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Foreword

Science is a way of trying not to fool yourself. The principle
is that you must not fool yourself, and you are the easiest
person to fool.
—Richard Feynman

On the one hand, computational intelligence is a vast and maturing field, which
has been applied to a large scope of applications. Undeniably, many real-life
problems cannot be translated into a language for computers to process it easily.
Computational intelligence is a set of nature-inspired computational methodolo-
gies and approaches to address complex real-world problems to which typical
mathematical modeling can be useless. Consequently, computational intelligence
provides solutions for such problems. On the other hand, optimization is in a
pragmatic sense the act of obtaining the best results under given circumstances.
Essentially, optimization goes hand-in-hand with high-speed digital computers
making possible the implementation of complex optimization methods and
stimulating further research on newer methods. Combining computational intel-
ligence and optimization methodologies to be applied to control engineering
problems is a natural advancement of this research field, and its diffusion to a
wide range of disciplines is one of the most recent and striking trends. In a close
future, developments in this area will play an essential position in a wide range of
high-performance systems, from simple household appliances to complex trans-
portation systems. The time has come to propose an emerging expertise as a
conjunction of computational intelligence and optimization to reach better real-life
implementation on control engineering applications, more than to open deep
discussion on theoretical or/and conceptual development on isolated domains. The
present volume of Springer Optimization and Its Applications series by
Maude J. Blondin, Panos M. Pardalos, and Javier Sanchis Sáez is devoted to the
expansion of this expertise. The editorial team represents well the ongoing trend
of this emerging expertise. Maude J. Blondin, postdoctoral researcher at the
University of Florida, is the youngest but very active in the field. I have the
pleasure to meet her several times in international conferences and I follow her
research developments actively. She is very well assisted by two eminent pro-
fessors: P. Pardalos, distinguished professor in industrial and systems engineering
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at the University of Florida; and Javier Sanchis Sáez, professor in the department
of systems engineering and control of Universitat Politécnica de València, Spain,
inevitable reference names in this research field. The volume presents the role of
computational intelligence- and optimization methods-based tools play in a large
variety of control engineering applications. Starting with a comprehensive over-
view of control engineering, the volume focuses on real applications such as
transport optimization including autonomous vehicles and hybrid electric buses
case studies; energy optimization including hybrid electric buses, load monitoring
in residences, power estimation, microgrids, and renewable systems case studies;
manufacturing optimization including smart composite structures and semicon-
ductor case studies; control optimization including complex systems, parameter
tuning, cyber-physical- human systems, and complex biological systems case
studies. As several applications with increasing complexity are presented, this
volume is directed toward entry level scientists, engineers, and technicians in
industry and governmental agencies as well in academia. The multidisciplinary
and vast application real-life problems that are proposed in this volume demon-
strate the huge potential of Computational Intelligence and Optimization Methods
for Control Engineering. It will be an excellent textbook support to the reader to
extrapolate this new trend expertise to his own problems.

April 2019 João Pedro F. Trovão
Canada Research Chairholder

Faculty of Engineering
University of Sherbrooke

Sherbrooke, Canada
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Preface

Nowadays, control engineering is an important field of research since it is part of
almost all engineering activities and systems. The proportional–integral–derivative
(PID) controller proposed in the beginning of the twentieth century is the most used
controller to this day, mostly in industrial applications. However, technological
advances and technology affordability have enabled the deployment of new control
systems, in particular intelligent systems. Intelligent systems, which include auto-
matic control, cover a broad range of applications for which PID control has
practical limitations. As a result, control theory techniques related to computational
intelligence and soft computing approaches have been expanding at a high speed
over the last decades. It is still a current research trend. Indeed, there are hundreds
of publications on this topic that may cause even someone knowledgeable in the
subject to lose track of all novelties. Therefore, the main purpose of the book is to
present some recent and important developments related to computational intelli-
gence and optimization methods in control, with attention to position the control
techniques into the literature through state-of-the-art surveys. Future directions and
research perspectives on the subject are clearly presented. Consequently, this book
is designed to give the reader a better understanding of different challenges faced in
control engineering and to provide insights to enable the development of new
techniques. In addition, the book empowers the reader to determine the appropriate
control method for a specific application.

The reading of this book is not intended to be linear, i.e., each chapter stands on
its own. However, the chapter order follows a logical flow of ideas that may help a
novice in control to understand better the presented concepts.

The first chapter of the book introduces the reader to control engineering.
Traditional control techniques along with their limitations to highlight the impor-
tance of new control methods are presented. Modern control techniques such as
optimal control and adaptive control are also exposed. However, this chapter
focuses mainly on intelligent control techniques, which include metaheuristics
control tuning, fuzzy logic control, neural networks, and multi-agent systems.
Perspective and new trends of research are exposed for each presented control
technique as well as for control systems in general. The second chapter presents
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some of the main metaheuristics that are used in control, i.e., taboo search, simu-
lated annealing, tunneling algorithms, GRASP methods, genetic algorithms and
evolutionary algorithms, ant colony optimization, particle swarm optimization, and
multi-objective optimization. In the same direction, Chapter 3 presents controller
tuning with metaheuristics on canonical benchmark control problems. This chapter
provides good insight and explains in detail how to apply metaheuristics to con-
troller tuning. Chapter 4 explains fuzzy logic and neuro-fuzzy logic techniques with
applicative examples in smart structures. Chapters 5 and 6 deal specifically with
neural networks for system applications in desalination industry and in blood
glucose control devices. Distributed optimization and cooperative control, which is
related to multi-agent concept, are presented in Chapters 7 and 8 for the digital grid
and microgrids, respectively. Chapters 9–14 propose novel control techniques with
illustrative examples of applications in power systems, load monitoring systems,
autonomous vehicles, controllers for semiconductor manufacturing, and hybrid
electric buses. Most of the control problems presented in this book deal with
nonlinearities and their limitations. Perturbation management, robustness, stability,
and dynamic performances are also considered to assure practice validity.

In summary, the contributed book covers theoretical aspects of control engi-
neering along with practical applications.

Gainesville, FL, USA Maude Josée Blondin
Gainesville, FL, USA Panos M. Pardalos
Valencia, Spain Javier Sanchis Sáez
April 2019
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Chapter 1
Control Engineering from Classical
to Intelligent Control Theory—An
Overview

Maude Josée Blondin, Javier Sanchis Sáez and Panos M. Pardalos

Abstract Control engineering is the engineering discipline that refers to the use
of automatic control. This discipline has been intensively enlarging over the past
decades due to technological advances and technology affordability. Nowadays,
almost all engineering activities exploit automatic control. Therefore, this chapter
aims to provide the core knowledge concerning some of the most important features
in control design and its methods. It covers basic information to introduce the readers
to the other chapters of this volume. Fundamental system properties and specifica-
tions for control design such as robustness and stability are explained. In addition
to a broad overview of modern control techniques with explicative examples and
reference publications, the chapter focuses on four intelligent control techniques,
which are fuzzy logic control, neural networks, metaheuristics control tuning, and
multi-agent systems. Perspective and new trends of research are also exposed for
each presented control technique as well as for control systems in general.

1.1 Introduction

Control engineering can be considered as an engineering discipline itself. This dis-
cipline refers to the use of automatic control to make systems or processes reach the
desired behavior while operating under certain constraints. Control engineering has
been intensively enlarging over the past decades due to the advancement of mod-
ern technologies and development of new systems, in particular intelligent systems.
It has reached the point where control engineering has become an inherent part of

M. J. Blondin (B) · P. M. Pardalos
University of Florida, Gainesville, Florida 32607, USA
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Controller 
structure

Controlled 
system

Input/Reference
Control 
signal System output

Fig. 1.1 Open-loop control system diagram [4]

almost all engineering activities covering a vast range of applications [1]. In practice,
simple systems to more complex systems employ automatic control as, for example,
a controlled on–off switch for temperature [2] to multi-input-multi-output (MIMO)
industrial processes [3] that may be subject to several constraints.

There exist two categories that distinguished automatic control loop. The first is
open-loop control—Fig. 1.1.

As shown in Fig. 1.1, open-loop control does not consider the system output in
the control action. A toaster is one of the typical household items that applies the
open-loop control concept. The system output, which is the bread’s color, is excluded
of the control action. Indeed, it is only a timer that controls the toaster [5]. The toasts
pop up when the time is up, not when the desired bread’s color is reached. Therefore,
to assure that the desired color is reached, the user has to monitor the bread’s color.
It is only after a few trials the user will know how long he should set the timer to
get “perfect” toasts. However, if another kind of bread is put in the toaster, the user
will have to repeat the monitoring process. Monitoring the output to control a given
system leads us to the concept of closed-loop control. In fact, monitoring the bread’s
color and adjust the timer can be considered a kind of closed-loop control known as
“manual” control. Figure1.2 presents the closed-loop control system diagram.

The control action depends on the systemoutput feedback.Avehicle cruise control
is a straightforward example of a closed-loop control system. The controller is the
cruise control device. The reference is the desired speed set by the driver. The system
output is the actual vehicle speed, which is continually monitored by a sensor. Both
speeds are constantly compared. Their difference is the error, e(s), that the controller
tries to minimize by determining the adequate throttle position. Therefore, regardless
of the road condition changes such as road slope and wind velocity, dynamic control
actions will maintain the vehicle speed constant.

Controller 
structure

Controlled 
system

Input/Reference

Control 
signal
U(s) System output

Feedback

Error
e(s)

-
+

Fig. 1.2 Closed-loop control system diagram [4]



1 Control Engineering from Classical to Intelligent Control Theory—An Overview 3

The best-known and most used feedback control structure is the proportional–
integral–derivative (PID) controller. Indeed, a decade ago, PID controller was con-
trolling more than 90% of practical control systems [6]. The non-interacting form in
Laplace domain describes the PID algorithm as follows [7]:

P I D(s) = U (s)

e(s)
= Kp + Ki

s
+ Kds (1.1)

The PID controller performance depends on the values of its proportional gain
Kp, its integral gain Ki , as well as its derivative gain Kd . Only appropriate gains
will provide the desired system responses. Consequently, PID controller parameters
tuning is a crucial step in control design. Since there are only three tunable gains, one
may think PID tuning is an easy task. In contrary, it is mostly challenging given that
multiple criteria, which are often conflicting, must be satisfied. Indeed, fast dynamic
system response is frequently at the expense of system robustness. Hence, the key is
to achieve the best trade-off between system criteria. As results of seeking the best
trade-off in control design requirements, a plethora of PID tuning methods have been
proposed [8] and compared [9]. Classical methods and modern methods divide PID
controller tuning methods. Table1.1 presents an overview of the best-known PID
tuning approaches.

Ziegler–Nichols (ZN) is the best-known heuristic tuning method. ZN determines
the PID gains by following a set of heuristic rules. This method can also be applied
to tune P and PI controllers. It is suitable for systems where the plant dynamics are
not fully known [29]. Another well-known method is the pole placement, which is
mainly applied to low-order systems. Specifically, this method positions the system
closed-loop poles in the S-plane. The classical tuning methods presented in Table1.1
are by design proposed for PID controllers. Even though they are usually suitable for
proportional–integral (PI) controller, their applications are limited. Indeed, they are
generally not appropriate for one-degree-of-freedom PID (1DOF-PID), two-degree-

Table 1.1 PID controller tuning methods

Classical methods Ref. Modern approaches Ref.

Kappa-tau tuning [7] Fuzzy logic control [19]

Ziegler–Nichols [10] Neural network theory [20]

Pole placement [11] Machine learning [21]

Gain and phase-based design [12] Multi-agent system [22]

D-partitioning [13] Metaheuristic tuning such as: [23]

Nyquist-based design [14] Particle swarm optimization [24]

Cohen–Coon [15] Genetic algorithm [25]

Internal model control [16] Ant colony optimization [26]

Frequency-loop shaping [17] Fuzzy logic control + particle
swarm optimization tuning

[27]

Cancelation-based [18] Fuzzy logic control + neural
network

[28]
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of-freedomPID (2DOF-PID), three-degree-of-freedomPID (3DOF-PID), fractional-
order PID (FOPID), as well as for PID with a filter on the derivative term (PID/N).
As other major drawbacks, they mainly rely on approximations of low-order models
and hardly achieve high dynamic performance. Moreover, they can barely handle
system constraints, which are ubiquitous and essential in practice [30, 31]. Indeed,
any system has specific features and operating conditions that the control structure
tuning must handle such as anti-windup mechanism. For these reasons, researchers
and scientists have developed alternatives, so-called modern approaches, to cope
better with system constraints while achieving high dynamic performance as well
as meeting high stability and robustness criteria. For example, in [32], it has been
demonstrated that a fuzzy logic controller-PID (FLC-PID) tuned bygenetic algorithm
(GA) provides better control compared to ZN-tuned PID controller for an inverted
pendulum. In the same direction, in [33], particle swarm optimization (PSO)-tuned
PID controller achieves better system performance than ZN-tuned and Cohen–Coon-
tuned PID controller for an unmanned aerial vehicle camera position control. Another
major advantage of modern methods is that some of them are suitable for controller
structures unrelated to PID such as backstepping control structure [34]. Moreover,
system optimality can be reached with modern methods. Therefore, they are of much
interest in control design.

It is worth mentioning that no single PID tuning method performs best with all
systems. This is also true for any other tuningmethods applied to controller structures
related or unrelated to PID controllers. Similarly, no single controller structure related
or unrelated to PID is adequate to all systems. As a result, scientific community has
been developing new controller structures as well as tuning techniques to cope better
with system requirements.

In the light of this PID controller tuning review, challenges arise; which controller
structure and tuning method should be selected. The selection of the control struc-
ture/algorithm along with its design depends on the system to be controlled and the
closed-loop objectives. Therefore, this chapter aims to provide the reader with the
core knowledge concerning some of themost important features in control design and
to present the main modern control methods. It covers basic information to introduce
the readers to the other chapters of this book. It provides details related to system
properties and specifications for control design such as robustness and stability. In
addition to a broad overview of modern control techniques, the chapter focuses on
intelligent control techniques. Fuzzy logic control (FLC), neural network (ANN),
metaheuristics tuning as well as multi-agent systems are detailed and situated into
the literature. Moreover, perspective and new trends of research are also exposed for
each presented technique.

Section1.2 presents control system classifications, properties, and specifications.
Section1.3 presents the main modern control strategies with an emphasis on intelli-
gent control methods.
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1.2 Control System Classifications, Properties,
and Specifications

This section presents the essential knowledge for control system design.

1.2.1 System Classification

There exist several ways to classify control systems. Consequently, system classifi-
cation should be based on its purpose/use since there are more appropriate control
methods for specific class. For instance, any system is either linear or nonlinear and
time-invariant or time-varying. These classifications would help select the proper
control design approach and tool analysis.

A system is linear if it obeys the superposition property defined by the homo-
geneity rule and the additivity rule. The homogeneity rule means that if a scalar
b multiplies the input X1, the output Y1 will also be multiplied by b such that
F(bX1) = bF(X1). The additivity rule definition is if an input X1 produces the
output Y1, and the input X2 produces the output Y2; therefore, the input X1 + X2
yields the output Y1 + Y2. In that direction, a system that does not comply with
the superposition property is nonlinear. In a practical context, there is no completely
linear system. All systems have some nonlinearities to a certain degree. However,
it is more convenient to represent physical systems with linear equations since it
simplifies their analysis and design. As a result, many systems are represented by
linear equations. Sometimes linear equations may approximate nonlinear systems.
This linearization process is possible only if the nonlinear system has an operation
point around an equilibrium point with small variations around this point. Since the
system linearization is valid only for a limited range of operations, a combination
of linearized models can be used to define a larger operation range of the nonlinear
system.

A time-invariant system as its name says does not change over time meaning that
its characteristics stay the same. Thus, if a time shift is inserted in the input, the same
is obtained in the output signal, regardless of when the input signal is applied [35].

Systems can also be classified according to their signal type either continuous-
time signal or discrete-time signal. A signal is continuous if it exists for all time t .
It is defined as x(t). In the opposite, discrete signal, denoted with x[n], is defined at
distinct points of time. This latter is frequently the result of continuous-time signal
sampling.

Another classification is single-input single-output (SISO) versus multiple-input
multiple-output (MIMO) systems. SISO systems possess only one input and one out-
put. In contrary,MIMO systems have several inputs and outputs. Further information
on SISO vs. MIMO control design is presented in [36].

Proper classification of the system to control will help the control designer to
select the appropriate control technique. Indeed, the control techniques applicable to
a given system will be narrowed down by the system classification.



6 M. J. Blondin et al.

1.2.2 Transient Response—Dynamic Performance

In common practice, the following transient-response measurements to a step input
are often used to characterize system dynamic performances [29]:

• Delay time, td : time required for the response to reach half of the final value for
the first time [29].

• Rise time, tr : time required for the response to rise from a certain percentage to
another percentage of its final response value [29]. Usually, for overdamped sys-
tems, 10–90% rise time is employed and for underdamped second-order systems,
0–100% rise time is used.

• Peak time, tp: time required for the response to reach the first peak of the over-
shoot [29].

• Maximum percent overshoot, Mp: this measure is computed as follows:

Maximum percent overshoot = Maximum peak value − Final value

Final value
× 100%

(1.2)
• Settling time, ts : time required for the response to reach and stay within a range
around its final value [29]. The range is expressed in absolute percentage of the
final value and is commonly either 2% or 5%.

The control designer could specify the values that these characteristics should
take and then tune the controller structure with a selected technique. However, spec-
ifying the transient-response measurements might be unrealistic for systems with
imprecisely known behavior. Therefore, these measurements are frequently used to
compare tuning technique and controller structure performances. For instance, in
[37], PID performances tuned by PSO, artificial bee colony optimization (ABC),
and differential evolution (DE) are compared by using tr , Mp, ts and tp values. For
metaheuristics controller tuning, it is also current practice to design a performance
criterion, also called cost function, objective function, or fitness function, using all
or some of these measurements.

1.2.3 Stability

Stability is a key concept in designing a control system.At no time, a system should be
or become unstable since unstable systems may have unexpected behavior. A system
is absolutely stable if and only if any given bounded input produces a bounded output
[35]. Such systems are called bounded input bounded output (BIBO). Let’s consider
the following system [35]:

y(t) = Hx(t) (1.3)
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This system is BIBO stable if its output meets the following condition:

|y(t)| � My < ∞ for all t (1.4)

whensoever the system input respects the condition:

|x(t)| � Mx < ∞ for all t (1.5)

where Mx and My are finite positive numbers. The closed-loop transfer function
poles of absolutely stable systems are located in the left-half plane of the S-plane.
There exist two other categories that classify system stability: (i) marginal stability
and (ii) conditional stability. A system is marginally stable if the system produces
an oscillatory output signal of constant amplitude and frequency for some bounded
input. This kind of system has two closed-loop poles of its transfer function on the
complex/imaginary axis. Conditionally stable systems refer to systems that are stable
only under certain conditions.

Even though system stability can be checked by the poles’ location, the fol-
lowing methods are often more straightforward to apply. Therefore, they are fre-
quently used [4]:

• Routh–Hurwitz criterion: Algebraic method that determines the location of poly-
nomial roots without solving the equation, i.e., without computing the zeros of the
equation. The method specifies if either the roots are lying in the left or right half
of the S-plane. This approach is suitable for SISO and MIMO systems as well as
for single or multiple loop systems.

• Nyquist stability criteria: In addition to giving information concerning the absolute
stability of a system as the Routh–Hurwitz criterion does, this method provides
details on the frequency characteristics as well as on the degree of stability of a
given system.

• Root locus: This technique allows the user to graph the location of the poles as
some systemparameters vary over a given range. The obtained graph is the diagram
of loci. The system is stable only if the values of the selected parameters cause the
poles’ location lies in the left-half S-plane. Otherwise, the system is unstable.

• Bode diagram: Diagram called Bode plot includes two graphs: one indicating the
magnitude of the transfer function of a system and the other presenting its phase.

• Lyapunov’s stability criterion: This method indicates the stability of nonlinear
and linear systems. A Lyapunov function is used to determine system stability
properties.

1.2.4 Robustness

Such as stability, robustness is an important property in control design. Control is
designed with a mathematical representation of the system. However, the system
models are rarely exact. A modeled control system may have the desired behavior in
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simulations, but offers the poorest performance in practice. Even with the most care
in developing models, there is always some parameter variations and uncertainties
in practice. This is one of the reasons any practical control system should have some
robustness properties [38]. Robustness refers to the system’s ability to cope with
component variations while remaining stable as well as maintaining its performance.
Robustness can also refer to the system being able to handle system disturbances.
Depending on the control system application, disturbance rejection may also be
critical. Robustness can be determined by using stability evaluation methods such
as root locus. With the root locus graph, one can estimate the range of parameter
values for which the system remains stable. In the same direction, one can use the
phase and gain margins. These measurements provide information concerning how
much additional gain and phase the system can take before it becomes unstable. This
means that the system stability is more “robust” with high margins.

Frequently, dynamic performance, stability, and robustness are conflicting criteria.
The key element in control design is achieving the best trade-off between these
criteria for a given system [39]. Tuning methods as well as controller structures
appropriateness depend on the system application and specifications. The following
section provides good insight concerning the main modern control strategies and
their applications as well as perspectives of research.

1.3 Modern Control Strategies

This section exposes themainmodern control strategies for linear aswell as nonlinear
systems. Figure1.3 presents a classification ofmodern control theory techniqueswith
an emphasis on intelligent control.

Optimal control theory refers to techniques that are based on two fundamental
ideas: (i) dynamic programming with the associated optimality principle and (ii)
the maximum principle, namely, Pontryagin maximum principle [40] and Bellman
approach, which only apply to deterministic problems [41]. For instance, in [42],
dynamic programming for constrained optimal control problems is studied, where
basic theoretical results and the description of the state-feedback optimal control law
construction are provided. To limit typical phenomena of optimal control such as
oscillations, concentrations, anddiscontinuities, a global unifiedmethodologymostly
based on the Hamilton–Jacobi–Bellman was proposed in [43]. This methodology
lays foundation for the application of the Lasserre hierarchy to other optimal control
problems as well as for calculus of variations. Research activities on optimal control
have been very active over the past decades, which is substantiated by several surveys
on optimal control and its major developments [44, 46–48]. A new research direction
related to optimal control could be the codesign of optimal control techniques with
other control approaches such as optimal control with backstepping design or with
sliding mode control [44]. In the same direction, neural networks employed for
optimal control synthesis is also a new tendency of research. For instance, an optimal
adaptive neural network control scheme in finite horizon for nonlinear discrete-time
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Fuzzy control
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Fig. 1.3 Classification of control theory

systems is proposed in [45]. Fuzzy theory combined with optimal control was also
recently developed. On the other hand, optimal control in cooperative control of
nonlinear multi-agent systems deserves more investigation since a limited number
of publications cover this topic.

Robust control is the control techniques specifically designed to deal with sys-
tem uncertainties as well as disturbances [49]. Some examples of robust control
approaches are sliding mode control and H-∞ loop shaping. The latter is one of the
most powerful robust control techniques [50]. Research on robust control theory has
been studied for more than 30 years. Research publications on the subject confirm
that this topic is still of interest. In [51], a robust data-driven H-∞ feedback control
is proposed for a wind turbine system. A robust internal model control based on
sliding mode control approach for a servo motor is proposed in [52] to deal with sys-
tem uncertainties and disturbances as well as to achieve high-performance motion
control. Robot control is an area of research where robust control has been inten-
sively studied. The publications [53, 54] are excellent surveys on this topic. However,
robust control application is not exclusively for robots. Indeed, robust control can
be applied also to a large range of applications such as photovoltaic systems [55],
hydraulic excavators [56], and spacecraft [57].

Stochastic control class is mostly based on the characteristics of the system to be
controlled rather than the techniques used. Indeed, stochastic control problems are
presumed to have some random noise or disturbances in the model, which controllers
have to consider. Therefore, stochastic control deals with controlling random systems
in an optimal way such as controlling an airplane through turbulence [58].

Adaptive control refers to control systems with adjustable controllers, i.e., con-
troller parameters are adapted/changed according to modifications in system dynam-
ics along with system conditions [59]. For instance, in [60], a nonlinear adaptive con-
troller is designed to handle all unknown and time-varying dynamics such as param-
eter uncertainties and nonlinearities as well as disturbances. This control system
commands a permanent magnet synchronous generator-based wind turbine. Adap-
tive control tends to be combined with other control techniques. For example, in [61],
a robust adaptive neural network control is proposed to control polymer electrolyte
membrane fuel cells. Indeed, it is very frequent to have control designs that combine
concepts of different classes of control theory. Codesigns are popular because it com-
bines the strength of each control techniques. The last control category, intelligent
control, has a strong tendency to be mixed with other control approaches. Intelli-
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gent control, which includes fuzzy control, neural network, multi-agent systems,
and controller tuning by metaheuristics, is detailed in the following subsections.

1.3.1 Intelligent Control

This section presents intelligent control methods and their applications. The intelli-
gent control field has been expanding during the last decade due to the development
of more complex systems [62]. As a system increases in complexity, its mathematical
model also. In some cases, highly complex mathematical models may complicate
its control design [63]. In a similar way, there are some systems that are difficult to
model with differential or difference equations. Therefore, designing their control
becomes very challenging with methods that rely on differential or difference equa-
tions. Moreover, as explained before, classical tuning methods, e.g., Ziegler–Nichols
andCohen–Coon, are not suitable for complex controller structures. Hence, scientific
interest has grown tremendously in developing several methods based on intelligent
control to address these limitations. Intelligent control refers to methodologies that
use artificial intelligence techniques, which can be classified into fuzzy logic, neural
networks, as well as metaheuristics tuning that include bio-inspired and evolutionary
optimization algorithms. Cooperative control in multi-agent system context is also
an active area of research that could be included in intelligent control methods. The
subsequent subsections provide details, state of the arts, as well as future research
direction for each of the abovementioned category.

1.3.1.1 Metaheuristics

Optimization plays a major and influential role in everyday life. Indeed, several
fields such as engineering, economics, and computer science employ optimization.
Optimization is applied to problems that need to achieve a certain optimally with
respect to one or more objectives. Figure1.4 presents a classification of optimization
algorithms. Metaheuristics are characterized by a high degree of abstraction, which
permits them to be easily adapted and implemented for a wide range of optimization
problems. Specifically, they are designed to tackle complex and nonlinear problems
wherein deterministic and heuristic optimization methods fail to yield the desired
results [64]. In general, metaheuristics are relatively simple to implement and effec-
tively bypass areas of local minima. For these reasons, over the last two decades, the
development of new metaheuristics and their applications to controller tuning and
design have gained in interest. This axis of research is still in constant innovation.

Metaheuristics can be categorized according to their foundation/source of inspi-
ration [65]. The first category is based on natural laws of evolution. The optimization
process starts with a population that evolves by combining the best individuals from
one generation to another such as GA. Other metaheuristics are based on the prin-
ciples of the laws of physics, e.g., SA algorithm. The third category is inspired by
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Fig. 1.4 Optimization algorithms classification

human behavior as, for instance, TLBO and SLC. The last category, which is nature-
based, contains optimizationmethods thatmimic the behavior of group of individuals
such as insects and animals, e.g. PSO algorithm.

Regardless of the category, algorithm performance depends primarily on the bal-
ance between diversification process and intensification process. Diversification pro-
cess deals with the exploration of new regions in the search space, either continuous
or discrete, in order to generate solutions that are significantly different from the ones
already created. The intensification process refers to the use of information already
collected to intensify the search in areas of interest [66]. Reaching the equilibrium
between these two processes is essential and achieved by an adequate parametrization
of the algorithms, e.g., the number of individuals in a population such as in GA.

To optimize a problem bymetaheuristics, the problemmust be defined as follows:

minimize
x�n

fi (x) (i = 1, 2, . . . , M)

subject to φ j (x) = 0 ( j = 1, 2, . . . , J )

ψk(x) � 0 (k = 1, 2, . . . , K )

(1.6)

where x is the vector of n variables to optimize. A variable of x is represented by xi .
fi (x) refers to the functions to beminimized and are commonly called cost functions.
φ j (x) and ψk(x) are the equality and inequality constraints, respectively. Figure1.5
presents the design steps for controller tuning by metaheuristics [67, 68].

First, the designer must define the objectives to be minimized and constraints to
be considered. When M = 1, the problem has only one cost function to minimize.
For multi-objective problems, i.e., M > 1, there are two alternatives:

1. Cost functions are grouped into one function using weighting factors; or
2. Cost functions are simultaneously minimized and the designer chooses the solu-

tion that achieves the best trade-off between objectives by using, for instance, the
Pareto front.

Cost function must be carefully designed. An inadequate cost function will lead
the algorithm to an unsatisfactory solution. In other words, the algorithm may reach
poor solutions due to an improper cost function and not because the algorithm is not
suitable for the application.
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Fig. 1.5 Optimization problem design [31]

Table 1.2 Metaheuristics acronyms with reference works

Algorithm Acronym Ref. Algorithm Acronym Ref.

Artificial bee colony
optimization

ABC [69] Harmony search
algorithm

HSA [81]

Ant colony optimization ACO [70] Imperialist competitive
algorithm

ICA [82]

Bat algorithm BA [71] Mine blast algorithm MBA [83]

Bacterial foraging
optimization algorithm

BFO [72] Multi-objective PSO MOPSO [84]

Cuckoo optimization
algorithm

COA [73] Non-dominated sorting
GA II

NSGA-II [85]

Dragonfly algorithm DA [74] Particle swarm
optimization

PSO [86]

Differential evolution DE [75] Simulated annealing SA [87]

Firefly algorithm FA [76] Teaching–learning-based
optimization

TLBO [88]

Fruit fly optimization
algorithm

FOA [77] Tabu search algorithm TSA [89]

Flower pollination
algorithm

FPA [78] Whale optimization
algorithm

WOA [65]

Genetic algorithm GA [79] Two-lbests MOPSO 2LB-MOPSO [90]

Grey wolf optimizer GWO [80]

The problem is unconstrained only if J = K = 0. Otherwise, the problem is
constrained by equality constraints if J � 1, K = 0, inequality constraints, if J = 0,
K � 1 or both if J � 1 and K � 1.

There are several proposed metaheuristics in the literature. Chapter2 of this vol-
ume presents in detail some of the main metaheuristics. Metaheuristics are tuning
tools for control systems and not controller structures themselves.

http://dx.doi.org/10.1007/978-3-030-25446-9_2
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Table1.2 presents metaheuristic acronyms with reference works while Table1.3
presents meta-analysis of original, modified, or combined metaheuristics applied to
controller tuning. The term SOO refers to single objective optimization and MOO
to multi-objective optimization.

This meta-analysis shows that metaheuristics are suitable for different controller
structure tuning as well as for a wide range of applications. Combining algorithms
together or modifying standard metaheuristics such as those presented in Table1.3
may allow to reach better solutions than standard metaheuristics. Indeed, besides
developing new algorithms, the trend research goes toward altering standard meta-
heuristics or by blending standard or modified metaheuristics together. To choose the
appropriate algorithm for a given system, the control designer finds an optimization
algorithm that was applied to a similar system to the one to be controlled. Chapter 3
provides theoretical benchmark problems for controllers tuned by metaheuristics.

In the light of all these proposed algorithms presented in Table1.3, more inves-
tigation on MOO should be performed since fewer publications are available on
the subject compared to SOO. Moreover, MOO seems to yield better results. The
research focus should also be on providing/developing theoretical information con-
cerning metaheuristic components such as proof of convergence, parametrization
algorithm framework along with algorithm limitations and specificities. Indeed, a
limited number of works on these subjects are published. For instance, there are
some parametrization guides available for GA and DE in [133, 134], respectively,
but for most of the published algorithms, they are not any. Parametrization guides
would help/ease the exploitation of the algorithm and their applications. Moreover,
the focus should be on algorithm auto-tuning mechanism where the parametriza-
tion would evolve according to the complexity of the problem since most of the
algorithms have constant parametrization throughout the optimization process. Sci-
entific community should also agree on a common performance validation criteria
in conjunction with benchmark problems and its setup to draw stronger conclusions
concerning metaheuristics efficiency compared to one another [135].

1.3.1.2 Fuzzy Logic Control

Fuzzy logic control (FLC) is a promising option for systems that cannot be accurately
modeled by mathematical equations such as nonlinear systems. FLC is also adequate
for systems with important uncertainties or with contradicting criteria/conditions.

Computer programs make binary decisions, i.e., 0 or 1 that may be translated by
true or false. In contrast, FLChas decision values between 0 and 1 [136]. For example,
an air conditioner regulated by a thermostatic controller that has only two states:
below or above the desired temperature translated as 0 or 1, respectively. There is no
intermediate state or partially true answers possible. However, intermediate states
exist with FLC. As a result, for a fuzzy air conditioner, the control designer would
define grades between truly cold and truly hot temperature. For example, 0 could be
assigned to 32◦ F, 0.25 to 50◦, 0.50 to 75◦, 0.75 to 95◦, and 1 to 120◦. The allocation of
partially true values is strictly based on preferences without mathematical reasoning

http://dx.doi.org/10.1007/978-3-030-25446-9_3
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Table 1.3 State of the art of metaheuristics applied to controller tuning

Ref. Algorithm(s) System Controller(s) SOO MOO

[91] GA, EP, PSO, ACO Industrial processes PID − −
[92] GA-BF, PSO,

GA-PSO, BF-GA
Automatic voltage
regulator (AVR)

PID −− �

[93] PSO, GA Typical industrial
models

PID � −

[94] GA Automatic car parking
mechanism

Neuro-fuzzy � −

[95] GA Reverse osmosis plant PID � −
[96] GA Bidirectional

inductive power
transfer

PID � −

[97] GA Power system PI − �
[98] GA Chemotherapy drugs PID, I-PD − �
[99] GA Gas turbine

aeroengine
Fuzzy scheduling
control

− �

[100] 2LB-MOPSO Distillation column
plant

PID − �

[101] NSGA-II Induction motor Predictive control − �
[102] NSGA-II Synchronous

generator excitation
system

FOPID − �

[103] NSGA-II, MOPSO Level control system PI, PID, sliding
mode control

− �

[104] improved PSO Hydraulic excavator PID-based � −
[105] PSO and ABC Benchmark problems PID, FOPID � −
[106] Chaotic PSO Hybrid power system FO fuzzy PID � −
[107] PSO Static synchronous

compensator
PI � −

[108] BA, PSO, FPA, COA Shell and tube heat
exchanger

PI − �

[109] Lyapunov
theory-based + PSO

Benchmark case
studies

Fuzzy controller − �

[110] Dynamic GA-PSO Power system FO controller � −
[111] ABC, FPA Permanent magnet

synchronous motor
Linear quadratic
regulator (LQR)

− �

[112] PSO, ACO Electric
power-assisted
steering

PID � −

[113] ACO Mobile robot FLC � −
[114] ACO-NM AVR PID, PID/N,

2DOF-PID
� −

[115] ICA, BA Plug-in hybrid electric
vehicles

Model predictive
control

� −

(continued)
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Table 1.3 (continued)

Ref. Algorithm(s) System Controller(s) SOO MOO

[116] Orthogonal SA Various test plants Fuzzy neural
network for PID

� −

[117] SA AVR PID � −
[118] SA Nonlinear SISO and

MIMO systems
Fuzzy systems − −

[119] GWO Nonlinear servo
system

Fuzzy control
system

� −

[120] GWO, PSO DC motor PID � −
[121] WOA Photovoltaic system PI based � −
[122] DA Hybrid energy

distributed power
system

3DOF-PID � −

[123] TLBO Automatic generation
control

FOPID � −

[124] TLBO Dynamic voltage
restorer

PI-based � −

[125] TLBO, BFA, FA, PSO AVR 1DOF-PID,
2DOF-PID

� −

[126] TLBO AVR PID � −
[127] Local unimodal

sampling-TLBO
Multisource power
system

Fuzzy PID-based � −

[128] FOA Electronic throttle FO fuzzy PID � −
[129] DE with spherical

pruning
Industrial applications FOPID − �

[130] ABC, GWO, COA,
MBA, WOA, MSA

On-grid PV systems PI, FOPI � −

[131] TSA Benchmark process PID-based � −
[132] HSA Power system

stabilizer
FLC � −

[136]. The FLCmakes decisions according to several preference rules defined by the
control designer.

FLC has twomajor advantages: (i) the control logic is easy to read since it consists
of if-then rules describedwith everyday vocabulary, and (ii) the controller canmanage
several inputs and outputs as well as resolve any conflicting criteria [136]. Figure1.6
presents away to classifyFLC; conventional fuzzy control, adaptive fuzzy control and
fuzzy control combined with other algorithms; more details concerning differences
between categories are presented in [137, 138].

The conventional FLCs are Mamdani fuzzy control [139] and Takagi–Sugeno-
Kang (TSK) fuzzy control [140]. The if-then rules are defined by the control designer
and are fixed over time, which is different from adaptive FLC. The adaptive FLC
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can be divided into three categories: self-tuning fuzzy control and direct and indirect
adaptive fuzzy control. The last category combines FLC with other algorithms.

Table1.4 presents a short survey over the last decade on FLC for each category.
This review highlights only a part of fuzzy control and its application. However,

it can be seen that FLC is employed in a wide range of applications from control-
ling robots to urban traffic networks. This subsection aimed to provide the basic
knowledge and an overview of FLC. Chapter 4 of this volume covers FLC and its
application to specific systems where fuzzification and defuzzification processes are
explained.

Exhaustive surveys on FLC are available in the literature. Fuzzy control for indus-
trial applications are presented in [159]. In [138], a survey on FLC-based control of
marine surface vehicles and underwater vehicles is performed. Recent developments
on the design and analysis of fuzzy model-based nonlinear networked control sys-
tems are presented in [160]. Advancements of analysis and design of model-based
fuzzy control systems with an emphasis on stability and controller Takagi–Sugeno
fuzzymodel-based design are surveyed in [161]. A state-of-the-art technique for iden-
tifying fuzzy models and designing model-based controllers is performed in [162].
Moreover, a survey of methods for FLC tuning is performed in [163].

Even though FLCs are suitable for control systems of diverse applications, there
are still some challenges that merit study and further research to expand FLC applica-
bility to practical systems. The challenge of choosing the most appropriate FLC for a
given system arises from this plethora of proposed FLCs. Therefore, more emphasis
should be dedicated to provide theoretical and mathematical frameworks on how to
employ an already proposed FLC to a new application of the same type. In the same
direction, more general fuzzy controllers suitable for a type of systems, for instance,
should be designed instead of developing a specific FLC for a particular application.
This would be beneficial to the scientific research community as well as for control
designers/practitioners.

http://dx.doi.org/10.1007/978-3-030-25446-9_4
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Table 1.4 Fuzzy logic controller

Category Structure Application Ref.

Conventional Takagi–Sugeno-type dynamic
fuzzy model

Stochastic non-affine nonlinear
systems

[141]

Mamdani’s FLC approach Maximum power point tracking
for photovoltaic system

[142]

Mamdani-type fuzzy logic
controller

Planar robot [143]

Zero-order
Takagi–Sugeno–Kang-type FLC

Mobile robot navigation [144]

Adaptive Mamdani and
Takagi–Sugeno-based direct
adaptive FLC

DC motor [145]

Self-tuning fuzzy controller with
a standard Takagi–Sugeno

Heat exchanger [118]

Direct adaptive fuzzy control Third-order nonlinear system [146]

Fuzzy indirect adaptive controller Duffing oscillator and inverted
pendulum system.

[147]

Fuzzy approximation-based
indirect adaptive controller

Non-affine MIMO system and a
two-link rigid robot manipulator

[148]

Combined PID-like sliding mode fuzzy
controller

Robot manipulator [149]

Fuzzy PID controller Wind turbine pitch angle [150]

PID-type FLC Multi-input multi-output active
magnetic bearing system

[151]

Sliding mode fuzzy controller Boost converter [152]

Disturbance-observer-based
PI-type fuzzy controller

Stochastic distribution systems [153]

Fuzzy-sliding and
fuzzy-integral-sliding controller

Twin-rotor
multi-input-multi-output system

[154]

PID-like fuzzy Quadrotor [155]

General type-II fuzzy logic-based
controller tuned by modified
backtracking search algorithm

Urban traffic network [156]

Cascade fuzzy controller based
on differential evolution

Rotary inverted pendulum [157]

Fuzzy control learned through
differential evolution

Orientation of a hexapod robot [158]

1.3.1.3 Artificial Neural Networks

Artificial neural networks (ANNs) have brought a lot of attention to the research
community. ANNs succeed where traditional control techniques are limited, mostly
with nonlinear systems. Indeed, ANNs are effective in dealing with errors and uncer-
tainties of modeling, system disturbances as well as unknown dynamics. Also, it has
been demonstrated that ANNs provide great robustness in control systems [164]
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such as in [165] where an ANN offered robust performance for autonomous vehi-
cle parking control. For these reasons, control designers have employed ANNs in
many control systems for diverse applications such as temperature control systems
[166] and robotic arm control [167]. Indeed, several surveys for different applications
have been published such as a survey on neural networks in process control [168],
a comprehensive introduction and perspective of neural networks applications for
power electronics and motor drives [169] and a review of neural networks for control
systems [170]. Chapters5 and 6 of this volume deal specifically with ANNs.

ANNsmimic the function of a brain. A typical ANN for control applications is the
multilayer perceptron—Fig. 1.7 [164, 171]. It consists of several artificial neurons
depicted as nodes and positioned in a series of layers. Edges define connections
between neurons as synapses in the brain; they transmit signal/information from one
neuron to another. Each edge has a certain weight. The majority of ANNs are fully
connected weighted directed graphs. This means that each neuron in the hidden layer
is connected with an associated weight to every neuron in the previous layer and the
next layer. The first layer is the input to be processed by the ANN. The hidden layers
convert/process the information received by the inputs. The last layer is the output
containing the information needed by the system in which the ANN is used.

Any ANN must be trained. In other words, edge weights are tuned by using
known data for the system under study. ANNs are well trained if they provide desired
behavior with inputs that are outside of the training data. Backpropagation is themost
popular training algorithm formultilayer perceptron [172].Weights can also be adap-
tive meaning they are updated/adapted online while the networks are controlling the
system. There exist other types of ANNs such as single-layer perceptron, radial
basis networks, counterpropagation networks, recurrent neural networks, Hopfield
network, modular neural networks, learning vector quantization, and adaptive reso-

http://dx.doi.org/10.1007/978-3-030-25446-9_5
http://dx.doi.org/10.1007/978-3-030-25446-9_6
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Fig. 1.8 Soft computing
framework for control design
[175]

nance theory [164, 170]. In fact, there are more than 50 structures proposed in the
literature [164]. The ANN application and objectives would help determine which
ANN structure is the most appropriate for the control system.

As mentioned in the subsection on FLC, an area of research that has gained in
interest lately is combining neural networks with fuzzy logic. These systems are
called neuro-fuzzy systems (NFS) and aim to combine advantages of ANNs and
FLC. As a result, they can provide better performance than ANN and FLC stand
alone. For instance, in [173], Takagi–Sugeno dynamic neuro-fuzzy controller was
developed to control an uncertain nonlinear system; the drawbacks of the individual
implementation of the neural network and the fuzzy logic were overcome by the
proposed hybrid structure. Chapter 4 of this volume presents in depth an application
of neuro-fuzzy controllers. Along the same line, applying metaheuristics to neural
networks has also attracted many researchers attention since improvement can be
achieved. For example, in [174], a combination of an adaptive DE algorithm with
backpropagation neural network was proposed to improve the forecasting accuracy
of the neural network. In this context, Fig. 1.8 presents soft computing framework
for intelligent control technique combination.

The combination of these three methods may facilitate the control design while
providing better performance. For instance, in [94], GA tunes all parameters of a
neuro-fuzzy logic controller (NFLC-GA). It has been demonstrated that the NFLC-
GA provides better performance and is easier to design than a conventional fuzzy
controller and a PID controller tuned by GA.

Combining two or three of the above intelligent control techniques is a research
direction under constant innovation. Any new proposed hybrid controller brings
some sort of improvement and novelty. However, there are more than a hundred
metaheuristics proposed in literature [135] as well as a large number of fuzzy logic
controllers and neural networks, which brings the number of possible combina-
tions very high. Therefore, research and development should be on generalizing the
combined-control methods to expand their application to other systems and ensure
their practical implementation instead of developing a newhybrid controller for a par-
ticular application. Along the same line, theoretical application frameworks should
be established to facilitate the employment of already proposed controllers and the
ones under development.

http://dx.doi.org/10.1007/978-3-030-25446-9_4
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1.3.1.4 Cooperative Control

Technological advances and technology affordability have enabled the deployment
of multi-agent concept to many engineering activities from commercial to military
applications. Consequently, cooperative control in a multi-agent system (MAS) con-
text has been deeply studied over the past decades [176].MAS is composed of several
agents that work together to solve/accomplish a common task. An agent possesses
the ability (i) to reason based on information, (ii) to receive feedback, and (iii) to
act upon environment. Each agent makes decisions based on agent local information
available to help the entire system achieve its goals. In other words, the control is
decentralized [177]. In contrast, centralized systems have one decision-maker mean-
ing that a central mechanism decides for the entire system.

Cooperative control can be split into two categories [183]. The first category is
non-formation cooperative control problems. For instance, MAS concept has been
applied in several power engineering applications [178] such as fault location systems
for smart distribution grid [179] alongwith control and operation ofmicrogrids [180].
The second category is formation control problems such as time-varying formation
control for unmanned aerial vehicles [181].

Agents in cooperative control problems share information such as cost function
values, relative positions, and velocities. One of the most studied problems in lit-
erature on cooperative control is the consensus problem. A group of agents must
agree together to accomplish a particular task. The common schemes to multi-agent
cooperative control are the following [182, 183]:

• Flocking—a team of agents interacts to align their speed, head the same direction,
and keep relative distance constant to avoid collision.

• Rendez-vous problem—group of agents reaching a consensus on a position to
meet.

• Synchronization of coupled oscillators—coupled oscillators synchronized their
phases.

• Vehicle formations—group of vehicles achieving a specific formation and main-
taining it while moving.

Several surveys on multi-agent control are available in the literature. A review
of multi-agent system formation control with an emphasis on the sensing capability
and interaction topology of agents is presented in [184]. A review of multi-agent
systems for microgrid control is proposed in [180]. A review on control techniques
of autonomous multi-agent quadrotor is available in [185]. In [186], a state-of-the-
art survey manufacturing control system using multi-agent systems is performed. A
review covering consensus and coordination of multi-agent systems can be found
in [187]. A comparative review of multi-agent cooperative control consensus is pre-
sented in [176]. Multi-agent coordination consensus problems are surveyed in [183].
From these surveys, mutual challenges in multi-agent perspective have been iden-
tified regardless of the schemes of cooperation control. System constraints, distur-
bances, time delay, communication lost, communication noise, model uncertainties
as well as inconsistency in time delay, for instances, are some challenges that should
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be more investigated [183]. In this direction, global stability properties specifically
for distance-based control such as flocking outside triangular formation deserves
more investigation [180]. Moreover, a large number of publications present the-
oretical research of consensus problems with simulation results. However, more
experimental results would help increase commercial and military implementation
of the proposed techniques. Therefore, research publication should include practice
validations.

Related to MAS, Chapter 7 of this volume deals with cooperative control and
distributed optimization while Chapter 8 presents distributed optimization schemes
embedded in model predictive control implementations.

1.4 Conclusion

This chapter has provided an overview from traditional to modern control techniques
with an emphasis on intelligent control methods. Core knowledge on system classi-
fication, properties, and specifications was also exposed. Modern control techniques
were briefly explained with informative references. In particular, four categories of
intelligent control methods were further explained. Short literature reviews were
also presented. The perspective of research and the new trends were also concisely
presented. This overview does not pretend to be exhaustive, but we expect that this
chapter provided fundamental knowledge and explanation to help design control sys-
tems and introduce the readers to the other chapters of this volume. It is important to
mention that themodern control techniques are not exclusive to the classification pre-
sented in his chapter. Indeed, Chapters 9, 10, 11, 12, 13 and 14 of this volume present
relevant control techniques that overlap and/or exceed the presented classification.

