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 Introduction

Assessment of CRLM resection has rapidly changed over the years, as more lesions 
are deemed operable due to the expanding criteria for resectability [1]. Liver resec-
tion with curative intent necessitates addressing or removing all detectable disease 
sites. Preoperative imaging is essential to determine the location and extent of 
CRLM, proximity of lesions to vascular structures, predicting future liver remnant 
and identifying extrahepatic disease [2]. Moreover, full imaging assessment such as 
with MRI is important prior to chemotherapy, as treatment can change the appear-
ance of metastatic lesions and affect hepatic parenchyma reducing sensitivity of CT 
and/or PET for CRLM evaluation [3]. In this chapter, we discuss the integral role of 
current imaging techniques in the management of patients with potentially resect-
able CRLM.

 Role of Imaging in Detection of CRLM

 Ultrasound

Conventional ultrasound (US) is widely used for the assessment of CRLM due to its 
low cost, absence of radiation exposure, and wide availability. US provides a pooled 
sensitivity of 63% and specificity of 97.6% for CRLM detection [4]. However, it is 
the addition of contrast-enhanced US (CEUS) with agents that has dramatically 
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increased the sensitivity for CRLM detection up to 80–90%, which is comparable to 
that by computed tomography [5, 6]. US contrast agents consist of tiny microbub-
bles that carry a strong safety profile and can be used in patients with impaired renal 
function [7]. In patients who have contraindications to iodinated contrast material, 
CEUS is a viable alternative and superior to non-contrast-enhanced CT in the char-
acterization of focal liver pathology [8].

On US, CRLM often appear as hypoechoic lesions and less commonly may have 
similar or higher echogenicity relative to normal hepatic parenchyma [9]. CRLM, 
which are not visualized during preoperative imaging assessment, may be detected 
with the use of real-time ultrasound intraoperatively [10]. Intraoperative US (IOUS) 
also facilitates localization of deep-seated, nonpalpable lesions while mapping 
major hepatic veins, providing real-time guidance during surgery [10]. Patients with 
multiple CRLM benefit greatly from IOUS due to its high specificity (94–98%) and 
detection rate of tumors missed on prior imaging [11]. Additionally, contrast- 
enhanced IOUS may identify small tumor residuals, which is important to ensure 
microscopically margin-negative resection [12].

While some limitations regarding lesion characterization can be overcome with 
CEUS, accurate diagnosis is highly examiner dependent and requires experienced 
operator training [13]. Evaluation of multiple lesions simultaneously is also chal-
lenging with CEUS [14]. Neoadjuvant chemotherapy (NAC) can significantly alter 
liver echotexture (lesion and parenchyma) interfering with sensitivity and specific-
ity of US [14]. Other challenges include limited spatial resolution of transcutaneous 
probes, assessing patients with obese habitus, high-lying diaphragm, and uncoop-
erative patients [13].

 Computed Tomography (CT)

Multidetector CT (MDCT) is the preferred modality for CLRM assessment in the 
USA due to its ability to image the liver and potential sites of extrahepatic metasta-
ses (e.g., chest, nodes, and peritoneum) in one examination [15]. MDCT is also 
widely available, reliable, and able to accommodate patients with body habitus limi-
tations (e.g., obesity). Improved resolution and faster scanning speed with MDCT 
has enabled imaging of the entire abdomen and pelvis during a single breath hold, 
effectively eliminating respiratory motion artifacts [16]. Acquisition of thin slices 
allows for reconstruction of high-quality images in different planes and rendering 
reformatted images are now integral to any CT protocol [17]. The use of iodinated 
contrast media (ICM) to adequately detect and characterize CRLM has been advo-
cated and is recommended by the current national comprehensive cancer network 
(NCCN) guidelines [18]. A recent meta-analysis reported 82% sensitivity and 
73.5% specificity for CRLM detection using contrast-enhanced CT (CECT) [19] 
(Table 5.1). Oral contrast media is desirable but not mandatory, as it helps with bet-
ter evaluation of extrahepatic pathologies, such as eliminating false-positive perito-
neal metastases.
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Dynamic contrast-enhanced CT (CECT) involves multi-phase acquisition includ-
ing true non-contrast, arterial, portal-venous and delayed phase. CRLM are typi-
cally hypovascular lesions and appear hypoattenuating compared to normal liver 
tissue with heterogeneous enhancement on portal venous phase [17]. Since CRLM 
are hypovascular, arterial phase is typically used for presurgical planning [20]. On 
delayed images, CRLM can show wash-out contrary to benign pathologies (e.g., 
hemangiomas) [17]. Newer generation dual-energy CT scanners (DECT), which are 
becoming mainstream, have further bolstered the role of CT with novel post-pro-
cessing techniques that improve lesion conspicuity by enhancing the liver- to- lesion 
contrast [21, 22] (Fig. 5.1).

