
Chapter 1
Signal Analysis

1.1 Introduction

The objective of this chapter is to provide the reader with the necessary mathemati-
cal basis for understanding communication systems in conjunction with probability
theory and stochastic processes. The reader will become familiar with concepts and
equations involving Fourier series, which have a significant historical relevance for
the theory of communications. Furthermore, both the theory and properties of the
Fourier transform will be presented, which constitute powerful tools for spectral
analysis (Alencar 1999).

1.2 Fourier Analysis

The basic Fourier theory establishes fundamental conditions for the representation
of an arbitrary function in a finite interval as a sum of sinusoids. In fact, this is just
an instance of the more general Fourier representation of signals in which a periodic
signal f (t), under fairly general conditions, can be represented by a complete set of
orthogonal functions. By a complete set S of orthogonal functions, it is understood
that except for those orthogonal functions already in S, there are no other orthogonal
functions not belonging to S to be considered. It is assumed in the sequel that a
periodic signal f (t) satisfies the Dirichlet conditions, i.e., that f (t) is a bounded
function which in any one period has at most a finite number of local maxima and
minima and a finite number of points of discontinuity (Wylie 1966). The represen-
tation of signals by orthogonal functions has very often an error, which diminishes
as the number of component terms in the corresponding series is increased.

The fact that a periodic signal f (t) can, in general, be expanded as a sum of mutu-
ally orthogonal functions, demands for a closer look at the concepts of periodicity
and orthogonality.
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Fig. 1.1 Example of a
periodic signal x(t)
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Periodicity relates to the repetitive character of the function. A function f (t)
is defined to be a periodic function of period T , if and only if, T is the smallest
positive number for which f (t + T ) = f (t). In other words, f (t) is periodic if
its domain contains t + T whenever it contains t , and f (t + T ) = f (t). It follows
from the definition of a periodic function that if T represents the period of f (t) then
f (t) = f (t + nT ), for n = 1, 2, . . . , i.e., f (t) will repeat its values when integer
multiples of T (Wozencraft and Jacobs 1965) are added to its argument as illustrated
in Fig. 1.1.

If f (t) and g(t) are two periodic functions with the same period T , then their sum
f (t) + g(t) will also be a periodic function with period T . We prove this result by
making h(t) = f (t) + g(t) and noticing that h(t + T ) = f (t + T ) + g(t + T ) =
f (t) + g(t) = h(t).
We shall now investigate the concept of orthogonality. Orthogonality provides

the tool for introducing the concept of a basis, i.e., of aminimum set of functions that
can be used to generate other functions. However, orthogonality by itself does not
guarantee that a complete vector space is generated.

Two real functions u(t) and v(t), defined in the intervalα ≤ t ≤ β, are orthogonal
if their inner product is null, that is, if

(u(t), v(t)) =
∫ β

α

u(t)v(t)dt = 0 (1.1)

The set of functions fn(t), as illustrated in Fig. 1.2, can be used for representing
signals in the time domain. This set of functions constitutes an orthogonal set in the
interval (0, 1).

1.2.1 The Trigonometric Fourier Series

The trigonometric Fourier series representation of a signal f (t) can be written as

f (t) = a0 +
∞∑
n=1

[an cos(nω0t) + bnsin(nω0t)], (1.2)

in which the term a0 (the average value of the function f (t)) indicates whether or not
the signal contains a DC value and the terms an and bn are denominated the Fourier
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Fig. 1.2 Set of orthogonal functions

series coefficients, in which n is a positive integer. The equality sign holds in (1.2) for
all values of t only when f (t) is periodic. However, the Fourier series representation
is a useful tool for any type of signal as long as that signal representation is required
only in the [0, T ] interval. Outside that interval the Fourier series representation will
always be periodic, even if the signal f (t) is not periodic (Knopp 1990).

The sine and cosine functions are examples of orthogonal functions because they
satisfy the following equations, for integer values of n and m, denominated orthog-
onality relations:

∫ T

0
cos(nωot) sin(mωot)dt = 0, for all integers n,m, (1.3)

∫ T

0
cos(nωot) cos(mωot)dt =

{
0 if n �= m
T
2 if n = m

(1.4)
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∫ T

0
sin(nωot) sin(mωot)dt =

{
0 if n �= m
T
2 if n = m

(1.5)

in which ω0 = 2π/T .

As a consequence of the orthogonality conditions, explicit expressions for the
coefficients an and bn of the Fourier trigonometric series can be computed. By inte-
grating both sides in expression (1.2) in the interval [0, T ], it follows that (Oberhet-
tinger 1990)

∫ T

0
f (t)dt =

∫ T

0
aodt +

∞∑
n=1

∫ T

0
an cos(nωot)dt +

∞∑
n=1

∫ T

0
bn sin(nωot)dt

and since ∫ T

0
an cos(nωot)dt =

∫ T

0
bn sin(nωot)dt = 0,

it follows that

ao = 1

T

∫ T

0
f (t)dt. (1.6)

Now, by multiplying both sides in expression (1.2) by cos(mωot) and integrating
in the interval [0, T ], it follows that

∫ T

0
f (t) cos(mωot)dt =

∫ T

0
ao cos(mωot)dt (1.7)

+
∞∑
n=1

∫ T

o
an cos(nωot) cos(mωot)dt

+
∞∑
n=1

∫ T

o
bn cos(mω0t) sin(nωot)dt,

which after simplification produces

an = 2

T

∫ T

0
f (t) cos(nωot)dt, for n = 1, 2, 3, . . . (1.8)

In a similar manner bn is found by multiplying both sides in expression (1.2) by
sin(nωot) and integrating in the interval [0, T ], i.e.,

bn = 2

T

∫ T

0
f (t) sin(nωot)dt, (1.9)

for n = 1, 2, 3, . . ..
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1.2.2 Even Functions and Odd Functions

A function is called an odd function if it is antisymmetric with respect to the ordinate
axis, i.e., if f (−t) = − f (t), in which−t and t are assumed to belong to the function
domain. Examples of odd functions are provided by the functions t , t3, sin t and
t |2n+1|.

Similarly, a function is called an even function if it is symmetric with respect to
the ordinate axis, i.e., if f (−t) = f (t), in which t and −t are assumed to belong to
the function domain. Examples of even functions are provided by the functions 1,
t2, cos t , |t |, exp (−|t |) and t |2n|.

