,nt) ∈ S}, and this set S plays the
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role of a ‘set-interface’, where the continuous-type and discrete-type variables ex-
change information. This set-interface may be given a priori or used as part of the
parameters of control. In our previous ‘control with constraint’ presentation, the
discrete-type component nt was ignored (because there are only on/off possibilities)
and the continuous-type component xt is actually composed by two parts (xt ,yt), as
they were called, the reduced state xt and the signal process yt . Thus, in our model,
the set-interface S is E ×{0}, the same for every n (which is ignored, as mentioned
earlier).

To present the problem studied in this paper as a hybrid model the ‘details’ (a)
and (b) of Assumption 2.1 are not mentioned, and instead, assumptions directly on
the functional (7) and the signal (8) are imposed, e.g., at least it is assumed (9), but
for ergodic cost, the condition (10) is required. Also, some continuity is needed, i.e.,

(x,y) 7→ Exy{e−ατ ϕ(xτ)} and (x,y) 7→ Exy

{∫ τ

0
e−αt f (xt ,yt)

}
dt (48)

are continuous functions, for every ϕ in Cb(E) and f in Cb(E × [0,∞[). Most of
the results in previous section are valid under these ‘more general’ assumptions,
except those involving the specific form of infinitesimal generator Ay (3). To be more
specific, the following results can be extended under these more general hypotheses:
Theorem 3.1, without (22), for optimal stopping; Theorem 5.1 (without the formula
regarding the generator), and Theorem 5.2 for the discounted cost; Theorem 6.1 and
Theorem 6.2 (but not Theorem 6.3) for the ergodic cost. For instance, if we assume
(9) and that signals given by (8) then define the time-interval between jumps Tn =
τn − τn−1, which (conditionally to xt ) forms an independent, identically distributed
sequence of random variables with a non-negative and bounded intensity Λ(x,y).
Hence, the initial ‘signal process’ (which is not necessarily equal to the time elapsed
since the last signal) can be replaced to obtain an equivalent (in most aspects) model
as the one in this paper.

Indeed, let us make an example of a similar situation, i.e., a signal process ỹt

which is not equal to the process yt , the ‘time elapsed since the last signal’. In this
example, the state is (x, ỹ), the controller is allowed to ‘control’ (via an impulse)
when ỹ = 0, however, ỹt has

Azϕ(z) = ∂zϕ(z)+Λ(z)[qϕ(0)+ (1− q)ϕ(z/2)−ϕ(z)],

as its infinitesimal generator, with 0 < q < 1, i.e., the process zt jumps at sn, σn =
sn+1 − sn are IID having an intensity Λ(z), and at the jump-times, zsn = 0 with
probability q and zsn = zsn−/2 with probability 1− q. In this case, the functional of
interest is always the same (7), namely, τ = inf{t > 0 : ỹt = 0}, with the sequence of
signals τk+1 = inf{t > τk : ỹt = 0}, τ0 = 0, which are not necessarily the sequence
of jump-times {sn} of the process ỹt . However, if

F(t) = 1− exp
(
−

∫ t

0
Λ(s)ds

)
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is the law of σ1 for P0 then the convolution F∗n(t) is the law of sn = ∑n σn and the
law of τ = τ1 (when ỹ0 = 0) is given by

P0{τ ≤ t}= ∑
n

F∗n(t)q(1− q)n−1 := G(t),

and the sequence of signals {τk} define another sequence Tk = τk+1 − τk of IID
random variables with law G(t). Hence, if we take λ (t) = G′(t)/(1−G(t)) then the
control problem for (xt , ỹt) and f (x) (i.e., independent of ỹ) should be equivalent to
the problem (xt ,yt), with yt constructed from λ (y), since the discrete problems are
identical for (xt , ỹt) and (xt ,yt). It is clear that theses considerations can be extended
to a similar model (xt ,zt)

Azϕ(z) = b(z)∂zϕ(z)+Λ(z)
∫
R+

(
ϕ(ζ )−ϕ(z)

)
m(z,dζ ),

under suitable assumptions on the drift b and the probability kernel m(dζ ,z).
Another kind of problem could have the constraint ‘control is allowed at any

jump of zt ’, with xt as the reduced state process and zt as the signal process. For
this model, the condition, ‘when the process zt jumps’ is not exactly the same as
‘when zt vanishes’. In other words, technically speaking, the full state of the system
needs something else that the knowledge of (x,z), i.e., we need to know zt and zt−

to check if a jump has really occurred. Thus, if zt = ỹt above, then we would have
τn = sn, the jump-times of zt . For the (xt ,yt) model (as well as for the hybrid model)
presented in the above sections, the constraint “control is allowed only . . . ” ‘when
yt jumps’ is exactly the same as saying ‘when yt vanishes’. Nevertheless, we may
have an infinitesimal generator like Az (of the piecewise deterministic process zt –
or something else–) with a b(z) > 0 and m(ϕ ,z) = ϕ(0), which is not exactly the
process yt (the time elapsed since the last signal), but it has the property that zt = 0
iff yt = 0. Thus, for those type of processes, the constraint “control is allowed only
when zt vanishes” is equivalent to “control is allowed only when yt vanishes”.

Because of the particular meaning of our signal process yt as the ‘time elapsed
since last signal’, we obtain more detailed results than in the general hybrid model.
Therefore, there are many generalization in various directions, e.g., in between to
consecutive signals some other type of control could be allowed, signals of various
types enabling particular types of controls may be given, and many other ways on
how a continuous-type and a discrete-type variables may interact. Actually, much
more details on the (hybrid) model are necessary to advance further in this discus-
sion, and this is part of our book in preparation Jasso-Fuentes et al. [20], which
follows some the problems discussed in Bensoussan and Menaldi [5, 6] and [27].
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24. J.P. Lepeltier and B. Marchal. Théorie générale du contrôle impulsionnel markovien. SIAM J.
Control Optim., 22(4):645–665, 1984.

25. G. Liang. Stochastic control representations for penalized backward stochastic differential
equations. SIAM J. Control Optim., 53(3):1440–1463, 2015.

26. G. Liang and W. Wei. Optimal switching at poisson random intervention times. Discrete and
Continuous Dynamical Systems, Series B. To appear, see arXiv:1309.5608v2 [math.PR].

27. J.L. Menaldi. Stochastic hybrid optimal control models. In Stochastic models, II (Guanaju-
ato, 2000), volume 16 of Aportaciones Mat. Investig., pages 205–250. Soc. Mat. Mexicana,
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Linear-Quadratic McKean-Vlasov Stochastic
Differential Games∗

Enzo Miller Huyên Pham

Abstract We consider a multi-player stochastic differential game with linear McKean-
Vlasov dynamics and quadratic cost functional depending on the variance and mean
of the state and control actions of the players in open-loop form. Finite and infi-
nite horizon problems with possibly some random coefficients as well as common
noise are addressed. We propose a simple direct approach based on weak martingale
optimality principle together with a fixed point argument in the space of controls
for solving this game problem. The Nash equilibria are characterized in terms of
systems of Riccati ordinary differential equations and linear mean-field backward
stochastic differential equations: existence and uniqueness conditions are provided
for such systems. Finally, we illustrate our results on a toy example.

1 Introduction

1.1 General introduction-Motivation

The study of large population of interacting individuals (agents, computers, firms)
is a central issue in many fields of science, and finds numerous relevant appli-
cations in economics/finance (systemic risk with financial entities strongly inter-
connected), sociology (regulation of a crowd motion, herding behavior, social net-
works), physics, biology, or electrical engineering (telecommunication). Rationality
in the behavior of the population is a natural requirement, especially in social sci-
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ences, and is addressed by including individual decisions, where each individual
optimizes some criterion, e.g. an investor maximizes her/his wealth, a firm chooses
how much to produce outputs (goods, electricity, etc) or post advertising for a large
population. The criterion and optimal decision of each individual depend on the oth-
ers and affect the whole group, and one is then typically looking for an equilibrium
among the population where the dynamics of the system evolves endogenously as
a consequence of the optimal choices made by each individual. When the number
of indistinguishable agents in the population tend to infinity, and by considering
cooperation between the agents, we are reduced in the asymptotic formulation to a
McKean-Vlasov (McKV) control problem where the dynamics and the cost func-
tional depend upon the law of the stochastic process. This corresponds to a Pareto-
optimum where a social planner/influencer decides of the strategies for each indi-
vidual. The theory of McKV control problems, also called mean-field type control,
has generated recent advances in the literature, either by the maximum principle [5],
or the dynamic programming approach [14], see also the recent books [3] and [6],
and the references therein, and linear quadratic (LQ) models provide an important
class of solvable applications studied in many papers, see, e.g., [15], [11], [10], [2].

In this paper, we consider multi-player stochastic differential games for McKean-
Vlasov dynamics. This corresponds and is motivated by the competitive interaction
of multi-population with a large number of indistinguishable agents. In this context,
we are then looking for a Nash equilibrium among the multi-class of populations.
Such problem, sometimes refereed to as mean-field-type game, allows to incorpo-
rate competition and heterogeneity in the population, and is a natural extension of
McKean-Vlasov (or mean-field-type) control by including multiple decision mak-
ers. It finds natural applications in engineering, power systems, social sciences and
cybersecurity, and has attracted recent attention in the literature, see, e.g., [1], [7],
[8], [4]. We focus more specifically on the case of linear McKean-Vlasov dynam-
ics and quadratic cost functional for each player (social planner). Linear Quadratic
McKean-Vlasov stochastic differential game has been studied in [9] for a one-
dimensional state process, and by restricting to closed-loop control. Here, we con-
sider both finite and infinite horizon problems in a multi-dimensional framework,
with random coefficients for the affine terms of the McKean-Vlasov dynamics and
random coefficients for the linear terms of the cost functional. Moreover, controls of
each player are in open-loop form. Our main contribution is to provide a simple and
direct approach based on weak martingale optimality principle developed in [2] for
McKean-Vlasov control problem, and that we extend to the stochastic differential
game, together with a fixed point argument in the space of open-loop controls, for
finding a Nash equilibrium. The key point is to find a suitable ansatz for determining
the fixed point corresponding to the Nash equilibria that we characterize explicitly
in terms of systems of Riccati ordinary differential equations and linear mean-field
backward stochastic differential equations: existence and uniqueness conditions are
provided for such systems.

The rest of this paper is organized as follows. We continue Section 1 by for-
mulating the Nash equilibrium problem in the linear quadratic McKean-Vlasov fi-
nite horizon framework, and by giving some notations and assumptions. Section 2
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presents the verification lemma based on weak submartingale optimality principle
for finding a Nash equilibrium, and details each step of the method to compute a
Nash equilibrium. We give some extensions in Section 3 to the case of infinite hori-
zon and common noise. Finally, we illustrate our results in Section 4 on some toy
example.

1.2 Problem formulation

Let T > 0 be a finite given horizon. Let (Ω ,F,F,P) be a fixed filtered probabil-
ity space where F = (Ft)t∈[0,T ] is the natural filtration of a real Brownian motion
W = (Wt)t∈[0,T ]. In this section, for simplicity, we deal with the case of a single
real-valued Brownian motion, and the case of multiple Brownian motions will be
addressed later in Section 3. We consider a multi-player game with n players, and
define the set of admissible controls for each player i ∈ J1,nK as:

Ai =

{
αi : Ω × [0,T ]→ Rdi s.t. αi is F-adapted and

∫ T

0
e−ρtE[|αi,t |2]dt < ∞

}
,

where ρ is a nonnegative constant discount factor. We denote by A=A1× ...×An,
and for any α =(α1, ...,αn)∈A, i∈ J1,nK, we set α−i = (α1, . . . ,αi−1,αi+1, . . . ,αn)
∈ A−i = A1× . . .×Ai−1×Ai+1× . . .×An.

Given a square integrable measurable random variable X0 and control α =
(α1, ...,αn) ∈A, we consider the controlled linear mean-field stochastic differential
equation in Rd :

where for t ∈ [0,T ], x,x ∈ Rd , ai,ai ∈ Rdi :
b(t,x,x,α,α) = βt +bx,tx+ b̃x,tx+∑

n
i=1 bi,tαi + b̃i,tα i

= βt +bx,tx+ b̃x,tx+Btα + B̃tα

σ(t,x,x,α,α) = γt +σx,tx+ σ̃x,tx+∑
n
i=1 σi,tαi + σ̃i,tα i

= γt +σx,tx+ σ̃x,tx+Σtα + Σ̃tα.

(2)

Here all the coefficients are deterministic matrix-valued processes except β and σ

which are vector-valued F-progressively measurable processes.
The goal of each player i ∈ J1,nK during the game is to minimize her cost func-

tional over αi ∈ Ai, given the actions α−i of the other players:

{
dXt = b(t,Xα

t ,E [Xα
t ] ,α t ,E [α t ])dt +σ(t,Xα

t ,E [Xα
t ] ,α t ,E [α t ])dWt , 0 ≤ t ≤ T,

Xα
0 = X0,

(1)
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Ji(αi,α
−i) = E

[∫ T

0
e−ρt f i(t,Xα

t ,E [Xα
t ] ,α t ,E [α t ])dt +gi(Xα

T ,E[Xα
T ])
]
,

V i(α−i) = inf
αi∈Ai

Ji(αi,α
−i),

where for each t ∈ [0,T ], x,x ∈ Rd , ai,ai ∈ Rdi , we have set the running cost and
terminal cost for each player:

f i(t,x,x,a,a) = (x− x)ᵀQi
t(x− x)+ xᵀ[Qi

t + Q̃i
t ]x

+∑
n
k=1 aᵀk Ii

k,t(x− x)+aᵀk (I
i
k,t + Ĩi

k,t)x
+∑

n
k=1(ak−ak)

ᵀNi
k,t(ak−ak)+ak(Ni

k,t + Ñi
k,t)ak

+∑0≤k 6=l≤n(ak−ak)
ᵀGi

k,l,t(al−al)+aᵀk (G
i
k,l,t + G̃i

k,l,t)al

+2[LiT
x,tx+∑

n
k=1 Liᵀ

k,tak]

gi(x,x) = (x− x)ᵀPi(x− x)+ x(Pi + P̃i)x+2riᵀx.

(3)

Here all the coefficients are deterministic matrix-valued processes, except Li
x,L

i
k,r

i

which are vector-valued F-progressively measurable processes, and ᵀ denotes the
transpose of a vector or matrix.

We say that α∗ = (α∗1 , ...,α
∗
n ) ∈A is a Nash equilibrium if for any i ∈ J1,nK,

Ji(α∗) ≤ Ji(αi,α
∗,−i), ∀αi ∈Ai, i.e. , Ji(α∗) = V i(α∗,−i).

As it is well-known, the search for a Nash equilibrium can be formulated as a fixed
point problem as follows: first, each player i has to compute its best response given
the controls of the other players: α?

i = BRi(α
−i), where BRi is the best response

function defined (when it exists) as:

BRi : A−i→Ai

α
−i 7→ argmin

α∈Ai
Ji(α,α−i).

Then, in order to ensure that (α?
1 , ...,α

?
n ) is a Nash equilibrium, we have to check

that this candidate verifies the fixed point equation: (α?
1 , ...,α

?
i ) = BR(α?

1 , ...,α
?
i )

where BR := (BR1, ...BRn).
The main goal of this paper is to state a general martingale optimality principle

for the search of Nash equilibria and to apply it to the linear quadratic case. We first
obtain best response functions (or optimal control of each agent conditioned to the
control of the others) of each player i of the following form:

αi,t =−(Si
i,t)
−1U i

i,t(Xt −E[Xt ])− (Si
i,t)
−1(ξ i

i,t −ξ
i
i,t)− (Ŝi

i,t)
−1(V i

i,tE[Xt ]+Oi
i,t)

where the coefficients in the r.h.s., defined in (5) and (6), depend on the actions
α−i of the other players. We then proceed to a fixed point search for best response
function in order to exhibit a Nash equilibrium.
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1.3 Notations and Assumptions

Given a normed space (K, |.|), and for T ∈ R?
+, we set:

L∞([0,T ],K) =

{
φ : [0,T ]→K s.t. φ is measurable and sup

t∈[0,T ]
|φt |< ∞

}

L2([0,T ],K) =

{
φ : [0,T ]→K s.t. φ is measurable and

∫ T

0
e−ρu|φt |2du < ∞

}
L2
FT

(K) =
{

φ : Ω →K s.t. φ is FT -measurable and E[|φ |2]< ∞
}

S2
F(Ω × [0,T ],K) = {φ : Ω × [0,T ]→K s.t. φ is F-adapted and

E[ sup
t∈[0,T ]

|φt |2]< ∞

}
L2
F(Ω × [0,T ],K) = {φ : Ω × [0,T ]→K s.t. φ is F-adapted and∫ T

0
e−ρuE[|φu|2]du < ∞

}
.

Note that when we will tackle the infinite horizon case we will set T = ∞. To make
the notations less cluttered, we sometimes denote X = Xα when there is no ambi-
guity. If C and C̃ are coefficients of our model, either in the dynamics or in a cost
function, we note: Ĉ = C+ C̃. Given a random variable Z with a first moment, we
denote by Z =E[Z]. For M ∈Rn×n and X ∈Rn, we denote by M.X⊗2 = XᵀMX ∈R.
We denote by Sd the set of symmetric d×d matrices and by Sd

+ the subset of non-
negative symmetric matrices.

Let us now detail here the assumptions on the coefficients.

(H1) The coefficients in the dynamics (2) satisfy:
a) β ,γ ∈ L2

F(Ω × [0,T ],Rd),
b) bx, b̃x,σx, σ̃x ∈ L∞([0,T ],Rd×d); bi, b̃i,σi, σ̃i ∈ L∞([0,T ],Rd×di).

(H2) The coefficients of the cost functional (3) satisfy:
a) Qi, Q̃i ∈ L∞([0,T ],Sd

+), Pi, P̃i ∈ Sd , Ni
k, Ñ

i
k ∈ L∞([0,T ],Sdk

+ ), Ii
k, Ĩ

i
k ∈

L∞([0,T ],Rdk×d),
b) Li

x ∈ L2
F(Ω × [0,T ],Rd), Li

k ∈ L2
F(Ω × [0,T ],Rdk), ri ∈ L2

FT
(Rd),

c) ∃δ > 0 ∀t ∈ [0,T ]:
Ni

i,t ≥ δ Idk Pi ≥ 0 Qi
t − Iiᵀ

i,t (N
i
i,t)
−1Ii

i,t ≥ 0,
d) ∃δ > 0 ∀t ∈ [0,T ]:

N̂i
i,t ≥ δ Idk P̂i ≥ 0 Q̂i

t − Îiᵀ
i,t (N̂

i
i,t)
−1 Îi

i,t ≥ 0.

Under the above conditions, we easily derive some standard estimates on the
mean-field SDE:

- By (H1) there exists a unique strong solution to the mean-field SDE (1), which
verifies:
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E
[

sup
t∈[0,T ]

|Xα
t |2
]
≤Cα(1+E(|X0|2))< ∞ (4)

where Cα is a constant which depending on α only through
∫ T

0 e−ρtE[|αt |2]dt.
- By (H2) and (4) we have:

Ji(α) ∈ R for each α ∈A,

which means that the optimisation problem is well defined for each player.

2 A Weak submartingale optimality principle to compute a
Nash-equilibrium

2.1 A verification Lemma

We first present the lemma on which the method is based.

Lemma 1 (Weak submartingale optimality principle). Suppose there exists a
couple
(α?,(W.,i)i∈J1,nK), where α? ∈A and W.,i = {Wα,i

t , t ∈ [0,T ],α ∈A} is a family
of adapted processes indexed by A for each i ∈ J1,nK, such that:

(i) For every α ∈A, E[Wα,i
0 ] is independent of the control αi ∈Ai;

(ii) For every α ∈A, E[Wα,i
T ] = E[gi(Xα

T ,PXα
T
)];

(iii) For every α ∈A, the map t ∈ [0,T ] 7→ E[Sα,i
t ], with

S
α,i
t = e−ρtW

α,i
t +

∫ t
0 e−ρu f i(u,Xα

u ,PXα
u ,αu,Pαu)du is well defined and non-

decreasing;
(iv) The map t 7→ E[Sα?,i

t ] is constant for every t ∈ [0,T ].

Then α? is a Nash equilibrium and Ji(α?) = E[Wα?,i
0 ]. Moreover, any other Nash-

equilibrium α̃ such that E[Wα̃,i
0 ] = E[Wα?,i

0 ] and Ji(α̃) = Ji(α?) for any i ∈ J1,nK
satisfies the condition (iv).

Proof. Let i ∈ J1,nK and αi ∈ Ai. From (ii), we have immediately Ji(α) = E [Sα
T ]

for any α ∈A. We then have:

E[W(αi,α
?,−i),i

0 ] = E[S(αi,α
?,−i),i

0 ]

≤ E[S(αi,α
?,−i),i

T ] = Ji(αi,α
?,−i).

Moreover for αi = α?
i we have:

E[W(α?
i ,α

?,−i),i
0 ] = E[S(α

?
i ,α

?,−i),i
0 ]

= E[S(αi,α
?,−i),i

T ] = Ji(α?
i ,α

?,−i),



Linear-Quadratic McKean-Vlasov Stochastic Differential Games 457

which proves that α? is a Nash equilibrium and Ji(α?) = E[Wα?,i
0 ]. Finally, let us

suppose that α̃ ∈A is another Nash equilibrium such that E[Wα̃,i
0 ] = E[Wα?,i

0 ] and
Ji(α̃) = Ji(α?) for any i ∈ J1,nK. Then, for i ∈ J1,nK we have:

E[Sα̃ ,i
0 ] = E[Wα̃,i

0 ] = E[Wα?,i
0 ] = E[Sα?,i

T ] = Ji(α?) = Ji(α̃) = E[Sα̃ ,i
T ].

Since t 7→ E[Sα̃,i
t ] is nondecreasing for every i ∈ J1,nK, this implies that the map is

actually constant and (iv) is verified.

2.2 The method

Let us now apply the optimality principle in Lemma 1 in order to find a Nash equi-
librium. In the linear-quadratic case the laws of the state and the controls intervene
only through their expectations. Thus we will use a simplified optimality principle
where P is simply replaced by E in conditions (ii) and (iii) of Lemma 1. The general
procedure is the following:

2.2.1 Step 1: guess the random fields

The process t 7→ E
[
wi

t(X
α
t ,E [Xα

t ])
]

is meant to be equal to E
[
gi(Xα

T ,E [Xα
T ])
]

at
time T , where g(x,x) = Pi.(x− x)⊗2 +(Pi + P̃i).x⊗2 + riᵀx with (P, P̃,ri) ∈ (Sd)2×

Step 1. We guess a candidate for Wα,i. To do so we suppose that W
α,i
t =

wi
t(X

α
t ,E [Xα

t ]) for some parametric adapted random field {wi
t(x,x), t ∈ [0,T ],x,x∈

Rd} of the form wi
t(x,x) = Ki

t .(x− x)⊗2 +Λ i
t .x

⊗2 +2Y iᵀ
t x+Ri

t .
Step 2. We set Sα,it = e−ρtwi

t(X
α
t ,E [Xα

t ])+
∫ t

0 e−ρu f i(u,Xα
u ,E [Xα

u ] ,αu,E [αu])du
for i ∈ �1,n� and α ∈A .We then compute d

dtE
[
S
α,i
t

]
= e−ρtE

[
Dα,i

t
]

(with Itô’s
formula) where the drift Dα,i takes the form:

E
[
Dα,i

t
]
= E

[
−ρwi

t(X
α
t ,E [Xα

t ])+
d
dt
E

[
wi

t(X
α
t ,E [Xα

t ])
]

+ f i(t,Xα
t ,E [Xα

t ] ,α t ,E [α t ])
]
.

Step 3. We then constrain the coefficients of the random field so that the con-
ditions of Lemma 1 are satisfied. This leads to a system of backward ordinary
and stochastic differential equations for the coefficients of wi.
Step 4. At time t, given the state and the controls of the other players, we seek
the action αi cancelling the drift. We thus obtain the best response function of
each player.
Step 5. We compute the fixed point of the best response functions in order to
find an open loop Nash equilibrium t �→ α�

t .
Step 6. We check the validity of our computations.
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L2
FT

(Rd). It is then natural to search for a field wi of the form wi
t(x,x) = Ki

t .(x−
x)⊗2 +Λ i

t .x
⊗2 +2Y iᵀ

t x+Ri
t with the processes (Ki,Λ i,Y i,Ri) in (L∞([0,T ],Sd

+)
2×

S2
F(Ω × [0,T ],Rd)×L∞([0,T ],R) and solution to:

dKi
t = K̇i

t dt, Ki
T = Pi

dΛ i
t = Λ̇ i

t dt, Λ i
T = Pi + P̃i

dY i
t = Ẏ i

t dt +Zi
t dWt , 0≤ t ≤ T, Y i

T = ri

dRi
t = Ṙi

tdt, Ri
T = 0,

where (K̇i,Λ̇ i, Ṙi) are deterministic processes valued in Sd×Sd×R and (Ẏ i,Zi) are
adapted processes valued in Rd .

2.2.2 Step 2: derive their drifts

For i ∈ J1,nK, t ∈ [0,T ] and α ∈A, we set:

S
α,i
t := e−ρtwi

t(Xt ,E [Xt ])+
∫ t

0
e−ρu f i(u,Xα

u ,E [Xα
u ] ,αu,E [αu])du

and then compute the drift of the deterministic function t 7→ E[Sα,i
t ]:

dE[Sα,i
t ]

dt
= e−ρtE[Dα,i

t ]

= e−ρtE[(Xt −Xt)
ᵀ[K̇i

t +Φ
i
t ](Xt −Xt)+Xt

ᵀ
(Λ̇ i

t +Ψ
i

t )Xt +2[Ẏ i
t +∆

i
t ]
ᵀXt

+ Ṙi
t −ρRi

t +Γ
i
t +χ

i
t (αi,t)],

where we have defined:

χ
i
t (αi,t) := (αi,t −α i,t)

ᵀSi
i,t(αi−α i,t)+α

ᵀ
i,t Ŝ

i
i,tα i,t

+2[U i
i,t(Xt −Xt)+V i

i,tXt +Oi
i,t +ξ

i
i,t −ξ

i
i,t ]

ᵀ
αi,t

with the following coefficients:

Φ i
t = Qi

t +σ
ᵀ
x,tKi

t σx,t +Ki
t bx,t +bᵀx,tKi

t −ρKi
t

Ψ i
t = Q̂i

t + σ̂
ᵀ
x,tKi

t σ̂x,t +Λ i
t b̂x,t + b̂ᵀx,tΛ i

t −ρΛ i
t

∆ i
t = Li

x,t +bᵀx,tY i
t + b̃ᵀx,tY

i
t +σ

ᵀ
x,tZi

t + σ̃
ᵀ
x,tZ

i
t +Λ i

t β t

+σ
ᵀ
x,tKi

t γt + σ̃
ᵀ
x,tKi

t γ t +Ki
t (βt −β t)−ρY i

t

+∑k 6=i U
iᵀ
k,t(αk,t −αk,t)+V iᵀ

k,t αk,t

Γ i
t = γ

ᵀ
t Ki

t γt +2β
ᵀ
t Y i

t +2γ
ᵀ
t Zi

t

+∑k 6=i(αk,t −αk,t)
ᵀSi

k,t(αk,t −αk,t)+α
ᵀ
k,t Ŝ

i
k,tαk,t+

2[Oi
k,t +ξ i

k,t −ξ
i
k,t ]

ᵀαk,t −ρRi
t ,

(5)
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and 

Si
k,t = Ni

k,t +σ
ᵀ
k,tK

i
t σk,t

Ŝi
k,t = N̂i

k,t + σ̂
ᵀ
k,tK

i
t σ̂k,t

U i
k,t = Ii

k,t +σ
ᵀ
k,tK

i
t σx,t +bᵀk,tK

i
t

V i
k,t = Îi

k,t + σ̂
ᵀ
k,tK

i
t σ̂x,t + b̂ᵀk,tΛ

i
t

Oi
k,t = Li

k,t + b̂ᵀk,tY
i
t + σ̂

ᵀ
k,tZ

i
t + σ̂

ᵀ
k,tK

i
t γ t

+ 1
2 ∑k 6=i(Ĵi

i,k,t + Ĵiᵀ
k,i,t)αk,t

Ji
k,l,t = Gi

k,l,t +σ
ᵀ
k,tK

i
t σl,t

Ĵi
k,l,t = Ĝi

k,l,t + σ̂
ᵀ
k,tK

i
t σ̂l,t

ξ i
k,t = Li

k,t +bᵀk,tY
i

t +σ
ᵀ
k,tZ

i
t +σ

ᵀ
k,tK

i
t γt

+ 1
2 ∑k 6=i(Ji

i,k,t + Jiᵀ
k,i,t)αk,t .

(6)

2.2.3 Step 3: constrain their coefficients

Now that we have computed the drift, we need to constrain the coefficients so that
Sα,i satisfies the condition of Lemma 1. Let us assume for the moment that Si

i,t and
Ŝi

i,t are positive definite matrices (this will be ensured by the positive definiteness of
K). That implies that there exists an invertible matrix θ i

t such that θ i
t Si

i,tθ
iᵀ
t = Ŝi

i,t for
all t ∈ [0,T ]. We can now rewrite the drift as: "a square in αi" + "other terms not
depending in αi". Since we can form the following square:

E[χ i
t (αi,t)] = E[(αi,t −α i,t +θ

iᵀ
t α i,t −η

i
t )S

i
i,t(αi,t −α i,t +θ

iᵀ
t α i,t −η

i
t )−ζ

i
t ]

with: 

η i
t = ai,0

t (Xt ,Xt)+θ
iᵀ
t ai,1

t (Xt)

ai,0
t (x,x) =−

(
Si

i,t
)−1U i

i,t(x− x)−
(
Si

i,t
)−1

(ξ i
i,t −ξ

i
i,t)

ai,1
t (x) =−

(
Ŝi

i,t
)−1

(V i
i,tx+Oi

i,t)

ζ i
t = (Xt −Xt)

ᵀU iᵀ
i,t

(
Si

t
)−1U i

t (Xt −Xt)+XtV
iᵀ
i,t

(
Ŝi

t
)−1V i

i,tXt

+2(U iᵀ
i,t

(
Si

t
)−1

(ξ i
i,t −ξ

i
i,t)+V i

i,t
(
Ŝi

i,t
)−1Oi

i,t)Xt

+(ξ i
i,t −ξ

i
i,t)

ᵀ
(
Si

i,t
)−1

(ξ i
i,t −ξ

i
i,t)+Oiᵀ

i,t

(
Ŝi

i,t
)−1Oi

i,t ,

we can then rewrite the drift in the following form:

E[Dα,i
t ] = E[(Xt −Xt)

ᵀ[K̇i
t +Φ

i0
t ](Xt −Xt)+Xt

ᵀ
(Λ̇ i

t +Ψ
i0

t )Xt +2[Ẏ i
t +∆

i0
t ]ᵀXt

+ Ṙi
t +Γ i0

t

+(αi,t −α i,t +θ
iᵀ
t α i,t −η

i
t )S

i
i,t(αi,t −α i,t +θ

iᵀ
t α i,t −η

i
t )],

where
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Φ i0

t = Φ i
t −U iᵀ

i,t

(
Si

i,t
)−1U i

i,t

Ψ i0
t =Ψ i

t −V iᵀ
i,t

(
Ŝi

i,t
)−1V i

i,t

∆ i0
t = ∆ i

t −U iᵀ
i,t

(
Si

i,t
)−1

(ξ i
i,t −ξ

i
i,t)−V iᵀ

i,t

(
Ŝi

t
)−1Oi

i,t

Γ i0
t = Γ i

t − (ξ i
i,t −ξ

i
i,t)

ᵀ
(
Si

i,t
)−1

(ξ i
i,t −ξ

i
t)−Oiᵀ

i,t

(
Ŝi

i,t
)−1Oi

i,t .

(7)

We can finally constrain the coefficients. By choosing the coefficients Ki,Γ i,Y i

and Ri so that only the square remains, the drift for each player i ∈ J1,nK can be
rewritten as a square only (in the next step we will verify that we can indeed choose
such coefficients). More precisely we set Ki,Γ i,Y i and Ri as the solution of:

dKi
t =−Φ i0

t dt Ki
T = Pi

dΛ i
t =−Ψ i0

t dt Λ i
T = Pi + P̃i

dY i
t =−∆ i0

t dt +Zi
t dWt Y i

T = ri

dRi
t =−Γ i0

t dt Ri
T = 0,

(8)

and stress the fact that Y i,Zi,Ri depend on α−i, which appears in the coefficients
∆ i0, and Γ i0. With such coefficients the drift takes now the form:

E[Dα,i
t ] = E[(αi,t −α i,t +θ

iᵀ
t α i,t −η

i
t )S

i
i,t(αi,t −α i,t +θ

iᵀ
t α i,t −η

i
t )]

= E[(αi,t −α i,t −ai,1
t +θ

iᵀ
t (α i,t −ai,0

t ))Si
i,t(αi,t −α i,t −ai,1

t +θ
iᵀ
t (α i,t −ai,0

t ))]

and thus satisfies the nonnegativity constraint: E[Dα,i
t ] ≥ 0, for all t ∈ [0,T ], i ∈

J1,nK, and α ∈A.

2.2.4 Step 4: find the best response functions

Proposition 1 Assume that for all i ∈ J1,nK, (Ki,Λ i,Y i,Zi,Ri) is a solution of (8)
given α−i ∈ A−i. Then the set of processes

αi,t = ai,0
t (Xt ,E[Xt ])+ai,1

t (E[Xt ])

=−
(
Si

i,t
)−1U i

i,t(Xt −E[Xt ])−
(
Si

i,t
)−1

(ξ i
i,t −ξ

i
i,t)−

(
Ŝi

i,t
)−1

(V i
i,tE[Xt ]+Oi

i,t)
(9)

(depending on α−i) where X is the state process with the feedback controls α =
(α1, ...,αn), are best-response functions, i.e., Ji(αi,α

−i) =V i(α−i) for all i∈ J1,nK.
Moreover we have

V i(α−i) = E[Wi,α
0 ]

= E[Ki
0.(X0−X0)

⊗2 +Λ
i
0.X
⊗2
0 +2Y iᵀ

0 X0 +Ri
0].
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Proof. We check that the assumptions of Lemma 1 are satisfied. Since Wα,i is of the
form W

α,i
t = wi

t(X
α
t ,E[Xα

t ]), condition (i) is verified. The condition (ii) is satisfied
thanks to the terminal conditions imposed on the system (8). Since (Ki,Λ i,Y i,Zi,Ri)
is solution to (8), the drift of t 7→ E[Sα,i] is positive for all i ∈ J1,nK and all α ∈A,
which implies condition (iii). Finally, for α ∈ A, we see that E[Dα,i

t ] ≡ 0 for t ∈
[0,T ] and i ∈ J1,nK if and only if:

αi,t−α i,t−ai,1
t (Xα

t ,E[Xα
t ])+θ

iᵀ
t (α i,t−ai,0

t (E[Xα
t ]))= 0 a.s. t ∈ [0,T ].

Since θ i
t is invertible, we get α i,t = ai,0

t by taking the expectation in the above
formula. Thus E[Dα,i

t ] ≡ 0 for every i ∈ J1,nK and t ∈ [0,T ] if and only if αi,t =

α i,t + ai,1
t = ai,1

t + ai,0
t for every i ∈ J1,nK and t ∈ [0,T ]. For such controls for

the players, the condition (iv) is satisfied. We now check that αi ∈ Ai for every
i ∈ J1,nK (i.e. it satisfies the square integrability condition). Since X is solution to
a linear Mckean-Vlasov dynamics and satisfies the square integrability condition
E[sup0≤t≤T |Xt |2]< ∞, it implies that αi ∈ L2

F(Ω × [0,T ],Rdi) since Si
i,U

i
i , Ŝ

i
i,V

i
i are

bounded and (Oi
i,ξ

i
i ) ∈ L2([0,T ],Rdi)×L2(Ω × [0,T ],Rdi). Therefore αi ∈ Ai for

every i ∈ J1,nK.

2.2.5 Step 5: search for a fixed point

We now find semi-explicit expressions for the optimal controls of each player. The
issue here is the fact that the controls of the other players appear in the best response
functions of each player through the vectors (Y 1,Z1), ...,(Y n,Zn). To solve this fixed
point problem, we first rewrite (9) and the backward equations followed by (Y,Z) =
((Y 1,Z1), ...,(Y n,Zn)) in the following way (note that we omit the time dependence
of the coefficients to make the notations less cluttered):

α?
t −α?t = Sx(Xt −X t)+Sy(Yt −Y t)+Sz(Zt −Zt)+H−H

α?t = ŜxX t + ŜyY t + ŜzZt + Ĥ
dY t =

(
Py(Yt −Y t)+Pz(Zt −Zt)+Pα(αt −α t)+F−F

+ P̂yY t + P̂zZt + P̂α α t + F̂
)

dt

+ZtdWt ,

(10)

where we define
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S =
(
(Si

i)
−11i= j

)
i, j∈J1,nK

Ŝ =
(
(Ŝi

i)
−11i= j

)
i, j∈J1,nK

J = 1
2

(
(Ji

i j + Ji
ji)1i6= j

)
i, j∈J1,nK

Ĵ = 1
2

(
(Ĵi

i j + Ĵi
ji)1i6= j

)
i, j∈J1,nK

J =−(Id +SJ)−1 S

Ĵ =−
(
Id + ŜĴ

)−1
Ŝ

Sx = J
(
U i

i
)

i∈J1,nK

Ŝx = Ĵ
(
V i

i
)

i∈J1,nK

Sy = J
(
1i= jb

ᵀ
i

)
i, j∈J1,nK

Ŝy = Ĵ
(
1i= jb̂

ᵀ
i

)
i, j∈J1,nK

Sz = J
(
σ
ᵀ
i

)
i∈J1,nK

Ŝz = Ĵ
(
σ̂
ᵀ
i

)
i∈J1,nK

H = J
(
Li

i +σ
ᵀ
i Kiγ

)
i∈J1,nK

Ĥ = Ĵ
(
Li

i + σ̂
ᵀ
i Kiγ

)
i∈J1,nK



Py = (1i= j(U i
i (S

i
i)
−1bᵀi −bᵀx +ρ))i, j∈J1,nK

P̂y = (1i= j(V i
i (Ŝ

i
i)
−1b̂ᵀi − b̂ᵀx +ρ))i, j∈J1,nK

Pz = (1i= j(U i
i (S

i
i)
−1σ

ᵀ
i −σ

ᵀ
x ))i, j∈J1,nK

P̂z = (1i= j(V i
i (S

i
i)
−1σ̂

ᵀ
i − σ̂

ᵀ
x ))i, j∈J1,nK

Pα =−(1i6= j(U i
j

+U i
i (S

i
i)
−1(Ji

i j + Jiᵀ
ji )))i, j∈J1,nK

P̂α =−(1i6= j(V i
j

+V i
i (Ŝ

i
i)
−1(Ĵi

i j + Ĵiᵀ
ji )))i, j∈J1,nK

F = (Kiβ +σ
ᵀ
x Kiγ)i∈J1,nK

F̂ = (U i
i (S

i
i)
−1(Li +σ

ᵀ
i Kiγ)−Lx−

σ
ᵀ
x Kiγ−Kiβ )i∈J1,nK.

(11)

Now, the strategy is to propose an ansatz for t ∈ [0,T ] 7→ Y t in the form:

Y t = πt(Xt −X t)+ π̂tX t +ηt (12)

where (π, π̂,η) ∈ L∞([0,T ],Rnd×d)× L∞([0,T ],Rnd×d)× S2
F(Ω × [0,T ],Rnd) sat-

isfy: 
dηt = ψtdt +φtdWt , ηT = r = (ri)i∈J1,nK

dπt = π̇tdt, πT = 0
dπ̂t = ˙̂πtdt, π̂T = 0.

By applying Itô’s formula to the ansatz we then obtain:

dY t = π̇t(Xt −X t)dt +πtd(Xt −X t)+ ˙̂πtX tdt + π̂tdX t +ψtdt +φtdW

= dt
[
π̇t(Xt −X t)+ψt −ψ t +πt

(
β −β +bx(Xt −X t)+B(α t −α t)

)]
+dt

[
˙̂πtX t +ψ t + π̂t

(
β + b̂xX t + B̂α t

)]
+dWt

[
φt +πt

(
γ +σxXt + σ̃xX t +Σα t + Σ̃α t

)]
.

By comparing the two Itô’s decompositions of Y , we get
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Py(Yt −Y t)+Pz(Zt −Zt)

+Pα(αt −α t)+F−F = π̇t(Xt −X t)+ψt −ψ t

+πt

(
β −β +bx(Xt −X t)+B(α t −α t)

)
P̂yY t + P̂zZt + P̂α α t + F̂ =

[
˙̂πtX t +ψ t + π̂t

(
β + b̂xX t + B̂α t

)]
Zt =

[
φt +πt

(
γ +σxXt + σ̃xX t +Σα t + Σ̃α t

)]
.

