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Coherency Estimation in Power Systems:
A Koopman Operator Approach
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Abstract Integrating a significant amount of non-synchronous generation into
power systems creates new technical challenges for transmission systems. The
research and understanding of the impact of the non-synchronous generation through
back-to-back Full Rated Converters’ (FRCs) on power system’s coherency is a mat-
ter of importance. Coherency behavior under the presence of large inclusion of non-
synchronous generation requires more research, in order to understand the forming
groups, after a disturbance, when the inertia is decreasing due to the decoupling. This
document presents the application of the so-calledKoopman Operator for the identi-
fication of coherent groups in power systems with the influence of non-synchronous
generation. The Koopman Analysis clusters the coherent groups based on the mea-
surements obtained. The visualization of the coherent groups identified allows to
observe their dynamic variations according to the penetration level or fault location.
The applied method of coherency identification is evaluated in the Nordic test sys-
tem through gradually increasing integration of non-synchronous generations and
different fault scenarios.
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9.1 Introduction

The considerable environmental benefits of integrating renewable generation into
the grid have encouraged several governmental policies around to world. Since the
non-synchronous generation (wind, wave and solar power) is required to behave
like conventional synchronous generation units, (full-scale power supply) the high
voltage power electronics converters have become attractive to be selected for the
integration into either the transmission or distribution power levels [1].

A wider use of non-synchronous generation relies on the use of Full Rated Con-
verters (FRCs). This is due to them enabling multiple control features which include
controlling active and reactive power [2], assuring voltage ride through capability [3]
in order to deal with variable speed wind turbines [4], and adding Maximum Power
Point Tracking (MPPT) algorithms [5].However, the generation is completely decou-
pled from the system, and is consequently unable to contribute dynamically to the
system [6, 7]. Thus, if the synthetic inertia control option is not added, the decoupling
displaces synchronous machines [8].

The reduction of the inertia in the power grid has provoked a global concern by the
system operators, power planners and researchers. Several reports have shown the
experience with large inclusion of non-synchronous generation and the dynamical
challenges during the past years [9].

Some of the main challenges which have been reported include the following:

– The first experienced challenge is the decrease in the system inertial response
which affects the dynamical response [10–12].

– The second challenge due to non-synchronous integration is the impact on small
signal stability. Several studies have shown that the large-scale inclusion of wind
power degrades the damping of the electromechanical modes. This displace them
to a different stability operation region, thereby affecting the response of the system
under small and large disturbances [13, 14].

A study conducted in [15] analyses the impact of the effect of high penetration
of photovoltaic (PV) on small signal stability. Due to the reduced system inertia the
study result showed a reduction in the damping torques of the system. A transient
and small signal stability analyses with a gradual inclusion of PV are developed in
[16], the eigenvalue results show that a displacement of conventional units have a
great impact on the oscillatory modes.

– The third challenge is the coherency of power systems and how it can be affected by
the use of highpower electronic converters.One relevant study shows that the large-
scale inclusionofwindpower changes the coherencyof the synchronous generators
coherent groups [17], however additional research is required in understanding
how the non-synchronous generation affects the coherency in power systems.

The phenomenon of coherency in large interconnected power systems is presented
when some generators swing together after a disturbance [18, 19]. To identify coher-
ent groups, different methods have been studied during the last years in literature.
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Time and frequency-domain methods have been used to analyse the coherency of
generators [20, 21]. Partitioning-based slow coherencymethods have been presented
in [22, 23].

Support vector clustering is applied for coherency studies in [24], computing
compact and separated clusters based on the measurements obtained.

Some approaches applyingmachine learning and computational intelligence tech-
niques for coherent identification have also been investigated in [25, 26]. In [27],
neural networks, as patterns recognition and classificators sets are used. In a more
recent contribution [28], where neural networks are also used, a fast method for
security assessment is proposed. Fuzzy clustering methods have also been applied
in [29] and [30] with auto-configuring training, and c-means clustering methods,
respectively.