Some Elementary Properties

(a) The sum (difference) and the product (quotient) of two even functions is an even
function;

(b) The sum (difference) of two odd functions is an odd function;
(c) The product (quotient) of two odd functions is an even function;
(d) The sum (difference) of an even function and an odd function is neither an even

function nor an odd function;
(e) The product (quotient) between an even function and an odd function is an odd

function.
Two other important properties are the following.

(f) If f (t) is an even periodic function of period T , then

∫ T/2

−T/2
f (t)dt = 2

∫ T/2

0
f (t)dt. (1.10)

(g) If f (t) is an odd periodic function of period T , then

∫ T/2

−T/2
f (t)dt = 0. (1.11)

Properties (f) and (g) allow for a considerable simplification when computing
coefficients of a trigonometric Fourier series:

(h) If f (t) is an even function then bn = 0, and

an = 2

T

∫ T

0
f (t) cos(nωot)dt, for n = 1,2,3, . . . . (1.12)

(i) If f (t) is an odd function then an = 0 and

bn = 2

T

∫ T

0
f (t) sin(nωot)dt, for n = 1,2,3, . . . . (1.13)
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Example: Compute the coefficients of the trigonometric Fourier series for the
waveform f (t) = A[u(t + τ ) − u(t − τ )], which repeats itself with period T , in
which u(t) denotes the unit step function and 2τ ≤ T .

Solution: Since the given signal is symmetric with respect to the ordinate axis, it
follows that f (t) = f (−t) and the function is even. Therefore bn = 0, and all that
is left for computing is ao, and an for n = 1, 2, . . .. The expression for computing
the average value a0 is given by

ao = 1

T

∫ T
2

− T
2

f (t)dt = 1

T

∫ τ

−τ

Adt = 2Aτ

T
.

In the previous equation the maximum value of τ is T/2. The coefficients an for
n = 1, 2, . . . are computed as

an = 2

T

∫ T

0
f (t) cos(nωot)dt = 2

T

∫ τ

−τ

A cos(nωot)dt,

an = 4A

T

∫ τ

0
cos(nωot)dt = 4A

Tnωo
sin(nωot)

∣∣∣∣ τ0 = (4Aτ/T )
sin(nωoτ )

nω0τ
.

The signal f (t) is then represented by the following trigonometric Fourier series:

f (t) = 2Aτ

T
+

(
4Aτ

T

) ∞∑
n=1

sin(nωoτ )

nω0τ
cos(nωot).

1.2.3 The Compact Fourier Series

It is also possible to represent the Fourier series in a form known as the compact
Fourier series as follows:

f (t) = C0 +
∞∑
n=1

Cn cos(nωot + θn). (1.14)

By expanding the expression Cn cos(nωot + θ) as Cn cos(nωot) cos θn − Cn

sin(nωot) sin θn and comparing this result with (1.2) it follows that ao = Co, an =
Cn cos θn and bn = −Cn sin θn . It is now possible to compute Cn as a function of an
and bn . For that purpose it is sufficient to square an and bn and add the result, i.e.,

a2n + b2n = C2
n cos

2 θn + C2
nsin

2θn = C2
n . (1.15)
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From Eq. (1.15) the modulus of Cn can be written as

Cn =
√
a2n + b2n. (1.16)

In order to determine θn it suffices to divide bn by an , i.e.,

bn
an

= − sin θn

cos θn
= − tan θn, (1.17)

which when solved for θn produces

θn = − arctan

(
bn
an

)
. (1.18)

1.2.4 The Exponential Fourier Series

Since the set of exponential functions e jnωot , n = 0,±1,±2, . . . , is a complete set
of orthogonal functions in an interval of magnitude T , in which T = 2π/ωo, then
it is possible to represent a function f (t) by a linear combination of exponential
functions in an interval T .

f (t) =
∞∑

−∞
Fne

jnω0t (1.19)

in which

Fn = 1

T

∫ T
2

−T
2

f (t)e− jnω0t dt. (1.20)

Equation (1.19) represents the exponential Fourier series expansion of f (t) and
Eq. (1.20) is the expression to compute the associated series coefficients. The expo-
nential Fourier series is also known as the complex Fourier series. It is immediate
to show that Eq. (1.19) is just another way of expressing the Fourier series as given
in (1.2). Replacing cos(nωot) + j sin(nω0t) for enω0t (Euler’s identity) in (1.19), it
follows that

f (t) = Fo +
−1∑

n=−∞
Fn[cos(nωot) + j sin(nωot)]

+
∞∑
n=1

Fn[cos(nωot) + j sin(nωot)],
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or

f (t) = Fo +
∞∑
n=1

Fn[cos(nωot) + j sin(nωot)] + F−n[cos(nωot) − j sin(nωot)].

Grouping the coefficients of the sine and cosine terms, it follows that

f (t) = Fo +
∞∑
n=1

(Fn + F−n) cos(nωot) + j (Fn − F−n) sin(nωot). (1.21)

Comparing the above expression with (1.2) it follows that

ao = Fo, an = (Fn + F−n) and bn = j (Fn − F−n), (1.22)

and that
Fo = ao, (1.23)

Fn = an − jbn
2

, (1.24)

and

F−n = an + jbn
2

. (1.25)

In case the function f (t) is even, i.e., if bn = 0, then

ao = Fo, Fn = an
2

and F−n = an
2

. (1.26)

Example: Compute the exponential Fourier series for the train of impulses

δT (t) =
∞∑

n=−∞
δ(t − nT ).

Solution: The complex coefficients are given by

Fn = 1

T

∫ T
2

−T
2

δT (t)e− jnωot dt = 1

T
, (1.27)

since ∫ ∞

−∞
δ(t − to) f (t)dt = f (to) (Impulse filtering). (1.28)

It follows that f (t) can be written as
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f (t) = 1

T

∞∑
n=−∞

e− jnωot . (1.29)

In practice, in order to obtain an impulse train, it is sufficient to pass a binary
digital signal through a differentiator circuit and then pass the resulting waveform
through a half-wave rectifier.

The Fourier series expansion of a periodic function is equivalent to its decompo-
sition in frequency components. In general, a periodic function with period T has
frequency components 0,±ωo,±2ωo,±3ωo, . . . ,±nωo, in whichωo = 2π/T is the
fundamental frequency and the multiples of ω0 are called harmonics. Notice that the
spectrum exists only for discrete values of ω and that the spectral components are
spaced by at least ωo.