(13)

We now substitute the Y by its ansatz in the best response equation (10), and obtain
the system:
(Id−SzπΣ)(α?

t −α?t) = (Sx +Syπt +Szπtσx)(Xt −X t)

+(H−H +Sy(ηt −η t)+Sz(φt −φ t +πt(γ− γ)))

(Id− Ŝzπt Σ̂)α?t = (Ŝx + Ŝyπ̂t + Ŝzπt σ̂x)X t +(Ĥ + Ŝyη t + Ŝz(φ t +πt .γ)).
(14)

To make the next computations slightly less painful we rewrite (14) as

α?
t −α?t = Ax(Xt −X t)+Rt −Rt

α?t = ÂxX t + R̂t

where
Ax := (Id−SzπtΣ)−1(Sx +Syπt +Szπtσx)

Âx := (Id− Ŝzπt Σ̂)−1(Ŝx + Ŝyπt + Ŝzπt σ̂x)

Rt := (Id−SzπtΣ)−1(H +Syηt +Sz(φt +πtγ))

R̂t := (Id− Ŝzπt Σ̂)−1(Ĥ + Ŝyη + Ŝz(φt +πtγ)).

(15)

By injecting (14) into (13) we have:

0 = [π̇t +πtbx−Pyπt −Pzπt(σx +ΣAx)− (Pα −πtB)Ax] (Xt −X t)

+ψt −ψ t +πt(β −β )− (Pα −πtB)(R−R)− (F−F)

−Pz(φt −φ t +πt(γ− γ +Σ(R−R)))−Py(ηt −η t)

0 =
[ ˙̂πt + π̂t b̂x− P̂yπ̂− P̂zπt(σ̂x + Σ̂ Âx)− (P̂α − π̂t B̂)Âx

]
X t

+ψ t + π̂tβ − (P̂α − π̂t B̂)R̂− F̂− P̂z(φ t +πt(γ + Σ̂ R̂))− P̂yη .

Thus we constrain the coefficients (π, π̂,ψ,φ) of the ansatz of Y to satisfy:
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We now have a feedback form for (Y,Z) = ((Y 1,Z1), ...,(Y n,Zn)). We can inject it
in the best response functions α? in order to obtain the optimal controls in feedback
form. We then inject these latter in the state equation in order to obtain an explicit
expression of t 7→ X?

t .

2.2.6 Step 6: check the validity

where Ki ∈ L∞([0,T ],Sd
+), Λ i ∈ L∞([0,T ],Sd

+), (Y i
t ,Z

i
t ) ∈ S2

F(Ω × [0,T ],Rd)×
L2
F(Ω× [0,T ],Rd), Ri ∈L∞([0,T ],R), π, π̂ ∈L∞([0,T ],Rnd×d) and (η ,φ)∈ S2

F(Ω×
[0,T ],Rnd)×L2

F(Ω × [0,T ],Rnd), under the assumptions (H1)-(H2). We recall that
t 7→ (Ki

t ,Λ
i
t ,(Y

i
t ,Z

i
t ),R

i
t and t 7→ (πt , π̂t ,(ηt ,φt)) are solutions respectively to (8) and

(16). Fix i ∈ J1,nK:

(i) We first consider the coefficients Ki which follow Ricatti equations:

By standard result in control theory (see [16], Ch. 6, Thm 7.2]) under (H1) and
(H2) there exists a unique solution Ki ∈ L∞([0,T ],Sd

+).
(ii) Given Ki let us now consider the Λ i’s. They also follow Ricatti equations:{

Λ̇ i + Q̂iK
t +Λ i

t b̂x,t + b̂ᵀx,tΛ i
t −ρΛ i

t − (ÎiK
t + b̂ᵀi,tΛ

i
t )(N̂

iK
t )−1(ÎiK

t + b̂ᵀi,tΛ
i
t ) = 0

Λ i
T = P̂i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π̇t =−πbx +Pyπt +Pzπtσx +(Pα +PzΣ)(Id −SzπtΣ)−1(Sx +Syπt +Szπtσx)

−πtB(Id −SzπtΣ)−1(Sx +Syπt +Szπtσx)

πT = 0
˙̂πt =−π̂t b̂x + P̂yπ̂t + P̂zπt σ̂x +(P̂α + P̂zΣ̂)(Id − Ŝzπt Σ̂)−1(Ŝx + Ŝyπ̂t + Ŝzπt σ̂x)

−π̂t B̂(Id − Ŝzπt Σ̂)−1(Ŝx + Ŝyπ̂t + Ŝzπt σ̂x)

π̂T = 0
dηt = ψtdt +φtdW
ηT = r

where:
ψt −ψ t =−πt(β −β )+(Pα −πtB)(R−R)+(F −F)

+Pz(φt −φ t +πt(γ− γ+Σ(R−R)))+Py(ηt −η t)

ψ t =−π̂tβ +(P̂α − π̂t B̂)R̂+ F̂ + P̂z(φ t +πt(γ+ Σ̂ R̂))+ P̂yη t

Rt := (Id −SzπΣ)−1(H +Syη+Sz(φ +πγ))
R̂t := (Id − ŜzπΣ̂)−1(Ĥ + Ŝyη+ Ŝz(φ +πγ)).

(16)

Let us now check the existence and uniqueness of t �→ (Ki
t ,Λ i

t ,(Y
i

t ,Z
i
t ),R

i
t ,πt , π̂t ,(ηt ,φt))

⎧⎪⎨⎪⎩
K̇i

t +Qi
t +σ

ᵀ
x,tKi

tσx,t +Ki
t bx,t +bᵀx,tKi

t −ρKi
t

−(Ii
k,t +σ

ᵀ
k,tK

i
tσx,t +bᵀk,tK

i
t )(N

i
k,t +σ

ᵀ
k,tK

i
tσk,t)

−1(Ii
k,t +σ

ᵀ
k,tK

i
tσx,t +bᵀk,tK

i
t ) = 0

Ki
T = Pi.
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where we define: 
Q̂iK

t := Q̂i
t + σ̂

ᵀ
x,tKi

t σ̂x,t

ÎiK
t := Îi

i,t + σ̂
ᵀ
i,tK

i
t σ̂x,t

N̂iK
t := N̂i

i,t + σ̂
ᵀ
i,tK

i
t σ̂i,t .

We need the same arguments as for Ki. The only missing argument to conclude
the existence and uniqueness of Λ i is: Q̂iK−(ÎiK)ᵀ(N̂iK)−1 ÎiK ≥ 0. As in [2] we
can prove with some algebraic calculations that it is implied by the hypothesis
Q̂i− (Îi)ᵀ(N̂i)−1 Îi ≥ 0 that we made in (H2).

(iii) Given (Ki,Λ i) we now consider the equation for (Y i,Zi) which is a linear mean-
field BSDE of the form:{

dY i
t = Vi

t +Gi
t(Y

i
t −E[Y i

t ])+ Ĝi
tE[Y i

t ]+Ji
t(Z

i
t −E[Zi

t ])+ Ĵi
tE[Zi

t ]+Zi
t dWt

Y i
T = ri,

(17)
where the deterministic coefficients Gi

t , Ĝ
i,Ji, Ĵi ∈ L∞([0,T ],Rd×d) and the

stochastic process Vi ∈ L2([0,T ],Rd) are defined as:

Vi
t :=−Li

x,t −Λ i
t β t −σ

ᵀ
x,tKi

t γt − σ̃
ᵀ
x,tKi

t γ t −Ki
t (βt −β t)−

∑k 6=i

(
U i

k,t(αk,t −αk,t)+V i
k,tαk,t

)
+U iᵀ

i,t Si−1
t (Li

k,t −E[Li
k,t ]

+σ
ᵀ
i,tK

i
t (γt −E [γt ])+

1
2 ∑k 6=i(Ji

i,k,t + Jiᵀ
k,i,t)(αk,t −E

[
αk,t
]
))

+V iᵀ
i,t Ŝi−1

t (E[Li
k,t ]+ σ̂

ᵀ
i,tK

i
t −E [γt ]+

1
2 ∑k 6=i(Ĵi

i,k,t + Ĵiᵀ
k,i,t)E

[
αk,t
]
)

Gi
t := ρId−bᵀx,t +U iᵀ

i,t Si−1
i,t bᵀi,t

Ĝi
t = ρId− b̂ᵀx,t +V iᵀ

i,t Ŝi−1
i,t b̂ᵀi,t

Ji
t :=−σ

ᵀ
x,t +U iᵀ

i,t Si−1
i,t σ

ᵀ
k,t

Ĵi
t :=−σ̂

ᵀ
x,t +V iᵀ

i,t Ŝi−1
i,t σ

ᵀ
k,t .

(18)
By standard results (see Thm. 2.1 in [12]) we obtain that there exists a unique
solution (Y i,Zi) ∈ S2

F(Ω × [0,T ],Rd×d)×L2
F(Ω × [0,T ],Rd×d) to (17).

(iv) Given (Ki,Λ i,Y i,Zi) we consider the equation of Ri which is a linear ODE
whose solution is given by:

Ri
t =

∫ T

t
e−ρ(s−t)hi

sds,

where hi is a deterministic function defined by:

hi
t =−E[γ

ᵀ
t Ki

t γt +2β
ᵀ
t Y i

t +2γ
ᵀ
t Zi

t+

∑
k 6=i

(αk,t −αk,t)
ᵀSi

k,t(αk,t −αk,t)+α
ᵀ
k,t Ŝ

i
k,tαk,t

+2[Oi
k,t +ξ

i
k,t −ξ

i
k,t ]

ᵀ
αk,t ]

+E
[
(ξ i

i,t −ξ
i
i,t)

ᵀSi−1
t (ξ i

i,t −ξ
i
t)−Oiᵀ

i,t Ŝ
i−1
t Oi

i,t

]
,

(19)
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and the expressions of the coefficients are recalled in (6).
(v) The final step is to verify that the procedure to find a fixed point is valid. More

precisely we need to ensure that t 7→ (πt , π̂t ,ηt) is well defined. It is difficult to
ensure the well posedness of t 7→ (πt , π̂t) for two reasons: first because π and
π̂ follow Ricatti equations but are not squared matrices; and second because π

appears in the equation followed by π̂ . We are not aware of any work addressing
this kind of equations in a general setting.
If we suppose t 7→ (πt , π̂t) well defined, then t 7→ (ηt ,φt) follows a linear mean-
field BSDE of the type:

where the deterministic coefficients Gi
t , Ĝ

i,Ji, Ĵi ∈ L∞([0,T ],Rnd×nd) and the
stochastic process Vi ∈ L2([0,T ],Rnd) are defined as:

Vt :=−π(β −β )+F−F +Pzπ(γ− γ)

+(Pα −πB+PzπΣ)(Id−SzπΣ)−1(H−H +Szπ(γ− γ))

−π̂β + F̂ + P̂zπγ +(P̂α − π̂B̂+ P̂zπΣ̂)(Id− ŜzπΣ̂)−1(Ĥ + Ŝzπ̂γ)

Gt :=
[
Py +(Pα −πB+PzπΣ)((Id−SzπΣ)−1Sy)

]
Ĝt = P̂y

Jt :=
[
Pz +(Pα −πB+PzπΣ)((Id−SzπΣ)−1Sz)

]
Ĵt :=−σ̂

ᵀ
x,t +V iᵀ

i,t Ŝi−1
i,t σ

ᵀ
k,t .

Again, by standard results (see Thm. 2.1 in [12]) we obtain that there exists a
unique solution (η ,φ) ∈ S2(Ω × [0,T ],Rd×d)×L2

F(Ω × [0,T ],Rd×d) to (20).

To sum up the arguments previously presented, our main result provides the fol-
lowing characterization of the Nash equilibrium:

Theorem 2. Suppose assumptions (H1) and (H2). Suppose also that the system as-
sociated with the fixed point search (16) is well defined. Then α? = (α1, ...,αn)
defined by{

α?
t −α?t = Sx,t(X?

t −X?
t )+Sy,t(Yt −Y t)+Sz,t(Zt −Zt)+Ht −Ht

α?t = Ŝx,tX
?
t + Ŝy,tY t + Ŝz,tZt + Ĥt

{
dηt =

(
Vt +Gt(ηt −E[ηt ])+ ĜtE [ηt ]+Jt(φt −E[φt ])+ ĴtE [φt ]

)
dt +φtdWt

ηT = r,
(20)

where Sx,Sy,Sz,H, Ŝx, Ŝy, Ŝz, Ĥ are defined in (11), (Y,Z) are in S2
F(Ω× [0,T ],Rnd×d)×

L2
F(Ω × [0,T ],Rnd×d) and satisfy (12) and (16), is a Nash equilibrium.
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3 Some extensions

3.1 The case of infinite horizon

Let us now tackle the infinite horizon case. The method is similar to the finite-
horizon case but some adaptations are needed when dealing with the well posedness
of (Ki,Λ i,Y i,Ri) and the admissibility of the controls.

We redefine the set of admissible controls for for each player i ∈ J1,nK as:

Ai =

{
α : Ω × [0,T ]→ Rdi s.t. α is F-adapted and

∫
∞

0
e−ρuE[|αu|2]du < ∞

}
while the controlled state defined on R+ now follows a dynamics of the form{

dXt = b(t,Xα
t ,E [Xα

t ] ,α t ,E [α t ])dt +σ(t,Xα
t ,E [Xα

t ] ,α t ,E [α t ])dWt

Xα
0 = X0

(21)

where for each t ∈ [0,T ], x,x ∈ Rd , ai,ai ∈ Rdi :
b(t,x,x,a,a) = βt +bxx+ b̃xx+∑

n
i=1 biai + b̃iai

= βt +bxx+ b̃xx+Bat + B̃at

σ(t,x,x,a,a) = γt +σxx+ σ̃xx+∑
n
i=1 σiai + σ̃iai

= γt +σxx+ σ̃xx+Σa+ Σ̃a.

(22)

Notice that now only the coefficients β and γ are allowed to be stochastic pro-
cesses. The other linear coefficients are constant matrices.

The goal of each player i ∈ J1,nK during the game is still to minimize her cost
functional with respect to control αi over Ai, and given control α−i of the other
players:

Ji(αi,α
−i) = E

[∫
∞

0
e−ρt f i(t,Xα

t ,E [Xα
t ] ,α t ,E [α t ])dt

]
(23)

where for each t ∈ [0,T ], x,x ∈Rd , ai,ai ∈Rdi we have set the running cost for each
player as:

f i(t,x,x,a,a) = (x− x)ᵀQi(x− x)+ xᵀ[Qi + Q̃i]x
+∑

n
k=1 aᵀk Ii

k(x− x)+aᵀk (I
i
k + Ĩi

k)x
+∑

n
k=1(ak−ak)

ᵀNi
k(ak−ak)+ak(Ni

k + Ñi
k,)ak

+∑0≤k 6=l≤n(ak−ak)
ᵀGi

k,l(al−al)+aᵀk (G
i
k,l + G̃i

k,l)al

+2[Liᵀ
x,tx+∑

n
k=1 Liᵀ

k,tak].

Note that the only coefficients that we allow to be time dependent are Li
x and Li

k
for k ∈ J1,nK which may be stochastic processes.
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3.1.1 Assumptions

We detail below the new assumptions:

(H1’) The coefficients in (22) satisfy:
a) β ,γ ∈ L2

F(Ω × [0,T ],Rd),
b) bx, b̃x,σx, σ̃x ∈ Rd×d ; bi, b̃i,σi, σ̃i ∈ Rd×di .

(H2’) The coefficients of the cost functional (3) satisfy:
a) Qi, Q̃i ∈ Sd

+; Ni
k, Ñ

i
k ∈ Sdk

+ ; Ii
k, Ĩ

i
k ∈ Rdk×d ,

b) Li
x ∈ L2

F(Ω ×R?
+,Rd), Li

k ∈ L2
F(Ω ×R?

+,Rdk),
c) Ni

k > 0 Qi− Iiᵀ
i (Ni

i )
−1Ii

i ≥ 0,
d) N̂i

k,t > 0 Q̂i− Îiᵀ
i (N̂i

i )
−1 Îi

i ≥ 0.
(H3’) ρ > 2

(
|bx|+ |b̃x|+8(|σx|2 + |σ̃x|2)

)
.

As shown below, the new hypothesis (H3’) ensure the well posedness of our
problem. Notice first that by (H1’) and classical results, there exists a unique strong
solution Xα to the SDE (21). Furthermore by (H1’) and (H3’) we obtain by similar
arguments as in [2] the following estimate:∫

∞

0
e−ρuE[|Xα

u |2]du≤Cα(1+E[|X0|2])< ∞, (24)

Finally by (H2’) and (24) the minimizing problem (23) is well defined for each
player.

3.1.2 A weak submartingale optimality principle on infinite horizon

We now give an easy adaptation of the weak submartingale optimality principle in
the case of infinite horizon.

Lemma 2 (Weak submartingale optimality principle). Suppose there exists a
couple
(α?,(W.,i)i∈J1,nK), where α? ∈A and W.,i = {Wα,i

t , t ∈ R?
+,α ∈A} is a family of

adapted processes indexed by A for each i ∈ J1,nK, such that:

(i) For every α ∈A, E[Wα,i
0 ] is independent of the control αi ∈Ai;

(ii) For every α ∈A, limt→∞ e−ρtE
[
W

α,i
t

]
= 0;

(iii) For every α ∈A, the map t ∈ R?
+ 7→ E

[
S

α,i
t

]
, with

S
α,i
t = e−ρtW

α,i
t +

∫ t
0 e−ρu f i(u,Xα

u ,PXα
u ,αu,Pαu)du is well defined and non-

decreasing;
(iv) The map t 7→ E[Sα?,i

t ] is constant for every t ∈ R?
+;

in which Cα is a constant depending on α =(α1, ...,αn) only through
∫ ∞

0 e−ρE[|αu|2]du.
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Then α? is a Nash equilibrium and Ji(α?) = E[Wα?,i
0 ]. Moreover, any other Nash-

equilibrium α̃ such that E[Wα̃,i
0 ] = E[Wα?,i

0 ] and Ji(α̃) = Ji(α?) for any i ∈ J1,nK
satisfies the condition (iv).

Proof. The proof is exactly the same as in Lemma 1.

Let us now describe the steps to follow in order to apply Lemma 2. Since they
are similar to the ones in the finite-horizon case, we only report the main changes.
Steps 1-3
For each player i∈ J1,nK we still search for a random field {wi

t(x,x), t ∈ [0,T ],x,x ∈
Rd} of the form wi

t(x,x) = Ki
t .(x− x)⊗2 +Λ i

t .x
⊗2 + 2Y iᵀ

t x+Ri
t for which the opti-

mality principle in Lemma 2 now leads to the system:
dKi

t =−Φ i0
t dt

dΛ i
t =−Ψ i0

t dt
dY i

t =−∆ i0
t dt +Zi

t dWt

dRi
t =−Γ i0

t dt, t ≥ 0.

(25)

Notice that there are no terminal conditions anymore since we are in the infinite
horizon case. The coefficients Φ i0,Ψ i0,∆ i0

t ,Γ i0
t are defined in (7). The fourth step

is exactly the same as in the finite horizon case.
Step 5
We now search for a fixed point of the best response functions. Let us define
Y = (Y 1, ...Y n) and propose an ansatz in a feedback form Y : Yt = π(Xt −E [Xt ])+
π̂E [Xt ]+ηt where π, π̂ ∈ L∞(R+,Rnd×d) and η ∈ L2

F(Ω ×R+,Rnd) satisfy

0 =−πbx +Pyπ +Pzπσx +(Pα +PzΣ)(Id−SzπΣ)−1(Sx +Syπ +Szπtσx)

−πB(Id−SzπΣ)−1(Sx +Syπ +Szπσx)

0 =−π̂ b̂x + P̂yπ̂ + P̂zπσ̂x +(P̂α + P̂zΣ̂)(Id− ŜzπΣ̂)−1(Ŝx + Ŝyπ̂ + Ŝzπσ̂x)

−π̂B̂(Id− ŜzπΣ̂)−1(Ŝx + Ŝyπ̂ + Ŝzπσ̂x)

dηt = ψtdt +φtdWt

with:
ψt −ψ t =−πt(β −β )+(Pα −πtB)(R−R)(F−F)+

+Pz(φt −φ t +πt(γ− γ +Σ(Rt −Rt)))+Py(ηt −η t)

ψ t =−π̂tβ +(P̂α − π̂t B̂)R̂t + F̂ + P̂z(φ +πt(γ + Σ̂ R̂t))+ P̂yη t

Rt := (Id−SzπtΣ)−1(H +Syηt +Sz(φt +πtγ))

R̂t := (Id− Ŝzπt Σ̂)−1(Ĥ + Ŝyηt + Ŝz(φt +πtγ))
(26)

where the coefficients are defined in (11).
Step 6
We finally tackle the well-posedness of (25) and (26).

(i) We first consider the ODE for Ki. Since the map (t,k) 7→ φ i0
t (k) does not depend

on time (all the coefficient being constant) we search for a constant non-negative
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matrix Ki ∈ Sd satisfying Φ i0(Ki) = 0, more precisely solution to:

Qi +σ
ᵀ
x Ki

σx +Kibx +bᵀx Ki−ρKi

− (Ii
k +σ

ᵀ
k Ki

σx +bᵀk Ki)(Ni
k +σ

ᵀ
k Ki

σk)
−1(Ii

k +σ
ᵀ
k Ki

σx +bᵀk Ki) = 0.
(27)

As in [2] we can show using a limit argument that there exists Ki ∈ Sd
+ solution

to (27). The argument for Λ i is the same as for Ki.
(ii) Given (Ki,Λ i) the equation for (Y i,Zi) is a linear mean-field BSDE on infinite

horizon:

dY i
t = Vi

t +Gi(Y i
t −E[Y i

t ])+ ĜiE[Y i
t ]+Ji(Zi

t −E[Zi
t ])+ ĴiE[Zi

t ]+Zi
t dWt ,

where the coefficient are defined in (18). Notice that now Gi, Ĝi,Ji, Ĵi are all
constant matrices. To the best of our knowledge, there are no general results
ensuring the existence for such equation. We then add the following assumption:

(H4’) There exists a solution (Y i,Zi) ∈ ×S2
F(Ω ×R+,Rd)×L2

F(Ω ×R+,Rd)
(iii) Given (Ki,Λ i,Y i,Zi) the equation for Ri is a linear ODE whose solution is:

Ri
t =

∫
∞

t
e−ρ(s−t)hi

s ds,

where hi is a deterministic function defined in (19).
(iv) We now study the well posedness of the fixed point procedure. More precisely

we need to ensure that the process t → (π, π̂,ηt) defined as a solution of the
system (26), recalled below, is well defined. Note that in the infinite horizon
framework we search for constant π and π̂ .

0 =−πbx +Pyπ +Pzπσx +(Pα +PzΣ)(Id−SzπΣ)−1(Sx +Syπ +Szπσx)

−πB(Id−SzπΣ)−1(Sx +Syπ +Szπσx)

0 =−π̂ b̂x + P̂yπ̂ + P̂zπσ̂x +(P̂α + P̂zΣ̂)(Id− ŜzπΣ̂)−1(Ŝx + Ŝyπ̂ + Ŝzπσ̂x)

−π̂B̂(Id− ŜzπΣ̂)−1(Ŝx + Ŝyπ̂ + Ŝzπσ̂x)

dηt = ψtdt +φtdWt , t ≥ 0.
(28)

Existence of (π, π̂) in whole generality is a difficult problem. Let us first rewrite
the system (28) as:

F((π, π̂),C) = 0

that F is continuously differentiable on its domain of definition. Thus, if[
∂F
∂π

, ∂F
∂ π̂

]
(π, π̂,C) is invertible for, then, by the implicit function theorem, there

exists an open set U containing C and a continuously differentiable function
g : U 7→ (Rnd×d)2 such that for all admissible coefficients C∈U : F(g(C),C) = 0
and the solutions (π, π̂) = g(C) are unique. It means that if we find a solution

Where C=(bx,σx,B,Σ , b̂x, σ̂x, B̂, Σ̂ ,Sx,Sy,Sz, Ŝx, Ŝy, Ŝz,Py,Pz,Pα , P̂y, P̂z, P̂α). Note
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to (28) while the condition
[

∂F
∂π

, ∂F
∂ π̂

]
is invertible, then for small perturbations

on the coefficients we still have solutions for (π, π̂).
Let us now give sufficient conditions to ensure the existence of (π, π̂) in a sim-
plified setting where the state t → Xt belongs to R and all the players are sym-
metric in the sense that all the coefficients associated with each player are equals
(b1 = ...= b2,Q1 = ...=Qn,etc.). We suppose also that the volatility is not con-
trolled i.e. σi = 0 for all i ∈ J1,nK. In such a case π, π̂ ∈ Rn×1, π1 = ... = πn,
π̂n = ... = π̂n and the systems (28) of coupled equations now reduces to two
coupled second order equations:

π2
1 [nb1Sy,1]+π1

[
−bx +Py,1 +Pz,1σx +∑ j 6=1 Pα,1, jSy,1−nb1Sx,1

]
+∑ j 6=1 Pα,1, jSx, j = 0
π̂2

1
[
nb̂1Ŝy,1

]
+ π̂1

[
−b̂x + P̂y,1 +∑ j 6=1 P̂α,1, jŜy,1−nb̂1Ŝx,1

]
+∑ j 6=1 P̂α,1, jŜx, j +π1P̂z,1σ̂x = 0.

If we note: 
a := nb1Sy,1

b :=−bx +Py,1 +Pz,1σx +∑ j 6=1 Pα,1, jSy,1−nb1Sx,1

c := ∑ j 6=1 Pα,1, jSx, j,

then a sufficient condition for π1 to exists is simply: b2−4ac≥ 0. Since a≤ 0
and c≥ 0 we have two possibilities a priori for π1. We choose the positive one
to ensure that α ∈A. Then if we note:

â := nb̂1Ŝy,1

b̂ :=−b̂x + P̂y,1 +∑ j 6=1 P̂α,1, jŜy,1−nb̂1Ŝx,1

ĉ(π1) := ∑ j 6=1 P̂α,1, jŜx, j +π1P̂z,1σ̂x,

a sufficient condition for π̂1 to exist is b̂2−4âĉ(π1)≥ 0. To ensure that there is
a positive solution we also need ĉ(π1)≥ 0.

(v) Let us finally verify that α? ∈A. Let us consider the candidate for the optimal
control for each player:

α
?−α? = Ax(X−X)+Rt −Rt

α? = ÂxX + R̂t

where the coefficients are defined in (15) and X? is the state process optimally
controlled. Since R, R̂ ∈ L2

F(Ω ×R+,R∑i di) and given that the coefficient are
constant in the infinite horizon case, we need to verify that:∫

∞

0
e−ρuE[|X?

u −E[X?
u ]|2]du < ∞

∫
∞

0
e−ρu|E[X?

u ]|2du < ∞.
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As we will see below, we will have to choose ρ large enough to ensure these
conditions. From the above expressions we see that X? satisfies:{

dX?
t = b?t dt +σ?

t dWt

X0 = x0

with:

b?t = β
?
t +B?(X?

t −E[X?
t ])+ B̂?E[X?

t ] σ
?
t = γ

?
t +Σ

?(X?
t −E[X?

t ])+ Σ̂
?E[X?

t ]

where we define

B? = bx +BAx, B̂? = b̂x + B̂Âx, Σ
? = σx +ΣAx,

Σ̂
? = σ̂x + Σ̂ Âx,

β
?
t = βt +B(Rt −E[Rt ])+ B̂R̂t ,

γ
?
t = σt +Σ(Rt −E[Rt ])+ Σ̂ R̂t .

By Itô’s formula we have:

d
dt

e−ρt |X t |2 ≤ e−ρt
(
−ρ|X?

t |2 +2(b
?
t )

ᵀX?
t

)
≤ e−ρt

(
|X?

t |2(−ρ +2B̂?)+2|X?
t ||β

?
t |
)

≤ e−ρt
(
|X?

t |2(−ρ +2B̂?+ ε)+
1
ε
|β ?

t |2
)
.

If we now set:

K = |E[X?
0 ]|2 +

1
ε

∫
∞

0
e−ρu|β ?

t |2du, C =−ρ +2B̂?+ ε,

then, by Grownall inequality we obtain:

e−ρt |E[X?
t ]|2 ≤ KeCt .

Therefore, in order to have
∫

∞

0 e−ρu|E[X?
u ]|2du < ∞, we shall impose that ρ >

2B̂?. Finally, by Itô’s formula we also have:
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If we now set:

K = |X?
0 −X?

0|2 +
∫

∞

0
e−ρuE

[
1
ε
|β ?

u −βu
?|2 +4(|γ?u |2 + |Σ̂ ?|2|E[X?

u ]|2)
]

du

C =−ρ +2B?+4|Σ ?|2 + ε,

then, by Grownall inequality we obtain:

e−ρtE
[
|X?

t −Xt
?|2
]
≤ Ke−Ct .

This time in order to ensure the convergence
∫

∞

0 e−ρuE
[
|X?

u −Xu
?|2
]

du < ∞,
we will add the constraint ρ > 2B? + 4|Σ ?|2. To conclude, in order to ensure
that α? ∈A we make the following assumption:

(H5’) ρ > max
[
2B̂?,2B?+4|Σ ?|2

]
.

3.2 The case of common noise

Let W and W 0 be two independent Brownian motions defined on the same proba-
bility space (Ω ,F,F,P) where F= {Ft}t∈[0,T ] is the filtration generated by the pair
(W,W 0). Let F0 = {F0

t }t∈[0,T ] be the filtration generated by W 0. For any X0 and
α ∈A as in Section 1, the controlled process Xα is defined by:

dXt = b(t,Xα
t ,E[Xα

t |W 0],α t ,E[α t |W 0])dt
+σ(t,Xα

t ,E[Xα
t |W 0],α t ,E[α t |W 0])dWt

+σ0(t,Xα
t ,E[Xα

t |W 0],α t ,E[α t |W 0])dW 0
t

Xα
0 = X0

where for each t ∈ [0,T ], x,x ∈ Rd , ai,ai ∈ Rdi :

d
dt
E[e−ρt |X�

t −X�
t |2]≤ e−ρtE

[
−ρ|X�

t −Xt
�|2 +2(b�t −bt

�
)ᵀ(X�

t −Xt
�
)+ |σ�

t |2
]

≤ e−ρtE

[
|X�

t −Xt
�|2(−ρ+2B�+ ε)+

1
ε
|β �

t −βt
�|2

+4(|γ�t |2 + |Σ �|2|X�
t −E[X�

t ]|2 + |Σ̂ �|2|E[X�
t ]|2)

]
≤ e−ρtE

[|X�
t −Xt

�|2(−ρ+2B�+ ε+4|Σ �|2)
1
ε
|β �

t −βt
�|2 +4(|γ�t |2 + |Σ̂ �|2|E[X�

t ]|2)
]
.
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b(t,x,x,α,α) = βt +bx,tx+ b̃x,tx+∑
n
i=1 bi,tαi + b̃i,tα i

= βt +bx,tx+ b̃x,tx+Btα + B̃tα

σ(t,x,x,α,α) = γt +σx,tx+ σ̃x,tx+∑
n
i=1 σi,tαi + σ̃i,tα i

= γt +σx,tx+ σ̃x,tx+Σtα + Σ̃tα

σ(t,x,x,α,α) = γ0
t +σ0

x,tx+ σ̃0
x,tx+∑

n
i=1 σ0

i,tαi + σ̃0
i,tα i

= γ0
t +σ0

x,tx+ σ̃0
x,tx+Σ 0

t α + Σ̃ 0
t α.

Since we will condition on W 0, we assume that the coefficients bx, b̃x,bi, b̃i,σx, σ̃x,σi,
σ̃i,σ

0
x , σ̃

0
x ,σ

0
i , σ̃

0
i are essentially bounded and F0-adapted processes, whereas β ,γ,γ0

are square integrable F0-adapted processes. The problem of each player i is to min-
imize over αi ∈ Ai, and given control α−i of the other players, a cost functional of
the form

with f i,gi as in (3). We now suppose that Qi, Q̃i, Ii, Ĩi,Ni, Ñi are essentially
bounded and F0-adapted, Li

x,L
i
k are square-integrable F-adapted processes, Pi, P̃i

are essentially bounded F0
T -mesurable random variable and ri are square-integrable

FT -mesurable random variable. Hypothesis c) and d) of (H2) still holds. As in step
1 we guess a random field of the type W

α,i
t = wi

t(X
α
t ,E

[
Xα

t |W 0
t
]
) where wi is of

the form wi
t(x,x) = Ki

t .(x− x)⊗2 +Λ i
t .x
⊗2 + 2Y iᵀ

t x + Ri
t with suitable coefficients

Ki,Λ i,Y i,Ri. Given that the quadratic coefficient in f i,gi are F0-adapted we guess
that Ki,Λ i are also F0-adapted. Since the linear coefficients in f i,gi and the affine
coefficients in b,σ ,σ0 are F-adapted, we guess that Y i is F-adapted as well. Thus
for each player we look for processes (Ki,Λ i,Y i,Ri) valued in Sd

+×Sd
+×Rd ×R

and of the form:
dKi

t = K̇i
t dt +ZKi

t dW 0
t Ki

T = Pi

dΛ i
t = Λ̇ i

t dt +ZΛ i
t dW 0

t Λ i
T = Pi + P̃i

dY i
t = Ẏ i

t dt +Zi
t dWt +Z0,Y i

t dW 0
t Y i

T = ri

dRi
t = Ṙi

tdt Ri
T = 0

where K̇i,Λ̇ i,ZKi
,ZΛ i

are F0-adapted processes valued in Sd ; Ẏ i,ZY i
,Z0,Y i

are F-
adapted processes valued in Rd and Ri are continuous functions valued in R. In step
2 we now consider, for each player i ∈ J1,nK, a family of processes of the form:

S
α,i
t = e−ρtwi

t(X
α
t ,E

[
Xα

t |W 0
t
]
)+

∫ t

0
e−ρu f i(u,Xα

u ,E
[
Xα

u |W 0
u
]
,αu,E

[
αu|W 0

u
]
)du.

By Itô’s formula we then obtain for (5) and (6):



Linear-Quadratic McKean-Vlasov Stochastic Differential Games 475

Φ i
t = Qi

t +σ
ᵀ
x,tKi

t σx,t +σ
0ᵀ
t Ki

t σ
0
t +Ki

t bx,t +bᵀx,tKi
t +ZKi

t σ0
x,t +σ

0ᵀ
x,t ZKi

t −ρKi
t

Ψ i
t = Q̂i

t + σ̂
ᵀ
x,tKi

t σ̂x,t + σ̂
0ᵀ
x,t Λ i

t σ̂0
x,t +Λ i

t b̂x,t + b̂ᵀx,tΛ i
t +ZΛ i

t σ̂0
x,t + σ̂

0ᵀ
x,t ZΛ i

t −ρΛ i
t

∆ i
t = Li

x,t +bᵀx,tY i
t + b̃ᵀx,tY

i
t +σ

ᵀ
x,tZi

t + σ̃
ᵀ
x,tZ

i
t +σ

0ᵀ
x,t Z0,Y i

t + σ̃
0ᵀ
x,t Z0,Y i

t +Λ i
t β t

+σ
ᵀ
x,tKi

t γt + σ̃
ᵀ
x,tKi

t γ t +Ki
t (βt −β t)+ZKi

t (γ0
t − γ

0
t )+ZΛ i

t γ
0
t −ρY i

t

+∑k 6=i U
iᵀ
k,t(αk,t −αk,t)+V iᵀ

k,t αk,t

Γ i
t = γ

ᵀ
t Ki

t γt + γ
0ᵀ
t Λ i

t γ
0
t +(γ0

t − γ
0
t )

ᵀKi
t (γ

0
t − γ

0
t )+2β

ᵀ
t Y i

t +2γ
ᵀ
t Zi

t +2γ
0ᵀ
t Z0,Y i

t

+∑k 6=i(αk,t −αk,t)
ᵀSi

k,t(αk,t −αk,t)

+α
ᵀ
k,t Ŝ

i
k,tαk,t +2[Oi

k,t +ξ i
k,t −ξ

i
k,t ]

ᵀαk,t −ρRi
t ,

with 

Si
k,t = Ni

k,t +σ
ᵀ
k,tK

i
t σk,t +(σ0

k,t)
ᵀKi

t σ
0
k,t

Ŝi
k,t = N̂i

k,t + σ̂
ᵀ
k,tK

i
t σ̂k,t +(σ̂0

k,t)
ᵀΛ i

t σ̂0
k,t

U i
k,t = Ii

k,t +σ
ᵀ
k,tK

i
t σx,t +(σ0

k,t)
ᵀKi

t σ
0
x,t +(σ0

k,t)
ᵀZKi

t +bᵀk,tK
i
t

V i
k,t = Îi

k,t + σ̂
ᵀ
k,tK

i
t σ̂x,t +(σ̂0

k,t)
ᵀΛ i

t σ̂0
x,t +(σ̂0

k,t)
ᵀZΛ i

t + b̂ᵀk,tΛ
i
t

Oi
k,t = Li

k,t + b̂ᵀk,tY
i
t + σ̂

ᵀ
k,tZ

i
t + σ̂

ᵀ
k,tK

i
t γ t +(σ̂0

k,t)
ᵀΛ i

t γ
0
t +(σ̂0

k,t)
ᵀZ0,Y i

t

+ 1
2 ∑k 6=i(Ĵi

i,k,t + Ĵiᵀ
k,i,t)αk,t

Ji
k,l,t = Gi

k,l,t +σ
ᵀ
k,tK

i
t σl,t +(σ0

k,t)
ᵀKi

t σ
0
l,t

Ĵi
k,l,t = Ĝi

k,l,t + σ̂
ᵀ
k,tK

i
t σ̂l,t +(σ̂0

k,t)
ᵀΛ i

t σ̂0
l,t

ξ i
k,t = Li

k,t +bᵀk,tY
i

t +σ
ᵀ
k,tZ

i
t +(σ0

k,t)
ᵀZ0,Y i

t +σ
ᵀ
k,tK

i
t γt +(σ0

k,t)
ᵀKi

t γ
0
t

+ 1
2 ∑k 6=i(Ji

i,k,t + Jiᵀ
k,i,t)αk,t .

Note that we now denote by U the conditional expectation with respect to W 0
t , i.e.

U = E
[
U |W 0

t
]
. Then, at step 3, we constraint the coefficients (Ki,Λ i,Y i,Ri) to sat-

isfy the following problem:
dKi

t =−Φ i0
t dt +ZKi

t dW 0
t Ki

T = Pi

dΛ i
t =−Ψ i0

t dt +ZΛ i
t dW 0

t Λ i
T = Pi + P̃i

dY i
t =−∆ i0

t dt ++Zi
t dWt +Z0,Y i

t dW 0
t Y i

T = ri

dRi
t =−Γ i0

t dt Ri
T = 0

(29)

where Φ i0,Ψ i0,∆ i0,Γ i0 are defined in (8). Thus we obtain the best response func-
tions of the players:

αi,t =−Si−1
i,t U i

i,t(Xt −E[Xt |W 0
t ])−Si−1

i,t (ξ i
i,t −ξ

i
i,t)− Ŝi−1

i,t (V i
i,tE[Xt |W 0

t ]+Oi
i,t).

We then proceed to step 5 and to the search of a fixed point in the space of con-
trols. The only difference at that point is in the ansatz for t 7→ Yt . Since we con-
sider the case of common noise, we now search for an ansatz of the form Y t =
πt(Xt −X t)+ π̂tX t +ηt where (π, π̂,η) ∈ L∞([0,T ],Rnd×d)×L∞([0,T ],Rnd×d)×
S2
F(Ω × [0,T ],Rnd) satisfy:
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dηt = ψtdt +φtdWt +φ 0
t dW 0

t

ηT = r = (ri)i∈J1,nK

dπt = π̇tdt +Z0,π i

t dW 0
t

πT = 0

dπ̂t = ˙̂πtdt +Z0,π̂ i

t dW 0
t

π̂T = 0.

(30)

The method to determine the coefficients is then similar. Existence and uniqueness
of a solution (Ki,Λ i) to the backward stochastic Ricatti equation in (29) is discussed
in [13], section 3.2. The existence of a solution (Y i,Zi,Z0,Y i

) to the linear mean-field
BSDE in (29) is obtained as in step 6 thanks to Thm. 2.1 in [12]. As in the previous
section the existence of a soltion (π, π̂)∈ L∞

F0(Ω×R+,Rnd×d) (essentially bounded
F0-adapted functions) of (30) in the general case is a conjecture and needs to be
verified in each example. We are not aware of any work tackling the existence of
solutions in such situation. Given (π, π̂) the existence of (η ,φ ,φ 0) solution to (30)
is ensured as in the previous section by Thm. 2.1 in [12].

3.3 The case of multiple Brownian motions

We quickly sketch an extension to the case where there are multiple Brownian mo-
tions driving the state equation. The assumptions on the coefficients are the same as
in the previous part. Only the length of the calculus changes. Let us now consider
the state dynamic:

dXt = b(t,Xα
t ,E [Xα

t ] ,α t ,E [α t ])dt +
κ

∑
`=1

σ
`(t,Xα

t ,E [Xα
t ] ,α t ,E [α t ])dW `

t

where Φ i0,Ψ i0,∆ i0,Γ i0
t are defined in (8).