From this control engineering review, general perspective and research direc-
tion could be drawn. Reducing the gap between theoretical research and practical
implementation would enhance research value. One approach could be establishing
theoretical and mathematical frameworks of the control techniques and mathemat-
ically specify/define the systems the control methods could be applied to. In the
same direction, while developing new control methods to solve a control problem,
scientific community should also focus on keeping the methods suitable to other
systems. In summary, these suggestions would increase application possibilities to
other systems in addition to commercial or military implementations.
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Chapter 2
Main Metaheuristics Used
for the Optimization of the Control
of the Complex Systems

Pierre Borne and Amira Gharbi

Abstract Many optimization problems are usually NP-hard problems which pre-
vent the implementation of exact solution methodologies. This is the reason why
engineers prefer to use metaheuristics which are able to produce good solutions in
a reasonable computation time. The metaheuristic approaches can be separated into
two classes: the local search techniques and the global ones. Among the local search
techniques, the taboo search and the simulated annealing are the most known. A
possible acceleration of the convergence can be obtained by using tunneling algo-
rithms. Concerning the global methods, the Genetic or Evolution Algorithms (GA),
Ant Colony Optimization (ACO), and the Particle Swarm Optimization (PSO) are
the most known.

2.1 Introduction

Many optimization problems are usually NP-hard problemswhich prevent the imple-
mentation of exact solution methodologies. This is the reason why engineers prefer
to use metaheuristics which are able to produce good solutions in a reasonable com-
putation time. The metaheuristic approaches can be separated into two classes: the
local search techniques and the global ones. Among the local search techniques, the
taboo search and the simulated annealing are the most known. A possible accelera-
tion of the convergence can be obtained by using tunneling algorithms. Concerning
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the global methods, the Genetic or Evolution Algorithms (GA), Ant Colony Opti-
mization (ACO), and the Particle Swarm Optimization (PSO) are the most known.

Multi-objective optimization can be approached using Ordered Weighted Aver-
aging (OWA) approach, Choquet integral, and Pareto optimality.

In this chapter we only present the various metaheuristics with only very small
and easy to check examples. Among various important applications we can cite
as examples [1–7]. This chapter is a combination of many papers [8–10] and it is
organized as follows.

2.2 Local Methods

2.2.1 Taboo Search

The origin of taboo search traces to the greedy descent algorithm.
Assume that the goal is to minimize the f criterion. Then search for minimal point

is performed over the vicinity V (xi) where xi is the current solutions and a better
solution xj is obtained if f (xj) < f (xi), the approach is easy to implement but there
is a risk of rapidly stopping the search on a local minimum.

The taboo search method was proposed to avoid this problem [11–17], by using
memory of the previously obtained solutions in order to permit to escape to a local
optimum. It is an iterative local search procedure which enables to move from a
solution to another solution in its neighborhood until a stopping criterion is satisfied.
In practice, the main taboo search approach consists of determining, starting from
a solution, the best solution in its immediate neighborhood with interdiction to go
to one of the N previously obtained solutions. Let us denote N (x) the list of the N
solutions that have been visited in the recent past.With thismethod,we avoid having a
cyclic evolution; it can appear that during some timewe can have a degradation of the
solution, but it enables us to get out of a local optimum and enlarge the search space.

The definition and the size of the taboo list are important parameters of the search.
If the list is too large, then the search is restricted to small area, but the risk to

miss the global optimum becomes important; on the contrary, if the list is too small,
it is very likely that the search is slowed down by a loop. The common approach is
to have a constant length taboo list. In this case, the most recently visited solution
enters the taboo list while the oldest solution is removed from the list as soon as
the list has reached its predefined maximum length.A better approach consists of
defining extreme of the taboo list, Nmin ≤ N ≤ Nmax to make it evolve according to
the following rules:

• If the currently generated solution improves the criterion, the taboo list is decreased;
the two oldest solutions are removed from the list while the most recent solution
enters into the list according to the predetermined constraints on N .
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• If the currently generated solution does not improve the criterion, then the length
is increased; this solution enters the list without suppression of the oldest solution
(while always Nmin ≤ N ≤ Nmax).

In order to increase the diversification of the search, the usual approaches are as
follows:

• Sudden change of focus where there are solutions not yet visited,
• Reinitializations of the search selected at random,
• Exclusion of the most visited solutions, and
• Penalties applied to the solutions near the current solution.

The stop test can be a maximum number of iterations or a maximum of solutions
which do not improve the criterion performance.

This algorithm is very easy to implement for a problem with a small number of
variables.

2.2.2 Simulated Annealing

Simulated annealing [18–23] is a generic probabilistic algorithm developed to solve
local optimization problems for a function defined in a large search space. Simulated
annealing has obtained excellent results in various complex problems. It is inspired
by the physical thermic annealing. At each step of calculation of this algorithm, the
current solution is replaced by a near one chosen with a probability that depends on
the variation of a fitness function (called the energy function by analogy with the
physical process, via a parameter T (called the temperature) which gradually and
regularly decreases during the process.

In this approach, the solution changes almost randomly for large values of T and
tends globally to obtain the minimum of the energy function as T approaches zero.
The random evolution enables motions in which the energy can sometimes increase
which avoids falling and being trapped in a local minimum which can appear with a
usual downhill method as the gradient method. This algorithm can be presented as
follows: let us denote by s,T , and e, respectively, the current state, temperature, and
energy and sn and en, respectively, the new state and energy.

The process is initialized with s := s0 and e := e0 which correspond to the initial
state s0 of energy e0 at timek0. While the stopping condition is not satisfied (time
k < km and energy e > em, with km the maximum number of allowed iteration and
em minimum value of expected energy), we choose some state in the neighborhood
and compute its energy.

Example of a simulation annealing algorithm:
Initialization

s = s0, e = E(s), k = 0,T = T0 , (2.1)

while k < km and e > em
sk+1 = neighbor(sk) (2.2)
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ek+1 = E(sk+1), ek = ek+1 − ek (2.3)

If random

[0.1] < exp

(
− ek
Tk

)
(2.4)

then
sk := sk+1, ek := ek+1,Tk+1 := Tk , k := k + 1 return while (2.5)

After stabilization, decrease T and return to s
We always save the best solution that will be the final solution given by the

simulated annealing algorithm.
As for the previous algorithm, this one is very easy to implement for a problem

with a small number of variables.

2.2.3 Tunneling Algorithms

Tunneling algorithms [24–28] (Fig. 2.1) enable to escape local optima. The idea is
the following: each time a local optimum is reached the algorithm bore, a tunnel
toward a new valley of the objective function f (x)

Originally, tunneling approaches had been defined for problems with continuous
variables and were adapted to combinatorial problems later.

Two main strategies have been proposed, the stochastic tunneling and the tunnel-
ing with penalties functions.

The stochastic tunneling was initially defined to escape from local minima when
implementing the simulated annealing algorithms at low temperature. The ideawas to

Fig. 2.1 Tunneling
algorithms

global optimum x

f(x)
Local search

tunneling
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circumvent the slow dynamics of ill-shaped energy functions by applying a nonlinear
transformation to the objective function.

The tunneling with penalty function modifies the value of local optima by adding
penalty values in order to facilitate the algorithm to escape from local optima.

As an example, if f (x) is the fitness function, we can choose the new fitness
function

fm(x) : fm(x) = 1 − exp(−γ (f (x) − f (x∗)))), (2.6)

where x∗ corresponds to the best known solution, and γ > 0 is a parameter defining
the deforming degree of search space (unit by default).

This algorithm enables to accelerate the research of the solution but the imple-
mentation is usually limited to a problem with a maximum of three variables.

2.2.4 GRASP Methods

The greedy randomized adaptive search procedure consists of starting from a number
of initial solutions to perform the local optimization and to apply each time the greedy
descent algorithm. These initial solutions are generated at random.

2.3 Global Methods

2.3.1 Genetic Algorithms and Evolutionary Algorithms

The genetic and evolutionary algorithms are based on the mechanisms of genetics
and the natural selection which exist in biology. Globally life is evolving toward its
best to an optimum. Therefore, it is interesting to simulate the evolution manner
of living entities in order to solve some optimization problems. For this reason,
heuristic methods described in this chapter are referred to as evolutionary approaches
or strategy of evolution.

The following vocabulary is used:

• Chromosome: alpha-numeric encoding of the solution;
• Gene: functional block of chromosome that encodes a specific property;
• Allele: a characteristic which is encoded by a gene;
• Population: a collection of chromosomes;
• Generation: a structure of population at a specific instant;
• Parents: chromosomes involved in the reproduction of the new individuals in a
population;

• Children or offspring: chromosomes resulting from reproduction;
• Selection: mechanism of population renewal across generations;
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Fig. 2.2 Two points
crossover

Parent1

Parent2

Child1

Child2

• Viability: the probability of a chromosome to survive and reproduce;
• Fitness: a measure of the quality of an individual (chromosome);
• Crossover: exchange of genes between chromosomes;
• Mutation: random change of some genes in a chromosome;

2.3.1.1 Crossover

The crossover corresponds to an exchange of genes usually between two individuals
(parents) of the population. The two parents are selected according to their fitness via
a probability defined by the roulette wheel and the crossover points can be decided
with a stochastic approach or using special rules. The resulting off springs (children)
incorporate genes from both parents as illustrated in Fig. 2.2.

The crossing area is determined by two parameters: the pivot which indicates the
position of the gene in the chromosome and the length which precise the number of
positions involved in the crossover. The crossover between chromosomes can be gen-
eralized, for example by considering multiple pivots and lengths randomly chosen.

Another generalization consists in using amasked crossover. Themask is a virtual
binary chromosome whose unit values indicate the position to be exchanged in both
parents.

2.3.1.2 Mutation

Mutation is a random change of one or more alleles in a chromosome. It aims to
prevent the pauperization of the population’s genetic heritage. In reasonably small
proportion, the mutants are benefit to preserve certain diversity in the population,
which avoids its rapid degeneration to a local optimum. Usually, the mutation is
performed by using a mask that indicates the start of the genes that can be mutated.

The mask is either selected at random or according to chromosome specific inter-
nal structure.

Another possibility of mutation corresponds to the permutation of two sets of
genes in the chromosome.

The inversion can also be implemented; it produces a change in the concatenation
of the genes in certain areas of a chromosome, so that the new gene sequence is
inverted with respect to the initial ones.
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2.3.1.3 Selection

Selection for the Reproduction

−Elitist selection

The NB best individuals in the sense of fitness can be chosen for reproduction. But
this approach can reduce the diversity of the population and leads to a local optimum.

−Selection with the roulette wheel

If we search a maximum of the fitness and that the individual xi has the fitness
f (xi), i = (1, . . . ,N ),
then individual xi is selected for the reproduction with probability

pi, p(xi) = f (xi)
N∑
j=1

f (xj)

(2.7)

−Selection by ranking

It is possible to assign each individual a rank, which generally is determined by its
fitness.
The population can be defined by P = {x1, x2, . . . , xN }
with

f (x1) ≥ f (x2) ≥ · · · ≥ f (xN ) (2.8)

Then the rank of the individual xr being equal to r.
The probability that this individual can be chosen for the reproduction is pr

pr =
(
1 − r

υ

)p

(2.9)

with p positive constant and υ number of the best considered individuals. If the whole
population is considered υ = N

−Selection by tournament

We choose at random a number Nr < N of individuals in the population and the best
individual of this group is chosen. We repeat the operation till we have the wanted
number of individuals for the reproduction.

Selection for Survival

−Generational selection
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The inheritors are preferred regardless of their fitness. For the crossover, the children
will replace the parents and for the mutation the mutant will replace the initial indi-
vidual. This choice is intended to maintain the diversity of the population. However,
the major risk is to remove the current or the global optimum.

• Elitist selection

Only theN best individuals among parents, children, andmutants are chosen to define
the new population. With this approach, the search for the optimum can be slow.

• Generational elitist selection

The technique appears generally to be the best. The best of the reproducers and
inheritors group are selected for the new population.

2.3.1.4 General Algorithm

The algorithm is initialized by a population that can be determined by another
approach or whose individuals are randomly generated. Starting from this initial
population, new generations are created from which the fitness of every individual
is evaluated.

The implementation of the genetic algorithm can be summarized as follows,
Fig. 2.3:

1. Create an initial population.
2. Evaluate the fitness of each individual of this population.
3. While the terminating condition is not satisfied, repeat:

• Select best ranking individuals to reproduce.
• Breed new generation through crossover and mutation to create offspring.
• Evaluate the fitness of the new individuals.
• Replace worst-ranked individuals of the population by the new ones.

In practice, the algorithm needs to be adapted to the specificities of the studied prob-
lem and in particular crossover andmutation are to be defined in order to create viable
individuals satisfying all the conditions needed for the specific problem [29–32].

The more important is to choose the good chromosome for the encoding of the
solution. The mutations which correspond to the random change of some charac-
teristics of individual ensure to maintain a sufficient diversity in the population and
avoid converging prematurely toward local optima rather than the global optimum
of the problem.

This algorithm was initially defined for the optimization of discrete systems and
has been adapted for continuous ones.
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Fig. 2.3 Genetic algorithms
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2.3.2 Ant Colony Optimization (ACO)

2.3.2.1 Principle

The ant colony optimization is inspired by ability and the organization of real ant
colony using external chemical pheromone trails acting as ameans of communication
[33–36].

Ants are quickly able to find the shortest path from the nest to a food source.
The explanation is as follows:

• Ants go in randomly chosen directions, each one laying a pheromone trail on their
paths;

• As soon as one of them found the food, it returns to the nest deposing pheromone
again;

• The ants prefer to follow the paths with the highest concentration of pheromone;
• The new ants who leave the nest tend to paths with the greatest concentration of
pheromone.

In fact pheromone trails slowly evaporate, reducing its attractive strength, so the
more time it takes for an ant to achieve its trip to the food, the more time have the
pheromone to evaporate.

The evaporation is necessary in order to avoid the premature convergence to a
locally optimal solution.

Once an ant has found a short path from the nest to a food source, other ants prefer
to follow that path which involves a positive feedback so that finally all the ants will
follow this single path.

Artificial ant colonies have additional properties:
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• Each ant has its own memory to keep in mind the traveled paths and to evaluate
the current solution for which the pheromone trace has to be strengthened at the
end of its journey.

• The pheromone trace can be updated each time an ant has traveled a full itinerary,
by ascertaining the quality of the found solution.

• The ants move in a graph along arcs with labels set by the intensity of pheromone
traces left by the others ants.

• The ants have the capacity to facilitate the exploration of paths that have not been
considered yet.

2.3.2.2 Phonomone Trail Update

Let us denote τij(t) the pheromone trail on the arc ij of a path at time t and

�τij(t + 1) = τij(t + 1) − τij(t) (2.10)

We have
τij(t) = (1 − ρ)τij(t) + �τij(t + 1) (2.11)

where ρ is the coefficient of evaporation of the pheromone.

On Line Update

In such a case, we have

�τij(t + 1) = τf sk+1 = neighbor(sk) (2.12)

where τf > 0 is a constant

Adaptative Delayed Update

During the current exploration, let Lf be the length or cost of the path for the ant f
and Lb be the length of the ant having traveled a path of minimum length or cost v

The pheromone deposit of ant f on the arc ij is

�τ
f
ij (t + 1) = δ

Lf

Lb
(2.13)

With δ ∈ (0, 1)
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Update by Ant Ranking

The ants are sorted in descending order according to the performance of traveled
paths, with the best ants on first position

Denote r(f ) the rank of ant f and �τ
r(f )
ij (t + 1) the pheromone deposit of ant

f who traveled on the arc ij and nb the number of the best ants
It comes

τij+1(t + 1) = (1 − ρ)τij(t) +
nb∑
r=1

(nb − r + 1)�τ r
ij(t + 1) (2.14)

Update Through Elitist Strategy

Let Lb the length or cost of the best ant b
A supplementary amount of pheromone

�τij+1(t + 1) = Q

Lb
(2.15)

is added on all the arcs ij visited by the ant b with Q a constant which depends on
the natural capacity of the colony.

Initially, defined for discrete problems, this algorithm has been generalized for
continuous one’s.

2.3.3 Particle Swarm Optimization (PSO)

2.3.3.1 Principle

Particle swarm optimization [37–43] is a population based stochastic optimization
technique. It is founded on the notion of cooperation between agents (the particles)
that can be seen as animals with limited intellectual capacities: small memory and
small intelligence. The exchange of information between them permits nevertheless
that globally they succeed to solve difficult problems as it appears with bees, fishes,
or birds. It appears that social sharing of information among individuals in competi-
tion offers an evolutionary advantage. In the particle swarm optimization algorithm,
Fig. 2.4 particles move in multidimensional space and are characterized by a position
and a velocity. They have two essential reasoning capabilities: the memory of their
own best position and the knowledge of their Neighborhood’s best position.

The standard version of the algorithm can be summarized as follows:
At the beginning, the particles of the swarm have a random repartition in the

search space and a random velocity.
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Fig. 2.4 Particle swarm optimization algorithm

Then, at each time step,

• Each particle evaluates the quality of its position and memorizes the best position
it has reached at this time and its quality.

• Each particle exchanges information with other particles in its neighborhood in
order to know the best performance of each of them.

• At each time step, each particle chooses the best performance it knows andmodifies
its velocity according to the whole data it has to define its moving as a compromise
between three tendencies.

• An adventurous tendency means continuing the journey at the current speed.
• A conservative tendency means going in direction of the best position the particle
has currently found.

A panurgian tendency means blindly following the direction toward the optimal
point, as pointed by the informants.

2.3.3.2 Particle Swarm Optimization Algorithm

xp(t) : position of the particle p at time t,
vp(t) : velocity of the particle p at time t,
xpi(t) : ith component of xp(t),
vpi(t) : ith component of vp(t),
xmp (t) : best position the particle p has currently found,
xMp (t) : best position known by the particle p ∈ at time t,
ρ1(t), ρ2(t) values of random coefficients at time t, ρ1, ρ2 ∈ [0, 1],
c1 ≤ 1 constant positive number usually c1 ∈ [0.4, 0.9],
cmax ≤ 2 constant positive number, and
f (xp) value of the objective function for the particle p at the position xp.
It comes

vpi(t + 1) = c1vpi(t) + ρ1cmax(x
M
pi (t) − xpi(t)) + ρ2cmax(x

m
pi(t) − xpi(t)) (2.16)
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xpi(t + 1) = xpi(t) + T (t)vpi(t + 1) (2.17)

with T (t) = 1 or randomly chosen
The stopping test can be a maximum number of iterations or a maximum number

of iterations without progress.

2.3.3.3 Bounded Search Space

If due to the algorithm the particle goes out of the authorized search space, we have
various possibilities to obtain admissible solution.

xp(t + 1) = xp(t) + ρT (t)vp(t + 1) (2.18)

with ρ < 1 till we reach the boundary of the authorized domain

x(t + 1) = xp(t) − ρT (t)vp(t + 1) (2.19)

if xpi ∈ [
xpimin, xpimax

]
(2.20)

we can choose

xpi(t + 1) = Min
{
Max

{
xpi(t) + vp(t + 1); xpimin

} ; xpimax
}

(2.21)

2.3.3.4 Selecting the Informants

The number Np of informants for each particle p is in general limited

Np ∈
[
2,

Np(Np − 1)

2

]
(2.22)

by in fact very often Np ∈ [2, 4].
The informants’ scan be chosen at random and can change if there is no progress

when implementing the algorithm.
This algorithm initially defined for continuous problem has been generalized for

discrete ones.

2.4 Multi-objective Optimization

2.4.1 Ordered Weighted Averaging (OWA)

After normalization, the various criteria Ci (x) are aggregated in a single one with
weight coefficients
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COWA (x) =
n∑

i=1

wiCi (x) (2.23)

with wi ∈ [0, 1] ,
n∑

i=1

wi = 1 (2.24)

2.4.2 OWA Using Choquetintegral

It is an OWA-type approach in which the weights wi are calculated according to the
interaction between various criteria.

In order to be self-contained as far as possible, necessary definitions, adapted for
multi-criteria decision-making, are given in this section.

Let us consider a finite interval set Nc = {1, . . . , nc}, which can be thought of as
an index set of the given criteria [44].

Definition 2.1 A fuzzy measure over Nc = {1, . . . , nc} is a set function
μ : P (Nc) → [0, 1], such that

μ (ϕ) = 0, μ (Nc) = 1 (2.25)

μ (A) ≤ μ (B) whenever A ⊂ B ⊂ Nc (2.26)

Themeaning attributed toμ (A) is usually the importance or the power of the coalition
A (e.g., for decision-making).

Definition 2.2 Let μ be a fuzzy measure over Nc and a = (
a1, . . . , anc

)
the vector

of criteria. The discrete Choquet integral Cμ with respect to μ is defined by

Cμ

(
a1, . . . , anc

) =
nc∑
i=1

(ai − ai−1)μ ({i, ..., nc}) (2.27)

with a0 = 0 and a1 ≤ · · · ≤ anc .

Definition 2.3 Let μ be a fuzzy measure over Nc. The shapely index Ii, for every
i ∈ Nc, is defined by

Ii =
∑

k∈Nc−{i}

(nc − |k| − 1)!|k|!
nc! (μ (k ∪ {i}) − μ (k)) (2.28)

where |k| indicates the cardinal of k and 0! = 1.

Definition 2.4 The average interaction index Iij between two criteria i and j, with
respect to a fuzzy measure μ, is defined by
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Iij =
∑

k∈Nc−{i,j}

(nc − |k| − 2)!|k|!
(nc − 1)! × (μ (k ∪ {i, j}) − μ (k ∪ {i}) − μ (k ∪ {j}) + μ (k))

(2.29)

the interaction index, ranged in [−1, 1], is negative in the case of redundancy, and
positive in the case of synergy.

Definition 2.5 The Choquet integral formulation in terms of interaction represen-
tation is reduced to an easily interpretable form in the case of (at most) 2-additive
measures, which is for any a = (

a1, . . . , anc
)
, as follows:

Cμ (a) =
∑
Iij>0

(
ai ∧ aj

)|Iij| +
∑
Iij<0

(
ai ∨ aj

)|Iij| +
nc∑
i=1

ai

⎛
⎝Ii − 1

2

∑
i �=j

|Iij|
⎞
⎠ (2.30)

with ∧ and ∨ denote min and max, respectively.

2.4.3 Pareto Optimality Approach

Pareto optimality is a measure of efficiency in multi-criteria problems.
In this approach, a non-dominated solution is such that there is no other solution

that performs at least as well on every criterion and which is strictly better on at least
one of the criteria.

For a Pareto optimal solution, a criterion cannot be improved without damaging
at least one of the other criteria.

The set of Pareto optimal solutions corresponds to the Pareto optimal curve also
called front of Pareto, Fig. 2.5.

If we have the possibility to determine lower bounds of the various criteria, the
Pareto optimality approach can be associated with the OWA approach. After normal-
ization of the criteria, we realize an aggregation of the various criteria with adaptive
weights which enables a dynamic search in the direction of the lower bounds point.

For example, if the optimization is realized with a genetic algorithm, Fig. 2.6
represents the evolution of the population.

The OWA approach is the most used method of the multi-objective optimization.
The Choquet integral enables to optimize the choice of the weighted parameters,

and the definition of the front of Pareto enables the decider to choose the solution
according to his preferences.
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Fig. 2.5 Pareto optimal solution for a problem with two criteria
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2.5 Conclusion

The various metaheuristics that have been presented here have been implemented
in the optimization in manufacturing and control problems but in each case the
formulation of the problem has to be adapted to the chosen algorithm.

Very often hybrid approaches are implemented using simultaneously severalmeta-
heuristics and usual local search like the hill climbing methods.
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Chapter 3
Optimal Controller Parameter Tuning
from Multi/Many-objective Optimization
Algorithms

O. Tolga Altinoz

Abstract Controller performance is evaluated with the properties of steady-state
and transient response of the system at the time domain. The compensators and
conventional controllers like PID are designed, so that the desired performance is
reached only by adjusting the controller parameters; this adjustment mechanism
is called tuning. Even many approaches are proposed for tuning; still, it remains
one of the problems of control theory due to the imperfect modeling, disturbance,
and problem complexity. At this stage, optimization algorithms have helped the
researchers to find these parameters via designing objective function concerning the
time response characteristics of the system.As the expectations (for example, steady-
state error, overshoot, rise time, settling time) related to the system performance
are increased in number, the number of objectives is also increased. As a result,
multi-objective optimization algorithms have applied to solve these problems. In this
chapter, a set of benchmark tuning problems is defined as the test—benchmark—
problems. Then, by using the multi- and many-objective optimization algorithms,
the performance of the controlled system with respect to the Pareto approximate
set is compared with each other. The multi/many-objective optimization algorithms
evaluated in this chapter are as follows: Multi-objective Evolutionary Algorithm
based on Decomposition (MOEAD), Non-dominated Sorting Genetic Algorithm II
(NSGA-II),Multi-objective Particle SwarmOptimization (MOPSO), StrengthPareto
EvolutionaryAlgorithm 2 (SPEA2), Approximation-guided EvolutionaryAlgorithm
II (AGE-II), and Reference Vector Guided Evolutionary Algorithm (RVEA).

3.1 Introduction

The controller algorithms are defined to get the desired response from simple or
complex systems: from a basic spring system to more complex space shuttles.
The controller algorithms are designed for the given design specifics and output
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properties. Among many control algorithms—or simply controllers—the most fun-
damental controllers are calledPIDcontrollers. TheProportional–Integral–Derivative
(PID) controllers are one of themost basic and old algorithms, but still, it is efficiently
applied to many real-life industrial problems. The performance of the overall system
with a PID controller is greatly depended on the accuracy of the adjusted parameters
of the PID controller.

The PID controller contains three terms that should be adjusted concerning the
desired performance. These parameters are named as proportional, integral, and
derivative terms. These three terms have a direct effect on the performance of the
system, where these three terms may affect each other concerning the given system.
However, in general, the steady-state error can be reduced or even eliminated with an
integral that makes this term as an important control parameter. The derivative term
may change the transient response of the system, but it may cause instability. PI gives
relatively lower overshoot with a small settling/rise time when compared to an ideal
integral compensator. To compare the performances of PI and PID controller, Jagath-
eesan and Anand [1] show that for only I-ideal integral compensator–controller, the
overshoot becomes relatively larger than PI-ideal proportional and integral controller,
which is also supported by Laghardi et al. [2]. They present a toolset that shows PID
and PI controllers which give almost the same overshoot performances, and also the
integral termoccurs as themost important term to almost cancel the steady-state error.
For a desired time or frequency response, the accurate values for controller param-
eters have to be determined. Therefore, the method or algorithm which is designed
to find accurate parameters for PID (PI, PD, or PID) controllers is called tuning.
The well-known tuning algorithms are named as Ziegler–Nichols [3], Cohen-Coon
[4], and Lambda [5]. These methodologies are based on a set of rules that should
be followed to find the acceptable—not optimal—parameters for the predefined lim-
ited number of controller structures like feedback and feedforward controller. These
methodologies poorly choose the parameters for stability and frequently present
oscillation at the output of the overall system. The parameter selection rule sets are
generally depended on reducing the error between set point and the output, as fast as
possible. However, the intelligent methodologies can be evaluated as other properties
of the overall system like overshoot and rise time. Therefore, among many tuning
algorithms, intelligent methods such as optimization algorithms improve both the
steady-state error and transient response properties.

Initially, the intelligent methods are applied to the system as control signal gener-
ators. Instead of PI or PID controllers, a pre-prepared intelligent structure (generally
a learning-based architecture) is applied instead of a controller. As an intelligence
methodology, fuzzy logic, neural network, and a joint method named neuro-fuzzy
have applied to PI controller framework of the study ofRamand Jha [6]. However, the
reported performance is almost the same as each otherwhere the rise time and settling
time reduce. Similarly, another neuro-fuzzy system named Adaptive Neuro-Fuzzy
Inference System (ANFIS) is discussed by Khuntia ve Panda [7]. The results sup-
port the intelligent controller performance against the conventional compensators.
Meanwhile, as the impact of the computational (especially the evolutionary algo-
rithms) optimization algorithms is increased, they have applied to find the controller
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parameters as an optimal toolset. The selection of many different objective functions
makes the tuning algorithmmore flexible. Also, the optimal parameter selection does
not only improve the performance but also it increases the robustness of the system.
Singh et al. [8] showed that the performance of the overall system depends on the
appropriate selection of a parameter, and it is shown that an optimal parameter selec-
tion for PI controller has increased the performance using the Genetic Algorithm
(GA). Nanda et al. [9] discussed the performance of pure-I, PI, PID, and ID con-
trollers which are tuned using intelligent methods on the real-life problem, where it is
observed that the derivative term increases the noise of the overall system. Similarly,
PID controller is tuned using Particle SwarmOptimization (PSO) algorithm [10, 11],
GA [12], and Differential Evolution (DE) [13], at the study of Dangor et al. in [14].
Similarly, nature-inspired optimization algorithm Gravitational Search Algorithm
(GSA) [15] is applied for the tuning problem. The results are concluded that almost
the same performance is obtained from all of these algorithms. Like single-objective
optimization algorithms, multi-objective optimization algorithms are also applied to
find the proper selection of controller parameters. Tseng et al. [16] and [17] have
proposed a study that the sufficient performance of the multi-objective PID control
design is obtained under the plant uncertainties and external disturbance. In addition
to these disturbances, the parametric uncertainties are also considered.

Similarly, Tang et al. [18] are appliedMulti-objectiveGeneticAlgorithm (MOGA)
for fuzzy PID controller. As a different perspective, frequency-domain optimal tuning
PID and multi-objective tuning PID controllers are discussed by Liu and Daley
[19] for the industrial problems. In [20] and [21], a multi-objective optimization
algorithm (NSGA-II) is applied without using scalarization functions for the PID
tuning algorithm, and relatively better results are obtained compared to the previous
similar studies.

In this chapter, like the previous studies, multi-objective optimization algorithms
are applied to PID and lead compensator to get a proper controller parameter set.
However, in addition to this study, many-objective optimization algorithms are also
applied to the problem. For this purpose, three-benchmark system is defined as test
problems. These systems are selected from the real-life problems. They are the ball
and beam system, heat exchanger, and distillation column.

Moreover, four different controller structures are applied to these problems.
Also, six different optimization algorithms are implemented in four different prob-
lem cases. These algorithms are Multi-objective Evolutionary Algorithm based on
Decomposition (MOEAD), Non-dominated Sorting Genetic Algorithm II (NSGA-
II), Multi-objective Particle Swarm Optimization (MOPSO), Strength Pareto Evo-
lutionary Algorithm 2 (SPEA2), Approximation-guided Evolutionary Algorithm II
(AGE-II), and Reference Vector Guided Evolutionary Algorithm (RVEA). The per-
formance of these algorithms is compared with each other concerning the controller
parameters.

This chapter is organized as follows: Section 3.2 gives explanations of the real-
life benchmark problems for this study. In Section 3.3, optimization algorithms are
explained briefly. In Section 3.4, the implementation and its steps are explained.
Finally, the last section concludes the chapter.
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3.2 Benchmark Problems

In this section, three tuning problems are selected as test problems of the current
research. These three systems have different properties with a different set of con-
troller approach. Ball and beam system is one of the fundamental problems in control
engineering. The system is defined by a set of the Ordinary Differential Equations
(ODE). The PID or lead compensator can be easily applied to get the desired solution.
The second problem is a common industrial system called a heat exchanger. Heat
exchanger is also one of the fundamental devices used in industry to cooldown or
heat the gas or liquid inside a tank. The level of gas or liquid in the tank changes with
the input and output. The change of the temperature is modeled as a disturbance. An
additional controller—feedforward controller—is added to the system to handle this
disturbance. The last example is from a chemical process called distillation column.
In that system, two different liquids or gases are mixed, and the concentration at each
tank is observed to get the desired mixture. Therefore, the system has two outputs
with two inputs, which is a multi-variable system. Two feedback controllers for each
input and a single gain are defined for the system. In this section, these three test
systems are explained and defined.

3.2.1 Ball and Beam System

Ball and beam system—BBS—(Figure 3.1) is formed as a balancing problem by
adjusting the angle of the beam. The ball is free to move on the beam, and this
problem aims to hold the position of the free moving ball to the desired location on
the beam. This location is generally the midpoint of the beam. Since the movement
of the ball is only among the beam and it is not possible to change the direction of
the ball to other dimensions, this problem can be considered as a single Degree of
Freedom (DOF) problem. The equilibriummotion of the ball is expressed as follows:

mr α̇2 = mgsinα +
(

J

R2
+ m

)
r̈ , (3.1)

Fig. 3.1 Ball and Beam
system
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where m is the mass of the ball, R is the radius of the ball, d is the level arm offset
due to the mechanical and sensor connection, g is the gravitational constant, L is the
length of the beam, J is the moment of inertia of the ball, r is the ball’s position, θ
is gear angle, and finally α = d

L θ is the beam angle.
In this system, the controller produces the action signal to the actuator which

is connected to the beam. The actuator changes the beam angle. In this way, the
free rolling ball changes its position. The sensor on the beam gives the almost exact
position of the ball. In this chapter, the system parameters are selected as m = 10 g
R = 1.5 cm, d = 3 cm, g = −9.8m/s2, L = 1 m, and J = 10−5 g/m2.

3.2.2 Stirring Tank with Heat Exchanger

Stirring tank with heat exchanger—or simply Heat Exchanger—is a system com-
posed of one tankwith physically connected two inputs and one output. It is desired to
maintain the temperature inside the tank is fixed. A top inlet transfers gas or liquid—
inflow (as shown in Fig. 3.2)—to the tank with a various temperature which depends
on the environmental temperature or the temperature of the source—variation in
the inflow temperature. This changeable temperature at the input is modeled as the
disturbance model. The aim is to hold the temperature inside the tank to a certain
degree by the aid of incoming stream or may be a liquid that wraps the tank to set
the desired temperature. In general usage of a heat exchanger system, the aim is to
increase/decrease the incoming temperature of the liquid with the aid of adjustable
density of hot steam. The density of the hot steam is adjusted using a valve. Figure
3.2 gives the graphical demonstration of the heat exchange system.

The inflow liquid changes the temperature inside the tank. Since the temperature
at the inflow liquid is not constant, the change at the temperature inside the tank
is variable. Then, this change due to the variable temperature of the inflow liquid
is modeled as a disturbance. Therefore, the valve must be controlled so that the
temperature inside the tank must remain at a constant value. In reality, the stirring
tank is generally huge, and many temperature sensors are needed to get an accurate
temperature—with sensor fusion. However, for simplicity, it is assumed that the

Fig. 3.2 Stirring tank with
heat exchanger
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temperature inside the tank is homogeneous and only a single sensor is used in this
system.

The temperature inside the tank is a summation of two models: the disturbance
model and heat exchanger model. These two models have the same characteristics
related to the change of the temperature. Initially, the change at the temperature is
almost zero, and after some time, the temperature begins to increase and increase
exponentially. The change of the temperature can be defined as a delay time and
a simple ODE. Therefore, both models are defined as the first-order system with a
relatively large delay. Hence, the mathematical relation pattern is defined as

e−t1s
1

T s + 1
, (3.2)

where T is the time constant and t1 is the delay time. For the implementations of this
chapter, T = 35, t1 = 25 are selected for disturbance model, and T = 21, t1 = 15
are selected for heat exchanger model. As a result, the sum of two controller actions
is needed to get a desired voltage level of the valve.

3.2.3 Distillation Column

Originally, distillation is a process to divide a joint component into two—or more—
original components by heating them to a certain degree, a separation process. The
distillation column is a system that made of a couple of plates from under the tank to
the top of it. The temperature decreases at the top of the column.Heaviest components
remain at the bottom and lightest at the top. The joint liquid enters from one point of
the column, and it is vaporized. The bottom of the column contains the liquid with
a higher boiling temperature that is one of the original liquids. Figure 3.3 gives the
graphical demonstration of the distillation column.

The basic principle of the distillation column (Figure 3.3) is the resupply mech-
anism. The liquid at the base (about B) is heated and repumped to the column, and
these are boiled up; some of them remains as one of the outputs. The liquid vapor-
izes as moving to the top of the column. At the top (about D), some of the vaporized
liquid is returned and resupplied to the column as reflux; the remaining liquid is
the—distillate—product.

The system is given in Figure 3.3 as an example of Multi-Input and Multi-Output
system (MIMO), where fL—reflux flow—and fV—steam flow—are the inputs, and
fD and fB are the outputs from two heat exchanger systems B and D, respectively.
Hence in total, there are four relations between each input and output. Since the rela-
tion at each exchanger is defined as temperature relation, and they are heat exchang-
ers, these systems aremodeled as the first-order transfer function for all four relations
(Note that these four relations are between inputs and outputs. For each input, there
are two transfer functions for outputs).
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Fig. 3.3 Distillation column

T1
T2s + 1

, (3.3)

where for this chapter for all relations T2 = 75, and for fL to fD T1 = 88, for fL to
fB T1 = 108, for fV to fD T1 = −86, and finally for fV to fB T1 = −106. Therefore,
the transfer function matrix is defined as given below:

⎡
⎣

88
75s+1

108
75s+1

−86
75s+1

−106
75s+1

⎤
⎦ . (3.4)

3.3 Optimization Algorithms

In this research, six multi/many-objective optimization algorithms are evaluated to
optimize the controller parameters. In this section, these algorithms are explained in
brief.

3.3.1 Strength Pareto Evolutionary Algorithm II

Strength pareto evolutionary algorithm II—SPEAII—is the improved version of
the SPEA that has proposed by Zitzler and Laumans in 2001 [22]. The algorithm
begins with the initialization of the population randomly on the decision space,
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and it evaluates the solution candidates with rank-based dominance principle. This
algorithm uses an elitist strategy so that an external archive is formed with best
members and new solutions are produced from this archive set. Also with a density
estimator inside the algorithm, the solution inside the archive set maintains a spread
density. This empty archive set is defined for the usage at each iteration. The size
of the archive matrix must be same as the number of population. Therefore, the
members of the archive will be less than or equal to the size of the population.
At each generation—iteration—the objective function values are calculated for the
current population and the archive members, if any. The domination principle is
applied to the solution candidates, andmembers are sorted concerning the dominance
principle. These solution candidates are joined to a single set, and they are sorted.
Next, dominated solutions are deleted from this set. This operation is called truncation
operator. If the termination conditions are not met, then the obtained population is
applied to tournament selection operator. As the last steps, crossover and mutation
operators are applied, and the survived members continue on the next generation.

3.3.2 Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is proposed by Deb
et al. in 2002 [23]. NSGA-II also begins with the initialization of the randomly
selected chromosomes—members. At the beginning of each generation—iteration—
the overall population is changed by mutation and combination operators, and they
are stored as a newvector. Then, these two vectors are joinedwith each other, and they
are sorted concerning the objective values. In the sorting phase, each of the members
is assigned to rank concerning the Euclidean distance between each other, with an
operator called the crowding distance. As the final step, the best chromosomes are
selected concerning their rank beginning from the first front and crowding distance
values. Lower ranked chromosomes survive to the next generation based on their
crowding distance. This process is repeated until the termination conditions are met.

3.3.3 Multi-objective Particle Swarm Optimization

Multi-objective Particle Swarm Optimization (MOPSO) was proposed by
Coello et al. in 2004 [24, 25]. In MOPSO, as the multi-objective optimization, it
is expected to get a set of solutions at a single iteration. Therefore, the algorithm
begins with a population. In the single-objective PSO, the swarm follows the leader
who guides the swarm on decision space. At the multi-objective case, more than
one leader is needed that followed by different members. Therefore, like SPEA2, an
external archive is defined to store the leaders. This set contains a non-dominated
solution among all of the iterations. The leaders are selected from this set. The idea
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is to lead the solutions to the Pareto front and maximize the distribution of the solu-
tions on the front [26]. The MOPSO algorithm begins with the random initialization
of the position and velocity of the members. Also, temporary data which holds the
leader set and non-dominated members is initialized as an empty matrix. Then, the
population is sorted based on the dominance idea. The best members are selected as
the leaders of the population, and they are stored in a matrix. As the update phase,
positions and velocities are altered by using the same formulation of single- objective
PSO, given as follows:

v(k+1)
i = wv(k)

i + c1rand
(
p(k)
Best,i − x (k)

i

)
+ c2rand

(
g(k)
Best − x (k)

i

)
(3.5)

x (k+1)
i = xki + v(k+1)

i , (3.6)

where x is the position, and v is the velocity of each member i . pBest gives the
position of the personal best, and position of the best particle member is given as
gBest . The inertia weight w is defined to control the impact of the previous solution,
and the learning factors c1 and c2 are the algorithmic constants. The last step of the
algorithm is the mutation operator. For the next iteration, only the best members are
survived, and these processes are repeated until the algorithm is terminated.

3.3.4 Multi-objective Evolutionary Algorithm Based on
Decomposition

Multi-objective Evolutionary Algorithm based on Decomposition—MOEAD—is
proposed by Zhang et al. in 2007 [27]. The decomposition idea is applied to convert
the many-objective problem into a couple of single-objective subproblems. The idea
is to solve these single-objective subproblems using the objective values of the neigh-
borhood solutions. The decomposition is a process similar to scalarization. Hence,
both weighted sum and Tchebycheff approaches are integrated into the algorithm as
the so-called decomposition process. The algorithm begins with the initialization of
reference points, related decomposition parameters, and randomly distributed initial
positions. Next, Euclidean distances between any of the two solutions are calculated.
Then, by using the evolutionary operators, new solutions are generated. In the next
step, among all of the neighbor solutions of the current member, if a better solution
is obtained from the neighborhood subproblem, this solution is replaced with the
current member’s solution. Then the next generation begins. This process is repeated
until termination conditions are met.
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3.3.5 Approximation-guided Evolutionary Algorithm II

Approximation-guided EvolutionaryAlgorithm II—AGE2—is introduced byBring-
mann et al. in 2013 [28]. AGE is another Evolutionary Algorithm (EA) such that it
evaluates the genetic operators to alter the solutions or search the solution space.
This algorithm also begins with the randomly initialized populations, and a new set
is defined as an empty matrix. Then, two randommembers are selected from the pop-
ulation and applied to crossover and mutation. Finally, a new population of offspring
is obtained. From each of these offsprings, the domination principle is applied, and
only non-dominated members remain. Next, the current population and offspring are
joined with each other. Finally, as the selection operator, an introducedmethod called
“approximation quality” of this joint population is measured and sorted. Then, the
best members are survived to the next generator.

3.3.6 Reference Vector Guided Evolutionary Algorithm

Reference Vector Guided Evolutionary Algorithm—RVEA—is proposed by Cheng
et al. in 2016 [29]. Like MOEAD problem, RVEA is another decomposition-based
many-objective optimization algorithm. It evaluates reference vectors to decom-
pose the original problem into many single-objective subproblems. A new scalariza-
tion approach, named the angle-penalized algorithm, is proposed to decompose the
problem. This optimization algorithm is EA-based algorithm such that offspring is
calculated from EA operators. These offspring members are joint with the current
population. Next, the best members are selected from the operator called reference
vector guided selected. As the last step, these selected members are adapted to the
search environment. These steps are repeated until the termination conditions are
met.

3.4 Implementation

Three real-life problems are selected as test problems to find the proper controller
parameters. For this purpose, six different multi- and many-objective optimization
algorithms are evaluated. The details of the problems related to the control algo-
rithms are presented as subsections. About the optimization algorithms, to make an
efficient and fair comparison, the number of populations for each of the optimization
algorithms is selected as 102, and a maximum number of function evaluations for
each of the optimization algorithms is selected as 5× 103. Each of these algorithms
is executed as 30 free runs. The search space is inside from [0, 1] for all of the prob-
lems. The mean and standard deviation of the selected metrics are numerically given
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Fig. 3.4 Feedback control
system for ball and beam
system

for comparison. Also, the mean distribution of the solutions and both objective space
and decision space is graphically presented.

3.4.1 Control Algorithms

In this chapter, three benchmarkmodels are proposed as test problems. Thesemodels
(or systems) have different properties. Therefore, different control algorithms are
needed to get the desired performance. Figure 3.4 gives the overall control model
for BBS. Two different controllers are selected for this model. Both PID and lead
compensator are applied to the problem. The mathematical expressions for PID
controller are presented as

Gc(s) = KP + KI

s
+ KDs, (3.7)

where KP , KI , and KD are three parameters of the PID controllers which are the
proportional term, Integral term, and derivative term, respectively. The BBS with
PID controller becomes the first problem of this research, named as Case-1—C1—-.

In addition to the PID controller, as a part of this research, the lead compensator
is also applied to the BBS, named as Case-2—C2—. The mathematical expression
of this controller is as follows:

Gc(s) = K1
s + K2

s + K3
. (3.8)

The second system is called the heat exchanger system. Heat exchanger system is
a conventional industrial device that used for holding the temperature inside a tank
by adjusting the incoming heat. The block diagram of the heat exchanger is given in
Fig. 3.5.

Heat exchanger contains two different model blocks which are disturbance model
and system model. The disturbance model is defined for the incoming liquid that
changes the temperature inside the tank. The temperature in the tank varies due to
the imperfect flow of the liquid with a different temperature. The disturbance has a
direct effect on the output of the system. For the heat exchanger system, two PID
controllers are defined, and their six different parameters are optimized with the
given algorithms. The feedforward controller structure is named as Case-3 C3.

The last problem is called distillation column. This problem is a standard example
of theMulti-Input-Multi-Output (MIMO) system in the industry especially chemical
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Fig. 3.5 Feedforward—feedback control system for heat exchanger system

Fig. 3.6 Multi-variable
control system for
distillation column system

reactions. Figure 3.6 shows the graphical representation of the system. This system
has two inputs and two outputs. In total four different relations exist in this system.
As a result, two controllers are defined for the problem. As a difference instead
of PID controllers, two PI controllers and a single common proportional term are
selected as a controller. Therefore, in total five unknowns are optimized to get the
best performance. This problem is named as Case-4 C4.

3.4.2 Objective Functions

For all computational optimization algorithms, the aim is to reach the desired problem
at a given level. In other words, to get the minimum or maximum of the defined
objective function (sometimes called cost function). Therefore, the objective function
has a direct influence on the performance of the problem. In this study, two objectives
are defined as the aims of the optimization algorithms. These functions are defined
as follows:

f1 =
t f∫

t0

|e(t)| dt (3.9)

f2 = tr + ts + tp, (3.10)
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where t0 and t f are initial time and final time of the problem, respectively. The error
e between the desired reference input and the output of the system. the transient
response properties tr , ts , and tp correspond to the rise, setting, and peak time of the
system, respectively. Since the multi-variable system (distillation column) contains
two outputs, these two objective functions are modified as the sum of each output.
Hence, modified objective functions are given as follows, where the superscript
corresponds to the index of the input.

f1 =
t f∫

t0

|e1(t) + e2(t)| dt (3.11)

f2 = t1r + t1s + t1p + t2r + t2s + t2p. (3.12)

3.4.3 Results

The three systems with four different controller actions are optimized with six opti-
mization algorithms 30 independent times. Initially, to fairly compare the perfor-
mance of these algorithms, the functions that convert the performance into numer-
ical values are defined. They are called metrics. Since the results are defined in the
objective space, it is not possible to mention about only one solution. Instead, two
solutions form a shape on the objective space. Therefore two properties of these
shapes are evaluated with two different metrics. The first one is for the distribution
of the results on the objective space. Therefore, spacing metric [30] is selected as one
of the metrics that measure the distribution of the solutions on the objective space.
The formulation of this metric is given as follows:

M1 =
√√√√1

n

n∑
i=1

(di − dm)2 , (3.13)

where d is the minimum of the sum of the objective values as distance measurement,
and dm is the mean of the distance measure. This value indicates the distribution of
the approximate Pareto solution on the objective space such that for a smaller value
corresponds to better distribution.