Limitations of CT include low sensitivity for detecting small lesions (<10 mm) 
and identifying CRLM in patients receiving NAC (Tables 5.1 and 5.2) [19, 23]. 
NAC significantly decreases the sensitivity of CRLM detection as treated lesions 
shrink in size [3]. Furthermore, NAC may also cause liver steatosis which reduces 
hepatic parenchymal attenuation leading to diminished lesion to liver contrast [24]. 
Patients with a history of iodinated contrast media allergies or impaired renal func-
tion are not ideal candidates for CECT [25]. In addition, ionizing radiation exposure 
for oncologic patients who often require repeated imaging can be of concern. These 
limitations can be addressed to some extent with DECT scanners, which can mini-
mize radiation exposure by eliminating the need for true non-contrast images and 
allow for reduced contrast media dose while maintaining high image quality [26–
28]. Moreover, DECT applications are empowering CT with better diagnostic capa-
bilities for small lesion detection and characterization [29, 30].

Table 5.1 Diagnostic 
performance of CECT, 
EOB-MRI, and PET-CT for 
CRLM detection

Modality Diagnostic performance
CT Sensitivity 82%

(74.0–88.1)
Specificity 73.5%

(53.7–86.9)
EOB-MRI Sensitivity 93.1%

(88.4–96.0)
Specificity 87.3%

(77.5–93.2)
PET-CT Sensitivity 74.1%

(62.1–83.3)
Specificity 93.9%

(83.9–97.8)

Reported 95% confidence interval for mean sensitivity and spec-
ificity in a meta-analysis between 2004 and 2016 [19].
This table compares the diagnostic performance of MDCT, 
gadoxetate disodium-enhanced MRI, and FDG PET-CT for diag-
nosing CRLM. The meta- analysis found that MRI was signifi-
cantly more sensitive than CT (p  <  0.001) and PET-CT 
(p < 0.001). PET-CT had the highest specificity, but not statisti-
cally significant compared to MRI (p = 0.59). MRI and PET-CT 
had significantly higher specificity than CT (P  =  0.01 and 
P  <  0.001). EOB  =  Gadoxetate disodium (Gd-EOB-DTPA, 
Eovist in the USA)
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Fig. 5.1 Dual-Energy CT to improve lesion conspicuity. An 85-year-old male with multiple 
CRLM. Post-contrast axial reconstructions of material density-iodine in gray scale (a) and color- 
overlay (b) show better conspicuity of a hepatic lesion (arrows), which is hard to visualize on 
conventional single-energy CT image (c)

Table 5.2 Diagnostic performance of CECT and CEMRI for CRLM detection according to size

Modality Diagnostic performance
Lesion size
<10 mm ≥10 mm

CECT Sensitivity PL 47.3% 86.7%
(40–55) (78–93)

CE-MRI Sensitivity PL 60.2%, p < 0.006 89%
(54–66) (82–94)

Reported 95% confidence interval for mean sensitivity on a per lesion basis in a meta-analysis 
between 1990 and 2010 [23]. PL per-lesion
This table compares the diagnostic performance of contrast enhanced CT (CECT) and contrast- 
enhanced MRI (CE-MRI) for diagnosing CRLM based on lesion size. For lesions less than 10 mm, 
MRI had significantly higher sensitivity than CT (p = 0.006). There was no statistical significance 
between CT and MRI for lesions of size 10 mm or more (p = 0.617)
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 Magnetic Resonance Imaging (MRI)