α t = (α1,t , ...,αn,t)

b(t,x,x,a,a) = βt +bx,tx+ b̃x,tx+∑
n
i=1 bi,tai,t + b̃i,tai,t

σ `(t,x,x,a,a) = γ`t +σ `
x,tx+ σ̃ `

x,tx+∑
n
i=1 σ `

i,tαi,t + σ̃ `
i,tα i,t .

(31)

We require the coefficients in (31) to satisfy an adaptation of (H1) where γ,σx, σ̃x,
(σi, σ̃i)i∈J1,nK are replaced by γ`,σ `

x , σ̃
`
x ,(σ

`
i , σ̃

`
i )i∈J1,nK for ` ∈ {1, ...,κ}.

To take into account the multiple Brownian motions in step 1, we now search for
random fields of the form wi

t(x,x) = Ki
t .(x− x)⊗2 +Λ i

t .x
⊗2 + 2Y iᵀ

t x+Ri
t with the

processes (Ki,Λ i,Y i,(Z`,i)`∈J1,κK,Ri) in (L∞([0,T ],Sd
+))

2×,S2
F(Ω × [0,T ],Rd)×

(L2
F(Ω × [0,T ],Rd))κ ×L∞([0,T ],R) and solution to:
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dKi

t = K̇i
t dt Ki

T = Pi

dΛ i
t = Λ̇ i

t dt Λ i
T = Pi + P̃i

dY i
t = Ẏ i

t dt +∑` Zi,`
t dW `

t Y i
T = ri

dRi
t = Ṙi

tdt Ri
T = 0

where (K̇i,Λ̇ i, Ṙi) are deterministic processes valued in Sd
+× Sd

+×R and (Ẏ i,Zi)
are adapted processes valued in Rd .

The method then follows the same steps with generalized coefficients and at step
2 we obtain generalized coefficient for (5) and (6):

Φ i
t = Qi

t +Ki
t bx,t +bᵀx,tKi

t +∑r σ
rᵀ
x,t Ki

t σ
r
x,t −ρKi

t

Ψ i
t = Q̂i

t +Λ i
t b̂x,t + b̂ᵀx,tΛ i

t +∑r σ̂
rᵀ
x,t Λ

i
t σ̂ r

x,t −ρΛ i
t

∆ i
t = Li

x,t +bᵀx,tY i
t + b̃ᵀx,tY

i
t +Λ i

t β t +Ki
t (βt −β t)

+∑` σ
`ᵀ
x,t Ki

t γ
`
t + σ̃

`ᵀ
x,t Ki

t γ
`
t +σ

`ᵀ
x,t Zi,`

t + σ̃
`ᵀ
x,t Zi,`

t −ρY i
t

+∑k 6=i U i
k,t(αk,t −αk,t)+V i

k,tαk,t

Γ i
t = 2β

ᵀ
t Y i

t +∑` γ
`ᵀ
t Ki

t γ
`
t +2γ

`ᵀ
t Zi,`

t

+∑k 6=i(αk,t −αk,t)
ᵀSi

k,t(αk,t −αk,t)+α
ᵀ
k,t Ŝ

i
k,tαk,t

+2[Oi
k,t +ξ i

k,t −ξ
i
k,t ]

ᵀαk,t

(32)



Si
k,t = Ni

k,t +∑` σ
`ᵀ
k,t K

i
t σ

`
k,t

Ŝi
k,t = N̂i

k,t +∑` σ̂
`ᵀ
k,t K

i
t σ̂

`
k,t

U i
k,t = Ii

k,t +bᵀk,tK
i
t +∑` σ

`ᵀ
k,t K

i
t σ

`
x,t

V i
k,t = Îi

k,t + b̂ᵀk,tΛ
i
t +∑` σ̂

`ᵀ
k,t K

i
t σ̂

`
x,t

Oi
k,t = Li

k,t + b̂ᵀk,tY
i
t +∑` σ̂

`ᵀ
k,t Z

i,`
t + σ̂

`ᵀ
k,t K

i
t γ

`
t

Ji
k,l,t = Gi

k,l,t +∑` σ
`ᵀ
k,t K

i
t σ

`
l,t

Ĵi
k,l,t = Ĝi

k,l,t +∑` σ̂
`ᵀ
k,t K

i
t σ̂

`
l,t

ξ i
k,t = Li

k,t +bᵀk,tY
i

t +∑` σ
`ᵀ
k,t Z

i,`
t +σ

`ᵀ
k,t K

i
t γ

`
t .

(33)

From these extended formulas we can then constrain the coefficients as in step 3
and obtain (8) with now the generalized coefficients defined in (32) and (33). The
step 4 is then straightforward and we obtain the best response functions:

αi,t = ai,0
t (Xt ,E[Xt ])+ai,1

t (E[Xt ])

=−(Si
i,t)
−1U i

i,t(Xt −E[Xt ])− (Si
i,t)
−1(ξ i

i,t −ξ
i
i,t)− (Ŝi

i,t)
−1(V i

i,tE[Xt ]+Oi
i,t).

From step 4 we can then continue to step 5, i.e. the fixed point search. The only
difference at that point is in the ansatz fort 7→ Yt . Since we consider the case with
multiple Brownian motions we now search for an ansatz of the form Y t = πt(Xt −
X t)+ π̂tX t +ηt where (π, π̂,η) ∈ L∞([0,T ],Rnd×d)×L∞([0,T ],Rnd×d)×S2

F(Ω ×
[0,T ],Rnd) satisfy:
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dηt = ψtdt +∑` φ `
t dW `

t

ηT = r = (ri)i∈J1,nK

dπt = π̇tdt
πT = 0
dπ̂t = ˙̂πtdt
π̂T = 0.

The method to determine the coefficients π, π̂,η is then similar. The validity of the
computations i.e. Step 6 can be done exactly as in the case of a single brownian
motion.

4 Example

We now focus on a toy example to illustrate the previous results. Let us consider a
two player game where the state dynamics is simply a Brownian motion that two
players can control. The goal of each player is to get the state near its own target
t 7→ T i

t , where t 7→ T i
t , i = 1,2, is a stochastic process. In order to add mean-field

terms we suppose that each player try also to minimize the variance of the state and
the variance of their controls.{

dXt = (b1α1,t +b2α2,t)dt +σdWt

Ji(α1,α2) = E
[∫

∞

0 e−ρu
(

λ iVar(Xu)+δ i(Xu−T i
u)

2 +θ iVar(αi,u)+ξ iα2
i,u

)
du
]
.

where (λ i,δ i,θ i,ξ i) ∈R4
+. In order to fit to the context described in the first section

we rewrite the cost function as follows:

Ji(α1,α2) = E
[∫ ∞

0
e−ρu

(
(λ i +δ

i)(Xu−Xu)
2 +δ

iX2
u +(θ i +ξ )2(αi,u−α i,u)

+ξ
i
α

2
i,u +2Xu[−2δ

iT i]+δ
i(T i

u)
2
)

du
]
.

Since the terms δ i(T i)2 do not influence the optimal control of the players, we work
with the slightly simplified cost function:

J̃i(α1,α2) = E
[∫

∞

0
e−ρu

(
(λ i +δ

i)(Xu−Xu)
2 +δ

iX2
u +(θ i +ξ )2(αi,u−α i,u)

+ ξ
i
α

2
i,u +2Xu[−2δ

iT i]
)

du
]
.

Following the method explained in the previous section, we use Theorem 2 in
order to find a Nash equilibrium. We obtain the feedback form of the open loop
controls and the dynamics of the state:
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α i−α

i =−Pi

bi

(
(Ki +π i)(Xt −X t)+η i

t −η
i
t
)

α
i =− P̃i

bi

(
(Λ i + π̃ i)X t +η

i
t
)

X t = X0e−ãt +
∫ t

0 e−ã(t−u)γudu
Xt −X t = (X0−X0)e−at +

∫ t
0 e−a(t−u) [(γu− γu)du+σdWu]

(34)

where Ki ∈ R+,Λ
i ∈ R+,a ∈ R, ã ∈ R,π ∈ R2, π̃ ∈ R2,η ∈ L2

F((0,∞),R2),γ ∈
L2
F((0,∞),R2) satisfy:



Ki =
−ρ+
√

ρ2+4Pi(λ i+δ i)

2Pi

Λ i =
−ρ+
√

ρ2+4P̃iδ i

2P̃i

a = ∑
2
i=1 Pi(Ki +π i)

ã = ∑
2
i=1 P̃i(Λ i + π̃ i)

0 = Pyπ− (πB−Pα)(Sx +Syπ)

0 = P̃yπ̃− (π̃B− P̃α)(S̃x + S̃yπ̃)

ηt −η t =−
∫

∞

t e[Py−(πB−Pα )Sy](t−u)

×E
[
Hu−Hu|Ft

]
du

η t =−
∫

∞

t e[P̃y−(π̃B−P̃α )S̃y](t−u)Hudu
γt − γ t =−∑

2
i=1 Pi(ηi,t −η i,t)

γ t =−∑
2
i=1 P̃iη i,t



Sx =−(P1K1/b1,P2K2/b2)

S̃x =−(P̃1Λ 1/b1, P̃2Λ 2/b2)

Sy =−(1i= jPi/bi)i, j∈{1,2}
S̃y =−(1i= jP̃i/bi)i, j∈{1,2}
Pα =−(1i6= jKib j)i, j∈{1,2}
P̃α =−(1i6= jΛ

ib j)i, j∈{1,2}
Py = (1i= j(PiKi +ρ))i, j∈{1,2}
P̃y = (1i= j(P̃iΛ i +ρ))i, j∈{1,2}
H = (δ 1T 1,δ 2T 2)

B = (b1,b2)

Pi =
b2

i
θi+ξ i

P̃i =
b2

i
ξ i .

(35)

From (34) and (35) we can study and simulate the influence of the different pa-
rameters of the cost-function of the first player. We notice that (λ 1,θ 1) only influ-
ence X−E [X ] and the feedback form of α1−α1 (zero-mean terms).

• If λ 1 → ∞ then π1 ∼ λ 1 and K1 → ∞ which implies that Xt −E [X ]t → 0 for
all t ≥ 0. This is expected since the term λ 1 penalizes the variance of the state
Var(Xt) in the cost function of the first player. See Figure 1.

• If δ 1→∞ then (π, π̃)→∞ and K1 ∼ δ 1 and Λ 1 ∼ δ 1 which imply that Xt→ T 1
t

for all t ≥ 0. This is also expected since the term δ 1 penalizes the quadratic gap
between the state X and the target T 1. See Figure 2.

• If θ 1→∞ then P1→ 0, P1K1→ 0, P1π1→ 0 and P1η1
t → 0 for every t ≥ 0. We

then have αt−α t → 0 for all t ≥ 0 and all the terms relative to the first player in
X −E [X ] disappear. Given that θ 1 penalizes the variance of the control of the
first player, this convergence is also intuitive.

• If ξ 1→ ∞ then (P1, P̃1)→ 0 which imply that (α1,t ,α1,t)→ 0 for all t ≥ 0 and
all the terms relative to the first player in Xt −E [Xt ] and E [Xt ] disappear for all
t ≥ 0. This means that the first player becomes powerless.
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(a) λ i = 0 (b) λ i = 10

(c) λ i = 100 (d) λ i = 500

Fig. 1: Nash equilibrium with:
bi = σ = δ i = θ i = ξ i = 1,ρ = 3,T 1 = 0,T 2 = 10

Fig. 2: t �→ E[X[[ tXX ]
bi = σ = δ i = θ i = ξ i = 1,ρ = 3,T 1 = 0,T 2 = 10
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Stochastic Multigroup Epidemic Models:

Duration and Final Size

Aadrita Nandi and Linda J.S. Allen

Abstract The epidemic duration, the final epidemic size, and the probability of
an outbreak are studied in stochastic multigroup epidemic models. Two models are
considered, where the transmission rate for each group either depends on the infec-
tious individuals or on the susceptible individuals, referred to as Model 1 and Model
2, respectively. Such models are applicable to emerging and re-emerging infectious
diseases. Applying a multitype branching process approximation, it is shown for
Model 1 that an outbreak is dependent primarily on group reproduction numbers,
whereas for Model 2, this dependence is due to group recovery rates. The probabil-
ity distributions for epidemic duration and for final size are a mixture of two distri-
butions, that depend on whether an outbreak occurs. Given there is an outbreak, it is
shown that the mean final size of the stochastic multigroup model agrees well with
the final size obtained from the underlying deterministic model. These methods can
be extended to more general stochastic multigroup models and to other stochastic
epidemic models with multiple stages, patches, hosts, or pathogens.

1 Introduction

The Susceptible-Infectious-Recovered (SIR) epidemic model was introduced in
1927 by Kermack and McKendrick [21]. It has been applied to many infectious dis-
eases and has served as a framework for development of more realistic epidemic
models. The basic reproduction number and final size of an epidemic are well-
known concepts that have been studied extensively in the SIR model and have been
extended to more complex settings, such as epidemic models with multiple stages,
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patches, hosts, or pathogens, e.g., [3, 9, 12, 19, 22, 23, 31, 32, 36] and references
therein.

For the stochastic, continuous-time Markov chain (CTMC) SIR epidemic model,
the threshold parameters for disease outbreak, final epidemic size, and epidemic
duration have also been studied (e.g., [5, 7, 35, 38]). Whittle in 1955 was the first to
introduce the concept of a minor or a major epidemic in the stochastic SIR model
[38]. The term “minor” implies that only a few individuals become infected, whereas
“major” implies a relatively large number of individuals are infected (an outbreak)
[38]. Unlike the deterministic model, the initial number of infectious individuals is
important. The probability of a minor epidemic is given by

Pminor =

⎧⎨
⎩
(

1
R0

)i

, R0 > 1,

1, R0 < 1,

where Pma jor = 1−Pminor and i is the initial number of infected individuals. Analytic
formulas for the duration and final size distributions have also been computed for the
stochastic SIR epidemic model [5, 7, 11, 35]. In more complex stochastic epidemic
settings, some computational and analytical methods have been applied to obtain
threshold parameters and approximations for the distributions for epidemic duration
and final size, e.g., [2, 6, 8, 11, 20, 25].

In this investigation, we consider two stochastic multigroup epidemic models,
where the group transmission rates are determined by either (1) the infectious in-
dividuals within the group, such as superspreaders or nonsuperspreaders or (2) the
susceptible individuals within the group that are defined by vaccination coverage or
immunity levels. We refer to these models as Model 1 and Model 2, respectively.
In [27], we investigated these two models for two groups but focused our study
on the probability of a minor versus a major epidemic. Edholm et al. [14] applied
a more complex two-group model to the study of superspreaders in outbreaks of
Ebola and Middle East Respiratory Syndrome (MERS). We extend this investiga-
tion to n groups and as in [27], we compare the probability of a minor to a major
epidemic when the epidemic is initiated by an infected individual in a particular
group. It is verified for Model 1 that the group with the largest basic reproduction
number, the superspreaders, has the greatest probability of initiating an epidemic
while in Model 2, it is the group with the lowest recovery rate, i.e., lowest immu-
nity. In addition, we investigate the epidemic duration and the final epidemic size.
The epidemic duration and final size can be separated into bimodal probability dis-
tributions, a mixed distribution, where each mode corresponds to a minor or a major
epidemic. For R0 > 1, the duration and final size of minor and major epidemics are
compared to several well-known distributions, e.g. normal, gamma, lognormal, and
Weibull. For comparison purposes, the two models have the same recovery rates,
the same group sizes, and the same group reproduction numbers.

In the next section, the multigroup CTMC SIR models are defined. A multitype
branching process approximation is used to compute the probabilities of a minor and
a major epidemic in Section 3. In Sections 4 and 5, numerical examples with three
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groups illustrate the probability distributions for duration and final size and the best
fit of these distributions to some well-known distributions. In the concluding Sec-
tion 6, the mathematical results and their biological implications are summarized.

2 Stochastic Multigroup SIR Model

The stochastic formulation is based on the well-known deterministic ordinary dif-
ferential equation (ODE) multigroup model,

dSk

dt
=−Sk

N

n

∑
j=1
βk jI j,

dIk

dt
=

Sk

N

n

∑
j=1
βk jI j − γkIk,

dRk

dt
= γkIk,

(1)

where Sk, Ik, and Rk denote susceptible, infectious, and recovered individuals from
group k, respectively. All recovered individuals can be put into one group R, since
there is no re-infection within this group. The transmission rate from an infectious
individual from group j to a susceptible individual in group k is βk j. The recovery
rate of an infectious individual in group k is γk. Group k has a constant population
size Nk and therefore, the total population size is constant, N = ∑n

k=1 Nk.
We consider two models, where either the transmission rate βk j depends only on

the infectious group j or the susceptible group k. These two cases are referred to as
Model 1 and Model 2, respectively,

Model 1 : βk j = β I
j

Model 2 : βk j = β S
k .

(2)

In either case, the basic reproduction number is

R0 =
n

∑
i=1

βC
i
γi

Ni

N
=

n

∑
i=1

R0i
Ni

N
, (3)

where C = I or C = S identifies the dependence on either the infectious or susceptible
groups. The parameter R0i is the ith group reproduction number. The definition of
R0 follows directly from the next generation matrix approach [37].

The assumptions regarding the transmission rates have applications to recent
emerging and re-emerging infectious diseases. For example, the assumption that
the transmission rate depends on the infectious individuals, β I

j in Model 1, implies
that after infection, infectious individuals in group j determine transmission, not
the susceptible individuals in that group. Two examples of emerging diseases where
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this assumption is meaningful are Severe Acute Respiratory Syndrome (SARS) and
MERS [40]. In 2003 and 2015, these two emerging diseases were caused by super-
spreaders, infectious individuals that infect a large proportion of individuals before
being identified [40]. The behavior of these infectious individuals and the particular
environment (e.g., hospital settings) contributed to their spread. The assumption in
Model 2 is that the transmission rate depends on the susceptible individuals in group
k, β I

k , and not the infectious individuals in that group. Re-emerging diseases such as
measles, mumps, and tuberculosis have a long history. They have been controlled
via vaccination or treatment programs. However, due to vaccine waning, lack of a
second vaccine dose, introduction of new strains with little cross protection, or de-
velopment of antibiotic resistance, re-emergence of these diseases has occurred [28].
Susceptible individuals in Model 2 are divided into groups according to there sus-
ceptibility to infection or re-infection via the transmission rate β S

k . Re-infection rates
and recovery rates depend on each group, but after infection, their transmission rate
is the same as other groups. The duration is longer for individuals with low levels of
immunity. Therefore, the multigroup models differentiate between susceptible and
infectious individuals through behavior after infection or by immunity levels which
affect whether individuals become infected within a group.

For the CTMC models, the infinitesimal transition rates corresponding to Model
1 and Model 2 are summarized in Table 1. Each of the discrete random variables
satisfy S j, I j,R j ∈{0,1, . . . ,Nj} with the restriction S j+I j+R j =Nj for j = 1, . . . ,n.
The interevent time is exponentially distributed with parameter λC, C = I,S:

λI =
n

∑
j=1

[
γ ji j +

s j

N

n

∑
k=1

β I
k ik

]
,

λS =
n

∑
j=1

[
γ ji j +β S

j
s j

N

n

∑
k=1

ik

]
,

where s j and i j are the values of the random variables S j and I j, respectively.

Table 1 Infinitesimal transition probabilities for Models 1 and 2

Model 1
Event Change Probability
S j → I j (ΔS j,Δ I j) = (−1,1) s j

N ∑n
k=1 β I

k ikΔ t +o(Δ t)
I j → R (Δ I j,ΔR j) = (−1,1) γ j i jΔ t +o(Δ t)

Model 2
Event Change Probability
S j → I j (ΔS j,Δ I j) = (−1,1) β S

j
s j
N ∑n

k=1 ikΔ t +o(Δ t)
I j → R (Δ I j,ΔR) = (−1,1) γ j i jΔ t +o(Δ t)
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3 Probability of Minor and Major Epidemics

Multitype branching process (MBP) theory is used to approximate the dynamics
of the CTMC models near the DFE, S j = Nj, i = 1, . . . ,n. In the MBP only the n
random variables, I j, j = 1, . . . ,n, are considered. For this linear approximation near
the DFE, the random variables I j eventually equal zero or approach infinity. The
group size is accounted for in the terms Nj/N. The approximation is valid for small
initial values and sufficiently large population sizes, as we also make the assumption
that the random variables I j are independent.

Differential equations for the probability of disease extinction can be derived in
terms of probability generating functions (pgfs) for each infectious group by apply-
ing the backward Kolmogorov differential equations and from the assumption of
independence of the random variables [1, 2, 4, 13, 18, 27, 29]. For each group j,
assume I j(0) = 1 and Ik(0) = 0 for k �= j, i.e., I(0) = (I1(0), . . . , In(0)) = e j, where
e j is the jth unit vector. The differential equations for disease extinction are

d p j

dt
= ω j[ f j(p1, . . . , pn)− p j], j = 1, . . . ,n, (4)

where
p j(t) = p(e j ,0)(t) = P(I(t) = 0|I(0) = e j),

the notation 0 means the zero vector, and f j(p1, . . . , pn) is the pgf for group j.
The parameter ω j is the waiting time parameter in the jth group. The asymptotic
probability of extinction is found by computing the stationary solution of the dif-
ferential equations, that is, the minimal fixed point of the pgfs, f j(q) = q j and
q = (q1, . . . ,qn) ∈ (0,1]n [2, 4, 13, 18, 29]. In general, the independent assumption
of the variables I j implies for small initial values I(0) = (i1, . . . , in), the asymptotic
probability of extinction is approximately

Pminor =
n

∏
j=1

q
i j
j (5)

and Pma jor = 1 − Pminor. When R0 ≤ 1, the only fixed point in (0,1]n is q =
(1, . . . ,1), so that the Pminor = 1. The following properties of the pgfs ensure that
R0 determines the asymptotic probability of disease extinction,

lim
t→∞

p(e j ,0)(t) = q j,

(i) each pgf f j(u1, . . . ,un) is nonlinear,
(ii) f j(0, . . . ,0)> 0 and

(iii) the Jacobian matrix of the system (4) when evaluated at the fixed point (1, . . . ,1)
is irreducible.

The Jacobian matrix in (iii) is often referred to as the expectation matrix M. See
e.g., [2, 4, 13, 18, 29].
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For Model 1, the waiting time parameter is ω j = γ j +β I
j and the pgfs f j are given

by

f j(u1,u2, . . . ,un) =
γ j +β I

j u j ∑n
k=1

Nk
N uk

γ j +β I
j

, (6)

for ui ∈ [0,1], i, j = 1, . . . ,n [27]. The pgfs in (6) satisfy properties (i)-(iii). The
following result for Model 1 shows that the relation between the probabilities of
extinction for different groups depend on their group reproduction numbers R0 j =
β I

j/γ j. If group i has a smaller reproduction number than group j, then group i has a
larger probability of extinction. The following theorem simplifies the proof in [27]
for two groups and extends it to n groups.

Theorem 1. Assume in the MBP approximation for Model 1 that the group basic
reproduction numbers satisfy β I

i /γi < β I
j/γ j for some i, j. Then the probability of

extinction for groups i and j satisfy one of the following:

(a) If R0 > 1, then 0 < q j < qi < 1 and all other extinction probabilities are less
than one.

(b) If R0 ≤ 1, then qi = 1 for all i = 1, . . . ,n.

In the special case, β I
i /γi = β/γ for all i = 1, . . . ,n, and if R0 = β/γ > 1, then

qi = 1/R0 and if R0 ≤ 1, then qi = 1 for all i = 1, . . . ,n.

Proof. Assume β I
i /γi < β I

j/γ j. Rearranging the expression f j(u1, . . . ,un) = u j leads
to

n

∑
k=1

Nk

N
uk −1 =

γ j

β I
j

(
1− 1

u j

)
. (7)

A similar identity holds for fi(u1, . . . ,un) = ui. Hence, we can equate the right sides
for i and j. That is,

γi

β I
i

(
1− 1

ui

)
=
γ j

β I
j

(
1− 1

u j

)
.

Thus, the solutions ui and u j must be less than one for R0 > 1 which means the
solutions qi and q j satisfy 0 < q j < q j < 1 and if R0 ≤ 1 there is only one fixed
point and q j = qi = 1. It also follows from (7), that all other qk = 1 since

n

∑
k=1

Nk

N
qk = 1.

In the special case β I
i /γi = β/γ for all i = 1, . . . ,n, it follows that R0 = β/γ and

ui = u j = u for all i, j. In particular, the fixed point of the pgfs simplifies to a single
equation:

f (u) =
γ+βu2

γ+β
= u,

with two solutions for u, q = γ/β and 1. If R0 > 1, then the minimal fixed point is
q = 1/R0 and if R0 > 1, the minimal fixed point is q = 1.
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For Model 2, the waiting time parameter for group j is ω j = γ j +∑n
k=1β S

k
Nk
N and

the pgfs f j have the following form

f j(u1,u2, . . . ,un) =
γ j +u j ∑n

k=1β S
k

Nk
N uk

γ j +∑n
k=1β S

k
Nk
N

(8)

for ui ∈ [0,1], i, j = 1, . . . ,n. These pgfs also satisfy the three properties (i)-(iii) and a
similar result holds for the probability of extinction when the recovery rates between
two groups differ. When transmission depends on the susceptibility of the group j,
then differences between probability of extinction of the groups only depends on
the average duration of infection 1/γ j. This is reasonable as their are no differences
between the groups once they become infected, except for the duration of infection.
The proof of the following theorem is similar to that of Theorem 1.

Theorem 2. Assume in the MBP approximation for Model 2 that the recovery rates
satisfy γi > γ j for some i and j. Then the probability of extinction for group i and j
satisfy one of the following:

(a) If R0 > 1, then 0 < q j < qi < 1 and all other extinction probabilities are less
than one.

(b) If R0 ≤ 1, then qi = 1 for all i=1,. . . ,n.

In the special case, γi = γ for all i= 1, . . . ,n, if R0 =∑k β S
k

Nk
N /γ > 1, then qi = 1/R0

and if R0 ≤ 1, then qi = 1 for all i = 1, . . . ,n.

Proof. Assuming γi > γ j and rearranging the expression f j(u1, . . . ,un) = u j leads to

n

∑
k=1

β S
k

Nk

N
(uk −1) = γ j

(
1− 1

u j

)
.

Equating the right sides for i and j leads to

γi

(
1
ui

−1
)
= γ j

(
1
u j

−1
)
.

The remaining steps of the proof for (a) and (b) and the special case with γi = γ fol-
low in a manner similar to the proof of Theorem 1 by noting that R0 = ∑k β S

k
Nk
N /γ .

Theorems 1 and 2 can be extended to more general models with latent or exposed
stages when there are no disease-related deaths, e.g., SEIR-type models. The same
pgfs apply to stochastic SEIR multigroup models [27].

4 Duration of an Epidemic

In general, the pdf for the duration of an epidemic is a mixture of two distributions
corresponding to the minor and major epidemics,
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DI(0)(t) = Pminord1(t)+Pma jord2(t), t ∈ [0,∞). (9)

where Pminor and Pma jor depend on the initial number of infected individuals I(0)
as in equation (5).

Various computational methods have been used to estimate the duration of an epi-
demic, e.g., [5, 7, 11, 35]. For example, the duration of a minor epidemic can be es-
timated from the system of differential equations in (4) with zero initial conditions.
These probabilities give an estimate for the cumulative distribution function (cdf)
for duration of a minor epidemic, as the zero state is an absorbing state. The system
of differential equations is solved until a time T * 0 such that p(e j ,0)(T )≈ q j. The
numerical solution p(e j ,0)(t) on [0,T ] is scaled by q j, to yield a cdf for initial con-
ditions I j(0) = 1 and Ik(0) = 0 for k �= j. For other initial conditions, I j(0) = i j, the
probabilities are raised to the power i j. Taking the derivative of the cdf with respect
to time, yields the pdf for the duration of infection.

4.1 Best Fitting Distributions

As no analytical formulas for the duration of infection for the n-group model are
known, some well-known continuous pdfs including normal gamma, lognormal,
and Weibull, are used for comparison purposes. Separate fits are applied for the
minor and for the major epidemic, scaling the pdfs by either Pminor or Pma jor. The
goal is not to find the best distribution among all possible candidates, but to make
some comparisons of the epidemic duration in the CTMC model with some well-
known distributions. In particular, software available in R is applied and the fit for
each cumulative distribution compared using the skewness-kurtosis graph generated
from numerical solution of the CTMC model [10]. The Cullen and Frey graph [10]
in the “fitdistrplus” package in the statistical computing package R is used esti-
mate the model parameters, compare the various models, and to test for the good-
ness of fit. The Kolmogorov-Smirnov goodness of fit test statistic is applied and
the quantile-quantile plots (Q-Q plots) are used to visualize this fit [24, 26]. This
package handles both discrete and continuous data and applies maximum likelihood
estimation to give the best fit parameters, the Akaike’s Information Criteria (AIC)
among competing models and Q-Q plots for the best fitting cumulative distribution.
The model with the smallest AIC value from the maximum-likelihood estimation
is the best fitting model, using the value −2loglikelihood + 2npar for comparison,
where npar = 2. The mean and standard deviation are reported for each distribution,
e.g., if the best fit is a gamma function, then we write Gamma(μ,σ ), where the mean
is μ and standard deviation is σ .
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4.2 Numerical Examples

Numerical examples for Models 1 and 2 with three groups are presented to illustrate
the epidemic duration. The parameter values for the CTMC model, transmission
and recovery rates and the reproduction numbers are defined in equations (2) and
(3) and are summarized in Table 2. The parameters are hypothetical but reasonable
based on a time scale of one day, e.g., the average duration of the infection for
group 1 is one day but for group 3 it is five days. Group 1 has the largest size and
the smallest reproduction number, and group 3 has the largest reproduction number.
The two models have the same parameter values and the same threshold values for
R0 and R0i, i = 1,2,3. Since R01 < R02 < R03 and γ1 > γ2 > γ3, the fixed points
for these models satisfy q1 > q2 > q3 (Theorems 1 and 2). The Gillespie algorithm
[16] is used to simulate the CTMC model until absorption into a disease-free state,
where the total infectious population equals zero. For each of the figures, probability
histograms are generated from 105 sample paths.

Model 1 : (q1,q2,q3) = (0.859,0.550,0.234)
Model 2 : (q1,q2,q3) = (0.650,0.527,0.271).

(10)

Table 2 Parameter values for Models 1 and 2 with three groups, N = 2000 and R0 = 2.8

Parameters Group 1 Group 2 Group 3
Ni 1200 400 400

β I
i or β S

i 0.5 1.5 2
γi 1.0 0.6 0.2

R0i 0.5 2.5 10

Only three numerical examples are presented for each model, with three sets
of initial conditions I(0) = (2,0,0), I(0) = (0,2,0), and I(0) = (0,0,2). To fit the
pdfs for minor and major epidemics the data are divided into two sets (values for
t < 20 and t ≥ 20) and scaled by Pminor and Pma jor (Figures 1 and 2). The best fitting
distributions, calculated separately for minor and major epidemics, among normal,
gamma, lognormal, and Weibull (smallest AIC value, Table 5 in Appendix 7) to the
data generated from 105 sample paths are

D(2,0,0)(t) = 0.738Gamma(1.633,1.326)(t)+0.262Lognormal(51.092,7.837)(t)

D(0,2,0)(t) = 0.302Gamma(2.327,1.957)(t)+0.698Lognormal(50.242,7.783)(t)

D(0,0,2)(t) = 0.055Weibull(3.115,2.368)(t)+0.945Lognormal(49.061,7.665)(t).

(11)

For Model 1, the duration of minor epidemic is also calculated from the differen-
tial equations in (4). Mean and standard deviation of this pdf are reported in Table 3.
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Table 3 Mean and standard deviation for duration of a minor epidemic in Model 1, calculated
from the differential equations in (4).

Initial value Pminor Mean Standard
Deviation

I(0) = (2,0,0) 0.738 1.631 1.455
I(0) = (0,2,0) 0.302 2.305 1.986
I(0) = (0,0,2) 0.055 3.042 2.346

The curves for duration fitted from the statistical package R in Table 5 in Ap-
pendix 7 are close to those calculated from the MBP in Table 3 with the closest
agreement for I(0) = (0,0,2). But applying the Kolmogorov-Smirnov goodness of
fit test, the null hypothesis that the specific distribution is a good fit is rejected at the
significance level α = 0.05 for cases I(0) = (2,0,0) and I(0) = (0,2,0) [33]. But
for the case I(0) = (0,0,2), the null hypothesis that Weibull is the correct distribu-
tion cannot be rejected at significance level α = 0.05; the critical value is 0.0183
and Kolmogorov-Smirnov test statistic is 0.0122 (Table 5 in Appendix 7). The Q-Q
plots in Appendix 8 show that the extreme values of the duration do not agree with
the cdf of the normal distribution; the CTMC duration for a major epidemic is right-
skewed [39]. The graphs of the best fitting pdfs for epidemic duration are overlaid
on the probability histograms generated from the 105 sample paths of the CTMC in
Figure 1.
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Fig. 1 Duration of an epidemic in Model 1 with 3 groups. Approximations for minor and major
epidemic by the best fitting distribution yield either a gamma or Weibull and a lognormal distribu-
tion, respectively. The overlaid dashed curves represent the best fitting pdfs and the overlaid solid
curves for the minor epidemic are the approximation from the MBP equations (4).

Similar analyses and fit of the pdfs were performed for Model 2 with three
groups, applying parameter values in Table 2. The best fitting distributions for epi-
demic duration, calculated separately for minor and major epidemics, for the three
sets of initial conditions are

D(2,0,0)(t) = 0.422Lognormal(1.422,1.751)(t)+0.578Lognormal(48.39,7.234)(t)

D(0,2,0)(t) = 0.277Gamma(1.775,1.470)(t)+0.723Lognormal(48.25,7.353)(t)

D(0,0,2)(t) = 0.073Gamma(2.626,2.046)(t)+0.927Lognormal(47.68,7.280)(t).

(12)

The mean and standard deviation of the minor epidemic in Model 1, calculated
from the numerical solution of the pdf in (4) are summarized in Table 4.

Table 4 Mean and standard deviation for Duration of a minor epidemic in Model 2, calculated
from the differential equations in (4).

Initial value Pminor Mean Standard
Deviation

I(0) = (2,0,0) 0.422 1.356 1.349
I(0) = (0,2,0) 0.277 1.765 1.583
I(0) = (0,0,2) 0.073 2.570 2.045
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Table 6 in Appendix [30] summarizes the smallest AIC values for all distributions
tested. At significance level α = 0.05, the only distribution that cannot be rejected is
the minor epidemic with I(0) = (0,0,2). The critical value in this case is 0.0185, and
the Kolmogorov-Smirnov test statistic is 0.0142 for a gamma distribution [33]. The
Q-Q plots in Appendix 8 (Figure 5) show that these fitted distributions differ from
the CTMC multigroup model in the tails of the distribution; the CTMC duration for
a major epidemic is right-skewed [39]. The graphs of the best fitting distributions
for Model 1 are overlaid on the probability histograms in Figure 2.

Fig. 2 Duration of an epidemic for Model 2 with 3 groups. Approximations for minor and major
epidemic by the best fitting distribution yield either a lognormal or a gamma distribution. The
overlaid dashed curves represent the best fitting pdfs and the overlaid solid curves for the minor
epidemic are the approximation from the MBP equations (4).

5 Final Size of an Epidemic

The final size of an epidemic is a discrete distribution with values from {0, . . . ,N}.
As in the case for the duration of an epidemic, the final size of an epidemic is a
mixture of two distributions, corresponding to minor and major epidemics,

HI(0)(x) = Pminorh1(x)+Pma jorh2(x), x ∈ {0,1,2, . . . ,N}.
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For the large population size N = 2000 and group sizes Ni ≥ 400, the discrete distri-
butions hi are approximated with continuous pdfs. The discrete distributions Pois-
son, binomial, negative binomial, and geometric fit poorly, especially for the minor
epidemic.

5.1 Best Fitting Distributions

Analytical formulas for final size in the stochastic multigroup model are not known.
The continuous pdfs normal, gamma, lognormal, and Weibull are used for compar-
ison purposes with the CTMC final size. Separate fits are applied for the final size
in the case of either a minor or a major epidemic, separating the data into two sets
(size < 1000 and ≥ 1000) and scaling the pdfs by either Pminor or Pma jor. As in
the fits for duration, the goal in fitting final size is not to find the best distribution
among the possible candidates, but to make comparisons of the epidemic final size
in the CTMC model with these well-known distributions. Also, a MBP approxima-
tion is used to estimate final size in a minor epidemic and the mean final size for a
major epidemic is compared with a formula for epidemic final size from the ODE
multigroup model [22, 23].

5.2 Minor Epidemic

The final size of a minor epidemic for the SIR model was approximated by Bailey
in 1975 for I(0) = 1 and generalized to I(0) = s > 1 [5, 15, 17]:

P(n) =
s(2n− s)!Rn−s

0
(2n− s)n!(n− s)!(R0 +1)2n−s , n = s,s+1, . . . , (13)

where P(n) is the probability the final size equals n. The value of n includes the
initial number s. This estimate comes from a MBP approximation with no bound on
the final size.

To derive an approximate final size of a minor epidemic, similar to Bailey, we
also apply methods used in the MBP approximation of the multigroup model. Here,
we only discuss the computations for the case of i j initial infectious individuals from
group j, and either no new infections or at most one new infection. The transition
probabilities in Table 1 are applied with the assumption that s j = Nj/N = α j.

Suppose I j(0) = i j and Ik(0) = ik = 0 for k �= j and there are no new infections,
then all i j individuals must recover. In Model 1, the recovery of the first individual
has approximate probability

γ ji j

∑n
�=1
[
α� ∑n

k=1β I
k ik
]
+∑n

k=1 γkik
=

γ j

β I
j + γ j

.
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Thus, for Model 1, the probability that all i j individuals recover is simply[
γ j

β I
j + γ j

]i j

. (14)

This formula is equivalent to the formula P(s) in (13) for i j = s. For Model 2, the
probability that all i j individuals recover is[

γ j

∑n
j=1β S

j α j + γ j

]i j

. (15)

If there is only one new transmission prior to recovery, then the transmission to other
groups and the order of the transmission and the recovery events must be consid-
ered. This leads to a combinatorial problem. For example, if the first event is a new
transmission, there are n potential new transmissions, one to each of the n groups. If
the transmission is to the same group j, then there must be i j +1 recoveries (order
is not important here). But for a transmission to group k �= j, the i j individuals in
group j must recover and also the one individual in group k (order of these i j + 1
recovery events is important).

The full combinatorial problem is not considered here, instead the estimates from
(14) and (15) are applied in the numerical examples for three groups. Note that the
relation between the two formulas in (14) and (15) depends on the relation between
β I

j and the weighted sum ∑ j β S
j α j.

5.3 Major epidemic

Recently, Magal et al. [22, 23] computed the final epidemic size in a ODE multi-
group model. The implicit formula for final size is computed for each group i by
solving the following system of equations for Si(∞),

Si(∞) = Si(0)exp

(
n

∑
j=1

βi j

Nγ j
[S j(∞)−S j(0)− I j(0)]

)
, i = 1, . . . ,n, (16)

with transmission rates βi j for Models 1 and 2 given in (2). The final size of the epi-
demic for group i is Ni −Si(∞) and the final epidemic size for the entire population
is N −∑n

i=1 Si(∞).
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5.4 Numerical Examples

Similar to the numerical examples in Section 4.2, only three numerical examples are
presented for each model, with initial conditions I(0) = (2,0,0), I(0) = (0,2,0), and
I(0) = (0,0,2). All of the fitted distributions for final size do not include the two
initial infectious individuals. The values qi, i = 1,2,3 from the MBP are given in
equations (10) and the parameter values in Table 2. The best fitting distributions for
final size, calculated separately for minor and major epidemics, with smallest AIC
value are lognormal for minor epidemic and normal for major epidemic,

H(2,0,0)(t) = 0.738Lognormal(2.598,2.341)(t)+0.262Normal(1846,24.86)(t)

H(0,2,0)(t) = 0.302Lognormal(4.82,5.465)(t)+0.698Normal(1847,24.77)(t)

H(0,0,2)(t) = 0.055Lognormal(7.50,9.354)(t)+0.945Normal(1846,24.80)(t).

(17)

The Kolmogorov-Smirnov goodness of fit values are given in Appendix 7 in
Tables 7 and 8 for Models 1 and 2, respectively. For the large sample size 105 all
the fitted distributions are rejected at the α = 0.05 level. The normal Q-Q plots for
the major epidemic show that the final size in the CTMC model differ in tails of
the distribution. The CTMC final size distribution is left-skewed [39]. The final size
of the ODE multigroup Model 1, calculated from the formulas in (16) equals 1848
(not counting the two initial infectious individuals). This estimate agrees well with
the mean final size for a major epidemic for the fitted distributions, ≈ 1846-1847.
Probability histograms of the final size for each set of initial conditions and the best
fitting distributions for Model 1 are graphed in Figure 3.
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Fig. 3 Final size of an epidemic in Model 1 with 3 groups. The dots denote the probability there
is no additional infectious individuals, as calculated from (14) and the dashed curves are the best
fitting distributions for a major epidemic.