1.3 Fourier Transform

It was shown earlier that an arbitrary function can be represented in terms of an
exponential (or trigonometric) Fourier series in a finite interval. If such a function
is periodic this representation can be extended for the entire interval (−∞,∞).
However, it is interesting to observe the spectral behavior of a function in general,
periodic or not, in the entire interval (−∞,∞). In order to do that the function
f (t) is truncated in the interval [−T/2, T/2], obtaining fT (t). It is possible then to
represent this function as a sum of exponentials in the entire interval (−∞,∞) by
making T approach infinity. In other words

lim
T→∞ fT (t) = f (t).

The fT (t) signal can be represented by the exponential Fourier series as

fT (t) =
∞∑

n=−∞
Fne

jnωot , (1.30)

in which ωo = 2π/T and

Fn = 1

T

∫ T
2

− T
2

fT (t)e− jnωot dt. (1.31)

Fn represents the spectral amplitude associated to each component of frequency nωo.
As T increases, the amplitudes diminish but the spectrum shape is not altered. This
increase in T forcesωo to diminish and the spectrum to become denser. In the limit, as
T → ∞, ωo becomes infinitesimally small, being represented by dω. On the other
hand, there are now infinitely many components and the spectrum is no longer a
discrete one, becoming a continuous spectrum in the limit.
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For convenience, write T Fn = F(ω), that is, the product T Fn becomes a function
of the variable ω, since nωo → ω. Replacing F(ω)

T for Fn in (1.30), one obtains

fT (t) = 1

T

∞∑
n=−∞

F(ω)e jωt . (1.32)

Replacing ω0/2π for 1/T it follows that

fT (t) = 1

2π

∞∑
n=−∞

F(ω)e jωtω0. (1.33)

In the limit, as T approaches infinity, one has

f (t) = 1

2π

∫ ∞

−∞
F(ω)e jωt dω (1.34)

which is known as the inverse Fourier transform.
Similarly, from (1.31), as T approaches infinity, one obtains

F(ω) =
∫ ∞

−∞
f (t)e− jωt dt (1.35)

which is known as the direct Fourier transform, sometimes denoted in the literature
as F(ω) = F[ f (t)]. A Fourier transform pair is often denoted as f (t) ←→ F(ω).

In the sequel some important Fourier transforms are presented (Haykin 1988).

Bilateral Exponential Signal

If f (t) = e−a|t | it follows from (1.35) that

F(ω) =
∫ ∞

−∞
e−a|t |e− jωt dt (1.36)

=
∫ 0

−∞
eat e− jωt dt +

∫ ∞

0
e−at e− jωt dt

= 1

a − jω
+ 1

a + jω
,

F(ω) = 2a

a2 + ω2
. (1.37)
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Fig. 1.3 Gate function
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The gate function is defined by the expression pT (t) = A[u(t + T/2) − u(t −
T/2)], or

pT (t) =
{
A if |t | ≤ T/2
0 if |t | > T/2

(1.38)

in which u(t) denotes the unit step function, defined as

u(t) =
{
1 if t ≥ 0
0 if t < 0

(1.39)

The gate function is illustrated in Fig. 1.3. The Fourier transform of the gate
function can be calculated as

F(ω) =
∫ T

2

− T
2

Ae− jωt dt (1.40)

= A

jω
(e jω T

2 − e− jω T
2 )

= A

jω
2 jsin(ωT/2),

which can be rearranged as

F(ω) = AT

(
sin(ωT/2)

ωT/2

)
,

and finally

F(ω) = ATSa

(
ωT

2

)
, (1.41)

in which Sa (x) = sin x
x is the sampling function. This function converges to one, as x

goes to zero. The sampling function, the magnitude of which is illustrated in Fig. 1.4,
is of great relevance in communication theory.
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Fig. 1.4 Magnitude plot of the Fourier transform of the gate function

The sampling function obeys the following important relationship:

∫ ∞

−∞
k

π
Sa (kt)dt = 1. (1.42)

The area under this curve is equal to 1. As k increases, the amplitude of the
sampling function increases, the spacing between zero crossings diminishes and
most of the signal energy concentrates near the origin. For k → ∞ the function
converges to an impulse function, i.e.,

δ(t) = lim
k→∞

k

π
Sa (kt). (1.43)

In this manner, in the limit it is true that
∫ ∞
−∞ δ(t)dt = 1. Since the function

concentrates its nonzero values near the origin, it follows that δ(t) = 0 for t �= 0.
Therefore, ∫ ∞

−∞
f (t)δ(t)dt = f (0)

∫ ∞

−∞
δ(t)dt = f (0). (1.44)

In general it is possible to write (1.44) as

∫ ∞

−∞
f (t)δ(t − to) = f (to). (1.45)

This important relationship, mentioned earlier in (1.28), is known as the filtering
property of the impulse function.

Impulse Function or Dirac’s Delta Function

By making f (t) = δ(t) in (1.35) it follows that

F(ω) =
∫ ∞

−∞
δ(t)e− jωt dt. (1.46)
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Using the impulse filtering property it follows that F(ω) = 1. Therefore, the
impulse function contains a continuum of equal amplitude spectral components.

Alternatively, bymaking F(ω) = 1 in (1.34) and simplifying, the impulse function
can be written as

1

π

∫ ∞

0
cosωtdω.

The Constant Function

If f (t) is a constant function then its Fourier transform in principle would not exist
since this function does not satisfy the absolute integrability criterion. In general
F(ω), the Fourier transform of f (t), is expected to be finite, i.e.,

|F(ω)| ≤
∫ ∞

−∞
| f (t)||e− jωt |dt < ∞, (1.47)

since |e− jωt | = 1, then ∫ ∞

−∞
| f (t)|dt < ∞. (1.48)

However that is just a sufficiency condition and not a necessary condition for the
existence of the Fourier transform, since there exist functions that although do not
satisfy the condition of absolute integrability, in the limit have a Fourier transform
(Carlson 1975). This is a very important observation since this approach is often
used in the computation of Fourier transforms of many functions. Returning to the
constant function, it can be approximated by a gate function with amplitude A and
width τ , and then making τ approach very large values,

F[A] = lim
τ→∞ AτSa

(ωτ

2

)
(1.49)

= 2πA lim
τ→∞

τ

2π
Sa

(ωτ

2

)

F[A] = 2πAδ(ω). (1.50)

This result is not only a very interesting one but also somehow intuitive since a
constant function in time represents a DC level and, as was to be expected, contains
no spectral component except for the one at ω = 0.