MRI is the modality of choice for evaluating CRLM and has proven to be highly 
effective for hepatic parenchymal assessment. Compared to CT, MR images offer 
superb soft tissue contrast, which improves diagnoses of intrahepatic lesions due to 
greater liver-to-lesion contrast difference (Fig. 5.2) [17]. MRI also excels in detect-
ing small lesions (<10 mm) and identifying CRLM in patients undergoing NAC or 
have hepatic steatosis (Tables 5.2 and 5.3) [19, 23, 31]. Dynamic contrast-enhanced 
MRI (CE-MRI) with hepatobiliary agents and diffusion-weighted imaging (DWI) 
has further improved CRLM detection and characterization of indeterminate lesions, 
especially for small lesions [32–35]. Gadoxetate disodium (Gd-EOB-DTPA, Eovist 
in the USA) is the most commonly used hepatobiliary agent with MRI for CRLM 
detection with a pooled sensitivity of 93.1% (Table 5.3) [19].

a c

b d

Fig. 5.2 Value of MRI for detection of metastasis in background of fatty liver. A 58-year-old male 
with CRLM and diffuse hepatic steatosis. Post-contrast T1-weighted axial MR images (a, b) reveal 
peripherally enhancing hypointense lesions (arrows) that are not discernible on post-contrast axial 
CT (c, d) images due to uniformly low attenuation of background liver parenchyma suggesting 
diffuse hepatic steatosis

5 Role of Imaging in the Management of Patients with Potentially Resectable CRLM



54

MRI sequences for CRLM assessment usually include a combination of 
T1-weighted (T1W), T2-weighted (T2W), and diffusion-weighted images (DWI) 
[36]. CRLM typically appear hypointense in precontrast T1W images and hyperin-
tense in T2W images [36]. On dynamic CE-MRI, CRLM appear mostly hypoin-
tense, similar to CECT [36]. Eovist allows for further assessment of intrahepatic 
lesions with hepatobiliary (HB) phase (20 minutes after contrast injection) [37]. On 
HB phase, normal hepatocytes appear hyperintense due to eovist uptake, whereas 
CRLM do not retain contrast remaining hypointense and appear more conspicuous 
[37]. On DWI, CRLM become hyperintense compared to the normal liver due to dif-
fusion restriction [38]. However, some benign lesions may also appear hyperintense 
(T2 shine-through effect) on DWI and can be differentiated from CRLM by the use 
of apparent diffusion coefficients (the “ADC” map) [35] (Fig. 5.3).

Limitations of MRI include contraindications such as imaging patients with 
metal implants and claustrophobia. Increased patient compliance such as longer 
breath holds and lying still for a lengthy period is required to avoid motion-related 
imaging artifacts, which can adversely affect diagnostic image quality [36]. 
Additionally, DWI have inherent limitations due to low spatial resolution and poor 
signal-to-noise ratio [39]. However, technological advancements in MRI scanners 
with more dedicated software can address some of these limitations to improve 
image quality [39].

Table 5.3 Diagnostic performance of CECT, EOB-MRI, and PET-CT for CRLM detection 
according to chemotherapy status

Modality Diagnostic performance
Chemotherapy status
Without NAC With NAC or mixed

CECT Sensitivity 88% 78%, p < 0.001
(80–96) (69–87)

Specificity 76% 72%
(50–100) (49–94)

EOB-MRI Sensitivity 96% 89%, p < 0.001
(93–99) (82–95)

Specificity 88% 86%
(78–98) (74–97)

PET-CT Sensitivity 79% 72%
(63–95) (58–85)

Specificity 92% 95%
(79–100) (88–100)

Reported 95% confidence interval for mean sensitivity and specificity in a meta-analysis between 
2004 and 2016 [19].
This table compares the diagnostic performance of MDCT, gadoxetate disodium-enhanced MRI, 
and FDG PET-CT for diagnosing CRLM based on neoadjuvant chemotherapy (NAC) status. The 
meta-analysis found that neoadjuvant chemotherapy significantly decreased the sensitivity for CT 
(78% vs. 88%) and MRI (89% vs. 96%), although it did not significantly decrease the sensitivity 
for PET-CT (P = 0.19)
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Fig. 5.3 Advantage of DWI for distinguishing benign vs. malignant lesions. A 45-year-old female 
with CRLM. Post-contrast axial T1 weighted (a) reveal tiny hypoenhancing lesions (red arrow) in 
segment VIII and a larger nodular peripherally enhancing lesion in segment VII (yellow arrow). All 
lesions appear hyperintense on DWI (b). Corresponding ADC map (c) shows segment VIII lesions 
as hypointense suggestive of restricted diffusion that indicates metastasis, whereas the segment VII 
lesion remains hyperintense suggestive of T2 shine through indicating benign etiology