The corresponding best fitting distributions for final size, calculated separately
for minor and major epidemics, in Model 2 are

H(2,0,0)(t) = 0.422Lognormal(2.388,1.927)(t)+0.578Normal(1402.7,35.787)(t)

H(0,2,0)(t) = 0.277Lognormal(2.703,2.333)(t)+0.723Normal(1401.6,35.889)(t)

H(0,0,2)(t) = 0.073Lognormal(3.309,3.112)(t)+0.927Normal(1401.6,35.827)(t).

(18)

The final size in the ODE multigroup Model 2, calculated from equations (16),
is 1403-1404 (not counting the two initial infectious individuals). This is in close
agreement with the mean final size in the best fitting distributions, ≈ 1402-1403.
Graphs of the best fitting distributions are overlaid on the probability histograms
generated from 105 sample paths of the CTMC model.
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Fig. 4 Final size of an epidemic in Model 2 with 3 groups. The dots denote the probability there
is no additional infectious individuals, as calculated from formula (15) and the dashed curves are
the best fitting distributions for the major epidemic.

6 Discussion

The duration and final epidemic size of the CTMC multigroup model with trans-
mission dependent on either the infectious group or the susceptible group were fit to
some well-known distributions. The best fitting distributions show that there are dis-
tinct differences between the CTMC duration and final size and these well-known
distributions. The differences are greatest in the tails of the distribution, where the
CTMC duration is right-skewed and the CTMC final size is left-skewed (Figures 5
and 6). It was also shown that the final size estimate from the underlying ODE
multigroup model is a good prediction of the mean final size for a major epidemic
in the stochastic multigroup models. It is notable that the final size in Model 1 (Fig-
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ure 3 and in equation (17)) is much greater than in Model 2 (Figure 4 and equation
(18)) but the two models do not differ significantly in the epidemic duration. Model
1 is applicable to emerging diseases and Model 2 to re-emerging diseases. There-
fore, a larger final size is of significant public health concern, as superspreaders are
responsible for recent emerging diseases (SARS, MERS, and Ebola).

The value of R0 plays an important role in duration and final size. Generally, if
R0 * 1 the final sizes are larger but of shorter duration but for R0 ≈ 1, the final
sizes are smaller but of longer duration (e.g., [3, 9, 22, 23, 35]). Our results depend
on R0 and the population sizes. In the numerical examples, R0 = 2.8 and Ni ranges
from 400 to 1200. For R0 sufficiently large, the minor and major epidemics are
well separated. For large population sizes, application of the MBP approximation is
possible. Simulations of other numerical examples for Models 1 and 2 with two and
three groups, group population sizes > 50, initial conditions with 1 or 2 infectious
individuals, and R0 > 1.5 showed similar qualitative results for probability of a
minor or a major epidemic and final size.

The assumptions regarding the transmission rates for Models 1 and 2 are re-
strictive. Generally individual heterogeneity is much more complex. Behavior, ge-
netics, the environment, and physiological conditions impact disease transmission
[34]. This investigation has shed some light on duration and final size in these two
specific multigroup models. But further investigation is needed to understand the
impact of group size, transmission and recovery rates on duration and final size
in more general multigroup models. The methods applied in this investigation can
be extended to more general stochastic multigroup models and to other stochastic
epidemic models with multiple stages, patches, hosts, or pathogens.

Appendix

7 AIC and Goodness of Fit

The following four tables summarize the AIC values and the Kolmogorov-Smirnov
goodness of fit values for duration and final size for Models 1 and 2.
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Table 5 AIC values for duration of a minor and a major epidemic in Model 1. †KS=Kolmogorov-
Smirnov goodness of fit values, reported for the model with the smallest AIC value.

I(0)=(2,0,0)
pdf Minor Major

AIC KS† AIC KS†
Gamma 213169 0.0286 182027 -

Lognormal 214606 - 181319 0.0309
Normal 265379 - 184122 -
Weibull 215054 - 189547 -

I(0)=(0,2,0)
pdf Minor Major

AIC KS† AIC KS†
Gamma 110271 0.0319 482261 -

Lognormal 112586 - 480310 0.0315
Normal 128675 - 487997 -
Weibull 110555 - 502391 -

I(0)=(0,0,2)
KS† Minor Major

AIC KS† AIC KS†
Gamma 22461 - 653311 -

Lognormal 23205 - 650403 0.0344
Normal 24714 - 661706 -
Weibull 22447 0.0122 681952 -
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Table 6 AIC values for duration of a minor and a major epidemic in Model 2. †KS=Kolmogorov-
Smirnov goodness of fit values, reported for the model with the smallest AIC value.

I(0)=(2,0,0)
pdf Minor Major

AIC KS† AIC KS†
Gamma 108353 - 392755 -

Lognormal 107487 0.0286 391218 0.0322
Normal 145811 - 397243 -
Weibull 109334 - 408980 -

I(0)=(0,2,0)
pdf Minor Major

AIC KS† AIC KS†
Gamma 85563 0.0267 492022 -

Lognormal 86381 - 489985 0.0331
Normal 105433 - 497925 -
Weibull 86159 - 513133 -

I(0)=(0,0,2)
pdf Minor Major

AIC KS† AIC KS†
Gamma 28152 0.0142 629820 -

Lognormal 28686 - 627161 0.0327
Normal 32054 - 637516 -
Weibull 28273 - 657153 -
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Table 7 AIC values for final size of a minor and a major epidemic in Model 1 †KS=Kolmogorov-
Smirnov goodness of fit values, reported for the model with the smallest AIC value.

I(0)=(2,0,0)
pdf Minor Major

AIC KS† AIC KS†
Gamma 117445 - 238963 -

Lognormal 107041 0.2796 239016 -
Normal 157697 - 238864 0.0361
Weibull 119389 - 239473 -

I(0)=(0,2,0)
pdf Minor Major

AIC KS† AIC KS†
Gamma 114808 - 643904 -

Lognormal 110675 0.147 644036 -
Normal 139172 - 643653 0.0349
Weibull 115434 - 645599 -

I(0)=(0,0,2)
pdf Minor Major

AIC KS† AIC KS†
Gamma 28704 - 873844 -

Lognormal 28242 0.0929 874022 -
Normal 33468 - 873506 0.033
Weibull 28795 - 876315 -
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Table 8 AIC values for final size of a minor and a major epidemic in Model 2. †KS=Kolmogorov-
Smirnov goodness of fit values, reported for the model with the smallest AIC value.

I(0)=(2,0,0)
pdf Minor Major

AIC KS† AIC KS†
Gamma 63361 - 575268 -

Lognormal 58745 0.2870 575385 -
Normal 80800 - 5750743 0.0188
Weibull 65049 - 580039 -

I(0)=(0,2,0)
pdf Minor Major

AIC KS† AIC KS†
Gamma 54486 - 720316 -

Lognormal 51130 0.2547 720441 -
Normal 68414 - 720115 0.0149
Weibull 55592 - 727130 -

I(0)=(0,0,2)
pdf Minor Major

AIC KS† AIC KS†
Gamma 19597 - 927418 -

Lognormal 18753 0.2083 927594 -
Normal 23750 - 927127 0.0174
Weibull 19864 - 935818 -

8 Q-Q Plots

The lognormal distribution is the best fit for the duration of a major epidemic in
(11) and (12). The Q-Q plot of the logarithm of this distribution for initial condition
I(0) = (0,0,2) gives a normal Q-Q plot, graphed in Figure 5. The normal Q-Q
plot shows that the true distribution differs from this lognormal distribution in the
extreme values; the CTMC duration is right-skewed [39]. Due to the large number
of points in the Q-Q plots, we only show the fit based on a major epidemic for 104

sample paths which is similar to 105 sample paths.
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Fig. 5 Normal Q-Q plot of duration of major epidemic for Model 1 (left) and Model 2 (right) with
3 groups for initial value (0,0,2). Sample size is (1−q2

3)104.

The normal distribution is the best fit for final size of a major epidemic in (17) and
(18). The normal Q-Q plot for the final size with initial condition I(0) = (0,0,2) is
graphed in Figure 6 which shows differences from the normal in the extreme values;
the CTMC final size is left-skewed [39].

Fig. 6 Normal Q-Q Plot of final size of major epidemic for Model 1 (left) and Model 2 (right) with
3 groups for initial condition (0,0,2). Sample size is (1−q2

3)104.
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H2 Dynamic Output Feedback Control for

Hidden Markov Jump Linear Systems

A. M. de Oliveira, O. L. V. Costa, J. Daafouz

Abstract In this note, we discuss the design of H2 dynamic output feedback con-
trollers for a class of jump systems whose switching is induced by a Markov chain.
The observation model is based on hidden Markov chains, in which only a random
variable conditioned on the jump process of the plant is available to the controller.
In this context, we consider a type of sub-optimal ad hoc separation procedure in
which a state-feedback controller is given in order to obtain the remaining controller
matrices by means of the linear matrix inequality formulation. In the case of perfect
observation of the Markov chain, the conditions also become necessary allowing us
to calculate optimal H2 controllers also provided by the classical results of the lit-
erature. Clusterized and mode-independent controllers can also be synthesized via
our formulation. Two illustrative examples are presented.

1 Introduction

The study of systems subject to abrupt changes has attracted a great deal of effort in
the last decades, in part due to the ease of modelling complex dynamics in the same
application. This phenomenon may arise in systems subject to faults or possessing
different operation points, such as in the case of nonlinear systems. Particularly,
the very nature of failures, that are usually random, asks for a class of systems
that presents not only a set of different dynamics, but also a type of switching that
could reach out for this kind of unpredictable behaviour. In this context, the so-
called Markov jump linear systems, for short MJLS, has appeared as an important
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tool for modelling abrupt dynamic changes and consequently acting in the system
to ensure stability and performance properties. There is by now a great number of
works concerning MJLS in the literature. We refer the interested reader to [4, 9, 10,
19, 36, 53], and the references therein.

Specifically, in the realm of control systems theory, the influence of the state
space methods and the interest in optimal control due to the works of Rudolf Kalman
in the 60’s can still be felt nowadays and paved the way to the development of the
H∞ theory in the 80’s, see for instance, [16, 18], and the references therein. Among
the contributions of that time, we mention the revival interest in the Lyapunov theory
in [31] and [32], the introduction of the concepts of Controllability and Observabil-
ity and the use of Calculus of Variations for solving the Linear Quadratic Regulator
(LQR) control in [29], and the Kalman filter and the “geometric feel” in which it
was solved in [30]. The synthesis of all the mentioned contributions is the elegant
Linear Quadratic Gaussian (LQG) control theory and the so-called separation prin-
ciple: the optimal quadratic control for linear systems is the joint use of the Kalman
filter for estimating the states and the state-feedback control coming from the LQR
theory. Earlier works on LQG are, for instance, [25] and [27], that led to a great
deal of discussion, such as the ones in [3, 15, 16, 17, 18, 22, 28, 48, 54], and the
references therein. An even more ever-lasting product of that time is the use of Ric-
cati equations in control theory that curiously, as pointed out in [50], was used for
the critics of the optimal control framework for solving the H∞ control in [18] or
applied to robust control techniques in [17].

The extension of the LQG theory to MJLS is considered in [6, 26], and the more
general H2 theory, in [13]. Especially concerning the H2 control presented in [13],
we notice that the results echo the ones derived in the case without jumps, leading to
the H2 separation principle for MJLS, in which the controller is composed by the
optimal H2 state-feedback controller and the optimal H2 observer, both structures
obtained through coupled algebraic Riccati equations (CARE). It is interesting to
note that the use of the Kalman filter could be prohibitive in terms of memory usage
for the off-line calculation of the gains, since it would depend on all possible trajec-
tories of the Markov chain up to the current instant. Alternatively, by means of the
linear matrix inequality (LMI) formulation, see, for instance, [5], design conditions
for optimal H2 and H∞ dynamic output feedback controllers were presented in [23].
However, a fundamental characteristic shared by all those works is the hypothesis
that the Markov chain (or the mode) can be perfectly measured, that is the same to
assume that the controller would have access to some parts of the state. Such a con-
troller is called mode-dependent in the literature. This assumption greatly simplifies
the problem, but also raises very important questions, such as how to effectively
measure the underlying jump process in order to use it in real processes.

Arguably, there are two most relevant formulations concerning partial observa-
tions of the Markov chain in the literature: the cluster and mode-independent cases.
In the former case, introduced in [52], the modes of the Markov chain are grouped
in disjoint sets called clusters, and then the controller would have access to which
cluster the Markov chain currently is. As for the mode-independent formulation, it
is considered that the controller would not have any access to the jump process of
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the plant and then it would remain fixed throughout the time. Since all the states
of the Markov chain can be grouped in a unique set, or conversely, can constitute
a bijection with respect to the disjoint sets, it follows that the cluster case encom-
passes the mode-independent and -dependent formulations. A graph for a Markov
chain of three states grouped in two clusters is shown in Fig. 1. Nowadays, the few

1

2 3

Cluster 1

Cluster 2

Fig. 1 Example of a Markov chain and clusterization

works studying the design of dynamic output feedback controllers for MJLS that
consider the cluster case and the mode-independent formulations depend on very
simplifying assumptions and/or present sub-optimal results due to the high degree of
non-linearity involved. In [21], LMI design conditions were given for model-based
controllers, and due to this structural choice, the system matrices must be equal in-
side a given cluster. By writing the original design problem as one of calculating
static output feedback controllers, the works [38] and [39] presented sub-optimal
conditions following the two steps procedure of [37] and [46]. More recently the
work [40] introduced sub-optimal conditions for obtaining cluster controllers by
means of an algorithm that uses a mode-dependent controller as an input.

Another trend that can be found in the literature is the use of observation mod-
els that are linked to Active Fault-tolerant Control Systems (AFTCS), that aim to
present suitable approximations for the behavior of Fault Detection and Isolation
(FDI) devices. In this sense, the model called detector approach or hidden MJLS,
that was introduced in [8] and considered more recently in [11], consists of a hidden
Markov chain (HMC) in which the jump process of the plant cannot be measured,
but instead the controller would only have access to an observed variable that is con-
ditioned on the Markov chain. This modelling could represent a very simple model
for FDI processes, see, for instance, [11], or could be viewed as an asynchronous
phenomenon between the controller and the plant, as characterized in [55]. A recent
work that considered such modelling concerning stabilizing dynamic output feed-
back control is [43], in which a type of ad hoc separation procedure is presented,
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echoing the results given in [45] for the uncertain linear time-invariant (LTI) sys-
tems. It must be pointed out that the detector approach encompasses the aforemen-
tioned cases: the situation of perfect observation of the Markov chain, as well as the
cluster and mode-independent formulations. Alternatively, some works such as [34]
and [35] employed a different observed variable that consists of another Markov
process conditioned on the Markov chain of the plant. In this context, the works [1]
and [2] studied the design of dynamic output feedback controllers for continuous-
time MJLS, where in the latter one, the design conditions are given in LMI, but the
resulting controller would also depend on the Markov chain of the plant. A more
practical approach (that is similar to the one considered in this note) is presented in
[1], in which bilinear matrix inequalities (BMI) conditions are obtained for mixed
H2/H∞ controllers. A similar observation model for the discrete-time case is used
in [33] for the H∞ control, but as in [2], the final controller seems to depend also on
the Markov chain of the plant.

In this note, we are concerned with the design of H2 dynamic output feedback
controllers for hidden MJLS, that is, the observation model employed in [11] and
[43]. By considering the similar transformations as in [43], we derive BMI con-
ditions that, if fulfilled, provide dynamic output feedback controllers that switch
according to the observed variable, guarantee the stability of the closed-loop system
in some stochastic sense, and impose an upper bound on its H2 norm. For solving
the BMI, we use the strategy that has been called the ad hoc separation procedure
in the literature, see, for instance, [43] and [45], in which a state-feedback controller
is provided for calculating the remaining “filter-like” structure, and then only LMIs
must be solved. The final controller is composed by both the state-feedback gains
of the first stage and the remaining calculated matrices. An additional and desirable
property is also guaranteed and shown in this note, namely, that for the case in which
we can perfectly measure the Markov chain, our conditions also become necessary,
allowing us to obtain optimal H2 dynamic controllers such as the ones given in [11]
and [23] (with some suitable modifications). Due to some properties of the hidden
MJLS formulation, we are also able to obtain clusterized and mode-independent
structures, thus providing alternative and arguably simpler design conditions com-
pared to the ones presented in [21, 39, 38, 40], and the references therein. Besides,
it must be pointed out that, even though the problems tackled in [1, 2, 33] are some-
what similar to the one considered in this work, the observation models, as well as
the results, are different, as previously explained.

The structure of this chapter is as follows. Sect. 2 introduces the notation, Sect. 3,
the preliminary discussions such as the problem formulation, the definitions and
results, and the main goal. Sect. 4 presents the main result, that is, sufficient de-
sign conditions for the H2 dynamic output feedback control considering the asyn-
chronous phenomenon between the controller and the plant, that becomes also nec-
essary for the mode-dependent case. In Sect. 5, we present two examples. The first
one traces the parallel between our work and the separation principle of [13]. The
second one is inserted in the context of AFTCS, through the design of dynamic con-
trollers for an unmanned aerial vehicle subject to actuator failures. Our final remarks
are presented in Sect. 6 and some auxiliary results, in the Appendix.
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2 Notation

For Y and X complex Banach spaces, we set B(Y,X) as the space of bounded lin-
ear operators of Y into X, and for simplicity, B(Y) � B(Y,Y). The spectral ra-
dius of T ∈ B(Y) is represented by rσ (T ). The real n-dimensional Euclidean space
is denoted by Rn, and the norm bounded linear space of all m × n real matrices
is represented by B(Rn,Rm), with B(Rn) � B(Rn,Rn). The superscript ′ indicates
the transpose of a matrix, the identity operator is represented by I (or by In, for a
n× n identity matrix), the null operator, by 0 (or equivalently 0n×m whenever the
dimensions are needed), the trace operator by Tr(·), and the block diagonal ma-
trix, by diag(·). Considering a square matrix S ∈ B(Rn), we define the operator
Her(S) = S+ S′, and for a symmetric matrix, the symbol • represents a symmetric
block. For N and M positive integers, the sets N and M are defined, respectively, by
N� {1,2,3...,N} and M� {1,2,3, ...,M}. Furthermore, the set Hn,m represents the
linear space of all N-sequences of real matrices V = (V1,V2, ...,VN), Vi ∈B(Rn,Rm),
i ∈N, and for simplicity, we set Hn �Hn,n and Hn+ � {V ∈Hn;Vi ≥ 0, i ∈N}. For
P,V ∈Hn+, we write that P ≥V (P >V ) if Pi −Vi ≥ 0 (Pi −Vi > 0) for all i ∈N. The
Banach space (‖ · ‖2,H

n,m) is a Hilbert space with the norm induced by the inner
product

〈V ;S〉� ∑
i∈N

Tr(V ′
i Si)

for V,S ∈Hn,m. Let (Ω ,F,{Fk},Prob) be a stochastic basis, with E(·) representing
the expected value operator and E(· | ·), the conditional expectation operator. For
A ∈ F, 1A represents the indicator function of the event A (if ω ∈ A, then 1A(ω) = 1).

3 Preliminaries

On a probability space (Ω ,F,Prob) with filtration {Fk} we consider the MJLS

G :

⎧⎨
⎩

x(k+1) = Aθ(k)x(k) + Bθ(k)u(k) + Jθ(k)w(k)
y(k) = Lθ(k)x(k) + Hθ(k)w(k)
z(k) = Cθ(k)x(k) + Dθ(k)u(k) ,

(1)

where x(k)∈Rn is the state variable, u(k)∈Rm is the control input, w(k)∈Rr is the
exogenous input, y(k) ∈ Rp is the measured output, and z(k) ∈ Rq is the controlled
output. The variable θ(k) is a Markov chain with state space N respecting

Prob(θ(k+1) = j | Fk) = Prob(θ(k+1) = j | θ(k)) = pθ(k) j ,

for all j ∈ N, and transition probability matrix given by P � [pi j]. Considering the
random variable θ0 ∼ μ , we set θ(0) = θ0. We also set x(0) = x0, where x0 ∈ Rn is
a second order random vector, unless otherwise stated.
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Assumption 1 The Markov chain θ(k) is ergodic, see, for instance, [47], with lim-
iting distribution νi � limk→∞ νi(k), where νi(k)� Prob(θ(k) = i).

Assumption 2 The transition probability matrix P is nondegenerate, i.e., ∑i∈N pi j >
0 for all j ∈ N.

The only available variables to the controller are y(k) and θ̂(k), where θ̂(k) rep-
resents the output of some detector, or an asynchronous behavior with respect to
the Markov chain θ(k). The dynamic output feedback controller has the following
structure,

C :

⎧⎨
⎩

xc(k+1) = Acθ̂(k)xc(k)+Bcθ̂(k)y(k)
u(k) =Ccθ̂(k)xc(k)

xc(0) = xc0 ,

(2)

where xc(k) ∈Rn and xc0 ∈Rn is a second order random vector. The observed jump
variable θ̂(k) takes its values in the set M, and, by considering the σ−field F̂k
generated by

{x(0),xc(0),w(0),θ(0), θ̂(0), . . . ,x(k),xc(k),w(k),θ(k)} ,

for k > 0, and
{x(0),xc(0),w(0),θ(0)} ,

for k = 0, we assume that

Prob
(
θ̂(k) = l | F̂k

)
= Prob

(
θ̂(k) = l | θ(k))= αθ(k)l ,

for all l ∈M. The set Mθ(k) defines all possible outcomes of θ̂(k) for a given θ(k),
that is, Mθ(k) � {l ∈ M : αθ(k)l > 0}, and ϒ � [αil ]. Finally, unless otherwise
stated, w is taken as a wide-sense white noise sequence (see, for instance, [15]), that
is, E(w(k)) = 0 and E(w(k)w(s)′) = Irδ|k−s|, independent of θ(k), θ̂(k), and x0.

Remark 1 The joint process (θ(k), θ̂(k)) is a hidden Markov chain, see, for in-
stance, [47], or a hidden Markov model (HMM). The properties of this model re-
flects in the MJLS theory with the following properties taken from [11]:

• The mode-dependent case. If N = M and αii = 1 for all i ∈ N, we would have
that θ̂ = θ , that is, the case of perfect observation of θ .

• The cluster case of [52]. Considering that there is a set M for M ≤ N such
that N can be grouped in disjoint sets Ns satisfying N =

⋃
s∈MNs, by defining

g : N→M such that g(i) = s for all i ∈ Ns, then g would map the Markov states
into their respective clusters. Equivalently through the HMM formulation, we
would have that Mi = {g(i)} and αig(i) = 1, and therefore θ̂(k) would indicate
the corresponding cluster of θ(k).

• If M = 1 and αi1 = 1 for all i ∈N, then we would get the mode-independent case,
that is, the detector cannot provide any useful information regarding the Markov
chain.
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Alternatively, the cluster case can also be obtained by means of the hidden MJLS
formulation through the next assumption, taken from [41]. These characteristics will
be discussed in details in the examples of Sect. 5.

Assumption 3 ([41]) The modes of the Markov chain can be partitioned into κ
disjoint subsets Ns, such that

⋃κ
s=1N

s = N, and for all s ∈ {1, . . . ,κ}, i ∈ Ns, we
have that Mi =Ms for disjoint sets Ms,

⋃κ
s=1M

s =M, and αil = αs
l , for all l ∈Ms.

Connecting (1) and (2) yields to the following closed-loop system

Gc :

{
x̃(k+1) = Aθ(k)θ̂(k)x̃(k)+ Jθ(k)θ̂(k)w(k)

z(k) =Cθ(k)θ̂(k)x̃(k) ,
(3)

where x̃(k)′ �
[
x(k)′ xc(k)′

]
, x̃(k) ∈ R2n, and

[
Aθ(k)θ̂(k) Jθ(k)θ̂(k)
Cθ(k)θ̂(k) 0

]
�

⎡⎢⎣ Aθ(k) Bθ(k)Ccθ̂(k) Jθ(k)
Bcθ̂(k)Lθ(k) Acθ̂(k) Bcθ̂(k)Hθ(k)

Cθ(k) Dθ(k)Ccθ̂(k) 0

⎤⎥⎦ . (4)

We present next the basic concepts that underlies our discussion.

Definition 1. System (3) with w = 0 is said to be stochastically stable (SS) if, for
every θ0 and every x0 with finite second moment,

‖x̃‖2
2 �

∞

∑
k=0

E
(‖x̃(k)‖2)< ∞ .

�

The set of admissible controllers is defined as follows

C� {C as in (2) such that (3) is SS} . (5)

Consider the following operators for V ∈Hnx ,

Ei(V )� ∑
j∈N

pi jVj , (6)

Li(V )� ∑
l∈Mi

αilA
′

ilEi(V )Ail , (7)

T j(V )� ∑
i∈N

∑
l∈Mi

αil pi jAilViA
′

il , (8)

for E ,L ,T ∈ Hnx and Ail ∈ B(Rnx) for all i ∈ N, l ∈ Mi. The following theo-
rem, adapted from [11], states necessary and sufficient conditions for evaluating the
stochastic stability of (3) for a given controller structure C .

Theorem 1 ([11, 12]). The following assertions are equivalent for Ail = Ail and
nx = 2n in (7)-(8).
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i. C ∈ C.
ii. rσ (L )< 1.

iii. rσ (T )< 1.
iv. There exists P ∈Hnx , P > 0, such that

P−L (P)> 0 . (9)

v. There exists Q ∈Hnx , Q > 0, such that

Q−T (Q)> 0 . (10)

Moreover, for C ∈ C there exists a unique solution P ∈ Hnx , P > 0, of P =
V (P)+ S for V ∈ {L ,T } and S ∈ Hnx , S > 0. For P = V (P)+ S and P̄ =
V (P̄)+ S̄, if S ≥ (>) S̄ ≥ (>) 0, then P ≥ (>) P̄ ≥ (>) 0. �

Define A � (A1, . . . ,AN), B � (B1, . . . ,BN), and K � (K1, . . . ,KM), where Kl ∈
B(Rn,Rm), l ∈ M. We are now interested in defining the concept of stochastic sta-
bilizability for hidden MJLS.

Definition 2 (Stochastic stabilizability). The pair (A,B) is said to be stochastically
stabilizable if there exists K such that (9) ((10)) holds for Ail = Ai +BiKl , for all
i ∈ N, l ∈Mi. �

The set of stabilizing state-feedback controllers is defined in the following

K� {K such that (9) or (10) hold for Ail = Ai +BiKl} . (11)

We now investigate the performance index considered in this work.

Proposition 1. If C ∈ C, then

lim
k→∞

E(‖z(k)‖2) = ∑
i∈N

∑
l∈Mi

αil pi j Tr
(
CilQ̄iC′

il
)

= ∑
i∈N

∑
l∈Mi

νiαil Tr
(
J′

ilEi(P̄)Jil
)
,

where Q̄ ∈H2n+ is the unique solution of

Q̄ = T (Q̄)+ J̄ , (12)

for J̄ j � ∑i∈N ∑l∈Mi νiαil pi jJilJ′
il , J̄ ∈H2n+, and P̄ ∈H2n+ is the unique solution of

P̄ = L (P̄)+C , (13)

for Ci � ∑l∈Mi αilC′
ilCil , C ∈H2n+. �

Proof. Define Q̄i(k)� E(x(k)x(k)′1θ(k)=i). Then, by recalling that w(k) is indepen-
dent of θ(k), θ̂(k), and x0 (and then also of x(k)), we have that
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Q̄ j(k+1) = ∑
i∈N

∑
l∈Mi

pi jαil
[
AilQ̄i(k)A′

il +νi(k)JilJ′
il
]
,

where we recall that νi(k) = Prob(θ(k) = i). Note also that

E(‖z(k)‖2) = Tr
(

E
(

Cθ̂(k)θ(k)x(k)x(k)
′C′
θ̂(k)θ(k)

))
= ∑

i∈N
∑

l∈Mi

pi jαil Tr(CilQ̄i(k)C′
il) .

Considering Assumption 1 and that C ∈ C, we have that νi(k)→ νi and Q̄i(k)→ Q̄i
if we take k → ∞, implying the first claim of the proof. Finally, note that

∑
i∈N

∑
l∈Mi

αil pi j Tr
(
CilQ̄iC′

il
)
= 〈C̄; Q̄〉

= 〈P̄−L (P̄); Q̄〉
= 〈P̄; J̄〉
= ∑

i∈N
∑

l∈Mi

νiαil Tr
(
J′

ilEi(P̄)Jil
)
,

and thus, the claim follows. ��
Definition 3 (H2 norm). Consider that C ∈ C and x0 = 0. Let zs be the controlled
output of (3) if

w(k) =
{

es, k = 0
0, k > 0 ,

where es ∈ Rr is the s-th standard basis of Rr. For

‖zs‖2
2 �

∞

∑
k=0

E(‖zs(k)‖2) ,

the H2 norm of (3) is defined by

‖Gc‖2
2 �

r

∑
s=1

‖zs‖2
2 .

�

Recalling that μi = Prob(θ0 = i), we have, after straightforward manipulations, see,
for instance, [11], that

‖Gc‖2
2 = ∑

i∈N
∑

l∈Mi

αil pi j Tr
(
CilQ̃iC′

il
)

(14)

= ∑
i∈N

∑
l∈Mi

μiαil Tr
(
J′

ilEi(P̄)Jil
)
, (15)
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where P̄ ∈H2n+ is the solution of (13) and Q̃ ∈H2n+, the solution of

Q̃ = T (Q̃)+J , (16)

for J j � ∑i∈N ∑l∈Mi μiαil pi jJilJ′
il , J ∈ H2n+. Note the similarity between (12) and

(16), and the discussion in Proposition 1. It readily follows that if μ = ν , then

‖Gc‖2
2 = lim

k→∞
E
(‖z(k)‖2) .

We are now interested in providing a formulation in terms of matrix inequalities
for obtaining the H2 norm of (3) for a given controller C ∈ C. By considering the
last assertion of Theorem 1, we have that

‖Gc‖2
2 = inf

P>0,Wil>0,M̄il>0,γ
γ2 (17)

subject to

∑
i∈N

∑
l∈Mi

μiαil Tr(Wil)< γ2 , (18)[
Wil •
Jil Ei(P)−1

]
> 0 , (19)

Pi − ∑
l∈Mi

αilM̄il > 0 , (20)⎡⎣M̄il • •
Ail Ei(P)−1 •
Cil 0 Iq

⎤⎦> 0 , (21)

for all i∈N, l ∈Mi, Ail ,Jil , and Cil in (4). Note that Ei(P)−1 exists since ∑ j∈N pi j = 1
for all i ∈N. Given the previous discussions, we are now able to state the main goal
of this work, that is, studying the problem,

inf
C∈C,P,Wil ,M̄il ,γ

{γ2 : (18)− (21)} . (22)

For the mode-dependent case, (22) was solved in [13] via coupled Riccati equations
leading to the so-called H2 separation principle, and in [23], via the LMI formula-
tion. However, the additional complexity induced by the partial observation of the
Markov chain renders it hard to solve considering the previous methods. To date,
there are only sub-optimal solutions in the literature for the similar problem written
as in (22). As we are going to see in the next sections, we provide a type of sub-
optimal separation procedure in which a state-feedback controller is calculated and
used in an intermediary step to obtain the remaining controller matrices.
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4 The H2 separation procedure for the partial observation case

For the discussion that follows, consider the following inequalities

∑
i∈N

∑
l∈Mi

μiαil Tr(Wil)< γ2 , (23)⎡⎣ Wil • •
Ei(Y )Ji Ei(Y ) •

GlJi +FlHi 0 Her(Gl)+Ei(Y )−Ei(X)

⎤⎦> 0 , (24)

[
Yi •
Yi Xi

]
> ∑

l∈Mi

αil

[
Mil •
Nil Sil

]
, (25)⎡⎢⎢⎢⎢⎣

Mil • • • •
Nil Sil • • •

Ei(Y )(Ai +BiKl) Ei(Y )Ai Ei(Y ) • •
Gl(Ai +BiKl)+FlLi +Rl GlAi +FlLi 0 Her(Gl)+Ei(Y )−Ei(X) •

Ci +DiKl Ci 0 0 I

⎤⎥⎥⎥⎥⎦> 0 ,

(26)

for all i ∈ N, l ∈Mi. We define the set of variables of (23)-(26) as

ξ � {Wil ,Mil ,Nil ,Sil ,Yi,Xi,Gl ,Kl ,Fl ,Rl , i ∈ N, l ∈Mi}∪φ ,

where φ = /0 if γ is given and φ = γa, γa � γ2 if it is a variable. The set of all solutions
of (23)-(26) is represented by

Ξ � {ξ : (23)− (26) holds} .

We point out that Ξ is bilinear with respect to Gl and Kl , and Ei(Y ) and Kl , a char-
acteristic we will exploit for tackling our problem.

Theorem 2. Consider the following statements:

(i) There exists ξ such that ξ ∈ Ξ .
(ii) There exists a controller C such that C ∈ C and ‖Gc‖2 < γ .

We have that (i) =⇒ (ii) by setting Acl = −G−1
l Rl , Bcl = −G−1

l Fl , and Ccl = Kl

for all l ∈M. Moreover (ii) =⇒ (i) whenever θ̂ = θ . �

Proof. The result is based on the congruence transformations laid out in [23] and
[24], and used for the hidden MJLS stability problem in [43]. Consider the following
partitions for Pi in (18)-(21), along with its inverse

Pi =

[
Xi •
U ′

i X̂i

]
,P−1

i =

[
Y−1

i •
V ′

i Ŷi

]
. (27)

for Xi,Y−1
i ∈ B(Rn). Note that since Pi > 0 for all i ∈N, it is possible to define P−1

i .
Besides, Xi, X̂i, Y−1

i , and Ŷi are positive-definite blocks. Furthermore,
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Ei(P) =
[

Ei(X) •
Ei(U)′ Ei(X̂)

]
,Ei(P)−1 =

[
R1i •
R′

2i R3i

]
. (28)

By defining

Ti �
[

I I
V ′

i Yi 0

]
we get that

T′
iPiTi =

[
Yi Yi
Yi Xi

]
and, similarly, by defining

Hi �
[

I Ei(X)
0 Ei(U)′

]
we get that

H′
iEi(P)−1Hi =

[
R1i I
I Ei(X)

]
.

(i) =⇒ (ii). Given (i), through Lemma 2 (see the Appendix), we get that GlEi(X −
Y )−1G′

l ≥ Her(Gl)+Ei(Y )−Ei(X), that allows us to infer from (24) and (26) that⎡⎣ Wil • •
Ei(Y )Ji Ei(Y ) •

GlJi +FlHi 0 GlEi(X −Y )−1G′
l

⎤⎦> 0 , (29)

⎡⎢⎢⎢⎢⎣
Mil • • • •
Nil Sil • • •

Ei(Y )(Ai +BiKl) Ei(Y )Ai Ei(Y ) • •
Gl(Ai +BiKl)+FlLi +Rl GlAi +FlLi 0 GlEi(X −Y )−1G′

l •
Ci +DiKl Ci 0 0 I

⎤⎥⎥⎥⎥⎦> 0 , (30)

also holds for all i ∈ N, l ∈Mi. By setting Ui =−X̂i, we get that Ui is a symmetric,
negative-definite matrix. Besides, considering that PiP−1

i = I2n for all i ∈ N, we get
that Vi = Y−1

i , Yi = Xi +Ui, and R1i = [Ei(X)−Ei(U)Ei(X̂)−1Ei(U)′]−1 = Ei(X +
U)−1 = Ei(Y )−1. By defining

Dil �
[
Ei(Y )−1 I

0 G−T
l Ei(X −Y )

]
, (31)

setting Rl = −GlAcl , Fl = −GlBcl , Kl = Ccl , and applying the congruence trans-
formations diag(Ir,Dil) and diag(I2n,Dil , Iq) to the previous inequalities, we can
rewrite (25), and (29)-(30) as follows
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Wil •
H′

iJil H
′
iEi(P)−1Hi

]
> 0 ,

T′
iPiTi − ∑

l∈Mi

αilT
′
iM̄ilTi > 0 ,⎡⎣T′

iM̄ilTi • •
H′

iAilTi H
′
iEi(P)−1Hi •

CilTi 0 Iq

⎤⎦> 0 .

By applying the congruence transformations diag(Ir,H
−1
i ), T−1

i , and diag(T−1
i ,

H−1
i , Iq) respectively to the last inequalities, we get that (18)-(21) holds, that im-

plies (ii).
(ii) =⇒ (i). Given that θ̂(k) = θ(k) for all k, we have that αii = 1 for all i ∈ N. In
this case, given that (ii) holds, it is clear that by performing inversely the last steps
of the sufficiency proof, and also considering that Ei(Y )−1 ≥ R1i for all i ∈ N (see
Lemma 3 in the Appendix), we get that (19) and (21) yield to⎡⎣ Wii • •

Ji Ei(Y )−1 •
Ei(X)Ji +FiHi I Ei(X)

⎤⎦> 0 , (32)

⎡⎢⎢⎢⎢⎣
Mii • • • •
Nii Sii • • •

Ai(Ki) Ai Ei(Y )−1 • •
Ei(X)Ai(Ki)+FiLi +Ri Ei(X)Ai +FiLi I Ei(X) •

Ci +DiKl Ci 0 0 I

⎤⎥⎥⎥⎥⎦> 0 , (33)

where Ai(Ki) � Ai +BiKi, Ri � Ei(U)AciV ′
i Yi, Fi � Ei(U)Bci, and Ki � CciV ′

i Yi. By
defining

D̄ii �
[
Ei(Y ) −Ei(Y )

0 I

]
,

and applying the congruence transformations diag(Ir,D̄ii) and diag(I2n,D̄ii, Iq) to
(32) and (33) respectively yields to (24) and (26) with the particular choice Gi =
Ei(X −Y ), and thus the claim follows. ��
The result in Theorem 2 presents a set of sufficient bilinear conditions for obtaining
the controller, that becomes necessary for the mode-dependent case. The bilinearity
suggests a strategy that will become clear from the next lemma on.

Lemma 1. If ξ ∈ Ξ , then K ∈ K. �

Proof. It readily follows by considering (25) and the 3n×3n block of (26) in order
to get that Y −L (Y )> 0 holds, for Ail = Ai +BiKl , i ∈ N, l ∈Mi. ��
We define a new variable set for (23)-(26),

ξ̄ � {Wil ,Mil ,Nil ,Sil ,Yi,Xi,Gl ,Fl ,Rl , i ∈ N, l ∈Mi}∪φ ,
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such that ξ = ξ̄ ∪{Kl ∈ M}, where φ = /0 or φ = γa, γa = γ2. The set of solutions
for a given K ∈ K is defined in the following.

Ξ̄(K)� {ξ̄ : (23)− (26) hold } .

Corollary 1. For a given K ∈ K such that Ξ̄(K) �= /0, if ξ̄ ∈ Ξ̄(K), then by setting
Acl =−G−1

l Rl , Bcl =−G−1
l Fl , and Ccl = Kl for all l ∈M we have that C ∈ C and

‖Gc‖2 < γ . �

Note that by fixing K, the inequality (25) becomes an LMI in ξ̄ , and then (23)-(26)
can be solved by standard solvers such as SeDuMi, see, for instance, [49]. Then,
the H2 ad hoc separation procedure for MJLS with partial information on θ(k)
consists in finding a stabilizing state-feedback gain obtained, for instance, through
[11, 42, 51], and calculating the remaining controller matrices by Corollary 1. In
this case, we can find the H2 dynamic output feedback controller that leads to the
best upper bound as follows,

inf
ξ̄∈Ξ̄(K)

{γa; such that (23)− (26) hold} , (34)

where γa = γ2. The Algorithm 1 is shown below. Considering the sub-optimal char-

Algorithm 1 The H2 ad hoc separation procedure (Corollary 1)
1: Calculate a stochastic stabilizing state-feedback gain K ∈ K such that Ξ̄(K) �= /0;
2: Use Kl as an input in (23)-(26) and calculate Acl and Bcl for all l ∈ M. The final controller is

given by (Acl ,Bcl ,Ccl) as shown in Corollary 1.

acteristics of (34), it is a fact that those conditions do not parametrize all the con-
trollers in the form (2) for the partial observation case. Besides, even if Ξ �= /0, we
have no guarantee that Ξ̄(K) �= /0 for our choice of K. In the case in which the con-
ditions (23)-(26) do not hold for a given K, a new stabilizing state-feedback gain
must be provided. As for the case where Ξ = /0, there are no similar results in the
literature to date that would provide an alternative to the design of C in the hidden
MJLS formulation, and thus further study is required.

Remark 1. In the case of perfect observation of the Markov chain, the conditions
(23)-(26) are still in the BMI formulation, since we still have to choose K. Due
to the equivalence stated in Theorem 2, it is clear that the optimal H2 dynamic
controller can be obtained by a suitable choice of K. What we observe in the nu-
merical simulations is that, by choosing the optimal H2 state-feedback controller,
we retrieve the optimal H2 dynamic controller, in agreement with the separation
principle results of [13] (see the Appendix).
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5 Illustrative Examples

In this section, we present two illustrative examples. The first one consists of a
simple unstable MJLS that we want to stabilize. The second one is the unstable
lateral dynamics of an unmanned aircraft subject to actuator failures.