Fourier Transform of Sine and the Cosine

Since both the sine and the cosine functions are periodic functions, they do not satisfy
the condition of absolute integrability. However, their respective Fourier transforms
exist in the limit when τ goes to infinity. Assuming the function to exist only in the
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Fig. 1.5 Magnitude plot of
the Fourier transform of the
sine function

| X(w)|
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interval (−τ
2 , τ

2 ) and to be zero outside this interval, and considering the limit of the
expression when τ goes to infinity,

F(sinω0t) = lim
τ→∞

∫ τ
2

−τ
2

sinω0t e
− jωt dt (1.51)

= lim
τ→∞

∫ τ
2

−τ
2

e− j (ω−ω0)t

2 j
− e− j (ω+ω0)t

2 j
dt

= lim
τ→∞

[
jτsin(ω + ω0)

τ
2

2(ω + ω0)
τ
2

− jτsin(ω − ω0)
τ
2

2(ω − ω0)
τ
2

]

= lim
τ→∞

{
j
τ

2
Sa

[
(ω + ω0)

2

]
− j

τ

2
Sa

[
τ (ω + ω0)

2

]}
.

Therefore,
F(sinω0t) = jπ[δ(ω + ω0) − δ(ω − ω0)].

Applying a similar reasoning it follows that

F(cosω0t) = π[δ(ω − ω0) + δ(ω + ω0)]. (1.52)

The the Fourier transform of the function x(t) = sin(wct) is illustrated in
Fig. 1.5.

The Fourier Transform of e jω0 t

Using Euler’s identity, e jω0t = cosω0t + jsinω0t , it follows that

F[e jω0t ] = F[cosω0t + jsinω0t]. (1.53)
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Substituting in (1.53) the Fourier transforms of the sine and of the cosine functions,
respectively, it follows that

F[e jω0t ] = 2πδ(ω − ω0). (1.54)

The Fourier Transform of a Periodic Function

We consider next the exponential Fourier series representation of a periodic function
fT (t) of period T

fT (t) =
∞∑

n=−∞
Fne

jnω0t . (1.55)

Applying the Fourier transform to both sides in (1.55) it follows that

F[ fT (t)] = F
[ ∞∑
n=−∞

Fne
jnω0t

]
(1.56)

=
∞∑

n=−∞
FnF[e jnω0t ]. (1.57)

Now, applying in (1.57) the result from (1.54) it follows that

F(ω) = 2π
∞∑

n=−∞
Fnδ(ω − nω0). (1.58)

1.4 Some Properties of the Fourier Transform

Linearity

Linearity is an important property when studying communication systems. A system
is defined tobe a linear system if satisfies theproperties of homogeneity and additivity.

1 Homogeneity—If the application of the signal x(t) at the system input produces
y(t) at the system output, then the application of the input αx(t), in which α is a
constant, produces αy(t) at the output.

2 Additivity—If the application of the signals x1(t) and x2(t) at the system input
produces respectively y1(t) and y2(t) at the system output, then the application
of the input x1(t) + x2(t) produces y1(t) + y2(t) at the output.

By applying the tests for homogeneity and additivity, it is immediate to check
that the process that generates the signal s(t) = A cos(ωct + �m(t) + θ) from an
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input signal m(t) is non linear. By applying the same test to the signal r(t) =
m(t) cos(ωct + θ) it is immediate to show that the process generating r(t) is
linear.

The Fourier transform is a linear operator, i.e., if a function can be written as
a linear combination of other (well behaved) functions, the corresponding Fourier
transform will be given by a linear combination of the corresponding Fourier trans-
forms of each one of the functions involved in the linear combination (Gagliardi
1988).

If f (t) ←→ F(ω) and g(t) ←→ G(ω) it then follows that

α f (t) + βg(t) ←→ αF(ω) + βG(ω). (1.59)

Proof: Let h(t) = α f (t) + βg(t) →, then it follows that

H(ω) =
∫ ∞

−∞
h(t)e− jωt dt

= α

∫ ∞

−∞
f (t)e− jωt dt + β

∫ ∞

−∞
g(t)e− jωt dt,

and finally
H(ω) = αF(ω) + βG(ω). (1.60)

Scaling

F[ f (at)] =
∫ ∞

−∞
f (at)e− jωt dt. (1.61)

Initially let us consider a > 0 in (1.61). By letting u = at it follows that dt =
(1/a)du. Replacing u for at in (1.61) it follows that

F[ f (at)] =
∫ ∞

−∞
f (u)

a
e− j ω

a udu

which simplifies to

F[ f (at)] = 1

a
F

(ω

a

)
. (1.62)

Consider now the case in which a < 0. By a similar procedure it follows that

F[ f (at)] = −1

a
F

(ω

a

)
. (1.63)
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Finally, Eqs. (1.62) and (1.63) can be combined and written as

F[ f (at)] = 1

|a| F
(ω

a

)
. (1.64)

This result points to the fact that if a signal is compressed in the time domain by
a factor a, then its frequency spectrum will expand in the frequency domain by that
same factor.

Symmetry

This is an interesting property which can be fully observed in even functions. The
symmetry property states that if

f (t) ←→ F(ω), (1.65)

then it follows that
F(t) ←→ 2π f (−ω). (1.66)

Proof: By definition,

f (t) = 1

2π

∫ +∞

−∞
F(ω)e jωt dω,

which after multiplication of both sides by 2π becomes

2π f (t) =
∫ +∞

−∞
F(ω)e jωt dω.

By letting u = − t it follows that

2π f (−u) =
∫ +∞

−∞
F(ω)e− jωudω,

and now by making t = ω, one obtains

2π f (−u) =
∫ +∞

−∞
F(t)e− j tudt.

Finally, by letting u = ω it follows that

2π f (−ω) =
∫ +∞

−∞
F(t)e− jωt dt. (1.67)
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Example: The Fourier transform of a constant function can be easily derived by
use of the symmetry property. Since

Aδ(t) ←→ A,

it follows that
A ←→ 2πAδ(−ω) = 2πAδ(ω).