Another related method is presented in [31], which applies maximum spanning
tree partitioning, to obtain the strongest connections in the network after a distur-
bance.

One method is developed in [32], where the flocking agent-interaction method is
applied for different scenarios including rapid clustering identification.

Digital signal processing techniques have been applied in this topic. One impor-
tant contribution is presented in [33], where the wavelet transform is used to obtain
the phase relations according to the signals, and is used to determine the common
frequencies of the generators involved. Another important approach is given in [34],
where the Hilbert-Huang transform is tracking the generator coherency instanta-
neously.

Coherency-based graph theory has been studied in [35] and [36], where the topo-
logical network structure is analysed. In this method the generators are clustered
according to the sub-networks and cut-sets obtained.

In [17], the coherency including wind farms is studied. The determination of the
coherent groups is done by the rotor angle response observation after a fault.

TheKoopman operator has proven to be a suitable method for coherency identifi-
cation in power systems [37]. KoopmanMode Analysis (KMA) provides a graphical
tool based on linear transformations on Hilbert spaces to analyse (non-linear) Hamil-
tonian systems.This linear, infinite-dimensional operator is defined for anynon-linear
dynamical system [38, 39]. One important characteristic of the Koopman operator is
its ability to capture the full pattern information of large complex dynamical systems
like power grids. Also, in [40], an islanding method is proposed and it is shown that
the Koopman operator can determine the static connectivity of a system in a similar
way as graph theory does.

This document follows the theory presented in [41], and also applies the technique
developed in [37] and [42]. Otherwise, the same mentioned authors, in a most recent
contribution of KMA presented in [43], the authors show the application in the 2006
European Grid-wide disturbance [44]. It is demonstrated the versatility of the KMA
by decomposing the power exchanges between the operative areas in order to not only
observe the coupled swing dynamics, but use the KMA to diagnose the instabilities
using the data obtained from a real past case [43].
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The main contributions of this document are the follow ones. The first one, is
the coherent groups identification including non-synchronous generations in power
systemswhich has been barely studied in literature before, and second one, to address
the notion of how the reduction of inertia by the large penetration of power converters
change affects the coherency in power systems from the data. Note the Koopman
Analysis requires only the measurements of the system, not the model, which makes
a robust and practical graphical tool. Moreover, the analysis is illustrated in a test
system under the consideration of different penetration level scenarios and fault
locations illustrating gradually the coherent groups conformation.

This document is an extended version of [2, 70] and is structured as follows. In
Section 9.2, the problem formulation of coherency identification in non-synchronous
integration is presented. InSection 9.3, the preliminaries of the theory of theKoopman
operator, the definition of KM and the coherency definition are reviewed. In Section
9.4, the coherency in the Nordic test system is studied under different faults. Section
9.5 presents the case studies regarding the gradual increasing of non-synchronous
generation integration on the test system. Finally, the conclusions and future work
of this research are given.

9.2 Problem Formulation

The identification of coherent groups is of importance for the development, deploy-
ment and implementation of control schemes to improve the system transmission
capability [45]. Having identified coherent groups, it is possible to classify those gen-
erators that are oscillating together, in order to understand the dynamic behaviour of
the system under disturbances, and design appropriate controllers to protect it against
them [46].

Coherency identification can be used in Wide Area Monitoring Protection and
Control (WAMPAC) systems [47] in different ways. For instance, controlled island-
ing uses the coherency identification to know how to split the network into different
sub-groups, and to avoid a blackout of the complete system [48, 49].

A dynamic preventive observation of the coherent groups can confine cascading
faults within smaller self-sustainable islands making the grid more robust under
disturbances [50].

Self-healing schemes can also be improved through the observation of the coherent
groups to protect, apply control actions and restore the system after a fault [51].

The identification of coherent groups can also be helpful to locate, design or tune
Power System Stabilizers (PSS) [52, 53]. Furthermore, the design of Flexible AC
Transmission Systems (FACTS) controllers can also take advantage of the coherent
groups identification as shown in [54], where the feedbackmeasurements are selected
based on the dominant machines of the identified groups.