Second, as a part of this research, to evaluate the accuracy—or closeness—of the
solutions concerning the objective values, a basic method is selected as metric since
the true Pareto front is not known. This metric is the average of the distance to the
origin at the objective space. Therefore, this metric is formulated as

M2 = 1

n

n∑
i=1

(Ei ) , (3.14)



64 O. T. Altinoz

Table 3.1 Distribution -spacing metric M1- of the result obtained from optimization algorithms

Table 3.2 Closeness -M2- of the result obtained from optimization algorithms

where E is the Euclidean distance of each point at the objective space to the origin
and n is the total number of points at the objective space. Hence, the smallest metric
value corresponds to a better performance.

Table 3.1 performs the optimization algorithmconcerning thefirstmetric related to
the distribution. The mean values are given inside all of the entry, and in parenthesis,
the standard deviation of these results are reported. From this table, it is clear that the
well-distributed solutions are obtained from the MOEAD algorithm. However, for
the problem C4, MOPSO and MOEAD algorithms present almost the same metric
values. However,MOPSO gives the worst performance for C1 and C2. Also, NSGA2
gives the worst performance for the C4 problem, where there is a huge gap between
the other results.

Table 3.2 gives the statistical results for the second metric. From this table, the
performance of MOEAD can be observed for problems C1 and C2, which are the
best. Even, NSGA-II gives the best performance for the C3 problem. Still, MOEAD
presents acceptable results. However, RVEA gives the best result for C4with NSGA-
II algorithm. The corresponding controller parameters are graphically demonstrated
at the decision space in Figures 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14.

Figures 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, and 3.14 give both objective space and
decision space distributions of the solution for all four cases. When these figures are
investigated, it can be observed that it is possible to get a proper controller parameter
set for C1, C2, and C3. However, for C4, the algorithms produced more spread
solutions on a relatively larger area with relatively bigger metric values.
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(a) NSGA2 Objective space two objective
PIDs for BBS

(b) NSGA2 Decision space

(c) MOPSO Objective space two objective PIDs
for BBS

(d) MOPSO Decision space

(e) SPEA2 Objective space two objective PIDs for
BBS

(f) SPEA2 Decision space

Fig. 3.7 Pareto approximates front and decision space (controller parameters) obtained from
NSGA2, MOPSO, and SPEA2 algorithms for BBS problem
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(a) AGE2 Objective space two objective PIDs for
BBS

(b) AGE2 Decision space

(c) MOEAD Objective space two objective PIDs
for BBS

(d) MOEAD Decision space

(e) RVEA Objective space two objective PIDs for
BBS

(f) RVEA Decision space

Fig. 3.8 Pareto approximates front and decision space (controller parameters) obtained fromAGE2,
MOEAD, and RVEA algorithms for BBS problem
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(a) NSGA2 Objective space two objective Com-
pensator for BBS

(b) NSGA2 Decision space

(c) MOPSO Objective space two objective Com-
pensator for BB

(d) MOPSO Decision space

(e) SPEA2 Objective space two objective Com-
pensator for BBS

(f) SPEA2 Decision space

Fig. 3.9 Pareto approximates front and decision space (controller parameters) obtained from
NSGA2, MOPSO, and SPEA2 algorithms for BBS problem
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(a) AGE2 Objective space two objective Compen-
sator for BBS

(b) AGE2 Decision space

(c) MOEAD Objective space two objective Com-
pensator for BBS

(d) MOEAD Decision space

(e) RVEA Objective space two objective Compen-
sator for BBS

(f) RVEA Decision space

Fig. 3.10 Pareto approximates front and decision space (controller parameters) obtained from
AGE2, MOEAD, and RVEA algorithms for BBS problem
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(a) NSGA2 Objective space two objective PIDs for
Heat Exchanger

(b) NSGA2 Decision space

(c) MOPSO Objective space two objective PIDs
for Heat Exchanger

(d) MOPSO Decision space

(e) SPEA2 Objective space two objective PIDs for
Heat Exchanger

(f) SPEA2 Decision space

Fig. 3.11 Pareto approximates front and decision space (controller parameters) obtained from
NSGA2, MOPSO, and SPEA2 algorithms for heat exchanger problem
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(a) AGE2 Objective space two objective PIDs for
Heat Exchanger

(b) AGE2 Decision space

(c) MOEAD Objective space two objective
PIDs for Heat Exchanger

(d) MOEAD Decision space

(e) RVEA Objective space two objective PIDs for Heat Ex-
changer

(f) RVEA Decision space

Fig. 3.12 Pareto approximates front and decision space (controller parameters) obtained from
AGE2, MOEAD, and RVEA algorithms for heat exchanger problem
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(a) NSGA2 Objective space two objective PIs for
Distillation Column

(b) NSGA2 Decision space

(c) MOPSO Objective space two objective PIs for
Distillation Column

(d) MOPSO Decision space

(e) SPEA2 Objective space two objective PIs for
Distillation Column

(f) SPEA2 Decision space

Fig. 3.13 Pareto approximates front and decision space (controller parameters) obtained from
NSGA2, MOPSO, and SPEA2 algorithms for distillation column problem
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(a) AGE2 Objective space two objective PIs for
Distillation Column

(b) AGE2 Decision space

(c) MOEAD Objective space two objective PIs for
Distillation Column

(d) MOEAD Decision space

(e) RVEA Objective space two objective PIs for
Distillation Column

(f) RVEA Decision space

Fig. 3.14 Pareto approximates front and decision space (controller parameters) obtained from
AGE2, MOEAD, and RVEA algorithms for distillation column problem
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3.5 Conclusion

In this study, the optimal parameters of the controller algorithm are obtained by
using six different optimization algorithms. For this purpose, three real-life industrial
devices are selected as test problems. The results are compared both graphically and
numerically. From the results, it is observed that the best performance can be observed
inMOEAD,when all of the problems are considered. Also, themulti-variable system
is a hard problem, even if it has only a five-dimensional decision space. Therefore,
as the future study, the controller parameter tuning algorithms for multi-variable
systems will be investigated more efficiently, and new tools will be proposed to find
the optimal controller parameters.
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Chapter 4
Fuzzy and Neuro-fuzzy Control
for Smart Structures

Georgios K. Tairidis and Georgios E. Stavroulakis

Abstract Classical control tools often encounter a number of limitations on the
investigation of smart composite structures due to nonlinearities and/or other uncer-
tainties. Especially in smart structures, which is the case here, a significant degree
of uncertainty is involved due to several imperfections and/or errors of both the con-
troller and the structure itself. For example, in structures with multiple layers, several
failures may appear, such as delamination, debonding, fatigue, etc. The use of intel-
ligent fuzzy and adaptive control which is based on neuro-fuzzy techniques can be
very helpful in this direction. One may also consider using global optimization algo-
rithms for the fine-tuning of the characteristics of the controllers to maximize their
applicability, their efficiency, and their robustness. In other words, the controllers can
be designed based on intuition and basic engineering principles, and then they can be
subjected to optimization, e.g., to training/learning using artificial neural networks,
in order to achieve certain properties.

4.1 Introduction

It is well known that vibration suppression on smart structures can be achieved using
active control. It is also known that classical mathematical control tools usually pro-
vide satisfactory results for linear feedback laws under given assumptions. However,
the design of nonlinear controllers based on fuzzy inference systems and/or artifi-
cial neural networks, or even hybrid neuro-fuzzy controllers can provide satisfactory
results when the system is partially known.

The key advantage of classical control theories is the availability of strong mathe-
matical tools for the design of the controllers. However, the fact that a linear feedback
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is adopted is considered to be a serious drawback. On the other hand, nonlinear con-
trol, e.g., fuzzy control, is more flexible and more suitable to handle nonlinearities.
This is due to the fact that the feedback of such controllers is nonlinear and could
be of varying intensity in different areas of operation. This is not only expected but
desirable as well, as a nonlinear controller can serve different needs, e.g., slight or
more extensive displacements, with the same initial settings. Specifically, for the
fuzzy inference systems, the presence of verbal rules can systematize the experience
of an advanced user of a system or a process and can be used for the construction of
nonlinear controllers. The control output could be nonlinear and complicated.

Fuzzy control offers an efficient interface for the translation of the knowledge of
one system into the nonlinearitieswhich are necessary for the control.An introduction
to fuzzy control is made in [1], where all the necessary tools for building robust fuzzy
controllers are presented in detail. Moreover, an introductory survey of fuzzy control
has been conducted in [2]. The theoretical framework as well as some industrial and
other fuzzy applications is covered in the aforementioned references and in recent
review articles like [3–6]. The most important features of a controller based on fuzzy
logic are, among others, the ability to function under multiple objectives and the
adaptiveness to different problems. Another significant advantage of fuzzy control is
the robustness, while the major disadvantage seems to be the absence of a complete
mathematical framework for the description and the study of such systems.

Fuzzy and neuro-fuzzy control systems are capable of solving hard problems.
Several optimization techniques such as the adaptive neuro-fuzzy inference system
(ANFIS) procedurewhich is based on neural networks, aswell as global optimization
tools, such as genetic algorithms, particle swarm optimization, differential evolution,
etc., can be very useful in order to improve the characteristics of the control [7, 8]. In
the present chapter, which is an extended version of [9], the main tools two control
strategies, i.e., the fuzzy and the adaptive neuro-fuzzy, are presented in terms of the
reduction of oscillations of smart structures.

4.2 Fuzzy Control

4.2.1 Fuzzy Logic

Fuzzy inference systems quantify linguistic logical rules by using the fuzzy theory
on suitably fuzzified variables. Fuzzy inference systems can be used for the creation
of rule-based control. The recurring systems can be used for the control of various
processes, from many scientific fields, where the transfer of existing, and maybe
empirical, knowledge is important, and smooth transition between control strategies
plays a significant role. The whole idea is based on a quite modern science of reason-
ingwhich in turn is called fuzzy logic. Operators use common sense to solve complex
problems. Fuzzy logic is a set of mathematical principles that is used to represent
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Fig. 4.1 Boolean logic (left) versus fuzzy logic (right)

experienced operators’ knowledge to a computer system. In essence, fuzziness is not
a part of the logic. In fact, a set of logical expressions is used to describe the fuzziness
that exists in most systems. The representation is based on the membership level of
the involved parameters that interact with each other through a set of verbal rules.

According to Boolean logic, concepts and variables are divided in a sharp manner.
For instance, if we divide men in groups according to their height, setting the limit
of 1.80 m as the minimum height for the tall ones, someone with 1.79 m height is
considered short, while a man of 1.81 m height is considered tall.

Fuzzy logic is based on the principle that all parameters or concepts of a system do
not have a single meaning, but instead they are subjected to ratings. Distance, speed,
temperature, height, weight, service, etc., can be described using scales. For example,
George is very tall. Service is below average and so on. In other words, fuzzy logic
reflects how people think, avoiding generalization errors verbalizing variables and
simulating the human sense. In that meaning, it does not face things in a black-and-
white scale, but on the contrary, it includes many intermediate states (gray scale) see
Fig. 4.1. This property leads to the construction of smart control systems.

The forefather of fuzzy logic was the probability theory, according to which each
parameter could belong in a set with a percentage from 0 to 1. For example, we
can say that if someone has a height of 1.81 m. is tall with probability 1, very tall
with probability 0.8 and short with probability 0. However, the father of fuzzy logic,
as we know it today, is L. Zadeh, who in 1965 in his article entitled “Fuzzy sets”
introduced the concept of fuzzy sets using the mathematical tools of the probability
theory, introducing a totally new logic which was based in verbal terms which he
called “fuzzy logic” [10].

4.2.2 Membership Functions

The degree of fuzziness of a fuzzy set is defined by its membership functions. The
representation of these functions can be done either numerically or graphically.
The graphical representations include various forms, each with its own restrictions.
The membership functions can have any parameterized form, either symmetric or
asymmetric. The most popular forms include among others: triangular, trapezoidal,
bell, Gaussian, sigmoid, and polynomial membership functions. A graphical repre-
sentation of amembership function in comparisonwith a crisp set is shown in Fig. 4.2.
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Fig. 4.2 A fuzzy membership function in comparison to a crisp set (https://commons.wikimedia.
org/wiki/File:Fuzzy_crisp.svg)

4.2.3 Fuzzification and Defuzzification

Fuzzification is among themost important processes in the fuzzy theory. In particular,
it is the process of converting an explicit numerical quantity into a fuzzy one, which
is represented by the membership functions. The process is based on the recognition
of the uncertainty which exists in explicit quantities. On practical applications, it
is possible for errors to occur with a consequent reduction of data accuracy. This
reduction of precision can also be represented by the membership functions. The
definition or fine-tuning of the membership functions can be done either intuitively
or by using algorithms and logical processes. The most popular methods include,
among others intuition, inference, rank ordering, angular fuzzy sets, neural networks,
genetic algorithms, inductive reasoning, etc.

With the term defuzzification is denoted the conversion process of the fuzzy
outputs into explicit values. This process is necessary as the value of outputs must be
accurate, especially when the fuzzy system is used as a controller, where the fuzzy
outputs are not useful for further processing. For the defuzzification of fuzzy output
functions, several methods can be used, such as the maximummembership principle,
the centroid, the bisector, the middle or mean of maximum (MOM), the smallest of
maximum (SOM), the largest of maximum (LOM), the center of sums, the center of
largest area, etc. (see Fig. 4.3).

The choice of the appropriate defuzzification method is often a subjective pro-
cess and depends on the data and/or the requirements of each problem. It is worth
mentioning that two different methods can give completely different results. It is
also possible the results of two or more methods to be identical. For example, if
the final surface is triangular, the result of methods SOM, MOM, and LOM will be
identical (the top of the triangle). In neuro-fuzzy controllers, the calculation of the
final outputs is based on the computation of the weighted average of outputs as

z0 =
∑n

i=1 ai · Ci
∑n

i=1 ai
(4.1)

https://commons.wikimedia.org/wiki/File:Fuzzy_crisp.svg
https://commons.wikimedia.org/wiki/File:Fuzzy_crisp.svg
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Fig. 4.3 The most common
defuzzification methods
(http://www.mathworks.
com/help/examples/fuzzy_
featured/defuzzdm_04.png)

where ai are the trigger points of membership functions and Ci are the individual
values of the outputs.

It is worth mentioning that weighted average is not exactly a defuzzification
method, in the context which this term is met in the Mamdani-type controllers, but it
is usually called like that due to the fact that it is used for the calculation of the final
outputs.

4.2.4 Fuzzy Inference Systems

Fuzzy inference systems or FIS are also known as fuzzy rule-based systems or fuzzy
models. The rules of verbal variables can be formed by deterministic statements
(e.g., velocity = high), condition statements (e.g., IF grade � 8.5 THEN excellent)
or statements without condition (e.g., GO TO). The properties of the set of the
rules are the fullness, consistency, continuity, and interaction. A fuzzy system is
usually described with more than one rules. The process of summarizing the rules
for obtaining an overall conclusion is called aggregation. If the individual rules are
associated with the AND operator, the determination of the aggregation is done by
the conjugation of the rules, by taking the intersection, while for the OR operator, the
determination of the aggregation is done by the disjunction of the rules, calculating
the union of the involved rules. The methods of conjugation and disjunction are also
known as methods of minimum (min) and maximum (max), respectively.

The structure of a fuzzy inference system includes a set of IF-THEN rules, a
set of membership functions, a decision-making unit, which is also called inference
process, a fuzzification interface and a defuzzification interface. The operation of the
inference system goes as follows. The explicit inputs are converted into fuzzy via
fuzzification. Then the set of rules is drafted, which together with the data, forms
the knowledge database. Subsequently, the decision is made by implication, and the
fuzzy output arises. Finally, this value is defuzzified. The whole process is depicted
schematically in Fig. 4.4.

http://www.mathworks.com/help/examples/fuzzy_featured/defuzzdm_04.png
http://www.mathworks.com/help/examples/fuzzy_featured/defuzzdm_04.png
http://www.mathworks.com/help/examples/fuzzy_featured/defuzzdm_04.png
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Fig. 4.4 The structure of a fuzzy inference system

4.2.5 Fuzzy Inference Methods

The two main methods of fuzzy inference are the Mamdani method and the Sugeno
method. Other known methods are the Inference of Larsen and the Tsukamoto
method. The Mamdani method, which is the most widespread, was introduced by
Mamdani and Assilian in 1975 [11]. Ten years later Takagi and Sugeno introduced
the Sugeno method, which is also known as Takagi–Sugeno method [2]. These two
methods have several common characteristics.

Their main difference lies in the type of membership functions of their outputs. In
Mamdani method, the membership functions are fuzzy sets. Instead, in the Sugeno
method, the outputs are either linear functions or constant values. The main advan-
tages of each of the two methods of fuzzy inference are summarized as follows.

The Mamdani method is an intuitive method, which is widely accepted, and it
adaptswell to real problems. It is a relatively simplemethodwhichworkswell even in
complexmodels, without sacrificing accuracy. The basic steps of the implementation
process of the Mamdani method are as follows:

1. Fuzzification of inputs using membership functions,
2. Definition of verbal rules of fuzzy system,
3. Evaluation of rules,
4. Calculation of system outputs, and
5. Defuzzification.

The characteristics (membership functions, rules, etc.) of a fuzzy controller can
be optimized using global optimization methods inspired by nature, such as genetic
algorithms [7], particle swarm optimization [8, 12], differential evolution [13], etc.

The Sugeno method is a computationally accurate method, which works very
effectively in combination with linear techniques. It also works effectively in com-
bination with optimization techniques. Moreover, the Sugeno method presents a
guaranteed continuous output surface, and it is susceptible to mathematical analysis.
Likewise to the Mamdani method, the steps for the Sugeno inference are as follows:
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1. Fuzzification of input variables (clustering),
2. Determination of system rules,
3. Evaluation of system rules, and
4. Calculation of outputs.

In the Sugeno controllers, fuzziness of inputs and their categorization (clustering)
inmembership functions is similar to that followedbyMamdani-type controllers. The
same applies to the rules governing the fuzzy system. However, the major advantage
of Sugeno-type controllers is the fact that they can be trained using adaptive neuro-
fuzzy inference (ANFIS) techniques, as it will be described in Section4.4.

4.2.6 Fuzzy Control Applications

The most important features of a controller based on fuzzy logic are, among others,
the ability to function under multiple objectives and the adaptiveness to different
problems [1]. Another significant advantage of fuzzy control is the robustness. On
the other hand, the major disadvantage seems to be the absence of a complete math-
ematical framework for the description of such systems [1, 2]. However, there is a
plethora of applications of fuzzy control in literature.

A control paradigm for smart structures using fuzzy control is presented in [14]. In
this study, fuzzy control techniques and smart piezoelectricmaterials are combined in
order to form a robust and adaptive control system. The proposed model is capable of
learning and thus of improving its performance over time in presence of uncertainties
in the host plant, so as to be adaptive. The robustness is proved by changing the
properties of the structure, i.e., by adding some extra masses to the host beam.

A modal control law of cantilever piezoelectric beams using fuzzy logic is pre-
sented in [15]. The inputs of the controller are the modal displacements and modal
velocities of the modes to be controlled. The performance of the proposed method
is proved for the first two modes of the host structure. The results obtained, indicate
that the implementation of fuzzy controllers for active vibration control is not only
feasible, but effective as well.

In [16] the vibration control of a smart plate is considered. The model consists
of a thin elastic rectangular plate, while the controller is designed using fuzzy infer-
ence techniques. In this investigation, two different computational procedures are
proposed. In the first approach, a local controller is considered, while in the second
algorithm, the controller is distributed. From the numerical results, both methods
seem to achieve the desired vibration suppression of the host plate.

Fuzzy schemes, able to deal with system nonlinearities, consist a suitable solu-
tion for the control of complex systems, like control based on magnetorheological
damping [17], or for the smart and adaptable usage of classical controllers like the
fuzzy-PID control of seismically excited structures reported in [18].

Fuzzy systems have been extensively used for control of air conditioners, energy
systems, and consumer electronics (cameras, washing machines, etc.), see, among
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others, recent publications like [19–25]. As an example of a recent application on
complex systems, the control of a photovoltaic energy system connected to a desali-
nation plant is treated in [26].

In [27], a methodology for the identification of damage in structures is proposed.
In this investigation, fuzzy techniques combined with continuum damage mechanics
are used to recognize both the location and the extent of the failure. The suggested
methodology is a new approachwhichmonitors static and dynamic responses and can
be used for the damage detection of various civil structures. The numerical examples
presented in this paper indicate that the performance of fuzzy systems is vigorous
under conditions of noise or high uncertainty. See also the related material in [28]
and the recent publication [29].

In [30] a fuzzy rule-based model for the prediction of delamination in drilling
of glass fiber reinforced plastic composites has been introduced. The results of the
analysis are verifiedwith experimental ones, indicating the efficiency of the proposed
method.

Finally, guidance, control, and fault identification in automotive and unmanned
vehicles and robotic systems have been studied with fuzzy control techniques, see,
among others, [31–34].

4.3 Artificial Neural Networks

Machine learning is a scientific field that includes adaptive methods, which in turn
allow computers to be trained based on experience, examples, and proportionality. A
core characteristic of these methods lies in the fact that learning abilities improve the
performance of a machine learning system over time. An artificial neural network
(ANN) is an approach of machine learning which attempts to simulate the function
of the human central nervous system, i.e., of the biological neural networks. It is
about a network of interconnected calculating nodes (artificial neurons) which are
algorithms of computational intelligence.

4.3.1 What Is a Neural Network?

A biological neural network is a model of logical thinking which is based on the
human brain. Our cerebrum consists of a 10 billion neural cells network and these
cells have 60 trillion connections that are called synapses [35]. The cell is the struc-
tural element of a neural network. Each cell has a simple structure; however, the
combination of a huge number of cells provides incredible computational power,
allowing the rapid processing of stimuli by the human brain. In a neural network,
besides the body (soma) of the cell, there is also the axon, the synapses, and the
dendrites (see Fig. 4.5).
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Fig. 4.5 Biological neural network

Any given neuron of a biological neural network is able to respond only to a
certain subset of stimuli which are within its receptive field, i.e., its sensory space
[36]. This key property of the networks is called tuning. This core characteristic
of biological neural networks has inspired the design and formulation of artificial
neural networks. Thus, the comparative advantage of an artificial neural network
is the fact that it is also open to training; in other words, it has plasticity. This
process, known as learning, trains the network in order to be capable of better solving
several problems. This is done through a repeated process where the parameters of
the network are self-adjusted. Once trained, the network receives inputs from the
environment (stimuli) processes them and provides an output (decision), which is
sent either to the environment or to the next neuron until the final processing is made.
If the training is done properly, the network will be able to solve even problems for
which it has not been trained for. This means that it should be able to produce outputs
even for inputs that it ignores, which in turn is the objective. This property is called
generalization.

The first artificial neural network was designed by McCulloch and Pitts in 1942
[37]. This was one of the first studies of computer systems that relied on the func-
tioning of the human brain. In 1957, Rosenblatt introduced the concept of the neuron
perceptron [38]. In 1986, Rumelhart, Hinton, and Williams suggested the backward
propagation method of errors, known simply as back-propagation method [39].

Neural networks are used in a wide range of applications from different sci-
ences. Some of these are systems control, pattern recognition, stock market control,
equipment maintenance, various robotics applications, etc. The main advantages
of such networks over other heuristic methods are among others, their ability to
solve highly complex problems, their tolerance to the existence of noise, as well
as the fact that they do not require previous knowledge of the model. This latter
feature makes neural networks particularly useful in systems where experimental
measurements exist, but there is a lack of information about the model. In this
case, these experimental measurements can be used for training and control of the
network.
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Fig. 4.6 A typical neuron

4.3.2 The Concept of the Artificial Neuron

Artificial neurons are the structural elements of artificial neural networks. In fact,
they are nodes which take inputs and produce outputs. The inputs can be received
from other neurons or directly from the environment. Similarly, the output is sent
either to the external environment or is used as input to other network neurons. An
artificial neuron consists of a set of inputs xi , a set of synaptic weights wi , a bias or
threshold θ , an activation function f and the output of the neuron y or O as seen in
Fig. 4.6.

Generally, there are three different types of neurons: the input neurons, the output
neurons, and the hidden neurons. The role of the input neurons is to import the
inputs of the network to the intermediate (hidden) neurons where the calculations
take place. There, each input is multiplied by the corresponding synaptic weight. The
sum of the products of these multiplications is being calculated and then inserted in
the activation function, which is calculated at each node. The value of the function
is the output of the hidden neuron for the given inputs. By nature, neurons located
in the so-called hidden layers have the ability to “hide” their desired output. For
this reason, no information from the interaction between inputs and outputs can be
extracted. Moreover, there is no obvious way to predict the desired values of the
outputs of hidden neurons.

4.3.3 Calculation of Outputs

A neuron with n inputs x1, . . . , xn where every synapsis has a synaptic weight
w1, . . . ,wn is considered. The input x0 is always 1 and the synaptic weight w0 is
the threshold for the activation of the neuron. The output yk of every neuron is
calculated by the following equation:

yk = f (
n∑

i=0

xki · wki ) (4.2)
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Fig. 4.7 Graphic representation of the most common activation functions

where xki and wki are the i-th input and weight of the neuron k, respectively, n is the
number of neurons and f is the activation function.

A neuron is positively activated when

n∑

i=0

wi · xi � w0 (4.3)

The weight w0 = θ is called threshold. If θ is equal to zero, then the input is
disregarded. The activation of the neurons of an artificial neural network can be
done using several activation functions, e.g., a step function, a sign function, a linear
function, a nonlinear function, etc. (see Fig. 4.7).

4.3.4 Training of Neural Networks

The objective of the training procedure is to find the appropriate weights of the
synapses, for which the network will be able to produce the desired values of the
outputs for given inputs. There are several ways of learning, and thus training of arti-
ficial neural networks, which can be classified into two major categories: supervised
learning and unsupervised learning.

Supervised learning is the process that combines the existence of an external
trainer and the total amount of the available information for the model. This cat-
egory includes the back-propagation method of errors, the perceptron method, the
stochastic learning, etc. In supervised learning, the supervisor has to decide on a
number of issues such as the examples (experimental data) that will be used for
training, the progress of the training process, the termination of the training, etc.
The back-propagation method of errors is a common training method for multilayer
neural networks, that is, networks with many layers. Quite often, it is used in com-
bination with other methods such as the steepest descent algorithm. The method
calculates the derivative of the error function considering all the network weights.
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Fig. 4.8 Back-propagation
process

The calculated derivative is fed to the optimization method, which in turn uses it to
update the weights in order to minimize the error. This method requires knowledge
of the desired outputs for every input, in order to calculate the derivative of the error.
Another requirement of this method is the differentiability of the activation function
which is used by the neurons. The whole process is depicted in Fig. 4.8.

The unsupervised training of an artificial neural network tends to follow the neu-
robiological organization of the human brain. This type of training is very fast and
therefore can be used in real-time applications. The training is done by self-organized
algorithms, which train the network based only on local information without requir-
ing the existence of a supervisor. During the training, the neural network receives
an amount of training data, finds similarities or important features of these data and
learns to classify them into categories. Some of the most popular methods of unsu-
pervised training are, among others, the Hebb training algorithm, the competitive
learning (Kohonen networks), etc. However, the presentation of these methods does
not fall within the scope of this chapter.

It should be noted here that supervised learning solves a complex, possibly global
optimization problem for the determination of the optimal parameters (weights) of
the neural network, using the existing input–output values of the examples.

4.4 Adaptive Neuro-fuzzy Inference Systems (ANFIS)

Simple fuzzy systems are very popular in several scientific fields, such as control,
robotics, etc. The basic structure of these systems relies onmembership functions for
inputs and outputs, as well as a set of verbal rules in order to establish the decision-
making system as described in Section4.2. Membership functions should be chosen
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by experience or arbitrarily and the structure of the rules should be predetermined
and based on user’s interpretation of the model.

Such systems are very efficient when applied to control. However, there are some
critical limitations, such as the absence of a systematic framework or method of
transforming human experience into a set of if-then rules, and/or the lack of an intact
methodology for the fine-tuning of the parameters of fuzzy controllers, and especially
of membership functions. Moreover, the application of fuzzy inference techniques
to systems, for which a set of input/output data already exists, is quite common.
Structural control is only one example. In many industrial applications, the model is
more or less known, or a collection of measurements could be easily obtained.

It is rather often that when the control mechanism is built, the designer or the
engineer cannot decide the form and the other characteristics of the membership
functions, or the coherence of the rules just considering the available data. In this
case, adaptive fuzzy systems can solve the problem.

4.4.1 What Is ANFIS?

ANFIS is one of the most popular adaptive fuzzy systems, if not the most popular. A
thorough study of the adaptivity of fuzzy systems, especially in control, as well as
their stability properties, can be found in classical monographies as “Adaptive fuzzy
systems and control: Design and stability analysis” [40].

The forerunner of adaptive network-based fuzzy systems was a fuzzy system
which was modeled using generalized neural networks (GNN) and a Kalman filter
algorithm to minimize the squared error [41]. In this approach, a fuzzy inference
system with parameters that could be updated was built. From the simulation results
was extracted that the proposed fuzzy system is able to fine-tune its parameters (e.g.,
the membership functions of inputs), as well as to incorporate prior knowledge about
the original system.

The architecture of ANFIS is based on a fuzzy inference system which in turn
is implemented inside the framework of adaptive neural networks and introduced
by Jyh-Shing R. Jang at University of California in 1993 [42]. ANFIS consists of
fuzzy rules which, in contrast to classical fuzzy systems, are local mappings instead
of global ones [43]. These mappings facilitate the minimal disturbance principle,
which states that the adaptation should not only reduce the output error for the current
training pattern, but also minimize disturbance to response already learned [44]. This
is particularly important if an online learning process is considered. Comparisons
with neural network approaches can be found in [42].

The process which should be followed in order to create a fuzzy inference system
is usually called fuzzy modeling. On the other hand, neuro-fuzzy modeling refers
to the way of applying various learning techniques developed in the neural network
literature to fuzzy inference systems. Back-propagation neural networks are mostly
used for the identification of the parameters of an adaptive fuzzy inference system.
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The learning procedure could be hybrid, i.e., the proposed control model can con-
struct an input–output mapping based on both human knowledge, just like in fuzzy
systems, and appropriate input/output data pairs. However, even if human expertise
is unavailable, it is still possible to set up the initial parameters intuitively and gen-
erate the fuzzy rules using a learning process in order to approximate the desired
performance. This means that, rather than choosing the parameters of the controller
(membership functions, rules, etc.) arbitrarily, an automated process can provide
tailor-made membership functions for the fuzzy variables (inputs and outputs) based
on the available system’s data. Moreover, a set of rules or other parameters of the
control can also be considered and the most important; the controller can be trained
in order to be robust, i.e., capable of functioning under different conditions.

In general, fuzzy control is one of the most successful applications of the fuzzy
theory. However, due to the adaptive capability that ANFIS technique provides, fuzzy
control becomes even more powerful, to the extent that it could be able to replace
neural networks in control systems.

4.4.2 What Is the ANFIS Routine of MATLAB?

In this case, the acronym ANFIS is derived from adaptive neuro-fuzzy inference
system, and it can be used in MATLAB as part of the fuzzy logic toolbox. Namely, it
is a training routine for Sugeno-type fuzzy inference systems. With ANFIS, a fuzzy
inference system can be constructed, just using a given input/output data set. The
parameters of the system can be adjusted using either a back-propagation algorithm
alone or in combination with an algorithm based on the least-squares method. This
tuning allows fuzzy systems to learn from the same data they are modeling. The
learning method works similar to that of neural networks [45].

The modeling approach is similar to many system identification techniques. First,
a parameterized model is considered and then a set of data for training is collected
and applied. The parameters of the fuzzy systemwill be adjusted automatically using
these data until an error criterion is met. It is essential that the training data (data for
learning) are carefully chosen [46]. This means that in general, as for simple models,
the more the data the better the approximation; however, for noisy systems or when
the collected data are not representative of the system, model validation might be
helpful. This validation can be achieved using another data set (data for testing).
In general, model validation is the process by which inputs, on which the system
was not trained, are presented to the trained model, to check the accuracy of the
prediction. This is necessary because after a certain point in the training process, the
model may overfit the training data. The testing data also allow the designer to check
the generalization capability (robustness) of the resulting fuzzy inference system.
An ANFIS model structure in MATLAB is depicted in Fig. 4.9.
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Fig. 4.9 An ANFIS model structure in MATLAB

4.4.3 Training of Adaptive Neuro-fuzzy Inference Systems
Through MATLAB

The first step of the learning procedure is the collection of a set of training examples
with the desired input/output data of the system to be modeled. These data must be
an array with the data arranged as column vectors, and the output data in the last
column. The data for training could be loaded either from a file or from theMATLAB
workspace.

4.4.3.1 Initialization of the System Parameters

The initial fuzzy inference system parameters could be parameterized manually or,
if there is no preference or experience on how they should look like, ANFIS can
initialize the parameters automatically. This means that the model structure can be
loaded either by a previously saved Sugeno-type fuzzy inference system structure or
generated by choosing one of the following partitioning techniques: grid partition,
which generates a single-output Sugeno-type fuzzy inference system by using grid
partitioning on the data; or subtractive clustering, which generates an initial model
for ANFIS training by first applying subtractive clustering on the data.

A typical grid partition in a two-dimensional input space is one of the most
common options when designing a fuzzy controller, especially if the desired number
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of the clusters is known. Thismethod usually considers only certain of the parameters
of the controller, such as the input variables. This partition strategy works perfect
for a small amount of membership functions for each input [43]. However, when a
moderately large number of inputs exist, grid partition method encounters serious
problems. For instance, a fuzzy model with 10 inputs and two membership functions
on each input would result in 210 = 1024 fuzzy if-then rules, which is prohibitively
large. This problem, usually referred to as the curse of dimensionality and can be
alleviated byother partition strategies such as tree partition and scatter partitionwhich
both overcome the problem of the exponential increase in the number of fuzzy rules
by covering only a subset of the input space, which in turn needs to be carefully
selected by the designer.

Subtractive clustering, on the other hand, is the suitable option if the designer
of the controller does not have a clear idea of how many clusters there should be
at each input for a given set of data [47]. Moreover, it is a fast, one-pass algorithm
for estimating the number of clusters and the cluster centers in a set of data. These
estimates can be used to initialize iterative optimization-based clustering methods
and model identification methods like ANFIS.

4.4.3.2 The Training Process Through ANFIS

After loading the training data and generating the initial FIS structure, the training
process can be continued. As mentioned above, there are two optimization methods
available; the back-propagation of errors and the hybrid method, which is a combi-
nation of least-squares error method (LSE) and back-propagation. Both methods are
used in order to train the membership function parameters to emulate the available
training data.

The back-propagation method is a gradient descent method, while the least-
squares method is a standard approach in regression analysis, which is used for
the computation of an approximate solution in overdetermined systems, i.e., systems
of equations with more equations than unknowns. The term least squares suggests
that the overall solutionminimizes the sum of the squares of the computational errors
of every single equation.

The hybridmethod is based on back-propagation for the calculation of the parame-
ters associated with the input membership functions, and on the least-squaresmethod
for the estimation of the parameters related to the output membership functions. It
is found that the use of least-squares method for the calculation of outputs of each
local mapping is very important, as according to some researchers the learning time
without using LSE would be ten times longer [42].

The number of training epochs and the error tolerance are the stopping criteria
for training and are both set by the designer of the model. The training process stops
whenever one of the above criteria is met, i.e., when the maximum epoch number
is reached, or the training error goal is achieved. If the impact of the training error
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Fig. 4.10 An example of training through ANFIS of MATLAB

to the results is unknown, error tolerance should be set to zero. An example of a
training process through the ANFIS routine of MATLAB is depicted in Fig. 4.10.

To make the training process more accurate, the results of each iteration are used
as the initial conditions for the next epoch. The training error, which occurs in the
output, decreases, at least locally, throughout the learning process. This means that,
the more the initial membership functions approach the optimal ones, the easier it
will be for the training algorithm to converge. Human knowledge or expertise about
the target system can be of great assistance in setting up these initial parameters of
the fuzzy inference system.

4.5 Fuzzy and Neuro-fuzzy Controllers

In the present investigation, twodifferent intelligent controllers are built.More specif-
ically, a Mamdani-type fuzzy controller, as well as a Sugeno-type neuro-fuzzy con-
troller are implemented and tested. The basic characteristics of these controllers are
shown below.
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Fig. 4.11 Fuzzy inference system of Mamdani fuzzy controller

Fig. 4.12 Membership function of displacement (input 1)

Fig. 4.13 Membership function of velocity (input 2)

4.5.1 Fuzzy Controller

The fuzzy inference system (see Fig. 4.11) is developed within MATLAB using the
fuzzy toolbox [48]. The control scheme is a Mamdani-type controller of two inputs
(displacement and velocity) and one output (control force).

Themembership functions of displacement, velocity, and control force have trian-
gular and trapezoidal form, as shown inFig. 4.12, Fig. 4.13 andFig. 4.14, respectively.
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Fig. 4.14 Membership function of control force (output)

Table 4.1 Fuzzy rules of the fuzzy controller (e.g., if displacement is far up and velocity is up then
the control force is max)

Displacement
velocity

Far up Close up Equilibrium Close down Far down

Up Max Med+ Low+ Nul Low-

Nul Med+ Low+ Null Low- Med-

Down High+ Null Low- Med- Min

Fig. 4.15 Graphic
representation of the rules of
fuzzy controller

The inference system involves a decision-making system which is based on the
combination of the membership functions with the use of logical operations (see
Fig. 4.4). Namely, the decision (output) is computed through a set of if-then rules;
thus, the recurring system is a rule-based system.

For the implementation of the present fuzzy controller, a set of 15 rules is used
as shown in Table4.1. All rules have weights equal to unity and are connected using
the AND operator. The graphic representation of the linguistic rules is shown in
Fig. 4.15. The implication method is set to minimum and the aggregation method is
set tomaximum.As for the defuzzification, severalmethods can be used, as described
in Subsection4.2.3.
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Fig. 4.16 Fuzzy inference system of Sugeno neuro-fuzzy controller

Fig. 4.17 Computing of the clusters of the Sugeno controller using subtractive clustering

4.5.2 Neuro-fuzzy Controller

In contrast to Mamdani-type fuzzy controllers, the adaptive neuro-fuzzy control
schemes that are presented here are based on Sugeno-type controllers. For this con-
troller, again, the system takes two inputs (displacement and velocity) and returns
one output (control force), thus is a multiple-inputs-single-output (MISO) control
device [49]. The overview of the Sugeno controller is shown in Fig. 4.16.

Optimization of the controllers is achieved via a training process within the adap-
tive neuro-fuzzy inference system (ANFIS) package of MATLAB (see Fig. 4.17).

As mentioned in Subsection4.2.5, only Sugeno-type controllers are eligible for
training with ANFIS. The characteristics of the fuzzy system in this case are tuned
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Fig. 4.18 Membership functions of displacement and velocity

Table 4.2 Fuzzy rules of the ANFIS controller (e.g., if displacement is in cluster 1 and velocity is
in cluster 1 then the control force is out1)

Displacement
velocity

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 Out1 – – –

Cluster 2 – Out2 – –

Cluster 3 – – Out3 –

Cluster 4 – – – Out4

using artificial neural networks. More specifically, a well-chosen set of training data
is used to adjust the system parameters. For the compilation of these data, the model
is first simulated without any control mechanism attached, to collect the necessary
vibration data. Subsequently, these data are used for the training of the Sugeno
controller.

Once loading the data to theANFIS editor ofMATLAB, the initial fuzzy inference
system can be generated either with grid partitioning on the data, if the form and
the number of the membership functions is known, or, otherwise, if there is no such
information, subtractive clusteringmaybeused (seeSubsection4.4.3). Theprocedure
of the computation of the clusters of the inputs of this controller via the subtractive
clusteringmethod through theANFIS editor is shown in Fig. 4.17. The resulting form
of the membership functions (clusters) of the inputs, i.e., the displacement and the
velocity, after the initialization process is shown in Fig. 4.18. Namely, four clusters
of Gaussian form for each input occurred from the subtractive clustering process.
The verbal rules which describe the emerging system are given in Table4.2.

The structure of the rules in ANFIS is given in Fig. 4.19, and a visualization of
them is depicted in Fig. 4.20.

The output variable, i.e., the control force, takes constant values within the range
[−1 1]. The “and”method has been set to product, while the “or”method has been set
to probabilistic or. The implication and the aggregation method have been set to min
and max, respectively. As defuzzification method, the weighted average method is
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Fig. 4.19 The structure of
rules in ANFIS

Fig. 4.20 Graphic
representation of the rules of
neuro-fuzzy controller

chosen. It is worth mentioning that the characteristics of this controller (membership
functions, rules, etc.) came through a training process, unlike the ones of fuzzy
controllers which have been set based on experience.

4.6 Numerical Examples

4.6.1 Fuzzy Control of a Cantilever Beam

The problem of the vibration suppression of a cantilever smart beam is first consid-
ered. The beam has a total length of 0.8 m and a square cross section with dimensions
0.02× 0.02 m. The elasticity modulus is equal to 73× 109 N/m2. The mass density
is equal to 2,700Kg/m3. Excitation of sinusoidal form was applied concentrated at
the free end of the cantilever and is given as

P = P0 · sin(ω · t) (4.4)
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Table 4.3 Material properties of the aluminum and the piezoelectric material

Property Aluminum Piezoelectric

E1 (GPa) 73 69

ρ (kg/m3) 2700 7600

d31 (m/V) – 210× 10−12

g31 (Vm/N) – 11.5× 10−3

The amplitude P0 of the excitation is equal to 1 N, while the frequency is 20 rad/s.
The structure has been discretized using the finite element method. The control
is collocated, i.e., it is applied to the same exact point where the measurement is
obtained.

The material properties of the beam and of the piezoelectric material are given in
detail in Table4.3 (see also [48, 50, 51]).

Asmentioned above, the controller takes as input the displacement and the velocity
of the free end and returns the control force. The results are compared with the ones
obtained by classical control and namely by a linear quadratic regulator (LQR),where
the whole state of the dynamical system is assumed to be known. Finally, the weights
Q and R of the regulator have been chosen to be diagonal matrices with appropriate
dimensions according to literature:

q = 1 and r = 0.00001 (4.5)

while the matrices Q and R are given as

Q = q × I and R = r × I (4.6)

where I is the identity matrix.
The results for the vibration suppression in terms of displacement and velocity

for the two kinds of control (both LQR and fuzzy control) are presented in Fig. 4.21.
With blue color (dashed line) are the results prior to control, while the red color (solid
line) represents the results after the application of the controllers.

From the results, one clearly observes that with suitably defined parameters for
the fuzzy control system, very effective results in terms of displacement could be
obtained. In fact, the results are comparable to the ones of LQR control even if
they were obtained by using much fewer inputs. Nevertheless, the reduction of the
vibrations in terms of velocity is not so effective.
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Fig. 4.21 Numerical results of fuzzy controller for the displacement and velocity compared to the
ones of LQR control

4.6.2 Adaptive Neuro-fuzzy Control of a Cantilever Beam

In this case, the application of an optimized neuro-fuzzy controller for the suppression
of the vibrations of a cantilever smart beam model with piezoelectric materials is
presented. For the needs of the investigation, the adaptive Sugeno-type neuro-fuzzy
controller, which was described above, is used.

The elastic part of the composite beam is made of aluminum material. The can-
tilever smart beam has a cross-sectional area which equals to 0.004 m2, length 0.8
m, width 0.02 m, and height 0.005 m. The material properties of the elastic structure,
as well as the ones of the piezoelectric material, are given in detail in Table4.3 (see
also [48, 50, 51]).

The structure is discretized using the finite element method, while the external
force is assumed to be of sinusoidal form, and it is applied at the free end of the
cantilever beam. The loading has the same form as given in Eq. (4.4). Again, the
amplitude P0 of the excitation is equal to 1 N, while the frequency is 20 rad/s.
The adaptive Sugeno-type neuro-fuzzy controller is used for the reduction of the
vibrations which are caused by the external loading. The model is first simulated
without control in order to collect the necessary data for the training of the controller.
Subsequently, the controller is trained by using the ANFIS procedure as described
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Fig. 4.22 Numerical results of neuro-fuzzy controller for the displacement, velocity, and acceler-
ation, along with the forces

above and the trained controller is finally used to suppress the vibrations of the beam.
The parameters of LQR control are given similar to the above example by Eqs. (4.5)
and (4.6).

The numerical results of the trained adaptive neuro-fuzzy Sugeno controller are
compared to the ones of a classical LQR controller (see Fig. 4.22).

The comparison shows that the results in terms of velocity and acceleration are
quite impressive. For more information, one can see [49]. Vibration suppression for
sinusoidal-type loadings on smart structures such as beams and plates can be achieved
with Mamdani fuzzy controller without fine-tuning of the involved parameters [48].
The results are satisfactory for displacements, while velocities and accelerations are
not acceptable.A comparisonwith a fuzzy controller [48] indicates that the vibrations
are significantly lower after the application of the neuro-fuzzy controller, than the
ones after the use of the simple fuzzy controller (see Fig. 4.23). One can say that the
results of the Sugeno controller are quite comparable to the ones obtained by LQR
control.

Another comparison is available in [52]. In this case, a ramp-type loadingwas cho-
sen in order to show that Sugeno-type neuro-fuzzy controllers are not only smoother
andmore effective, butmore stable aswell, in comparison to simple fuzzy controllers.
The results of this comparison are shown in Fig. 4.24. One remarkable achievement
of neuro-fuzzy control is the adaptivity to different circumstances, other than the
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Fig. 4.23 Comparison of the velocity obtained by a fuzzy and a neuro-fuzzy controller

Fig. 4.24 Comparison of fuzzy and neuro-fuzzy controllers for a ramp-type loading

ones that it is trained for. For example, in this latter case, one Sugeno controller has
been trained with a completely different type of loading, namely a sinusoidal one,
and despite that, the control remains functional.

The same structure has been also tested with combinations of two local collocated
fuzzy controllers, i.e., one near the free end and the second near the middle span of
the cantilever beam. The numerical results validated the existence of the so-called
smoothing effect, which is highly desired for prevention of fatigue phenomena of
the involved materials and/or control devices.

4.7 Conclusions

Fuzzy control is quite efficient and let say smooth in terms of displacement and some
times even of velocity reduction. However, the results in terms of acceleration are a
burden for the material and the whole structure in general. These problems can be



4 Fuzzy and Neuro-fuzzy Control for Smart Structures 101

addressed using optimization for the fine-tuning of the parameters of the control. The
case here was the use of adaptive neuro-fuzzy inference control (ANFIS) techniques.

From the presented numerical results, one can conclude that adaptive neuro-fuzzy
techniques can be useful for the development of smooth and robust controllers,
capable of working in unsteady and varying environments. A systematic approach
of adaptive fuzzy control is the hybrid neuro-fuzzy Sugeno controller trained by the
ANFIS procedure, where the optimization of the system parameters is achieved via
a training process of a suitable neural network. Another impressive conclusion is
that adaptive neuro-fuzzy controllers can provide satisfactory vibration suppression,
equivalent to classic control, such as the LQR, and the most important, without the
need of knowledge of the full state-space of the problem or any other information.
The only information which is needed is a set of appropriate data for the learning
procedure, i.e., to train the neuro-fuzzy controller. It should be noted here once again
that other optimization methods such as genetic algorithms [7], differential evolution
[13], particle swarm optimization [8], etc., can be also used for the optimization of
the control parameters with remarkable results. Instead of ANFIS, our team has also
investigated the capabilities of direct optimization on the performance of a fuzzy
control system on a whole trajectory with similarly promising results [12]. In fact,
both approaches lead to smooth fuzzy controllers, which reduces damages due to
fatigue in real-life applications.