Time Domain Shift

Given that f (t) ←→ F(ω), it then follows that f (t − t0) ←→ F(ω)e− jωt0 . Let
g(t) = f (t − t0). In this case it follows that

G(ω) = F[g(t)] =
∫ ∞

−∞
f (t − t0)e

− jωt dt. (1.68)

By making τ = t − t0 it follows that

G(ω) =
∫ ∞

−∞
f (τ )e− jω(τ+t0)dτ (1.69)

=
∫ ∞

−∞
f (τ )e− jωτe− jωt0dτ , (1.70)

and finally
G(ω) = e− jωt0F(ω). (1.71)

This result shows that whenever a function is shifted in time its frequency domain
amplitude spectrum remains unaltered. However, the corresponding phase spectrum
experiences a rotation proportional to ωt0.

Frequency Domain Shift

Given that f (t) ←→ F(ω) it then follows that f (t)e jω0t ←→ F(ω − ω0).

F[ f (t)e jω0t ] =
∫ ∞

−∞
f (t)e jω0t e− jωt dt (1.72)

=
∫ ∞

−∞
f (t)e− j (ω−ω0)t dt,



1.4 Some Properties of the Fourier Transform 19

F[ f (t)e jω0t ] = F(ω − ω0). (1.73)

Differentiation in the Time Domain

Given that
f (t) ←→ F(ω), (1.74)

it then follows that
d f (t)

dt
←→ jωF(ω). (1.75)

Proof: Let us consider the expression for the inverse Fourier transform

f (t) = 1

2π

∫ ∞

−∞
F(ω)e jωt dω. (1.76)

Differentiating in time it follows that

d f (t)

dt
= 1

2π

d

dt

∫ ∞

−∞
F(ω)e jωt dω

= 1

2π

∫ ∞

−∞
d

dt
F(ω)e jωt dω

= 1

2π

∫ ∞

−∞
jωF(ω)e jωt dω,

and then
d f (t)

dt
←→ jωF(ω). (1.77)

In general it follows that

dn f (t)

dt
←→ ( jω)n f (ω). (1.78)

By computing the Fourier transform of the signal f (t) = δ(t) − αe−αt u(t), it is
immediate to show that by applying the property of differentiation in time, this signal
is the time derivative of the signal g(t) = e−αt u(t).
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Integration in the Time Domain

Let f (t) be a signal with zero average value, i.e., let
∫ ∞
−∞ f (t)dt = 0. By defining

g(t) =
∫ t

−∞
f (τ )dτ , (1.79)

it follows that
dg(t)

dt
= f (t),

and since
g(t) ←→ G(ω), (1.80)

then
f (t) ←→ jωG(ω),

and

G(ω) = F(ω)

jω
. (1.81)

In this manner it follows that for a signal with zero average value

f (t) ←→ F(ω)

∫ t

−∞
f (τ )dτ ←→ F(ω)

jω
. (1.82)

Generalizing, for the case in which f (t) has a nonzero average value, it follows
that ∫ t

−∞
f (τ )dτ ←→ F(ω)

jω
+ πδ(ω)F(0). (1.83)

The Convolution Theorem

The convolution theorem is a powerful tool for analyzing the frequency contents of
a signal, allowing obtention of many relevant results. One instance of the use of the
convolution theorem, of fundamental importance in communication theory, is the
sampling theorem which will be the subject of the next section.

The convolution between two time functions f (t) and g(t) is defined by the
following integral: ∫ ∞

−∞
f (τ )g(t − τ )dτ , (1.84)

which is often denoted as f (t) ∗ g(t).
Let h(t) = f (t) ∗ g(t) and let h(t) ←→ H(ω). It follows that
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H(ω) =
∫ ∞

−∞
h(t)e− jωt dt =

∫ ∞

−∞

∫ ∞

−∞
f (τ )g(t − τ )e− jωt dtdτ . (1.85)

H(ω) =
∫ ∞

−∞
f (τ )

∫ ∞

−∞
g(t − τ )e− jωt dtdτ , (1.86)

H(ω) =
∫ ∞

−∞
f (τ )G(ω)e− jωτdτ (1.87)

and finally,
H(ω) = F(ω)G(ω). (1.88)

The convolution of two time functions is equivalent in the frequency domain to
the product of their respective Fourier transforms. For the case in which h(t) =
f (t) · g(t), proceeding in a similar manner one obtains

H(ω) = 1

2π
[F(ω) ∗ G(ω)]. (1.89)

In other words, the product of two time functions has a Fourier transform given
by the convolution of their respective Fourier transforms. The convolution operation
is often used when computing the response of a linear circuit, given its impulse
response and an input signal.

Example: The circuit in Fig. 1.6 has the impulse response h(t) given by

h(t) = 1

RC
e− t

RC u(t).

The application of the unit impulse x(t) = δ(t) as the input to this circuit causes
an output y(t) = h(t) ∗ x(t). In the frequency domain, by the convolution theorem it
follows that Y (ω) = H(ω)X (ω) = H(ω), i.e., the Fourier transform of the impulse
response of a linear system is the system transfer function.

Using the frequency convolution theorem it can be shown that

cos(ωct)u(t) ←→ π

2
[δ(ω + ωc) + δ(ω − ωc)] + j

ω

ω2
c − ω2

.

Fig. 1.6 RC circuit

C

R

+

 -

y(t)

-

x(t)

+
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1.5 The Sampling Theorem

A bandlimited signal f (t), having no frequency components aboveωM = 2π fM , can
be reconstructed from its samples, collected at uniform time intervals Ts = 1/ fs , i.e.,
at a sampling rate fs , in which fs ≥ 2 fM .

By a bandlimited signal f (t) ←→ F(ω) it is understood that there is a frequency
ωM abovewhich F(ω) = 0, i.e., that F(ω) = 0 for |ω| > ωM . Nyquist concluded that
all the information about f (t), as illustrated in Fig. 1.7, is contained in the samples
of this signal, collected at regular time intervals Ts . In this manner the signal can be
completely recovered from its samples. For a bandlimited signal f (t), i.e., such that
F(ω) = 0 for |ω| > ωM , it follows that

f (t) ∗ sin(at)

πt
= f (t), if a > ωM ,

because in the frequency domain this corresponds to the product of F(ω) by a gate
function of width greater than 2ωM .

The function f (t) is sampled once every Ts seconds or, equivalently, sampled
with a sampling frequency fs , in which fs = 1/Ts ≥ 2 fM .