 Positron Emission Tomography (PET)

PET with 18-fluoride deoxyglucose (FDG) analogue is a whole-body imaging 
technique providing molecular and metabolic information for CRC evaluation 
[40]. The main advantage of PET imaging is the superior detection of extrahe-
patic metastases, which can eliminate unnecessary surgical intervention 
(Table 5.4) [40–43]. FDG-PET has also demonstrated great value in clarifying 
equivocal findings for the presence of metastases on CT or MRI [40–43]. On 
FDG-PET, diagnosis of metastases is based on focal FDG uptake exceeding the 
uptake of the surrounding tissue (Fig. 5.4) [44]. Currently, FDG-PET is routinely 
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Fig. 5.4 Role of PET-CT. A 46-year-old male with CRLM. PET (a) shows moderate FDG uptake 
by lung nodules in the left upper lobe and one in the right lower lobe, which is suggestive of extra-
hepatic metastases (arrows). Axial CT scan (b) and its corresponding FDG-PET (c) showing the 
pulmonary nodules

Table 5.4 Advantages and disadvantages of CT, MRI and PET imaging for CRLM assessment

Modality Advantages Disadvantages
CT Quick, reliable method for initial 

screening and detection of CRLM
High-quality images can be generated for 
vascular assessment when planning for 
resection

Small lesion detectability and 
characterization (<10 mm)
Poor lesion conspicuity in hepatic 
steatosis
Low sensitivity for detecting CRLM in 
patients receiving NAC
Radiation exposure concern

MRI Detecting small lesions (<10 mm)
Superior lesion conspicuity higher tissue 
contrast and availability of hepatocyte 
contrast agents

DWI and ADC maps have inherent image 
quality limitations
Patient-related factors (claustrophobia, 
uncooperative, metallic prosthesis)

PET Detecting extrahepatic metastases and 
disease recurrence
Determining management if conventional 
imaging is equivocal for the presence of 
metastatic disease

Small lesion detectability and 
characterization (<10 mm)
Hypermetabolic processes may lead to 
false-positive FDG uptake.
Patients receiving NAC within 4 weeks 
of their PET scan may have high 
false-negative results
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performed with CT (PET-CT) to improve localization of lesions and detection of 
CRLM [44, 45]. Through the detection of additional liver CRLM and/or extrahe-
patic disease, PET-CT was shown to change planned surgical management in 
24% of patients [46]. FDG-PET with MRI (PET-MRI) is a relatively newer tech-
nique that has shown great potential in CRLM detection [47, 48]. In a recent 
comparative study, PET-MRI had significantly higher sensitivity and diagnostic 
accuracy (92.2% and 96.1%, respectively) than PET-CT (67.8% and 82.4%, 
respectively) [49]. This is likely due to the inherent advantages of MRI in dif-
ferentiating tissue contrast and lesion detection. However, literature data regard-
ing diagnostic performance are limited, as PET-MRI is available only in a few 
highly specialized centers.

Limitations with PET imaging include reduced sensitivity for small lesion 
detection and assessing lesions in patients receiving NAC [50, 51]. The physio-
logic hepatic parenchymal uptake of FDG along with the inherent low resolution 
of PET can limit the sensitivity for small lesion detection [51]. Additionally, 
patients receiving NAC within 4 weeks of their PET scan may have high false-
negative results due to reduction in lesion size and tumor metabolic activity [50]. 
Hypermetabolic processes such as chronic infection or inflammation may also 
lead to false-positive FDG uptake [52]. Studies have reported that 5–8% of CRC 
patients are falsely upstaged by PET-CT preoperatively [53]. Patient compliance 
factor such as respiratory motion is an additional challenge when performing 
PET-CT [54].