Moreover, cyber-security schemes can take advantage of the coherent identifi-
cation as a tool for monitoring the dynamic changes instantaneously and upgrade
the control decisions faster [55, 56]. Furthermore, it is possible to propose dynamic
security assessments to make the response of the protection systems more efficient
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and adaptable, and also to conceive advanced alert systems in order to avoid large
area disturbances [57, 58].

Coherency identificationmethods can be classified into two basic groups [59]. The
first one is based on linearised models of power systems [60, 61]. These methods
might not be completely suitable since they do not capture the post-fault dynamics.
The second group can be called measurement-based methods, because they rely on
the signals obtained from the system, either off-line or on-line methods, to bring a
more precise dynamic observation of the system [62].

9.2.1 Koopman Self-clustering Optimization

One of the biggest concerns in Wide Area Measurement Systems (WAMS) is the
effective computing techniques and measurement technologies which allow to visu-
alize the dynamics of the systems and use the data for short/long term power system
planning [63, 64]. Koopman Mode Analysis (KMA), in its current stage of develop-
ment, is capable of receiving the signals from simulation or measured data, providing
the clusters of the coherent groups. Certainly, the method has the potential to be a
real-time coherency method; but further research is needed. Otherwise, the computa-
tional effort of the analysis is based only in the mathematical (numerical) calculation
which can be carried out by any of the processors developed in the current techno-
logical age, or it can be easily embedded in a Hardware in-the-Loop (HiL) system
or even a Floating Point Gate Array (FPGA). However, these two latest aspects are
not the purpose of this document.

The visualization of the method also plays an important role, e.g. from the Trans-
mission System Operator (TSO) point of view. The display of the results should be
easy to understand by the operator, who is responsible for planning the interconnec-
tion of HVDC lines or large non-synchronous generation, and determine decisions
on-time, propose control strategies to prevent undesirable events, etc. The results,
and the final results display obtained by the use of the KMA (phase vs. amplitude
diagrams), can bring a friendly interpretation of the dynamics variations in the power
systems supervised.

One of the main robust characteristic of KMA is that can handle several data (e.g
from data-receivers or predicted models) providing an assessment for short/long-
term futuristic power planing and update the control systems based on the analysis
given [43].

Partitioning power networks (islanding) for protecting the grid of blackouts and
large collapses using KMA has an important advantage, the model-free and the
relying on dynamics data in the network [40].

Coherency identification using KMA belongs to the measurement-based group
since it only requires sampled data [65]. Apart of the mentioned advantages, KMA
has some important characteristicswhichmakes it a powerful tool. The first, andmost
important one is that it deals with non-linear dynamics. Secondly, it does not need
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any training process, such as neural networks or support vector machines, because
this method lies on the spectrum calculation of the Koopman Operator.

The aim of this paper is to show that the KMA can be used for identification
of coherent swings and generators in systems under the effect of the decoupling of
full converters. In this paper, non-synchronous generation is modelled by aggregated
full converter units with the same power rating as that of the replaced synchronous
generation.

9.3 Koopman Operator Preliminaries

9.3.1 Koopman Operator, Eigenvalue and Mode

Consider the following dynamics described by a discrete-time non-linear system
evolving on a smooth manifold [40, 66].

xk+1 = F(xk) (9.1)

where, xk ∈ M is the state variable belonging to state space M , and F : M → M
is a non-linear, vector-valued function. TheKoopmanOperator is a linear operatorU
that acts on scalar-values functions on M in the following manner: for g : M → R,
U maps g into a new function U g given by

U g(x) = g(F(x))

Although the dynamical system is non-linear and evolves on a finite-dimensional
space, theKoopman operator is linear, but infinite-dimensional. TheKoopman eigen-
functions ϕ j : M → C and theKoopman eigenvalues (KEs) λ j ∈ C associated toU ,
are defined as

U ϕ j (x) = λ jϕ j (x), j = 1, 2, . . .