Consider the signal fs(t) = f (t)δT (t), in which

δT (t) =
∞∑

n=−∞
δ(t − nT ) ←→ ωoδωo = ωo

∞∑
n=−∞

δ(ω − nωo). (1.90)

Fig. 1.7 Bandlimited signal
f (t) and its spectrum F(ω)

(a) Time

(b) Frequency

t

f(t)

0

0

F(   )ω

−ω ω
M M ω
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Fig. 1.8 Impulse train used
for sampling

δ T(t)

ωoω )ω(δ0

tT−2T 2T0−T

(b) Frequency.

(a) Time.

0 ω02ω−ω 0 ω 0−2ω 0

The signal δT (t) is illustrated in Fig. 1.8. The signal fs(t) represents f (t) sampled
at uniform time intervals Ts seconds. From the frequency convolution theorem, it
follows that the Fourier transform of the product of two functions in the time domain
is given by the convolution of their respective Fourier transforms. It now follows that

fs(t) ←→ 1

2π
[F(ω) ∗ ω0δω0(ω)] (1.91)

and thus

fs(t) ←→ 1

T
[F(ω) ∗ δω0(ω)] = 1

T

∞∑
n=−∞

F(ω − nωo). (1.92)

It can be observed from Fig. 1.9 that if the sampling frequency ωs is less than
2ωM , there will be an overlap of spectral components. This will cause a loss of
information because the original signal can no longer be fully recovered from its
samples. As ωs becomes smaller than 2ωM , the sampling rate diminishes causing a
partial loss of information. Therefore, the minimum sampling frequency that allows
perfect recovery of the signal is ωs = 2ωM , and is known as the Nyquist sampling
rate. In order to recover the original spectrum F(ω), it is enough to pass the sampled
signal through a low-pass filter with cutoff frequency ωM .

For applications in telephony, the sampling frequency is fS = 8,000 samples per
second, or 8 k samples/s. Then the speech signal is quantized, as will be discussed
later, for 256 distinct levels. Each level corresponds to an 8-bit code (28 = 256).
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Fig. 1.9 Sampled signal and
its spectrum

−ω 0 ω 0−ωM Mω

tT−2T 2T0−T

(b) Frequency.

(a) Time.

0 ω

f (t)=S f(t)δ T(t)

F (   )
S

ω

After encoding, the signal is transmitted at a rate of 8,000 samples/s×8bits/sample
=64 kbits/s and occupies a bandwidth of approximately 64 kHz.

If the sampling frequency wS is lower than 2πB, there will be spectra overlap
and, as a consequence, information loss. Therefore, the sampling frequency for a
baseband signal to be recovered without loss is wS = 2πB, known as the Nyquist
sampling frequency.

As just mentioned, if the sampling frequency is lower than the Nyquist frequency,
the signal will not be completely recovered, since there will be spectral superposi-
tion, leading to distortion in the highest frequencies. This phenomenon is known as
aliasing. On the other hand, increasing the sampling frequency for a value higher
than the Nyquist frequency leads to spectra separation higher than the minimum
necessary to recover the signal.

1.6 Parseval’s Theorem

For a real signal f (t) of finite energy, often called simply a real energy signal, the
energy E associated with f (t) is given by

E =
∫ ∞

−∞
f 2(t)dt

and can equivalently be calculated by the formula
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E = 1

2π

∫ ∞

−∞
|F(ω)|2dω

It follows that ∫ ∞

−∞
f 2(t)dt = 1

2π

∫ ∞

−∞
|F(ω)|2dω. (1.93)

The relationship given in (1.93) is known as Parseval’s theorem or Parseval’s identity.
For a real signal x(t) with energy E it can be shown, by using Parseval’s identity,
that the signals x(t) and y(t) = x(t − τ ) have the same energy E .

Another way of expressing Parseval’s identity is as follows:

∫ ∞

−∞
f (x)G(x)dx =

∫ ∞

−∞
F(x)g(x)dx . (1.94)

1.7 Average, Power, and Autocorrelation

As mentioned earlier, the average value of a real signal x(t) is given by

x(t) = lim
T→∞

1

T

∫ T
2

−T
2

x(t)dt. (1.95)

The instantaneous power of x(t) is given by

pX (t) = x2(t). (1.96)

If the signal x(t) exists for the whole interval (−∞,+∞), the total power PX is
defined for a real signal x(t) as the power dissipated in a 1ohmresistor,when avoltage
x(t) is applied to this resistor (or a current x(t) flows through the resistor) (Lathi
1989). Thus,

PX = lim
T→∞

1

T

∫ T
2

−T
2

x2(t)dt. (1.97)

From the previous definition, the unit to measure PX corresponds to the square of
the units of the signal x(t) (volt2, amp2). These units will only be converted to watts
if they are normalized by units of impedance (ohm). It is common use to express the
power in decibel (dB). The power in decibel is given by the expression (Gagliardi
1988)

PX,dB = 10 log PX . (1.98)

The total power (PX ) contains two components: one DC component, due to a
nonzero average value of the signal x(t) (PDC ), and an AC component (PAC ). The
DC power of the signal is given by
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PDC = (x(t))2. (1.99)

It follows that the AC power can be determined by removing the DC power from
the total power, i.e.,

PAC = PX − PDC . (1.100)

Time Autocorrelation of Signals

The average time autocorrelation RX (τ ), or simply autocorrelation, of a real signal
x(t) is defined as follows

RX (τ ) = lim
T→∞

1

T

∫ T
2

−T
2

x(t)x(t + τ )dt. (1.101)

The change of variable y = t + τ allows Eq. (1.101) to be written as

RX (τ ) = lim
T→∞

1

T

∫ T
2

−T
2

x(t)x(t − τ )dt. (1.102)

From Eqs. (1.101) and (1.102), it follows that RX (τ ) is an even function of τ , and
thus (Lathi 1989)

RX (−τ ) = RX (τ ). (1.103)

From the definition of autocorrelation and power it follows that

PX = RX (0) (1.104)

and
PDC = RX (∞), (1.105)

i.e., from its autocorrelation function it is possible to obtain information about the
power of a signal. The autocorrelation function can also be considered in the fre-
quency domain by taking its Fourier transform, i.e.,

F{RX (τ )} =
∫ +∞

−∞
lim
T→∞

1

T

∫ T
2

−T
2

x(t)x(t + τ )e− jωτdt dτ = (1.106)

= lim
T→∞

1

T

∫ T
2

−T
2

x(t)
∫ +∞

−∞
x(t + τ )dτdt
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= lim
T→∞

1

T

∫ T
2

−T
2

x(t)X (ω)e jωt dt

= X (ω) lim
T→∞

1

T

∫ T
2

−T
2

x(t)e jωt dt

= lim
T→∞

X (ω)X (−ω)

T

= lim
T→∞

|X (ω)|2
T

(1.107)

The power spectral density SX of a signal x(t) is defined as the Fourier transform
of the autocorrelation function RX (τ ) of x(t), i.e., as

SX =
∫ ∞

−∞
RX (τ )e− jωτdτ . (1.108)

Example: Find the power spectral density of the sinusoidal signal x(t) = A cos
(ω0t + θ) illustrated in Fig. 1.10a.