Of course, a further investigation and/or the use of other adaptive neurocomputing
control methods may help to better understand the proposed control schemes.
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Chapter 5
Computational Intelligence
in the Desalination Industry

Pedro Cabrera and José A. Carta

Abstract Numerous studies have been undertaken since the start of the
1990s—when various authors began to propose the use of artificial intelligence in the
field of water desalination—on the employment of computational intelligence (CI)
systems in this technological field. The main goal of the proposals put forward has
been to tackle the high degree of complexity involved in the different processes that
can be found in the desalination industry. The wide variety of topics suggested as
potential candidates for the applicationofCI in desalinationprocesses include, among
others, alarm processing and fault detection, control systems, operational optimiza-
tion applications, load forecasting and security assessment. Although desalination
plants have traditionally been powered by energy supplied by the burning of fossil
fuels, there is a growing trend today, for various reasons, to use renewable energy
sources to directly power these plants. This has added new challenges to the man-
agement of desalination processes as the temporal variability of renewable energy
sources makes the decision-making processes more complicated. In turn, this means
that a multivariable approach is required to ensure optimal desalination plant opera-
tion bymaximizing the exploitability of the variable renewable resource. This chapter
presents a review of how CI systems have been used to date in the desalination indus-
try. A special mention is given to new developments which use CI systems to help
overcome newly emerging challenges related to the increasing usage of renewable
energy sources in the powering of desalination processes.
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5.1 Introduction

The incorporation of technologies for ‘water desalination’—the conventionally
accepted expression to define processeswhose goal is to remove dissolved solids such
as salts andminerals fromwater—has experienced exponential growth in the last few
decades in many parts of the world [1–3]. The primary reason for the expanding use
of water desalination technologies has been the serious freshwater crisis affecting
many parts of the globe, especially in arid and semi-arid regions [4–6]. This crisis
has several causes including, among others, changes to global weather patterns, an
ever-increasing freshwater demand due to rising populations as well as a rising per
capita water demand, environmental pollution due to the deterioration of existing
aquifer resources and an agricultural and industrial expansion that has brought with
it a high demand for fresh water.

Numerous water sources are used to feed the desalination technologies (brackish
water, river water, seawater, etc.). However, the worldwide growth trend in terms of
the installed capacity of seawater desalination technologies is far higher than that
of the installed capacity of technologies used to desalinate other water sources. The
installed capacities of the former are currently far superior to those of technologies
which use other water sources [7].

There is a wide range of potentially usable desalination technologies [8, 9], but
the ones presently in use can be broadly classified into two main types: those based
on thermal processes and membrane separation-based technologies.

In thermal desalination processes, the water source is heated to produce steam
which is subsequently condensed to obtainwater of low salinity. Themost commonly
used thermal desalination technologies are multistage flash distillation (MSF) and
multi-effect distillation (MED) methods. In 2011, MSF represented 23% of world-
wide installed desalination capacity, and MED just 8% [7].

In membrane-based seawater desalination technologies, semipermeable mem-
branes are used to separate solids from thewater source. Themost popularmembrane-
based technology is the process known as reverse osmosis (RO), in which the product
water is separated from the dissolved solids of the feed water by pressure. Use of
this technology has begun to rise sharply throughout the world, with the possible
exception of regions in the Middle East. In 2011, RO technology was responsible
for 63% of worldwide installed capacity [7]. Opting for this technology has been
favoured by advances made in RO membranes and energy recovery devices which
have enabled considerable reductions in specific energy consumption (kWh/m3 of
product water) [10, 11]. These reductions have in turn led to a decrease in freshwater
production costs, which are closely related to energy costs [12]. The reasons why
RO technologies, despite their increased market share inMiddle East countries, have
not prevailed over thermal desalination technologies which have far higher specific
energy consumption [12] are related, on the one hand, to the fact that the installations
in these countries are traditionally used to both produce water and generate energy
and, on the other hand, to the low cost of fossil fuels in this region.
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While the basic operating methods of the various desalination technologies are
relatively simple [7, 12], the diverse range of tasks involved in the real-time oper-
ation of desalination installations creates a certain degree of complexity. For this
reason, since the early 1990s when proposals first began to be made to use computa-
tional intelligence (CI) in the field of water desalination [13], numerous studies have
been undertaken on how to tackle tasks such as alarm processing and fault detection,
control systems, operational optimization applications, load forecasting and security
assessment. Though these studies have considered thermal desalination processes
like MSF [14–17] and other membrane-based processes like electrodialysis (ED)
[18] and vacuum membrane distillation (VMD) processes [19] (an emerging tech-
nology that combines a thermal phase change with use of a membrane), the vast
majority have centred on RO technology. This fact, along with the growing world-
wide importance of ROwater desalination because of lower energy requirements and
higher water recovery rates compared to thermal systems, is one of the reasons why
RO has been chosen for the purposes of the present chapter as representative of the
desalination industry. Another reason for selecting RO technology is that proposals
for the use of renewable energy sources to power desalination plants have centred
on proposed or implemented systems which have been overwhelmingly RO-based
[20]. Using renewable energies to power RO desalination plants, especially when
these are combined with renewable generation technologies, means new challenges
have to be faced in the operational and control management of renewable energy-
powered desalination systems due to the temporal variability and inherent uncertainty
of renewable energy sources. These new challenges involve the combined performing
of multiple tasks, including system components management, control, forecasting,
etc., that can be efficiently tackled through the use of CI.

This chapter is divided into five sections. The first section describes the basic
problem of water scarcity and the principal solutions that have been proposed to
date. The second section describes the basic theoretical concepts which allow an
understanding of the operation of the most commonly used type of desalination plant
(reverse osmosis desalination plant). The third section presents a review of how CI
systems have been used to date in the desalination industry. In the fourth section,
a special mention is given to recent developments which use CI systems to help
overcome new challenges that have arisen as a result of the increased participation
of renewable energy sources in powering desalination processes. The fifth and final
section explains the most important conclusions of the chapter.

5.2 Basic Concepts of Reverse Osmosis Technology

Some basic notions are provided in this section of the technologies used in the
desalination of seawater with reverse osmosis (SWRO) to enable the reader to better
understand the studies and proposals made for the use of artificial intelligence (AI) in
the desalination industry. In this context, a brief description of the RO process is first
offered. This is followed by an also brief description of the basic configuration of an
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RO desalination system, including some observations about the operating parame-
ters. Any reader who would like to obtain a more in-depth and detailed knowledge
of RO desalination technology is encouraged to consult the following publications
[7, 12, 21].

5.2.1 Basic Notions on the Reverse Osmosis Process

When water solutions of low and high salinity are separated by a semipermeable
membrane, the more diluted solution will pass through the membrane and dilute the
more concentrated solution until the solutions on the two sides of the membrane
reach the same concentration, Fig. 5.1. This natural phenomenon is known as the
osmosis process. The hydraulic pressure which causes the flow of water from the
side of low salinity to the side of high salinity is called the osmotic pressure, π ,
and is a function of the difference in ion concentration between the two sides of the
membrane and of the temperature [7, 12].

If a pressure p > π is applied to the more concentrated solution, the net operating
pressure �P = p − π − pl (where pl are pressure losses due to the hydraulic resis-
tance that is produced to the flow of water across the membrane) will make the water
of that solution pass through the membrane in the opposite direction to that of the
natural osmosis process, resulting in the RO process. The result is the separation of
fresh water from the high salinity concentration, obtaining a more dilute solution on
one side of the membrane (the membrane is semipermeable and is unable to prevent
part of the dissolved solids in the more concentrated water from crossing it) and a
more concentrated solution on the other, Fig. 5.1.

Fig. 5.1 Osmosis and reverse osmosis process
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5.2.2 Components of a Typical SWRO Plant

The daily production capacities of an SWRO plant range from below 50 m3/day in
smaller units to as high as 300,000 m3/day [12]. While the configurations of SWRO
systems are highly diverse [7, 12], a typical SWRO plant will generally contain the
following components, Fig. 5.2.

• A pump station whose function is to pump seawater from the intakes to the inlets
of the high-pressure pumps responsible for feeding it into the SWRO membrane
system.Thewater intakes vary in type (open intakes,wells, etc.) and can be situated
offshore or onshore. The pumping system can be equippedwith variable frequency
drives (VFDs) which are used to regulate the flow rate of the pumped water.

• A physico-chemical seawater pre-treatment system, which aims to protect mem-
branes against deposits of encrusting salts, fouling with sand, organic matter, col-
loidal matter and bacterial or chemical attack. For this, filter systems are used (for
the removal of solids, organics and microorganisms), and the chemical products
that are required (flocculants, coagulants, scale inhibitors, oxidants, etc.) are fed
by metering pumps into the seawater.

• One or various SWRO systems, each one comprising:

– A high-pressure feed pump (centrifugal pump or reciprocating pump), which
raises the water pressure of the water that has passed through the filtering system
from between 2 and 6 bar to between 55 and 70 bar, overcoming the osmotic
pressure and the resistance of the hydraulic circuit. The electric generators that
drive these pumps can be coupled to VFD that enable regulation of the flow rate
of the water that is fed into the SWRO membrane system.

Fig. 5.2 Schematic representation of a seawater desalination plant
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– SWRO desalination membrane elements (generally of the spiral–wound
polyamide type), which, normally numbering six or seven and having the same
or differing productivity and salt rejection characteristics, are connected in series
in the interior of a pressure vessel. One or multiple (hydraulically connected in
parallel) pressure vessels are situated on support structures commonly known
as racks. Each SWRO system can be configured with a single rack (single-pass
SWRO system) or with two racks situated in series (two-pass SWRO system),
with the result that the permeate water is treated in two ‘passes’. In the case
of a two-pass SWRO system, a booster pump is also installed between the two
racks to increase the pressure of the permeate. To extract a higher flow of fresh
water from the feed water (i.e. to increase the system recovery rate), the SWRO
racks can be configured in two stages. In such a system, the reject flow of a rack
becomes the feed flow of the next rack.
It should be noted that an SWRO system can also be configured using multiple
passes and stages.

– An energy recovery system, the purpose of which is to take advantage of the
energy available in the reject water generated by the SWRO membranes. These
systems, which can provide part of the energy that the SWRO system requires
to desalinate the seawater, can be classified into two groups according to the
basis on which they operate: centrifugal and isobaric energy–recovery systems.

• Membrane flushing and cleaning systems. The purpose of flushing systems is to
automatically flush out concentrated water from the interior of the membranes
to avoid their deterioration when the SWRO rack is in shutdown mode. For this,
they use water previously generated by the SWRO system and stored in a tank
specifically for this task. The aimof the cleaning system is to remove any impurities
that may have accumulated on the membranes during their operation. This system
basically consists of a tank in which the chemical cleaning reagents are mixed
at the appropriate temperature, cartridge filters and a pump which discharges the
correct flow to feed each pressure vessel. The cleaning system is normally used
when membrane differential pressure rises by more than 10% over the original
value or when productivity falls by more than 10% at constant temperature.

• Instrumentation and control system. The instrumentation of an SWRO system can
vary from sophisticated to very simple systems. Sophisticated systems usually have
automatic instrumentation withmultiple sensors (for pressures, flow rates, temper-
atures, conductivities, feedwater and product water turbidity levels, feedwater and
product water pH, levels of the different tanks, etc.), actuating devices (motorized
valves, switches, variable frequency drives, etc.) installed in the different plant
equipment (pump station, pre-treatment, SWRO systems, flushing and cleaning
systems, post-treatment, product water storage, etc.), and control devices with pro-
grammable logic controllers (PLCs), industrial computers and supervisory control
and data acquisition (SCADA) systems. Simpler systems have integrated instru-
mentation comprising two manual valves, two rotameters, a pressure manometer
and a control which is limited to shut down tasks in the event of equipment failure
to protect the main components of the system.
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• Permeate treatment equipment, the purpose of which is to dose feed certain chemi-
cal products that enable conditioning (mineralization, neutralization, disinfection)
of the permeate water prior to its distribution and end use.

• Product water pump station. The fresh water generated by the desalination plant
is normally stored in a tank and subsequently pumped into other storage tanks or
sent to the end users.

• System to discharge the reject water of the SWRO plant into the sea.
• Electrical energy supply system. Although SWRO plants have traditionally been
powered by electrical energy generated from fossil fuels, the aim today is to reduce
the economic and environmental costs caused by the high energy consumption of
SWRO plants. Numerous proposals have been made for this purpose, and vari-
ous types of renewable generation systems are installed in different parts of the
world [20].

5.2.3 Some Observations on the Operating Parameters
of an SWRO Plant

In this section, a description is given of the influence of various parameters on the
operation of an SWRO plant, as well as an explanation of some of the restrictions
imposed on these parameters. In this context, the theoretical models of the passage of
permeate and salts through membranes [7, 12]. Equation 5.1 shows the productivity
of an SWRO plant.

Qp = Kw · A · �P (5.1)

where �P is the net pressure (which depends on the feed pressure, the osmotic
pressure on the permeate side, the permeate pressure and pressure losses across the
membranes), Kw is the water permeability coefficient and A is the surface area of the
membranes. While both the feed and permeate pressure can be regulated by the plant
operator within certain limits, the osmotic pressure depends on the quality of the
feed water (molar concentrations of the diverse dissolved salts) and its temperature.
An increase of the latter affects water permeability and the passage of salts across
the membranes, increasing them without, generally, a beneficial end result.

Equation 5.2 shows the passage of salts across a membrane, Qs .

Qs = Ks · A · �C (5.2)

where �C is the mean difference between salt concentration on the two sides of
the membrane, Ks is the salt transfer coefficient and A is the surface area of the
membrane.

It should be noted that when the membranes reject the passage of salts, there is a
resulting increase in salinity and impurities at the boundary layer near the membrane
surface [7, 12]. This effect, known as concentration polarization, can result in the
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concentration in that layer being far higher than the average concentration in the
general brine flow. To avoid the harmful effects associated with this effect, the plant
should not operate with polarization concentrations that entail increases above 13%
with respect to the average brine concentration.

It can be deduced from Eqs. 5.1 and 5.2 that by varying the pressure and/or
temperature the quantity and quality of the product water are modified for a given
SWROmembrane configuration and a given feed water flow rate and characteristics.

For a specific feed water concentration and temperature, an SWRO membrane
configuration and for a specific age of the elements and a given fouling factor, the
parameters of feed water pressure (p f ) and flow rate (Q f ) can vary within an accept-
able range. These parameters define the theoretical operating area of the SWROplant,
the limiting factors of which are maximum feed water flow rate, minimum brine flow
of elements, maximum concentration of salts in the product water, minimum con-
version rate (ratio between the product flow rate, Qp, and the feed flow rate, Q f ),
minimum brine to permeate ratio, and maximum average flux, Fig. 5.3 [22].

Each set of coordinates (Q f , p f ) of this acceptable membrane system operating
area defines a conversion rate, product water concentration, permeate flow (Qp),
power consumption and specific energy consumption of the desalination plant.

Fig. 5.3 Theoretical form of the operating area of an SWRO plant for a specific feed water con-
ductivity and temperature, for a given SWRO membrane configuration and for a specific age of the
elements and a given fouling factor
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Given that the specific energy consumptions of an SWRO plant are directly pro-
portional to the operating pressure and feed flow rate and inversely proportional to
the product flow rate, the SWRO plant tends to operate with high conversion rates
and use energy recovery systems with a view to reducing energy costs. However,
high conversion rates result in an increase in brine salinity in the membranes with a
consequent increase in osmotic pressure.

5.3 Overview of the Use of Computational Intelligence
in the Desalination Industry

As previously mentioned, since 1993—when El-Hawary [13] published a proposal
for possible application of AI techniques, and more specifically artificial neural
networks (ANNs), in the desalination industry—several authors have carried out
different studies in this field. In 1994, Rao et al. [14] carried out an in-depth study on
the benefits of applying AI techniques inMSF desalination plant control systems and
developed an ANN-based intelligent control hierarchy for such plants. These authors
defined the different levels of an evolved intelligent automation system, detailed the
problems at each of the control system levels, and explained the potential use ofANNs
to resolve them. In their work, Rao et al. [14] proposed dividing the application of
AI techniques in the desalination industry into four groups:

1. Monitoring and optimization,
2. Modelling and identification,
3. Adaptive control and
4. Conventional control systems.

To date, most of the relevant studies that have been published have usedANNs and
have focused on the modelling, identification and simulation of desalination plants
installed in various parts of the world (Table 5.1). In this context, Al-Shayji and Liu
[15] used ANNs to model the operating performance of two large-scale commercial
desalination plants; an MSF desalination plant located in Kuwait with a capacity
of 181,760 m3/day and an SWRO plant in Saudi Arabia with a capacity of 56,800
m3/day. Along the same lines, Jafar and Zilouchian [23] estimated the product flow
rate and the amount of total dissolved solids (TDS) of two RO desalination plants
which used brackish water and seawater, respectively. Murthy and Vora [24] esti-
mated the reject and product water flow rate of an RO desalination plant. Abbas and
Al-Basaki [25] used feed water temperature, pressure and TDS values to obtain the
product flow rate of an RO unit. Lee et al. [26] also used the feed water, TDS and
flow rate values, but additionally incorporated data on the pressure gradient across
the membrane (trans-membrane pressure—TMP). Using these data, they estimated
the TDS and product water flow rate of an SWRO plant located in the United Arab
Emirates and designed to produce 464,000 m3/day. Similarly, Libotean et al. [27]
also estimated these two variables (TDS and product flow rate) but did so employ-
ing two timescales, one for the current period and one for 24 h forecast horizons.
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Table 5.1 Studies which have used computational intelligence in the desalination industry

Topic of the study Year Ref.

Artificial neural networks and possible applications to desalination 1993 [13]

Towards improved automation for desalination processes. Intelligent control 1994 [14]

Neural networks for the identification of MSF desalination plants 1995 [16]

Prediction of critical desalination parameters using RBF networks 2002 [23]

Predictive modelling of large-scale commercial water desalination plants 2002 [15]

Prediction of reverse osmosis performance using ANN 2004 [24]

Modelling of an RO water desalination unit using ANN 2005 [25]

ANN model for optimizing the operation of an SWRO desalination plant 2009 [26]

ANN approach for modelling the performance of reverse osmosis membrane
desalting

2009 [27]

Prediction of temperature elevation for seawater in MSF desalination plants
using RBF neural networks

2010 [17]

Prediction of the dialysis process performance using ANNs 2011 [18]

ANN-based correlation for estimating water permeability constant in RO
desalination process under fouling

2014 [30]

Modelling, optimization and control of ROwater treatment in Kazeroon power
plant using ANN

2015 [28]

ANN approach for predicting RO desalination plants performance in the Gaza
Strip

2015 [29]

Modelling and simulation of VMD desalination process by ANN 2016 [19]

ANN applied to manage the variable operation of a simple seawater reverse
osmosis plant

2017 [36]

Modelling fouling in a large RO system with ANN 2018 [31]

Wind-driven SWRO desalination prototype with and without batteries 2018 [37]

For this, they used the variables of feed flow rate, conductivity, pressure, pH and
temperature. Barrello et al. [28] suggested the use of ANNs for a different purpose,
namely estimating the water permeability constant in an RO desalination system for
any salinity and operating pressure under fouling. Madaeni et al. [29] modelled the
process of three RO plants using ANNs for the long-term forecasting of performance
degradation (TMP, TDS and product flow rate) and used a genetic algorithm (GA)
to find the optimum paths of TMP, feed flow rate and control strategies during a spe-
cific period of time. Aish et al. [30] implemented two multilayer perceptron (MLP)
architectures to predict the performance of five RO desalination plants on the Gaza
Strip which used brackish water. With one MLP architecture, the authors estimated
final TDS from the feed water temperature, pressure, pH and TDS values. With the
other, they estimated the product flow rate using as input data the feed water pres-
sure, pH and TDS values. Roehl et al. [31] proposed the use of ANNs for membrane
fouling modelling in a large RO system of 284,000 m3/day. These authors predicted
early fouling and later fouling with data taken over 6 years of numerous variables
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Fig. 5.4 Commonly used input and output variables in studies which apply ANNs in desalination
plant modelling

including total chlorine, electrical conductance, TDS, turbidity and nitrate, organic
nitrogen and nitrite content [31].

All the authors mentioned in this section concur that ANNs offer sufficiently
satisfactory results for their application in the modelling, online control, forecasting
and simulation of an RO desalination system [15, 23–31]. If all the input and output
variables used by the different authors were to be combined in a single ANN, the
configuration shown in Fig. 5.4 would be the result. The variables are represented in
Fig. 5.4 by order of use (the most used variable is shown at the top and the least used
at the bottom). As can be seen, the vast majority of authors use an ANNwith a single
hidden layer which uses, as input variables, the data values of feed water pressure,
TDS, temperature and flow rate and, as output variables, product water flow rate and
TDS.
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5.4 Computational Intelligence in Desalination
with Renewable Energies

In order to show the potential uses of CI techniques in desalination with renewable
energies and the degree of difficulty that the challenge of their implementation can
entail, the following subsections will first offer a succinct description of the most
common types of renewable energy-powered desalination systems that have been
proposed or implemented in the world to date [20]. Although the number of proposed
renewable energy sources is extensive, this chapter, without loss of generality, will
focus on wind energy as it is one of the most commonly used sources because of
its technological maturity and the competitive cost of the electrical energy produced
with it. Following this, a description will be given of the wide variety of potential
uses of CI techniques in the different subsystems and tasks that are carried out in
the operation of wind energy-powered desalination systems. Detailed descriptions
of CI techniques and methodologies are not offered here but can be consulted in the
extensive specialist literature [32–35].

Finally, a summary will be given of the results obtained to date, as well as further
studies pending development, with a small-scale prototype SWROdesalination plant.
This plant, in which CI techniques have been implemented [22, 36, 37] in the control
system, has been designed for continuous adjustment of its energy consumption to
the widely varying power generated by a stand-alone wind turbine. It is currently
being tested on the island of Gran Canaria (Spain).

5.4.1 Classification of Wind Energy-Powered Desalination
Systems

Wind energy-powered desalination systems are generally classified into two major
groups [20], which can in turn be subdivided into various subgroups, Fig. 5.5.

1. Systems in which the desalination and renewable electrical energy generation
technologies are connected to conventional grids. For purposes of differentiation,
these can be termed ‘on-grid systems’. Within this group, and depending on
the manner in which the electrical energy that is generated by the renewable
technology is managed, two different types can be distinguished: (a) systems in
which all the renewable-sourced electrical energy is fed into the conventional
grid, with the desalination plants powered, like any other load of the system, by
the electrical energy transported by the grid; (b) systems in which the renewable-
sourced electrical energy is consumed in the first place by the desalination plants
and the energy surplus (or deficit) is fed into (or extracted from) the conventional
grid.

2. Stand-alone and hybrid systems which supply the electrical energy required by
the desalination plants that are connected to them. For purposes of differentiation,
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Fig. 5.5 Classification of wind-powered desalination systems and levels of challenge in the imple-
mentation of computational intelligence

these can be termed ‘off-grid systems’. Three types can be distinguished within
this group: (a) systems in which the desalination plants operate under rated con-
ditions and in which, when problems arise as a result of the variable nature of the
renewable energy source, hybrid energy solutions (e.g. a wind–diesel system) are
employed; (b) systems in which the desalination plants also operate under rated
conditions but which use massive energy storage devices (generally batteries) to
counter the effects caused by the variable nature and uncertainty of the renewable
energy source and to ensure adaptation of the fresh water supply to demand; (c)
systems in which the desalination plants operate under variable conditions, with
dynamic modification of the number of SWRO systems that need to be operating
[38], as well as their operating parameters [22, 36, 39], in order to continuously
adapt the energy consumption of the desalination plant to the renewable-sourced
electrical energy that is available at each instant. Note that these latter systems
usually have dynamic power regulation systems (e.g. ultracapacitors bank, fly-
wheel, etc.) to alleviate the problems of instability that can appear.

The above groups and subgroups are represented in Fig. 5.5 in a hierarchical
pyramid; the systemswith the highest installed worldwide capacity to date are shown
at the base of the pyramid and those with the lowest installed capacity at its apex.
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5.4.2 Potential Challenges in the Implementation of CI
Technique in Wind Energy-Powered Desalination
Systems

All the above groups and subgroups of wind energy-powered desalination systems
can employ CI techniques. However, the number of challenges involved in the imple-
mentation of such techniques in these systems, as well as their degree of complexity,
differs depending on the level of uncertainty that is introduced in the operation by the
random nature of the renewable energy. The number of challenges will thus effec-
tively depend on the wind energy-powered desalination system subgroup type. In
this context, and by way of reference, the pyramid of Fig. 5.5 hierarchically shows
the increase and level of challenge complexity. These challenges need to be tackled
for the implementation of CI techniques in each wind energy-powered desalination
system group and subgroup. The systems with relatively minor challenges and diffi-
culties for the implementation of CI techniques are shown at the base of the pyramid.
As the pyramid rises, the challenges become more numerous and more complex.
As can be seen in Fig. 5.5, on-grid connected systems present relatively minor CI
implementation challenges. This is essential because such systems, in which the
desalination plants operate under rated conditions, can normally rely on relatively
strong gridswhich are usually only very slightly affected by the uncertainty generated
by the renewable energy source. If the grids of such systems are weak, the penetration
of renewable energies is generally limited to avoid problems of instability. It can also
be seen in Fig. 5.5 that the use of CI techniques implies more numerous and more
complex challenges when managing and controlling the different subsystems that
are integrated into the group of stand-alone and hybrid systems. This is especially
true for subgroup 2c, due to the complexity entailed by desalination plant operation
under variable conditions and the corresponding high level of uncertainty.

A schematic representation is shown in Fig. 5.6 of the general configuration
of a stand-alone wind-driven SWRO desalination system (valid to represent both
subgroup 2b and 2c). Shown in Fig. 5.6 is a list of potential applications of CI
techniques (provided by the AI system) in the different subsystems that make up
the microgrid: renewable generation subsystem (wind energy conversion system,
in this case), desalination subsystem (Fig. 5.2), energy storage and dynamic power
regulation subsystem, and control subsystem.

Renewable generation subsystem

Wind turbines can be classified by their rated power as small, medium and large
[20]. While the trend in on-grid systems is to use wind turbines with ever higher
rated powers, small wind turbines have been the most commonly used in stand-alone
systems [20], though medium wind turbines have also been employed [38, 39].
The technological innovations (variable-speed wind turbine rotors, full span pitch
control, active stall control, active yaw control, power converters, etc. [20]) which
have been implemented in medium and large-sized turbines, and which enable their
increasingly optimal operation, have not been incorporated in the small-sized ver-
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Fig. 5.6 Potential applications ofCI techniques in the different stages of renewable energy-powered
desalination systems

sions [40]. Small wind turbines tend to have regulation and control systems (passive
stall control, passive pitch control, passive yaw control, etc. [20]) that are extremely
limited. CI techniques can be used in all types of wind turbines for alarm processing,
fault detection or predictive maintenance tasks [37–44]. However, the extent of their
usefulness in regulation and control tasks depends on the degree of complexity of
the regulation and control systems that are incorporated in the wind turbines. CI
techniques can be used to participate in the regulation of power converters and in
the optimization of control system parameters, including those of the yaw and pitch
control systems [44–47]. Yaw is the angle that the nacelle of the wind turbine is
made to rotate through with respect to the vertical axis of the tower that supports
it. Controlling this angle is essential to ensure that the rotor of the wind turbine is
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always facing the direction of the wind. Pitch is the angle that the blades of a wind
turbine are made to rotate through with respect to their longitudinal axes to control
the power of the turbine. Controlling this angle is essential to maintain an optimum
pitch angle that ensures maximum efficiency of the wind turbine at all wind speeds.

Independently of the type of wind turbine that is employed, CI techniques can be
used in forecasting and prediction tasks with respect to the renewable resource and
the power produced by the wind turbines [44–50]. Such forecasts can be made in
time horizons that can be very short term (a few seconds to up to 30 min), short term
(30 min to 6 h), medium term (6–24 h) and long term (1–7 days) [44, 48, 49]. With
them, it is possible to anticipate the orders of the global control system, appropriately
respond to generation variations, adequately plan maintenance tasks, and establish
optimum energy management strategies [37].

Desalination subsystem

CI techniques can be used in the desalination subsystem independently of the group
or subgroup in which it is incorporated, Fig. 5.5, and in each and every one of its
components, Fig. 5.2, in alarmprocessing, fault detection and predictivemaintenance
tasks, Fig. 5.6. In this respect, these techniques can be extremely effective in the
early detection of possible membrane scaling, fouling and deterioration, and to give
notification of the ideal moment for membrane cleaning, etc. The bullet points shown
below give an overview of the potential applications of CI techniques in the different
operating stages of an SWRO desalination plant:

• control of the VFDs of the seawater intake pumps; the aim is to ensure an optimum
flow of pumped water, especially when the SWRO desalination plant is operating
under variable conditions (modifying the number of SWRO systems in operation
and/or the parameters of the feedwater flow and/or their operating pressure).

• optimal regulation of the physico-chemical seawater pre-treatments. This is gen-
erally performed as and when required on the basis of the experience of the work-
ers. However, given the optimizing and decision-making capacity of some CI
techniques—as with GA ormultivariable regression techniques—they can be used
to carry out such functions which depend on multiple operating parameters of an
SWRO desalination plant.

• optimal control of the desalination process, especially in stand-alone systems
which operate by varying the number of connected/disconnected SWRO systems
[38] and/or the operating pressure and/or feed flowparameters [22, 36, 39] in order
to adapt the energy consumption of the SWRO desalination plant to the renewable
energy sourced electrical energy that is available at each instant. In this case, CI
techniques can be used to determine the number of SWRO systems that need to
be operating at each moment and to generate the feed flow and operating pressure
setpoints that the control system should use at each instant depending on the elec-
trical energy that is available and the characteristics of the feedwater (conductivity,
temperature, etc.) [36]. The CI techniques that are used have to take into account
the operating restrictions of the system, Fig. 5.3, and generate the control setpoints
following a certain strategy: constant conversion rate (variable operating pressure
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and feed flow), constant product water quality (variable operating pressure and
feed flow), constant operating pressure and variable feed flow, variable operating
pressure and constant feed flow, etc. [51]. These techniques are also suitable can-
didates for the implementation of adaptive proportional–integral–derivative (PID)
controllers. These can be used to improve the optimal adjustment of parameters
to the complexity of a system which is not linear and whose parameters may need
to be modified due to abrupt changes that can arise in the amount of energy that
is available and that can be accompanied by abrupt changes in operating pressure
and/or feed flow [52–55].

• forecasting of the operation of the SWRO desalination plant. CI techniques can
be used especially in predicting the obtainable product water flow and its quality.
It should be noted that these tasks are the most commonly performed ones to date
[23–26, 37], as mentioned in Section 5.3 of this chapter.

• control of the VFDs of the pumps that discharge into the sea the reject water of
the SWRO plant; their purpose is to regulate this flow, especially when the SWRO
desalination plant is operating under variable conditions resulting in reject flows
which vary over time.

• optimal regulation of the dosing pumps of the chemical products that are required
to prepare the water produced by the SWRO desalination plant.

• control of the VFDs of the supply pumps of the product water stored in a tank
to cover demand. CI techniques can also be used to predict water demand in
different time horizons [56–58] and, based on such predictions and renewable
energy availability predictions, to optimize global system operation.

Energy storage and dynamic power regulation subsystems

Aswith the other subsystems, CI techniques can be used in tasks related to alarm pro-
cessing, fault detection and predictive maintenance of the energy storage devices and
in power regulation devices, Fig. 5.6. Energy storage devices are generally comprised
of batteries and used in subgroup 2b of stand-alonewind-driven desalination systems,
Fig. 5.5. Their main purpose is to adapt the wind energy supply to the energy demand
of the SWROdesalination plant operating under constant conditions to ensure a given
freshwater demand can be met. Power regulation devices are generally comprised
of flywheels and supercapacitors given their rapid response to variations in power.
They are proposed for use in subgroup 2c of stand-alone wind-driven desalination
systems, Fig. 5.5, for the purpose of smoothing out the instantaneous differences that
can arise between the power generated by the wind turbines and the power demanded
by the SWRO desalination plant operating under variable conditions.

In addition, these techniques can be used in battery and supercapacitor charge/
discharge control tasks, in battery state-of-charge estimation [59–63], in flywheel
charge/discharge control [64], etc.

Control subsystem

CI techniques can be used in the global control system of stand-alone wind-driven
desalination systems to manage and control their operation according to the results
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obtained by the CI techniques applied in each subsystem and each operating stage.
The challenges associated with the management and global control of the system are
considerable. This is especially true when the intelligent management and control are
being pursued of a complex load—powered by a renewable energy source that varies
over time and displays uncertainty—in a weak grid. Unlike stronger electrical power
systems, a weak grid experiences more changes in voltage and frequency parameters
that need to be dealt with. It should be noted that the degree of difficulty in terms of
overcoming the challenges faced is related to, among other factors, the technological
level of the renewable generation system. In older technological generation systems
control and management are centred on the load (desalination plant), whereas in
more advanced generation systems control and management are distributed between
generation and load. Though system management and control become easier as
an increasing number of technological advances are incorporated in the generation
system, there is a corresponding increase in the number of parameters that the CI
techniques have to manage.

5.4.3 Results Obtained with a Small-Scale Prototype SWRO
Desalination Plant Controlled Using CI Techniques

On the island of Gran Canaria (Spain), a small-scale prototype SWRO desalination
plant has been put into operation, designed for continuous adjustment of its energy
consumption to the widely varying power generated by a stand-alone wind turbine.
CI techniques have been incorporated in the control system of this prototype [36,
37], which is currently being tested, Fig. 5.7.

The system, whose components are described in detail in reference [22], belongs
to subgroup 2c of the stand-alone systems, Fig. 5.5. One of the components is a 15
kWwind turbine with limited regulation and control capacities as it only has passive
pitch and passive yaw control (specifically a wind vane). Therefore, the management
and control that are required to balance the energy generated by the wind turbine and
the energy demanded by the SWRO desalination plant fundamentally focus on the
latter. The function of the ultracapacitors bank is to dynamically balance the power
differences that arise between the electrical power generated by the wind turbine and
the power demand of the SWRO desalination plant.

A simplified outline is given in Fig. 5.8 of the prototype SWROdesalination plant.
Only the components that are required for an understanding of the operation of CI
models implemented in the plant are shown.

The desalination plant, which has no energy recovery system, has an SWRO
system which is comprised of a high-pressure feed pump (reciprocating pump) with
a VFD that allows it to work with a feed flow range of between 1 and 6 m3/h, and
a single-pass SWRO system with membrane flushing and cleaning systems. The
rack of the SWRO system supports two pressure vessels, each of which has three
membranes (spiral-wound polyamide type) connected in series.
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Fig. 5.7 Prototype SWRO desalination plant. Source Figure adapted from [36]

The SWRO desalination plant has multiple sensors (operating pressure, feed and
product flow rates, feedwater temperature, feed and product water conductivities),
actuating devices and a control system with PLCs, a personal computer and an
SCADA system.

Among the actuating devices, the SWROsystemhas a set of valves, Fig. 5.8,which
allow the control system to connect one or both pressure vessels (hydraulically in
parallel) to roughly adapt the power demand to the wind power supply depending
on the range of availability of the latter. To obtain a narrower adjustment in the
adaptation of the power demand of the SWRO desalination plant to the wind power
supply, the control system uses, on the one hand, the VFD of the high-pressure pump
to modify the feed flow and, on the other hand, a valve which regulates the operating
pressure of the membrane system, Fig. 5.8.

The flows and operating pressures are restricted to an operating area [36] similar to
the one represented inFig. 5.3 for a specific feedwater concentration and temperature,
an SWRO membrane configuration, a specific age of the elements, and a given
fouling factor. Of the variable operating strategies of the SWRO desalination plant
that have been proposed [51], it was decided to implement the one in which the
control system varies the operating parameters in such a way that the conversion rate
remains constant, specifically at an approximate value of 13.5%. This conversion
rate is obtained at the intercept of the average flux limit line and the maximum feed
seawater flow line [37], Fig. 5.3. With this conversion rate, it is possible to obtain
the highest range of variation of power of the wind turbine that can be used by the
SWRO desalination plant to enable it to operate without interruption.
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Fig. 5.8 Simplified outline of the prototype SWRO desalination plant and its control system

CI techniques have been incorporated in the control system to enable it to manage
the feed flow and operating pressure setpoints of two closed-loop feedback controls
which regulate the actuating devices of the SWRO desalination plant corresponding
to these two variables (closed-loop PID for the case of pressure and closed-loop
proportional–integral for the case of flow, Fig. 5.8). These CI techniques are, more
specifically, ANN algorithms [36, 37], support vector machine (SVM) [37] and
random forest (RF) [37].
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For the design of the models based on ANN architectures, which have been the
most commonly used type to date, a new method was used based on a real-coded
genetic algorithm (called MI-LXPM) and the resilient backpropagation (RPROP)
algorithm [36]. The proposed method establishes a criterion to determine the number
of hidden layers of neurons and of the number of neurons of each hidden layer in the
ANN models. In other words, one of the aims of the method is to determine whether
more than one hidden layer of neurons is unnecessary in most of the problems, as
has been theoretically demonstrated [65, 66], or whether in fact two layers of hidden
neurons are required, as has been proposed by various authors [23–25, 29, 30]. A
simple block diagram is shown in Fig. 5.9 of the design method used.

Operating data, using both one and two pressure vessels, of the SWRO plant
have been collected and used to train the CI models (ANN, SVM, RF). The input
parameters of the CI models have to date been the available wind powers and the
feedwater conductivities and temperatures for a specific age of the elements and a
given fouling factor. In other words, the influence of these latter two variables has
not been considered.

Aswell asmachine learningmodels trained and implemented in the control system
to manage the feed flow and operating pressure setpoints of the SWRO desalination
plant,models have also beendeveloped to predict productwater flowand conductivity
[37].

According to the authors of the tests that have been performed thus far [36, 37], the
analysis undertaken has demonstrated the ability of thesemachine learningmodels to
manage the operating setpoints of the SWRO desalination plant and to successfully
adapt the energy consumption of the plant to the wide and random variation of the
available electrical power.

Shown in Fig. 5.10 is the behaviour of the powers consumed by the SWRO plant
(controlled by a CI model based on ANNs which generate the operating setpoints)
when operating with two differing seawater characteristics (conductivity and tem-
perature). The statistical test that was performed shows no significant statistical
differences (at 5% level) between the MAE (mean absolute error) and MAPE (mean
absolute percentage error) committed when adapting power consumption of the plant
to the available electrical power in the various tests performed using differing feed-
water characteristics.

In addition, the authors [37] evaluated and compared the performance of the
three previously mentioned machine learning techniques (ANN, SVM and RF) in
predicting the variables operating pressure (p f ), feed flow (Q f ), permeate flow
(Qp) and permeate conductivity (Cp). They used a statistical procedure based on
cross-validation to obtain the values of the MAE and MAPE metrics for each of the
estimated variables and applied a statistical significance test to compare the results of
the three techniques. It was concluded from an analysis of the results that the MAE
and MAPE errors obtained with the ANN techniques were significantly higher (5%
significance level) than those produced with the SVMs and RFs. After applying a
tenfold cross-validation, it was also deduced that the RF technique obtained better
mean values of the metrics than the SVM technique [37]. For these reasons, the
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Fig. 5.9 Simplified block diagram of the method used for the design of the ANNs



5 Computational Intelligence in the Desalination Industry 127

Fig. 5.10 Examples of results of powers consumed by the SWRO plant (in black) obtained when
regulating the feed flow and operating pressure setpoints through ANNs to match the variable
reference powers (in red) with two different levels of seawater characteristics: a results for seawater
conductivities between 52.7 and 53.6 mS/cm and seawater temperatures between 21.1 and 22.3 ◦C;
b results for seawater conductivities between 50.5 and 51.0 mS/cm and seawater temperatures
between 22.8 and 23.9 ◦C

authors recommend the use of the SVM and RF techniques (especially the latter) to
predict SWRO desalination plant performance rather than the ANN technique [37].

Although the potential uses of CI techniques in wind-powered desalination sys-
tems are wide-ranging, to date very few studies have been published on the imple-
mentation of these techniques in such systems Nonetheless, the results obtained
with the prototype described above are promising and the prototype itself has been
shown to be a good candidate to test the benefits of CI techniques. As a result, the
analysis of the implementation of most of the potential applications indicated in
Section 5.4.2 of this chapter is currently underway. More specifically, implementa-
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tion of CI techniques has been initiated to replace the PID controllers with controllers
which use multiple input variables, and which are capable of anticipating phenom-
ena detectable by these techniques [37]. Models are also being developed for the
forecasting of available energy and for the management and modelling of dynamic
energy storage systems.

5.5 Conclusions

This chapter has offered an overview of the potential applications of CI techniques in
the desalination industry, with particular reference to wind energy-powered SWRO
desalination plants. An indication has also been given of the degree of difficulty of
the challenges entailed in the implementation of CI techniques in themost commonly
used types of renewable energy-powered desalination systems. A brief description
has also been given of the results obtained to date, as well as the works pending
development, from a small-scale prototype SWRO desalination plant designed for
continuous adjustment of its energy consumption to the widely varying power gen-
erated by a stand-alone wind turbine. CI techniques have been incorporated into the
control system of this prototype and tests are presently underway on the island of
Gran Canaria (Spain). It has been shown that CI can be efficiently used in systems
with complex dynamics, as is the case of SWRO desalination plants. Such plants
are not linear and, when directly powered by renewable energies, vary over time
with uncertainty and, therefore, are extremely difficult to control with conventional
methods.
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Chapter 6
Control of Complex Biological Systems
Utilizing the Neural Network Predictor

Samuel Oludare Bamgbose, Xiangfang Li and Lijun Qian

Abstract Intelligent control of complex systems faces many challenges including
difficulty in realizing the model of the system and the need to address uncertainties.
Because a lot of data are collected in modern systems, a data-driven approach can
be employed to design intelligent control algorithms. Specifically, machine learning
can be used to take advantage of the available datasets and predict the behavior of the
system for improved design and performance of the controller. For example, in this
chapter, a time-shifted neural network predictor is integrated with a proportional–
integral controller to compensate for performance errors associated with time lag and
nonlinear absorption pattern of meal and insulin in closed-loop blood glucose control
systems.Additional benefits of this approach include themitigation of errors thatmay
be associatedwith sensor drift and slowchange in concentration of the interstitial fluid
glucose measured by the continuous glucose monitors. Different control approaches
and devices for blood glucose control were reviewed, and simulation studies were
presented to show the effectiveness of a neural network integrated control approach.

6.1 Introduction

In recent years, there has been notable development of control algorithms to solve
problems associated with cardiovascular and endocrine systems. In the cardiovascu-
lar area, cardiac assist devices, which utilizes amechanical pump has been developed
to provide cardiac pressure support in order to achieve normal blood circulation in
a patient’s body. Baxter/Novacor left ventricular assist device (LVAD) was the first
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of such device to be approved by the Food and Drug Administration (FDA) in 1998.
However, there are still control challenges to be addressed, which include adaptabil-
ity to changing demands caused by varying physical activities, emotions, etc. Recent
developments have explored real-time analysis, adaptive control, and model-based
control [1, 2]. There are also control applications in the delivery of anesthesia, mon-
itoring of oxygen saturation, implantable cardioverter defibrillator (ICD) and the
intracardiac electrogram (IEGM) [3].

In the endocrine area, there is active research toward the realization of an artificial
pancreas for diabetic patients. Diabetes is a disease that causes hyperglycemia (high
blood glucose level) due to patient’s difficulty in producing insulin—a hormone
for converting glucose to energy which invariably regulates the blood glucose level
(BGL). The goal of the United States National Science Foundation’s (NSF) Smart
and Connected Health Program is to develop solutions focused on well-being rather
than disease [4]. Hence, in this chapter, a learning-based control system solution
aimed at improving diabetic patient’s well-being is presented.

Whereas Type 1 diabetes (T1D) is characterized by absolute lack of insulin, Type
2 (T2D) is characterized by insulin resistance and relative lack of insulin. Lifelong
treatment is required by both T1D and T2D patients, which ranges from nutritional
management and physical activities to intensive pharmacotherapy [5]. The goal of
the intensive treatments is to optimally control the BGL in a way that hypo- or
hyperglycemic episodes are eliminated or minimized. Hypoglycemia is the state of
low BGL. When there is a sustained state of hyperglycemia, the patient’s osmotic
balance is altered leading to the dehydration of the body cells. As the glucose level
increases further beyond the renal threshold, it changes the osmotic balance of the
urine, such that fluids and electrolytes that normallywould not be passed are released.
In addition, tissue walls, including that of the kidneys, heart, eyes, and limbs could
be destroyed. Moreover, there is high risk of death due to a dangerous dive of the
patient’s body pH or consumption of the tissue’s protein. On the other hand, when
hypoglycemia is sustained, there is a shortage of glucose needed by certain cells,
especially in the brain and the retina, for metabolic processes. The inability of the
cells to perform its metabolic functions could result in death.

The focus of the design in this chapter is on T1D, which can neither be prevented
nor cured but can be treated effectively by external insulin infusion to regulate the
BGL [6]. The insulin pump must mimic the mechanism by which the pancreas
maintain appropriate BGL. However, a challenge in insulin therapy is the nonlinear
insulin absorption pattern, how to tailor insulin regimen to individual patient’s need,
and accurate measurement of BGL [5, 7].

Since a lot of data are collected in modern systems, application of bio-inspired
learning techniques such as neural network (NN) is an attractive approach to tackle
such challenges. Although pharmacokinetic (PK) models have been developed to
describe the elimination and absorption kinetics with the aim of understanding the
glucose regulatory systems [8], those models have been criticized by reviewers for
oversimplification of complex systems thereby not providing necessary accuracy
for effective control studies [9]. Further, physiological models of glucose–insulin
interaction with respect to different organs in the body have been developed [10, 11]
but they have only been shown towork in a limited domain for some patients. In order
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to help patients take countermeasures against impending hyper- or hypoglycemic
periods,machine learning techniques have been employed to predict BGL excursions
in [6] and [12]. The warning signal from the predictive model serves to trigger an
insulin suspension or glucose intake action. Also, the authors of [13] and [14] used
the AIDA simulator data to train a support vector machine (SVM) and recurrent
neural network (RNN) models, respectively, for BGL prediction.

Other challenges restricting the effectiveness of a controller designed for BGL
control are the limitations of the existing glucose sensors and the insulin pump.
Whereas some glucose sensors are not implantable and inaccurate, others are
implantable in the subcutaneous tissues but measure delayed values owing to the
slow diffusion of glucose from the blood to the interstitial fluid [15]. In this chapter,
an extended version of [16], a design integration between a conventional controller
and a bio-inspired model is presented to mitigate the highlighted challenges associ-
ated with closed-loop BGL control for diabetic patients. Specifically, a time-shifted
NN predictor was integrated with a proportional–integral controller (PI) to compen-
sate for performance errors associated with time lag and nonlinear absorption pattern
of meal and insulin, as well as sensor measurement inaccuracy. This framework will
also allow researchers to investigate the effectiveness of control algorithms prior to
clinical trials.

This chapter is organized as follows: Section 6.2 is an overview of the devices
used in diabetes management, whereas Sect. 6.3 is a review of control algorithms
employed for diabetes management. Section 6.4 discusses the concept of artificial
pancreas and Sect. 6.5 presents the proposed design for blood glucose level control
with neural network predictor for diabetic patients. Sect. 6.6 concludes the chapter.