Example 1. The system matrices in this example are taken as follows

A1 =

[
1.4 0.1
0 0.5

]
, A2 =

[
0.9 0
0.3 1.2

]
, B1 =

[
2
1

]
, B2 =

[
0
0

]
,

and

J1 =

[
0.5 0 0
0 0.4 0

]
, J2 =

[
1.0 0 0
0 0.8 0

]
, C1 =

[
1 −1
0 0

]
, C2 =

[
1 0
0 0

]
,

as well as D1 =D2 =
[
0 1
]′
. The transition probability matrix and initial distribution

are given by

P=

[
0.9 0.1
0.8 0.2

]
,μ ′ =

[
0.8889
0.1111

]
,

thus, we have that μ = μP and rσ (L ) = 1.8460, that is, an unstable MJLS. For the
measurement equation, we set

L1 =
[
1 0
]
, L2 =

[
0 1
]
, H1 = H2 =

[
0 0 1

]
.

The conditional probability matrix is assumed to have the following structure

ϒ =

[
ρ 1−ρ

1−ρ ρ

]
(35)

where Prob(θ̂(k) = i | θ(k) = i) = ρ for all i ∈ N. We initially take ρ = 1.0, that
is, we assume that we can perfectly measure θ(k), the so-called mode-dependent
case. In this case, we calculate the optimal H2 state-feedback controller through the
conditions in [42] and obtain[

K1
K2

]
=

[−0.7405 0.0667
0 0

]
(36)

with rσ (L ) = 0.3983 and the optimal cost given by ‖G ∗
K‖2 = 0.9870. Note that we

can calculate the same controller with the results of [13], where the solution of the
Control CARE in (40) is given by

P1 =

[
2.0956 −1.3341

−1.3341 1.1814

]
, P2 =

[
2.1577 −0.8607

−0.8607 1.9115

]
.

We have that
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Y1 = P1, Y2 = P2 ,

that is, matrices Yi in (23)-(26) converge to the optimal solution of (40) in this ex-
ample. By using K in (36) as an input to (34), we get the remaining controllers
matrices

[
Ac1 Bc1
Ac2 Bc2

]
=

⎡⎢⎢⎣
−0.9326 0.2334 0.8516
−0.7588 0.5667 0.0183

0.9000 −0.0878 0.0878
0.3000 0.7928 0.4072

⎤⎥⎥⎦
with rσ (L ) = 0.4026 and the optimal cost given by ‖G ∗

c ‖2 = γ∗c = 2.2507. Con-
versely, by solving the Filtering CARE in (42), we get

S1 =

[
1.3653 0.0824
0.0824 0.3143

]
, S2 =

[
0.1801 0.0158
0.0158 0.0511

]
,

for

F1(S) =
[

0.8516
0.0183

]
, F2(S) =

[
0.0878
0.4072

]
that are numerically equal to Bci calculated through (34). It is clear also that

Aci = Ai +BiKi −BciLi ,

for all i ∈ N, echoing the result in [13]. Finally, by computing

(γ∗F)
2 � ∑

i∈N
Tr[O1/2

i Ki(Y ∗)SiKi(Y ∗)′O1/2
i ] = 4.0914

where Oi � [B′
iEi(P)Bi +D′

iDi], we have that ‖G ∗
c ‖2

2 = (γ∗c )2 = ‖G ∗
K‖2

2 + (γ∗F)2 =
0.9741+4.0914 = 5.0655, that is, ‖G∗‖2 = 2.2507, as expected.

We now set ρ = 0.7 in (35) and calculate the H2 state-feedback gains with the
result in [42] in order to obtain the following state-feedback controller[

K1
K2

]
=

[−0.6060 −0.0232
−0.5728 −0.0072

]
. (37)

Using (37) for solving (34), we get the final dynamic controller, with Acl and Bcl
given by

[
Ac1 Bc1
Ac2 Bc2

]
=

⎡⎢⎢⎣
−0.6145 −0.0315 0.9231
−0.6741 0.6821 0.2050

0.0205 −0.0281 0.5557
−0.4236 0.9857 0.2079

⎤⎥⎥⎦
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with rσ (L ) = 0.7658, γ∗ = 3.8978, and ‖Gc‖2 = 2.9660. It is clear that the intro-
duction of the asynchronous effect renders the quadratic performance worse and
adds an expected conservatism on the guaranteed cost γ∗ with respect to the actual
closed-loop system norm ‖Gc‖2. For illustrating the stochastic behavior of the sys-
tem driven by a wide-sense white noise sequence, we present the curves in Fig. 2,
obtained by means of a Monte Carlo simulation of 4000 rounds. ��
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Fig. 2 E(‖z(k)‖2)±σ (full black line), ‖Gc‖2
2 (dashed grey line), (γ∗)2 (dashed black line).

Example 2. We consider the lateral-directional dynamics of a small unmanned air-
craft in steady flight as presented in [20]. The states are variations in the roll rate
(Δ p), the yaw rate (Δr), the sideslip angle (Δβ ), and the roll angle (Δφ), whereas
the control inputs are the aileron (Δδaileron) and the rudder (Δδrudder). The actua-
tors are subject to abrupt faults as modeled by [11]. The Markov chain state space
is given by N= {1,2,3} and is illustrated by Fig. 1, where θ(k) = 1 is the nominal
mode of operation, θ(k) = 2 and θ(k) = 3 are modes with failures in the actuators.
The transition probability matrix is given by

P=

⎡⎣ 0.6 0.4 0
0.2 0.7 0.1
0 0.9 0.1

⎤⎦ ,

and the initial probability is taken as μ =
[
0.3103 0.6207 0.0690

]
, that corresponds

to the stationary distribution. The conditional probability matrix has the following
structure:

ϒ =

⎡⎣1 0 0
0 ρ 1−ρ
0 1−ρ ρ

⎤⎦ , (38)
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where Prob(θ̂(k) = i | θ(k) = i) = ρ , i ∈ {2,3}, that is, the probability of detecting
correctly the parameter θ(k) for modes 2 and 3. Then, in the nominal mode θ(k) =
1, the detector would provide correct estimates of the Markov parameters, whereas
for the remaining faulty states, the probability of obtaining the correct mode of
operation is ρ . In this case, the discretized (zero-order hold, T = 0.05 s) system
matrices are given by

[
Ai B1

]
=

⎡⎢⎢⎣
0.5637 0.1133 −0.6607 −0.0062 2.9735 −0.0618
0.0198 0.8368 1.0512 0.0089 −0.1175 0.6414
0.0033 −0.0450 0.9481 0.0159 0.0112 −0.0165
0.0381 0.0073 −0.0164 0.9999 0.0812 −0.0006

⎤⎥⎥⎦ ,

for all i ∈ N. Moreover the actuator failures are modeled by

B2 = B1

[
0 0
0 1

]
, B3 =−B2 ,

that is, θ(k) = 2 is the mode with an inactive aileron command, and θ(k) = 3 is
the mode where the aileron is not active and the rudder command is inverted. The
exogenous input matrix is taken as, for all i ∈ N, Ji =

[
I4 04×2

]
. We set

Ci =

[
I4

02×4

]
, Di =

[
04×2

I2

]
,

as well as

Li =
[

02×2 I2
]
, Hi =

[
02×4 I2

]
,

for all i ∈ N, that is, we consider that we can measure the variations on the sideslip
and roll angles. We now want to investigate the behavior of γ and ‖Gc‖2 with re-
spect to ρ ∈ [0,1]. For that, we minimize the H2 control conditions of [42] for a
given ρ ∈ [0,1] and obtain the H2 state-feedback controllers used in (34) for cal-
culating the dynamic controller for a given ρ . The result is shown in Fig. 3. In this
example, we note the similar type of symmetry of Fig. 3 compared to the filtering
control and state-feedback works [41] and [42], and more importantly, the optimal
H2 dynamic output feedback controller can be obtained, and also a clusterized H2
dynamic controller. That is, we note two interesting cases in Fig. 3: (1) ρ = 1 and
ρ = 0; (2) ρ = 0.5. In the first case, we get the mode-dependent formulation, since
Prob(θ̂(k) = i | θ(k) = i) = 1 for i ∈ {2,3}. Interestingly, the case characterized
by Prob(θ̂(k) = i | θ(k) = i) = 0 for i ∈ {2,3} also leads to the mode-dependent
case, since there are only two possible outcomes of θ̂(k) for θ(k) = 2 and θ(k) = 3.
For the case where ρ = 0.5, we observe that Assumption 3 holds. In this case, the
controller is given by
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[
Ac1
Aci

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0121 −0.0251 0.4127 −1.6416
0.0210 0.4315 0.1302 −0.1000
0.0016 −0.0338 0.4018 0.0273
0.0203 0.0084 −0.0693 0.4430
0.5150 0.0141 −0.5141 −0.1855
0.0502 0.7511 0.3197 0.0364

−0.0055 0.0471 0.5637 0.0599
0.0413 0.0096 −0.0103 0.3941

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

for i ∈ N2 � {2,3}, along with

[
Bc1 Bci

]
=

⎡⎢⎢⎣
−0.4322 0.3141 −0.2348 0.1307

0.7413 0.0860 0.4892 −0.0724
0.5319 −0.0195 0.3270 −0.0305

−0.0367 0.4224 0.0044 0.6086

⎤⎥⎥⎦ ,

and

[
Cc1
Cci

]
=

⎡⎢⎢⎣
−0.1874 −0.0581 0.1750 −0.4909
−0.0334 −0.6378 −0.3274 −0.1564

0 0 0 0
0.0002 −0.1878 −0.5158 −0.1133

⎤⎥⎥⎦ , (39)

for i ∈ N2, with γ∗ = 8.9450 and ‖Gc‖2 = 8.7084. We infer that, if Assumption 3
and a clusterized state-feedback controller is used as an input to Algorithm 1, we
are able to get clusterized Aci and Bci as well.
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6 Conclusion

In this work, we presented a study of the H2 dynamic output feedback control for
MJLS in which we cannot perfectly measure the Markov chain. The conditions we
derived are given in terms of BMI, that can be recast into the LMI formulation by
providing a stabilizing state-feedback controller. The final controller would be com-
posed by the state-feedback controller provided in the first step and the “filter-like”
structure calculated in the second step, suggesting a type of H2 ad-hoc separa-
tion procedure. The advantage of this method relies in the following characteristics.
We can retrieve the optimal mode-dependent controller in the case we can mea-
sure the Markov chain, since our conditions also become necessary in that situation.
Furthermore, clusterized and mode-independent controllers can be calculated as a
by-product of the observation model we use in our work. On the other hand, the
weak point in this approach is the initial guess of the state-feedback controller, as
the calculation of the remaining structure is dependent on that choice. For future re-
search, it is desirable to improve the separation procedure and find alternative ways
of obtaining the dynamic controller structure.
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Appendix

6.1 Auxiliary results

Lemma 2 ([14],[44]). For P = P′ > 0, the inequality GP−1G′ ≥ Her(G)−P holds
for any square matrix G of compatible dimensions. �

Proof. It readily follows by noting that (G−P)P−1(G−P)′ ≥ 0 holds true for all
square matrices G. ��
Lemma 3 ([23]). For X̂ ∈ Hn, X̂ > 0, Û ∈ Hn, and pi j ≥ 0, ∑ j∈N pi j = 1, we have
that Ei(ÛX̂−1Û ′)≥ Ei(Û)Ei(X̂)−1Ei(Û ′). �

Proof. Note that Û jX̂−1
j Û ′

j ≥ Û jX̂−1
j Û ′

j for all j ∈ N, and thus by taking the Schur
complement, we get that [

Û jX̂−1
j Û ′

j Û j

Û ′
j X̂ j

]
≥ 0 .
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Multiplying the last inequality by pi j, summing everything up with respect to j ∈N,
and applying again the Schur complement leads to the desired result. ��

6.2 Coupled Algebraic Riccati Equations

Consider that Assumption 2 holds, and also scalar μi > 0, i ∈ N, ∑i∈N μi = 1,
J � (J1, . . . ,JN) ∈ Hr,n, L � (L1, . . . ,LN) ∈ Hn,p, H � (H1, . . . ,HN) ∈ Hr,p, C �
(C1, . . . ,CN) ∈ Hn,q, and D � (D1, . . . ,DN) ∈ Hm,q, and assume that C′

iDi = 0,
HiJ′

i = 0, D′
iDi > 0, and HiH ′

i > 0 for all i ∈ N. We introduce two sets of discrete-
time CARE that were presented in [13] for the study of the H2 separation principle
for MJLS.

Definition 4 (Control CARE). We say that P � (P1, . . . ,PN)∈Hn+ is the stochastic
stabilizing solution of

Pi = A′
iEi(P)Ai +C′

iCi −A′
iEi(P)Bi[B′

iEi(P)Bi +D′
iDi]

−1B′
iEi(P)Ai , (40)

for all i ∈ N if (9) (or (10)) holds for Aii = Ai +BiKi(P), where Ki(P) is given by

Ki(P)�−[B′
iEi(P)Bi +D′

iDi]
−1B′

iEi(P)Ai , (41)

for all i ∈ N. �
Definition 5 (Filtering CARE). We say that S � (S1, . . . ,SN) ∈Hn+ is the stochas-
tic stabilizing solution of

S j = ∑
i∈N

pi j
{

AiSiA′
i +μiJiJ′

i −AiSiL′
i[LiSiL′

i +μiHiH ′
i ]
−1LiSiA′

i
}
, (42)

for all i ∈ N if (9) (or (10)) holds for Aii = Ai −Fi(S)Li, where Fi(S) is given by

Fi(S)� AiSiL′
i(LiSiL′

i +μiHiH ′
i )

−1 , (43)

for all i ∈ N. �
Conditions for the existence of stabilizing solutions to (40) and (42) are discussed
in [7] and rely in the concepts of stabilizability and detectability for MJLS.
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Time-Inconsistent Optimal Control Problems

and Related Issues

Wei Yan and Jiongmin Yong

Abstract Classical stochastic optimal control problems are time-consistent, by
which it means that an optimal control selected at a given initial pair remains opti-
mal thereafter, along the optimal pair. When the discount is non-exponential and/or
the probability is subjective, the corresponding optimal control problem is time-
inconsistent, in general. In this paper, we survey recent results in the area and briefly
present some of our on-going works.

1 Introduction

In daily life, people frequently face various decision-making situations. When a
decision has to be made by an individual, among all possible choices, the indi-
vidual selects the one he/she feels the best. However, more than often, he/she will
regret the selected decision sometime later. Such a phenomenon is called the time-
inconsistency of the problem under consideration. It is easy to find examples around
us. For instance, when there is a big holiday sale, one might buy some good-looking
stuff (to meet the instant satisfaction). After a while, one might realize that these
stuff are actually not necessary, might never be used, and only deserve a “garage
sale”, therefore regret the decision made previously. Also, in trading stocks, people
often regret: I should buy certain stocks long time ago, and/or I should sell certain
stocks which later became no-value much earlier, and so on.

To study such kind of problems, we first need to find out what are the main
reasons causing the time-inconsistency. Careful investigations showed that ([6])
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there are two main reasons causing the time-inconsistency of the problem: (i) peo-
ple’s time-preferences, and (ii) people’s risk-preferences. Mathematically, time-
preferences can be described by discounting (exponential or non-exponential), and
risk-preferences can be described by subjective or objective probabilities. Most peo-
ple over-weight the current/near future utility (level of satisfaction). Buying unnec-
essary things at big holiday sale is a typical example of such which is exactly due
to the time-preferences. The stock buying and selling indicate that different people
will have different opinions about the risks involved in the coming events. This is
the risk-preference. It is known that if the discounting is exponential and the prob-
ability is objective, then the problem is time-consistent. Otherwise, the problem is
generally time-inconsistent.

The purpose of this paper is to exhibit mathematical formulations of various time-
inconsistent optimal control problems, survey some results obtained by us in the
recent years, present some new results, and pose some open problems.

2 Time-Consistent Situations

In this section, let us look at the time-consistency of some typical optimal control
problems. In the rest of the paper, we let (Ω ,F ,F,P) be a complete filtered prob-
ability space on which a d-dimensional standard Brownian motion W (·) is defined,
whose natural filtration, augmented by all the P-null sets, is given by F= {Ft}t�0.
We introduce the following spaces. For p,q ∈ [1,∞),

Lp
FT

(Ω ;Rn) =
{
ξ :Ω → Rn ∣∣ ξ is FT -measurable, E|ξ |p < ∞

}
,

Lp
FT

(Ω ;Lq(t,T ;Rn)) =
{
ϕ : [t,T ]×Ω → Rn ∣∣ ϕ(·) is B[t,T ]⊗FT -measurable,

E

(∫ T

t
|ϕ(s)|qds

) p
q
< ∞

}
,

Lp
F(Ω ;Lq(t,T ;Rn)) =

{
ϕ(·) ∈ Lp

FT
(Ω ;Lq(t,T ;Rn))

∣∣
ϕ(·) is F-progressively measurable

}
,

Lp
F(Ω ;C([t,T ];Rn)) =

{
ϕ : [t,T ]×Ω ∣∣ ϕ(·) is F-adapted and continuous,

E

[
sup

s∈[t,T ]
|ϕ(s)|p

]
< ∞

}
.

For p = ∞ and/or q = ∞, we can obviously define the corresponding spaces. We
denote

Lp
F(Ω ;Lp(0,T ;Rn)) = Lp

F(0,T ;Rn), 1 � p � ∞.

In the case, n = 1, we will omit Rn in the notation, for example, Lp
FT

(Ω), etc. Next,
we introduce the admissible control set:
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U p[t,T ] =
{

u : [t,T ]×Ω →U
∣∣ u(·) ∈ Lp

F(Ω ;L2(t,T ;Rm))
}
.

Now, we consider the following controlled stochastic differential equation (SDE,
for short)

(1)

{
dX(s) = b(s,X(s),u(s))ds+σ(s,X(s),u(s))dW (s), s ∈ [t,T ],

X(t) = x,

where b : [0,T ]×Rn×U →Rn, σ : [0,T ]×Rn×U →Rn×d are given (deterministic)
maps, with U ⊆ Rm being a non-empty set, and (t,x) ∈ [0,T )×Rn being called the
initial pair. In the above, X(·) is called the state process and u(·) is called the control
process. We introduce the following assumption for the state equation (1).

(H1) The map b : [0,T ]×Rn ×U → Rn, σ : [0,T ]×Rn ×U → Rn×d are contin-
uous and there exists a constant L > 0 such that

(2)
|b(t,x,u)−b(t,x′,u)|+ |σ(t,x,u)−σ(t,x′,u)|� L|x− x′|,

∀(t,u) ∈ [0,T ]×U, x,x′ ∈ Rn,

|b(t,0,u)|+ |σ(t,0,u)|� L(1+ |u|), ∀(t,u) ∈ [0,T ]×U.

Under (H1), for any (t,x) ∈ [0,T )×Rn, and any u(·) ∈ U p[t,T ], there exists
a unique solution X(·) = X(· ; t,x,u(·)) ∈ Lp

F(Ω ;C([t,T ];Rn)) to the state equation
(1). Moreover, the following estimate holds:

(3) Et

[
sup

s∈[t,T ]
|X(s)|p

]
� KEt

[
1+ |x|p +

(∫ T

t
|u(s)|2ds

) p
2
]
.

Hereafter, K > 0 represents a generic constant which can be different from line to
line. To measure the performance of the control, we may introduce the following
cost functional:

(4) J̄(t,x;u(·)) = E

[
e−δ (T−t)h(X(T ))+

∫ T

t
e−δ (s−t)g(s,X(s),u(s))ds

]
,

for some maps h : Rn → R and g : [0,T ]×Rn ×U → R and a constant δ � 0. We
introduce the following assumption.

(H2) The map g : [0,T ]×Rn ×U → R and h : Rn → R are continuous and there
exist constants L,q > 0 such that

(5) |g(t,x,u)|+ |h(x)|� L
(
1+ |x|q + |u|q), (t,x,u) ∈ [0,T ]×Rn ×U.

It is clear that for any (t,x) ∈ [0,T )×Rn, and any u(·) ∈ U p[t,T ] with p � q,
the state X(·) ∈ Lp

F(Ω ;C([t,T ];Rn)). Then by (H2),

|g(s,X(s),u(s))|� L(1+ |X(s)|q + |u(s)|q), |h(X(T ))|� L(1+ |X(T )|q).
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Hence, J̄(t,x;u(·)) is well-defined. We refer to the function t �→ e−δ t as the expo-
nential discounting. The following is a classical stochastic optimal control problem.

Problem (C). For given (t,x) ∈ [0,T )×Rn, find a ū(·) ∈ U p[t,T ] such that

(6) J̄(t,x; ū(·)) = inf
u(·)∈U p[t,T ]

J̄(t,x;u(·)) =V (t,x).

Any ū(·) ∈ U p[t,T ] satisfying (6) is called an optimal control of Problem (C),
and (t,x) �→V (t,x) is called the value function of Problem (C). One can show that

(7)
V (t,x) = inf

u(·)∈U [t,τ]
E

[
e−δ (τ−t)

(
V (τ,X

(
τ; t,x)

)
+
∫ τ

t
e−δ (s−τ)g(s,X(s; t,x,u(·)),u(s))ds

)]
,

for (t,x) ∈ [0,T )×Rn and τ ∈ [t,T ]. This is called the Bellman’s principle of op-
timality. If ū(·) ∈ U [t,T ] is an optimal control of Problem (C) for the initial pair
(t,x), with X̄(·) being the optimal state process, then for any τ ∈ (t,T ),

V (t,x) = E

[
e−δ (T−t)h(X̄(T ))+

∫ T

t
e−δ (s−t)g(s, X̄(s), ū(s))ds

]
= E

[
e−δ (τ−t)

(
J(τ, X̄(τ); ū(·)∣∣

[t,τ])+
∫ τ

t
e−δ (s−τ)g(s, X̄(s), ū(s))ds

)]
� E

[
e−δ (τ−t)

(
V
(
τ, X̄(τ)

)
+

∫ τ

t
e−δ (s−τ)g(s, X̄(s), ū(s))ds

)]
� inf

u(·)∈U [t,τ]
E

[
e−δ (τ−t)

(
V (τ,X

(
τ; t,x)

)
+
∫ τ

t
e−δ (s−τ)g(s,X(s; t,x,u(·)),u(s))ds

)]
=V (t,x).

The above leads to

(8) J̄
(
τ, X̄(τ); ū(·)∣∣

[t,τ]
)
=V (τ, X̄(τ)).

This means that the restriction ū(·)∣∣
[t,τ] of the optimal control ū(·) for the initial pair

(t,x) on a later interval [τ,T ] is an optimal control for the initial pair (τ, X̄(τ)). This
is called the time-consistency of Problem (C).

By the way, for later comparison purpose, we state the following result.

Proposition 1. Let (H1)–(H2) hold. Then the value function V (· , ·) is continu-
ous and is the unique viscosity solution to the following Hamilton-Jacobi-Bellman
(HJB, for short) equation:
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(9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Vt(t,x)+ inf

u∈U

{1
2

tr
[
Vxx(t,x)σ(t,x,u)σ(t,x,u)%

]
+Vx(t,x)b(t,x,u)+g(t,x,u)

}
−δV (t,x) = 0, (t,x)∈ [0,T ]×Rn,

V (T,x) = h(x), x ∈ Rn.

On the other hand, we may introduce the following cost functional:

(10) J(t,x;u(·)) = Et

[
e−δ (T−t)h(X(T ))+

∫ T

t
e−δ (s−t)g(s,X(s),u(s))ds

]
,

where Et [ · ] = E[ · |Ft ]. Note that J(t,x;u(·)) is an Ft -measurable random variable,
satisfying

(11) E
[
J(t,x;u(·))]= J̄(t,x;u(·)).

We may formulate an optimal control problem similar to Problem (C), replacing
J̄(t,x;u(·)) by J(t,x;u(·)). For convenience, such a problem is called Problem (C).
We have the following simple result.

Proposition 2. Let (H1) – (H2) hold. Then Problems (C) and (C) are equivalent in
the sense that for any (t,x) ∈ [0,T )×Rn, a ū(·) ∈ U p[t,T ] is optimal for one of the
problems, if and only if it is optimal for the other.

Proof. If ū(·) ∈ U [t,T ] is optimal at (t,x) for Problem (C), i.e.,

J(t,x; ū(·))� J(t,x;u(·)), ∀u(·) ∈ U p[t,T ], a.s.,

then ū(·) is optimal for Problem (C). Conversely, suppose ū(·)∈ U p[t,T ] is optimal
at (t,x) for Problem (C), but it is not optimal for Problem (C). Then, there exists a
û(·) ∈ U p[t,T ] such that

(12) P(Ω̂)> 0, Ω̂ =
(

J(t,x; û(·))< J(t,x; ū(·))
)
∈ Ft .

Then set
ũ(·) = ū(·)1Ω\Ω̂ + û(·)1Ω̂ ∈ U p[t,T ].

It is clear that

(13)
X(· ; t,x, ũ(·)) = X(· ; t,x, ū(·))1Ω\Ω̂ +X(· ; t,x, û(·))1Ω̂ ,
J(t,x; ũ(·)) = J(t,x; ū(·))1Ω\Ω̂ + J(t,x; û(·))1Ω̂ .

In fact,

X(s; t,x, û(·))1Ω̂ = 1Ω̂

[
x+

∫ s

t
b(r,X(r; t,x, û(·)), û(r))dr

+
∫ s

t
σ(r,X(r; t,x, û(·)), û(r))dW (r)

]
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= 1Ω̂ x+
∫ s

t
1Ω̂b(r,X(r; t,x, û(·)), û(r))dr

+
∫ s

t
1Ω̂ σ(r,X(r; t,x, û(·)), û(r))dW (r)

= 1Ω̂ x+
∫ s

t
b
(
r,X(r; t,x, û(·))1Ω̂ , û(r)1Ω̂

)
dr

+
∫ s

t
σ
(
r,X(r; t,x, û(·))1Ω̂ , û(r)1Ω̂

)
dW (r).

Likewise,

X(s; t,x, ū(·))1Ω\Ω̂ = 1Ω\Ω̂ x+
∫ s

t
b
(
r,X(r; t,x, ū(·))1Ω\Ω̂ , ū(r)1Ω\Ω̂

)
dr

+
∫ s

t
σ
(
r,X(r; t,x, ū(·))1Ω\Ω̂ , ū(r)1Ω\Ω̂

)
dW (r).

Hence,

X(s; t,x, ū(·))1Ω\Ω̂ +X(s; t,x, û(·))1Ω̂
= x+

∫ s

t
b
(
r,X(r; t,x, ū(·))1Ω\Ω̂ +X(r; t,x, û(·)1Ω̂ , ū(r)1Ω\Ω̂ + û(r)1Ω̂

)
dr

+
∫ s

t
σ
(
r,X(r; t,x, ū(·))1Ω\Ω̂ +X(r; t,x, û(·)1Ω̂ , ū(r)1Ω\Ω̂ + û(r)1Ω̂

)
dW (r)

= x+
∫ s

t
b
(
r,X(r; t,x, ū(·))1Ω\Ω̂ +X(r; t,x, û(·))1Ω̂ , ũ(r)

)
dr

+
∫ s

t
σ
(
r,X(r; t,x, ū(·))1Ω\Ω̂ +X(r; t,x, û(·))1Ω̂ , ũ(r)

)
dW (r).

Then, by uniqueness, we obtain the first equality in(13). Similarly, we have the
second one. Now, (12) leads to

J̄(t,x; ũ(·)) = E
[
J(t,x; ũ(·))]= E

[
J(t,x; ū(·))1Ω\Ω̂ + J(t,x; û(·))1Ω̂

]
< E

[
J(t,x; ū(·))1Ω\Ω̂ + J(t,x; ū(·))1Ω̂

]
= E

[
J(t,x; ū(·))

]
= J̄(t,x; ū(·)),

contradicting the optimality of ū(·). Hence, Problems (C) and (C) are equivalent.

Next, let c(·) be a consumption rate and ξ ∈ Lp
FT

(Ω) be a payoff/reward at t = T .
Let Y (·) solve the following equation:

(14) Y (t) = Et

[
ξ +

∫ T

t
g
(
c(s),Y (s)

)
ds
]
, t ∈ [0,T ],

for some proper map g : R×R → R. Process Y (·) is called a recursive utility pro-
cess (which is also called a stochastic differential utility, introduced by Duffie and
Epstein [21]), and g(·) is called an aggregator. It turns out that if (Y (·),Z(·)) is the



Time-Inconsistent Optimal Control Problems and Related Issues 539

adapted solution to the following so-called backward stochastic differential equa-
tion (BSDE, for short) in its integral form:

(15) Y (t) = ξ +
∫ T

t
g
(
c(s),Y (s)

)
ds−

∫ T

t
Z(s)dW (s), t ∈ [0,T ],

then (14) holds. This suggests us to consider the following BSDE:

(16)
Y (r) = h(X(T ))+

∫ T

r
g(s,X(s),u(s),Y (s),Z(s))ds

−
∫ T

r
Z(s)dW (s), s ∈ [t,T ],

with t ∈ [0,T ) being a parameter, and X(·) ≡ X(· ; t,x,u(·)) being the state pro-
cess. Under proper conditions, the above BSDE admits a unique adapted solution
(Y (·),Z(·))≡ (Y (· ; t,x,u(·)),Z(· ; t,x,u(·)). Then we may let

(17)
J(t,x;u(·)) = Y (t)≡ Y (t; t,x,u(·))

= Et

[
h(X(T ))+

∫ T

t
g(s,X(s),u(s),Y (s),Z(s))ds

]
.

This is called a recursive cost functional. With such a cost functional, we can pose
an optimal control problem.

Note that one might also define

(18)
J̄(t,x;u(·)) = E

[
Y (t)

]≡ E
[
Y (t; t,x,u(·))]

= E

[
h(X(T ))+

∫ T

t
g(s,X(s),u(s),Y (s),Z(s))ds

]
.

But, J(t,x;u(·)) seems to be more natural, as the involved BSDE is only solved on
[t,T ].

We recall that for the following general BSDE:

Y (t) = ξ +
∫ T

t
ḡ(s,Y (s),Z(s))ds−

∫ T

t
Z(s)dW (s), t ∈ [0,T ],

with some proper map ḡ : [0,T ]×R×Rd ×Ω → R satisfying some suitable condi-
tion, for any τ ∈ [0,T ), one has

Y (t) = Y (τ)+
∫ τ

t
ḡ(s,Y (s),Z(s))ds−

∫ τ

t
Z(s)dW (s), t ∈ [0,τ].

Thus, if we denote the adapted solution of the above by (Y (· ;τ,Y (τ)),Z(· ;τ,Y (τ))),
then the following semigroup property holds:

(Y (t;T,ξ ),Z(t;T,ξ )) = (Y (t;τ,Y (τ;T,ξ )),Z(t;τ,Y (τ;T,ξ ))), 0 � t < τ � T.
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Having this, similar to the formal derivation for Problem (C), we can show that the
problem with the recursive cost functional (18) is also time-consistent. If we still
denote the value function by V (· , ·). Then the corresponding HJB equation takes the
following form (comparing with (9)):

(19)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Vt(t,x)+ inf
u∈U

{1
2

tr
[
Vxx(t,x)σ(t,x,u)σ(t,x,u)%

]
+Vx(t,x)b(t,x,u)+g(t,x,u,V (t,x),Vx(t,x)σ(t,x,u))

}
= 0,

(t,x)∈ [0,T ]×Rn,

V (T,x) = h(x), x ∈ Rn.

We will have some interesting comparisons later.

3 Time-Inconsistent Optimal Control Problems

We now, present several possible formulations of time-inconsistent stochastic opti-
mal control problems.

3.1 Time-preferences and general discounting

Let state equation be (1). We consider several kinds of cost functionals.

1. Non-exponential discounting. Let us replace t �→ e−δ t by some general de-
creasing non-negative function t �→ λ (t) in the cost functional (10). Then the new
cost functional will take the following form:

J(t,x;u(·)) = Et

[
λ (T − t)h(X(T ))+

∫ T

t
λ (s− t)g(s,X(s),u(s))ds

]
.

This suggests us consider the following more general cost functional:

(20) J(t,x;u(·)) = Et

[
h(t,X(T ))+

∫ T

t
g(t,s,X(s),u(s))ds

]
,

where g : Δ [0,T ]×Rn ×U → R with

Δ [0,T ] =
{
(t,s) ∈ [0,T ]× [0,T ]

∣∣ t � s
}
.

We see that due to the general dependence of h(t,x) and g(t,s,x,u) on t, one can use
such a cost functional to describe the problems with general discounting. With the
above cost functional, we could formulate the following optimal control problem.
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Problem (N). For any give initial pair (t,x) ∈ [0,T )×Rn, find a control ū(·) ∈
U [t,T ] such that with the cost functional (20),

J(t,x; ū(·)) = inf
u(·)∈U [t,T ]

J(t,x;u(·)).

One can present examples that in general the above problem is time-inconsistent,
see [112]. It is also possible to introduce the following cost functional:

(21) J̄(t,x;u(·)) = E

[
h(t,X(T ))+

∫ T

t
g(t,s,X(s),u(s))ds

]
≡ E
[
J(t,x;u(·))].

With such a cost functional, the optimal control problem is also time-inconsistent.

2. Recursive cost functional with non-exponential discounting. We have seen
from the previous section that one could consider optimal control problems with
recursive cost functionals. It is not hard to understand one could introduce the ex-
ponential discounting into the recursive utility (14), so that it takes the following
form:

(22) Y (t) = Et

[
e−δ (T−t)ξ +

∫ T

t
e−δ (s−t)g

(
c(s),Y (s)

)
ds
]
, t ∈ [0,T ],

for some δ > 0. If the discounting t �→ e−δ t is replaced by a general discounting
t �→ λ (t), then one has

Y (t) = Et

[
λ (T − t)ξ +

∫ T

t
λ (s− t)g

(
c(s),Y (s)

)
ds
]
, t ∈ [0,T ].

This suggests us to consider the following BSDE:

(23)

⎧⎪⎨⎪⎩
dY (t,s) =−g(t,s,X(t),X(s),u(s),Y (t,s),Z(t,s))ds

+Z(t,s)dW (s), s ∈ [t,T ],

Y (t,T ) = h(t,X(t),X(T )),

with t ∈ [0,T ) being a parameter, and X(·)≡ X(· ; t,x,u(·)) being the state process.
Thus, the map g : Δ [0,T ]×Rn ×Rn ×U ×R×Rd → R. Then set

(24) J(t,x;u(·)) = Y (t, t).

This is called a recursive cost functional with general discounting. With the cost
functional (24), we can formulation Problem (N) exactly same as before. Since cost
functional (24) is more general than (20), we expect that the Problem (N) associated
with cost functional (24) should be time-inconsistent as well. A treatment of a sim-
ilar problem was carried out in [104]. Some further extension for the problem with
state equation containing regime switching was discussed in [61].

3. Equilibrium recursive cost functional. We may write (23) in its integral form
as follows
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(25)
Y (t,r) = h(t,X(t),X(T ))+

∫ T

r
g(t,s,X(t),X(s),u(s),Y (t,s),Z(t,s))ds

−
∫ T

r
Z(t,s)dW (s), r ∈ [t,T ].

If we take r = t, then it looks like

(26)
Y (t, t) = h(t,X(t),X(T ))+

∫ T

t
g(t,s,X(t),X(s),u(s),Y (t,s),Z(t,s))ds

−
∫ T

t
Z(t,s)dW (s), r ∈ [t,T ].

Note that this is not an equation for (Y (t, t),Z(t,s)) since Y (t,s) appears on the right-
hand side which cannot be determined by such an equation, in general. However, the
above observation suggests us to introduce the following equation:

(27)
Y (t) = h(t,X(t),X(T ))+

∫ T

t
g(t,s,X(t),X(s),u(s),Y (s),Z(t,s))ds

−
∫ T

t
Z(t,s)dW (s), t ∈ [0,T ],

with (Y (·),Z(· , ·)) being its unknown to be found. Such an equation is called a
backward stochastic Volterra integral equation (BSVIE, for short), see [107, 108].
If (Y (·),Z(· , ·)) is the solution to the above, we may define

(28) J(t,x;u(·)) = Y (t)≡ Y (t;u(·)),

and call it the equilibrium recursive cost functional. Note that the process (t,r) �→
Y (t,r) has a hidden nature of time-inconsistency. Whereas, the process Y (·) deter-
mined by BSVIE (27) removes such a hidden time-inconsistency. Now, we may
pose Problem (N) with the cost functional given by (28). Although we do not have
comparison between (24) and (28), since (28) is more general than (20), the corre-
sponding Problem (N) is also time-inconsistent.

3.2 Risk-preferences and subjective expectation

We now look at the risk-preference aspect. We still consider the state equation (1).
Risk-preference is referred to the following: Different (groups of) people will have
different opinions on the risks that contained in the coming event. Optimistic people
will think that the risk will not be large, and pessimistic people will feel that the risk
will be big. Therefore, one could understand that when expectation is calculated, the
actual probability used by different people should be subjective, rather than objec-
tive. Rigorously, one should accept that in the cost functional, say, (10), the operator
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E might be better replace by some E , representing the expectation with respect to
some subjective probability. Let us look at some possibilities.

1. Nonlinear expectation by BSDEs. In 1997, Peng introduced a nonlinear ex-
pectation determined by the adapted solutions ([81]). More precisely, consider the
following BSDE:

(29) Y (t) = ξ +
∫ T

t
ḡ(s,Y (s),Z(s))ds−

∫ T

t
Z(s)dW (s), t ∈ [0,T ],

where ḡ : [0,T ]×R×Rd → R satisfies the following:

(B) For all (y,z) ∈ R×Rd , t �→ ḡ(t,y,z) is continuous, with

ḡ(t,y,0) = 0, ∀(t,y) ∈ [0,T ]×R,

and there exists a constant L > 0 such that

|ḡ(t,y,z)− ḡ(t,y ′,z ′)|� L
(|y− y ′|+ |z− z ′|),

∀t ∈ [0,T ], y,y ′ ∈ R, z,z ′ ∈ Rd .

It is standard that under (B), for any ξ ∈ Lp
FT

(Ω), p > 1, BSDE (29) admits a
unique adapted solution (Y (·),Z(·)) [78, 63]. By [81], one can define

Et [ξ ] = Y (t)≡ Y (t;ξ ), t ∈ [0,T ]; E [ξ ]≡ E0[ξ ].

We call Et [ξ ] the nonlinear conditional expectation of ξ given Ft , associated with
ḡ(·), and E [ξ ]≡ E0[ξ ] the corresponding nonlinear expectation of ξ associated with
ḡ(·). It was called g-expectation. Clearly, different choice of ḡ(·) (satisfying (B))
will give different nonlinear (conditional) expectations. Therefore, we could replace
Et in (10) (with δ = 0, for simplicity) by Et determined by some ḡ(·):

(30) J(t,x;u(·)) = Et

[∫ T

t
g(s,X(s),u(s))ds+h(X(T ))

]
,

and replace E in (4) by E (also with δ = 0):

(31) J̄(t,x;u(·)) = E
[∫ T

t
g(s,X(s),u(s))ds+h(X(T ))

]
.

By the semigroup property of the adapted solutions to BSDEs, we have (comparing
with (11))

(32) E
[
J(t,x;u(·))]= J̄(t,x;u(·)).

Now, let us take a closer look at the above. According to the definition of Et , we
need to solve the following BSDE (parameterized by (t,x,u(·)):
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(33)
Y (t,r) = h(X(T ))+

∫ T

t
g(s,X(s),u(s))ds

+
∫ T

r
ḡ(s,Y (t,s),Z(t,s))ds−

∫ T

r
Z(t,s)dW (s), r ∈ [t,T ],

where the dependence of the adapted solution on the parameter t is emphasized and
the dependence on (x,u(·)) is suppressed. Then

J(t,x;u(·)) = Y (t, t).

If we take r = t in (33), then

(34)
Y (t, t) = h(X(T ))+

∫ T

t
g(s,X(s),u(s))ds

+
∫ T

t
ḡ(s,Y (t,s),Z(t,s))ds−

∫ T

t
Z(t,s)dW (s), t ∈ [0,T ].

We may mimic item 3 from the previous subsection to introduce the following equi-
librium integral equation:

(35)
Y (t) = h(X(T ))+

∫ T

t

[
g(s,X(s),u(s))+ ḡ(s,Y (s),Z(s))

]
ds

−
∫ T

t
Z(s)dW (s), t ∈ [0,T ],

which turns out to be a BSDE, and the cost functional becomes a recursive cost func-
tional. This shows that for the nonlinear expectation determined by BSDEs, there is
a natural way to transform the cost function to a standard recursive cost functional so
that the corresponding optimal control problem becomes time-consistent. However,
we should point out that this can be done only if there is not general discounting.