Solution:

RX (τ ) = lim
T→∞

1

T

∫ T
2

−T
2

A2 cos(ω0t + θ) cos [ω0(t + τ ) + θ]dt

= A2

2
lim
T→∞

1

T

[∫ T
2

−T
2

cosω0τdt +
∫ T

2

−T
2

cos (2ω0t + ω0τ + 2θ) dt

]

= A2

2
cosω0τ .

Notice that the autocorrelation function (Fig. 1.10b) is independent of the phase
θ. The power spectral density (Fig. 1.10c) is given by

SX (ω) = F [RX (τ )]

SX (ω) = πA2

2
[δ(ω + ω0) + δ(ω − ω0)] .

The power or mean square average of x(t) is given by

PX = RX (0) = A2

2
.
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Fig. 1.10 Sinusoidal signal
and its autocorrelation and
power spectral density
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1.8 Problems

(1) Consider the signal

x(t) =
{

1, 0 ≤ t < π
−1, π ≤ t ≤ 2π

which is approximated as x̃(t) = 4
π
sin(t), in the time interval considered.

(a) Show that the error in the approximation is orthogonal to the function x̃(t);
(b) Show that the energy of x(t) is the sum of the energy in the error signal

with the energy of the signal x̃(t).

(2) Calculate the instantaneous power and the average power of the following
signals:
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(a) x(t) = cos(2πt)
(b) y(t) = sin(2πt)
(c) z(t) = x(t) + y(t).

(3) Determine the constant A such that f1(t) and f2(t) are orthogonal for all t , in
which f1(t) = e−|t | and f2(t) = 1 − Ae−2|t |.

(4) Given the set of functions fn(t), as illustrated in Fig. 1.2, show that

(a) This set of functions constitutes an orthogonal set in the interval (0, 1). For
an orthonormal set, the integral of the product of the functions is one or
zero. Is the set orthonormal?

(b) Represent a given signal f (t) = 2t in the interval (0, 1), using this set of
orthogonal functions.

(c) Plot the function f (t) and its approximate representation f̃ (t) in the same
graph.

(d) Determine the energy of the error signal resulting from the approximation.

(5) Represent the gate function, and its complement, using the unit step.
(6) Represent analytically the graph of a series of triangular functions, using gen-

eralized functions.
(7) Calculate the following integrals:

(a)
∫ ∞
−∞ e−αt u(t)dt ,

(b)
∫ ∞
−∞ e−αtδ(t)dt ,

(c)
∫ ∞
−∞ e−αt r(t)dt , for r(t) = ∫ t

−∞ u(τ )dτ .

(8) Calculate the Fourier transform of the impulse function assuming the Fourier
transform of the unit step function is known.

(9) Calculate the inverse Fourier transform of the function

F(ω) = A[u(ω + ω0) − u(ω − ω0)].

(10) Calculate the Fourier transform of the function f (t) = Ae−αt u(t), and plot the
corresponding magnitude and phase diagrams.

(11) Plot the magnitude and phase diagrams of the Fourier transform of the function
δ(t + t0).

(12) For a circuit with impulse response h(t),

h(t) = 1

τ
e− t

τ u(t),

find the response for the excitation x(t) given by

x(t) = te− t
τ u(t).
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(13) Find the Fourier transform of the function g(t) = f (t) cos(ωct), given the
Fourier transform of f (t).

(14) Show that for a function f (t) in general:

∫ t

−∞
f (t)dt ←→ F(ω)

jω
+ πF(0)δ(ω).

(15) Prove that, for a real energy signal f (t), the energy associated to f (t),

∫ ∞

−∞
f 2(t)dt

can be calculated by the formula

1

2π

∫ ∞

−∞
|F(ω)|2dω.

(16) Use the property of the convolution in the frequency domain to show that

cos(ωct)u(t) ←→ π

2
[δ(ω + ωc) + δ(ω − ωc)] + j

ω

ω2
c − ω2

.

(17) A signal x(t) has the exponential Fourier series expansion as given.

x(t) = −2A

π

∞∑
n=−∞

1

4n2 − 1
e j2πnt .

Find its corresponding trigonometric Fourier series expansion.
(18) By defining the cutoff frequency as the smallest frequency for which the first

spectral zero occurs, determine the cutoff frequency (ω0) of the signal x(t) in
Fig. 1.11.

(19) Calculate the Fourier transform of the signals represented in Figs. 1.12 and
1.13.

Fig. 1.11 Shifted gate
function

x(t)

A

T0 t
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Fig. 1.12 Triangular
waveform

0
t

B

-T   T

g(t)

Fig. 1.13 Trapezoidal
waveform

0
t-2T -T T 2T

A

f(t)

(20) Calculate the frequency response of a linear system the transfer function of
which is given, when the input is the pulse x(t) = A[u(t + T/2) − u(t −
T/2)]. Plot the corresponding magnitude and phase diagrams of the frequency
response.

H(ω) = ju(−ω) − ju(ω).

(21) A signal x(t) is given by the expression

x(t) = sin(At)

πt
.

Determine the Nyquist frequency for sampling this signal.
(22) What is the least sampling rate that is required to sample the signal f (t) =

sin3(ω0t)? Show graphically the effect caused by a reduction of the sampling
rate, falling below the Nyquist rate.

(23) Calculate the Fourier transform of the signal

g(t) = Ae−t u(t)

and then apply the property of integration in the time domain to obtain the
Fourier transform of f (t) = A(1 − e−t )u(t).

(24) Determine the magnitude spectrum and phase function of the signal f (t) =
te−atu(t).
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(25) A voltage signal

v(t) = V0 +
∞∑
n=1

Vn cos(nω0t + θn)

is applied to the input of a circuit, producing the current

i(t) = I0 +
∞∑

m=1

Im cos(mω0t + φm).