6.2 Emergence of Devices in Diabetes Management

Multiple daily insulin injections or continuous subcutaneous insulin infusion had
been employed tominimizehyperglycemiabut earlymethodsunfortunately increased
the risk of hypoglycemia significantly. Kadish developed the first insulin pump in
1964 [17] and Young et al. made a Biostator, which was the first computerized
insulin delivery device in the early 1980s [18]. However, early insulin pumps were
impractical because they were too large, not precise and have other technical limita-
tions. Several devices for measuring blood glucose (BG) and delivering insulin were
developed between 1965 and 1980, and in 1983, the first commercial insulin pump
was made [19]. Since then, modifications and improvements have been made with
respect to size, insulin delivery method, features, and functionality. Advancements
over the years have encouraged increased usage of the insulin pumps. However, for
effective use, patients are required to have a basic understanding of insulin pharma-
codynamics and carbohydrate bolus calculation. The burden of patients having to
take finger-prick glucose measurements several times a day in order to adjust insulin
doses led to the development of continuous glucose monitors (CGMs) in the late
1990s, which in turn has spurred efforts to connect it with the insulin pump in a
closed-loop fashion [20].
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The CGMs are more compact and more accurate than the old glucose meters. It
has also proven to be more effective for glycemic control when used with insulin
pumps. It consists of a sensor, a transmitter, and a receiver. The sensor is usually
subcutaneously implanted to measure glucose level in the interstitial fluid, which
makes it less invasive. Themeasurements are relayed to the receiver by the transmitter
in real time. It could provide additional information including glucose values and
trends, as well as alarms predicting hyper- or hypoglycemic episodes. One of the
challenges with CGMs is their inaccuracy, with an average absolute error being 12.8
mg/dL or higher depending on the type of monitor. This is partly because the time
lag before systemic glucose concentration change appears in the interstitial fluid has
been estimated to be 4–26min [21]. Evenwith good calibration, there can be 15–20%
error [22], and the latest improvement has been marginal. Another limitation is the
required frequent recalibration due to loss of sensitivity over time. Therefore, there
is still the need for capillary blood glucose measurements using the fingerstick to
correct any bias. Also, there could be lost or attenuated CGM signals.

Although the use of insulin pumps and CGMs reduces the patient’s burden con-
cerning BGL management, those devices typically work in open-loop fashion, and
also still require patient’s interpretation and manual compensation for metabolic
disturbances. Furthermore, despite the smart features of the contemporary CGMs,
existing BGL control is susceptible to errors associated with patient’s inaction. That
underscores the importance of closed-loop control of BGL for optimal replacement
therapy.

6.3 Review of Control Algorithms for Diabetes
Management

There have been several efforts aimed at applying control algorithms to blood glucose
regulation using the pharmacokinetic (PK) models that describe the glucose–insulin
dynamics in diabetic patients but those models do not provide accurate representa-
tion as they are oversimplified and are replete with assumptions that are unsuitable
for real-life application. A fuzzy logic controller (FLC) with insulin pump in the
loop for glucose level regulation of the Bergman model was proposed in [23]. The
design was based on two input variables and one output variable, with a total of 49
IF-THEN rules defined. The error and error rate are the input variables while the
insulin infusion rate is the output variable. The results obtained from using FLC was
shown to be better than those obtained from using PID for corresponding patients.
However, it was assumed that patients would not ingest meal for eight hours after
the insulin infusion, BGL can be accurately measured, and the insulin absorption
pattern was oversimplified. Hence, the performance of the controller to real patient
may drastically deviate from the simulation result presented.

The authors of [24] proposed a model-based control strategy for blood glucose
regulation of the Bergman patient model by calculating the optimal insulin deliv-
ery rate offline using parametric programming. The states of the model are as fol-
lows: the plasma glucose concentration above the basal value, the plasma insulin
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concentration above the basal value, and a variable proportional to the plasma insulin
in the remote compartment. The control variable is the insulin infusion rate, and the
approach incorporates uncertainty in the patient model. Since the explicit delivery
rate function was obtained offline, online computations during implementation are
minimized. Nonetheless, assumptions for this strategy include widely spaced meal
intake, oversimplified insulin absorption pattern and directly measurable BGL.

The simulation of a proportional–derivative (PD) and proportional–integral–
derivative (PID) control of Hovorka patient model was presented in [25]. It was
shown that the performance of the PID controller was better than that of the PD
controller as the integral term eliminates the steady-state error. Insulin absorption
patternwas included in themodel, and fivemeals of varying boluseswere considered.
However, it took more than 12 h for the BGL to reach the target range.

A PID control strategy with insulin feedback to regulate blood glucose level was
presented in [26]. Nine subjects already diagnosed with T1D, consisting of five
males and four females with a median age of 44 years were recruited. Patients were
asked to take measurements of their blood glucose and carbohydrate ingestion for 3
days. After an interval of at least 1 week, studies were conducted on the subjects for
30 h using the PID algorithm with insulin feedback. Supplemental carbohydrates
were however needed to correct hypoglycemia due to PK delay relating to subcuta-
neous delivery of insulin.

An empirical algorithm for overnight blood glucose regulation based on hourly
blood glucose measurement was proposed by [27]. Two overnight experiments were
performed on 21 subjects on each of a 3 times visit at the study site, resulting in 138
overnight experiments. On each visit, patient’s insulin therapy was administered on
the first night and the control algorithm applied on the second night adopting venous
BGmeasurements on an hourly basis. It was observed that regulation ofBG improved
from 52.9% on the first night to 72.2% on the second night. Also, interventions for
hypoglycemic episodes reduced from 14 to 1. However, the patients’ meal intake
during the day was tightly controlled in order to minimize venous BGL excursion
based on the insulin therapy.

6.4 The Concept of Artificial Pancreas

An artificial pancreas is a closed-loop system consisting of synthetic components
working as a substitute for endocrine pancreas. But major technical problems in
the development of a fully integrated closed-loop system include sensor drift, inac-
curacy of the interstitial fluid glucose measurement taken by the CGM, the time
lag and pattern of carbohydrate absorption, and the nonlinear peak insulin action
with variability among patients. Regardless of the insulin delivery method, the
pharmacodynamic action of even rapid-acting insulin has a long timescale. After
insulin infusion, it takes about 90 min for the insulin to reach peak action, and its
effect on the glucose continues for 6–8 h. Although the meal intake effect usually
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peaks faster compared to the pharmacodynamic behavior of the insulin, its effect can
continue for 3–8 h [28–30].

Closed-loop systems are differentiated by the control algorithm employed as well
as the method of insulin delivery and glucose measurements. Whereas one control
algorithmutilizes the proportional, integral and/or derivative components of the phys-
iological characteristics, others are predictive in nature. Different types of glucose
sensing and insulin delivery include subcutaneous (SC) sensing and SC delivery,
intravenous (IV) sensing and IV delivery, and IV sensing and intraperitoneal deliv-
ery. The first mode of sensing and delivery is the most studied as the invasion is
minimal, although there is a time lag in glucose measurements. The other modes
require surgery and still have physiological delays, albeit comparatively reduced
overall delay [5].

The authors of [31] studied the feasibility of the Medtronic MiniMed exter-
nal physiological insulin delivery system in youth with T1D. They concluded that
overnight closed-loop control performance was better than day time due to no meal
disturbance and proposed an additional premeal priming bolus of insulin to improve
postprandial glycemic excursions caused by peak plasma insulin action occurring
1–2 h after insulin delivery. The mean relative absolute deviation of the sensor from
the venous blood glucose was 13.2 +/− 10.9%, and there is concern relating to the
risk of hypoglycemia.

6.5 A Closed-Loop Blood Glucose Control Design with
Neural Network Predictor for Diabetic Patients

Despite the recent advancements in glycemic control for diabetic patients, the realiza-
tion of an automated closed-loop artificial pancreas is still a challenge. The design
presented in this section is an integrated control system for in silico closed-loop
administration of insulin for T1D patients based on patients’ medical record and
real-time control-relevant data [32]. The proposed system consists of a virtual patient
model, a neural network predictor trained onpatients’ data for feedback purposes, a PI
Controller and data logging nodes. The virtual patient takes into account the delayed
and time-varying insulin and carbohydrate absorption rate associated with the exist-
ing subcutaneous insulin delivery and complex glucose metabolism, respectively.
The neural network predictor was trained using 23 features including semi-static
and dynamic data, with built-in knowledge of all available past blood glucose levels.
Then the controller calculates the infusion bolus to be delivered by the insulin pump.
Extensive simulations are performed, and it is shown that the proposed data-driven
closed-loop system for glycemic control can effectively regulate the blood glucose
level of T1D patients without hyper- or hypoglycemic excursions, and with no preset
instruction on meal ingestion. Moreover, the neural network predictor has less root-
mean-square error (RMSE) compared with the currently used CGMs, which takes
measurement from the interstitial fluid.
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6.5.1 System Architecture

In this subsection, the structure of the integrated closed-loop control system for
automatic insulin administration is described. It is made up of a virtual patient [33],
a time-shifted neural network predictor, data logging nodes, and a PI controller to
compute appropriate insulin boluses by the insulin pump as described in Figure6.1.

The target BGL is denoted by g, whereas ĝ denotes the BGL observation from the
NNpredictor, andu is the insulin infusion command.TheNNpredictor takes patients’
semi-static data, as well as dynamic data and command signal from the insulin pump
to compute BGL that will be reached at a future time for feedback purpose. This
framework takes into account the delayed, continuous, and time-varying action of
the insulin associated with the subcutaneous insulin delivery route and also provides
a means to not only obtain better observation than the existing glucose monitors but
also future measurements.

6.5.2 Blood Glucose Prediction

The free online AIDA diabetes simulator [34] was used to generate data which was
prepared with built-in past BGL and Insulin information. Data setup, neural network
training, and performance evaluation are described in the following subsections.

6.5.2.1 Data Setup

The training data have 23 features that can be categorized as semi-static and dynamic
for a prediction window of 9 h. The semi-static data are the weight, renal threshold
of glucose, creatinine clearance rate, hepatic insulin sensitivity, peripheral insulin
sensitivity, initial plasma insulin level, and initial blood glucose level, which are
denoted as wt , r tg, ccr , sh, sp, pb, and g0, respectively. The dynamic data are the

Fig. 6.1 Data-driven blood glucose control system
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sampling time, sampled blood glucose levels through the prediction window, up to
three carbohydrate intake along with ingestion time within the prediction horizon,
and the four infusion boluses by the insulin pump, which are denoted as ts , g1, g2,
g3, g4, g5, m1, m1t , m2, m2t , m3, m3t , u1, u2, u3, and u4. There were 2,100
sample data generated, which represent 300 patient blood glucose profiles for 9 h
simulation. Knowledge of BGL history was built into the data as part of the features
to enhance prediction performance. Each dynamic input vector precedes the current
time step. A sampling rate of 90 min was selected to compensate for the delayed and
time-varying subcutaneously injected insulin action, which peaks between 1 and 2 h.
A shorter rate could lead to hypoglycemia as insulin is administered before the last
infusion could take effect. A larger rate was not selected so that glucose absorption
and increase due to meal ingestion, which could be multiple, can be counteracted
in a timely fashion. Four regular-type insulin infusion were applied at the specified
sampling rate, and up to three random-sized meals can be ingested.

6.5.2.2 Predictor Model and Training

The complex nature of glucose metabolism and insulin delivery, as well as data-
intensive management of diabetes, makes machine learning models attractive for
describing hidden processes. Neural networks are nonlinear mapping models con-
sisting of processing units called neurons, which interact with other neurons through
weighted connections as described in [35] and shown in Figure6.2.

As shown below, the neurons are structured into two or more layers after the input
layer: the hidden and output layers. The process of extracting knowledge or infor-
mation based on the structure is called training or learning. In supervised learning
applied in this work, each data input sample (with multiple features) have an output
label, and a portion of that dataset is used to adjust the weight of the NN by min-
imizing an error function. The remaining portion of the dataset is used to test the
performance of the trained network.

Fig. 6.2 Feedforward neural network structure
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The feedforward neural networkmodel described by (6.1) and (6.2)was employed
but with knowledge of past predictor outputs built into the input data as described in
the previous subsection.

ĝ(l+1)
n (k) = θ(s(l+1)

n )(k) (6.1)

s(l+1)
n (k) = w(l+1)

n (k)ĝl(k) + b(l+1)
n (k) (6.2)

where l denotes layer, n denotes unit or neuron, θ is an activation function, and k is
the time step. ĝl is the output vector from layer l (ĝ0 is the original input vector), sl

is the input vector into layer l, wl
n are the weights from layer l − 1 to unit n of layer

l, and bl are the biases from layer l − 1 to unit n of layer l.
A two-layer neural network model was trained with eight hidden neurons using

the NN toolbox in MATLAB. Considering the heuristic that the number of sample
data should be ten times larger than the weight dimension and experimenting with a
different number of hidden neurons, it was observed that eight hidden neurons was
optimal for the considered application. Furthermore, the built-in past BGL knowl-
edge in the data setup provides unique performance improvement for the presented
application. Levenberg–Marquardt algorithm [36–38] was used for training, which
is considered a faster algorithm than the standard back-propagation algorithm, and
data splitting into 70% training, 15% validation, and 15% testing was performed by
“dividerand” function.

6.5.2.3 Performance Evaluation

The predictor performance was measured using the RMSE, and the output versus
target regression coefficient (R). The goal is to obtain an RMSE that is closer to zero
relative to the magnitude of the predicted values and a correlation coefficient that is
closer to 1. As shown in Figure6.3, the training, validation, and testing mean square
error (MSE) were 20, 29, and 35, respectively. Hence, the RMSEs were 4.5, 5.4,
and 5.9 mg/dL, respectively, whereas the currently used continuous glucose monitor
deviates by 15–20% from the actual blood glucose values [22]. Also, due to the
similar characteristics of the validation and test error curves, there is no significant
overfitting. The regression plots in Figure6.4 showed good fits between the predicted
outputs and the targets with high R values.

6.5.2.4 Justification for Using the AIDA simulator

The reasons for adopting the AIDA online simulator [34] otherwise called the virtual
patient in generating patient’s data are: (1) Real patients’ data are difficult to obtain
due to privacy and ethical issues. (2) Experiments on human subject are costly and
time-consuming. (3) Large dataset can be generated by the simulator. (4) Greater
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Fig. 6.3 Neural network predictor performance

Fig. 6.4 Neural network predictor output versus target regression
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flexibility can be achieved as specific scenarios can be simulated. Furthermore, the
British Diabetic Association (BDA) conducted an independent assessment based on
feedback from internal assessors as well as healthcare professionals. Following a
fairly accurate rating by healthcare professionals, the BDA decided to catalogue the
simulator in the BDA’s healthcare professional brochure [39]. More details about the
simulator model and limitations such as non-capture of stress, exercise, alcohol, etc.,
are reported in [40, 41].

6.5.3 Glycemic Control Design and Insulin Delivery

A PI controller was designed to compute the control command for the appropriate
insulin dose at predefined discrete times. This controller is suiting to our application
as it does not require the mathematical description of the complex physiological
processes relating to BGL in the body to compute the control command. The insulin
infusion command is a function of the difference between the target glucose level
and the observation as described in (6.3).

u(k) =
⎧
⎨

⎩

Kpe(k) if k = 0

Kp

[

ˆe(k) + �t

τI
(e(0) + ∑k

i=1
ˆe(i))

]

otherwise
(6.3)

e(k) = g − ĝ(k) (6.4)

ˆe(k) = g − ĝ(k + τ) (6.5)

The proportional gain (Kp) and the integral gain (
Kp

τI
) are the tunable parameters.

�t is the sample time, k is the current time step, and τ is the positive time shift.
BGL observation was time-shifted by 30 min to capture the long-term effect of
the time-varying insulin action due to nonlinear subcutaneous insulin delivery for a
more effective control action. Hence, e(k) is the error between the BGL target and
predictor output at the current time step, whereas ˆe(k) is the error between the BGL
target and predictor output at a specified future time. The initial BGL observation
was not time-shifted as there was prior infusion, and invariably no active insulin
action. The proportional gain adjusts the insulin delivery with respect to the error
signal, while the integral gain adjusts insulin delivery with respect to the sum of all
past errors. The derivative term was not used as the rate of change of BGL over time
fluctuates with meal disturbance and insulin infusion.

The goal of the controller is to maintain the BGL within 70 and 140 mg/dL two
hours after meal ingestion as typical for non-diabetic patients in [42]. The design
was done using MATLAB toolbox. By tuning the control parameters, the optimal
performance was obtained with Kp = −0.078 and Kp

τI
= −0.00015. The predictor,
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Fig. 6.5 Intelligent blood glucose control system model

controller, and sensor nodes were integrated as shown in Figure6.5. The system
was implemented in silico using MATLAB Simulink with predictor outputs having
RMSE of 5.9 mg/dL relative to the virtual patient. Existing subcutaneous insulin
delivery mode as well as random meal intake pattern was considered in this work.
Therefore, the existing insulin pumps can be easily utilized and patients have the
freedom to embrace any meal pattern of their choice. The integrated system was able
to dynamically and automatically set insulin infusionwithout hyper- or hypoglycemic
excursions.

6.5.4 Simulation Results

In order to prove the effectiveness and robustness of our system, the controller per-
formance for five patients with diverse medical details and meal ingestion patterns
were simulated as follows. The variables were selected in a way to present diverse
situation that the systemmay encounter in practice as shown in Table 6.1, where wt is
the weight in lb; rtg is the renal threshold of glucose in mg/dL; ccr is the creatinine
clearance rate in mL/min; sh is the hepatic insulin sensitivity, sp is the peripheral
insulin sensitivity; m1, m2, andm3 are the meal carbohydrate contents in g; and m1t,
m2t, and m3t are the meal ingestion times in min.

Case I represents a patient with relatively large weight and large carbohydrate
ingestion pattern, whereas Case II is a patient with medium weight and medium
carbohydrate ingestion pattern. A patient with small weight and small carbohydrate
ingestion was described by Case III while Case IV depicts a patient with large weight
andmedium carbohydrate ingestion. Finally, CaseV characterize a patient with small
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Table 6.1 Patients’ semi-static data and meal ingestion pattern

wt rtg ccr sh sp m1 m1t m2 m2t m3 m3t

Case 1 191 176 120 0.8 0.8 39 30 57 120 63 245

Case 2 152 160 90 0.5 0.7 35 32 43 120 55 255

Case 3 128 121 82 0.3 0.8 28 50 23 135 39 240

Case 4 240 192 120 0.5 0.5 36 37 29 155 43 252

Case 5 101 150 100 0.7 0.8 41 40 53 142 67 265

The acronyms are defined in Subsubsection 6.5.2.1

weight but large carbohydrate ingestion. Other essential patient vitals are as provided
in Table 6.1.

Figure6.6 showed that the control system was able to keep the blood glucose
level between 70 and 140 mg/dL two hours after meal ingestion, which is consistent
with the standard of American Diabetic Association (ADA) [42] for non-diabetic
patients. The control system achieved the goal of normo-glycemia till the end of the
simulation without hyper-or-hypoglycemic excursions in different cases that may
be encountered in practice as shown in sub figures a–e, despite varying patients’
medical data and randommeal intake pattern. This preclinical simulation setup yields
results in a fraction of time required for clinical trials and can help to guide clinical
experiments.

6.6 Conclusion

Pharmacokinetic models of diabetic patients utilize a theoretical number of com-
partments to describe elimination and absorption kinetics which does not provide
enough accuracy for effective control studies. A machine learning-based approach
to designing an intelligent controller has been presented in this chapter. Specifically,
a neural network predictor has been trained to describe the complex glucose–insulin
relationships for Type 1 diabetic patients based on virtual patient’s data. Outputs
from the time-shifted predictor were fed back to the controller to compute insulin
boluses for the virtual patient.

The simulation results showed that the designed control system can effectively
administer insulin automatically to regulate blood glucose level within normal range,
irrespective of the patient’s meal intake pattern. Furthermore, the predictor perfor-
mance was shown to be better than that of implanted sensors which are affected by
the body’s immune response and delayed diffusion of glucose from the blood to the
subcutaneous tissue. The proposed simulation framework is a time- and cost-effective
tool for guiding clinical studies toward the development of artificial pancreas. The
presented approach can be extended to Type 2 diabetes, and it is expected that even
better results can be obtained by utilizing more data samples. Further research will
require real-patient data and consideration of other factors that may influence blood
glucose level such as stress, exercise, etc., as well as in vivo testing of the control
strategy.
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(a) Case I (b) Case II

(c) Case III (d) Case IV

(e) Case V

Fig. 6.6 Control system performance for five diverse virtual patients
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Chapter 7
A Real-Time Big Data
Control-Theoretical Framework
for Cyber-Physical-Human Systems

Azwirman Gusrialdi, Ying Xu, Zhihua Qu and Marwan A. Simaan

Abstract Cyber-physical-human systemsnaturally arise from interdependent infras-
tructure systems and smart connected communities. Such applications require ubiqui-
tous information sensing and processing, intelligent machine-to-machine communi-
cation for a seamless coordination, aswell as intelligent interactions between humans
and machines. This chapter presents a control-theoretical framework to model het-
erogeneous physical dynamic systems, information and communication, as well as
cooperative controls and/or distributed optimization of such interconnected systems.
It is shown that efficient analytical and computational algorithms can be modularly
designed and hierarchically implemented to operate and optimize cyber-physical-
human systems, first to quantify individually the input–output relationship of non-
linear dynamic behaviors of every physical subsystem, then to coordinate locally
both cyber-physical interactions of neighboring agents as well as physical-human
interactions, and finally to dynamically model and optimize the overall networked
system. The hierarchical structure makes the overall optimization and control prob-
lem scalable and solvable. Moreover, the three levels integrate individual designs
and optimization, distributed cooperative optimization, and decision-making through
real-time, data-driven, model-based learning and control. Specifically, one of the
contributions of the chapter is to demonstrate how the combination of dissipativity
theory and cooperative control serves as a natural framework and promising tools to
analyze, optimize, and control such large-scale system. Application to digital power
grid is investigated as an illustrative example.
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7.1 Introduction

Cyber-physical-systems (CPSs) refer to the integrations of cyber core consisting of
communication network, computation and physical processes (engineered systems)
which are normally large scale and complex, as illustrated in Fig. 7.1. These two
components are tightly coupled: embedded computers and networks monitor and
control the physical processes, usually with feedback loops where physical pro-
cesses affect computations and vice versa. In addition, CPSs will also interact with
humans resulting in cyber-physical-human systems. Cyber-physical-human systems
naturally arise from interdependent infrastructure systems and smart connected com-
munities. Examples include smart grid [54], intelligent transportation systems [16],
and smart city [5]. Such applications require ubiquitous information sensing and pro-
cessing, intelligent machine-to-machine communication, a seamless coordination of
physical systems, and intelligent interactions between humans and machines. While
technological advances and the development of relatively inexpensive yet power-
ful communication, computation, and sensing devices make the realization of such
complex system feasible, fundamental technical challenges centered on real-time big
data processing, optimization, and control of the spatially distributed complex sys-
tems remain to be solved. A major and fundamental challenge is to develop a control
design theory that does not consider the physical and cyber components separately,
but as two facets of the same system [2]. Another major challenge is the choice of
control architecture which allows the designer to control the complex system effi-
ciently and in real time. Traditional centralized control architecture, where all the
data from ubiquitous sensors are gathered in a centralized processing center, which
optimizes and computes the control input for the overall system is not appropriate to
optimize and control such large-scale interconnected system since it may suffer from
explosion of data and may also harm data privacy [4]. This calls for a scalable and
modular system theoretic tools to analyze, optimize, and control the cyber-physical-
human systems. In particular, distributed optimization and control algorithms are
highly desirable for dealing with such complex systems due to its scalability and
robustness against component faults and cyberattacks [17].

The chapter presents a control-theoretical framework to model heterogeneous
physical dynamic systems, information and communication, as well as cooperative
controls and/or distributed optimization through which human operator or users can
interact effectively with physical systems in a multi-agent setting to achieve various
control and optimization objectives. It is shown that efficient computational algo-
rithms can be applied hierarchically to operate and optimize cyber-physical-human
systems, first individually to quantify the dynamic behavior of every agent, then
locally to describe the local interactions of neighboring agents, and finally to the
overall system. All the three control levels deal with real-time big data, and the
hierarchical structure makes the overall optimization and control problem scalable
and solvable. In particular, one of the contributions is to demonstrate how the con-
cept of dissipativity theory and cooperative control serve as a natural framework
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Fig. 7.1 An illustrative diagram of cyber-physical systems as exemplified by power system

and promising tools to analyze, optimize, and control such large-scale systems in
a scalable and modular manner. Application to digital power grid is investigated as
an illustrative example.

The chapter is organized as follows. We begin with dynamic modeling of cyber-
physical-human systems together with its optimization and control objectives in
Section 7.2. A brief summary of the basic concepts of dissipativity theory and coop-
erative control as the main analytical and design tools is presented in Section 7.3.
Section 7.4 provides an example of applying the dissipativity theory and cooper-
ative control to design hierarchical control of power system. Modeling and anal-
ysis of human–machine interaction with focus on electricity market are presented
in Section 7.5. The role of real-time big data and decision-making in controlling
cyber-physical-human systems is discussed in Section 7.6. Finally, we conclude in
Section 7.7.

7.2 Dynamic Modeling of Cyber-Physical Systems
and Its Optimization/Control Objectives

Systemmodeling is an important step in designing control algorithms. Briefly speak-
ing, a model is a mathematical representation of physical system which allows us
to reason and predict how the system will behave. In this chapter, we are mainly
interested in models of dynamical system describing the input/output behavior of
systems. To this end, let us consider cyber-physical-human systems consisting of
n heterogeneous physical systems whose individual dynamics can be modeled by
differential equations in the form of

ẋi = fi (xi , ui , ri ), yi = hi (xi , ri ), (7.1)
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with i = {1, . . . , n}. The model in (7.1) is known as state-space models where vari-
ables xi ∈ �ni denote the state which encodes what needs to be known about the
past history, ui ∈ �m is the control signals to be designed, and yi ∈ �m denotes the
output (measurement) signals of the i-th system. In addition, ri ∈ �m in (7.1) is the
operational decision as a result of the intelligent interaction between humans and the
physical systems whichmay take place in a slower timescale. In general, the physical
systems may also be interconnected through a physical network whose characteristic
could be described by the following algebraic equation:

κi (y1, . . . , yn, x1, . . . , xn) = 0. (7.2)

As an example, consider a power system where the individual physical system refers
to the synchronous generator as shown in Fig. 7.1. For the sake of simplicity, the
dynamics of synchronous generator is given by the following swing equation:

Mi δ̈i = Pm,i − Pe,i − Diω0δ̇i , (7.3)

where Mi > 0 denotes its inertia, Di > 0 is its damping constant, Pm,i denotes its
mechanical power while Pe,i is its active power output, and δi denotes its rotor
angle measured with respect to a rotating frame with speed ω0. The generators are
physically interconnected with each other which can be characterized through the
following nonlinear power flow equation:

Pe,i = E2
i Gii +

∑

k �=i

Ei Ek(Gik cos δik + Bik sin δik), (7.4)

where δik = δi − δk , Ei is the voltage of the generator bus, and Yik = Gik + j Bik

is the transfer admittance between generators i and k. Defining, respectively, the
states, input and output of the i-th generator as xi = [δi − δ∗

i , ωi ]T , ui = Pm,i and
yi = xi with δ∗

i denotes the final angle, we can recast swing equation (7.3) together
with power flow equation (7.4) with respect to their equilibrium in the form of (7.1)
as [22]

ẋi = Ai (xi )xi + Bi (xi )ui +
∑

k∈N i

Hik(yi , yk)(yk − yi ), yi = Ci xi , (7.5)

where Ni denotes the neighboring set of generator i , matrices Ai , Bi and coupling
matrix Hik are state/output-dependent. Note that generators with higher (e.g., fifth
or sixth) order dynamics can also be represented by state-space model (7.5). In
addition to the physical network, there is also a cyber-layer representing informa-
tion/communication network for the system operator/local controller of physical
systems to obtain/exchange measurements in order to monitor and control the over-
all system. The structure of communication network (information flow) in general is
modeled using a graph as illustrated in Fig. 7.1. LetN c

i denote the communication
neighboring set of the i-th subsystem. In other words, subsystem j ∈ N c

i if infor-



7 Control-Theoretical Framework for Cyber-Physical-Human Systems 153

ẋi = fi(xi, ui, ri, t)
yi = hi(xi, ri, t)

ẋj = fj(xj , uj , rj , t)
yj = hj(xj , rj , t)

system i system j

controller controller

monitoring and
communication

operational
decision

ui ujyjyi

ri rj

Fig. 7.2 Three-level data-driven controls of cyber-physical-human systems. The dashed lines rep-
resent information flow between different levels

mation on measurement y j is available to the i-th subsystem. The communication
network topology can also be represented by the following communication matrix:

Sc = [Sci j ] ∈ �n×n, Scii = 1, (7.6)

where Sci j = 1 if j ∈ N c
i and Sci j = 0 otherwise.

Optimizing and controlling the above cyber-physical-human systems calls for
computationally efficient and scalable algorithms to deal with its large-scale nature
and complexity (in terms of heterogeneous individual nonlinear dynamics and their
physical interconnections). To this end, we divide the control objective of cyber-
physical-human systems into three levels as illustrated in Fig. 7.2. Specifically, the
control input ui in (7.1) is decomposed into the following hierarchical form:

ui = usi (xi ) + uli (yi , y j ) + vi︸ ︷︷ ︸
ui

, (7.7)

each layer with the following control design objective:

1. the lowest level control usi aims to stabilize each individual physical system,
2. the mid-level control input uli is to achieve a local coordination for a group of

physical systems, and
3. the highest level control vi aims at ensuring stability of the overall interconnected

system.

For the example of power system whose dynamics is represented by (7.5), the goal
of low-level (self-feedback) control usi is to ensure (input–output) stability of the
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individual generator. The mid-level control uli can be designed as a distributed opti-
mization algorithm (by taking advantage of the communication network) to achieve
a uniform voltage profile for a group of generators or minimize power loss. Finally,
the high-level control vi acts as a wide-area control with the goal of ensuring stability
and/or improving performance of the power system.

In what follows, we will present a control theoretic framework based on dissipa-
tivity theory and cooperative control for systematically optimizing and controlling
cyber-physical-human systems and further demonstrate its effectiveness using the
power system example described previously.

7.3 Main Analytical and Design Tools: Dissipativity
Theory and Cooperative Control

Dissipativity is an energy-like concept which describes input–output properties (e.g.,
stability) of a dynamical system. Input–output mapping becomes a useful way of
quantifying input–output properties of the system when the dynamical model of the
system is not available. Briefly speaking, dissipative system is a system that absorbs
more energy from the external world than it supplies [23]. Passivity is a special
class of dissipativity and is originated in circuit analysis. Passive systems are always
decreasing in energy with respect to input energy. For example, an electrical circuit
consisting of resistor, inductor, and capacitor can dissipate energy by turning it into
heat and also store energy, but it cannot supply more energy than what has been put
into it. Another class of dissipative systems is what so-called passivity-short systems.
Compared to passive systems, passivity-short systems may increase or remain the
same in energy from input to output during transience. One example is a generator
that is not decreasing in energy at all times simply because it is producing some
amount of energy. Dissipativity-based approaches become attractive in analyzing
and controlling CPS since its properties are preserved over system interconnections
which makes the approach computationally scalable. For example, with individual
output negative feedback, the passivity-short systems can be interconnected either in
parallel or in series or in a positive feedback loop or a negative feedback loop while
maintaining the same passivity-short property [21]. This compositional property
makes dissipativity a powerful and promising tool to analyze and control large-scale
system such as CPS [2].

The concept of dissipativity is captured by introducing two energy-like functions,
namely, supply rate and storage functions. Depending on the choice of particular
supply rate function, dissipativity can imply several important behaviors such as
stability of dynamical systems and their interconnections. Consider system (7.1)
with ri = 0 and without physical interconnection. The i-th system with supply
rate �i (ui (t), yi (t)) is said to be dissipative if there exists a nonnegative real storage
function Vi (xi ) such that the following inequality holds [45]:
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Vi (xi (t)) − Vi (xi (0)) �
∫ t

0
�i (ui (τ ), yi (τ ))dτ. (7.8)

Choosing the supply rate function in a quadratic form, the i-th system is said to be
input passivity-short with respect to a differentiable storage function Vi (xi ) if the
inequality

V̇i � uT
i yi + εi i

2
‖ui‖2 − ρi

2
‖yi‖2 (7.9)

holds for some εi i > 0, ρi � 0, and it is said to be output passivity-short if (7.9)
holds for some εi i � 0, ρ < 0. In addition, the system is said to be L2 stable if
inequality (7.9) holds for some ρi > 0 and a positive definite Vi resulting in

‖yi‖L2 �
(
2εi i
ρi

+ 4

ρ2
i

)
‖ui‖L2 + constant. (7.10)

Finally, the system is passive if inequality (7.9) holds for some εi i = 0 (and ρi = 0).
Figure 7.3 illustrates a static input–output mapping of passivity and passivity-short
systems. Note that passivity is quite restricted as it excludes most of linear dynamic
systems such as nonminimum-phase systems andminimum-phase systemswith rela-
tive degree 2 or higher. It is shown in [27] that most linear systems are passivity-short
and that all linear Lyapunov-stable dynamic systems are either passivity-short or can
be made passivity-short under an output-feedback control. The parameters εi i and ρi

are important for analysis, control design, and stability of networked passivity-short
systems, and it is desirable to maximize the value of ρi and minimize εi i . In par-
ticular, εi i is also called impact coefficient and it quantifies the impact of individual
passivity-short system on the network-level cooperative control as will be discussed
later. Let us show now that a synchronous generator connected to infinite bus is
passivity-short. Dynamics of the generator is given by the following swing equation:

Mi δ̈i = biui − Hii (δi − δ∗
i ) − Diω0δ̇i (7.11)

and its output is defined as yi � δi − δ∗
i . Taking the following positive definite storage

function:

u u u

y y y(a) (b) (c)

Fig. 7.3 Input–output diagram (shaded region) [22] of: a passive; b input passivity-short; c output
passivity-short
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Vi =
(

kd
2k

√
kp

+
√
kp

kkd

)
y2i + 1

kkd
√
kp

ẏ2i + 1

k
√
kp

yi ẏi

with k = bi/Mi , kp = Hii/Mi , and kd = Diω0/Mi and computing its derivative
yields

V̇i � uTi yi + k

(
(1 − √

kp)2

2kp
√
kp

+ 1

k2d
√
kp

)
u2i −

√
kp
2k

y2i � uTi yi + εi

2
‖ui‖2 − ρi

2
‖yi‖2

which shows that the generator is passivity-short and L2 stable. Furthermore, we
can also obtain the physical meanings of εi and ρi . To this end, the transfer function
of (7.11) can be written as

G(s) = k

s2 + kds + kp
. (7.12)

By writing kd = 2ξωn , kp = ω2
n , and k ≈ kp where ωn is the natural frequency and ξ

denotes the damping ratio, it can be shown that

εi ≈ ωn

(
1 − 1

ωn

)2

+ 1

2ξ 2ωn
, ρi ≈ 1

ωn
.

Hence, we can see that the value of εi increases as ξ becomes smaller and the optimal
value of εi is obtained for ωn = 1.

Cooperative control is another control design tool that has shown a great promise
in optimizing and controlling large-scale system and has been successfully utilized to
develop network-level control of a group ofmobile robots [3, 18], power system [54],
charging scheduling of electric vehicles [16], and complex network [15]. The goal of
cooperative control is to achieve nontrivial consensus using only local information
(and thus scalable) obtained via the communication network as illustrated in Fig. 7.1,
that is for all individual systems i , we have [42]

lim
t→∞ ‖yi (t) − y j (t)‖ = 0, or lim

t→∞ yi (t) = c. (7.13)

Consider again physically decoupled CPS with individual dynamics (7.1). As shown
in [44], the concept of passivity-short simplifies the design of cooperative control
by modularizing the lower level and network-level control designs. Specifically, a
self-feedback controlusi is first designed so that individual systembecomes passivity-
short. The cooperative control can then be designed by simply considering the fol-
lowing fictitious integrator dynamics:

ẏi = uli (7.14)

where uli is specified as
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uli = kyi
∑

j∈N c
i

Sci j (y j − yi ). (7.15)

The closed-loop dynamics of (7.14) and (7.15) can be compactly written as

ẏ = −diag{ky1 , . . . , kyn }Ly, (7.16)

with y = [y1, . . . , yn]T and L = diag{Sc1} − Sc. Consensus (7.13) is ensured if
there is at least one node from which every other node can be reached and the
gains kyi > 0 are chosen to be smaller than k∗. Moreover, if every node can be
reached from any other nodes, k∗ can then be computed according to [44]

k∗ = λ2(�L + LT�)

2(maxi εi i )λmax(LT�L)
, (7.17)

where λ2(·), λmax(·) denote the smallest nonzero and largest eigenvalues, respec-
tively, andmatrix� = diag{η1}withηT

1 L = 0. It isworth to note that k∗ in (7.17) can
be computed in a distributed manner without requiring global information of L [12].
The communication topology embedded inmatrix L can also be optimized to increase
the convergence speed of (7.15), see, e.g., [9, 11, 43]. As can be seen from (7.15)
and (7.17), the design of cooperative control of networked passivity-short system
does not require any explicit knowledge about the heterogeneous physical systems
other than their impact coefficients. Moreover, quantity maxi εi i in (7.17) can be
viewed as the “worst” value of impact coefficients of all the passivity-short systems.
Adding or removing subsystems into or from the networked systems results in differ-
ent impacts on the overall system operation. However, the performance of the overall
system can still be guaranteed given that the control gains are appropriately upper
bounded to limit such impact. Hence, the operation of the networked system can be
performed in a plug-and-play manner while its stability is guaranteed.

7.4 Hierarchical Control Design for
Cyber-Physical-Human Systems

In this section, we utilize the concept of passivity-short and cooperative control
presented in the previous section to design hierarchical control law (7.7) for power
system whose dynamics is given by (7.5).
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7.4.1 Low-Level Control Design: Ensuring Input–Output
Stability

Let us now consider the nominal subsystem in (7.5) by excluding its physical inter-
connections, i.e., assuming Hik = 0 for all i �= k. The first step is to design a self-
feedback control usi for individual physical system given by

usi = −Ki xi

such that: (i) the individual physical system is passivity-short and L2 stable for input–
output pair {ui , yi }; (ii) its impact on the overall system, that is, the values εi i and−ρi

in (7.9) are minimized. To this end, taking the storage function V = 1
2 x

T
i Pi xi with

Pi is a positive definite matrix, a self-feedback control can be designed by solving
the following optimization problem:

minimize
Ki ,εi i ,ρi

[αi iεi i − (1 − αi iρi )]
subject to Pi > 0,

Mi (xi ) � 0,

εi i , ρi � 0,

(7.18)

where αi i ∈ (0, 1) is a design parameter and matrix Mi (xi ) is defined as

Mi (xi ) � (Ai (xi ) − Bi Ki )
T Pi + Pi (Ai (xi ) − Bi Ki ) + ρi C

T
i Ci + 1

εi i
‖Pi Bi − CT

i ‖2 < 0.

The second constraint in (7.18) guarantees that inequality (7.9) holds, i.e., the indi-
vidual system is passivity-short and L2 stable. Note that at any instant of time t ,
the state xi (t) becomes known from the Phasor Measurement Units (PMU) and so is
matrix Ai (xi ), and hence Ki can be designed adaptively by using available Lyapunov
function Pi > 0.

Aftermaking the individual systempassivity-short and L2 stable, nextwe consider
the interconnected system to quantify the impact of nonlinear interconnections on
subsystem (7.5) in a way parallel to that of εi i‖ui‖2. Specifically, the goal is to
minimize the transient impacts of the inter-area oscillations encoded in εi j by solving
the following optimization problem:

minimize
εi j

∑

j∈N i

αi jεi j

subject to Pi > 0,

M ′
i (xi , y j ) � 0,

εi j , αi j � 0,
∑

j∈N i

αi j = 1,

(7.19)



7 Control-Theoretical Framework for Cyber-Physical-Human Systems 159

where

M ′
i � Mi −

∑

j∈N i

(
Pi Hi jCi + CT

i H
T
i j Pi − 1

εi j Pi Hi j HT
i j Pi

)
.

The second constraint in (7.19) guarantees that the following property holds:

V̇i � ui
T yi + εi i

2
‖ui‖2 − ρi

2
‖yi‖2 + 1

2

∑

j∈N i

εi j‖y j‖2,

where the terms εi j‖y j‖2 quantify the impact of nonlinear interconnections on the
subsystem. Standard techniques to solve Linear or Bilinear Matrix Inequality [51]
can be readily used to compute the solutions to both optimization problems (7.18)
and (7.19).

7.4.2 Mid-level Control Design: Local Coordination Through
Cyber-Physical Interconnection

Next, we design local coordination (cooperative) control uli in (7.7) to improve the
voltage profile of the power system.As a scenario, we consider a distribution network
divided into several clusters as illustrated in Fig. 7.5. The goal is for the distributed
generators (DGs) to cooperatively control their reactive power injection such that
the sum of quadratic voltage errors of the DGs in each cluster is minimized. The
problem can be formulated as the following optimization problem:

min
ϑi

∑

i

fi , fi = 1

2
(1 − Ei )

2, (7.20)

where the control variable are DGs reactive power fair utilization ratios ϑi defined
as ϑi = Qei /Qei with Qei denotes the maximum reactive power available to the i-th
DG. The reactive power and voltage are coupled through the following power flow
equation:

Qei = −E2
i Bii +

∑

k �=i

Ei Ek(Gik sin δik − Bik cos δik).

In addition, it is also desirable for the DGs in each cluster to contribute equally (i.e.,
the values ϑi reach a consensus for all DGs) in minimizing (7.20). To this end, the
communication network is assumed to be bidirectional whose topology is similar to
that of the distribution network as shown in Fig. 7.4. Cooperative control algorithm
can then be designed to solve (7.20) as described in Section 7.3. Specifically, each
DG adjusts its reactive power fair utilization ratio according to
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Fig. 7.4 Architecture of cooperative voltage control for distribution network as proposed in [33]

1

3

4
5 6

2

7 8

12

11 14

10

20
19

22
21

18
35

37

40

135

33
32

31

27
26

25
28

29
30

250

48 47
49 50

51

44
45

46

42

43

41

36
38 39

66

65
64

63

62

60
160 67

575859

35 4552
55 56

13

34

15

16

17
96

95

94

93

152

92 90 88

91 89 87 86

80

81

82
83

84

8572

73
74

75

79

300
111 110

108

109 107

112 113 114

105

106

101

102
103

104

450
100

97

99

68
69

70
71

197

151

150

61 610
9

24

23

251

195

451

149

350

76

98

76Substation

Fig. 7.5 A diagram of IEEE 123 bus system divided into six clusters

ϑ̇i = uli =
∑

j∈N c
i

(ϑ j − ϑi ) − βi
∂ fi
∂ϑi

, (7.21)

where βi > 0 [33]. The first term of update rule (7.21) is a consensus protocol
which facilitates the equal contribution of DGs into the reactive power generation
while the second term corresponds to a (sub)gradient algorithm which minimizes
the objective function in (7.20). Note that a similar strategy can also be applied to
distributed frequency control with DGs as presented in [54].

We evaluate the performance of the cooperative control (7.21) using IEEE123-bus
test system divided into six clusters as shown in Fig. 7.5. The objective is to regulate
the bus voltages in cluster 4 with two photovoltaics installed at buses 76 and 83,
respectively. The voltage regulation using cooperative control (7.21) is compared
with the one using droop control where the droop control gain is manually tuned
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Fig. 7.6 Comparison of
droop control and
cooperative control strategies
for regulating bus voltages in
cluster 4
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to achieve the best performance. Figure 7.6 shows the simulation results under both
droop control and cooperative control strategies. As can be observed from the figure,
droop control strategy results in voltage violations, that is, the voltage of the buses
located far away from the substation exceeds the voltage limit of 1.05 p.u. On the
other hand, using cooperative control (7.21), the voltage level can be successfully
driven close to unity, and thus, the overvoltage problemcan be eliminated. In addition,
the cooperative control strategy also yields an equal reactive power fair utilization
ratio for the DGs as shown in Fig. 7.7.

7.4.3 High-Level Control Design: Wide-Area Coordination

The final step is to design network-level control vi in (7.7) to ensure the overall
system stability and hence to effectively damp out potential inter-area oscillations.
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As discussed in Section 7.3, the design of network-level control depends only on
properties of individual subsystems, in particular their impact coefficient and L2

parameter quantified by {εi i , . . . , εi j , . . .} and ρi , respectively. Similar to (7.15), the
wide-area control vi is given by

vi = kw
yi

∑

j∈N w
i

Sw
i j (y j − yi ), (7.22)

where matrix Sw = [Sw
i j ] represents the communication network of wide-area con-

trol. By choosing control gain kw
yi ≈ kw and considering storage function Vw =∑

i
γi
kw
Vi , it can be shown by following similar steps as in [44] that system (7.5)

exponentially converges to the desired output consensus provided that control gain
kw satisfies

−kwL
T
w�Lw + (�wL

T
w + Lw�w) + �

kw

� 0,

where

Lw = diag{Sw1} − Sw, � = diag{εi i }, �w = diag{γi }, � = diag{φi },
φi = γiρi −

∑

j

γ jε j i .

The proposed wide-area control is evaluated using a three-area power system
as illustrated in Fig. 7.8. The simulation time is set to 60s where at t = 0.0 s, a
speed disturbance� = 0.01 p.u. is added to the system. The wide-area control using
cooperative control (7.22) is compared with the one using traditional control with
typical design (constant gain). The simulation results of power angle for generator 3
for both control strategies are shown in Fig. 7.9. Even though the overall system is
stable under both control strategies, it can be observed from the simulation results that
by using the proposed cooperative control strategy, mitigation of the low-frequency
oscillation (i.e., inter-area oscillation) is considerably improved in comparison to the
oscillation under traditional control with constant gain. Note that similar results can
also be observed for the other two generators in the power system.

7.5 Analysis of Human–Machine Interaction

Human interactionswith the physical systems through the cyber components is a cen-
tral aspect of cyber-physical-human systems. During the interactions, human may
act as an operator such as in teleoperation [24] or semiautonomous robot control sys-
tems [3] in general. On the other hand, human may also perform as players or agents
in multi-agent systems as can be observed in electricity market [39]. Therefore, it is
important to formally and rigorously analyze the human–machine interactions (i.e.,
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Fig. 7.9 Comparison of power angle for generator 3 under both cooperative wide-area control and
traditional control strategies

human-in-the-loop control systems) in order to ensure the stability of the intercon-
nected systems.

Dissipativity theory has been used tomodel the humandecision-making and action
in human–machine interactions due to its effectiveness in dealing with the largely
unknown human dynamics and its modular design. For example, dissipativity-based
modeling is developed and validated in [24] to model human arm endpoint charac-
teristics in a human-teleoperated system. In addition, human–machine interactions
in semiautonomous robotic swarm is modeled and analyzed in [3] using the concept
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of passivity-short systems. In particular, it is theoretically shown and experimentally
validated that human-operator modeled in [35] can be assumed to be a passivity-
short system.

7.5.1 Human–Machine Interaction in Electricity Market

We focus on human as players or agents in multi-agent systems. As an example, we
consider an electricity market consisting of multiple areas. In the i-th area, there are
set of consumers, generators, and an independent system operator (ISO) engaged
in electricity market trading. Specifically, the consumers and generators decide the
amount of demand and power supply and the ISO uses the information to update
the electricity price in each area as illustrated in Fig. 7.10. The goal is to maximize
the profit of each market participant while balancing the supply and demand. The
problem can be formulated as the following social welfare maximization problem:

maximize
PL ,PG

W (PL , PG)

subject to PL = PG,

other linear equality and inequality constraints,

(7.23)

where W is the social welfare function which depends on the utility function (i.e.,
financial satisfaction) of both the consumers and generators, PL , PG are stacks of
total electricity demand and supply in each area, respectively. Note that the solution
to (7.23) may serve as the operational decision ri in (7.1), see Fig. 7.2. The inequality
constraints in (7.23) include upper and lower bounds on demand and supply. If the
utility function of consumer and generator are strictly concave and convex functions,
respectively, then optimization (7.23) has a unique solution. The convergence analy-
sis ofmarket trading to the solution of (7.23) can be viewed as stability analysis of the
interconnected system of consumers, generators, and ISO as illustrated in Fig. 7.11.

consumer generator

Area i

consumer generator

Area j

ISO

Price

Demand
Supply

Demand
Supply

Price

Fig. 7.10 Electricity market consisting of multiple areas
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Fig. 7.11 Electricity market trading system in area l viewed as an interconnected system consisting
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Fig. 7.12 Power demand curve with a normal (positive) price; b negative price

In particular, dynamics of consumer demand, generator supply decisions and ISO
price updating in Fig. 7.11 can be obtained by applying dual decomposition to the
dual problem of (7.23) where its Lagrange multiplier represents the (electricity)
price [38]. When the power demand curve representing input–output static mapping
between (positive) price and demand in electricity market is given in Fig. 7.12a, it
is shown in [39] that each block’s dynamics in Fig. 7.11 is (strictly) passive, and as
a result, the interconnected system is also passive and hence stable. This means that
the market trading system will converge to the optimal solution of (7.23).