2. Distortion of probability. Let ρ : [0,1]→ [0,1] be continuous, increasing such
that ρ(0) = 0 and ρ(1) = 1. Such a ρ(·) is called a distortion function. Now, for any
random variable, we define the following distorted expectation:

(36)
E ρ [ξ ] =

∫
Ω
ξ (ω)d(ρ ◦P)(ω)

�
∫ 0

−∞

[
ρ
(
P(ξ � t)

)−1
]
dt +

∫ ∞

0
ρ
(
P(ξ � t)

)
dt.

Note that in the case ρ(r)= r, r ∈ [0,1], we can check that E ρ =E. We also call ρ ◦P
is a distorted probability, which is not a probability measure. Note that different
groups of people will have different distortion function ρ(·). For a given event A ∈
F , the group associated with ρ(·) have the opinion that ρ(P(A)) should be the
probability of A, although it is not. Typical shapes of ρ(·) could be convex, concave,
“S-shaped”, or “backward S-shaped”. Let us elaborate this a little more.
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(i) If ρ(·) is convex, then

ρ(r)< r, r ∈ (0,1).

Thus, for any event A ∈ F , these people think that the probability of A is smaller
than P(A). Hence, these people feel that “nothing will happen”.

(ii) If ρ(·) is concave, then

ρ(r)> r, ∀r ∈ (0,1).

Thus, these people exaggerate everything.

(iii) If ρ(·) is “S-shaped”, then there exists a β ∈ (0,1) such that ρ(·) is convex
on (0,β ) and concave on (β ,1). Thus, these people exaggerate large probability
events and understate small probability events.

(iv) If ρ(·) is “backward S-shaped”, then there exists a β ∈ (0,1) such that ρ(·)
is concave on (0,β ) and convex on (β ,1). Thus, these people exaggerate small
probability events and understate large probability events. Buy insurance and buy
lottery are kind of behavior that exaggerates small probability events.

Now, for any initial pair (t,x) ∈ [0,T ]× Rn and control u(·) ∈ U [t,T ], let
X(· ; t,x,u(·)) be the state process. We introduce the following cost functional under
distortion ρ(·):

(37) J̄(t,x;u(·)) = E ρ
[∫ T

t
g(s,X(s),u(s))ds+h(X(T ))

]
.

Then we may pose an optimal control problem associated with such a cost func-
tional. Such a problem should be time-inconsistent. To our best knowledge, such
a problem has not been carefully studied from the time-inconsistent point of view.
There are some investigations by means of quantiles ([48, 38, 119]).

3. Conditional expectations appear nonlinearly. Another possibility of express-
ing risk-preferences is to allow the conditional expectation nonlinearly appear in
the cost functional. More precisely, for state equation (1), we may introduce the
following cost functional

(38)
J(t,x;u(·)) = Et

[∫ T

t
g
(
s,X(s),Et [X(s)],u(s),Et [u(s)]

)
ds

+h
(
X(T ),Et [X(T )]

)]
.

With such a cost functional, we can pose an optimal control problem. It turns out
that such a problem is time-inconsistent.
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3.3 Mixed situations

We now look at the case that both time-preferences and risk-preferences appear
together. According to the previous subsections, we may have the following type
cost functional:

(39) J(t,x;u(·)) = E ρ
[
h(t,X(T ))+

∫ T

t
g(t,s,X(s),u(s))ds

]
,

with some distortion function ρ and some maps h : [0,T ]×Rn →R and g : Δ [0,T ]×
Rn ×U → R.

We now describe the next possibility. The following BSVIE with mean-field
(MF-BSVIE, for short) was studied in [94]):

(40)

Y (t) = h(t,X(t),X(T ))

+
∫ T

t
g(t,s,X(t),X(s),Et [X(s)],u(s),Et [u(s)],Y (s),Et [Y (s)],

Z(t,s),Et [Z(t,s)])ds−
∫ T

t
Z(t,s)dW (s), t ∈ [0,T ],

and define

(41) J(t,x;u(·)) = Y (t).

Then we can pose optimal control problem with the state equation (1) and the cost
functional (41). Such a problem is, of course, time-inconsistent. In the case that the
state equation is linear, with the cost functional containing general discounting and
quadratic forms of conditional expectations of the state and the control, equilibrium
strategy was constructed in [113].

4 Equilibrium Strategies, Variational Method and Necessary

Conditions

For time-inconsistent optimal control problems, it is not wise to find optimal control
for any given initial pair. In fact, if (t,x) ∈ [0,T )×Rn is a given initial pair, and we
have found an optimal control ū(·) ≡ ū(·, ; t,x), then at a later time τ ∈ (t,T ], one
may find optimal control at (τ, X̄(τ)) denoted by ū(· ;τ, X̄(τ)), and one could have

J
(
τ, X̄(τ); ū(·; t,x)∣∣

[τ,T ]
)
> J
(
τ, X̄(τ); ū(·;τ, X̄(τ))

)
.

Hence, formally, one has to have a control û(s, t, X̄(t)) of two time variables (t,s)
to keep it “optimal”. Clearly, this is not practically feasible. Hence, instead, we
need to find some time-consistent control/strategies which still keep certain type
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of optimality. For definiteness, let us use Problem (N) to represent a general time-
inconsistent optimal control problem with the state equation (1) and with the cost
functional denoted by J(t,x;u(·)) which could be any of the ones described above.
We introduce the following definition.

Definition 1. (i) For given x ∈ Rn, a ū(·) is called an open-loop equilibrium control
if for any t ∈ [0,T ), and any u ∈U ,

(42) lim
ε ↓0

J(t, X̄(t);uε(·))− J(t, X̄(t); ū(·))
ε

� 0,

where X̄(·) = X(· ;0,x, ū(·)) and

(43) uε(s) =

{
u, s ∈ [t, t + ε),
ū(s), s ∈ [t + ε,T ],

(ii) A mapΨ : [0,T ]×Rn →U is called a closed-loop equilibrium strategy if for
every x ∈ Rn the following equation

(44)

{
dX̄(s)=b(s, X̄(s),Ψ(s, X̄(s))ds+σ(s, X̄(s),Ψ(s, X̄(s))dW (s), s∈ [0,T ],
X̄(0) = x,

admits a unique solution X̄(·) and for each (t,u) ∈ [0,T )×U , let Xε(·) be the solu-
tion to the following:

(45)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dXε(s) = b(s,Xε(s),u)ds+σ(s,Xε(s),u)dW (s), s ∈ [t, t + ε),

dXε(s) = b(s,Xε(s),Ψ(s,Xε(s))ds+σ(s,Xε(s),Ψ(s,Xε(s))dW (s),

s ∈ [t + ε,T ],
Xε(t) = X̄(t).

and the following holds:

(46) lim
ε ↓0

J(t, X̄(t);u1[t,t+ε)⊕Ψ)− J(t, X̄(t);Ψ)

ε
� 0,

where

(47)
(
u1[t,t+ε)⊕Ψ

)
(s) =

{
u, s ∈ [t, t + ε),
Ψ(s,Xε(s)), s ∈ [t + ε,T ],

We note that the equilibrium controls/strategies have to major features: time-
consistency (represented by ū(s) andΨ(s, X̄(s)) only depend on one time variable),
and local optimality (exhibited by (42) and (87), respectively). open-loop equilib-
rium strategy ū(·) is initial state x dependent (through the process X̄(·)). Whereas,
closed-loop equilibrium strategy is initial state x independent.
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For linear quadratic problems, open-loop equilibrium control was studied in
[43, 44]. For nonlinear case, inspired by the general stochastic optimal control the-
ory, one could expect to have Pontryagin type maximum principle. We now would
like to derive necessary conditions of open-loop equilibrium strategies for the time-
inconsistent optimal control problem associated with some cost functional. The pur-
pose is to present the main idea. We do not pursue the most generality. However,
even such a result seems to be new, to our best knowledge. With our idea below,
it is possible to derive necessary conditions for open-loop equilibrium controls of
problems associated with other type of cost functionals. See [80, 116, 28, 74, 109]
for relevant works.

Consider cost functional (20) which is rewritten below for convenience:

(48) J(t,x;u(·)) = Et

[
h(t,X(T ))+

∫ T

t
g(t,s,X(s),u(s))ds

]
.

Namely, we are now only concerned with the general discounting case. We introduce
the following assumption.

(H3) Let U ⊆Rm be compact, d = 1. Let b,σ : [0,T ]×Rn×U →Rn, g :Δ [0,T ]×
Rn ×U → R, h : [0,T ]×Rn → R be continuous and

x �→ (b(s,x,u),σ(s,x,u),g(t,s,x,u),h(t,x))

is C2 with all derivatives up to order 2 being bounded and Lipschitz continuous in
x.

The conditions assumed in (H3) can be relaxed. But, we do not pursue the most
generality. Note that since U is assumed to be compact, U p[t,T ] it is independent
of p ∈ [1,∞]. Thus, we will simply write U [t,T ] instead below.

The following gives a necessary condition for open-loop equilibrium control for
our corresponding time-inconsistent optimal control problem.

Theorem 1. Let (H3) hold. Suppose (X̄(·), ū(·)) is an equilibrium pair on [0,T ], as-
sociated with some initial state x ∈ Rn. Suppose for any given t ∈ [0,T ), (Y (· ; t),
Z(· ; t)) and (P(· ; t),Λ(· ; t)) are the adapted solutions to the following BSDEs, re-
spectively:

(49)

⎧⎪⎨⎪⎩
Y (s; t) =−[bx(s, X̄(s), ū(s))%Y (s; t)+σx(s, X̄(s), ū(s))%Z(s; t)

+gx(t,s, X̄(s), ū(s))%
]
ds+Z(s; t)dW (s), s ∈ [t,T ],

Y (T ; t) = hx(t, X̄(T ))%,

and
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(50)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(s; t) =−
(

bx(s, X̄(s), ū(s))%P(s; t)+P(s; t)bx(s, X̄(s), ū(s))

+σx(s, X̄(s), ū(s))%P(s; t)σx(s, X̄(s), ū(s))

+σx(s, X̄(s), ū(s))%Λ(s; t)+Λ(s; t)σx(s, X̄(s), ū(s))

+gxx(t,s, X̄(s), ū(s))
)

ds+Λ(s; t)dW (s), s ∈ [t,T ],

P(T ; t) = hxx(t, X̄(T )).

Then almost surely, for any u ∈U ,

(51)

0 � 〈Y (t; t),b(t, X̄(t),u)−b(t, X̄(t), ū(t)〉
+ lim
ε ↓0

1
ε
Et

∫ t+ε

t
〈Z(s; t),σ(s, X̄(s),u)−σ(s, X̄(s), ū(s))〉ds

+g(t, t, X̄(t),u)−g(t, t, X̄(t), ū(t))

+tr
{[
σ(t, X̄(t),u)−σ(t, X̄(t), ū(t)

]%P(t)
[
σ(t, X̄(t),u)−σ(t, X̄(t), ū(t)

]}
.

This is basically a Pontryagin’s type maximum principle.

Proof. Suppose ū(·) ∈ U [0,T ] is an open-loop equilibrium control on [0,T ] for a
given initial state x ∈Rn, and denote the corresponding open-loop equilibrium state
process by X̄(·). For each t ∈ [0,T ) and u ∈ U , let Xε(·) be the solution of the state
equation on [t,T ] corresponding to (t, X̄(t),uε(·)). Introduce the following:

bεx(s) =
∫ 1

0
bx(s, X̄(s)+β X̂ε(s),uε(s))dβ ,

σεx (s) =
∫ 1

0
σx(s, X̄(s)+β X̂ε(s),uε(s))dβ ,

b̂(s) = b(s, X̄(s),u)−b(s, X̄(s), ū(s)), b̂ε(s) = b̂(s)1[t,t+ε)(s),

σ̂(s) = σ(s, X̄(s),u)−σ(s, X̄(s), ū(s)), σ̂ ε(s) = σ̂(s)1[t,t+ε)(s).

Let Xε
1 (·) and Xε

2 (·) be the solution to the following:{
dXε

1 (s) = bεx(s)X
ε
1 (s)ds+

[
σεx (s)X

ε
1 (s)+ σ̂

ε(s)
]
dW (s), s ∈ [t,T ],

Xε
1 (t) = 0,

{
dXε

2 (s) =
[
bεx(s)X

ε
2 (s)+ b̂ε(s)

]
ds+σεx (s)X

ε
2 (s)dW (s), s ∈ [t,T ],

Xε
2 (t) = 0.

Then
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Et

[
sup

s∈[t,T ]
|Xε

1 (s)|2
]
� KEt

∫ T

t
|σ̂ ε(s)|2ds = KEt

∫ t+ε

t
|σ̂(s)|2ds

� KEt

∫ t+ε

t

(
1+ |X̄(s)|)2ds � Kε

(
1+Et

[
sup

s∈[t,T ]
|X̄(s)|2

])
� Kε,

and

Et

[
sup

s∈[t,T ]
|Xε

2 (s)|2
]
� KEt

(∫ T

t
|b̂ε(s)|ds

)2
= KEt

(∫ t+ε

t
|b̂(s)|ds

)2

� KEt

(∫ t+ε

t

(
1+ |X̄(s)|)ds

)2
� Kε2

(
1+Et

[
sup

s∈[t,T ]
|X̄(s)|

])2
� Kε2.

If we denote
X̂ε(·)≡ Xε(·)− X̄(·) = Xε

1 (·)+Xε
2 (·),

then the following holds:{
dX̂ε(s) =

[
bεx(s)X̂

ε(s)+ b̂ε(s)
]
ds+

[
σεx (s)X̂

ε(s)+ σ̂ ε(s)
]
dW (s), s ∈ [t,T ],

X̂ε(t) = 0,

Further, denoting Xε(·) = Xε
1 (·)Xε

1 (·)%, we have

dXε(s) =
[
bεx(s)X

ε(s)+Xε(s)bεx(s)
%+σεx (s)X

ε(s)σεx (s)
%

+σεx (s)X
ε
1 (s)σ̂

ε(s)%+ σ̂ ε(s)Xε
1 (s)

%σεx (s)
%+ σ̂ ε(s)σ̂ ε(s)%

]
ds

+
[
σεx (s)X

ε(s)+Xε(s)σεx (s)
%]dW (s).

Note that for any C2 function ϕ(·), one has

ϕ(x)−ϕ(x̄) =
[∫ 1

0
ϕx(x̄+α(x− x̄))dα

]
(x− x̄)

= ϕx(x̄)(x− x̄)+ 〈
∫ 1

0

∫ 1

0

(
ϕxx(x̄+αβ (x− x̄))αdαdβ

)
(x− x̄),x− x̄〉

= ϕx(x̄)(x− x̄)+
1
2
〈ϕxx(x̄)(x− x̄),x− x̄〉

+〈
(∫ 1

0

∫ 1

0

[
ϕxx(x̄+αβ (x− x̄))−ϕxx(x̄)

]
αdαdβ

)
(x− x̄),x− x̄〉

Hence, one has
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J(t, X̄(t);uε(·))− J(t, X̄(t); ū(·))
= Et

[
h(t,Xε(T ))−h(t, X̄(T ))+

∫ T

t

[
g(t,s,Xε(s),uε(s))−g(t,s, X̄(s), ū(s))

]
ds
]

= Et

{
hx(t)X̂ε(T )+

1
2
〈hxx(t)X̂ε(T ), X̂ε(T )〉

+〈
(∫ 1

0

∫ 1

0

[
hxx(t, X̄(T )+αβ X̂ε(T ))−hxx(t)

]
αdαdβ

)
X̂ε(T ), X̂ε(T )〉

+
∫ T

t

[
ĝ(t,s)1[t,t+ε ](s)+gεx(t,s)X̂

ε(s)+
1
2
〈gεxx(t,s)X̂

ε(s), X̂ε(s)〉

+〈
(∫ 1

0

∫ 1

0
gxx(t,s, X̄(s)+αβ X̂ε(s),uε(s))

−gxx(t,s, X̄(s),uε(s))
]
αdαdβ

)
X̂ε(s), X̂ε(s)〉

]
ds
}

= Et

{∫ t+ε

t
ĝ(t,s)ds+hx(t)X̂ε(T )+

∫ T

t
gx(t,s)X̂ε(s)ds

+
1
2

tr
(

hxx(t)[X̂ε(T )X̂ε(T )%]
)
+

1
2

∫ T

t
tr
(

gxx(t,s)[X̂ε(s)X̂ε(s)%]
)

ds

+〈
(∫ 1

0

∫ 1

0

[
hxx(t, X̄(T )+αβ X̂ε(T ))−hxx(t)

]
αdαdβ

)
X̂ε(T ), X̂ε(T )〉

+
∫ t+ε

t

[
ĝx(t,s)X̂ε(s)+

1
2

tr
(

ĝxx(t,s)[X̂ε(s)X̂ε(s)%]
)]

ds

+
∫ T

t
〈
(∫ 1

0

∫ 1

0
gxx(t,s, X̄(s)+αβ X̂ε(s),uε(s))

−gxx(t,s, X̄(s),uε(s))
]
αdαdβ

)
X̂ε(s), X̂ε(s)〉ds

}
,

where

hx(t) = hx(t, X̄(T )), hxx(t) = hxx(t, X̄(T )),

gεx(t,s) = gx(t,s, X̄(s),uε(s)), gεxx(t,s) = gxx(t,s, X̄(s),uε(s)),

gx(t,s) = gx(t,s, X̄(s),u), gxx(t,s) = gxx(t,s, X̄(s),u),

ĝ(t,s) = g(t,s, X̄(s),u)−g(t,s, X̄(s), ū(s)),

ĝx(t,s) = gx(t,s, X̄(s),u)−gx(t,s, X̄(s), ū(s)).

We now estimate some terms.

Et

∣∣∣〈(∫ 1

0

∫ 1

0

[
hxx(t, X̄(T )+αβ X̂ε(T ))−hxx(t)

]
αdαdβ

)
X̂ε(T ), X̂ε(T )〉

∣∣∣
� Et |X̂ε(T )|3 � Kε

3
2 ,
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Et

∣∣∣∫ t+ε

t

[
ĝx(t,s)X̂ε(s)+

1
2

tr
(

ĝxx(t,s)[X̂ε(s)X̂ε(s)%]
)]

ds
∣∣∣

� KEt

∫ t+ε

t
|X̂ε(s)|ds � KεEt

[
sup

s∈[t,T ]
|X̂ε(s)|

]
� Kε

3
2 ,

Et

∣∣∣∫ T

t
〈
(∫ 1

0

∫ 1

0
gxx(t,s, X̄(s)+αβ X̂ε(s),uε(s))

−gxx(t,s, X̄(s),uε(s))
]
αdαdβ

)
X̂ε(s), X̂ε(s)〉ds

∣∣∣
� KEt

∫ T

t
|X̂ε(s)|3ds � Kε

3
2 .

Moreover,

[X̂ε(·)X̂ε(·)%] = [Xε
1 (·)+Xε

2 (·)][Xε
1 (·)+Xε

2 (·)]%
= [Xε

1 (·)Xε
1 (·)%]+ [Xε

1 (·)Xε
2 (·)%]+ [Xε

2 (·)Xε
1 (·)%]+ [Xε

2 (·)Xε
2 (·)%]

= Xε(·)+O(ε
3
2 ).

Consequently, we obtain

J(t, X̄(t);uε(·))− J(t, X̄(t); ū(·))
= Et

{∫ t+ε

t
ĝ(t,s)ds+hx(t)X̂ε(T )+

∫ T

t
gx(t,s)X̂ε(s)ds

+
1
2

[
tr
(

hxx(t)Xε(T )
)
+

∫ T

t
tr
(

gxx(t,s)Xε(s)
)

ds
]}

+O(ε
3
2 ).

Let (Y ε(·),Zε(·))≡ (Y ε(· ; t),Zε(· ; t)) be the adapted solution to the following:{
Y ε(s)=−[bεx(s)%Y ε(s)+σεx (s)

%Zε(s)+gx(t,s)%
]
ds+Zε(s)dW (s), s∈ [t,T ],

Y ε(T ) = hx(t)%.

Then

Et

[
hx(t)X̂ε(T )

]
= Et

[
〈Y ε(T ), X̂ε(T )〉

]
= Et

[∫ T

t

(
−〈bεx(s)%Y ε(s)+σεx (s)

%Zε(s)+gx(t,s)%, X̂ε(s)〉

+〈Y ε(s),bεx(s)X̂ε(s)+ b̂ε(s)〉+ 〈Zε(s),σεx (s)X̂ε(s)+ σ̂ ε(s)〉
)

ds
]

= Et

[∫ T

t

(
−gx(t,s)X̂ε(s)+ 〈Y ε(s), b̂ε(s)〉+ 〈Zε(s), σ̂ ε(s)〉

)
ds
]
.

Hence, we obtain
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Et

(
hx(t)X̂ε(T )+

∫ T

t
gx(t,s)X̂ε(s)ds

)
= Et

[∫ T

t

(
〈Y ε(s), b̂ε(s)〉+ 〈Zε(s), σ̂ ε(s)〉

)
ds
]

= Et

[∫ t+ε

t

(
〈Y ε(s), b̂(s)〉+ 〈Zε(s), σ̂(s)〉

)
ds
]
.

On the other hand, we let (Pε(·),Λε(·))≡ (Pε(· ; t),Λε(· ; t)) be the adapted solution
of the following BSDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dPε(s) =−
(

bεx(s)
%Pε(s)+Pε(s)bεx(s)+σ

ε
x (s)

%Pε(s)σεx (s)

+σεx (s)
%Λε(s)+Λε(s)σεx (s)+gxx(t)

)
ds+Λε(s)dW (s), s∈ [t,T ],

Pε(T ) = hxx(t, X̄(T )).

One has

Et

{
tr
[
Pε(T )Xε(T )

]}
= Et

{∫ T

t

[
tr
(
− [bεx(s)%Pε(s)+Pε(s)bεx(s)

+σεx (s)
%Pε(s)σεx (s)+σ

ε
x (s)

%Λε(s)+Λε(s)σεx (s)+gxx(t)
]
Xε(s)

+Pε(s)
[
bεx(s)X

ε(s)+Xε(s)bεx(s)
%+σεx (s)X

ε(s)σεx (s)
%

+σεx (s)X
ε
1 (s)σ̂

ε(s)%+ σ̂ ε(s)Xε
1 (s)

%σεx (s)
%+ σ̂ ε(s)σ̂ ε(s)%

]
+Λε(s)

[
σεx (s)X

ε(s)+Xε(s)σεx (s)
%])]ds

}
= Et

{∫ T

t

[
tr
(
−gxx(t)Xε(s)+Pε(s)

[
σεx (s)X

ε
1 (s)σ̂

ε(s)%

+σ̂ ε(s)Xε
1 (s)

%σεx (s)
%+ σ̂ ε(s)σ̂ ε(s)%

])]
ds
}
.

Note that under our conditions, Pε(·) is bounded. Then

Et

∣∣∣∫ T

t

[
tr
(

Pε(s)
[
σεx (s)X

ε
1 (s)σ̂

ε(s)%+ σ̂ ε(s)Xε
1 (s)

%σεx (s)
%])]ds

∣∣∣
� KEt

∫ t+ε

t
|Xε

1 (s)|ds � KεEt

[
sup

s∈[t,T ]
|Xε

1 (s)|
]
� Kε

3
2 .

Therefore,

Et

{
tr
[
Pε(T )Xε(T )

]
+

∫ T

t
tr
(

gxx(t)Xε(s)
)

ds

= Et

∫ t+ε

t
tr
(
σ̂(s)Pε(s)σ̂(s)

)
ds+O(ε

3
2 ).

We now obtain
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J(t, X̄(t);uε(·))− J(t, X̄(t); ū(·))
= Et

[∫ t+ε

t

(
ĝ(t,s)+〈Y ε(s), b̂(s)〉+〈Zε(s), σ̂(s)〉

+tr
[
σ̂(s)%Pε(s)σ̂(s)

])
ds
]
+O(ε

3
2 ).

Further,

J(t, X̄(t);uε(·))− J(t, X̄(t); ū(·))
= Et

[∫ t+ε

t

(
〈Y (s), b̂(s)〉+ 〈Z(s), σ̂(s)〉+ ĝ(t,s)

+tr
[
σ̂(s)%P(s)σ̂(s)

])
ds
]
+o(ε),

with (P(·),Λ(·)) and (Y (·),Z(·)) satisfy (49) and (50). Then our conclusion follows.

5 Differential Game Approach

In this section, we consider state equation (1). For any initial pair (t,x)∈ [0,T )×Rn

and control u(·) ∈ U p[t,T ], the state process is the solution X(·)≡ X(· ; t,x,u(·)) of
(1). The cost functional is given by the following:

(52) J(t,x;u(·)) = Y (t),

with (Y (·),Z(· , ·)) being the adapted solution to the following BSVIE:

(53)
Y (t) = h(t,X(t),X(T ))+

∫ T

t
g(t,s,X(t),X(s),u(s),Y (s),Z(t,s))ds

−
∫ T

t
Z(t,s)dW (s), t ∈ [0,T ].

We rewrite the optimal control problem as follows.

Problem (N). For given (t,x) ∈ [0,T ]×Rn, find a ū(·) ∈ U p[t,T ] such that

J(t,x; ū(·)) = inf
u(·)∈U p[t,T ]

J(t,x;u(·)).

It is not hard to see that this problem is time-inconsistent. We now use a differen-
tial game method to investigate Problem (N). Note that it is new to use differential
game approach to find closed-loop equilibrium strategy for the problem with the
cost functional being the solution to a BSVIE. Recall that in [112],

Let Π : 0 = t0 < t1 < t2 < · · ·< tN−1 < tN = T be a partition of [0,T ]. We denote
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‖Π‖= max
1�i�N

(ti − ti−1),

which is called the mesh size of Π . Associated with the above partition, we have an
N-person differential game. Player k takes over the the system (1) at tk−1, controls
the system on [tk−1, tk), and hands over to Player (k+1) at tk. The cost functionals
of the players are constructed recursively. We now make it precise.

We first look at Player N on [tN−1, tN ]. The state equation is (1) on [tN−1, tN ], and
the cost functional is given by the following:

(54) JN(t,x;u(·)) = Y N(t),

where (Y N(·),ZN(·)) is the adapted solution to the following BSDE:

(55)
Y N(t)=h(tN−1,xN−1,X(T ))+

∫ T

t
g(tN−1,s,xN−1,X(s),u(s),Y N(s),ZN(s))ds

−
∫ T

t
ZN(s)dW (s), t ∈ [tN−1, tN ],

with xN−1 ∈ Rn being a parameter. Thus, minimization of the cost functional
JN(t,x; ·) subject to the state equation (1) on [tN−1, tN ] is a standard optimal con-
trol problem with a recursive cost functional. For such a problem, the value function
V N(· , ·) satisfies the following partial differential equation (PDE, for short), called
HJB equation (in a suitable sense):

(56)

⎧⎪⎨⎪⎩
V N

t (t,x)+H(tN−1, t,xN−1,x,V N(t,x),V N
x (t,x),V N

xx(t,x)) = 0,
(t,x) ∈ [tN−1, tN ]×Rn,

V N(tN ,x) = h(tN−1,xN−1,x), x ∈ Rn,

where

H(τ,ξ , t,x,u,y,p%,P) =
1
2

tr
(

Pσ(t,x,u)σ(t,x,u)%
)
+p%b(t,x,u)

+g(τ, t,ξ ,x,u,y,p%σ(t,x,u)),

and for some ψ ≡ ψ(τ, t,ξ ,x,y,p%,P):

(57) H(τ , t,ξ ,x,y,p%,P) = inf
u∈U

H(τ, t,ξ ,x,u,y,p%,P).

We assume that the map ψ(·) has all needed smoothness (and boundedness of the
derivatives). Then under the non-degeneracy condition of the diffusion, the above
HJB equation admits a unique classical solution V N(·), and

ūN(s) = ψ
(
tN−1,s,X(tN−1), X̄N(s),V N(s, X̄N(s)),V N

x (s, X̄N(s)),V N
xx(s, X̄

N(s))
)
,

≡ΨN(s, X̄N(s)), s ∈ [tN−1, tN ],
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is an optimal control of the problem on [tN−1, tN ], where X̄N(·) is the solution to the
following closed-loop system:

(58)

⎧⎪⎨⎪⎩
dX̄N(s)=b(s, X̄N(s),ΨN(s, X̄N(s))ds+σ(s, X̄N(s),ΨN(s, X̄N(s)))dW (s),

s ∈ [tN−1, tN ],

X̄N(tN−1) = xN−1.

We now look at Player (N − 1) on [tN−2, tN−1). The state process, denoted by
XN−1(·) ≡ X(· ; t,x,uN−1(·)), will be the solution to equation (1), with (t,x) ∈
[tN−2, tN−1)×Rn, and uN−1(·) ∈ U [t, tN−1]. For the cost functional, we first solve
the following forward-backward stochastic differential equation (FBSDE, for short)
on [tN−1, tN ]:

(59)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dXN−1(s) = b
(
s,XN−1(s),ΨN(s,XN−1(s))

)
ds

+σ
(
s,XN−1(s),ΨN(s,XN−1(s))

)
dW (s),

dY N−1(s)=−g
(
tN−2,s,xN−2,XN−1(s),ΨN(s,XN−1(s)),Y N−1(s),ZN−1(s)

)
ds

+ZN−1(s)dW (s), s ∈ [tN−1, tN ],

XN−1(tN−1) = xN−1, Y N−1(tN) = h
(
tN−2,XN−1(tN)

)
.

Following [63], we know that

Y N−1(s) =ΘN−1(s,XN−1(s)), s ∈ [tN−1, tN ],

withΘN−1(· , ·) being the solution to the following PDE:

(60)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ΘN−1
s (s,x)+

1
2

tr
[
ΘN−1

xx (s,x)(σσ%)(s,x,ΨN(s,x))
]

+ΘN−1
x (s,x)b(s,x,ΨN(s,x))

+g(tN−2,s,xN−2,x,ΘN−1(s,x),ΘN−1
x (s,x)σ(s,x,ΨN(s,x))) = 0,
(s,x) ∈ [tN−1, tN ]×Rn,

ΘN−1(tN ,x) = h(tN−2,x), x ∈ Rn.

Then let (Y N−1(·),ZN−1(·)) be the adapted solution to the following BSDE on
[tN−2, tN−1]:

(61)

⎧⎪⎨⎪⎩
dY N−1(s) =−g

(
tN−2,s,xN−2,XN−1(s),Y N−1(s),ZN−1(s)

)
ds

+ZN−1(s)dW (s), s ∈ [tN−2, tN−1],

Y N−1(tN−1) =ΘN−1(tN−1,XN−1(tN−1)
)
,

and define

(62) JN−1(t,x;u(·)) = Y N−1(t), (t,x) ∈ [tN−2, tN−1]×Rn, u(·) ∈ U [t, tN−1].
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The above is referred to as a sophisticated cost functional which is defined through
an FBSDE (59) over [tN−1, tN ], a representation PDE (60) on [tN−1, tN ]×Rn and
a BSDE (61) over [tN−2|, tN−1]. It is not hard to see that the problem of minimiz-
ing cost functional JN−1(t,x;u(·)) subject to the state equation (1) restricted on
[tN−2, tN−1] is a standard stochastic optimal control problem with recursive cost
functional. For this problem, the value function V N−1(· , ·) satisfies the following
HJB equation:

(63)

⎧⎪⎨⎪⎩
V N−1

t (t,x)+H(tN−2, t,xN−2,x,V N−1(t,x),V N−1
x (t,x),V N−1

xx (t,x)) = 0,
(t,x) ∈ [tN−2, tN−1]×Rn,

V N−1(tN−1,x) =ΘN−1(tN−1,xN−1,x), x ∈ Rn.

We assume that the above admits a classical solution V N−1(· , ·). Then

ūN−1(s) = ψ
(
tN−2,s,xN−2, X̄N−1(s),V N−1(s, X̄N−1(s)),

V N−1
x (s, X̄N−1(s)),V N−1

xx (s, X̄N−1(s))
)
,

≡ΨN−1(s, X̄N−1(s)), s ∈ [tN−2, tN−1],

is an optimal control of the problem on [tN−2, tN−1], where X̄N−1(·) is the solution
to the following closed-loop system:

(64)

⎧⎪⎨⎪⎩
dX̄N−1(s) = b(s, X̄N−1(s),ΨN−1(s, X̄N−1(s))ds

+σ(s, X̄N−1(s),ΨN−1(s, X̄N−1(s)))dW (s), s∈ [tN−2, tN−1],

X̄N(tN−2) = xN−2.

Note that Player (N−1) knows that Player N will play optimally through the optimal
strategyΨN(· , ·) (defined on [tN−1, tN ]×Rn). On the other hand, Player (N −1) still
“discounts” the future costs in his/her own way despite he/she will not control the
system beyond tN−1. That is why tN−2 appears in (59), (60), and (61). See [112, 104]
for more detailed explanations.

By induction, we can continue the above backward procedure. Let us look at the
situation of Player k. The state process Xk(·)≡ X(· ; t,x,uk(·)) is the solution to the
equation (1) with (t,x) ∈ [tk−1, tk]×Rn and u(·) ∈ U [t, tk]. To define the sophisti-
cated cost functional, we solve the following decoupled FBSDE on [tk, tN ]:

(65)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dXk(s) = b
(
s,Xk(s),ΨΠ (s,Xk(s))

)
ds

+σ
(
s,Xk(s),ΨΠ (s,Xk(s))

)
dW (s), s ∈ [tk, tN ],

dY k(s) =−g
(
tk−1,s,Xk(s),ΨΠ (s,Xk(s)),Y k(s),Zk(s)

)
ds

+Zk(s)dW (s), s ∈ [tk, tN ],

Xk(tk) = xk, Y k(tN) = h
(
tk−1,Xk(tN)

)
,

where,
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(66) ΨΠ (s,x) =
N

∑
j=k+1

ψ(t j−1,s,x j−1,x,V j(s,x),V j
x (s,x),V

j
xx(s,x))1[t j−1,t j)(s).

Suppose (Xk(·),Y k(·),Zk(·)) is the adapted solution to the above FBSDE. Then we
have the following representation:

Y k(s) =Θ k(s,Xk(s)), s ∈ [tk, tN ],

withΘ k(· , ·) being the solution to the following PDE:

(67)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Θ k

s (s,x)+
1
2

tr
[
Θ k

xx(s,x)(σσ
%)(s,x,ΨΠ (s,x))

]
+Θ k

x (s,x)b(s,x,Ψ
Π (s,x))

+g(tk−1,s,xk−1,x,Θ k(s,x),Θ k
x (s,x)σ(s,x,Ψ

Π (s,x))) = 0,
(s,x) ∈ [tk, tN ]×Rn,

Θ k(tN ,x) = h(tk−1,xk−1,x), x ∈ Rn.

Then let (Y k(·),Zk(·)) be the adapted solution to the following BSDE on [tk−1, tk]:

(68)

⎧⎪⎨⎪⎩
dY k(s) =−g

(
tk−1,s,xk−1,Xk(s),Y k(s),Zk(s)

)
ds+Zk(s)dW (s),

s ∈ [tk−1, tk],

Y k(tk) =Θ k(tk,Xk(tk)
)
,

and define the sophisticated cost functional by

(69) Jk(t,x;u(·)) = Y k(t), (t,x) ∈ [tk−1, tk]×Rn, u(·) ∈ U [t, tk].

Then, we obtain an optimal control problem on [tk−1, tk] with a recursive cost func-
tional. The value function V k(· , ·) of this problem satisfies the following HJB equa-
tion:

(70)

⎧⎪⎨⎪⎩
V k

t (t,x)+H(tk−1, t,xk−1,x,V k(t,x),V k
x (t,x),V

k
xx(t,x)) = 0,

(t,x) ∈ [tk−1, tk]×Rn,

V k(tk,x) =Θ k(tk,xk,x), x ∈ Rn.

Suppose the above admits a classical solution V k(· , ·). Then

ūk(s) = ψ
(
tk−1,s,xk−1, X̄k(s),V k(s, X̄k(s)),V k

x (s, X̄
k(s)),V k

xx(s, X̄
k(s))

)
,

≡Ψ k(s, X̄k(s)), s ∈ [tk−1, tk],

is an optimal control of the problem on [tk−1, tk], where X̄k(·) is the solution to the
following closed-loop system:
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(71)

⎧⎪⎨⎪⎩
dX̄k(s) = b(s, X̄k(s),Ψ k(s, X̄k(s)))ds+σ(s, X̄k(s),Ψ k(s, X̄k(s)))dW (s),

s∈ [tk−1, tk],

X̄k(tk−1) = xk−1.

Hence, for any partition Π of [0,T ], we could find a ΨΠ (· , ·), which is called an
approximate equilibrium strategy. By letting ‖Π‖ → 0, we formally obtain the fol-
lowing equation which is called the equilibrium HJB equation (comparing with (9)
and (19)):

(72)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Θs(τ ,s,ξ ,x)+
1
2

tr
[
Θxx(τ,s,ξ ,x)(σσ%)(s,x,Ψ(s,x))

]
+Θx(t,s,ξ ,x)b(s,x,Ψ(s,x))

+g(τ,s,ξ ,x,Θ(τ,s,ξ ,x),Θx(τ,s,ξ ,x)σ(s,x,Ψ(s,x))) = 0,
0 � τ � s � T, ξ ,x ∈ Rn,

Θ(τ,T,ξ ,x) = h(τ,ξ ,x), x ∈ Rn.

The equilibrium value function is given by

(73) V (t,x) =Θ(t, t,x,x), (t,x) ∈ [0,T ]×Rn,

and an equilibrium strategy is given by

(74) Ψ(t,x) = ψ
(
t, t,x,x,V (t,x),Θx(t, t,ξ ,x)

∣∣
ξ=x,Θxx(t, t,ξ ,x)

∣∣
ξ=x

)
.

In the case that equilibrium HJB equation (72) is well-posed, the above convergence
can be proved (following a similar idea from [112, 104, 61]. Moreover, by an argu-
ment in [104, 61], we can show that Ψ(· , ·) satisfies (46). This means that Ψ(· , ·)
is an equilibrium strategy in the sense of Definition 1. For the well-posedness of
equilibrium HJB equation (72), following the idea from [104], we can establish that
when the control does not enter into the diffusion σ(·). The general case is still
under investigation.

6 Equilibrium Strategy for Mixed Time-Inconsistent Optimal

Control Problems

It is expected that the mixed time-inconsistent optimal control problem is much
more complicated. To be complete, in this section, we present a special case to
exhibit some flavor. The general case is still widely open. The following is a sketch
of the results obtained in [113].

Consider the following controlled linear MF-SDE:
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(75)

⎧⎪⎨⎪⎩
dX(s) =

[
A(s)X(s)+B(s)u(s)

]
ds+

[
C(s)X(s)+D(s)u(s)

]
dW (s),

s ∈ [t,T ],

X(t) = x ∈ Xt ≡ L2
Ft
(Ω ;Rn),

Note that for any (t,x) ∈ D ≡ {(t,x) ∣∣ t ∈ [0,T ], x ∈ Xt} and u(·) ∈ U [t,T ], the
corresponding state process X(·) =X(· ; t,x,u(·)) depends on (t,x,u(·)). The cost
functional is as follows:

(76)

J(t,x;u(·))=Et

{∫ T

t

[
〈Q(s, t)X(s),X(s)〉+ 〈Q̄(s, t)Et [X(s)],Et [X(s)]〉

+〈R(s, t)u(s),u(s)〉+ 〈R̄(s, t)Et [u(s)],Et [u(s)]〉
]
ds

+〈G(t)X(T ),X(T )〉+ 〈Ḡ(t)Et [X(T )],Et [X(T )]〉
}
.

Let us introduce the following hypotheses:

(H4) The following hold:

(77) A(·),C(·) ∈C([0,T ];Rn×n), B(·),D(·) ∈C([0,T ];Rn×m).

(H5) The following hold:

(78)

{
Q(· , ·), Q̄(· , ·) ∈C([0,T ]2;Sn), R(· , ·), R̄(· , ·) ∈C([0,T ]2;Sm),

G(·), Ḡ(·) ∈C([0,T ];Sn),

with Sn being the set of all (n×n) symmetric matrices, and for some δ > 0,

(79)

⎧⎪⎪⎨⎪⎪⎩
Q(s, t), Q(s, t)+ Q̄(s, t)� 0,

R(s, t), R(s, t)+ R̄(s, t)� δ I,
0 � t � s � T,

G(t), G(t)+ Ḡ(t)� 0, 0 � t � T.

(H6) The following monotonicity conditions are satisfied:

(80)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q(s, t)� Q(s,τ), Q(s, t)+ Q̄(s, t)� Q(s,τ)+ Q̄(s,τ),

R(s, t)� R(s,τ), R(s, t)+ R̄(s, t)� R(s,τ)+ R̄(s,τ),

G(t)� G(τ), G(t)+ Ḡ(t)� G(τ)+ Ḡ(τ),

0 � t � τ � s � T.

It is clear that under (H4)–(H5), for any (t,x) ∈ [0,T ]×Rn and u(·) ∈ U [t,T ],
state equation (75) admits a unique solution X(·)≡ X(· ; t,x,u(·)), and the cost func-
tional J(t,x;u(·)) is well-defined. Then we can state the following problem.