Consider g : M → R
p a vector-valued observable. If each gi of the components

in g lies within the span of eigenfunction ϕ j , then the time-evolution of observable
g (xk) from g (x0) is expanded as follows:

g (xk) =
∞∑

j=1

Ukϕ j (x0) v j =
∞∑

j=1

λk
jϕ j (x0) v j (9.2)

where, v j is the vector-valued coefficient of the decomposition and is called the j-
th Koopman Mode (KM) [67]. This decomposition is based on the properties of
the point spectrum of U , and the analysis based on (9.2) is called Koopman Mode
Analysis (KMA). The KMA enables the extraction of single-frequency modes from
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data on fully non-linear dynamics from the temporal behaviour of the corresponding
KM. The phase of λ j determines its frequency, and the magnitude determines the
growth rate.

The computation of Koopman eigenvalues and KMs is effectuated by a modified
version of Arnoldi algorithm described in [68], where it is shown that the Ritz value
λ̃ j and vector ṽ j approximate the Koopman eigenvalue λ j and factor ϕ j (x0) v j in
the expansion in terms of a finite truncation.

The input of the algorithm is the N + 1 sampled data {g (x0), g (x1) , . . . , g (xN )}.
The outputs are N pairs of Koopman eigenvalues and KMs. The finite sum expansion
is expressed by:

{
g (xk) = ∑N

j=1 λ̃k
j ṽ j k = 0, . . . , N − 1

g (xN ) = ∑N
j=1 λ̃N

j ṽ j + r
(9.3)

where, r is a residue with the approximation error.

9.3.2 Coherency in the Koopman Mode

By denoting ṽ j i as the i-th element of vj, a coherent group of KMs is identified based
on the amplitude coefficient A ji :=| ṽ j i | and the initial phase α j i := arg(ṽ j i ) for
each mode j and observable i (e.g. rotor angle δi and voltage angle θi ).

Coherency for KMs is defined in [51] as follows. For given finite N modes
{ṽ1, . . . , ṽN } and fixed constants (ε1, ε2), two observables {gk, gv} are called (ε1, ε2)-
coherent with respect to mode j if

{
| A j,k − A j,v | < ε1

| α j,k − α j,v | < ε2

In this case, g (xk) contains swing dynamics of synchronous machines in a power
system, so it is possible to group the oscillatory components with similar amplitude
A ji and initial phase α j i of machines to state them as coherent. This is illustrated in
the Figure 9.1.

Fig. 9.1 Groups of (ε1,
ε2)-coherent observables
illustrated in a phase versus
amplitude plot
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Fig. 9.2 Three sine waves
of different frequency
corresponding to (9.4). The
2.6 Hz sine wave is displaced
by a π/2 rads phase shift

9.3.3 Illustrative Example

Let us consider a simple example of KMA. The signals shown in Figure 9.2 represent
the measurements obtained from an oscillatory signal. Notice these signals are not
coupled.

g1 =0.5sin (2π f1t)

g2 =0.8sin (2π f2t − π/2)

g3 =sin (2π f3t)

(9.4)

Here f1, f2, and f3, are chosen as 6, 2.6, 0.7 Hz respectively. These signals are
depicted in Figure 9.2 over a time period of 4 s.

Now, KMA is applied with a sampling frequency of fs = 60 Hz to the data.
N + 1 = 240 samples are acquired giving N = 239 modes. The modes are now
listed based on the Growth Rate (GR) which is related to the damping in case of
sampled dynamics. The five modes with the largest GRs are listed in Table 9.1.

In this manner, the sampled data has been decomposed into a set of Ritz values
λ̃ and vectors v. The dominant frequencies are identified by applying KMA to the

Table 9.1 Dominant Koopman modes obtained for the data shown in Figure 9.2

Mode j Growth rate Frequency (Hz) Norm
∥∥ṽ j

∥∥

1 0.9997 0.68 0.0269

2 0.9960 2.66 0.2814

3 0.9951 5.94 0.0266

4 0.9925 0.39 0.5401

5 0.9913 0.13 0.1816
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Fig. 9.3 The modal
“dynamics” of the three
dominant modes. Each of the
modes has three
contributions corresponding
to the three measured
observables (the sine waves
g1, g2, g3)

sampled data. Modal dynamics for Modes 1-3 are depicted in Figure 9.3. It is seen
that for each mode, essentially only one observable (out of three) contributes (the
one corresponding to the sine wave of the same frequency as the mode). The sum
over all modes according to (9.2)–(9.3) reconstructs the sampled data.