However, the price in electricity market is not always positive especially when
the number of renewable energy sources feeding into the power grid increases. For
example, when high and inflexible power generation simultaneously appears and
followed by low electricity demand, power prices may fall below zero (i.e., negative
price) as can be often observed inGermany during public holidays such as Christmas.
This means that power suppliers have to pay their customers to buy electric energy.
The power demand curve when taking into account the negative price can be illus-
trated in Fig. 7.12b. Comparing the figure with input–output diagram in Fig. 7.3a,
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it is obvious that dynamics of consumer demand decision system in Fig. 7.11 is
not passive. It is shown in [38] that under power demand curve given in Fig. 7.12b,
dynamics of consumer demand and generator supply decision systems in Fig. 7.11
are passivity-short as can be observed by comparing Figs. 7.3c and 7.12b. As a result,
stability of the electricity market, i.e., interconnected system can still be guaranteed.

The discussions above focus on consumer demand decision dynamics derived
from the (static) optimization problem (7.23). Another important issue is the analy-
sis of human decision-making dynamics, that is, how the human responds (in terms
of electricity demand) to the price change with main application to demand response
(e.g., dynamic electricity pricing). There have been some efforts in dynamicmodeling
of price-responsive demand in electricity market using real data. For example, empir-
ical study in [1] using data acquired at ERCOT suggests that (i) demand response
during normal and peak price periods may have qualitatively different behavior, and
(ii) there is a demand response delay on a high price surge. From the empirical
study, we can initially observe that the dynamics of price-responsive demand is not
a passive system due to the delay of the response. Further analysis is still required to
investigate whether the dynamics exhibit passivity-short properties.

7.5.2 Transactive Control

The above example on electricity (competitive)market is a special case of transactive
control. Transactive control is a new type of framework to coordinate a large number
of distributed generations/loads by combining concepts from microeconomic theory
and control theory [32]. Transactive control extends the concept of demand response
to both the demand and supply sides whose objective is to balance via incentives
(pricing) the supply and demand autonomously, in real-time and a decentralized
manner [46]. In comparison to demand response such as price-responsive control
and direct load control, transactive control preserves customer privacy and has more
predictable and reliable aggregated load response. The potential of transactive control
framework, in particular transactive energy system, has been demonstrated through
several demonstration projects such as the Olympic Peninsula Demonstration [20]
and AEP gridSMART demonstration [53]. Moreover, transactive control framework
has been applied to manage distributed energy resources for different purposes such
as congestion and voltage management [25, 26], providing spinning reserves [52],
and residential energy management [37].

Broadly speaking, transactive control framework can be modeled using four key
elements as proposed in [32]: payoff functions, control decisions, information, and
solution concept. Consider a system consisting of (n + 1) agents, that is one coor-
dinator (agent 0) and n distributed energy resources (DERs) where each DER can
communicatewith each other and alsowith the coordinator to perform local decision-
making. Local objective of both coordinator and DERs is represented by a payoff
functionUi which depends on price μi and energy consumption pi . Each DER aims
at maximizing its own payoff function formulated as
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maximize Ui (μi , pi ; θi )

subject to hi (pi ; θi ) � 0,

where θi denotes private information of the agent such as preference and local con-
straints. Similarly, the coordinator aims to solve the following optimization problem:

maximize U0(μ, p; θ)

subject to g(p, μ; θ) � 0; hi (pi ; θi ) � 0,

where p = [p1, . . . , pn]T , μ = [μ1, . . . , μn]T and θ = [θ1, . . . , θn]T . Note that the
payoff function of coordinator depends on prices and consumption of all DERs.
Moreover, the coordinator also has a global constraint such as power flow constraint
in the whole network. Next, to optimize the payoff functions, control decision are
defined for each agent denoted by πi ∈ �i where �i is the feasible control decision
of agent i . For example, by taking π0 = μ and πi = pi the payoff functions become
Ui (πi , π0; θi ) andU0(π0, π1, . . . , πn; θ) which yields a coupling between decisions
of DERs and coordinator. Another important element in transactive control is infor-
mation set consisting of private information and information of control decision of
each agent. Finally, information on control decisions provides a sequence of decision
for the agents resulting in a multilevel decision problem. Within each layer, if the
payoff function of each agent does not depend on decisions of other players then the
solution is simply equal to the optimal solution to the standard optimization problem.
On the other hand, if the payoff functions of each agent depends on the other agents,
then we have a game problem whose solution corresponds to the game equilibrium.
Two basic solution concepts to a game problem are Nash equilibrium (that is a col-
lection of decisions from which no agent wants to deviate given that others stick to
the equilibrium decision) and dominant strategy equilibrium (that is each agent will
stick to the equilibrium strategy no matter what decisions other players make).

The four elements described above dictate the class of transactive problems (type
of games) under consideration. For example, if the agent’s payoff function is quasi-
linearw.r.t. price and the coordinator’s objective is tominimize the overall operational
cost while satisfying some constraints, then we have a social maximization problem
described in the previous subsection. On the other hand, if the payoff function is not
quasi-linear and the coordinator’s objective is different from maximizing the social
welfare, we then have a Stackelberg game whose equilibrium computation is very
challenging [6, 47, 49, 50].

Research challenges in transactive control include investigating price-response
behavior of DERs and ensuring convergence of transaction control. For example,
it is shown in [40] that a simple price strategy may stabilize the power system
operation. Dissipativity theory provides a framework to systematically analyze this
complex system as demonstrated in the previous subsection. Further research need
to be performed to investigate the application of dissipativity theory for analyzing
different transactive control problems.
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7.6 Role of Real-Time Big Data and Decision-Making

The hierarchical control/optimization architecture presented in the previous subsec-
tions relies on real-time big data. Rapid development of sensor,wireless transmission,
network communication technologies, smart devices, and cloud computing makes it
possible to collect large amounts of data in real time. To illustrate further this point, let
us take smart grid as an example. The main data source in smart grid is the advanced
metering infrastructure (AMI) which deploys a large number of smart meters at the
end-user side and collects, e.g., customers’ electricity consumption data every 15
min [28, 56]. It is estimated that the amount of data collected by AMI will increase
from 24 million a year to 220 million per day for a large utility company [56]. More-
over, the volume of data collected every 15 mins in a distribution network using 1
million devices will surge up to 2920 Tb [31]. In addition to AMI, PMUs are able to
produce direct time-stamped voltage/current magnitudes and phase angle with sam-
pling rate 30–60 samples per second, which is much faster than the data collection in
Supervisory Control and Data Acquisition (SCADA) system [7]. As an illustration,
the amount of data per day generated by100 PMUs with 20 measurements and at
the sampling rate of 60Hz is equal to 100GB [30]. Other sources of big data in
smart grid include weather data, mobile data, thermal sensing data, energy database,
electric vehicle data, transmission line sensor, and dynamic pricing [56].

The increase of uncertainty (e.g., due to the high renewable energy penetration)
and tight interconnection between and within the layers calls for real-time process-
ing and decision-making. To this end, big data can be utilized for developing novel
real-time learning, optimization, and decision-making (control) algorithms for cyber-
physical-human systems as illustrated in the previous sections. For example, big data
has many applications in the operation of smart grid [48]. A new algorithms using
PMU data is proposed in [8] to accelerate the state estimation process. Moreover, a
PMU based robust estimation method is presented in [55] to eliminate unwanted per-
turbed data and thus increases the robustness of state estimation algorithm. Big data
can also be used for fault detection and classification in micro-grid leading to a much
better performance compared to model-based approach [36]. AMI and other sensors
provide opportunity to realize line impedance calibration (i.e., parameters) for distri-
bution power system which was not possible previously [41]. Weather data can also
be used for predicting the power generation of renewable energy sources such aswind
turbines which further can be utilized for voltage control and demand response [19].
Furthermore, with the exponentially increasing number of PMUs deployed, and the
resulting explosion in data volume, wide-area measurement systems (WAMS) tech-
nology as the key to guaranteeing stability, reliability, situational awareness, state
estimation, and control of next-generation power systems is bound to transcend from
centralized to a distributed architecture within the next few years. Motivated by this
fact, a distributed optimization based learning algorithm is proposed in [10] for one
of the most critical wide-area monitoring applications—namely, estimation of mode
shapes for inter-area oscillation modes.
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The exposure to external network such as Internet comes at a price of data security
and privacy [29, 34]. Cyber incidents or network intrusion may cause physical dam-
age to the physical system due to the tight coupling between the physical system and
the cyber-layer. Unfortunately, traditional security solutions in the ICT (information
and communications technology) domain are not sufficient to ensure security and
resilience of the network since they do not take into account the physical attacks
through direct interaction with the components in physical systems. For example, by
placing a shunt around a meter the integrity of a meter can be violated without the
need of breaking the cybersecurity countermeasure. Theymay also introduce adverse
effects on the operation of CPS. For example, while cryptography can enhance the
confidentiality of data flows, it may result in unacceptable time latency and degrade
the performance of time-critical functionalities in CPS. Moreover, coordinated net-
work attacks by sophisticated adversaries undermine standard residual based detec-
tion schemes. It is discussed in [13, 14] that control theoretic framework together
with recent advancement in cloud computing and network management (e.g., soft-
ware defined networking) show promises in ensuring the resilient operation of CPS
against (coordinated and intelligent) cyberattacks.

7.7 Conclusion

The chapter presents a scalable andmodular control-theoretical framework tomodel,
analyze, optimize, and control cyber-physical-human systems. It is shown that effi-
cient computational algorithms can be applied hierarchically to operate and optimize
cyber-physical-human systems, first individually to quantify the dynamic behavior of
every agent, then locally to describe the local interactions of neighboring agents, and
finally to the overall system. All the three control levels deal with real-time big data,
and the hierarchical structure makes the overall optimization and control problem
scalable and solvable. In particular, we present and highlight two main tools whose
combination shows a great promise to optimize and control such tightly intercon-
nected system. The first tool is the concept of dissipativity theory which is a useful
way of quantifying input–output properties of dynamical systems and whose com-
positional property makes it a powerful tool to analyze and control CPS. The second
tool is cooperative control which allows the designer to develop a scalable and robust
optimization and control algorithms. Application to power system is investigated as
an illustrative example.
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Chapter 8
Distributed Optimization Based Control
on the Example of Microgrids

Philipp Braun, Philipp Sauerteig and Karl Worthmann

Abstract Model Predictive Control (MPC) is nowadays one of the most successful
advanced process control methodologies and is used in a wide range of applications.
While originally limited to processes with slow dynamics and a limited number
of states, the applicability of MPC schemes increased dramatically over the past
years due to the performance of modern microchips and the concurrent advance-
ments of mathematical optimization, in particular, distributed optimization. In this
paper, we outline the ideas of distributed optimization schemes embedded in MPC
implementations on the example of the dual ascent algorithm and the alternating
direction method of multipliers. The performance and the properties of the resulting
distributed optimization based control schemes are illustrated on the example of a
network of distributed energy systems. In particular, the overall power demand of the
network is optimized by using flexibilities resulting from distributed storage devices
and controllable loads.

8.1 Introduction

Model Predictive Control (MPC) is nowadays the most successful advanced pro-
cess control methodology, which can be concluded from its wide range of applica-
tions [1, 2]. The key factors for its success are the simplicity of the basic idea—
measure/estimate the current state, predict and optimize the future plant behavior to
compute an input signal, and repeat this procedure ad infinitum—and its capability
to deal with constrained nonlinear multi-input multi-output systems. For details on
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MPC as well as the development of different MPC concepts over the past decades,
we refer to the monographs [3, 4], the review article [5], and the references therein.

While the range of applications was limited due to the real-time requirements on
the optimization step in MPC, see, e.g., [6], recent developments [7, 8] in mathemat-
ical programming allowed to further extend the scope of application. Herein, dis-
tributed optimization, see [9–11], plays a major role to overcome the computational
limitations. To this end, new distributed MPC schemes have been developed [12,
13] to embed iterative distributed optimization algorithms within the MPC loop such
that performance guarantees can be concluded [14–16]. The potential of distributed
optimization in prediction based control is outlined in the review article [17] and in
the book [18].

The interplay of MPC and iterative distributed optimization schemes is both the
starting point and the focus of our work. After a brief introduction, we give a con-
ceptual review of dual decomposition to explicate the main ideas behind distributed
optimization. The section is concluded by presenting and discussing a dual ascent
algorithm [19], specified in terms of an optimal control problem for distributed
dynamical systems. While dual ascent already allows for a significant speed-up, see,
e.g., [14], and is very flexible with respect to the structure of the interconnection of
dynamical systems, it requires—in general—restrictive assumptions for convergence
to the (global) optimum. This drawback can, e.g., be mitigated by using the Alter-
nating Direction Method of Multipliers (ADMM), which is concisely outlined in the
successor section. We refer to [11] for a recently published more detailed exposition.
The key point demonstrated by doing so is that distributed optimization algorithms
are typically tailored for a particular setting, in which their performance—in combi-
nation with other features like plug-and-play capability—is extremely competitive
with respect to scalability, which ensures that the algorithm remains computationally
tractable also for large-scale systems.

In this paper, the proposed algorithms are tailored to a smart-grid application to
illustrate their properties within the MPC closed loop. In the context of the applica-
tion, the overall energy demand of a network of Residential Energy Systems (RESs)
is optimized. In this field of application, distributed optimization is nowadays very
popular, see, e.g., [20, 21] or the review article [22] for further comments on the appli-
cation. We consider a setting in which RESs are connected to the grid via a Central
Entity (CE), an operator of a transmission grid, for example. Since the number of
RESs is typically large, distributed optimization is used to alleviate the computational
burden resulting from solving the optimization problems in MPC, and to maintain
flexibility with respect to changes in the network structure of the smart grid. Here, we
stick to the term Optimal Control Problem (OCP) despite the fact that we consider
discrete-time systems, which implies that the OCP is a finite dimensional optimiza-
tion problem. This work continues our first modeling approach (accompanied by
first numerical results) on the integration of controllable loads [23]. Using ADMM,
we rigorously show that the proposed distributed optimization approach converges
to the global minimum and, thus, lay the foundation for its embedding in distributed
MPC. From an application point of view exploiting flexibilities resulting from both
energy storage devices and controllable loads further improves the contribution to
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load shaving necessary due to the integration of renewable (and, thus, highly fluctu-
ating) energy sources. Moreover, we investigate the distributedMPC scheme applied
to optimize the energy exchange between microgrids coupled through transmission
lines. In particular, we numerically show that an exchange, on top of the optimization
within the individual microgrids, is beneficial with respect to peak shaving even if
losses due to the transmission are taken into account. Again, distributed optimization
(ADMM) turns out to be the right tool to leverage the untapped potential resulting
from this additional flexibility.

Throughout the paper,N0 andN denote the natural numbers including and exclud-
ing 0, and Z and R denote the integers and the real numbers, respectively. For given
n,m ∈ Z, n ≤ m, we use [n : m] = {n, n + 1, . . . ,m} to define the integers from
n to m to shorten the expressions. The identity matrix of appropriate dimension is
denoted by I . For a sequence {a1, a2, a3, . . .} ⊂ R

n the shorter notation (al)l∈N ⊂ R
n

is used. For a vector x ∈ R
n , n ∈ N, ‖x‖2 =

√∑n
i=1 x

2
i denotes the Euclidean norm.

8.2 Model Predictive Control

To illustrate the MPC concept, we consider a discrete time control system governed
by the dynamics

x(k + 1) = f (x(k), u(k)), x(0) = x0, (8.1)

with a continuous map f : Rnx × R
nu → R

nx . Here, x(k) and u(k) denote the state
of the system and the control input at time instant k, k ∈ N0, respectively. In addition,
we assume that the states and the control have to respect certain constraints described
through compact sets with nonempty interior, i.e., x(k) ∈ X ⊂ R

nx and u(k) ∈ U ⊂
R

nu , k ∈ N0.
With these definitions, MPC is used to determine a state feedback law μ : N0 ×

R
nx → R

nu , through stage costs � : N0 × R
nx × R

nu → R defining a performance
measure, such that the closed-loop system

xcl(k + 1) = f (xcl(k), μ(k, xcl(k))), xcl(0) = x0 (8.2)

is recursively feasible and satisfies infinite horizon performance properties.

• Recursive feasibility refers to properties of the closed-loop solution xcl(k), k ∈ N0.
If xcl(k) is feasible, i.e., xcl(k) ∈ X holds, the current feedback value and the
successor state are also feasible, i.e.,

μ(k, xcl(k)) ∈ U and xcl(k + 1) ∈ X. (8.3)

Thus, recursive feasibility implieswell-posedness of the closed loop (8.2) provided
initial feasibility xcl(0) = x0 ∈ X holds, see, e.g. [4, 24].
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• The infinite horizon performance sums up the stage cost along the MPC closed-
loop trajectory

∞∑
k=0

�(k, xcl(k), μ(k, xcl(k))) (8.4)

in cases where the limit exists. If the limit does not exist, or in applications where
the average is more meaningful, the infinite horizon performance can alternatively
be measured by

lim sup
T→∞

1

T

T−1∑
k=0

�(k, xcl(k), μ(k, xcl(k))). (8.5)

The performance index (8.4) is typically used in set point stabilization, see, e.g. [3,
4], while the average (8.5) is often used in economic MPC, see, e.g. [25, 26]. The
main difference is that the stage cost is positive definite with respect to a steady
state for set point stabilization while in economic MPC turnpike properties [27] in
combination with (strict) dissipativity [28] are used to deduce rigorous assertions
with respect to the closed-loop performance.

In general, the problem of finding a feedback law that is optimal regarding the
infinite horizon performances (8.4) or (8.5) is computationally intractable. MPC is a
technique to approximately solve this task. To this end, an optimization problem on a
predefined finite time horizon N ∈ N≥2 is considered in a receding horizon fashion,
leading to the following basic MPC scheme. Here, the term receding horizon means
that the feedback law μ is computed iteratively at each time step k ∈ N0 (and only
for the current state x(k)).

Basic MPC Scheme

1. For k ∈ N0, measure the current state x̂ := x(k).
2. Minimize the cost functional

JN (k, x̂,u) :=
k+N−1∑
n=k

�(n, x(n), u(n)) (8.6)

where u = (u(k), u(k + 1), . . . , u(k + N − 1))T and subject to the initial con-
dition x(k) = x̂ , the system dynamics

x(n + 1) = f (x(n), u(n)), n ∈ [k : k + N − 1], (8.7)

and the state and control constraints

x(n + 1) ∈ X, u(n) ∈ U, n ∈ [k : k + N − 1], (8.8)
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to compute a minimizing sequence u�.
3. Implementμ(k, x̂) := u�(k), shift the horizon forward in time, i.e., set k = k + 1,

and go to Step 1.

While the basic MPC algorithm is well understood, already time varying stage
costs � lead to a significantly more involved analysis, see, e.g. [29, 30]. Moreover,
a careful design of the stage cost � is important to rigorously deduce closed-loop
properties as shown in [31, 32].

In this paper, wewant to apply the idea of theMPC scheme to a distributed setting.
To be more precise, let I ∈ N≥2 dynamically decoupled systems

xi (k + 1) = fi (xi (k), ui (k)), xi (0) = x0i , i ∈ [1 : I ], (8.9)

be given where xi ∈ Xi ⊂ R
nxi , ui ∈ Ui ⊂ R

nui , and the dimensions of the overall
system are given by nx = ∑I

i=1 nxi , and nu = ∑I
i=1 nui , respectively.

Even though the individual systems are not coupled through their dynamics, we
assume that the performance of the overall dynamics depends on the individual
decisions taken by the subsystems i ∈ [1 : I ]. To incorporate this into the model,
we assume the presence of a Central Entity (CE) such that each subsystem may
communicate with the CE (star-shaped topology) via

zi (k) = hi (k, xi (k), ui (k)) (8.10)

with communication variables zi ∈ R
p for all i ∈ [1 : I ]. The functions hi : N0 ×

R
ni × R

mi → R
p are assumed to be continuous and can depend on the current time

step k ∈ N0 as well as the local states and the local control, for all i ∈ [1 : I ].
With these definitions the coupling between the individual systems can be described
through global stage costs

�̂ : N0 × R
pI → R, (k, z) 	→ �̂(k, z) (8.11a)

involving the communication variables z := (z1, . . . , zI )T . The stage costs (8.11a)
capture the performance of the overall system, or equivalently, they capture the costs
enforced by theCE. In addition, every system i ∈ [1 : I ] can have local performance
measures defined through local stage costs

�i : N0 × R
ni × R

mi → R, (k, xi , ui ) 	→ �i (k, xi , ui ) ∀i ∈ [1 : I ], (8.11b)

which in combination with the global stage costs (8.11a) lead to multi-objective
optimization problems [33] or multi-objective MPC formulations [34] in the control
context.
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The overall Optimal Control Problem (OCP) to be solved at every time instant
k ∈ N0 in Step 2 of the MPC scheme can be summarized by the following opti-
mization problem where the notation x := (x(k), x(k + 1), . . . , x(k + N − 1))T ,
u := (u(k), u(k + 1), . . . , u(k + N − 1))T is used.

Minimize the cost functional

JN (k, x̂,u) :=
k+N−1∑
n=k

(
α · �̂(n, z(n)) + 1 − α

I
·

I∑
i=1

�i (n, xi (n), ui (n))

)

w.r.t. u(k), u(k + 1), . . . , u(k + N − 1) subject to x(k) = x̂,

the equalities (8.9) and (8.10), the state and control constraints

xi (n + 1) ∈ Xi (n), ui (n) ∈ Ui (n)for n ∈ {k, k + 1, . . . , k + N − 1}

(8.12)

The parameter α ∈ [0, 1], which we assume to be set and defined by the CE,
shifts the emphasis on the performance of the individual subsystems encoded in �i ,
i ∈ [1 : I ], to a network-wide objective �̂ by choosing α between 0 and 1. The
overall distributed MPC algorithm incorporating the OCP (8.12) is summarized in
Algorithm 1.

Algorithm 1 Distributed MPC algorithm

Input: Time horizon N ∈ N, number of systems I ∈ N, stage costs �̂, �i , i ∈ [1 : I ], and a
weighting parameter α ∈ [0, 1].
Initialization: Set k = 0.
Main loop: For k ∈ N0

(1) For all i ∈ [1 : I ], measure the current states x̂i := xi (k).
(2) Solve the OCP (8.12) to obtain minimizing sequences

u�
i = (u�

i (k), . . . , u
�
i (k + N − 1))T ∀ i ∈ [1 : I ]. (8.13)

(3) For all i ∈ [1 : I ], implement μi (k, x̂i ) := u�
i (k), shift the horizon forward in time, i.e., set

k = k + 1, and go to Step (1).

While Algorithm 1 can be easily written down, Step (2) requires particular care
due to the real-time requirements in MPC and to maintain the decoupled structure of
the individual subsystems. Hence, the goal of the next section is to outline algorithms,
which can be suitably adapted such that Step (2) is computationally tractable and
flexible with respect to changes in local system dynamics. Here, iterative distributed
optimization schemes play a major role to mitigate the computational burden on the
one hand and, on the other hand, allow for a premature stop after a few iterations
while still ensuring feasibility and achieving a competitive performance.
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8.3 Distributed Optimization

To compute an MPC feedback law, the OCP (8.12) of the form

min
ui (n),xi (n),zi (n)

k+N−1∑
n=k

(
α · �̂(n, (z1, . . . , zI )T (n)) + 1−α

I

I∑
i=1

�i (n, xi (n), ui (n))
)

(8.14a)

s.t. xi (k) = x̂i , (8.14b)

xi (n + 1) = fi (xi (n), ui (n)), (8.14c)

zi (n) = hi (n, xi (n), ui (n)), (8.14d)

xi (n + 1) ∈ Xi (n + 1), ui (n) ∈ Ui (n), (8.14e)

∀ i ∈ [1 : I ], ∀ n ∈ [k : k + N − 1].

has to be solved at every time instant k, k ∈ N0. To this end, an efficient optimization
algorithm is essential to meet the real-time requirements of the MPC scheme pro-
posed in Algorithm 1. For applications with a large number of systems I , I ∈ N,
scalability and flexibility with respect toI are indispensable properties for the algo-
rithm design, see also [35, 36]. The latter also includes changes in the particular
system dynamics of the individual systems. In this context, iterative distributed opti-
mization schemes regained considerable attention over the last years.

In this section, we discuss distributed optimization schemes, and in particular
hierarchical distributed optimization schemes, and their embedding within the MPC
Algorithm 1. In Section 8.3.1, we discuss the basic dual decomposition algorithm.
While the convergence results are restrictive, dual decomposition nicely illustrates the
main idea of distributed optimization in general. The Alternating Direction Method
of Multipliers (ADMM) presented in Section 8.3.2 extends the ideas of dual decom-
position and is less restrictive with respect to the stage costs �. We conclude this
chapter in Section 8.3.3 by discussing beneficial properties of iterative optimization
schemes within MPC.

Since we are interested in the solution of a static optimization problem (8.14a–
8.14e) in this section, we simplify the notion before we continue. We collect the
information of the variables xi , ui , zi , i ∈ [1 : I ], over the prediction horizon at
time k ∈ N in a single variable

y =
⎛
⎜⎝

y1
...

yI

⎞
⎟⎠ with yi =

⎛
⎜⎝

xi (k) ui (k) zi (k)
...

...
...

xi (k + N − 1) ui (k + N − 1) zi (k + N − 1)

⎞
⎟⎠ .

Even though the variables zi (n), i ∈ [1 : I ], n ∈ [k : k + N − 1], are contained in
the definition of the variable y we additionally define
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z =
⎛
⎜⎝

z1
...

zI

⎞
⎟⎠ ∈ R

pNI with zi =
⎛
⎜⎝

zi (k)
...

zi (k + N − 1)

⎞
⎟⎠

to collect the data of the shared variables. For simplicity of exposition, the k-
dependency is dropped in the variables y and z in this section.

Remark 8.1 Note that the variables yi only need to contain the information of the
variables xi , ui , zi . By doing so, we do not restrict ourselves to a particular for-
mulation of the optimization problem. For example in MPC problems, where the
dynamics (8.1) are linear, it is common to optimize with respect to u and to remove
the state vector x from the set of unknowns, see, e.g. [3, Chapter 12.1].

With these definitions of the vector of unknowns, the stage costs can be summa-
rized in the functions

φi (yi ; k) =
k+N−1∑
n=k

�i (n, xi (n), ui (n)) ∀ i ∈ [1 : I ] (8.15)

and φ̂(z; k) =
k+N−1∑
n=k

�̂(n, (z1, . . . , zI )T (n)). (8.16)

Similarly, the constraints (8.14b) to (8.14e) are summarized in the sets

Di (k) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
yi

∣∣∣∣∣∣∣∣∣∣

xi (k) = x̂i ,
xi (n + 1) = fi (xi (n), ui (n)),

zi (n) = hi (n, xi (n), ui (n)),

xi (n + 1) ∈ Xi (n + 1), ui (n) ∈ Ui (n),

∀ n ∈ [k : k + N − 1].

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(8.17)

for all i ∈ [1 : I ] and D(k) = D1(k) × · · · × DI (k). Combining all these defini-
tions, the OCP (8.14a) can simply be written as

min
yi∈Di

α · φ̂(z; k) + 1−α
I · ∑I

i=1 φi (yi ; k). (8.18)

Couplingof the variables takes place in the function φ̂.Otherwise, the optimization
problem (8.18) could be split up into I independent optimization problems. Next,
we present a solution technique for the optimization problem based on iterative
distributed optimization and explicit conditions on the function φ and the set D(k)
such that convergence to the global solution is guaranteed.
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8.3.1 Dual Decomposition

Dual decomposition is a relatively old concept with its roots in the 1960s and is
discussed in many papers and monographs. Here, we follow the exposition given in
the monographs [10, 37] to introduce concepts for our particular setting and refer to
these books for details and references.

The coupling in the objective function (8.14a) can be eliminated by introducing
a new variable a = z (clearly also ai = zi holds for all i ∈ [1 : I ]) linked to the
Central Entity (CE) and, then, shifting the coupling from the objective function to
the constraints

min
yi∈Di (k), a∈RI pN

αφ̂(a; k) + 1−α
I

∑I
i=1 φi (yi ; k) (8.19a)

s.t. zi − ai = 0 ∀ i ∈ [1 : I ]. (8.19b)

The advantage of the reformulation is that in the Lagrangian

L (y, a, λ; k) = αφ̂(a; k) + 1−α
I

∑I
i=1 φi (yi ; k) + ∑I

i=1 λT
i (zi − ai ) (8.20)

=
(
αφ̂(a; k) − ∑I

i=1 λT
i ai

)
+ ∑I

i=1

(
1−α
I φi (yi ; k) + λT

i zi
)

the optimization variables a and y are separated in independent functions. Thus,
under appropriate conditions on the objective functions and the local constraints,
an optimal solution to the primal problem (8.19) can be obtained by solving the
(unrestricted) dual problem

max
λ∈RpI N

ψ(λ; k) with dual function ψ(λ; k) = inf
y∈D(k)
a∈RI pN

L (y, a, λ; k). (8.21)

The following theorem characterizes the interplay of the primal and the dual
problem, see, e.g. [10, Appendix C].

Theorem 8.1 If the primal problem (8.19) has an optimal solution (y�, a�), then
also the dual problem (8.21) has an optimal solution λ� (and vice versa) and the
optimal values coincide, i.e.,

αφ̂(a�; k) + 1−α
I

∑I
i=1 φi (y�

i ; k) = ψ(λ�; k). (8.22)

Moreover, the pair (y�, a�, λ�) is optimal for (8.19) and (8.21) if and only if the
saddle point condition

L (y�, a�, λ; k) ≤ L (y�, a�, λ�; k) ≤ L (y, a, λ�; k) (8.23)

is satisfied for all y ∈ D(k), a ∈ R
pI N and for all λ ∈ R

pI N .
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As a consequence of Theorem 8.1, if an optimal solution to the dual problem (8.21)
is known, an optimal solution of the primal problem can be computed by solving the
optimization problems

y�
i ∈ argmin

yi∈Di (k)

1−α
I φi (yi ; k) + zTi λ�

i (8.24)

for all i ∈ [1 : I ] in parallel. An optimal solution of the dual problem can be found
by iteratively updating theLagrangemultipliers.Hence, under appropriate conditions
on the primal problem (8.19) an optimal solution (y�, a�) and λ� can be computed
through the hierarchical dual ascent Algorithm 2.

Algorithm 2 Hierarchical dual ascent algorithm

Input: Step size c ∈ R0, number of systemsI ∈ N, objective functions φ̂, φi , i ∈ [1 : I ], weight-
ing parameter α ∈ [0, 1], and maximal number of iterations lmax ∈ N.
Initialization: Set l = 0 and initialize λ0 ∈ R

pI N (arbitrarily).
Main loop: For l ≤ lmax

1. The individual systems compute an optimal solution of

yli ∈ argmin
yi∈Di (k)

1−α
I φi (yi ; k) + zTi λli ∀ i ∈ [1 : I ] (8.25a)

in parallel and send zli to the CE.
2. The CE computes an optimal solution of

al ∈ argmin
a∈RpI N

αφ̂(a; k) − ∑I
i=1 a

T
i λli . (8.25b)

3. The CE updates the Lagrange multipliers

λl+1
i = λli + c(zli − ali ) ∀ i ∈ [1 : I ], (8.25c)

and broadcasts λl+1
i . Afterwards, set l = l + 1 and go to Step 1.

Convergence of Algorithm 2 can, e.g., be guaranteed by Theorem 8.2.

Theorem 8.2 ([37, Proposition 1.2.3]) Consider the primal problem (8.19) and
assume that the objective function is strongly convex1 with respect to the variables
(y, a) with parameter χ > 0. Moreover, assume that the primal problem (8.19) is
feasible, and the sets Di (k) are convex and closed for all i ∈ [1 : I ]. Then, for a
constant stepsize c ∈ (0, χ) the iterates (yl)l∈N, (al)l∈N, (λl)l∈N computed according
to Algorithm (8.25) satisfy

lim
l→∞ zl = z�, lim

l→∞ al → a�, lim
l→∞ λl → λ�. (8.26)

1A function F : Rn → R is said to be strongly convexwith parameterχ > 0 if F(μx + (1 − μ)y) ≤
μF(x) + (1 − μ)F(y) − χ

2 μ(1 − μ)‖x − y‖22 holds for all x, y ∈ R
n and all μ ∈ [0, 1].
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for arbitrary initial values y0 ∈ D(k), a0 ∈ R
pI N , λ0 ∈ R

pI N .

The name dual ascent refers to the fact that (8.25c) is a gradient step in the
direction of the dual functionψ , whereψ(λl+1) > ψ(λl) holds if the condition on the
stepsize is satisfied. Themaximal stepsize c depends on the convexity of the objective
function as well as on the definition of the linear coupling constraints (8.19b), see
[10, Proposition 6.1.1] for details.

The dual ascent Algorithm 2 allows to split the optimization problem in tasks
performed by the individual systems in parallel (see Algorithm 2, Step 1), and tasks
performed by a CE (Steps 2 and 3). The local optimization problems (8.25a) depend
on local information and on the dual variables λi , i ∈ [1 : I ]. Thus, the dimension
and the complexity of the optimization problem solely depends on the parameters
defining the i th system, i ∈ [1 : I ]. Note that also the number of systems I ∈ N

does not need to be known by the individual systems. To achieve this, the scaled
Lagrange multipliers λ̃i = λiI , i ∈ [1 : I ], are broadcast by the CE and individual
systems need to solve the optimization problem

yli ∈ argmin
yi∈Di (k)

(1 − α)φi (yi ; k) + zTi λ̃l
i (8.27)

for i ∈ [1 : I ], instead of (8.25a).
The dimension of the optimization problem (8.25b) linked to the CE depends

on the number of systems I ∈ N. Nevertheless, note that the variables a ∈ R
pI N

are unconstrained and thus an optimal solution can be computed efficiently or even
explicitly by the CE.

Note that depending on the network structure and the interconnection of the indi-
vidual systems, the dimension of the variable a and the dimension of the Lagrange
multipliers λ can be reduced (see [10, 11], for example), or in special cases they can
even be made independent of the number of systems I ∈ N. Consider for example
stage costs �̂, which can be written in the form

�̂
(
n; (z1, . . . , zI )T

) = �
(
n; 1

I

∑I
i=1 zi

)
(8.28)

and thus, the stage costs only depend on the average taken over the communication
variables zi , i ∈ [1 : I ]. Hence, we can define the variables a(n) = 1

I

∑I
i=1 zi (n)

for n ∈ [k : k + N − 1], which are the elements of the vector a and modify the cost
function (8.16):

φ(a; k) = φ̂(z; k) = ∑k+N−1
n=k �

(
n; 1

I

∑I
i=1 zi (n)

)
. (8.29)

Then, the primal optimization problem (8.19) becomes

min
yi∈Di (k)
a∈RpN

αφ(a; k) + 1−α
I

∑I
i=1 φi (yi ; k) s.t. 1

I

∑I
i=1 zi − a = 0 (8.30)
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and the dual ascent scheme (8.25) is of the form

yli ∈ argmin
yi∈Di (k)

(1 − α)φi (yi ; k) + zTi λ
l ∀ i ∈ [1 : I ], (8.31a)

al ∈ argmin
a∈RpN

αφ(a; k) − ∑I
i=1 a

T
i λ

l
, (8.31b)

λ
l+1 = λ

l + c( 1
I

∑I
i=1 z

l
i − al). (8.31c)

Here, the dimension of a ∈ R
pN as well as the dimension of the Lagrange multi-

pliers λ ∈ R
pI is independent of the the number of systems. Moreover, the same

information is communicated from the CE to the individual systems. In this case,
the stepsize c needs to be chosen such that c ∈ (0, 2I χ/[2 + I ]) is satisfied to
guarantee convergence [38].

Overall, the dual ascent Algorithm 2 thus provides a very flexible scheme to solve
OCPs embedded in the MPC Algorithm 1. However, the assumed strong convexity
of the objective function is very restrictive.

8.3.2 The Alternating Direction Method of Multipliers

To weaken the assumption on strong convexity in Theorem 8.2, and thus to extend
the applicability of iterative distributed optimization schemes, alternative algorithms
based on the augmented Lagrangian Lρ(y, a, λ; k) defined by

Lρ(y, a, λ; k) = αφ̂(a; k) + 1−α
I

∑I
i=1 φi (yi ; k) (8.32)

+ ∑I
i=1

(
λT
i (zi − ai ) + ρ

2 ‖zi − ai‖22
)
,

for a positive parameter ρ > 0, have been proposed. For ρ = 0 the original definition
of the Lagrangian (8.20) is recovered. Observe that for a feasible solution of the
optimization problem (8.19) the quadratic terms vanish. In contrast to theLagrangian,
the variables z and a are not decoupled (or separable) in the augmented Lagrangian.
However, it is still possible, to optimize the variables z and a sequentially, which
leads to the ADMM Algorithm 3 and in particular to the iteration scheme (8.33).

The ADMM scheme received a lot of attention over the last years, especially due
to the exposition and discussion of the algorithm in [11] and [39]. The advantage
of ADMM compared to dual ascent is that convergence can be shown under weaker
assumptions and independently of the stepsize.
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Algorithm 3 Alternating Direction Method of Multipliers (ADMM)

Input: Step size ρ ∈ R>0, number of systems I ∈ N, objective functions φ̂, φi , i ∈ [1 : I ], a
weighting parameter α ∈ [0, 1], and a maximal number of iterations lmax ∈ N.
Initialization: Set l = 0 and initialize λ0, a0 ∈ R

pI N (arbitrarily).
Main loop: For l ≤ lmax

1. The individual systems compute an optimal solution of

yl+1
i ∈ argmin

yi∈Di (k)

1−α
I φi (yi ; k) + zTi λli + ρ

2

∥∥zi − ali
∥∥2
2 ∀ i ∈ [1 : I ] (8.33a)

in parallel and broadcast zl+1
i to the CE.

2. The CE computes an optimal solution of

al+1 ∈ argmin
a∈RpI N

αφ̂(a; k) + ∑I
i=1 −aTi λli + ρ

2

∥∥∥zl+1
i − ai

∥∥∥
2

2
. (8.33b)

3. The CE updates the Lagrange multipliers

λl+1
i = λli + ρ(zl+1

i − al+1
i ) ∀ i ∈ [1 : I ] (8.33c)

and broadcasts (λl+1
i , al+1

i ) to system i ∈ [1 : I ]. Afterwards, set l = l + 1 and go to Step 1.

Theorem 8.3 ([11, Section 3.2.1]) Let the functions φ̂, φi , i = [1 : I ], be convex.
Suppose there exists a saddle point (y�, a�, λ�) of the unaugmented LagrangianL0,
i.e., (y�, a�, λ�) satisfies (8.23) for all y ∈ D(k), a, λ ∈ R

pI N . Then, for y0 ∈ D(k),
a0 ∈ R

pI N and λ0 ∈ R
pI N and fixed stepsizes ρ > 0, Algorithm 3 satisfies the

following properties:

1. The sequence (zl − al)l∈N converges to zero, ensuring feasibility of the optimiza-
tion problem (8.19).

2. The sequence
(
αφ̂(al; k) + 1−α

I

∑I
i=1 φi (yli ; k)

)
l∈N

converges to the optimal

value of the optimization problem (8.19).
3. The dual variables (λl)l∈N converge to the optimal dual point λ�.

Theorem 8.3 weakens the assumptions on the objective function of Theorem 8.2
from strong convexity to convexity. The saddle point condition in Theorem 8.3 is,
e.g., satisfied if the sets Di (k), i ∈ [1 : I ], are convex and compact. Compared to
the dual ascent Algorithm 2, Steps 1 and 2 of Algorithm 2 need to be performed
sequentially and cannot be performed in parallel.

Remark 8.2 In Algorithm 3, also the primal variables a ∈ R
pI N need to be com-

municated. However, the information contained in λ and a can be compressed in
a single communication variable of dimension pI N , which allows to achieve the
same communication costs as in Algorithm 2, see the scaled version of ADMM
proposed in [11, Section 3.1.1].

Even though it is not as obvious as in the dual ascent Algorithm 2, also the
ADMM scheme allows a formulation of Algorithm 3 where the dimension of a and



186 P. Braun et al.

λ is independent of the number of systems I ∈ N if an objective function of the
form (8.29) is used. In this case, the iteration scheme (8.33) becomes

yl+1
i ∈ argmin

yi∈Di (k)

1−α
I φi (yi ; k) + ρ

2

∥∥zi − zli + 
l
∥∥2
2 ∀ i ∈ [1 : I ] (8.34a)

al+1 ∈ argmin
a∈RpN

αφ(a; k) + ρI
2

∥∥∥ λ
l

ρ
+ 1

I

∑I
i=1 z

l+1
i − a

∥∥∥
2

2
(8.34b)

λ
l+1 = λ

l + ρ
(

1
I

∑I
i=1 z

l+1
i − al+1

)
(8.34c)


l+1 = λ
l+1

ρ
+

(
1
I

∑I
i=1 z

l+1
i − al+1

)
. (8.34d)

See [11, Section 7] or [40] for a derivation of the iteration scheme, for example.

8.3.3 Properties Within the MPC Closed Loop

Algorithms2 and3 enable us to solve theOCPs (8.12) by iteratively solving smaller or
less complex optimization problems independent of the number of systems. Thus, the
numerical complexity of the distributed optimization algorithms strongly depends on
the number of iterations needed to compute a solution within a predefined tolerance.
If a good initial guess, e.g. initial values λ0 and a0 close to the optimal solution, are
available, the number of iterations is typically much smaller. Here, MPC provides
a natural way to initialize λ0 and a0 since at two consecutive time instants k and
k + 1, k ∈ N0, similar optimization problems are solved and only the first piece of
the optimal trajectory is used to define a feedback law, while the rest is discarded.
To illustrate this fact let the last iteration of the distributed optimization algorithm
at time k be denoted by λ

lmax
i [k] and the initial value at time k + 1 by λ0

i [k + 1] for
i ∈ [1 : I ]. Then, we get

λ
lmax
i [k] =

⎛
⎜⎜⎜⎜⎜⎝

λ
lmax
i (k|k)

λ
lmax
i (k + 1|k)

...

λ
lmax
i (k + N − 2|k)

λ
lmax
i (k + N − 1|k)

⎞
⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎝

λ
lmax
i (k + 1|k)

...

λ
lmax
i (k + N − 2|k)

λ
lmax
i (k + N − 1|k)

0

⎞
⎟⎟⎟⎟⎟⎠

= λ0
i [k + 1].

The variable a can be initialized in the same way. Observe that in Algorithm 2 the
variables a and y do not need to be initialized since Steps 1 and 2 in the first iteration
l = 0 only depend on the initialization of λ0. The same holds for the variable y in
the ADMM algorithm. Typically, already a few iterations are enough to obtain a
closed-loop performance, which is close to optimal.

Moreover, note that even though the iterates zli , i ∈ [1 : I ], l ∈ [0 : lmax]might not
be optimal, feasibility (i.e., zi ∈ Di (k), i ∈ [1 : I ]) is assured in every iteration since
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by assumption the systems are physically decoupled. Thus, early termination of the
distributed optimization algorithm always provides a feasible solution if D(k) �= ∅
holds.

8.4 Case Study: Distributed MPC for Small Scale
Electricity Networks

In this section, we apply the distributed MPC Algorithm 1, where the optimization
Step (2) is carried out with the ADMM Algorithm 3 to a small scale electricity net-
work. The input variables (controls) represent the flexibility present in the system.
In Section 8.4.1, locally installed energy storage devices are used for load shap-
ing. Here, we are particularly interested in reducing fluctuations in network-wide
energy consumption. To this end, we first recapitulate the basic model of a network
of Residential Energy Systems (RESs) introduced and extended in [19, 41]. Then,
in Section 8.4.2 controllable loads are added to further increase the flexibility with
respect to the demand patterns of the RESs. Here, we rigorously prove global conver-
gence of a setting (very) similar to the one presented in [23]. Last, in Section 8.4.3, the
model is extended to additionally optimize the energy exchange between individual
microgrids (MGs) coupled through transmission lines.

In the simulations, we concentrate on the performance of the overall network
instead of individual performance measures. We thus set α = 1, i.e., we use the
coupling stage costs �̂ (or �, respectively) and neglect the individual stage costs �i ,
i ∈ NI . However, the additional consideration of convex stage costs is straightfor-
ward. The numerical simulations are based on a dataset provided by the electricity
distribution company Ausgrid and publicly available online [42]. From the dataset
consisting of data collected from 300 residential customers with a resolution of half-
hour windows we use the information of power consumption and power generation
using solar photovoltaic (PV) panels and the information of controllable loads, which
is available for some customers. The power consumption and the power generation
is combined to obtain the power demand of a single customer at a particular time.

8.4.1 The Basic Model and Its MPC Formulation

Several models describing RESs have been introduced in the literature. We focus on
extensions to the model discussed in [19, 41].

The dynamics of the i th RES, i ∈ [1 : I ], are described by

xi (k + 1) = fi (xi (k), ui (k)) = �i xi (k) + T (βi u
+
i (k) + u−

i (k)) (8.35)

zi (k) = hi (k, xi (k), ui (k)) = wi (k) + u+
i (k) + γi u

−
i (k), (8.36)

compare (8.9) and (8.10) in Section 8.2. In the particular setting of an electricity
grid, the state xi ∈ R represents the state of charge of a battery in kWh, containing
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local information of the i th RES and the variable zi ∈ R denotes the power demand
in kW of system i , which needs to be shared with or communicated to the CE. The
local power demand zi depends on the net consumptionwi ∈ R in kW, i.e., the energy
demandminus the generation of solar PV panels, and can bemanipulated by charging
or discharging the storage device using the input signals ui = (u+

i , u−
i )T ∈ R

2 (in
kW). The net consumption wi (k), which is assumed to be a known exogenous signal
for all i ∈ [1 : I ] and for all n ∈ [k : k + N − 1], causes the time dependency of the
function h in (8.36). Hence, the prediction horizon corresponds to the time interval,
on which reliable data is available, see, e.g. [41] for the impact of forecast errors.
The additional parameters in (8.35)–(8.36) are constants, where T > 0 represents
the length of a sampling interval in hours (h), while �i , βi , γi ∈ (0, 1] are used to
model losses due to energy transformation.

Additionally, for constants Ci , ui , ui ∈ R>0, i ∈ [1 : I ], constraints on the state
of charge of the storage device and maximal charging and discharging rates are
defined in [19, 41], which result in the state constraints

xi (k) ∈ Xi = {xi (k) ∈ R|0 ≤ xi (k) ≤ Ci } (8.37)

and the input constraints

ui (k) =
(
u+
i (k)

u−
i (k)

)
∈ Ui =

⎧
⎪⎨
⎪⎩
ui ∈ R

2

∣∣∣∣∣∣∣

−ui ≤ u−
i ≤ 0

0 ≤ u+
i ≤ ui

0 ≤ u−
i

−ui
+ u+

i
ui

≤ 1

⎫
⎪⎬
⎪⎭

(8.38)

for all i ∈ [1 : I ] and for all k ∈ N. Note that in this setting neither the state con-
straints Xi nor the input constraints Ui are time dependent.