Using the orthogonality concept calculate the power (P) absorbed by the circuit,
considering

P = 1

T

∫ T/2

−T/2
v(t)i(t)dt.

What is the power for the case in which θn = φn?
(26) Define an ideal low-pass filter and explain why it is not physically realiz-

able. Indicate the corresponding filter transfer function and the filter impulse
response.

(27) Given the linear system shown in Fig. 1.14, in which T represents a constant
delay, determine:

(a) The system transfer function H(ω),
(b) The system impulse response h(t).

(28) Let f (t) be the signal with spectrum F(ω) as follows

F(ω) = AT

1 + jwT
, in which : T = 0.5µs, A = 5V.

(a) Calculate and plot the magnitude of the Fourier transform, |F(ω)|.
(b) Calculate the frequency forwhich |F(ω)| corresponds to a value 3dBbelow

the maximum amplitude value in the spectrum.
(c) Calculate the energy of the signal in time, f (t).

(29) Represent the following signals using the unit step:

(a) the ramp function, r(t + T );
(b) the echo function, δ(t − T ) + δ(t + T );
(c) a periodic sawtooth waveform with period T , and peak amplitude given by

A.

Plot the corresponding graphs.

Fig. 1.14 Linear system
with feedback

-

+ +
y(t)x(t)

T
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(30) Calculate the Fourier transform of each one of the following signals:

(a) x(t) = e−t+tou(t − to);
(b) y(t) = tu(t);
(c) z(t) = y′(t).

Draw the time signals, as well as, the associated magnitude spectra.
(31) Verify, by applying the properties of homogeneity and additivity, whether the

process generating the signal

s(t) = A cos(ωct + �m(t) + θ)

from the input signal m(t) is linear. Perform the same test for the signal

r(t) = m(t) cos(ωct + θ).

(32) A linear system has impulse response h(t) = 2[u(t) − u(t − T )]. Using the
convolution theorem, determine the system response to the input signal x(t) =
u(t) − u(t − T ).

(33) A digital signal x(t) has autocorrelation function

R̄X (τ ) = A2

[
1 − |τ |

Tb

]
[u(τ + Tb) − u(τ − Tb)],

in which Tb is the bit duration. Determine the total power, the AC power and
the DC power of the given signal. Calculate the signal power spectral density.
Plot the diagrams representing these functions.

(34) Calculate the Fourier transform of a periodic signal x(t), represented analyti-
cally as

x(t) =
∞∑

−∞
Fne

jnω0t .

(35) Prove the following property of the Fourier transform:

x(αt) ←→ 1

|α| X
(ω

α

)
.

(36) Calculate the average value and the power of the signal

x(t) = Vu(cos t).

(37) For a given real signal x(t), prove the following Parseval identity:

E =
∫ ∞

−∞
x2(t)dt = 1

2π

∫ ∞

−∞
|X (ω)|2dω.
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Consider the signals x(t) and y(t) = x(t − τ ) and show, by using Parseval’s
identity, that both signals have the same energy E .

(38) A signal y(t) is given by the following expression:

y(t) = 1

π

∫ ∞

−∞
x(τ )

t − τ
dτ ,

in which the signal x(t) has a Fourier transform X (ω). By using properties of
the Fourier transform determine the Fourier transform of y(t).

(39) Given that the Fourier transform of the signal f (t) = cos(ωot) is F(ω) =
π[δ(w + ωo) + δ(w − ωo)], determine the Fourier transform of the signal
g(t) = sin(ωot − φ), in which φ is a phase constant. Sketch the magnitude
and phase graphs of the Fourier transform of this signal.

(40) Calculate the Fourier transform of the radio frequency pulse

f (t) = cos(ωot)[u(t + T ) − u(t − T )],

considering thatωo 
 2π
T . Sketch themagnitude andphase graphs of theFourier

transform of this signal.
(41) Calculate the Fourier transform of the signal f (t) = δ(t) − αe−αt u(t) and

show, by using the property of the derivative in the time domain, that this sig-
nal is the derivative of the signal g(t) = e−αt u(t). Sketch the respective time
and frequency domain graphs of the signals, specifying the magnitude and the
phase spectra of each signal.

(42) By making use of properties of the Fourier transform show that the derivative
of the signal h(t) = f (t) ∗ g(t) can be expressed as

h′(t) = f ′(t) ∗ g(t), or h′(t) = f (t) ∗ g′(t).

(43) Determine the Nyquist frequency for which the following signal can be recov-
ered without distortion.

f (t) = sinαt · sinβt
t2

, α > β.

Sketch the signal spectrum and give a graphical description of the procedure.
(44) Using the Fourier transform show that the unit impulse function can be written

as
1

π

∫ ∞

0
cos(ωt)dω.

(45) Using properties of the Fourier transform determine the Fourier transform of
the function |t |. Plot the corresponding magnitude and phase spectrum of that
transform.
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(46) Show that u(t) ∗ u(t) = r(t), in which u(t) represents the unit step function
and r(t) denotes the ramp with slope 1.

(47) Determine the Fourier transform for each one of the following functions: u(t −
T ), t , te−atu(t), 1

t ,
1
t2 . Plot the corresponding time domain diagrams and the

respective magnitude and phase spectrum of the associated transforms.
(48) Calculate the Fourier transform P(ω) of the signal p(t) = v2(t) representing

the instantaneous power in a 1� resistor, as a function of the Fourier transform
V (ω) of v(t). Using the expression obtained for P(ω) plot the instantaneous
power spectrum for a sinusoidal input signal v(t) = A cos(ωot).

(49) Find the complex Fourier series for the signal, its Fourier transform, and plot
the corresponding magnitude spectrum.

f (t) = cos(ωot) + sin2(ωot).

(50) Show that if x(t) is a bandlimited signal, i.e., X (ω) = 0 for |ω| > ωM , then

x(t) ∗ sin(at)

πt
= x(t), if a > ωM .

Plot the corresponding graphs to illustrate the proof.
(51) Prove the following Parseval equation:

∫ ∞

−∞
f (x)G(x)dx =

∫ ∞

−∞
F(x)g(x)dx .

(52) Find the Fourier transform of the current through a diode, represented by the
expression i(t) = Io[eαv(t) − 1], given the voltage v(t) applied to the diode and
its Fourier transform V (ω), in whichα is a diode parameter and Io is the reverse
current. Plot the magnitude spectrum of the Fourier transform.
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