 Role of Imaging in Surgical Planning for CRLM

 Vascular Assessment

The localization of CRLM relative to vascular structures is important to determine 
feasibility and planning of hepatic resection. A preoperative vascular “road map” 
can identify anomalous or aberrant hepatic vascular supply to avoid inadvertent 
injury to the liver (Fig. 5.5). In addition, knowledge of the vascular map aids in 
determining the best hepatectomy plane. CT angiography (CTA) is preferred over 
MR angiography, especially for complex hepatic resection due to rapid acquisition, 
less susceptibility to motion artifacts, and thin collimation [55]. High-quality multi-
planar reconstruction (MPR) and three-dimensional images can be obtained with 
CT to display the liver vascular anatomy in any desired plane [55]. The proximity of 
liver lesions to the hepatic vasculature can then be illustrated to decide the best sur-
gical approach [56].

5 Role of Imaging in the Management of Patients with Potentially Resectable CRLM



58

 Liver Volumetry

A crucial factor for planning surgical resection is predicting the future liver 
remnant (FLR) volume to avoid risk of hepatic insufficiency and subsequent 
mortality [57]. Preoperative estimation of the FLR is used to determine whether 
the functional reserve is enough to meet metabolic demands of the liver after 
surgery [57]. Three- dimensional reconstruction images can be used to generate 
precise volume measurements of the liver lobes [57, 58]. Approximately 25–30% 
and 40% of the preoperative liver volume should be preserved for those with 
normal and abnormal parenchyma (e.g., steatosis, fibrosis), respectively [59]. 
When FLR is deemed inadequate and CRLM is unresectable, portal vein embo-
lization (PVE) can be performed. PVE induces hypertrophy in the remaining 
liver to maximize the remnant liver volume and increase resectability rate with 
high clinical success (Fig. 5.6) [60]. A recent meta-analysis showed that 96.1% 
of patients who undergo PVE develop sufficient liver lobe hypertrophy [60]. CT 
performed 1 month following embolization can then estimate any increase in 
FLR [61]. Any remaining CRLM lesions in the non-resected lobe can be treated 
with other methods such as radiofrequency ablation (Fig. 5.7) [62]. An area of 
high density or signal intensity on non- contrast CT and thin regular peripheral 
rim enhancement are expected after ablative therapy. Complete non-enhance-
ment of the ablated lesions is considered evidence of full tumor necrosis at 
subsequent follow-up.

Fig. 5.5 Image post 
processing for Vascular 
Mapping. A 36-year-
old male with 
CRLM. Coronal 
reformatted CT 
angiography in 
maximum intensity 
projection (MIP) 
reconstruction shows 
replaced right hepatic 
artery (RHA) arising 
from the superior 
mesenteric artery 
(SMA). LHA left 
hepatic artery, SPL A 
splenic artery, GDA 
gastroduodenal artery
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Fig. 5.7 Imaging of ablation zone. A 56-year-old male status pre and post left hepatectomy for 
CRLM. Post-contrast CT in axial (a) and coronal (b) planes show multiple liver metastases in both 
lobes of the liver. Left hepatectomy was performed and right lobe lesions in segment VII were 
treated with radio-frequency ablation (c, d). Follow-up CT, after 3 months, (e, f) shows two non- 
enhancing hypodense regions suggestive of normal post ablation zone changes with no evidence of 
residual tumor
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 Conclusion

Imaging studies play a crucial role in the detection and characterization of CRLM 
to identify potential surgical candidates. The role of ultrasound has improved with 
the addition of microbubble contrast agents and remains a valuable tool for intraop-
erative decision-making. MDCT is most commonly used for initial CRLM detec-
tion and staging. MRI is the modality of choice for CRLM assessment, particularly 
for characterizing and detecting small lesions. MRI is also superior to CT and PET 
for hepatic evaluation in patients receiving NAC or have underlying hepatic steato-
sis. High-quality 3D images can be reconstructed from CT or MRI for vascular 
assessment and FLR estimation to guide the surgical approach. PET has proven 
essential prior to surgery for its superior extrahepatic disease detection. While each 
modality has its advantages for patient assessment, a multi-modal imaging approach 
is required to maximize safety and efficacy of CRLM resection.
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