9.4 Application to the Nordic System

The single-line diagram of the Nordic test system is shown in Figure 9.4. This system
contains 32 high voltage buses, 20 synchronous generators with different types of
generation (circled in the figure), in four geographical identified area. The North
and External area are hydro-dominated while the south and central areas have a
mixture of nuclear, thermal and coal power plants. Central area has the highest level
consumption whereas the North area has the lowest level. The transmission system is
designed for 400 kV (19 buses) with some regional systems at 220 kV (2 buses) and
130 kV (11 buses). The details of the system, such as unit rating, line data, dynamic
data, and loading conditions, are given in [69]. Power System Stabilizers (PSS) have
been located in the following synchronous machines: 1042, 1043, 4011, 4042, 4047,
4051, 4062, 4063.

9.4.1 Numerical Simulation

The setting of numerical simulation is as follows. The constants and power loads are
the same as in [69]. All numerical simulations discussed in this paper are performed
using the software DigSilent Power Factory®. Then, some disturbances (three-phase



210 H. R. Chamorro et al.

Fig. 9.4 Nordic 32 test system
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Table 9.2 List of selected faults—Nordic 32-bus test system

Fault Bus fault location Critical clearing time (ms)

1 4047 234

2 1021 190

3 4031 180

4 4063 250

5 1012 250

short circuit faults) in the system are supposed in order to trigger the swing curves
signals to analyse. The location of the faults are based on the previous study of this
system presented in [70], however the Critical Clearing Time (CCT) differs due to
the different dynamic settings in the system (Table9.2).

9.4.2 Koopman Modes and Eigenvalues Analysis

KM have been computed based on the measurements obtained, which are the rotor
angle δi of the synchronous generators. For computation, the observable g (δ) is
chosen, where δ = [δ1, . . . , δ7, δ9, . . . , δ20]T. The symbol T indicates transpose in
vectors. It is used on the simulation outputs obtained from the software, where the
uniform sampling period Ts = 1/( fs),with fs = 100 Hz and the number of samples
N = 1001. An appropriate number of samples should be selected to capture a large
quantity enough of snapshots.

Consider a fault located in the bus number B4047 located in the Central area.
Figure 9.5 shows the time response of the 	δi . Note that G8 (G4011) is the reference
machine.

The coherent generators extraction are obtained from the KMs decomposition. In
this document, the mode of interest is the one with the largest norm. The frequency
related to this mode is 0.6Hz. Table 9.3 shows the numerical computation of KEs
and KMs, Mode 1 to Mode 10.

The distribution of A8,i versus α8,i is plotted in Figure 9.5. The circle points for
generators show the different cluster groups obtained. For this mode, the phase α8,i

clusters two main generator coherent groups CG1 (1012, 1013, 1014, 4012, 4071,
4072) andCG2 (G1043,G4041,G4042,G4047,G4051,G1042,G4062,G4063,G2032,G4021,
G4031, G1021 and G1022) and different subgroups. Figure 9.6 show the time response
of these sub-groups respectively. Observing CG1 and CG2 groups and the time
response is possible to match which groups have positive and negative rotor angle,
or in other words, the accelerating and de-accelerating groups respectively.