Problem (MF-LQ). For any (t,x) ∈ D , find a u∗(·) ∈ U [t,T ] such that
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(81) J(t,x;u∗(·)) = inf
u(·)∈U [t,T ]

J(t,x;u(·))≡V (t,x).

In what follows, we will denote

(82)

{
Q̂(s, t) = Q(s, t)+ Q̄(s, t), R̂(s, t)=R(s, t)+R̄(s, t),

Ĝ(t) = G(t)+ Ḡ(t).
0 ≤ t ≤ s ≤ T.

We introduce the following: For any t ∈ [0,T ),

(83)

J̃(t;X(·),u(·))
= Et

{∫ T

t

[
〈Q(s, t)X(s),X(s)〉+ 〈Q̄(s, t)Et [X(s)],Et [X(s)]〉

+〈R(s, t)u(s),u(s)〉+ 〈R̄(s, t)Et [u(s)],Et [u(s)]〉
]
ds

+〈G(t)X(T ),X(T )〉+ 〈Ḡ(t)Et [X(T )],Et [X(T )]〉
}
,

for any (X(·),u(·)) ∈ X [t,T ]×U [t,T ], where X [t,T ] = L2
F(Ω ;C([t,T ];Rn)). We

point out that in the above (X(·),u(·)) does not have to be a state-control pair of the
original control system. Thus, J̃(t;X(·),u(·)) is an extension of the cost functional
J(t,x;u(·)), and

J̃
(
t;X(· ; t,x,u(·)),u(·))= J(t,x;u(·)), ∀(t,x) ∈ D , u(·) ∈ U [t,T ].

Next, and hereafter, we denote any partition of [0,T ] by Δ :

Π =
{

tk
∣∣ 0 � k � N

}≡ {
0 = t0 < t1 < t2 < · · ·< tN−1 < tN = T

}
,

with N being some natural number, and define its mesh size by the following:

‖Π‖= max
0�k�N−1

(tk+1 − tk).

For the above Π , we define

(84) JΠk (X(·),u(·)) = J̃(tk,X(·),u(·)),

for any (X(·),u(·)) ∈ X [tk,T ]×U [tk,T ], k = 0,1,2, · · · ,N −1.

Now, we introduce some notions.

Definition 2. Let Π = {0 = t0 < t1 < · · ·< tN−1 < tN = T
}

be a partition of [0,T ],
and letΘΠ ,Θ̂Π : [0,T ]→ Rm×n be two given maps, possibly depending on Δ .

(i) For any x ∈ Rn fixed, let XΠ (·) ≡ XΠ (· ;x) be the solution to the following
linear MF-SDE:
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dXΠ(s)=
{[

A(s)−B(s)ΘΠ (s)
]
XΠ(s)

+
[
Ā(s)+B(s)

[
ΘΠ (s)−Θ̂Π (s)

]]
EρΠ (s)[X

Π(s)]
}

ds

+
{[

C(s)−D(s)ΘΠ (s)
]
XΠ (s)

+
[
C̄(s)+D(s)

[
ΘΠ (s)−Θ̂Π (s)

]]
EρΠ (s)[X

Π (s)]
}

dW (s), s ∈ [0,T ],

XΠ (0) = x,

where

ρΠ (s) =
N−1

∑
k=0

tkI[tk,tk+1)(s), s ∈ [0,T ],

and let uΠ (·)≡ uΠ (· ;x) be defined by

(85) uΠ (s) =−ΘΠ (s)XΠ (s)+
[
ΘΠ (s)−Θ̂Π (·)]EρΠ (s)[X

Π (s)], s ∈ [0,T ].

The pair (XΠ (·),uΠ (·)) is called the closed-loop pair associated withΠ and (ΘΠ (·),
Θ̂Π (·)), starting from x.

(ii) For each tk ∈ Π and any uk(·) ∈ U [tk, tk+1], let Xk(·) be the solution to the
following system:⎧⎪⎨⎪⎩

dXk(s) =
[
A(s)Xk(s)+B(s)uk(s)

]
ds+

[
C(s)Xk(s)+D(s)uk(s)

]
dW (s),

s∈ [tk, tk+1],

Xk(tk) = XΠ (tk),

and XΠ
k+1(·) be the solution to the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXΠ
k+1(s)=

{[
A(s)−B(s)ΘΠ (s)

]
XΠ

k+1(s)

+
[
B(s)
[
ΘΠ (s)−Θ̂Π (s)

]]
EρΠ (s)[X

Π
k+1(s)]

}
ds

+
{[

C(s)−D(s)ΘΠ (s)
]
XΠ

k+1(s)

+
[
D(s)

[
ΘΠ(s)−Θ̂Π(s)

]]
EρΠ (s)[X

Π
k+1(s)]

}
dW(s), s∈ [tk+1,T ],

XΠ
k+1(tk+1) = Xk(tk+1).

Denote⎧⎪⎪⎨⎪⎪⎩
Xk(·)⊕XΠ (·)≡ Xk(·)I[tk,tk+1)(·)+XΠ

k+1(·)I[tk+1,T ](·),
uk(·)⊕uΠ (·) = uk(·)I[tk,tk+1)(·)

−{
ΘΠ (·)XΠ

k+1(·)+
[
ΘΠ (·)−Θ̂Π (·)]EρΠ (·)[X

Π
k+1(·)]

}
I[tk+1,T ](·).
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We call (Xk(·)⊕XΠ (·),uk(·)⊕uΠ (·)) a local variation of (XΠ (·),uΠ (·)) on [tk, tk+1].
Suppose the following local optimality condition holds:

JΠk
(
XΠ

k (·),uΠk (·))� JΠk
(
Xk(·)⊕XΠ (·),uk(·)⊕uΠ (·)), ∀uk(·) ∈ U [tk, tk+1].

Then we call (ΘΠ (·),Θ̂Π (·)) a closed-loop Π -equilibrium strategy of Problem
(MF-LQ), and call

(
XΠ (· ;x),uΠ (· ;x)

)
a closed-loop Π -equilibrium pair of Prob-

lem (MF-LQ) for the initial state x.

(iii) If the following holds:

(86) lim
‖Π‖→0

[
‖ΘΠ (·)−Θ(·)‖+‖Θ̂Π (·)−Θ̂(·)‖

]
= 0,

for some Θ ,Θ̂ ∈ C([0,T ];Rm×n), then (Θ(·),Θ̂(·)) is called a closed-loop equilib-
rium strategy of Problem (MF-LQ). For any (t,x) ∈ D , let X̂∗(·)≡ X̂∗(· ; t,x) be the
solution to the following system:

(87)

⎧⎪⎨⎪⎩
dX̂∗(s)=

[
A(s)−B(s)Θ̂(s)

]
X̂∗(s)ds+

[
C(s)−D(s)Θ̂(s)

]
X̂∗(s)dW (s),

s ∈ [t,T ],

X̂∗(t) = x,

and define û∗(·)≡ û∗(· ; t,x) as follows:

(88) û∗(s) =−Θ̂(s)X̂∗(s), s ∈ [t,T ].

Then (t,x) �→ (X̂∗(· ; t,x), û∗(· ; t,x)) is called a closed-loop equilibrium pair flow of
Problem (MF-LQ). Further,

(89) V̂ (t,x) = J̃(t,x; X̂∗(· ; t,x), û∗(· ; t,x)), (t,x) ∈ D

is called a closed-loop equilibrium value function of Problem (MF-LQ).

We point out that (ΘΠ (·),Θ̂Π (·)) and (Θ(·),Θ̂(·)) are independent of the initial
state x ∈ Rn. To state the main result of this paper, we need one more assumption.

(H7) There exists a C̃(·) ∈C([0,T ];Rn×n) such that

(90) C(s) = D(s)C̃(s), s ∈ [0,T ].

Theorem 2. Let (H4)–(H7) hold. Then there exists a unique pair (Γ (· , ·),Γ̂ (· , ·)) of
Sn-valued functions solving the following system of equations:
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(91)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γs(s, t)+Γ (s, t)
[
A(s)−B(s)Θ̂(s)

]
+
[
A(s)−B(s)Θ̂(s)

]%Γ (s, t)+Q(s, t)

+
[
C(s)−D(s)Θ̂(s)

]%Γ (s, t)[C(s)−D(s)Θ̂(s)
]
+Θ̂(s)%R(s, t)Θ̂(s) = 0,

Γ̂s(s, t)+Γ̂ (s, t)
[
A(s)−B(s)Θ̂(s)

]
+
[
A(s)−B(s)Θ̂(s)

]%Γ̂ (s, t)+Q̂(s, t)

+
[
C(s)−D(s)Θ̂(s)

]%Γ (s, t)[C(s)−D(s)Θ̂(s)
]
+Θ̂(s)%R̂(s, t)Θ̂(s) = 0,

0 � t � s � T,

Γ (T, t) = G(t), Γ̂ (T, t) = Ĝ(t), 0 � t � T,

where Θ̂(·) is given by the following:

(92) Θ̂(s) =
[
R̂(s,s)+D(s)%Γ (s,s)D(s)

]−1[B(s)%Γ̂ (s,s)+D(s)%Γ (s,s)C(s)
]
,

s ∈ [0,T ].

The closed-loop equilibrium state process X∗(·) is the solution to the following sys-
tem:

(93)

⎧⎪⎨⎪⎩
dX∗(s) =

[
A(s)−B(s)Θ̂(s)

]
X∗(s)ds+

[
C(s)−D(s)Θ̂(s)

]
X∗(s)dW (s),

s ∈ [0,T ],
X∗(0) = x,

the closed-loop equilibrium control admits the following representation:

(94) u∗(s) =−Θ̂(s)X∗(s), s ∈ [0,T ],

and the closed-loop equilibrium value function is given by the following:

(95) V̂ (t,x) = 〈Γ̂ (t, t)x,x〉, ∀(t,x) ∈ D .

7 Concluding Remarks

Time-inconsistent problems appear frequently in the real world. Two main rea-
sons: time-preferences and risk-preferences. We have formulated various types of
problems, introduced the notions of open-loop and closed-loop equilibrium con-
trol/strategy. For open-loop equilibrium control of general discounting problem, we
presented a Pontryagin’s type maximum principle by standard variational method
modified from those found in [80, 116]. For closed-loop equilibrium strategy of
general discounting problem, we follow the idea of [112] (which is an adaptation of
that in [86]) by introducing a family of multi-person differential games, derived an
equilibrium HJB equation. The procedure has been significantly simplified and the
idea has been much clearly illustrated. Via the equilibrium HJB equation, an closed-
loop equilibrium strategy has been constructed. Further, we considered the mixed
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case of general discounting and nonlinear appearance of conditional expectations.
This can be regarded as the situation that both time-preferences and risk-preferences
appear. For linear quadratic problem, such a situation was studied in [113]. For gen-
eral nonlinear situation, some relevant results can be found in [8, 10, 9]. Our result
presented has quite a different looking, which seems to be more natural, from our
point of view.

We admit that there are many problems left open. Here is a partial list just for the
well-posedness of the equilibrium HJB equation:

(i) When the diffusion coefficient σ(·) depends on the control;

(ii) The case that the map ψ(·) appearing in (57) is not regular;

(iii) The case that σ(·) is possibly degenerate (recall that it was assumed to be
non-degenerate). Is it possible to introduce a proper notion relevant to viscosity
solutions?

It is not hard to list more. We will report our further results in the near future.

Although it is not possible to include all relevant references, we have tried our
best to collect all found ones below.
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1 Introduction

In the past decade, much attention has been devoted to a class of hybrid systems,
namely, regime-switching diffusions. Roughly, such processes can be considered as
a two component process (X(t),Λ(t)), an analog (or continuous state) component
X(t) and a switching (or discrete event) process Λ(t). Some of the representative
works can be found in [14] and [27]. The former dealt with regime-switching diffu-
sions in which the switching process is a continuous-time Markov chain independent
of the Brownian motion, whereas the latter treated processes in which the switch-
ing component depends on the continuous-state component. It has been found that
the discrete event process, taking values in a finite or countable set, can be used to
delineate, for example, random environment or other random factors that are not
represented in the usual diffusion formulation. Seemingly similar to the diffusion
processes, in fact, regime-switching diffusions have very different behavior com-
pared to the usual diffusion processes. For example, it has been demonstrated in
[11, 26] that two stable (resp., unstable) ordinary differential equations can be cou-
pled to produce an unstable (resp., stable) regime-switching system. The consider-
ation of regime-switching diffusions has substantially enlarged the applicability of
stochastic processes for a wide variety of problems ranging from network systems,
multi-agent systems, ecological and biological applications, financial engineering,
risk management, etc.

Continuing on the effort of studying regime-switching diffusions, [3] obtained
maximum principle and Harnack inequalities for switching jump diffusions using
mainly probabilistic arguments, and [4] proceeded further to obtain recurrence and
ergodicity of switching jump diffusions. In another direction, [22] dealt with regime-
switching jump diffusions with countable number of switching values. [17] consid-
ered switching diffusions in which the switching process depends on the past in-
formation of the continuous state and takes values in a countable state space; the
corresponding recurrence and ergodicity was considered in [16].

A standing assumption in the aforementioned references is that the coefficients
of the associated stochastic differential equations are (locally) Lipschitz. While it is
a convenient assumption, it is rather restrictive in many applications. For example,
the diffusion coefficients in the Feller branching diffusion and the Cox-Ingersoll-
Ross model are only Hölder continuous. We refer to Chapters 12 and 13 of [8]
for an introduction to these models. Motivated by these considerations, there has
been much efforts devoted to the study of stochastic differential equations with non-
Lipschitz coefficients. An incomplete list includes [1, 6, 12, 13, 25], among many
others.

While there are many works on diffusions and jump diffusions with non-Lipschitz
coefficients, the related research on regime-switching jump diffusions is relatively
scarce. This work aims to investigate regime-switching jump diffusion processes
with non-Lipschitz coefficients. More precisely, the purpose of this paper is two-
fold: (i) to establish the strong existence and uniqueness result for stochastic dif-
ferential equations associated with regime-switching jump diffusions, in which the
coefficients are non-Lipschitz and the switching component has countably many
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states; and (ii) to derive sufficient conditions for Feller and strong Feller proper-
ties. Our focus is devoted to establishing non-Lipschitz sufficient conditions for the
aforementioned properties.

The rest of the paper is arranged as follows. Examining the associated stochastic
differential equations, we begin to obtain the existence and uniqueness of the solu-
tion of the stochastic differential equations in Section 2. Then Section 3 proceeds
with the study of Feller properties. Section 4 further extends the study to treat strong
Feller properties.

2 Strong Solution: Existence and Uniqueness

We work with (U,U) a measurable space, ν a σ -finite measure on U , and S :=
{1,2, . . .}. Assume that d ≥ 1 is a positive integer, b : Rd ×S �→ Rd , σ : Rd ×S �→
Rd×d , and c : Rd × S×U �→ Rd be Borel measurable functions. Let (X ,Λ) be a
right continuous, strong Markov process with left-hand limits on Rd ×S. The first
component X satisfies the following stochastic differential-integral equation

dX(t) = b(X(t),Λ(t))dt +σ(X(t),Λ(t))dW (t)+
∫

U
c(X(t−),Λ(t−),u)Ñ(dt,du),

(1)
where W is a standard d-dimensional Brownian motion, N is a Poisson random
measure on [0,∞)×U with intensity dt ν(du), and Ñ is the associated compensated
Poisson random measure. The second component Λ is a continuous-time random
process taking values in the countably infinite set S such that

P{Λ(t +Δ) = l|Λ(t) = k,X(t) = x}=
{

qkl(x)Δ +o(Δ), if k �= l,
1+qkk(x)Δ +o(Δ), if k = l,

(2)

uniformly in Rd , provided Δ ↓ 0.
To proceed, we construct a family of disjoint intervals {Δi j(x) : i, j ∈ S} on the

positive half real line as follows

Δ12(x) = [0,q12(x)),

Δ13(x) = [q12(x)),q12(x)+q13(x)),
...

Δ21(x) = [q1(x),q1(x)+q21(x)),

Δ23(x) = [q1(x)+q21(x)),q1(x)+q21(x)+q23(x)),
...

Δ31(x) = [q1(x)+q2(x),q1(x)+q2(x)+q31(x)),
...
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where for convenience, we set Δi j(x) = /0 if qi j(x) = 0, i �= j. Note that for each
x ∈ Rd , {Δi j(x) : i, j ∈ S} are disjoint intervals, and the length of the interval Δi j(x)
is equal to qi j(x). We then define a function h: Rd ×S×R+ → R by

h(x,k,r) = ∑
l∈S

(l − k)1Δkl(x)(r). (3)

That is, for each x ∈ Rd and k ∈ S, we set h(x,k,r) = l − k if r ∈ Δkl(x) for some
l �= k; otherwise h(x,k,r) = 0. Consequently, we can describe the evolution of Λ
using the following stochastic differential equation

Λ(t) =Λ(0)+
∫ t

0

∫
R+

h(X(s−),Λ(s−),r)N1(ds,dr), (4)

where N1 is a Poisson random measure on [0,∞)× [0,∞) with characteristic measure
m(dz), the Lebesgue measure.

For convenience in the subsequent discussion, let us give the infinitesimal gener-
ator A of the regime-switching jump diffusion (X ,Λ)

A f (x,k) := Lk f (x,k)+Q(x) f (x,k), (5)

with a(x,k) := σσT (x,k) and

Lk f (x,k) :=
1
2

tr
(
a(x,k)∇2 f (x,k)

)
+ 〈b(x,k),∇ f (x,k)〉

+
∫

U

(
f (x+ c(x,k,u),k)− f (x,k)−〈∇ f (x,k),c(x,k,u)〉)ν(du),

(6)

Q(x) f (x,k) := ∑
j∈S

qk j(x)[ f (x, j)− f (x,k)]

=
∫
[0,∞)

[ f (x,k+h(x,k,z))− f (x,k)]m(dz).
(7)

Define a metric λ (·, ·) on Rd × S as λ
(
(x,m),(y,n)

)
= |x − y|+ d(m,n), where

d(m,n) = 1{m�=n} is the discrete metric on S. Let B(Rd ×S) be the Borel σ -algebra
on Rd × S. Then (Rd × S,λ (·, ·),B(Rd × S)) is a locally compact and separable
metric space. For the existence and uniqueness of the strong Markov process (X ,Λ)
satisfying system (1) and (4), we make the following assumptions.

Assumption 2.1 There exists a nondecreasing function ζ : [0,∞) �→ [1,∞) that is
continuously differentiable and that satisfies

∫ ∞

0

dr
rζ (r)+1

= ∞, (8)

such that for all x ∈ Rd and k ∈ S,

2
〈
x,b(x,k)

〉
+ |σ(x,k)|2 +

∫
U
|c(x,k,u)|2ν(du)≤ H[|x|2ζ (|x|2)+1], (9)
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qk(x) :=−qkk(x) = ∑
l∈S\{k}

qkl(x)≤ Hk, (10)

∑
l∈S\{k}

( f (l)− f (k))qkl(x)≤ H(1+Φ(x)+ f (k)), (11)

where H is a positive constant,

Φ(x) := exp
{∫ |x|2

0

dr
rζ (r)+1

}
, x ∈ Rd , (12)

and the function f : S �→ R+ is nondecreasing satisfying f (m) → ∞ as m → ∞. In
addition, assume there exists some δ ∈ (0,1] such that

∑
l∈S\{k}

|qkl(x)−qkl(y)| ≤ H|x− y|δ (13)

for all k ∈ S and x,y ∈ Rd .

Assumption 2.2 Assume the following conditions hold.

• If d = 1, then there exist a positive number δ0 and a nondecreasing and concave
function ρ : [0,∞) �→ [0,∞) satisfying

∫
0+

dr
ρ(r)

= ∞ (14)

such that for all k ∈ S, R > 0, and x,z ∈ R with |x|∨ |z| ≤ R and |x− z| ≤ δ0,

sgn(x− z)(b(x,k)−b(z,k))≤ κRρ(|x− z|), (15)

|σ(x,k)−σ(z,k)|2 +
∫

U
|c(x,k,u)− c(z,k,u)|2ν(du)≤ κR|x− z|, (16)

where κR is a positive constant and sgn(a) = 1 if a > 0 and −1 if a ≤ 0. In
addition, for each k ∈ S, the function c satisfies that

the function x �→ x+ c(x,k,u) is nondecreasing for all u ∈U ; (17)

or, there exists some β > 0 such that

|x− z+θ(c(x,k,u)− c(z,k,u))| ≥ β |x− z|, ∀(x,z,u,θ) ∈ R×R×U × [0,1].
(18)

• If d ≥ 2, then there exist a positive number δ0, and a nondecreasing and concave
function ρ : [0,∞) �→ [0,∞) satisfying

0 < ρ(r)≤ (1+ r)2ρ(r/(1+ r)) for all r > 0, and
∫

0+

dr
ρ(r)

= ∞ (19)

such that for all k ∈ S, R > 0, and x,z ∈ Rd with |x|∨ |z| ≤ R and |x− z| ≤ δ0,
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2
〈
x− z, b(x,k)−b(z,k)

〉
+ |σ(x,k)−σ(z,k)|2

+
∫

U
|c(x,k,u)− c(z,k,u)|2ν(du)≤ κRρ(|x− z|2), (20)

where κR is a positive constant.

Remark 2.3 We make some comments concerning Assumptions 2.1 and 2.2. Ex-
amples of functions satisfying (8) include ζ (r) = 1, ζ (r) = logr, and ζ (r) =
logr log(logr) for r large. When ζ (r) = 1, (9) reduces to the usual linear growth
condition. With other choices of ζ , (8) allows super-linear condition for the coeffi-
cients of (1) with respect to the variable x for each k ∈ S. This is motivated by ap-
plications such as Lotka-Volterra models, in which the coefficients have superlinear
growth conditions. Conditions (10) and (11) are imposed so that the Λ component
will not explode in finite time with probability 1; see the proof of Theorem 2.5 for
details.

Examples of functions satisfying (14) or (19) include ρ(r) = r and concave
and increasing functions such as ρ(r) = r log(1/r), ρ(r) = r log(log(1/r)), and
ρ(r) = r log(1/r) log(log(1/r)) for r ∈ (0,δ ) with δ > 0 small enough. When
ρ(r) = r, Assumption 2.2 is just the usual local Lipschitz condition. With other
choices of continuity modularity, Assumption 2.2 allows the drift, diffusion, and
jump coefficients of (1) to be non-Lipschitz with respect to the variable x. This,
in turn, presents more opportunities for building realistic and flexible mathemat-
ical models for a wide range of applications. Indeed, non-Lipschitz coefficients
are present in areas such as branching diffusion in biology, the Cox-Ingersoll-Ross
model in math finance, etc.

It is also worth pointing out that (15), (16), and (20) of Assumption 2.2 only
require the modulus of continuity to hold in a small neighborhood of the diagonal
line x = z in Rd ⊗Rd with |x|∨ |z| ≤ R for each R > 0. This is in contrast to those in
[13] and adds some subtlety in the proof of pathwise uniqueness for (21).

When d = 1, Assumption 2.2 allows the diffusion coefficient σ(·,k) to be locally
Hölder continuous with exponent α ∈ [ 1

2 ,1]. This is the celebrated result in [25].
Such a result was extended to stochastic differential equations with jumps; see, for
example, [7, 12] and [13], among others. In particular, [13] shows that if (17) holds,
the function x �→ ∫

U c(x,k,u)ν(du) can be locally Hölder continuous with exponent
α ∈ [ 1

2 ,1] as well. The continuity assumption (15) on the drift coefficient b(·,k) is
slightly more general than that in [13]. In particular, (15) will be satisfied as long as
b(·,k) is decreasing.

Lemma 2.4 Suppose Assumption 2.2 and (9) hold. Then for each k ∈ S, the stochas-
tic differential equation

X(t) = x+
∫ t

0
b(X(s),k)ds+

∫ t

0
σ(X(s),k)dW (s)+

∫ t

0

∫
U

c(X(s−),k,u)Ñ(ds,du)

(21)
has a unique non-explosive strong solution.



Regime-Switching Jump Diffusions 577

Proof. Condition (9) guarantees that the solution to (21) will not explode in finite
time with probability 1; see, for example, Theorem 2.1 in [24]. When d ≥ 2, the
existence and uniqueness of a strong solution to (21) under Assumption 2.2 follows
from Theorem 2.8 of [24].

When d = 1, we follow the arguments in the proof of Theorem 3.2 of [13] to
show that pathwise uniqueness holds for (21). First, let {an} be a strictly decreasing
sequence of real numbers satisfying a0 = 1, limn→∞ an = 0, and

∫ an−1
an

dr
r = n for each

n ≥ 1. For each n ≥ 1, let ρn be a nonnegative continuous function with support on
(an,an−1) so that

∫ an−1

an

ρn(r)dr = 1 and ρn(r)≤ 2(kr)−1 for all r > 0.

For x ∈ R, define

ψn(x) =
∫ |x|

0

∫ y

0
ρn(z)dzdy. (22)

We can immediately verify that ψn is even and twice continuously differentiable,
with

ψ ′
n(r) = sgn(r)

∫ |r|

0
ρn(z)dz = sgn(r)|ψ ′

n(r)|, (23)

and

|ψ ′
n(r)| ≤ 1, 0 ≤ |r|ψ ′′

n (r) = |r|ρn(|r|)≤ 2
n
, and lim

n→∞
ψn(r) = |r| (24)

for r ∈ R. Furthermore, for each r > 0, the sequence {ψn(r)}n≥1 is nondecreasing.
Note also that for each n ∈ N, ψn, ψ ′

n, and ψ ′′
n all vanish on the interval (−an,an).

Moreover the classical arguments reveal that

1
2
ψ ′′

n (x− z)|σ(x,k)−σ(z,k)|2 +
∫

U
[ψn(x− z+ c(x,k,u)− c(z,k,u))

−ψn(x− z)−ψ ′
n(x− z)(c(x,k,u)− c(z,k,u))]ν(du)

≤ 1
2
· 2

n
κR +

κR

n

(
1
β

∨2
)

≤ K
κR

n
, (25)

for all x,z with |x| ∨ |z| ≤ R and 0 < |x − z| ≤ δ0, where K is a positive constant
independent of R and n. On the other hand, for any x,z ∈ R with |x| ∨ |z| ≤ R and
|x− z| ≤ δ0, it follows from (15) and (23) that

ψ ′
n(x− z)(b(x,k)−b(z,k)) = sgn(x− z)|ψ ′

n(x− z)|(b(x,k)−b(z,k))

≤ κRρ(|x− z|). (26)

Let X̃ and X be two solutions to (21). Denote Δt := X̃(t)−X(t) for t ≥ 0. Assume
|Δ0|= |x̃− x|< δ0 and define

Sδ0 := inf{t ≥ 0 : |Δt | ≥ δ0}= inf{t ≥ 0 : |X̃(t)−X(t)| ≥ δ0}.
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For R > 0, let τR := inf{t ≥ 0 : |X̃(t)| ∨ |X(t)| > R}. Then τR → ∞ a.s. as R → ∞.
Moreover, by Itô’s formula, we have

E[ψn(Δt∧Sδ0
∧τR)] = ψn(|Δ0|)+E

[∫ t∧τR∧Sδ0

0

{
ψ ′

n(Δs)[b(X̃(s),k)−b(X(s),k)]

+
1
2
ψ ′′

n (Δs)[σ(X̃(s),k)−σ(X(s),k)]2

+
∫

U
[ψn(Δs + c(X̃(s),k,u)− c(X̃(s),k,u))−ψn(Δs)

−ψ ′
n(Δs)(c(X̃(s),k,u)− c(X̃(s),k,u)))]ν(du)

}
ds
]
.

Furthermore, using (25) and (26), we obtain

E[ψn(Δt∧Sδ0
∧τR)]≤ ψn(|Δ0|)+E

[∫ t∧τR∧Sδ0

0

(
κRρ(|Δs|)+K

κR

n

)
ds
]

≤ ψn(|Δ0|)+K
κR

n
t +

∫ t

0
κRρ
(
E[|Δs∧τR∧Sδ0

|])ds,

where the second inequality follows from the concavity of ρ and Jensen’s inequality.
Upon passing to the limit as n → ∞, we obtain from the third equation in (24) and
the monotone convergence theorem that

E[|Δt∧Sδ0
∧τR |]≤ |Δ0|+κR

∫ t

0
ρ(E[|Δs∧τR∧Sδ0

|])ds.

When Δ0 = 0, Bihari’s inequality then implies that E[|Δt∧τR∧Sδ0
|] = 0. Hence by

Fatou’s lemma, we have E[|Δt∧Sδ0
|] = 0. This implies that Δt∧Sδ0

= 0 a.s.
On the set {Sδ0 ≤ t}, we have |Δt∧Sδ0

| ≥ δ0. Thus it follows that 0=E[|Δt∧Sδ0
|]≥

δ0P{Sδ0 ≤ t}. Then, we have P{Sδ0 ≤ t} = 0 and hence Δt = 0 a.s. The desired
pathwise uniqueness for (21) then follows from the fact that X̃ and X have right
continuous sample paths. Next similar to the proof of Theorem 5.1 of [13], (21)
has a weak solution, which further yields that the existence and uniqueness of a
non-explosive strong solution to (21). �

Theorem 2.5 Under Assumptions 2.1 and 2.2, for any (x,k) ∈ Rd ×S, the system
given by (1) and (4) has a unique non-explosive strong solution (X ,Λ) with initial
condition (X(0),Λ(0)) = (x,k).

Proof. The proof is divided into two steps. First, we show that (1) and (4) has a
non-explosive solution. The second step then derives the pathwise uniqueness for
(1) and (4). While the proof of the existence of a solution to (1) and (4) use the same
line of arguments as in the proof of Theorem 2.1 of [22], some care are required here
since the assumptions in [22] have been relaxed. Moreover, an error in the proof of
[22] is corrected here. The proof for pathwise uniqueness is more delicate than that
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in [22] since the global Lipschitz conditions with respect to the variable x in [22]
are no longer true in this paper.

Step 1. Let (Ω ,F ,{Ft}t≥0, P) be a complete filtered probability space, on which
are defined a d-dimensional standard Brownian motion B, and a Poisson random
measure N(·, ·) on [0,∞)×U with a σ -finite characteristic measure ν on U . In addi-
tion, let {ξn} be a sequence of independent exponential random variables with mean
1 on (Ω ,F ,{Ft}t≥0, P) that is independent of B and N.

Let k ∈ S and consider the stochastic differential equation

X (k)(t) = x+
∫ t

0
b(X (k)(s),k)ds+

∫ t

0
σ(X (k)(s),k)dW (s)

+
∫ t

0

∫
U

c(X (k)(s−),k,u)Ñ(ds,du).
(27)

Lemma 2.4 guarantees that SDE (27) has a unique non-explosive strong solution
X (k). As in the proof of Theorem 2.1 of [22], we define

τ1 = θ1 := inf
{

t ≥ 0 :
∫ t

0
qk(X (k)(s))ds > ξ1

}
. (28)

Thanks to (10), we have P(τ1 > 0) = 1. We define a process (X ,Λ) on [0,τ1] as

X(t) = X (k)(t) for all t ∈ [0,τ1], and Λ(t) = k for all t ∈ [0,τ1).

Moreover, we define Λ(τ1) ∈ S according to the probability distribution

P{Λ(τ1) = l|Fτ1−}=
qkl(X(τ1−))

qk(X(τ1−))
(1−δkl)1{qk(X(τ1−))>0}+δkl1{qk(X(τ1−))=0},

(29)
for l ∈ S. In general, having determined (X ,Λ) on [0,τn], we let

θn+1 := inf
{

t ≥ 0 :
∫ t

0
qΛ(τn)(X

(Λ(τn))(s))ds > ξn+1

}
, (30)

where

X (Λ(τn))(t) := X(τn)+
∫ t

0
σ(X (Λ(τn))(s),Λ(τn))dB(s)+

∫ t

0
b(X (Λ(τn))(s),Λ(τn))ds

+
∫ t

0

∫
U

c(X (Λ(τn))(s−),Λ(τn),u)Ñ(ds,du).

As before, (10) implies that P{θn+1 > 0}= 1. Then we let

τn+1 := τn +θn+1 (31)

and define (X ,Λ) on [τn,τn+1] by

X(t) = X (Λ(τn))(t − τn) for t ∈ [τn,τn+1], Λ(t) =Λ(τn) for t ∈ [τn,τn+1), (32)
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and

P
{
Λ(τn+1) = l|Fτn+1−

}
= δΛ(τn),l1{qΛ(τn)(X(τn+1−))=0}

+
qΛ(τn),l(X(τn+1−))

qΛ(τn)(X(τn+1−))
(1−δΛ(τn),l)1{qΛ(τn)(X(τn+1−))>0}.

(33)
As argued in [22], this “interlacing procedure” uniquely determines a solution
(X ,Λ) ∈ Rd ×S to (1) and (4) for all t ∈ [0,τ∞), where

τ∞ = lim
n→∞

τn. (34)

Since the sequence τn is strictly increasing, the limit τ∞ ≤ ∞ exists.
Next we show that τ∞ = ∞ a.s. To this end, fix (X(0),Λ(0)) = (x,k) ∈ Rd ×S as

in Step 1 and for any m ≥ k+1, denote by τ̃m := inf{t ≥ 0 :Λ(t)≥ m} the first exit
time for the Λ component from the finite set {0,1, . . . ,m−1}. Let Ac := {ω ∈ Ω :
τ∞ > τ̃m for all m ≥ k+1} and A := {ω ∈Ω : τ∞ ≤ τ̃m0 for some m0 ≥ k+1}. Then
we have

P{τ∞ = ∞}= P{τ∞ = ∞|Ac}P(Ac)+P{τ∞ = ∞|A}P(A). (35)

Let Am :=
{
ω ∈ Ω : τ∞ ≤ τ̃m

}
for m ≥ k+ 1. Then A =

⋃∞
m=k+1 Am, and Ac =⋂∞

m=k+1 Ac
m. Also denote Bk+1 := Ak+1 and let

Bm := Am \Am−1 =
{
ω ∈Ω : τ̃m−1 < τ∞ ≤ τ̃m

}
for m ≥ k+2. Clearly, {Bm}∞

m=k+1 is a sequence of disjoint sets and we have

A :=
∞⋃

m=k+1

Bm. (36)

We proceed to show that P{τ∞ = ∞|Bm} = 1 for each m. Note that on the set
Bm, Λ(τn)≤ m for all n = 1,2, . . . Consequently, using (10) in Assumption 2.1, we
have qΛ(τn)(X

(Λ(τn))(s))≤ Hm for all n and s ≥ 0. On the other hand, thanks to the
definition of θ1 in (28), for any ε > 0, we have

ξ1 <
∫ θ1+ε

0
qk(X (k)(s))ds.

Consequently, it follows that

1Bmξ1 ≤ 1Bm

∫ θ1+ε

0
qk(X (k)(s))ds ≤ 1BmHm(θ1 + ε).

In the same manner, we have from (30) that

ξn <
∫ θn+ε/2n

0
qΛ(τn−1)(X

(Λ(τn−1))(s))ds,
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and hence

1Bmξn ≤ 1Bm

∫ θn+ε/2n

0
qΛ(τn−1)(X

(Λ(τn−1))(s))ds≤ 1BmHm(θn+ε/2n), ∀n= 1,2, . . .

Summing over these inequalities and noting that τ∞ = ∑∞
n=1 θn, we arrive at

1Bm

∞

∑
n=1

ξn ≤ 1BmHm(τ∞ +2ε). (37)

By virtue of Theorem 2.3.2 of [18], we have ∑∞
n=1 ξn = ∞ a.s. Therefore it follows

that P(∑∞
n=1 ξn = ∞|Bm) = 1. Then (37) implies that

P{τ∞ = ∞|Bm} ≥ P

{
∞

∑
n=1

ξn = ∞
∣∣Bm

}
= 1,

as desired. Consequently, we can use (36) to compute

P{τ∞ = ∞|A}= P{τ∞ = ∞,A}
P(A)

=
P{τ∞ = ∞,

⋃∞
m=k+1 Bm}

P(A)

=
∑∞

m=k+1P{τ∞ = ∞,Bm}
P(A)

(38)

=
∑∞

m=k+1P{τ∞ = ∞|Bm}P(Bm)

P(A)

=
∑∞

m=k+1P(Bm)

P(A)
= 1.

If P(A) = 1 or P(Ac) = 0, then (35) and (38) imply that P{τ∞ = ∞} = 1 and
the proof is complete. Therefore, it remains to consider the case when P(Ac) > 0.
Denote τ̃∞ := limm→∞ τ̃m. Note that Ac = {τ∞ ≥ τ̃∞}. Thus P{τ∞ = ∞|Ac} ≥ P{τ̃∞ =
∞|Ac} and hence (35) holds if we can show that

P{τ̃∞ = ∞|Ac}= 1. (39)

Assume on the contrary that (39) were false, then there would exist a T > 0 such
that

δ := P{τ̃∞ ≤ T,Ac}> 0.

Let f : S �→ R+ be as in Assumption 2.1. Then we have for any m ≥ k+1,

f (k) = E[e−H(T∧τ∞∧τ̃m) f (Λ(T ∧ τ∞ ∧ τ̃m))]

+E

[∫ T∧τ∞∧τ̃m

0
e−Hs

(
H f (Λ(s))−∑

l∈S
qΛ(s),l(X(s))[ f (l)− f (Λ(s))]

)
ds
]
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≥ E[e−H(T∧τ∞∧τ̃m) f (Λ(T ∧ τ∞ ∧ τ̃m))]

+E

[∫ T∧τ∞∧τ̃m

0
e−Hs[H f (Λ(s))−H(1+Φ(X(s))+ f (Λ(s)))]ds

]
≥ E[e−H(T∧τ∞∧τ̃m) f (Λ(T ∧ τ∞ ∧ τ̃m))],

where the first inequality above follows from (11) in Assumption 2.1. Consequently,
we have

eHT f (k)≥ E[ f (Λ(T ∧ τ∞ ∧ τ̃m))]≥ E[ f (Λ(τ̃m))1{τ̃m≤T∧τ∞}]

≥ f (m)P{τ̃m ≤ T ∧ τ∞} ≥ f (m)P{τ̃m ≤ T ∧ τ∞,Ac}
≥ f (m)P{τ̃∞ ≤ T ∧ τ∞,Ac},

(40)

where the third inequality follows from the facts that Λ(τ̃m)≥ m and that f is non-
decreasing, and the last inequality follows from the fact that τ̃m ↑ τ̃∞. Recall that
Ac = {τ∞ ≥ τ̃∞}. Thus

P{τ̃∞ ≤ T ∧ τ∞,Ac}= P{τ̃∞ ≤ T ∧ τ∞, τ̃∞ ≤ τ∞}
≥ P{τ̃∞ ≤ T, τ̃∞ ≤ τ∞}= P{τ̃∞ ≤ T,Ac}= δ > 0.

Using this observation in (40) yields ∞ > eHT f (k)≥ f (m)δ → ∞ as m → ∞, thanks
to the fact that f (m) → ∞ as m → ∞, which is a contradiction. This establishes
(39) and hence P(τ∞ = ∞) = 1. In other words, the interlacing procedure uniquely
determines a solution (X ,Λ) = (X (x,k),Λ (x,k)) for all t ∈ [0,∞).

Next we show that the solution (X ,Λ) to the system (1) and (4) is non-explosive
a.s. Consider the function V (x,k) := 1+Φ(x)+ f (k), where the functionsΦ : Rd �→
R+ of (12) and f : S �→R+ are defined in Assumption 2.1. Note that V (x,k)→ ∞ as
|x|∨ k → ∞ thanks to Assumption 2.1. Using the definition of A of (5), we have

A V (x,k) = LkΦ(x)+Q(x) f (k).

Moreover, detailed computations using (8) and (9) reveal that LkΦ(x)≤ HΦ(x) for
all x ∈Rd and k ∈ S. On the other hand, (11) implies that Q(x) f (k)≤ H(1+Φ(x)+
f (k)). Combining these estimates, we obtain A V (x,k)≤ 2HV (x,k). This, together
with Itô’s formula, shows that the process {e−2HtV (X(t),Λ(t)), t ≥ 0} is a nonneg-
ative local supermartingale. Then we can apply the optional sampling theorem to
the process {e−2HtV (X(t),Λ(t)), t ≥ 0} to argue that P{limn→∞ Tn = ∞}= 1, where
Tn := inf{t ≥ 0 : |X(t)|∨Λ(t)≥ n}. This shows that the solution (X ,Λ) has no finite
explosion time a.s.

Step 2. Suppose (X ,Λ) and (X̃ ,Λ̃) are two solutions to (1) and (4) starting from
the same initial condition (x,k) ∈ Rd ×S. Then we have

X̃(t)−X(t) =
∫ t

0
[b(X̃(s),Λ̃(s))−b(X(s),Λ(s))]ds

+
∫ t

0
[σ(X̃(s),Λ̃(s))−σ(X(s),Λ(s))]dW (s)
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+
∫

U
[c(X̃(s−),Λ̃(s−),z)− c(X(s−),Λ(s−),z)]Ñ(ds,du),

and

Λ̃(t)−Λ(t) =
∫ t

0

∫
R+

[h(X̃(s−),Λ̃(s−),z)−h(X(s−),Λ(s−),z)]N1(ds,dz).