In [40, 41] the objective function in theMPC closed-loop formulation is defined in
such away, that for all k ∈ N in the prediction horizon, the deviation of the aggregated
power demand

∑I
i=1 zi (k) from the aggregated net consumption computed over the

prediction horizon is minimized. Here, we use a slightly different approach to be able
to use the definition (8.11) of the stage costs. For a given prediction horizon N ∈ N,
we denote the average net consumption over the prediction horizon of a single RES
i ∈ [1 : I ] by

ζi (k) =
{

1
k+1

∑k
n=0 wi (n), if k ≤ N − 1,

1
N

∑k
n=k−N+1 wi (n), if k ≥ N − 1.

(8.39)

For the first N − 1 time steps, where the past data of wi (k), for k < 0 is not avail-
able, only the average over the available data is used. Analogously the average net
consumption of all the systems is defined as

ζ (k) = 1
I

∑I
i=1 ζi (k) (8.40)
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for all k ∈ N. With this definition the coupled stage costs, tracking the average net
consumption of the RESs can be written in the form

�(k, 1
I

∑I
i=1 zi (k)) =

(
ζ (k) − 1

I

∑I
i=1 zi (k)

)2
(8.41)

and the overall objective function of the OCP (8.12) in the distributed MPC Algo-
rithm 1 at time k ∈ N is defined by

φ(y; k) = ∑k+N−1
n=k

(
ζ (n) − 1

I

∑I
i=1 zi (n)

)2
. (8.42)

Here, the local terms in the objective function are not present since the weight-
ing parameter is set to α = 1. The objective function is convex but not strictly or
strongly convex. The sets Di (k), i ∈ [1 : I ] and k ∈ N, are defined by the initial
state of charge, the system dynamics (8.35)–(8.36) and the constraints (8.37)–(8.38),
see (8.17). Since the dynamics and the constraints are linear, Di (k) is convex and
closed.Additionally, compactness ofDi (k) can be concluded from the fact thatUi and
Xi , i ∈ [1 : I ] are compact and the boundedness of Ui implicitly limits the power
demand zi for all i ∈ [1 : I ]. Thus, the distributed optimization Algorithm 3 can be
used to compute an optimal solution of the OCP embedded in the MPC Algorithm 1.

Numerical simulations

For the numerical simulations throughout this section a setting ofI = 100 RESs is
used. The parameter T is set to T = 0.5, representing half-hour windows, and the
energy demand is predicted for 24 h into the future, i.e., we set N = 48. Additionally
the constants ui = ui = 0.5 are fixed for the maximal discharging/charging rates for
all i ∈ [1 : I ]. The constants modeling the losses are set to �i = 0.99 and βi =
γi = 0.95 for all i ∈ [1 : I ]. The battery capacities of the storage devices are set
to Ci = 2 kWh with initial state of charge xi (0) = 0.5 kWh for all i ∈ [1 : I ]. For
the ADMM Algorithm 3 embedded in the MPC scheme the parameter ρ is set to
ρ = 0.1.

The closed-loop results of the MPC Algorithm 1 over a simulation length of one
week (i.e., k = 0, . . . , 335) are visualized in Figure8.1.

Due to the definition of the reference value ζ (k) in (8.40), ζ (k) takes 24 h before
it becomes a reliable reference value which only changes slowly over time (see the
green line in the Figure8.1, top). In addition to the reference value, Figure8.1 (top)
visualizes the uncontrolled average power demand 1

I

∑I
i=1 wi (k) (black) and the

optimized average power demand 1
I

∑I
i=1 zi (k) (blue). The storage devices help

to reduce the peaks in the average power demand significantly. The deviation of
the uncontrolled power demand (black) and the controlled power demand (blue)
from the reference value is shown in Figure8.1 (middle). Even though the peaks
are reduced, the MPC algorithm is not able to track the reference value perfectly
due to the maximal capacity of the storage devices and due to the bounds on the
charging/discharging rates. This can be observed in the last plot in Figure8.1, where
the average State of Charge (SOC) of the storage devices is visualized.
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Fig. 8.1 Closed-loop results of the MPC Algorithm 1 optimizing the use of storage devices. The
first figure shows the reference value ζ (k) (green) as well as the uncontrolled (black) and controlled
(blue) average power demand, 1

I

∑I
i=1 wi (k) and 1

I

∑I
i=1 zi (k), respectively. The second plot

shows the deviation of the uncontrolled (black) and the controlled (blue) average power demand
from the reference value, while the last figure visualizes the average State of Charge (SOC) of the
storage devices

8.4.2 Storage Devices and Controllable Loads

In this section, we establish an additional degree of freedom in the model of the
electricity network, i.e., we consider the concept of controllable loads introduced for
this particular setting in [23]. To this end, the net consumption is split into two parts:
the static load wi (k) and the controllable load wc

i (k). While we cannot influence the
static load, controllable load can be shifted in time. To schedule the controllable load
we extend the control input ui = (u+

i , u−
i , uci )

T ∈ R
3 andmodify the dynamics (8.36)

to

zi (k) = wi (k) + u+
i (k) + γi u

−
i (k) + uci (k) (8.43)
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for all i ∈ [1 : I ]. Here, uci (k) in kW represents the amount of controllable load
scheduled at time k.

We make the assumption that controllable load becomes available at a certain
time j ≤ k and then needs to be scheduled until (its deadline at) time k, i.e., wc

i (k +
N − 1), k ∈ Z≥1−N , has to be planned during the time interval from max{0, k} to
k + N − 1 for a given N ∈ N. To this end, the time-varying constraints

k∑
j=0

wc
i ( j) −

k−1∑
j=0

uci ( j) ≤ uci (k) ≤
k+N−1∑
j=0

wc
i ( j) −

k−1∑
j=0

uci ( j) (8.44)

are introduced. Further, we assume that only a certain amount of the controllable
load can be scheduled during one time step, which leads to

0 ≤ uci (k) ≤ wc
i (8.45)

for a constantwc
i ≥ 0, which is assumed to be chosen such that (8.44) can be fulfilled

simultaneously. Note that in (8.44), at a fixed time instant k ∈ N0, uci (k) for k ≥ k
represent control variables which need to be optimized, whereas uci (k) for k < k are
constants which have been fixed at previous time steps. To be able to update the input
constraints (8.38) capturing the controllable loads, we rewrite the constraints (8.44)
as time-dependent upper and lower bounds

λ
q
i (k) :=

k+q∑
j=0

wc
i ( j) −

k−1∑
j=0

uci ( j) ≤
k+q∑
j=k

uci ( j) (8.46a)

�
q
i (k) :=

k+min{q+N ,N }−1∑
j=0

wc
i ( j) −

k−1∑
j=0

uci ( j) ≥
k+q∑
j=k

uci ( j) (8.46b)

for the input variables uci , for i ∈ [1 : N ], k ∈ N and over the prediction horizon q ∈
[0 : N − 1]. Note that the time dependency is due to the time-dependent controllable
loadswc

i (k), k ∈ N, as well as the decisions made by the controller to define uci ( j) for
j < k for all i ∈ NI . Since we assume that the system dynamics and in particular
the load and the controllable load can only be estimated over the prediction horizon,
the first sum in (8.46b) stops at the increment k + min{q + N , N } − 1.

Due to the linearity of the dynamics (8.43) and the constraints (8.45)–(8.46),
convexity and compactness of the (now time-dependent) sets Di (k), i ∈ [1 : I ],
k ∈ N, follows the same arguments as in Section 8.4.1. For the stage costs, we
additionally have to take the controllable loads into account in the computation of
the average net consumption, i.e., ζi (k), i ∈ NI , is defined as
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ζi (k) =
{

1
k+1

∑k
n=0 wi (n) + wc

i (n), if k ≤ N − 1,
1
N

∑k
n=k−N+1 wi (n) + wc

i (n), if k ≥ N − 1
(8.47)

in this setting.

Numerical simulations

In addition to the parameters used in the setting without controllable loads we set
N = 12, which represents a six hour time window for scheduling the controllable
loads, and bound the controllable load for each RES i ∈ [1 : I ] at time k ∈ N0 by
wc
i (k) ≤ wc

i = 1.25 [kW].
The results comparing the settingwith andwithout controllable loads can be found

in Figure8.2. Here, in addition to the results shown in Figure8.1, the simulations
including controllable loads are visualized in red.

The additional degree of freedom in the controllable loads clearly improves the
performance of the MPC scheme where only storage devices are used. The deviation
of the average power demand from the reference signal is hardly visible at most
of the time steps in the simulation. To obtain a perfect tracking, however, i.e., to
obtain |ζ (k) − 1

I

∑I
i=1 zi (k)| = 0 for all k = 0, 1, . . . , 335, either the capacity of

the storage devices or the percentage of controllable load from the overall load needs
to be increased.

8.4.3 Optimal Operation of Coupled Microgrids

So far in this paper, and also in preceding publications, we have concentrated on the
optimal operation of a single electricity network. Here, we extend these results to
the optimal operation of � microgrids (MGs), � ∈ N, coupled through a network of
transmission lines as visualized in Figure8.3, for example. Here, a network of� = 4
MGs is shown where MG1 is only connected to MG2, and MG2, MG3 and MG4 are
fully connected through transmission lines.

The individual MGs can be defined as discussed in Section 8.4.1 without con-
trollable loads or as in Section 8.4.2 with controllable loads. We use Iκ ∈ N, to
denote the number of RESs in MGκ , κ ∈ [1 : �]. In the case where the MGs are
not connected a straightforward extension of the stage costs defined in (8.41) is to
consider the costs

�̂(k, (z1, . . . , zI )T (k)) = ∑�
κ=1

(
Iκζ κ(k) − ∑Iκ

i=1 zκi (k)
)2

, (8.48)

where in contrast to (8.41) the deviation of the average net consumption ζ κ(k),
κ ∈ N�, in the MGs is penalized. This means, ζ κ(k) is defined as

ζ κ(k) = 1
Iκ

∑Iκ

i=1 ζκi (k). (8.49)
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Fig. 8.2 Impact of controllable loads in the closed-loop simulation of Algorithm 1. Compared to
Figure8.1 additionally the closed-loop results with controllable loads are shown in red. The last
plot shows the extended average control input 1

I

∑I
i=1 u

c
i (k), k ∈ [0 : 335]
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Fig. 8.3 Example of four MGs coupled through transmission lines. Each MG consists of a number
of Iκ ∈ N, κ = 1, 2, 3, 4, RESs

We are interested in the case where the MGs are coupled via transmission lines.
In particular, we want to investigate whether the MGs can benefit from an energy
exchange even if the energy exchange involves losses. We thus consider stage costs
of the form

�̂(k, (z1, . . . , zI )T (k), δ(k)) =
�∑

κ=1

(
Iκζ κ(k) −

�∑
ν=1

(δκ,ν(k)ηκ,ν)

Iν∑
i=1

ziν (k)

)2

(8.50)

with additional variables δ(k) ∈ [0, 1]�×� and constants η ∈ [0, 1]�×�. The matrix
entry δκ,ν(k), κ, ν ∈ [1 : �], represents the fraction of the power demand of MGκ at
time k, which is used to manipulate the average ζ ν(k) of MGν . To define δκ,ν(k) as
a fraction of the overall power demand of MGκ the linear constraints

∑�
ν=1 δκ,ν(k) = 1 ∀ κ ∈ [1 : �] (8.51)

are introduced.Moreover, to ensure that power can be exchanged over a transmission
line only in one direction at a fixed time index k ∈ Nwe use the nonlinear constraints

δκ,ν(k) · δν,κ (k) ≤ 0 ∀ κ, ν ∈ [1 : �], κ �= ν. (8.52)

The matrix η is assumed to be symmetric, i.e., ηκ,ν = ην,κ for all κ , ν ∈ [1 : �],
where a zero-entry (ηκ,ν = ην,κ = 0) indicates that no transmission line between
MGν and MGκ exists and values ηκ,ν ∈ (0, 1) correspond to losses. In addition, we
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set ηκ,κ = 1, κ ∈ [1 : �]. For the MGs visualized in Figure8.3 the constants η can
be defined as

ηloss =

⎛
⎜⎜⎝
1.0 0.0 0.8 0.0
0.0 1.0 0.7 0.8
0.8 0.7 1.0 0.9
0.0 0.8 0.9 1.0

⎞
⎟⎟⎠ and ηno loss =

⎛
⎜⎜⎝
1 0 1 0
0 1 1 1
1 1 1 1
0 1 1 1

⎞
⎟⎟⎠ (8.53)

with losses and without losses, for example.
To handle the additional set of variables δ in the MPC closed loop we extend

Algorithm 1. Note that the coupling of the variables δ and (z1, . . . , zI ) leads to
a nonconvex objective function. Additionally, the constraints (8.52) are nonlinear
and non-convex. Hence, δ is only optimized in the MPC algorithm, but not in the
distributed optimization conducted in the second Step (2) of the MPC algorithm.

Distributed optimization of the energy exchange

Using the definitions introduced in Section 8.3 we define the objective function

φ̂(z, δ; k) = ∑k+N−1
n=k �̂(k, z(k), δ(k)) (8.54)

with δ ∈ R
�×�×N . For the constraints we define the set

� =
⎧
⎨
⎩δ ∈ [0, 1]�×�×N

∣∣∣∣∣∣

∑�
ν=1 δκ,ν(n) = 1 ∀ κ ∈ �

δκ,ν(n) · δν,κ (n) ≤ 0 ∀ κ, ν ∈ [1 : �], κ �= ν

∀ n ∈ [k : k + N − 1]

⎫
⎬
⎭ . (8.55)

Hence, the OCP involved in the MPC algorithm at time k ∈ N is defined as

min
y∈D(k)
δ∈�

αφ̂(z, δ; k) + 1−α
I

∑I
i=1 φi (yi ; k). (8.56)

As already pointed out, due to the additional variables δ, the distributed optimization
scheme (8.33) is not applicable in the current form. Thus, we update the variables δ

only once at every time step k ∈ Nwithin the MPC algorithm and keep δ fixed in the
iterates of the distributed optimization algorithm. The correspondingMPC algorithm
is given in Algorithm 4.

In (8.59), δ is updated for the next time step using the ideas discussed in
Section 8.3.3 and I ∈ R

�×� denotes the identitymatrix.Optimization problem (8.58)
is not convex and thus it is not guaranteed, that an optimal solution is found at every
time step. However, observe that the optimization problem (8.58) does not involve a
coupling over the prediction horizon and δ(n), n ∈ [k : k + N − 1] can be computed
independently, leading to N optimization problems, where the number of unknowns
is upper bounded by�2. Even though optimality with respect to the energy exchange
cannot be shown in our setting, simulation results indicate the potential benefit of
the additional Step (3) in Algorithm 4.
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Algorithm 4 Distributed MPC for energy exchange
Input: Time horizon N ∈ N, number of MGs � ∈ N, transmission grid parameters ν ∈ [0, 1]�×�,
number of systems Iκ ∈ N in MGκ , κ ∈ [1 : �], satisfying ∑�

κ=1 Iκ = I , stage costs �̂, �i ,
i ∈ [1 : I ], and a weighting parameter α ∈ [0, 1].
Initialization: Set k = 0.
Main loop: For k ∈ N0

(1) For all i ∈ [1 : I ], measure the current states x̂i := xi (k).
(2) Solve the OCP (8.12) for fixed δ to obtain minimizing sequences

u�
i = (u�

i (k), . . . , u
�
i (k + N − 1))T ∀ i ∈ [1 : I ]. (8.57)

(3) Obtain the optimal energy exchange δ∗ by solving the optimization problem

δ∗ ∈ argmin
δ∈�

αφ̂(z∗, δ; k) + 1−α
I

∑I
i=1 φi (y∗

i ; k). (8.58)

(4) For all i ∈ [1 : I ], implement μi (k, x̂i ) := u�
i (k) and δ∗(k), define

δ+ = (δ∗(k + 1) × · · · × δ∗(k + N − 1) × I ), (8.59)

shift the horizon forward in time, i.e., set k = k + 1, and go to Step (1).

The power exchange of coupled MGs is also discussed in [43]. In [43] however,
the power flow over the transmission lines results from linearized DC power flow
equations and cannot be optimized separately. In contrast, Algorithm 4 includes the
optimization of the power exchange through the additional variable δ.

Numerical simulations

To show the numerical properties of Algorithm 4 we consider a network of � = 4
MGs visualized in Figure8.3. Additionally, we consider the set of parameters η

defined in (8.53) with and without losses. The individual MGs consist of I1 = 20,
I2 = I3 = 25 and I4 = 30 RESs. Each RES is defined through the parameters
introduced in Section 8.4.1.

The deviation of the power demand of the closed-loop solution from the ref-
erence values in the individual MGs and for the different settings is visualized in
Figures8.4 and 8.5. Figure8.4 compares the uncontrolled power demand with the
controlled power demand without energy exchange (see Section 8.4.1). In Figure8.5
additionally, the power exchange is taken into account. The exchange of energy with-
out losses over the transmission lines (Figure8.5, right) clearly improves the results
of the uncoupled MGs (Figure8.4, right). The benefit of the energy exchange with
losses ηloss over the transmission lines is not that obvious. It can however be observed
by evaluating the MPC closed-loop performance (8.5), taking the average over 336
iterations. Here, the uncontrolled setting in Figure8.4 (left) leads to average costs of
148.66 compared to 10.60 in the controlled casewithout energy exchange (Figure8.4,
right). The setting with energy exchange and with losses over the transmission lines
(Figure8.5, left) decreases the average costs to 3.50, which shows the improvements
compared to the uncoupled simulations. As one might expect from Figure8.5 (right)
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Fig. 8.4 Deviation of the uncontrolled average power demand in the MGs from the reference
values in the left figure and the deviation of the closed-loop solution without power exchange (i.e.,
optimization with respect to (8.48)) on the right for κ ∈ [1 : 4]. Note the different scaling on the
y-axis
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Fig. 8.5 Visualization of the deviation of the closed-loop solution from the reference value with
power exchange (i.e., optimization with respect to (8.50)), with (left) and without (right) losses are
visualized for κ ∈ [1 : 4]. Here, dclκ denotes the closed-loop average power demand after the power
exchange dclκ (k) = 1

I κ

∑�
ν=1 δclκ,ν(k)ηκ,ν

∑I ν

i=1 ziν (k). The matrices η are defined in (8.53)

the setting with energy exchange and without losses outperforms the other simula-
tion results with a value of 1.00 for the average closed-loop performance over 336
iterations.

8.5 Conclusions

In this paper, we gave a conceptual review of dual decomposition—in particular,
dual ascent—and ADMM as representatives of the class of iterative distributed opti-
mization algorithms. Furthermore, we thoroughly discussed their embedding within
distributed MPC schemes. Here, we emphasized the importance to tailor the dis-
tributed optimization scheme to the particular application to ensure essential prop-
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erties like scalability and plug-and-play capability. To demonstrate the effectiveness
of the proposed combination, we considered an application, in which flexibilities
(energy storage devices, controllable loads, and energy exchange between micro-
grids) were exploited for load shaving. In particular, we rigorously showed global
convergence for the setting with controllable loads to extend our previous work [23]
and presented a new model, which allows to (numerically) assess the potential of
energy exchange between several microgrids while taking transmission losses into
account.
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Chapter 9
Coherency Estimation in Power Systems:
A Koopman Operator Approach

Harold R. Chamorro, Camilo A. Ordonez, Jimmy C.-H. Peng,
Francisco Gonzalez-Longatt and Vijay K. Sood

Abstract Integrating a significant amount of non-synchronous generation into
power systems creates new technical challenges for transmission systems. The
research and understanding of the impact of the non-synchronous generation through
back-to-back Full Rated Converters’ (FRCs) on power system’s coherency is a mat-
ter of importance. Coherency behavior under the presence of large inclusion of non-
synchronous generation requires more research, in order to understand the forming
groups, after a disturbance, when the inertia is decreasing due to the decoupling. This
document presents the application of the so-calledKoopman Operator for the identi-
fication of coherent groups in power systems with the influence of non-synchronous
generation. The Koopman Analysis clusters the coherent groups based on the mea-
surements obtained. The visualization of the coherent groups identified allows to
observe their dynamic variations according to the penetration level or fault location.
The applied method of coherency identification is evaluated in the Nordic test sys-
tem through gradually increasing integration of non-synchronous generations and
different fault scenarios.
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9.1 Introduction

The considerable environmental benefits of integrating renewable generation into
the grid have encouraged several governmental policies around to world. Since the
non-synchronous generation (wind, wave and solar power) is required to behave
like conventional synchronous generation units, (full-scale power supply) the high
voltage power electronics converters have become attractive to be selected for the
integration into either the transmission or distribution power levels [1].

A wider use of non-synchronous generation relies on the use of Full Rated Con-
verters (FRCs). This is due to them enabling multiple control features which include
controlling active and reactive power [2], assuring voltage ride through capability [3]
in order to deal with variable speed wind turbines [4], and adding Maximum Power
Point Tracking (MPPT) algorithms [5].However, the generation is completely decou-
pled from the system, and is consequently unable to contribute dynamically to the
system [6, 7]. Thus, if the synthetic inertia control option is not added, the decoupling
displaces synchronous machines [8].

The reduction of the inertia in the power grid has provoked a global concern by the
system operators, power planners and researchers. Several reports have shown the
experience with large inclusion of non-synchronous generation and the dynamical
challenges during the past years [9].

Some of the main challenges which have been reported include the following:

– The first experienced challenge is the decrease in the system inertial response
which affects the dynamical response [10–12].

– The second challenge due to non-synchronous integration is the impact on small
signal stability. Several studies have shown that the large-scale inclusion of wind
power degrades the damping of the electromechanical modes. This displace them
to a different stability operation region, thereby affecting the response of the system
under small and large disturbances [13, 14].

A study conducted in [15] analyses the impact of the effect of high penetration
of photovoltaic (PV) on small signal stability. Due to the reduced system inertia the
study result showed a reduction in the damping torques of the system. A transient
and small signal stability analyses with a gradual inclusion of PV are developed in
[16], the eigenvalue results show that a displacement of conventional units have a
great impact on the oscillatory modes.

– The third challenge is the coherency of power systems and how it can be affected by
the use of highpower electronic converters.One relevant study shows that the large-
scale inclusionofwindpower changes the coherencyof the synchronous generators
coherent groups [17], however additional research is required in understanding
how the non-synchronous generation affects the coherency in power systems.

The phenomenon of coherency in large interconnected power systems is presented
when some generators swing together after a disturbance [18, 19]. To identify coher-
ent groups, different methods have been studied during the last years in literature.
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Time and frequency-domain methods have been used to analyse the coherency of
generators [20, 21]. Partitioning-based slow coherencymethods have been presented
in [22, 23].

Support vector clustering is applied for coherency studies in [24], computing
compact and separated clusters based on the measurements obtained.

Some approaches applyingmachine learning and computational intelligence tech-
niques for coherent identification have also been investigated in [25, 26]. In [27],
neural networks, as patterns recognition and classificators sets are used. In a more
recent contribution [28], where neural networks are also used, a fast method for
security assessment is proposed. Fuzzy clustering methods have also been applied
in [29] and [30] with auto-configuring training, and c-means clustering methods,
respectively.

Another related method is presented in [31], which applies maximum spanning
tree partitioning, to obtain the strongest connections in the network after a distur-
bance.

One method is developed in [32], where the flocking agent-interaction method is
applied for different scenarios including rapid clustering identification.

Digital signal processing techniques have been applied in this topic. One impor-
tant contribution is presented in [33], where the wavelet transform is used to obtain
the phase relations according to the signals, and is used to determine the common
frequencies of the generators involved. Another important approach is given in [34],
where the Hilbert-Huang transform is tracking the generator coherency instanta-
neously.

Coherency-based graph theory has been studied in [35] and [36], where the topo-
logical network structure is analysed. In this method the generators are clustered
according to the sub-networks and cut-sets obtained.

In [17], the coherency including wind farms is studied. The determination of the
coherent groups is done by the rotor angle response observation after a fault.

TheKoopman operator has proven to be a suitable method for coherency identifi-
cation in power systems [37]. KoopmanMode Analysis (KMA) provides a graphical
tool based on linear transformations on Hilbert spaces to analyse (non-linear) Hamil-
tonian systems.This linear, infinite-dimensional operator is defined for anynon-linear
dynamical system [38, 39]. One important characteristic of the Koopman operator is
its ability to capture the full pattern information of large complex dynamical systems
like power grids. Also, in [40], an islanding method is proposed and it is shown that
the Koopman operator can determine the static connectivity of a system in a similar
way as graph theory does.

This document follows the theory presented in [41], and also applies the technique
developed in [37] and [42]. Otherwise, the same mentioned authors, in a most recent
contribution of KMA presented in [43], the authors show the application in the 2006
European Grid-wide disturbance [44]. It is demonstrated the versatility of the KMA
by decomposing the power exchanges between the operative areas in order to not only
observe the coupled swing dynamics, but use the KMA to diagnose the instabilities
using the data obtained from a real past case [43].
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The main contributions of this document are the follow ones. The first one, is
the coherent groups identification including non-synchronous generations in power
systemswhich has been barely studied in literature before, and second one, to address
the notion of how the reduction of inertia by the large penetration of power converters
change affects the coherency in power systems from the data. Note the Koopman
Analysis requires only the measurements of the system, not the model, which makes
a robust and practical graphical tool. Moreover, the analysis is illustrated in a test
system under the consideration of different penetration level scenarios and fault
locations illustrating gradually the coherent groups conformation.

This document is an extended version of [2, 70] and is structured as follows. In
Section 9.2, the problem formulation of coherency identification in non-synchronous
integration is presented. InSection 9.3, the preliminaries of the theory of theKoopman
operator, the definition of KM and the coherency definition are reviewed. In Section
9.4, the coherency in the Nordic test system is studied under different faults. Section
9.5 presents the case studies regarding the gradual increasing of non-synchronous
generation integration on the test system. Finally, the conclusions and future work
of this research are given.

9.2 Problem Formulation

The identification of coherent groups is of importance for the development, deploy-
ment and implementation of control schemes to improve the system transmission
capability [45]. Having identified coherent groups, it is possible to classify those gen-
erators that are oscillating together, in order to understand the dynamic behaviour of
the system under disturbances, and design appropriate controllers to protect it against
them [46].

Coherency identification can be used in Wide Area Monitoring Protection and
Control (WAMPAC) systems [47] in different ways. For instance, controlled island-
ing uses the coherency identification to know how to split the network into different
sub-groups, and to avoid a blackout of the complete system [48, 49].

A dynamic preventive observation of the coherent groups can confine cascading
faults within smaller self-sustainable islands making the grid more robust under
disturbances [50].

Self-healing schemes can also be improved through the observation of the coherent
groups to protect, apply control actions and restore the system after a fault [51].

The identification of coherent groups can also be helpful to locate, design or tune
Power System Stabilizers (PSS) [52, 53]. Furthermore, the design of Flexible AC
Transmission Systems (FACTS) controllers can also take advantage of the coherent
groups identification as shown in [54], where the feedbackmeasurements are selected
based on the dominant machines of the identified groups.

Moreover, cyber-security schemes can take advantage of the coherent identifi-
cation as a tool for monitoring the dynamic changes instantaneously and upgrade
the control decisions faster [55, 56]. Furthermore, it is possible to propose dynamic
security assessments to make the response of the protection systems more efficient
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and adaptable, and also to conceive advanced alert systems in order to avoid large
area disturbances [57, 58].

Coherency identificationmethods can be classified into two basic groups [59]. The
first one is based on linearised models of power systems [60, 61]. These methods
might not be completely suitable since they do not capture the post-fault dynamics.
The second group can be called measurement-based methods, because they rely on
the signals obtained from the system, either off-line or on-line methods, to bring a
more precise dynamic observation of the system [62].

9.2.1 Koopman Self-clustering Optimization

One of the biggest concerns in Wide Area Measurement Systems (WAMS) is the
effective computing techniques and measurement technologies which allow to visu-
alize the dynamics of the systems and use the data for short/long term power system
planning [63, 64]. Koopman Mode Analysis (KMA), in its current stage of develop-
ment, is capable of receiving the signals from simulation or measured data, providing
the clusters of the coherent groups. Certainly, the method has the potential to be a
real-time coherency method; but further research is needed. Otherwise, the computa-
tional effort of the analysis is based only in the mathematical (numerical) calculation
which can be carried out by any of the processors developed in the current techno-
logical age, or it can be easily embedded in a Hardware in-the-Loop (HiL) system
or even a Floating Point Gate Array (FPGA). However, these two latest aspects are
not the purpose of this document.

The visualization of the method also plays an important role, e.g. from the Trans-
mission System Operator (TSO) point of view. The display of the results should be
easy to understand by the operator, who is responsible for planning the interconnec-
tion of HVDC lines or large non-synchronous generation, and determine decisions
on-time, propose control strategies to prevent undesirable events, etc. The results,
and the final results display obtained by the use of the KMA (phase vs. amplitude
diagrams), can bring a friendly interpretation of the dynamics variations in the power
systems supervised.

One of the main robust characteristic of KMA is that can handle several data (e.g
from data-receivers or predicted models) providing an assessment for short/long-
term futuristic power planing and update the control systems based on the analysis
given [43].

Partitioning power networks (islanding) for protecting the grid of blackouts and
large collapses using KMA has an important advantage, the model-free and the
relying on dynamics data in the network [40].

Coherency identification using KMA belongs to the measurement-based group
since it only requires sampled data [65]. Apart of the mentioned advantages, KMA
has some important characteristicswhichmakes it a powerful tool. The first, andmost
important one is that it deals with non-linear dynamics. Secondly, it does not need



206 H. R. Chamorro et al.

any training process, such as neural networks or support vector machines, because
this method lies on the spectrum calculation of the Koopman Operator.

The aim of this paper is to show that the KMA can be used for identification
of coherent swings and generators in systems under the effect of the decoupling of
full converters. In this paper, non-synchronous generation is modelled by aggregated
full converter units with the same power rating as that of the replaced synchronous
generation.

9.3 Koopman Operator Preliminaries

9.3.1 Koopman Operator, Eigenvalue and Mode

Consider the following dynamics described by a discrete-time non-linear system
evolving on a smooth manifold [40, 66].

xk+1 = F(xk) (9.1)

where, xk ∈ M is the state variable belonging to state space M , and F : M → M
is a non-linear, vector-valued function. TheKoopmanOperator is a linear operatorU
that acts on scalar-values functions on M in the following manner: for g : M → R,
U maps g into a new function U g given by

U g(x) = g(F(x))

Although the dynamical system is non-linear and evolves on a finite-dimensional
space, theKoopman operator is linear, but infinite-dimensional. TheKoopman eigen-
functions ϕ j : M → C and theKoopman eigenvalues (KEs) λ j ∈ C associated toU ,
are defined as

U ϕ j (x) = λ jϕ j (x), j = 1, 2, . . .

Consider g : M → R
p a vector-valued observable. If each gi of the components

in g lies within the span of eigenfunction ϕ j , then the time-evolution of observable
g (xk) from g (x0) is expanded as follows:

g (xk) =
∞∑

j=1

Ukϕ j (x0) v j =
∞∑

j=1

λk
jϕ j (x0) v j (9.2)

where, v j is the vector-valued coefficient of the decomposition and is called the j-
th Koopman Mode (KM) [67]. This decomposition is based on the properties of
the point spectrum of U , and the analysis based on (9.2) is called Koopman Mode
Analysis (KMA). The KMA enables the extraction of single-frequency modes from
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data on fully non-linear dynamics from the temporal behaviour of the corresponding
KM. The phase of λ j determines its frequency, and the magnitude determines the
growth rate.

The computation of Koopman eigenvalues and KMs is effectuated by a modified
version of Arnoldi algorithm described in [68], where it is shown that the Ritz value
λ̃ j and vector ṽ j approximate the Koopman eigenvalue λ j and factor ϕ j (x0) v j in
the expansion in terms of a finite truncation.

The input of the algorithm is the N + 1 sampled data {g (x0), g (x1) , . . . , g (xN )}.
The outputs are N pairs of Koopman eigenvalues and KMs. The finite sum expansion
is expressed by:

{
g (xk) = ∑N

j=1 λ̃k
j ṽ j k = 0, . . . , N − 1

g (xN ) = ∑N
j=1 λ̃N

j ṽ j + r
(9.3)

where, r is a residue with the approximation error.

9.3.2 Coherency in the Koopman Mode

By denoting ṽ j i as the i-th element of vj, a coherent group of KMs is identified based
on the amplitude coefficient A ji :=| ṽ j i | and the initial phase α j i := arg(ṽ j i ) for
each mode j and observable i (e.g. rotor angle δi and voltage angle θi ).

Coherency for KMs is defined in [51] as follows. For given finite N modes
{ṽ1, . . . , ṽN } and fixed constants (ε1, ε2), two observables {gk, gv} are called (ε1, ε2)-
coherent with respect to mode j if

{
| A j,k − A j,v | < ε1

| α j,k − α j,v | < ε2

In this case, g (xk) contains swing dynamics of synchronous machines in a power
system, so it is possible to group the oscillatory components with similar amplitude
A ji and initial phase α j i of machines to state them as coherent. This is illustrated in
the Figure 9.1.

Fig. 9.1 Groups of (ε1,
ε2)-coherent observables
illustrated in a phase versus
amplitude plot
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Fig. 9.2 Three sine waves
of different frequency
corresponding to (9.4). The
2.6 Hz sine wave is displaced
by a π/2 rads phase shift

9.3.3 Illustrative Example

Let us consider a simple example of KMA. The signals shown in Figure 9.2 represent
the measurements obtained from an oscillatory signal. Notice these signals are not
coupled.

g1 =0.5sin (2π f1t)

g2 =0.8sin (2π f2t − π/2)

g3 =sin (2π f3t)

(9.4)

Here f1, f2, and f3, are chosen as 6, 2.6, 0.7 Hz respectively. These signals are
depicted in Figure 9.2 over a time period of 4 s.

Now, KMA is applied with a sampling frequency of fs = 60 Hz to the data.
N + 1 = 240 samples are acquired giving N = 239 modes. The modes are now
listed based on the Growth Rate (GR) which is related to the damping in case of
sampled dynamics. The five modes with the largest GRs are listed in Table 9.1.

In this manner, the sampled data has been decomposed into a set of Ritz values
λ̃ and vectors v. The dominant frequencies are identified by applying KMA to the

Table 9.1 Dominant Koopman modes obtained for the data shown in Figure 9.2

Mode j Growth rate Frequency (Hz) Norm
∥∥ṽ j

∥∥

1 0.9997 0.68 0.0269

2 0.9960 2.66 0.2814

3 0.9951 5.94 0.0266

4 0.9925 0.39 0.5401

5 0.9913 0.13 0.1816
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Fig. 9.3 The modal
“dynamics” of the three
dominant modes. Each of the
modes has three
contributions corresponding
to the three measured
observables (the sine waves
g1, g2, g3)

sampled data. Modal dynamics for Modes 1-3 are depicted in Figure 9.3. It is seen
that for each mode, essentially only one observable (out of three) contributes (the
one corresponding to the sine wave of the same frequency as the mode). The sum
over all modes according to (9.2)–(9.3) reconstructs the sampled data.

9.4 Application to the Nordic System

The single-line diagram of the Nordic test system is shown in Figure 9.4. This system
contains 32 high voltage buses, 20 synchronous generators with different types of
generation (circled in the figure), in four geographical identified area. The North
and External area are hydro-dominated while the south and central areas have a
mixture of nuclear, thermal and coal power plants. Central area has the highest level
consumption whereas the North area has the lowest level. The transmission system is
designed for 400 kV (19 buses) with some regional systems at 220 kV (2 buses) and
130 kV (11 buses). The details of the system, such as unit rating, line data, dynamic
data, and loading conditions, are given in [69]. Power System Stabilizers (PSS) have
been located in the following synchronous machines: 1042, 1043, 4011, 4042, 4047,
4051, 4062, 4063.

9.4.1 Numerical Simulation

The setting of numerical simulation is as follows. The constants and power loads are
the same as in [69]. All numerical simulations discussed in this paper are performed
using the software DigSilent Power Factory®. Then, some disturbances (three-phase
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Fig. 9.4 Nordic 32 test system
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Table 9.2 List of selected faults—Nordic 32-bus test system

Fault Bus fault location Critical clearing time (ms)

1 4047 234

2 1021 190

3 4031 180

4 4063 250

5 1012 250

short circuit faults) in the system are supposed in order to trigger the swing curves
signals to analyse. The location of the faults are based on the previous study of this
system presented in [70], however the Critical Clearing Time (CCT) differs due to
the different dynamic settings in the system (Table9.2).

9.4.2 Koopman Modes and Eigenvalues Analysis

KM have been computed based on the measurements obtained, which are the rotor
angle δi of the synchronous generators. For computation, the observable g (δ) is
chosen, where δ = [δ1, . . . , δ7, δ9, . . . , δ20]T. The symbol T indicates transpose in
vectors. It is used on the simulation outputs obtained from the software, where the
uniform sampling period Ts = 1/( fs),with fs = 100 Hz and the number of samples
N = 1001. An appropriate number of samples should be selected to capture a large
quantity enough of snapshots.

Consider a fault located in the bus number B4047 located in the Central area.
Figure 9.5 shows the time response of the 	δi . Note that G8 (G4011) is the reference
machine.

The coherent generators extraction are obtained from the KMs decomposition. In
this document, the mode of interest is the one with the largest norm. The frequency
related to this mode is 0.6Hz. Table 9.3 shows the numerical computation of KEs
and KMs, Mode 1 to Mode 10.

The distribution of A8,i versus α8,i is plotted in Figure 9.5. The circle points for
generators show the different cluster groups obtained. For this mode, the phase α8,i

clusters two main generator coherent groups CG1 (1012, 1013, 1014, 4012, 4071,
4072) andCG2 (G1043,G4041,G4042,G4047,G4051,G1042,G4062,G4063,G2032,G4021,
G4031, G1021 and G1022) and different subgroups. Figure 9.6 show the time response
of these sub-groups respectively. Observing CG1 and CG2 groups and the time
response is possible to match which groups have positive and negative rotor angle,
or in other words, the accelerating and de-accelerating groups respectively.

Following the same process, it is possible to identify the coherent groups/
subgroups with the different faults stated above. Table 9.4 shows the correspond-
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Fig. 9.5 Rotor angle time response after the fault at bus B4047

Table 9.3 Result of Koopman modes after fault in B4047

Mode j Growth rate Frequency (Hz) Norm
∥∥ṽ j

∥∥

1 1 0 115.9

2 0.9987 1.8169 0.20029

3 0.99844 2.049 0.11828

4 0.9983 2.1693 0.10667

5 0.9982 1.9336 0.18931

6 0.99809 1.6843 0.42954

7 0.99796 2.2854 0.11777

8 0.99748 0.59578 73.438

9 0.99746 0.2983 2.3481

10 0.99745 1.3594 1.6117
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Table 9.4 Largest Koopman modes for the different faults

Fault Mode j Growth rate Frequency (Hz) Norm
∥∥ṽ j

∥∥

4031 3 0.99797 0.616 60.08

1021 2 0.99108 0.569 8.539

4063 8 0.99748 0.595 73.43

1012 3 0.99798 0.613 78.68

ing KMs and their frequencies according to the rest of the faults. Figure 9.7a–d show
the distribution of the largest Koopman Modes.

Same groups (CG1and CG2) and subgroups are obtained, nevertheless some
slightly differences can be observed. For the fault located in bus B4063, it can be seen
in Figure 9.7c thatG4062 andG4063 are more related to the central group of generators
than other cases. Sub-group S7 can be joined with sub-group S6. The other generators
remained to the same sub-groups.

9.5 Test Cases: Gradual Increasing of Non-synchronous
Generation

The impact of the integration of non-synchronous generation on the test system
coherency is analysed by replacing some of the synchronous generators with back-
to-back FRCwith the same active and reactive power outputs in order to guarantee the
same initial conditions. Note that the power outputs are fixed through the simulation.
Two scenarios are tested: first one, replaces synchronous generators in the Central-
South area while the second one replaces in the North-External area.

9.5.1 Scenario Central-South

Case1 (C1) toCase5 (C5) represent the replacement of synchronous generationby the
integration of non-synchronous generation based FRC gradually, in order to analyse
different levels of power penetration. For example, C1 considers the replacement of
one generation only, and C2 considers the replacement of two generators including
the one in C1, and so on. It is assumed that the dispersed generation is connected to
one established substation. These five scenarios are summarised in Table 9.5:

Initially, KM are evaluated for fault at B4047 for cases presented above. Table 9.6
shows the KM variation according to the replacement by non-synchronous in the
system. It can be seen that the largest mode frequency stays in the same range. The
same behaviour is obtained in the rest of the cases; however, the frequency tables
variation are not presented here.
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Fig. 9.7 Distribution of initial phases and amplitude coefficients for different faults
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Table 9.5 Generator replacement for each case

Case C1 C2 C3 C4 C5

Generator G7 G16 G17 G14 G6

Bus B1043 B4051 B4062 B4042 B1042

Power (MW)% 1.2 5.4 9 13 15

Table 9.6 Koopman largest mode variation (fault 4047)

Mode j Growth rate Frequency (Hz) Norm
∥∥ṽ j

∥∥ Case

8 0.99748 0.5957 73.43 BC

15 0.99721 0.5908 75.54 C1

3 0.99894 0.5714 52.31 C2

6 0.99813 0.5661 19.23 C3

10 0.99789 0.5986 22.17 C4

4 0.99978 0.6542 9.365 C5

KM for C2 is plotted in Figure 9.8. The replacement by non-synchronous gener-
ation in the first two cases does not affect the coherent groups/sub-groups analysed
before. Figure 9.8 shows the KM for C3 and the significant changes for cases C4

and C5 with the circle points variation of the generators concerned. After the third
case, with the replacement of generator G4062, generator G4063 (both in the South
area) become to swing and be more coherent with generators in the Central area.
Generators in the North and External area keep swinging together.

For the fault in bus B4031, first two cases of non-synchronous generation replace-
ment do not show change in the coherent sub-groups as the former analysis. From the
third case, significant changes can be observed in theKMsub-groups. The sub-groups
based on the amplitude coefficient of the respective mode show that the Central area
have become more separated. Specially in case 4, where generator G1042 moves
closer to G4063 (Figure9.9).

Generator G1042 is becoming more separate in C4 for post-faults in buses B4063,
B4012 and B4021as it can be seen in Figures 9.10 and 9.11 (Figure9.12).

9.5.2 Scenario North-External Area

This scenario considers the replacement of some generators in theNorth and External
area. The location of these new cases in the system are presented in Table 9.7. It is
applied the same gradual replacement from the previous scenario.
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Fig. 9.8 Coherency identification including non-synchronous generation (after fault at bus B4047)
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Fig. 9.9 Coherency identification including non-synchronous generation (after fault at bus B4031)
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Fig. 9.10 Coherency identification including non-synchronous generation (after fault at bus B4063)
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Fig. 9.11 Coherency identification including non-synchronous generation (after fault at bus B1021)
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Fig. 9.12 Coherency identification including non-synchronous generation (after fault at bus B1012)

Table 9.7 Generator replacement for each case (North-Ext)

Case C1 C2 C3

Generator G2 G12 G19

Bus B1013 B1012 B4071

Power (MW)% 3 6 9

The replacement by non-synchronous generation in the first two cases remains the
sub-groups previously identified for the same faults located. After the replacement
of the third generator, for the fault located in bus B4031, makes the generator G1021

be more coherent with the sub-group of generators G4012 and G1014, whereas for the
faults located in buses B1021 and B1012 the generator G1021 be more coherent with
the generators G2032, G4031 and G4021. This is shown in Figures 9.13, 9.14 and 9.15
(Table9.8).
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Fig. 9.13 Coherency identification including non-synchronous generation (after fault at bus B4031)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−2

0

2

4

10
12

10
14

10
21

10
22

10
42

10
43

20
32

40
12

40
21

40
31

40
41

40
42

40
47

40
51

40
62

40
63

40
71

40
72

Amplitude

Ph
as

e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−2

0

2

4

10
14

10
2110

22 10
42

10
43

20
32

40
12

40
21

40
31

40
41

40
42

40
47

40
51 40
62

40
63

40
71

40
72

Amplitude

Ph
as

e

10
21

10
22

Fig. 9.14 Coherency identification including non-synchronous generation (after fault at bus B1021)
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Fig. 9.15 Coherency identification including non-synchronous generation (after fault at bus B1012)

Table 9.8 Koopman largest mode variation (fault 4031)

Mode j Growth rate Frequency (Hz) Norm
∥∥ṽ j

∥∥ Case

2 0.99797 0.6165 60.08 BC

5 0.99769 0.6097 54.68 1

2 0.99868 0.6552 13.73 2

8 0.9979 0.6349 16.91 3

9.6 Conclusions and Future Work

The document presents an original contribution to the application of the KMA for
the coherency pattern identification of power systems system with a gradual large
inclusion of non-synchronous generation.

The application of KMA to the studied power system (Nordic 32 system) showed
the variation of the coherent groups through the gradual inclusion of power con-
verters. The results show that if a minor replacement of synchronous machines the
coherency is not affected, but after the replacement of the 13% of the power in the
system, some significant changes in the coherent groups can be identified.

The coherent groups in one operative area can be altered by the increasing inclu-
sion of non-synchronous generation becoming either groups apart or be more coher-
ent with other groups. A general comment can bemade in relation to the fault location
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since the coherency phenomena is related to it. After studying several faults incorpo-
rating the gradual increasing of full converters. The effect of a fault close to a specific
generator in the form of acceleration is propagated, and reflected around the closer
generators in the form of synchronizing power. Therefore, with the replacement of
synchronous machines (inertia reduction), the coherent groups separate different, as
the amplitude coefficient separation in the KM showed.

The applied coherency identification method provides a direct calculation and a
powerful graphical visualisation tool for observing the coherent groups/subgroups
according to the measurements obtained while the dynamics are changing.

This tool has the potential to be integrated in real-time simulator systems and be
improved by a sliding window, which means can be applied in situational awareness
alert system or control loops design involved in FRC.

KMA application is concise with the slow coherency theory, however with the
reduction of inertia in the system, the fault location change the coherent groups in
the system.

Futurework requires the addition of PSS to non-synchronous generation and other
control loops, e.g. synthetic inertia in order to diminish the oscillations.

Acknowledgements Authors are very grateful to theDr. Fredrik Raak and Prof. Susuki fromKyoto
University for the discussion about the Koopman Mode theory, its computation and suggestions of
the document.
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Chapter 10
Appliance Identification Through
Nonintrusive Load Monitoring
in Residences

Christos Gogos and George Georgiou

Abstract Residential energy consumption forms a major part of the total energy
expenditure. Consumers, power utilities, grid operators, electric appliance manufac-
turers, government agencies, and others are greatly interested in curbing the energy
consumption, expecting in return financial and environmental rewards. Better under-
standing of how energy is consumed in residences will be crucial in developing
trustworthy Demand Side Management (DSM) systems. This work presents state-
of-the-art approaches for disaggregating power consumption in residences through
nonintrusive load monitoring. Also, it contributes a new dataset of detailed power
consumption data that was captured in a residence that was specially set up. The
results show that by analyzing overlapping power patterns that electrical appliances
generate, and a resident-level energy meter of adequate granularity, appliance iden-
tification becomes possible.

10.1 Introduction

Great benefit lurks in capturing detailed energy consumption of electrical appliances
on residences. Through measuring, inefficient appliances and thriftless usage pat-
terns can be identified. Once this occurs, replacing certain appliances and deferring
the use of others should have positive financial and environmental results. Further-
more, studies [7] support that residence occupants that are informed about detailed
consumption tend to exhibit behavior against energy waste.

Measuring how much electrical energy each customer consumes has been an
intrinsic part of the electricity generation, transmission, distribution, and usage sys-
tem, collectively known as the grid, since its inception. However, the size and the
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complexity of the grid has been steadily increased through the years and new chal-
lenges have arisen. A multitude of electrical appliances directly associated with
people’s quality of life depend on the reliability and good operation of the grid. The
advent of technology allows smartmetering of electricity consumption at various lev-
els of granularity. Furthermore, communities can be formed and synchronize their
electricity consumption so as to put less stress on the grid and reap in return financial
and environmental benefits.