Following the same process, it is possible to identify the coherent groups/
subgroups with the different faults stated above. Table 9.4 shows the correspond-
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Fig. 9.5 Rotor angle time response after the fault at bus B4047

Table 9.3 Result of Koopman modes after fault in B4047

Mode j Growth rate Frequency (Hz) Norm
∥∥ṽ j

∥∥

1 1 0 115.9

2 0.9987 1.8169 0.20029

3 0.99844 2.049 0.11828

4 0.9983 2.1693 0.10667

5 0.9982 1.9336 0.18931

6 0.99809 1.6843 0.42954

7 0.99796 2.2854 0.11777

8 0.99748 0.59578 73.438

9 0.99746 0.2983 2.3481

10 0.99745 1.3594 1.6117
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Table 9.4 Largest Koopman modes for the different faults

Fault Mode j Growth rate Frequency (Hz) Norm
∥∥ṽ j

∥∥

4031 3 0.99797 0.616 60.08

1021 2 0.99108 0.569 8.539

4063 8 0.99748 0.595 73.43

1012 3 0.99798 0.613 78.68

ing KMs and their frequencies according to the rest of the faults. Figure 9.7a–d show
the distribution of the largest Koopman Modes.

Same groups (CG1and CG2) and subgroups are obtained, nevertheless some
slightly differences can be observed. For the fault located in bus B4063, it can be seen
in Figure 9.7c thatG4062 andG4063 are more related to the central group of generators
than other cases. Sub-group S7 can be joined with sub-group S6. The other generators
remained to the same sub-groups.

9.5 Test Cases: Gradual Increasing of Non-synchronous
Generation

The impact of the integration of non-synchronous generation on the test system
coherency is analysed by replacing some of the synchronous generators with back-
to-back FRCwith the same active and reactive power outputs in order to guarantee the
same initial conditions. Note that the power outputs are fixed through the simulation.
Two scenarios are tested: first one, replaces synchronous generators in the Central-
South area while the second one replaces in the North-External area.

9.5.1 Scenario Central-South

Case1 (C1) toCase5 (C5) represent the replacement of synchronous generationby the
integration of non-synchronous generation based FRC gradually, in order to analyse
different levels of power penetration. For example, C1 considers the replacement of
one generation only, and C2 considers the replacement of two generators including
the one in C1, and so on. It is assumed that the dispersed generation is connected to
one established substation. These five scenarios are summarised in Table 9.5:

Initially, KM are evaluated for fault at B4047 for cases presented above. Table 9.6
shows the KM variation according to the replacement by non-synchronous in the
system. It can be seen that the largest mode frequency stays in the same range. The
same behaviour is obtained in the rest of the cases; however, the frequency tables
variation are not presented here.
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(c) Distribution of initial phases α ji and amplitude coefficients Aji
(after fault at bus B4063)
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(d) Distribution of initial phases α ji and amplitude coefficients Aji
(after fault at bus B1012)

Fig. 9.7 Distribution of initial phases and amplitude coefficients for different faults
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Table 9.5 Generator replacement for each case

Case C1 C2 C3 C4 C5

Generator G7 G16 G17 G14 G6

Bus B1043 B4051 B4062 B4042 B1042

Power (MW)% 1.2 5.4 9 13 15

Table 9.6 Koopman largest mode variation (fault 4047)

Mode j Growth rate Frequency (Hz) Norm
∥∥ṽ j

∥∥ Case

8 0.99748 0.5957 73.43 BC

15 0.99721 0.5908 75.54 C1

3 0.99894 0.5714 52.31 C2

6 0.99813 0.5661 19.23 C3

10 0.99789 0.5986 22.17 C4

4 0.99978 0.6542 9.365 C5

KM for C2 is plotted in Figure 9.8. The replacement by non-synchronous gener-
ation in the first two cases does not affect the coherent groups/sub-groups analysed
before. Figure 9.8 shows the KM for C3 and the significant changes for cases C4

and C5 with the circle points variation of the generators concerned. After the third
case, with the replacement of generator G4062, generator G4063 (both in the South
area) become to swing and be more coherent with generators in the Central area.
Generators in the North and External area keep swinging together.

For the fault in bus B4031, first two cases of non-synchronous generation replace-
ment do not show change in the coherent sub-groups as the former analysis. From the
third case, significant changes can be observed in theKMsub-groups. The sub-groups
based on the amplitude coefficient of the respective mode show that the Central area
have become more separated. Specially in case 4, where generator G1042 moves
closer to G4063 (Figure9.9).