Let ζ := inf{t ≥ 0 : Λ(t) �= Λ̃(t)} be the first time when the discrete compo-
nents differ from each other. Let us also define TR := inf{t ≥ 0 : |X̃(t)| ∨ |X(t)| ∨
Λ̃(t)∨Λ(t) ≥ R} for R > 0 and Sδ0 := inf{t ≥ 0 : |X̃(t)− X(t)| ≥ δ0}. We have
Λ(t) = Λ̃(t) for t ∈ [0,ζ ). To simplify notation, let us define Δt := X̃(t)− X(t).
Then from the proof of Theorem 2.6 of [24], we have E[H(|Δt∧ζ∧Sδ0

|)] = 0 for

d ≥ 2, where H(r) := r2

1+r2 , r ≥ 0. When d = 1, the proof of Lemma 2.4 reveals that
E[|Δt∧ζ∧Sδ0

|] = 0 and hence E[H(|Δt∧ζ∧Sδ0
|)] = 0. Note that on the set {Sδ0 ≤ t∧ζ},

|Δt∧ζ∧Sδ0
| ≥ δ0. Also we can readily check that H is an increasing function. Thus,

it follows that

0 = E[H(|Δt∧ζ∧Sδ0
|)]≥ E[H(|Δt∧ζ∧Sδ0

|)1{Sδ0
≤t∧ζ}]≥ H(δ0)P{Sδ0 ≤ t ∧ζ}.

This implies that P{Sδ0 ≤ t ∧ζ}= 0. Consequently, we have

E[H(|Δt∧ζ |)] = E[H(|Δt∧ζ |)1{Sδ0
≤t∧ζ}]+E[H(|Δt∧ζ |)1{Sδ0

>t∧ζ}]

≤ P{Sδ0 ≤ t ∧ζ}+E[H(|Δt∧ζ∧Sδ0
|)1{Sδ0

>t∧ζ}]

≤ 0.

It follows that E[|Δt∧ζ |] = E[|X̃(t ∧ζ )−X(t ∧ζ )|] = 0. Then we have

E[|X̃(t ∧ζ )−X(t ∧ζ )|δ ] = 0, (41)

where δ ∈ (0,1] is the Hölder constant in (13).
Note that ζ ≤ t if and only if Λ̃(t ∧ζ )−Λ(t ∧ζ ) �= 0. Therefore, it follows that

P{ζ ≤ t}= E[1{Λ̃(t∧ζ )−Λ(t∧ζ ) �=0}]

= E

[∫ t∧ζ

0

∫
R+

(
1{Λ̃(s−)−Λ(s−)+h(X̃(s−),Λ(s−),z)−h(X(s−),Λ(s−),z)�=0}

−1{Λ̃(s−)−Λ(s−)�=0}
)
m(dz)ds

]
= E

[∫ t∧ζ

0

∫
R+

1{h(X̃(s−),Λ(s−),z)−h(X(s−),Λ(s−),z) �=0}m(dz)ds
]

≤ E

[∫ t∧ζ

0
∑

l∈S,l �=Λ(s−)

|qΛ(s−),l(X̃(s−))−qΛ(s−),l(X(s−))|ds
]
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≤ HE

[∫ t∧ζ

0
|X̃(s−))−X(s−)|δds

]
≤ H

∫ t

0
E[|X̃(s∧ζ )−X(s∧ζ )|δ ]ds = 0,

where the second inequality follows from (13). In particular, we have

E[1{Λ̃(t) �=Λ(t)}]≤ P{ζ ≤ t}= 0. (42)

Now we can compute

E[H(|X̃(t)−X(t)|)] = E[H(|X̃(t)−X(t)|)1{ζ>t}]+E[H(|X̃(t)−X(t)|)1{ζ≤t}]

= E[H(|X̃(t ∧ζ )−X(t ∧ζ )|)1{ζ>t}]+E[1 ·1{ζ≤t}]

≤ E[H(|X̃(t ∧ζ )−X(t ∧ζ )|)]+0
= 0.

Thus P{X̃(t) = X(t)} = 1. This, together with (42), implies that P{(X̃(t),Λ̃(t)) =
(X(t),Λ(t))}= 1 for all t ≥ 0. Since the sample paths of (X ,Λ) are right continuous,
we obtain the desired pathwise uniqueness result. �

Example 2.6 Let us consider the following SDE

dX(t) = b(X(t),Λ(t))dt +σ(X(t),Λ(t))dW (t)

+
∫

U
c(X(t−),Λ(t−),u)Ñ(dt,du), X(0) = x ∈ R3,

(43)

where W is a 3-dimensional standard Brownian motion, Ñ(dt,du) is a compen-
sated Poisson random measure with compensator dt ν(du) on [0,∞)×U , in which
U = {u ∈R3 : 0 < |u|< 1} and ν(du) := du

|u|3+α for some α ∈ (0,2). The Λ compo-
nent in (43) takes value in S= {1,2, . . .} and is generated by Q(x) = (qkl(x)), with

qkl(x) = k
2l · |x|2

1+|x|2 for x ∈R3 and k �= l ∈ S. Let qk(x) =−qkk(x) = ∑l �=k qkl(x). The
coefficients of (43) are given by

b(x,k) =

⎛⎜⎝−x1/3
1 − kx3

1

−x1/3
2 − kx3

2

−x1/3
3 − kx3

3

⎞⎟⎠, c(x,k,u) = c(x,u) =

⎛⎜⎝γx2/3
1 |u|

γx2/3
2 |u|

γx2/3
3 |u|

⎞⎟⎠,

and

σ(x,k) =

⎛⎜⎜⎜⎜⎝
x2/3

1√
2
+1

√
k x2

2
3

√
k x2

3
3√

k x2
1

3
x2/3

2√
2
+1

√
k x2

3
3√

k x2
1

3

√
k x2

2
3

x2/3
3√

2
+1

⎞⎟⎟⎟⎟⎠,

in which γ is a positive constant so that γ2 ∫
U |u|2ν(du) = 1

2 .
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Note that σ and b grow very fast in the neighborhood of ∞ and they are Hölder
continuous with orders 2

3 and 1
3 , respectively. Nevertheless, the coefficients of (43)

still satisfy Assumptions 2.2 and 2.1 and hence a unique non-exploding strong so-
lution of (43) exists. The verifications of these assumptions are as follows.

2
〈
x,b(x,k)

〉
+ |σ(x,k)|2 +

∫
U
|c(x,k,u)|2ν(du)

= 2
3

∑
j=1

x j
(−x1/3

j − kx3
j
)
+

3

∑
j=1

(
1
2

x4/3
j +

2k
9

x4
j +

√
2x2/3

j +1
)

+
∫

U
γ2|u|2

3

∑
j=1

x4/3
j ν(du)

=−16k
9

3

∑
j=1

x4
j −

3

∑
j=1

x4/3
j +

√
2

3

∑
j=1

x2/3
j +3.

Thus (9) of Assumption 2.1 hold. Furthermore, (10) is trivially satisfied. Consider
the function f (l) = l, l ∈ S. We have

∑
l �=k

( f (l)− f (k))qkl(x) = ∑
l �=k

(l − k)
k
2l

|x|2
1+ |x|2 ≤ ∑

l �=k
l

k
2l

|x|2
1+ |x|2 ≤ k ∑

l∈S

l
2l = 2k,

which yields (11). If x,y ∈ R3, we obtain

∑
l �=k

|qkl(x)−qkl(y)|= ∑
l �=k

l
2k

∣∣∣∣ |x|2
1+ |y|2 − |x|2

1+ |y|2
∣∣∣∣= ∑

l �=k

l
2k

||x|− |y||(|x|+ |y|)
(1+ |x|2)(1+ |y|2)

≤ ∑
l �=k

l
2k |x− y|

( |x|
1+ |x|2 +

|y|
1+ |y|2

)
≤ 2|x− y|.

This establishes (13) and therefore verifies Assumption 2.1.
For the verification of Assumption 2.2, we compute

2
〈
x− y,b(x,k)−b(y,k)

〉
+ |σ(x,k)−σ(y,k)|2 +

∫
U
|c(x,k,u)− c(y,k,u)|2ν(du)

=−2
3

∑
j=1

(x j − y j)(x
1/3
j − y1/3

j + kx3
j − ky3

j)+
1
2

3

∑
j=1

(x2/3
j − y2/3

j )2

+
2k
9

3

∑
j=1

(x2
j − y2

j)
2 +

∫
U

3

∑
j=1
γ2(x2/3

j − y2/3
j )2|u|2ν(du)

=−16k
9

3

∑
j=1

(x j − y j)
2
[(

x j +
7

16
y j

)2

+
207
256

y2
j

]
−

3

∑
j=1

(
x1/3

j − y1/3
j

)2(x2/3
j + y2/3

j

)
.

Obviously this implies (20) and thus verifies Assumption 2.2.
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3 Feller Property

In Section 2, we established the existence and uniqueness of a solution in the strong
sense to system (1) and (4) under Assumptions 2.1 and 2.2. The solution (X ,Λ) is
a two-component càdlàg strong Markov process. In this section, we study the Feller
property for such processes. For any f ∈Cb(R

d ×S), by the continuity of f and the
right continuity of the sample paths of (X ,Λ), we can use the bounded convergence
theorem to obtain limt↓0Ex,k[ f (X(t),Λ(t))] = f (x,k). Therefore the process (X ,Λ)
satisfies the Feller property if the semigroup Pt f (x,k) := Ex,k[ f (X(t),Λ(t))], f ∈
Bb(R

d × S) maps Cb(R
d × S) into itself. Obviously, to establish the Feller prop-

erty, we only need the distributional properties of the process (X ,Λ). Thus in lieu
of the strong formulation used in Section 2, we will assume the following “weak
formulation” throughout the section.

Assumption 3.1 For any initial data (x,k)∈Rd ×S, the system of stochastic differ-
ential equations (1) and (4) has a non-exploding weak solution (X (x,k),Λ (x,k)) and
the solution is unique in the sense of probability law.

Assumption 3.2 There exist a positive constant δ0 and an increasing and concave
function ρ : [0,∞) �→ [0,∞) satisfying (19) such that for all R > 0, there exists a
constant κR > 0 such that

∑
l∈S\{k}

|qkl(x)−qkl(z)| ≤ κRρ(F(|x− z|)), for all k ∈ S and |x|∨ |z| ≤ R (44)

where F(r) := r
1+r for r ≥ 0, and either (i) or (ii) below holds:

(i) d = 1. Then (15) and (17) hold.
(ii) d ≥ 2. Then∫

U

[|c(x,k,u)− c(z,k,u)|2 ∧ (4|x− z| · |c(x,k,u)− c(z,k,u)|)]ν(du)

+ 2
〈
x− z,b(x,k)−b(z,k)

〉
+ |σ(x,k)−σ(z,k)|2 ≤ 2κR|x− z|ρ(|x− z|),

(45)

for all k ∈ S, x,z ∈ Rd with |x|∨ |z| ≤ R and |x− z| ≤ δ0.

Theorem 3.3 Under Assumptions 3.1 and 3.2, the process (X ,Λ) possesses the
Feller property.

Remark 3.4 Feller and strong Feller properties for regime-switching (jump) diffu-
sions have been investigated in [20, 22, 27], among others. A standard assumption
in these references is that the coefficients satisfy the Lipschitz condition. In con-
trast, Theorem 3.3 establishes Feller property for system (1) and (4) under local
non-Lipschitz conditions. When d = 1, the result is even more remarkable. Indeed,
Feller property is derived with only very mild conditions on b(·,k), c(·,k,u), and
Q(x), and with virtually no condition imposed on σ(·,k).
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We will use the coupling method to prove Theorem 3.3. To this end, let us first
construct a coupling operator Ã for A : For f (x, i,z, j) ∈ C2

c (R
d ×S×Rd ×S), we

define
Ã f (x, i,z, j) :=

[
Ω̃d + Ω̃j + Ω̃s

]
f (x, i,z, j), (46)

where Ω̃d, Ω̃j, and Ω̃s are defined as follows. For x,z ∈ Rd and i, j ∈ S, we set
a(x, i) = σ(x, i)σ(x, i)′ and

a(x, i,z, j) =
(

a(x, i) σ(x, i)σ(z, j)′
σ(z, j)σ(x, i)′ a(z, j)

)
, b(x, i,z, j) =

(
b(x, i)
b(z, j)

)
.

Then we define

Ω̃d f (x, i,z, j) :=
1
2

tr
(
a(x, i,z, j)D2 f (x, i,z, j)

)
+ 〈b(x, i,z, j),D f (x, i,z, j)〉, (47)

Ω̃j f (x, i,z, j) :=
∫

U

[
f (x+ c(x, i,u), i,z+ c(z, j,u), j)− f (x, i,z, j)

−〈Dx f (x, i,z, j),c(x, i,u)〉−〈Dz f (x, i,z, j),c(z, j,u)〉]ν(du),
(48)

where D f (x, i,z, j) = (Dx f (x, i,z, j),Dz f (x, i,z, j))′ is the gradient and D2 f (x, i,z, j)
the Hessian matrix of f with respect to the x,z variables, and

Ω̃s f (x, i,z, j) := ∑
l∈S

[qil(x)−q jl(z)]+( f (x, l,z, j)− f (x, i,z, j))

+∑
l∈S

[q jl(z)−qil(x)]+( f (x, i,z, l)− f (x, i,z, j))

+∑
l∈S

[qil(x)∧q jl(z)]( f (x, l,z, l)− f (x, i,z, j)).

(49)

For convenience of later presentation, for any function f : Rd ×Rd �→ R, let f̃ :
Rd ×S×Rd ×S �→ R be defined by f̃ (x, i,z, j) := f (x,z). Now we denote

L̃k f (x,z) = (Ω̃ (k)
d + Ω̃ (k)

j ) f (x,z) := (Ω̃d + Ω̃j) f̃ (x,k,z,k),∀ f ∈C2
c (R

d ×Rd)

for each k ∈ S. We proceed to establish the following lemma.

Lemma 3.5 Suppose Assumption 3.2 holds. Consider the functions

g(x,k,z, l) := 1{k �=l}, and f (x,k,z, l) := F(|x− z|)+1{k �=l}, (50)

for (x,k,z, l) ∈ Rd ×S×Rd ×S. Then we have

Ã g(x,k,z, l)≤ κRρ(F(|x− y|)), for all k, l ∈ S and x,z ∈ Rd with |x|∨ |z| ≤ R,
(51)

and
Ã f (x,k,z,k)≤ 2κRρ(F(|x− z|)), (52)
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for all k ∈ S and x,z ∈ Rd with |x|∨ |z| ≤ R and 0 < |x− z| ≤ δ0; in which κR is the
same positive constant as in Assumption 3.2.

Proof. Consider the function g(x,k,z, l) := 1{k �=l}. It follows directly from the defi-

nition that Ã g(x,k,z, l) = Ω̃sg(x,k,z, l)≤ 0 when k �= l. When k = l, we have from
(44) that

Ã g(x,k,z, l) = Ω̃sg(x,k,z,k)

= ∑
i∈S

[qki(x)−qki(z)]+(1{i �=k} −1{k �=k})

+∑
i∈S

[qki(z)−qki(x)]+(1{i �=k} −1{k �=k})+0

≤ ∑
i∈S,i �=k

|qki(x)−qki(z)| ≤ κRρ(F(|x− y|)). (53)

Hence (51) holds for all k, l ∈ S and x,z ∈ Rd with |x| ∨ |z| ≤ R. On the other hand,
when d ≥ 2, (45) and Lemma 4.5 of [24] reveals that

L̃kF(|x− z|) = (Ω̃ (k)
d + Ω̃ (k)

j )F(|x− z|)≤ κRρ(F(|x− z|))

and hence

Ã f (x,k,z,k) = L̃kF(|x− z|)+ Ω̃sg(x,k,z,k)≤ 2κRρ(F(|x− z|)), (54)

for all k ∈ S, x,z ∈ Rd with |x|∨ |z| ≤ R and 0 < |x− z| ≤ δ0, where L̃k is the basic
coupling operator for Lk of (6).

We next show that (52) holds when d = 1. Indeed, taking advantage of the fact
that d = 1, we see that

Ω̃ (k)
d F(|x− z|)
= F ′(|x− z|)sgn(x− z)(b(x,k)−b(z,k))+F ′′(|x− z|)(σ(x,k)−σ(z,k))2.

But since F ′(r) = 1
(1+r)2 and F ′′(r) =− 2

(1+r)3 < 0 for r ≥ 0, we have from (15) that

Ω̃ (k)
d F(|x− z|)≤ 1

(1+ |x− z|)2 sgn(x− z)(b(x,k)−b(z,k))

≤ κRρ(|x− z|)
(1+ |x− z|)2 ≤ κRρ(F(|x− z|)), (55)

for all x,z ∈R with |x|∨|z| ≤ R and 0< |x−z| ≤ δ0, where we used the first equation
in (19) to derive the last inequality.

On the other hand, since the function F is concave on [0,∞), we have F(r)−
F(r0)≤ F ′(r0)(r−r0) for all r,r0 ∈ [0,∞). Applying this inequality with r0 = |x−z|
and r = |x− z+ c(x,k,u)− c(z,k,u)| yields
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F(|x− z+ c(x,k,u)− c(z,k,u)|)−F(|x− z|)
≤ F ′(|x− z|)(|x− z+ c(x,k,u)− c(z,k,u)|− |x− z|).

Furthermore, since by (17), the function x �→ x+ c(x,k,u) is increasing, it follows
that for x > z

F(|x− z+ c(x,k,u)− c(z,k,u)|)−F(|x− z|)
≤ F ′(|x− z|)(x− z+ c(x,k,u)− c(z,k,u)− (x− z))

= F ′(|x− z|)(c(x,k,u)− c(z,k,u)).

As a result, we can compute

Ω̃ (k)
j F(|x− z|)
=

∫
U
[F(|x− z+ c(x,k,u)− c(z,k,u)|)−F(|x− z|)
−F ′(|x− z|)sgn(x− z)(c(x,k,u)− c(z,k,u))]ν(du)

≤
∫

U
[F ′(|x− z|)(c(x,k,u)− c(z,k,u))−F ′(|x− z|)(c(x,k,u)− c(z,k,u))]ν(du)

= 0,

for all x > z. By symmetry, we also have Ω̃ (k)
j F(|x− z|)≤ 0 for x < z. These obser-

vations, together with (53) and (55), imply that

Ã f (x,k,z,k) = (Ω̃ (k)
d + Ω̃ (k)

j )F(|x− z|)+ Ω̃sg(x,k,z,k)≤ 2κRρ(F(|x− z|)),

for all k ∈ S, x,z ∈R with |x|∨|z| ≤ R and 0 < |x−z| ≤ δ0 This completes the proof.
�

Proof (Proof of Theorem 3.3). It is straightforward to verify that the function f
of (50) defines a bounded metric on Rd ×S. Let (X̃(·),Λ̃(·), Z̃(·), Ξ̃(·)) denote the
coupling process corresponding to the coupling operator Ã with initial condition
(x,k,z,k), in which δ0 > |x−z|> 0. Define ζ := inf{t ≥ 0 : Λ̃(t) �= Ξ̃(t)}. Note that
P{ζ > 0} = 1. Suppose |x− z| > 1

n0
for some n0 ∈ N. For n ≥ n0 and R > |x| ∨ |z|,

define

Tn := inf
{

t ≥ 0 : |X̃(t)− Z̃(t)|< 1
n

}
,

τR := inf{t ≥ 0 : |X̃(t)|∨ |Z̃(t)|∨ Λ̃(t)∨ Ξ̃(t)> R},

and

Sδ0 := inf{t ≥ 0 : |X̃(t)− Z̃(t)|> δ0}.

We have τR → ∞ and Tn → T a.s. as R → ∞ and n → ∞, respectively, in which T
denotes the first time when X̃(t) and Z̃(t) coalesce. To simplify notation, denote
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Δ̃(s) := X̃(s)− Z̃(s). By Itô’s formula and (54), we have

E[F(|Δ̃(t ∧Tn ∧Sδ0 ∧ τR ∧ζ )|)]
≤ E
[

f
(
X̃(t ∧Tn ∧Sδ0 ∧ τR ∧ζ ),Λ̃(t ∧Tn ∧Sδ0 ∧ τR ∧ζ ),

Z̃(t ∧Tn ∧Sδ0 ∧ τR ∧ζ ), Ξ̃(t ∧Tn ∧Sδ0 ∧ τR ∧ζ ))]
= F(|x− z|)+E

[∫ t∧Tn∧Sδ0
∧τR∧ζ

0
Ã f (X̃(s),Δ(s), Z̃(s), Ξ̃(s))ds

]
≤ F(|x− z|)+2κRE

[∫ t∧Tn∧Sδ0
∧τR∧ζ

0
ρ(F(|Δ̃(s)|))ds

]
.

Now passing to the limit as n → ∞, it follows from the bounded and monotone
convergence theorems that

E[F(|Δ̃(t ∧T ∧Sδ0 ∧ τR ∧ζ )|)]

≤ F(|x− z|)+2κRE

[∫ t∧T∧Sδ0
∧τR∧ζ

0
ρ(F(|Δ̃(s)|))ds

]
≤ F(|x− z|)+2κRE

[∫ t

0
ρ(F(|Δ̃(s∧T ∧Sδ0 ∧ τR ∧ζ )|))ds

]
≤ F(|x− z|)+2κR

∫ t

0
ρ
(
E[F(|Δ̃(s∧T ∧Sδ0 ∧ τR ∧ζ )|)])ds,

where we used the concavity of ρ and Jensen’s inequality to obtain the last inequal-
ity. Then using Bihari’s inequality, we have

E[F(|Δ̃(t ∧T ∧Sδ0 ∧ τR ∧ζ )|)]≤ G−1(G◦F(|x− z|)+2κRt),

where the function G(r) :=
∫ r

1
ds
ρ(s) is strictly increasing and satisfies G(r)→−∞ as

r ↓ 0. In addition, since the function F is strictly increasing, we have

F(δ0)P{Sδ0 < t ∧T ∧ τR ∧ζ} ≤ E[F(|Δ̃(t ∧T ∧Sδ0 ∧ τR ∧ζ )|)1{Sδ0
<t∧T∧τR∧ζ}]

≤ E[F(|Δ̃(t ∧T ∧Sδ0 ∧ τR ∧ζ )|)]
≤ G−1(G◦F(|x− z|)+2κRt).

This implies that

P{Sδ0 < t ∧T ∧ τR ∧ζ} ≤ G−1(G◦F(|x− z|)+2κRt)
F(δ0)

=
1+δ0

δ0
G−1(G◦F(|x− z|)+2κRt).

For any t ≥ 0 and ε > 0, since limR→∞ τR = ∞ a.s., we can choose R > 0 suffi-
ciently large so that

P(t ∧ζ > τR)≤ P(t > τR)< ε. (56)
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Then it follows that

E[F(|Δ̃(t ∧ζ )|)]
= E[F(|Δ̃(t ∧ζ ∧ τR)|)1{t∧ζ≤τR}]+E[F(|Δ̃(t ∧ζ )|)1{t∧ζ>τR}]

≤ E[F(|Δ̃(t ∧ζ ∧T ∧ τR)|)]+ ε
= E[F(|Δ̃(t ∧ζ ∧T ∧ τR)|)1{Sδ0

<t∧T∧τR∧ζ}]

+E[F(|Δ̃(t ∧ζ ∧T ∧ τR)|)1{Sδ0
≥t∧T∧τR∧ζ}]+ ε

≤ P{Sδ0 < t ∧T ∧ τR ∧ζ}+E[F(|Δ̃(t ∧T ∧ τR ∧Sδ0 ∧ζ )|)]+ ε

≤ 1+2δ0

δ0
G−1(G◦F(|x− z|)+2κRt)+ ε. (57)

Passing to the limit, we obtain

lim
x−z→0

E[F(|Δ̃(t ∧ζ )|)]≤ 0+ ε = ε. (58)

Since ε > 0 is arbitrary, it follows that limx−z→0E[F(|X̃(t ∧ζ )− Z̃(t ∧ζ )|)] = 0.
Choose R > 0 as in (56). Then we use (51) and (57) to compute

P{ζ ≤ t}= P{ζ ≤ t,τR < t}+P{ζ ≤ t,τR ≥ t}
≤ P{τR < t}+E

[
1{Λ̃(t∧ζ∧τR)�=Ξ̃(t∧ζ∧τR)}

]
< ε+E[g(X̃(t ∧ζ ∧ τR),Λ̃(t ∧ζ ∧ τR), Z̃(t ∧ζ ∧ τR), Ξ̃(t ∧ζ ∧ τR))]

= ε+E

[∫ t∧ζ∧τR

0
Ã g(X̃(s),Λ̃(s), Z̃(s), Ξ̃(s))ds

]
≤ ε+E

[∫ t∧ζ∧τR

0
κRρ(F(|Δ̃(s)|))ds

]
≤ ε+E

[∫ t∧τR

0
κRρ(F(|Δ̃(s∧ζ )|))ds

]
≤ ε+E

[∫ t

0
κRρ(F(|Δ̃(s∧ζ )|))ds

]
≤ ε+κR

∫ t

0
ρ(E[F(|Δ̃(s∧ζ )|)])ds

≤ ε+κR

∫ t

0
ρ
(

1+2δ0

δ0
G−1(G◦F(|x− z|)+2κRs)+ ε

)
ds

≤ ε+κRtρ
(

1+2δ0

δ0
G−1(G◦F(|x− z|)+2κRt)+ ε

)
.

Passing to the limit as x− z → 0, we obtain

limsup
x−z→0

P{ζ ≤ t} ≤ ε+κRtρ(ε). (59)
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Finally, we combine (58) and (59) to obtain

E[ f (X̃(t),Λ̃(t), Z̃(t), Ξ̃(t))]

= E
[
F(|X̃(t)− Z̃(t)|)+1{Λ̃(t)�=Ξ̃(t)}

]
= E
[
F(|X̃(t)− Z̃(t)|)1{ζ>t}+F(|X̃(t)− Z̃(t)|)1{ζ≤t}+1{Λ̃(t) �=Ξ̃(t)}

]
≤ E
[
F(|X̃(t ∧ζ )− Z̃(t ∧ζ )|)]+2P{ζ ≤ t}

→ ε+2(ε+κRtρ(ε)), as |x− z| → 0.

Since ε > 0 is arbitrary and limr↓0ρ(r) = 0, it follows that

lim
x−z→0

E[ f (X̃(t),Λ̃(t), Z̃(t), Ξ̃(t))] = 0.

Recall that f is a bounded metric on Rd ×S. Hence it follows that

Wf (P(t,x,k, ·),P(t,z,k, ·))≤ E[ f (X̃(t),Λ̃(t), Z̃(t), Ξ̃(t))]→ 0 as x → z,

where for two probability measures μ and ν on Rd × S, the Wasserstein distance
Wf (μ,ν) is defined as

Wf (μ,ν) := inf
{

∑
i, j∈S

∫
f (x, i,y, j)π(dx, i,dy, j),π ∈ C (μ,ν)

}
,

here C (μ,ν) is the collection of coupling measures for μ and ν . Therefore the
desired Feller property follows from Theorem 5.6 of [2]. �

4 Strong Feller Property

Assumption 4.1 For each k ∈ S and x ∈Rd , the stochastic differential equation (27)
has a non-exploding weak solution X (k) with initial condition x and the solution is
unique in the sense of probability law.

Assumption 4.2 The process X (k) is strong Feller.

Assumption 4.3 Assume that

H := sup{qk(x) : x ∈ Rd ,k ∈ S}< ∞, (60)

and that there exists a positive constant κ such that

0 ≤ qkl(x)≤ κl3−l for all x ∈ Rd and k �= l ∈ S. (61)

Let us briefly comment on the above assumptions. The existence and unique-
ness of weak solution to (27) is related to the study of martingale problem for Lévy
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type operators; see, for example, [9] and [21]. Condition (60) in Assumption 4.2 is
stronger than (10) in Assumption 2.1. We need such a uniform bound in (60) so that
we can establish the series representation for the resolvent of the regime-switching
jump diffusion (X ,Λ) in Lemma 4.7, which, in turn, helps to establish the strong
Feller property for (X ,Λ). In general one can obtain the strong Feller property for
X (k) under suitable non-degenerate conditions ([10]) and certain regularity condi-
tions such as (local) Lipschitz conditions of the coefficients. The following non-
Lipschitz sufficient condition for strong Feller property was established in [24].

Lemma 4.4 Suppose that Assumptions 4.1 holds. In addition, for any given k ∈ S,
suppose that for each R > 0, there exist positive constants λR and κR such that for
all x,z ∈ Rd with |x|∨ |z| ≤ R, we have〈

ξ ,a(x,k)ξ
〉≥ λR|ξ |2, ∀ξ ∈ R,

and∫
U

[|c(x,k,u)− c(z,k,u)|2 ∧ (4|x− z| · |c(x,k,u)− c(z,k,u)|)]ν(du)

+2
〈
x− z,b(x,k)−b(z,k)

〉
+ |σλR(x,k)−σλR(z,k)|2 ≤ 2κR|x− z|ϑ(|x− z|)

whenever |x− z| ≤ δ0, where δ0 is a positive constant, ϑ is a nonnegative function
defined on [0,δ0] satisfying limr→0ϑ(r) = 0, and σλR(x,k) is the unique symmet-
ric nonnegative definite matrix-valued function such that σλR(x,k)

2 = a(x,k)−λRI.
Then the process X (k) of (27) is strong Feller continuous.

Next for each (x,k) ∈ Rd ×S, as in [19, Section 8.2], we kill the process X (k) at
rate (−qkk):

Ek[ f (X̃
(k)
x (t))] = Ek

[
f (X (k)

x (t))exp
{∫ t

0
qkk(X

(k)
x (s))ds

}]
= E(x,k)[t < τ; f (X (k)(t))], f ∈Bb(R

d),

(62)

to get a subprocess X̃ (k), where τ := inf{t ≥ 0 : Λ(t) �= Λ(0)}. Equivalently, X̃ (k)

can be defined as X̃ (k)(t) = X (k)(t) if t < τ and X̃ (k)(t) = ∂ if t ≥ τ , where ∂ is
a cemetery point or a coffin state added to Rd as in [19, p. 145]. Note that in the
above, to get the killed process X̃ (k) from the original process X (k), the killing rate
is just the jumping rate of Λ from state k. Namely, the killing time is just the first
switching time τ . To proceed, we denote the transition probability families of the
process X (k) and the killed process X̃ (k) by {P(k)(t,x,A) : t ≥ 0,x ∈Rd ,A ∈B(Rd)}
and {P̃(k)(t,x,A) : t ≥ 0,x ∈ Rd ,A ∈B(Rd)}, respectively.

Lemma 4.5 Under Assumptions 4.1, 4.2, and 4.3, for each k ∈ S, the killed process
X̃ (k) has strong Feller property.

Proof. Let {P(k)
t } and {P̃(k)

t } denote the transition semigroups of X (k) and X̃ (k),
respectively. To prove the strong Feller property X̃ (k), we need only prove that for
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any given bounded measurable function f on Rd , P̃(k)
t f (z) is continuous with respect

to z for all t > 0. To this end, for fixed t > 0 and 0 < s < t, set gs(z) := P̃(k)
t−s f (z).

Clearly, the function gs(·) is bounded and measurable, see the Corollary to Theorem
1.1 in [5]. By the strong Feller property of X (k), P(k)

s gs ∈Cb(R
d).

To proceed, by the Markov property, we have that

P̃(k)
t f (x) = E

(x)
k

[
f (X (k)(t))exp

{∫ t

0
qkk(X (k)(u))du

}]
= E

(x)
k

[
exp

{∫ s

0
qkk(X (k)(u))du

}

×E
(X(k)(s))
k

[
f (X (k)(t − s))exp

{∫ t−s

0
qkk(X (k)(u))du

}]]
.

(63)

Meanwhile, we also have that

P(k)
s gs(x) = P(k)

s P̃(k)
t−s f (x) = E

(x)
k

[
P̃(k)

t−s f (X (k)(s))
]

= E
(x)
k

[
E
(X(k)(s))
k

[
f (X (k)(t − s))exp

{∫ t−s

0
qkk(X (k)(u))du

}]]
.

(64)

Recall from Assumption 4.2 that +∞ > H ≥ − inf{qkk(x) : (x,k) ∈ R2d × S} and
qkk(x)≤ 0, and so

0 ≤ 1− exp
{∫ s

0
qkk(X (k)(u))du

}
≤ (1− e−Hs). (65)

Thus, it follows from (63), (64) and (65) that

|P(k)
s gs(x)− P̃(k)

t f (x)| ≤ (1− e−Hs)‖ f‖→ 0 uniformly as s → 0, (66)

where ‖ · ‖ denotes the uniform (or supremum) norm. Combining this with the fact
that P(k)

s gs ∈ Cb(R
d) implies that P̃(k)

t f ∈ Cb(R
d), and so the desired strong Feller

property follows. �

The following lemma was proved in [23].

Lemma 4.6 Let Ξ be a right continuous strong Markov process and q : Rd �→ R a
nonnegative bounded measurable function. Denote by Ξ̃ the subprocess of Ξ killed
at rate q with lifetime ζ :

E[ f (Ξ̃ (z)(t))] := E
[
t < ζ ; f (Ξ (z)(t))

]
= E

[
f (Ξ (z)(t))exp

{
−
∫ t

0
q(Ξ (z)(s))ds

}]
.

(67)
Then for any constant α > 0 and nonnegative function φ on Rd, we have

E[e−αζ φ(Ξ̃ (z)(ζ−))] = GΞ̃
α (qφ)(z), (68)
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where {GΞ̃
α ,α > 0} denotes the resolvent for the killed process Ξ̃ .

For each k ∈ S, let {G̃(k)
α ,α > 0} be the resolvent for the generator Lk + qkk.

Denote by {Gα ,α > 0} the resolvent for the generator A defined in (5). Let

G̃α =

⎛⎜⎜⎜⎜⎝
G̃(1)
α 0 0 . . .

0 G̃(2)
α 0 . . .

0 0 G̃(3)
α . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎠ and Q0(x) = Q(x)−

⎛⎜⎜⎜⎝
q11(x) 0 0 . . .

0 q22(x) 0 . . .
0 0 q33(x) . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ .

Lemma 4.7 Suppose that Assumptions 4.1, 4.2, and 4.3 hold. Then there exists a
constant α1 > 0 such that for any α ≥ α1 and any f (·,k) ∈Bb(R

d) with k ∈ S,

Gα f = G̃α f +
∞

∑
m=1

G̃α
(
Q0G̃α

)m f . (69)

Proof. Let f (z,k)≥ 0 on R2d ×S. Applying the strong Markov property at the first
switching time τ and recalling the construction of (Z,Λ), we obtain

Gα f (z,k) = Ez,k

[∫ ∞

0
e−αt f (Z(t),Λ(t))dt

]
= Ez,k

[∫ τ

0
e−αt f (Z(t),k)dt

]
+Ez,k

[∫ ∞

τ
e−αt f (Z(t),Λ(t))dt

]
= G̃(k)

α f (z,k)+Ez,k

[
e−ατGα f (Z(τ),Λ(τ))

]
= G̃(k)

α f (z,k)+ ∑
l∈S\{k}

Ez,k

[
e−ατ

(
− qkl

qkk

)
(Z(τ−))Gα f (Z(τ−), l)

]
= G̃(k)

α f (z,k)+ ∑
l∈S\{k}

G̃(k)
α (qklGα f (·, l))(z),

where the last equality follows from (68) in Lemma 4.6. Hence we have

Gα f (z,k) = G̃(k)
α f (·,k)(z)+ G̃(k)

α

(
∑

l∈S\{k}
qklGα f (·, l)

)
(z). (70)

Repeating the above argument, the second term on the right-hand side of (70) equals

G̃(k)
α

(
∑

l∈S\{k}
qklG̃

(l)
α f (·, l)

)
(z)+ G̃(k)

α

(
∑

l∈S\{k}
qklG̃

(l)
α

(
∑

l1∈S\{l}
qll1Gα f (·, l1)

))
(z).

Hence, we further obtain that for any fixed k ∈ S and any integer m ≥ 1,
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Gα f (z,k) =
m

∑
i=0
ψ(k)

i (z)+R(k)
m (z), (71)

where

ψ(k)
0 = G̃(k)

α f (·,k),

ψ(k)
1 = G̃(k)

α

(
∑

l∈S\{k}
qklG̃

(l)
α f (·, l)

)
= G̃(k)

α

(
∑

l∈S\{k}
qklψ

(l)
0

)
,

ψ(k)
i = G̃(k)

α

(
∑

l∈S\{k}
qklψ

(l)
i−1

)
for i ≥ 1,

and

R(k)
m = G̃(k)

α

(
∑

l1∈S\{k}
qk,l1G̃(l1)

α

(
∑

l2∈S\{l1}
ql1,l2G̃(l2)

α

(
. . .

(
∑

lm−1∈S\{lm−2}
qlm−2,lm−1

G̃(lm−1)
α

(
∑

lm∈S\{lm−1}
qlm−1,lmGα f (·, lm)

)))))
.

We have

‖ψ(k)
0 ‖=

∥∥∥∥E·,k
[∫ τ

0
e−αt f (Z(t),k)dt

]∥∥∥∥≤ ‖ f‖
α

. (72)

Note that the same calculation reveals that (72) in fact holds for all l ∈ S, ‖ψ(l)
0 ‖ ≤

‖ f‖
α . Thanks to Assumption 4.3, qkl(z)≤ κl

3l for all l �= k and x ∈ Rd . Consequently,
we can compute

‖ψ(k)
1 ‖ ≤ ∑

l∈S\{k}
‖G̃(k)

α (qklψ
(l)
0 )‖ ≤ ∑

l∈S\{k}

κl
3l · ‖ψ

(l)
0 ‖
α

≤ ∑
l∈S\{k}

κl
3l · ‖ f‖

α2 =
3κ
4α

· ‖ f‖
α

.

(73)

As before, we observe that (73) actually holds for all l ∈ S. Similarly, we can use
induction to show that

‖ψ(k)
i ‖ ≤

(
3κ
4α

)i

· ‖ f‖
α

, for i ≥ 2, (74)

and

‖R(k)
m ‖ ≤

(
3κ
4α

)m+1

· ‖ f‖
α

. (75)
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Now let α1 := 3κ+1
4 and α ≥α1. Then we have for each k ∈ S, Gα f (·,k)=∑∞

i=0ψ
(k)
i ,

which clearly implies (69). The lemma is proved. �

Lemma 4.7 establishes an explicit relationship of the resolvents for (Z,Λ) and
the killed processes Z̃(k), k ∈ S. This, together with the strong Feller property for
the killed processes Z̃(k), k ∈ S (Lemma 4.5), enables us to derive the strong Feller
property for (Z,Λ) in the following theorem.

Theorem 4.8 Suppose that Assumptions 3.1, 4.1, 4.2, and 4.3 hold. Then the pro-
cess (X ,Λ) has the strong Feller property.

Proof. The proof is almost identical to that of Theorem 5.4 in [23] and for brevity,
we shall only give a sketch here. Denote the transition probability family of Markov
process (X ,Λ) by {P(t,(x,k),A) : t ≥ 0,(x,k) ∈ Rd ×S,A ∈ B(Rd ×S)}. Then it
follows from Lemma 4.7 that

P(t,(x,k),A×{l}) = δkl P̃(k)(t,x,A)

+
+∞

∑
m=1

∫
· · ·

∫
0<t1<···<tm<t

∑
l1∈S\{l0},l2∈S\{l1},...,lm∈S\{lm−1},

l0=k, lm=l

∫
Rd

· · ·
∫
Rd

P̃(l0)(t1,x,dx1)

×ql0l1(x1)P̃(l1)(t2 − t1,x1,dx2) · · ·qlm−1lm(xm)P̃(lm)(t − tm,xm,A)dt1dt2 . . .dtm,
(76)

where δkl is the Kronecker symbol in k, l, which equals 1 if k = l and 0 if k �= l.
By Lemma 4.5, we know that for every k ∈ S, X̃ (k) has the strong Feller property.
Therefore, in view of Proposition 6.1.1 in [15], we derive that P̃(k)(t,x,A) and every
term in the series on the right-hand side of (76) are lower semicontinuous with
respect to x whenever A is an open set in B(Rd). Note that S is a countably infinite
set and has discrete metric. Therefore it follows that the left-hand side of (76) is
lower semicontinuous with respect to (x,k) for every l ∈ S whenever A is an open
set in B(Rd). Consequently, (X ,Λ) has the strong Feller property (see Proposition
6.1.1 in [15] again). The theorem is proved. �

Remark 4.9 [20] proves that for a state-independent regime-switching diffusion
processes, the strong Feller property for each subdiffusion implies the strong Feller
property for regime-switching diffusion processes. This work further proves this
implication for state-dependent regime-switching jump diffusion processes.

Remark 4.10 The strong Feller property for regime-switching jump diffusions was
also studied in [22], where it is assumed that ν(U)< ∞ is a finite measure, i.e., the
jump part is modeled by a compound Poisson process. In addition, a finite-range
condition for the switching component is placed in that paper and is key to the
analyses there. Here these two restrictions are removed.
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