Generator G1042 is becoming more separate in C4 for post-faults in buses B4063,
B4012 and B4021as it can be seen in Figures 9.10 and 9.11 (Figure9.12).

9.5.2 Scenario North-External Area

This scenario considers the replacement of some generators in theNorth and External
area. The location of these new cases in the system are presented in Table 9.7. It is
applied the same gradual replacement from the previous scenario.
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Fig. 9.8 Coherency identification including non-synchronous generation (after fault at bus B4047)
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Fig. 9.9 Coherency identification including non-synchronous generation (after fault at bus B4031)
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Fig. 9.10 Coherency identification including non-synchronous generation (after fault at bus B4063)
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Fig. 9.11 Coherency identification including non-synchronous generation (after fault at bus B1021)
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Fig. 9.12 Coherency identification including non-synchronous generation (after fault at bus B1012)

Table 9.7 Generator replacement for each case (North-Ext)

Case C1 C2 C3

Generator G2 G12 G19

Bus B1013 B1012 B4071

Power (MW)% 3 6 9

The replacement by non-synchronous generation in the first two cases remains the
sub-groups previously identified for the same faults located. After the replacement
of the third generator, for the fault located in bus B4031, makes the generator G1021

be more coherent with the sub-group of generators G4012 and G1014, whereas for the
faults located in buses B1021 and B1012 the generator G1021 be more coherent with
the generators G2032, G4031 and G4021. This is shown in Figures 9.13, 9.14 and 9.15
(Table9.8).
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Fig. 9.13 Coherency identification including non-synchronous generation (after fault at bus B4031)
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Fig. 9.14 Coherency identification including non-synchronous generation (after fault at bus B1021)
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Fig. 9.15 Coherency identification including non-synchronous generation (after fault at bus B1012)

Table 9.8 Koopman largest mode variation (fault 4031)

Mode j Growth rate Frequency (Hz) Norm
∥∥ṽ j

∥∥ Case

2 0.99797 0.6165 60.08 BC

5 0.99769 0.6097 54.68 1

2 0.99868 0.6552 13.73 2

8 0.9979 0.6349 16.91 3

9.6 Conclusions and Future Work

The document presents an original contribution to the application of the KMA for
the coherency pattern identification of power systems system with a gradual large
inclusion of non-synchronous generation.

The application of KMA to the studied power system (Nordic 32 system) showed
the variation of the coherent groups through the gradual inclusion of power con-
verters. The results show that if a minor replacement of synchronous machines the
coherency is not affected, but after the replacement of the 13% of the power in the
system, some significant changes in the coherent groups can be identified.

The coherent groups in one operative area can be altered by the increasing inclu-
sion of non-synchronous generation becoming either groups apart or be more coher-
ent with other groups. A general comment can bemade in relation to the fault location
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since the coherency phenomena is related to it. After studying several faults incorpo-
rating the gradual increasing of full converters. The effect of a fault close to a specific
generator in the form of acceleration is propagated, and reflected around the closer
generators in the form of synchronizing power. Therefore, with the replacement of
synchronous machines (inertia reduction), the coherent groups separate different, as
the amplitude coefficient separation in the KM showed.

The applied coherency identification method provides a direct calculation and a
powerful graphical visualisation tool for observing the coherent groups/subgroups
according to the measurements obtained while the dynamics are changing.

This tool has the potential to be integrated in real-time simulator systems and be
improved by a sliding window, which means can be applied in situational awareness
alert system or control loops design involved in FRC.

KMA application is concise with the slow coherency theory, however with the
reduction of inertia in the system, the fault location change the coherent groups in
the system.

Futurework requires the addition of PSS to non-synchronous generation and other
control loops, e.g. synthetic inertia in order to diminish the oscillations.

Acknowledgements Authors are very grateful to theDr. Fredrik Raak and Prof. Susuki fromKyoto
University for the discussion about the Koopman Mode theory, its computation and suggestions of
the document.
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