An ideal system should be able to inform privileged entities about the consump-
tion of each individual electrical appliance in real time and with aggregated values
for certain periods of interest. In theory, this can be achieved by measuring the
consumption of each appliance. Indeed, some appliances provide embedded mecha-
nisms that report their energy consumption, while energy meters can be put in front
of appliances not equipped with such mechanisms. This approach is known as ILM
(Intrusive Load Monitoring) and also as DS (Distributed Sensing) but has several
shortcomings that renders it largely impractical. Some disadvantages of ILM are that
no widespread standard of sensing electricity consumption on electrical appliances
exists yet, its high complexity of configuration and its high cost. Furthermore, ILM,
as its name indicates, is intrusive and it presupposes highly motivated customers
willing to keep an installation of several metering devices in their homes. These are
major concerns regarding the scaling of such systems to large numbers of customers.

A different approach is NILM (Non-Intrusive Load Monitoring) [8], which is
also known as Single Point Sensing (SPS). In this case, a single meter is installed in
the circuit breaker panel of each home. Through analyzing the energy consumption
patterns, individual appliances can be under certain circumstances identified. Of
course, this method is less accurate than ILM but has the potential of being massively
adopted by customers and utilities alike.

National-level deployments of smart meters have taken place or are planned to be
applied in several countries worldwide. For example, member states of the European
Union have committed to rolling out close to 200 million electricity smart meters,
which accounts for 72% of the European consumers, by 2020.1 The prospect of using
NILM techniques through those smartmeters is tempting.Nevertheless, smartmeters
are designed in order tomainly facilitate the utilities andnot the individual consumers.
The frequency of measurements that they report is low and there are open issues that
have to be addressed like security, privacy, viable financial modeling, efficient big
data handling, and others.

Several approaches that aim at accurate estimation of individual appliance con-
sumption from a central metering point have been proposed and are reviewed in
Section 10.3. These approaches can be broadly categorized into supervised learning
and unsupervised learning. Our approach for the problem belongs to the latter cat-
egory and uses Convolutional Neural Networks and Bidirectional Long Short-Term
Memories over a new dataset that we also provide as part of this work.

The rest of this paper is organized as follows. The next section presents the NILM
problem. Section 10.3 presents state-of-the art approaches for load disaggregation. In

1http://ses.jrc.ec.europa.eu/smart-metering-deployment-european-union

http://ses.jrc.ec.europa.eu/smart-metering-deployment-european-union
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Section 10.4, public datasets of interest for the problem are presented. Section 10.5
presents a 3-month case study of monitoring electricity consumption for a single
residence. Finally, conclusions are presented in Section 10.6.

10.2 Nonintrusive Load Monitoring

NILM uses a residence-level meter and continuously analyzes the energy consump-
tion characteristics of a single house. Machine learning algorithms are typically used
in order to identify changes at the power signal that can be attributed to the operation
of certain appliances. A survey of NILM approaches for energy disaggregation can
be consulted in [33].

In order to disaggregate electric power, appliance-specific measurable character-
istic features, or signatures, are employed, that reveal information concerning its
operation and consumption patterns. Proposed signatures may refer to operation of
a device in steady state, or to the shape, size, and duration of its transient behavior.
Transient signatures require high sampling rates and more complex hardware. Sig-
natures proposed include active and reactive power draw, root mean square (RMS)
voltage and current, power factor, V-I trajectory, transient waves, harmonics, elec-
tromagnetic inference, and electric noise on the voltage due to the abrupt switching
of electrical devices. Finally, features like time of day, appliance run times, temper-
ature, and light sensing have been employed to provide supplementary information
about appliance operation. These features are used in order to differentiate the var-
ious devices that populate the electric network. These devices can be classified in:
“on/off” devices that switch between two operation states, finite state devices that
include a finite number of operating states and devices with a continuous range of
power draw (the most challenging category to be distinguished from the aggregated
signal).

10.3 Load Disaggregation Approaches

The disaggregation algorithms proposed in the literature in order to identify the
consumption profile of each individual appliance are categorized into supervised
and unsupervised methodologies. This categorization is based on whether a priori
information and labeled data (a diary of which appliance changed state and when) is
required for training.

The classifiers used by supervised algorithms need labeled datasets, that include
the features and signatures of individual appliances, in order to be trained. Appliance
signatures can be labeled online, based on real-time event detection, or offline, where
each appliance is monitored for a certain amount of time separately by a metering
device. In order to avoid this cumbersome procedure to obtain individual appliance
data, one of the following strategies can be pursued:
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• During the training phase, appliances are switched on sequentially and thus rec-
ognized from the aggregated load measurement.

• Publicly available open datasets with signatures of several household devices are
used for training, thus minimizing user intervention.

10.3.1 Supervised Disaggregation

Supervised disaggregation algorithms can be of the event-less optimization type, or
of the event-based pattern recognition type that relies on event detection to identify
the appliances.

Optimization-based supervised algorithms model NILM as an optimization prob-
lem. They try to break down an unknown composite load into a set of identifiable
signatures of known appliances in a load signature database. Then they find the
combination of appliances that minimizes the mismatch with the unknown load, in
terms of the features of the appliances in the database and the respective features
extracted for the unknown load from conventional electrical measurements. Integer
Programming [12] and Genetic Algorithms [2] have been applied to solve the prob-
lem. Discerning appliances with overlapping load signatures and the presence of
unknown loads in the aggregated signal are the main issues of optimization-based
supervised algorithms.

Starting with the seminal work of Hart [8], that used a simple clustering-based
technique of real and reactive power changes, pattern recognition methods use clus-
tering andmapping of the state changes to a feature space, in order to identify itemized
energy consumption in the aggregated signal. A challenging issue in clustering, is to
specify automatically the number of different clusters to be used, which corresponds
to the number of constituent devices in the aggregated load.

In [26], given the measured aggregated real power signal and a detected steady-
state change, a naïve Bayes classifier is used in order to compute the most likely
state of each device, assuming independent states between devices. The classifier is
trained independently on each device and then the trained classifiers are used together
to disaggregate a set of devices.

A Support Vector Machine (SVM) with a Gaussian kernel for the classification
process for registered appliances and a one-class SVM for the detection process of
unregistered appliances were used in [14]. SVMswith linear, polynomial, and Radial
Basis Function (RBF) kernels, trained and tested using spike train data resulting from
aFourier harmonic analysis of the input currentwaveform, in the presence ofmultiple
devices, were also developed for signature extraction and device identification in
[30]. Moreover, Artificial Neural Network (ANN)-based approaches to nonintrusive
harmonic source identification were used, including a multilayer perceptron (MLP)
and an RBF neural network.

A k-Nearest Neighbor Rule (k-NNR) recognizer has been used in [31] in order to
identify different types of appliances and their energizing andde-energizingoperation
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statuses, based on transient features. Finally, some forms of Hidden Markov Models
(HMMs) have also been applied [23].

We summarize on Figure 10.1 the main features of the supervised disaggregation
algorithms reported in the present section, which constitute a representative, but not
exhaustive, list of the methodologies presently used in the literature.

10.3.2 Unsupervised Disaggregation

Unsupervised NILM methodologies are more adapted for real-time applications,
since, unlike supervised NILM techniques, they do not require labeled datasets. By
minimizing supplemental costs and human interaction, theymay constitute a promis-
ing, inexpensive, large-scale, load disaggregation alternative. According to the data
needed for energy disaggregation, the unsupervised approaches can be categorized
into:

• Approaches that require unlabeled training submetered appliance data in order to
build the appliance models and populate their appliance database (mostly HMM
based techniques)

• Approaches that require prior submetered appliance data to be collected for training
fromknownhouses and then they canbe further applied to unknownhouses (mostly
deep learning based techniques) and lastly

• Approaches that do not demand for submetered appliance data or prior knowledge,
in order to perform energy disaggregation.

HMMs [27], Factorial HMMs (FHMMs) and their extensions, as Additive Facto-
rial HMMs with a convex optimization formulation of approximate inference [18],
Conditional FHMMs (that do not scale well with an increase in the number of target
appliances), Factorial Hidden Semi-Markov Models, Conditional Factorial Hidden
Semi-MarkovModels [25] and Hierarchical Dirichlet Process Hidden Semi-Markov
Models (HDP-HSMMs) [13] have been utilized in the literature for load disaggre-
gation.

Usually, each single appliance is modeled as an HMM, i.e., a Markov statistical
process with the finite set of its hidden (not measurable) discrete states representing
the time series of the unobservable steady states of operation of the appliance. It is
the output of the model that is visible to the observer. The Markov property states
that the conditional probability distribution of a hidden state depends only on the
value of the hidden state at the immediately previous time moment, that is, all the
information in the sequence of states that preceded, is incorporated in that value.
Then super-state HMMs or an FHMM, which can model the interaction of several
independent processes, are used to model a household. In a super-state HMM, the
output measurement corresponds to the measurement of a superposition of the states
(the number of total states grows exponentially with the number of appliances). In a
FHMM, the output at each time moment is the summation of measurements of the
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SUPERVISED LEARNING

EVENTLESS OPTIMIZATION EVENT BASED

INTEGER PROGRAMMING [12]
For appliances with mul ple modes or 

of the same type opera ng 
simultaneously. A one-cycle waveform 

por on of every appliance is a 
prerequisite. No relearning needed 
when a new appliance is installed. 

Small computa onal burden. Cannot 
dis nguish appliances with same 
waveforms. Wrong es ma on for 
appliances with small current. Not 

applicable to cases where the 
opera ng modes cannot be defined. 

Accuracy rates of over 80% are 
reported.

GENETIC ALGORITHMS [2]
Uses fuzzy clustering to find typical 

switch states of frequently occurring 
appliances, gene c algorithms to 
create Finite State Machines for 

different appliances and dynamic 
programming to find the best matching 

combina on of switch events. Uses 
ac ve power consump on , without a 
priori knowledge concerning special 

appliances. Detects recurring 
signatures of frequently occurring 
appliances’ switching behavior and 

handles them as switch events 
(automa cally detects pa erns of 

Finite State Machines). Neglects rare 
and small events.

CLUSTERING [8]
Uses measured average normalized 

power and RMS voltage as signatures. 
An edge detec on algorithm finds the 
mes and sizes of all step -like changes. 
Uses clustering of observed changes 

with determina on of the appropriate 
number of clusters. Uses cluster pairing 
to construct on/off models. Suitable for 

on/off appliances. Not suitable for small, 
con nuously variable or always ‘on’ 

appliances.

NAÏVE BAYES [26]

Uses a naïve Bayes classifier to compute 
each device’s most likely state, given a 

measured aggregate total and detected 
state step changes.  Uses circuit-level 
energy measurements to be able to 

monitor small or variable power devices. 
Measures normalized real power and 
steady-state changes as an addi onal 

informa on source. Supposes non-
correlated opera on of devices. Can 

monitor devices with complex state or 
con nuously variable power use. 

Training data is needed in order to 
detect each device. The classifier is 

trained independently on each device 
and the trained classifiers are used 
together to disaggregate a set of 

devices. Small resul ng error rates are 
reported.

SVMs
Features are extracted from the electric 

current of each AC cycle by Principal 
Component Analysis (PCA). A SVM with a 

Gaussian kernel is used for the 
classifica on of registered appliances 
and a one-class SVM for detec on of 

unregistered appliances. In the learning 
process electric current signals are used 

for all target appliances in advance. 
During recogni on, features are 

extracted by the inner product of the 
appliance current signal and the PCA 

basis vectors. High accuracy is reported 
[14]. SVM-based models with linear, 

polynomial and RBF kernels are used to 
classify the presence or absence of 

combina ons of several devices. 
Techniques are used to extend the two-
class SVM classifier into a mul class one 

[30].

MLP, RBF NEURAL NETWORKS [30]
ANNS are used for classifica on, trained 

and tested using spike train data 
gathered from the Fourier analysis of 

the input current waveform in the 
presence of mul ple devices. Several 
training algorithms (gradient descent 

with momentum, resilient 
backpropaga on) were tested. All 

classifiers showed excellent classifica on 
results. Laboratory measurements and 
mathema cally created data were used 

for training.

HIERARCHICAL FHMM [23]
Discovers and clusters the signals of 

correlated devices. Hierarchical FHMMs 
work also with data of non independent 
devices and when even more than one 
devices change state at each me step. 

The rela onship between devices is 
u lized to improve the speed and 

accuracy of inference.

k-NNR RECOGNIZER [31]
A er load energizing and deenergizing 
event detec on is performed, a k-NNR 

recognizer based on transient features is 
used, to iden fy different types of 

appliances and their opera on status 
under single-load and mul ple load 

opera on scenarios. In order to 
determine the class of an unknown 

feature vector, its nearest k neighbors, 
from each known classified vector in the 
training dataset, in terms of the squared 
Euclidean distance, are found, together 
with a majority vo ng mechanism . The 

Ar ficial Immune Algorithm with the 
Fischer criterion is employed to 

adap vely adjust the feature parameters 
and improve the recognizer 

iden fica on performance, when a new 
type of appliance is added. Simplicity in 

computa on and implementa on. 
Overall recogni on rates higher than 

95% reported

Fig. 10.1 Supervised learning for NILM
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individual chains and corresponds to the aggregate consumption of the household.
An HMM is mainly characterized by the following quantities:

• The initial probability distribution of its states.
• A transition matrix that incorporates all the probabilities of transitioning from
a certain state at a particular time moment to another state at the immediately
successive time moment.

• An emission matrix representing the probabilities of observing a particular output
measurement, given that the system is at a certain state in the same time moment.

Learning in an HMM consists of defining the above characteristics, given a
sequence of measurement values of the observable output. Learning can be achieved
by using, for example, expectation maximization [20], or iterative K-means [22].
Inferring in an HMM consists in retrieving the optimal sequence of hidden states,
given its characteristics and a respective sequence of values of the observable output.
Inferring (i.e., load disaggregation) can be achieved by using, for example, the sparse
Viterbi algorithm [21], or a particle filter [6]. FHMMs are highly susceptible to local
optima.

In [9, 32] a Graph Signal Processing (GSP)-based approach is proposed, by con-
sidering the load disaggregation problem as a single-channel blind source separation
problem, on which to perform low-complexity classification of the acquired active
power readings. Active power measurements are treated as a signal, indexed by the
nodes of an undirected graph. The vertices of the graph correspond to the signal
samples and the weights of the edges connecting the vertices reflect the degree of
similarity between the nodes, enabling grouping of on/off events from the same appli-
ance. Then, an optimization problem is defined and regularization on the constructed
graph signal is applied, in order to find the signal with minimum variation.

Deep learning refers to machine learning approaches based on Artificial Neural
Networks (ANNs) composed of many layers. By using this kind of architectures,
it becomes possible to learn a hierarchy of features and these representations are
invariant to local changes occurred in the input data. In general, deep learningmodels
require big amounts of data, in order to generalize well. Deep learning architectures
such as the biologically inspired Convolutional Neural Networks (CNNs) [3, 15],
RecurrentNeuralNetworks (RNNs) [17], LongShort-TermMemories (LSTMs) [17],
denoisingAutoencoders (dAEs) that treat disaggregation as a denoising problem [17]
and combinations of deep learning and HMMs [11] have been applied to the load
disaggregation problem.

The main characteristics of the algorithms presented in this section for unsuper-
vised disaggregation are reported in a condensed form on Figure 10.2.

10.4 Public Datasets

In 2011, the first publicly available data set for NILM research, the Reference Energy
Disaggregation Dataset (REDD) was introduced [19]. REDD captured power data
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UNSUPERVISED LEARNING

HMMs
A computa onally efficient (scaling linearly with the number of HMMs) 

method of approximate inference that exploits the structure of 
Addi ve Factorial Hidden Markov Models, is proposed in [18]. In [25], a 

disaggregator that uses a super-state hidden Markov model and a 
sparse Viterbi algorithm variant is introduced, that disaggregates mul -

state loads, runs in real- me and performs computa onally efficient 
exact inference. Explicit-dura on Hierarchical Dirichlet Process Hidden 

semi-Markov Models are introduced in [13], that do not rely on 
training data to learn device models, but on simple prior informa on, 
that can model mul ple different power modes per device and that 

uses Gibbs sampling to learn all levels of the model . In [27], the 
construc on of a system-level model allows independently generated 

device models to be combined as necessary, while the energy 
predic on method u lized maximizes the probability of the predicted 

device outputs at each sampling instant.

GSP
An approach not requiring any training, built upon the 

field of Graph Signal Processing (GSP) in order to 
perform adap ve thresholding (for robust event 
detec on), clustering and pa ern matching , is 

proposed in [32]. It is based on represen ng a dataset 
using a discrete signal indexed by nodes of a graph. 

The method is not sensi ve to adding/removing 
appliances and performs well for frequently used and 

uncommon appliances and is suitable for online 
applica on. Low complexity, simple opera on and 

minimal customer support are the main 
characteris cs. Also, approaches minimizing the total 

graph varia on and further refining the total graph 
varia on solu on by using simulated annealing, are 

considered in [9].

RNNs
RNNs with memory, that map from the en re history of the inputs to 
an output vector, LSTM memory cells not suffering from the vanishing 

gradient problem of RNNs that limits their memory, bidirec onal 
(parallel) RNNs suited mainly for offline disaggrega on and denoising 
autoencoders that a empt to reconstruct a clean target (clean power 
demand of the target appliance) from a noisy input (power demand 

from other appliances) are considered in [15], [17]. The architectures 
experimented, consisted of a 1-D Convolu onal Neural Network in the 

input (also used as last layer for the autoencoders ), followed by 
adequate LSTM and fully connected layers. The Convolu onal layers 

are built with a small number of feature detector filters and with 
shared weights across the en re input. An architecture trying to 

regress the start and end mes and the average power demand of a 
target appliance has also been used. The networks are trained on both 
real aggregate data and synthe c aggregate data ac ng as a regularizer 

improving the net’s ability to generalize. Real data are used for 
valida on and tes ng. It is found that the neural networks outperform 

combinatorial op miza on or factorial hidden Markov models and 
generalize well to unseen houses. 

EM, K-MEANS, VITERBI, PF
In [20], a hierarchical hidden Markov model (HHMM) 

framework to model home appliances is proposed, for 
appliances with dis nct power consump on profiles . A 
forward-backward algorithm, based on the framework 

of expecta on maximiza on (EM), is formalized for 
the HHMM fi ng process . In [22], an itera ve K-

means model fi ng algorithm and a solver based on 
segmented integer quadra c constraint programming 
is considered. In [21], the Viterbi paradigm of factorial 
hidden Markov model is transformed into an integer 

quadra c programming problem and the 
transforma on is further combined with the 

constrained programming paradigm to reduce the 
solu on search space and improve the computa onal 
efficiency. In [6], the appliance states are es mated by 

par cle filtering (PF) which is suitable for nonlinear 
problems with non-Gaussian noise. No training during 
opera on is necessary. Accuracy of 90% is achieved. 

The algorithm is capable for real- me. 

Fig. 10.2 Unsupervised learning for NILM

from six residencies for a 19 days period. Since then, several researchers use it as
a testbed for disaggregation algorithms. In 2012, the Building Level fully labeled
dataset for Electricity Disaggregation (BLUED) was released [1] containing transi-
tional power data from a single residence for an 8 days period. A number of other
datasets focused onNILM research followed. A nonexclusive list of such datasets are
Pecan Street (2013) [10], AMPds (2013) [24], iAWE (2013) [4], UK-DALE (2014)
[16], and SustData (2014) [28].

Unfortunately, each dataset has its own characteristics like sample frequency,
types of power data parameters measured, and others. These intricacies make com-
parison among disaggregation approaches difficult. In order to alleviate this prob-
lem NILMTK2 toolkit was introduced [5]. NILMTK is an open-source project that
enables parsing of several datasets, data preprocessing and statistical analysis. It

2http://nilmtk.github.io/

http://nilmtk.github.io/
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also includes a number of reference disaggregation algorithms and a set of accuracy
metrics.

10.5 A Case Study

In this case study, power data of a single residence in Greece was monitored for
a period spanning 117 days. During this period, occupants of the household kept
conducting their usual activities. The metering frequency was at 1 reading per 10 s
and in addition to the household aggregate, four appliances were also monitored:
an electric oven, an electric water heater, a fridge, and a television. The physical
quantities that were measured by each sensor were, the active power in Watts, the
cumulative energy in Watt-hours and the voltage in Volts. The house used an oil
heating system, while a solar water heater provided hot water during sunshine days.

It should be noted that participants in the experiment were informed about the
data collected and gave consent about all possible uses of the data.

10.5.1 Experimental Setup

Three energy sensors were installed, one Meazon DinRail 3-Phase Advanced
(Fig. 10.3) and two Meazon Izy Plugs (Fig. 10.4). Since DinRail is a three-phase
sensor and the residence used single-phase power, one clamp was used for metering
the mains while the other two were used for metering the electric water heater circuit
and the electric oven circuit. All sensors sent readings wirelessly every 10s to the
gateway which was a Meazon Janus Box (Fig. 10.5). The gateway published the
readings as MQTT topics that were captured from a daemon Python script running
on a Raspberry PI and subsequently stored on an SQLite database creating a sepa-
rate database file for each day. Sensors sent their readings to the gateway through
the ZigBee protocol while the gateway and the Raspberry PI were connected to the
same wired local network. Collected data were transformed to HDF5, which is the
data format used by NILMTK. HDF5 embeds the data model metadata and supports
effective storing and analyzing of data.

10.5.2 Descriptive Statistics

Data collection started at February 19, 2018 and ended at June 15, 2018. The per-
centage of the submetered energy was 58.76%. The remaining energy was consumed
by devices like the washing machine, air conditioner, microwave oven, electric iron,
and other electric appliances that were not submetered. The total energy consumed
was 874.37 KWh. Dropout rates for the sensors were at 4.82% for the mains sensor
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Fig. 10.3 Meazon DinRail
3-Phase advanced

Fig. 10.4 Meazon Izy Plug
(submetering sensor)

Fig. 10.5 Meazon Janus
Box (gateway)

(Fig. 10.6) and 4.04% and 0.12% for the fridge and television plug sensor, respec-
tively. Dropout measures the proportion of missing samples which in our case was
set to occur when a sensor failed to deliver a measurement in a period of 120s. The
television plug has the most favorite dropout value, since it was very close to the
gateway, while the fridge plug was located further away and the main sensor even
further away.

Figure 10.7 shows the percentage of consumption among devices that were sub-
metered. Surprisingly, television was the device with the highest cumulative con-
sumption during the experiment period. This device was an LCD 40 inches smart
television (240V, 40–60Hz, 190W). We found out that additionally to its typical use
it was also used for background listening to radio stations, a fact that kept the device
operating for long periods of time during the day. The second most consuming appli-
ance among submetered ones was the fridge (220–240V, 50Hz, 230W). Figure 10.8
shows the power consumption measured in a day.
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Fig. 10.6 Dropout rate for the mains sensor was at 4.82%

Fig. 10.7 Consumption among submetered electric appliances

10.5.3 Disaggregation Tests

We experimented with a multilayer architecture that uses Convolutional Neural Net-
works (CNNs) and Bidirectional LSTMs (Long Short-Term Memories).

ACNNconsists of a number of convolutional and subsampling layers, followed by
fully connected standard multilayer neural networks. Their architecture is designed
to take advantage of the multidimensional structure of the input data and is achieved
with local connections and tied weights and pooling, resulting in translation invariant
features. A number of kernels (filters) is convolved with the input data to produce
feature maps, which are then subsampled with pooling, over contiguous regions. An
additive bias and a nonlinearity are applied to each feature map.
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Fig. 10.8 Power data of a single day

LSTMs are a special kind of RNNs (Recurrent Neural Networks). In RNNs,
feedback loops are allowed in each layer, from the output to the input, defining a
recurrence relation over time steps that gives memory to the model. LSTMs have a
different structure permitting to “shape” the information to throw away or store or
output, through their forget gates, input gates and output gates, respectively. They can
operate over sequences of vectors and can learn any causal time-varying mapping.

Bidirectional LSTMs make possible for future information to be reachable from
the current state. Two opposite direction hidden layers, one accessing information
in the forward direction and the other in the reverse one, are connected to the same
output, so that the output layer takes information from past and future states. When
all timestamps of the input sequence are available, one of the LSMTs is trained on
the input sequence and the second one on its reverse copy.

The architecture used consisted of a 1D convolutional neural network in the input,
having 16 output filters in the convolution, a stride length of 1, a kernel size (length
of the 1D convolution window) of 4 and linear activation. It was followed by two
stacked layers of bidirectional LSTMs having size 128 and 256, respectively. Then,
a fully connected layer with 128 neurons and tanh type activation, fed a one neuron
output layer with linear activation, in order to predict the disaggregated value.

The network was trained per target appliance. During the learning phase, in the
forward pass, the network’s output is initially computed for each specific network
input (a window of aggregate power demand). Then the error between the computed
network output and the target desired output (the power demand of the target appli-
ance) is computed and used as the objective function. The connection weights and
biases are then modified in the backward pass, in the direction that minimizes the



10 Appliance Identification Through Nonintrusive Load Monitoring in Residences 239

error. The neural networks learn through the modification of their weights. All the
network weights were initialized randomly. Stochastic gradient descent was used to
modify each weight and reduce the error. Because of a huge number of trainable
parameters, large training datasets are required. Synthetic aggregate data were also
used,which are easily obtainable by randomly combining data from single appliances
over complete cycles of their operation. The use of synthetic data is important, since
they act as a regularizer improving the network’s capacity to generalize to unseen
data. The multiple layers of neurons in the architectures used also improve learning
a hierarchy of feature detectors from the data.

The network performance was evaluated by means of performance measures for
binary classification, where the input is classified into one and only one, of two
nonoverlapping classes. The use of Precision, Recall, Accuracy, and F1 scores in
the evaluation of Machine Learning algorithms, is an example of borrowing from
Information Retrieval and Information Extraction [29]. Given the number of True
Positive (TP) events (positive events that are also classified as positive), TrueNegative
(TN ) events (negative events that are also classified as negative), False Positive (FP)
events (negative events mistakenly classified as positive), and False Negative (FN )
events (positive eventsmistakenly classified as negative), the total number of Positive
(P) events, and the total number of Negative (N ) events in ground-truth, we define

Accuracy = TP + TN

P + N
(10.1)

Precision = TP

TP + FP
(10.2)

Recall = TP

TP + FN
(10.3)

F1 = 1
1

Precision+ 1
Recall

2

= 2 · Precision · Recall
Precision+ Recall

(10.4)

Accuracy measures the correctly predicted events in the total observations.
Precisionmeasures how many of the selected events are relevant (it is high when FP
is low). Recall measures the percentage of the “right” events that were found (it is
high when FN is low). F1 is the harmonic mean of Precision and Recall (i.e., the
reciprocal dual of arithmetic mean). The F1 score gathers both Precision and Recall
in one formula and takes an intermediate value between the Precision and Recall
values.

Fridge Operation Disaggregation

After training the neural network with data collected during the time period from
February 19, 2018 to April 30, 2018, we tested its learning with unseen data in the
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Table 10.1 Metrics for the
fridge disaggregation using
RNN

Metric Value (%)

Recall 97.17

Precision 89.99

Accuracy 89.86

F1 score 93.45

period after April 30, 2018. Results concerning a specific day are given in Figures
10.9, 10.10 and 10.11. Disaggregation results of the refrigerator and electric oven
are reported.

A threshold is used so that, when an appliance’s ground-truth or neural network
estimated values transit above that threshold, indicates a transition from the “off”
to the “on” state for that specific appliance, while an inverse transition indicates
the passage from the “on” to the “off” state. These transitions were used in order
to calculate the Accuracy, Precision, Recall, and F1 scores, which for the fridge
disaggregation case are satisfactory and are reported onTable 10.1. Themean value of
the absolute error between the estimated power and the ground-truth power amounts
to 49.75W, while the relative error in the total energy amounts to 18.68%.

In Figure 10.9,we report the ground-truth and estimated power for the refrigerator,
during a specific day.

Fig. 10.9 Disaggregation of the fridge using RNN
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Fig. 10.10 Disaggregation of the electric oven using RNN (predicted ground-truth)

Fig. 10.11 Disaggregation of the electric oven using RNN (predicted-mains)
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Table 10.2 Metrics for the
electric oven disaggregation
using RNN

Metric Value (%)

Recall 44.61

Precision 24.58

Accuracy 73.65

F1 score 31.70

Electric Oven Operation Disaggregation

The respective results for the electric oven are given on Figure 10.10, while on
Figure 10.11 we report the appliance’s estimated power and the total aggregated
power. The scores for the electric oven are reported on Table 10.2, while the mean
value of the absolute error equals 56.03W and the relative error in the total energy
equals 28.10%.

Let us notice that the power demand of the electric oven (in the order of 2KW) is
much higher than that of the fridge (which is in the range of 250W), so that these two
appliances should be easily separated by the RNN. However, while the metrics of
the fridge are satisfactory as one can conclude from Table 10.1, this is not true in the
case of the electric oven. The low Precision score in Table 10.2 for the electric oven
disaggregation can be justified by the presence of a high number of false positives
(FP), as this becomes evident by inspection of Equation (10.2). Indeed, it becomes
clear fromFigure 10.10 that there exist predictions of positive events for the operation
of the electric oven, which do not correspond to the electric oven ground-truth. From
Figure 10.11, where the aggregated power demand is reported, it becomes evident
that the false positive events correspond to peaks that exist on the aggregated power
signal and which are due to another appliance in the electric network. These peaks
are falsely perceived by the RNN as belonging to the electric oven appliance.

The dataset introduced in this paper can be found at https://github.com/chgogos/
NILMGR.

10.6 Conclusions

Much of the electricity is wasted. Every action that can optimize the way that we
produce, distribute and consume electrical energy has the potential of big benefits
for the planet at large. The stages that are responsible for the heavier losses are the
generation stage and the final use stage of energy, while significantly smaller losses
occur during the transmission and distribution stages. A great portion of electricity
consumption is attributed to residences. It is believed that home owners don’t have
good intuition about the energy consumed by electrical appliances they use on a daily
basis. NILM has the potential to improve this situation with minimal annoyance and
involvement of the occupants.

https://github.com/chgogos/NILMGR
https://github.com/chgogos/NILMGR
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NILM research started on the 80s. Since 2011, NILM attracted much interest
from the scientific community and the industry. Possible causes for this phenomenon
might be the advent of smart meters, the machine learning flourishing and the need
to curb electricity consumption for environmental and financial reasons. Several new
approaches for appliance disaggregation were suggested and new ideas emerge at
an accelerated pace. This paper presented a review of the state of the art for NILM,
introduced a new dataset for the problem, and presented disaggregation results for
specific appliances using RNNs.

Since our sensors support higher sampling frequencies, we plan to further inves-
tigate the problem by developing methods for the use of transient signatures of dif-
ferent appliances, which can be differentiated by the shape, or harmonic content of
their transient behaviors. Moreover, it would be interesting to identify the effect that
incorporated knowledge of external sources of information like weather, sunrise and
sunset times, holidays and feast days, time of day, might have on the improvement
of the accuracy of our predictions.

Acknowledgements We would like to thank MEAZON (https://meazon.com/) for providing us
with the sensors and the gateway that were used in our experiments and for the technical support
when needed.
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Chapter 11
Management Suggestions for Process
Control of Semiconductor
Manufacturing: An Operations Research
and Data Science Perspective

Marzieh Khakifirooz, Mahdi Fathi, Chen Fu Chien and Panos M. Pardalos

Abstract With advances in information and telecommunication technologies and
data-enabled decision-making, smart manufacturing can be an essential component
of sustainable development. In the era of the smart world, semiconductor indus-
try is one of the few global industries that are in a growth mode to smartness,
due to worldwide demand. The promising significant opportunities to reduce cost,
boost productivity, and improve quality in wafer manufacturing is based on the
integration or combination of simulated replicas of actual equipment, Cyber-Physical
Systems (CPS) and regionalized or decentralized decision-making into a smart fac-
tory. However, this integration also presents the industry with novel unique chal-
lenges. The stream of the data from sensors, robots, and CPS can aid to make the
manufacturing smart. Therefore, it would be an increased need for modeling, opti-
mization, and simulation to the value delivery from manufacturing data. This paper
aims to review the success story of smart manufacturing in semiconductor industry
with the focus on data-enabled decision-making and optimization applications based
on “Operations Research” (OR) and “Data Science” (DS) perspective. In addition,
we will discuss future research directions and new challenges to this industry.
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11.1 Introduction

11.1.1 Industrial Revolution and “Industry 4.0”

The importance of national manufacturing strategies such as “Advanced Manufac-
turing Partnership” (AMP) of USA since 2011 [1], “Industry 4.0” of Germany since
2011 [2], “La Nouvelle France Industrielle” since 2013 [3], “Future of Manufactur-
ing” of UK since 2013 [4], “Made in Sweden 2030” since 2013 [5], “Factories of
the Future” of European Commission since 2014 [6], “KoreaManufacturing Innova-
tion 3.0” since 2014 [7], “Industria Conectada 4.0” of Spain since 2014 [8], “Smart
Industry” of Netherlands since 2014 [9], “Industry 4.1J” of Japan since 2015 [10],
“Made in China 2025” since 2015 [11], “Fabbrica Intelligente” of Italy since 2015
[12], and “Innovation and Enterprise 2020 Plan” of Singapore since 2016 [13] have
reemphasized the shifting standard of manufacturing and production system which
led to the Fourth Industrial Revolution generation.

The industrial revolution streamdrives the deployment of novel concepts for smart
factories, new generation of monitoring and collaborating systems, or in general
words the smart manufacturing system which it is built upon the CPS [14], “Internet
of Things” (IoT) [15], and cloud and cognitive computing [16, 17]. The first step
toward the smart manufacturing is the connectivity [18]. All the components in
the industry must be connected to a single network, which is being allowed by
the CPS and IoT which further confesses information interchange and alliance to
attain a flexible and self-adaptive system of production. Moreover, by the integration
of information and technologies, cloud and cognitive computing can facilitate the
internet-based optimum interface and diagnostics, and can comprehend self-control
system (self-learning, self-optimization, and self-awareness).

The fundamental concepts for designing smart manufacturing concerning the
discipline and the precise distinction in their respective meaning and utilization are
as follows [19]:

• Adaptation to human needs,
• Advance development of products and services,
• CPS,
• Corporate social responsibility,
• New systems in distribution and procurement,
• Self-organization,
• Smart factory.

The concepts mentioned above might experience several kinds of challenges and
complications for smart manufacturing that may include technological, economical,
social, political, and scientifical issues [20]. This paper aims to review the area of
science and technology challenges and point out the industry which is one of the
most capital-intensive and complex that is semiconductor manufacturing industry.
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11.1.2 Semiconductor Industry and “Industry 4.0”

In this era as a part of the technology roadmap for semiconductors driven byMoore’s
law [21] systemscaling, there ismore andmore challenges by the poverty of resources
and emergence of information technology. While the goal of semiconductor industry
possesses the ability to continue technology migration to maintain overall perfor-
mance, it is practically challenging to secure this objective due to the demand for
appropriate action, together with all the steps required for the design to market-
ing. Therefore, the seamless interaction of smart manufacturing components such as
big data, instant data, information technology (cloud, and multimode sensors), high-
performance computing, mobile computing, and autonomous sensing and computing
is necessary for driving “More Moore” (MM) technologies [22].

The “International Technology Roadmap for Semiconductors” (ITRS) [23] iden-
tified several critical limitations faced by semiconductor industry in the near future,
will involve most, if not all, system integration, heterogeneous integration, hetero-
geneous components, external system connectivity, and factory integration.

ITRSdetermined a 35–40% less die cost [24], as one of the technical and reliability
requirements to sustainMMtechnology. To achieve this goal, ITRS identified process
integration, as one of the essential functional elements and critical challenges to
stimulate the need for research and development and to meet a sustainable level
of MM technology. The ITRS metrology chapter has underlined that the primary
drivers in dealingwith process integration are smart automotive, green energy,mobile
communication systems, big data, and medical and health technologies [25].

Process integration, in particular, is dealing with technology and requirements
associated with several phenomena such as:

• Cross leveraging factory integration technologies, across boundaries to achieve
economies of scale.

• Attaining financial development goals while margins are decreasing.
• Increasing global restrictions on environmental issues.
• Dealing with the growing complexity.
• Achieving factory requirements such as capability, cost, equipment reliability, and
productivity.

• Meeting adaptability, scalability and extensibility requirements of a profitable
pioneering factory.

• Post-conventional Semiconductor manufacturing uncertainty (i.e., manufacturing
requirements for new devices, timing uncertainty to identify new devices).

• Constantly responding to ever fluctuating, intricate business demands.

This paper is an extendedversion of [26] and aims to provide a systematic literature
review on the scientific progress of the fourth industrial revolution (“Industry 4.0”—
the most pointed national smart manufacturing strategy) with the perspective of
OR&DS for semiconductor manufacturing. Most precisely, three research questions
are given below
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1. What would be the main challenges in the OR&DS point of view, enabling the
industrial revolution in semiconductor manufacturing?

2. How are the OR&DS addressed the science and technology challenges in smart
manufacturing?

3. What are the managerial suggestions from the integrated information of reviewed
papers to prevail the unseen and future challenges in the path forward to the
implementation of smart semiconductor manufacturing?

In Section11.2, we identify the core challenges of wafer fabrication processes
addressed in literature and the reviewing criteria are used for categorizing the find-
ings and studies. In Section11.3, we detail how these studies are considered the
OR&DS fields into the intelligence semiconductor manufacturing, and how partic-
ular methods are distributed. Thereafter, from the gap in the literature, we propose
some managerial suggestions in Section11.4, for who are interested in walking into
the field of semiconductor intelligence from the OR&DS perspective and in the
domain of the “Industry 4.0”. We conclude the paper in Section11.5, by providing
recommendations for further research and align our mindset for the next step.

11.2 Semiconductor Manufacturing Engineering

In semiconductor fabrication facilities (fabs), in order to fulfill the volatile demands of
the high-mixed product, the related processes and electronic equipment are employed
to produce Integrated Circuits (IC) with the help of a vast number of processing
steps, batch processing models, sequence-dependent tool structures, the auxiliary
resources [27] and recirculating flows. Therefore, this industry remains the most
capital-intensive, for fully automated manufacturing systems [28]. The operations
control of manufacturing facilities of semiconductor is known as tough task and
is envisaged as one of the most composite manufacturing environments. One solu-
tion to deal with these difficulties is to choose the manufacturing and process data
to analyze and modeling processes to empower factories in order to intensify an
enhanced knowledge of the challenges associated with the production process and
to grow visions which can develop prevailing procedures. Hereupon, this is very
important to have enough understanding of the prevailing position of research about
decision-making-based data engineering technologies in semiconductor industry and
recognize fields for future research to maintain the further technologies for IC man-
ufacturing. Therefore, this study aims to detect gaps in the existing works, develop
significant research ideas, categorize existing research struggles and form a layout
that will deliver different ideas related to theOR&DS area in smart ICmanufacturing.
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11.2.1 Challenges in Control of Semiconductor
Manufacturing Process

Despite the sophisticated production process of wafer fabrication, the OR&DS tech-
niques are using basically for the purpose of throughput enhancement and qual-
ity assurance. Regards the general application and intention of using OR&DS
techniques, the main challenges in semiconductor manufacturing are categorized
as follows:

• Photolithography process as the cutting-edge process and being bottleneck in the
production process of semiconductor devices. The main challenge in the pho-
tolithography process is a misalignment between laser bean, wafer surface, and
patterning mask, the error caused by this misalignment is called overlay error.
Overlay error basically has a nonlinear relationship with overlay parameters and
overlay parameters are not independent of each other.

• Large number of processing steps, batch tools, random equipment failures,
re-entrant flows, sequence-dependent tool setups, and auxiliary resources for
some process (i.e., photolithography process) are another source of challenges in
semiconductor manufacturing process. Besides these facts, the semiconductor
manufacturing equipment is extremely costly and to save the cost and time, the
production schedule is mixed, or required to be patched. Dispatching the mixed
schedule from equipment with auxiliary resources to cluster tools is one of the
interesting topics which is required the state of the art of OR&DS techniques.

• Beside the dispatching, dynamic scheduling in semiconductor itself is a chal-
lenging topic. Scheduling system should design in a way such that consider the
bottlenecks, reduce the length of production time or in another word the cycle
time, maximize the throughput capacity and wafer capacity, and make a balance
between the raw material inventory, wafer in process inventory, and finish product
inventory.

• Run-to-run (R2R) control of semiconductor fabrication because of re-entrant flow
of production process, required a flexible, accurate, stable, and fast optimization
process. The main challenge is how to design the R2R control such that can deal
with high-mixed dynamic scheduling plan of wafer fabrication. In addition, ITRS
projected a roadmap for yield enhancement and error reduction which demanded
a highly reliable control system.

• Delay for characteristics measurement from Metrology tools is unavoidable in
semiconductor industry. This is a source of measurable and predictable uncertain-
ties, however, make a challenge for process engineers to design a quality control
system to deal with this source of uncertainty. Yet, there are several sources of
unmeasurable uncertainties which in brief call noise. Dealing with noise is another
challenge in semiconductor manufacturing environment.

• The final product in wafer fabrication is integrated circuit
packaging for protecting the semiconductor device. The main challenge in this
step is designing a packaging system which can protect the integrated circuit from
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environmental changes like thermal effect and particle effect, or in general distur-
bance effect.

• Semiconductor manufacturing process is engaged with chemical processing. Most
of the chemical processes are the source of uncertainties, they reduce the lifetime
of fabrication equipment, are the source of particle, and change the balance in
environmental factors. If the chemical process, doesn’t react well for any reason,
this will be affected on the quality of the wafer. One of the challenging processes
which deal with chemical reaction is the etching process. The lifetime of etching
tools is less than three days, and any uncertainty caused by quality reduction
of etching tools affect on edge, depth, and length of the wafer, called critical
dimension error.

• The automated material handling in semiconductor fabrication although brings a
huge source of benefits to this industry, however, the dynamic scheduling system
of wafer fabrication required a dynamic allocation system for material handling
as well.

11.2.2 Review Method

The methodological review used in this study is the systematic review with the
objective of history review, and status quo review [29]. In the first place, the duration
of review is narrowed by the milestone of national manufacturing strategies since
2011. We abstracted how with development the national manufacturing strategies
semiconductor industry is adapted to vision and evolution of the smart industry. From
studies conducted after 2011, especially recent trends since 2017, most prevalent
terms selected out of index terms of papers in the field of “smart semiconductor” or
“semiconductor intelligence”. The candidate search terms considered to be the most
linked items to the scope of this paper are summarized in Table11.1.

In this paper, the systematic review conducted based on several classification
methods to categorize the review papers as follows:

• Organize the type of research methods by Wieringa et al. [30] (including: vali-
dation, evaluation, solution, philosophical, opinion, experience).

• classify the areas of manufacturing by Meziane et al. [31] (including: qual-
ity management, design, process and planning, control, environment, health and
safety, maintenance and diagnosis, scheduling, and virtual manufacturing).

• categorize the formof contribution by keywordingmethod [32] (including: archi-
tecture, framework, theory, methodology, model, platform, process, tool).

• classify the type of analytic byDelen et al. [33] (including: descriptive, predictive,
and prescriptive).
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11.3 OR&DS Problems in Semiconductor

As mentioned previously in Section11.1, the main challenges and threats engaged
in semiconductor manufacturing and smart industry can be answered by OR&DS
perspective solutions. Following this section, we provide OR&DS role in smart
semiconductor industry by answering some additional research questions in this
direction.

11.3.1 By Growing the “Industry 4.0”, How OR&DS Related
Research Found Their Way into Semiconductor
Manufacturing Intelligence?

The milestone of smart manufacturing by national perspective plans started with
AMP by the US government in 2011, which indicates the timeline of our roadmap
design horizon based on OR&DS. The following is the historical review of the
infrastructure of smart semiconductormanufacturing alignswith theFourth Industrial
Revolution.

• before 2011
Methods such as

– data mining [34–42], artificial intelligence [43], heuristic algorithm [44–46],
machine learning [47, 48], data development management [49, 50], Fuzzy logic
[51], neural network [52–54], linear programming [55], statistical analysis [56,
57], optimization method [58–62], and decision analysis [63–67]

Table 11.1 Main and candidate search terms

Major terms Minor terms

Semiconductor manufacturing High-tech industry, integrated circuit, wafer fabrication

Smart manufacturing Advanced manufacturing, advanced robotics, agent-based
system, augmented reality, CPS, Industry 4.0, integrated
manufacturing, open manufacturing, smart manufacturing,
virtual factory

Data science Artificial intelligence, big data, classification, cloud computing,
clustering, data architect, data-driven technology, data
management, data mining, data visualization, deep learning,
IoT, machine learning, predictive modeling, statistics

Operation research Convex optimization, decision theory, dynamic programming,
forecasting, game theory, graph theory, linear programming,
mathematical programming, nonlinear programming,
optimization, queueing theory, soft computing
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and concepts such as

– advanced manufacturing [68], intelligence manufacturing [69], Enterprise
Resource Planning (ERP) [70], Overall Equipment Efficiency (OEE) [71, 72],
Decision Support System (DSS) [43, 73–77], risk management [78], virtual
manufacturing [79, 80], e-manufacturing [81], electronics manufacturing ser-
vice [82], research and development management [83, 84], digital management
[85], and “industry as a whole” [86]

have been appearing in literature to discover the challenges in semiconductor
industry and moving forward to the smart manufacturing.

• 2011
The birth of AMP.
Morse [87] reviewed the reputation and future of nanomanufacturing under the
AMP plan.

• 2012
The birth of “Industry 4.0”.
The first “International Symposium on Semiconductor Manufacturing Intelli-
gence” (ISMI) launched in Hsinchu, Taiwan [88].

• 2013
The first US patent [89] cited the “Industry 4.0” into semiconductor industry.
The earliest field in order of “Industry 4.0” was in the area of soft computing for
scheduling dilemma in semiconductor manufacturing [90].

• 2014
Digitalization of “Industry 4.0” has been discussed at AKL congress.
“Industry 4.0” is introduced as the Fourth Industrial Revolution [91].

• 2015
The “Industry 4.0” points of view appeared for the first time in the theoretical and
analytical researched. This trend was published in the area of the discrete event
[92] and scheduling.
SEMICONEuropa 2015 hold in Germany [93] with the primary context of “Indus-
try 4.0” of semiconductor industry, and among all the highlighted trend in semi-
conductor intelligence discussed in the area of:

– “Organization and Goals of the “Industry 4.0” Platform”
Five frameworks are considered to undertake the organization and structure of
the “Industry 4.0”: (1) reference architecture, standardization, (2) innovation
and research study, (3) safety of networked systems, (4) legitimate context, and
(5) labor training.

– “Cyber-Physical-Production-Systems at the BTU Model Factory”
Address the need for fast and adaptive reconfigurable approaches in produc-
tion planning, logistics and “Manufacturing Execution Control” (MES) for the
“Industry 4.0” platform.

– “The Right Security for the IoT”
Data security, system integrity, Intellectual Property (IP) and product and service
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quality were sanctioned as the requirement for fruitful application of “Industry
4.0”.

– “Technical Visions of “Industry 4.0””
Explained in what ways semiconductor industry can sustain its role as the inno-
vation driver in the area of manufacturing technologies and how it can grow
from “Industry 4.0” initiative.

– “Connecting things and services. How Industry 4.0 increases the benefit of
automation at the Bosch 200mm-Waferfab”
Showed how modularity guarantees a modest role of high-tech automation in a
current environment.

– “Interface A: Candidate for “Industry 4.0”? Adoption and Challenges in Semi-
conductor Industry”
Introduced InterfaceA as an on-proprietary web technology-based interface
which is equipped with data acquisition deliver a flexible interface among man-
ufacturing tools and other IT resolutions and advances the limitation on data
collection of the generic model for control of manufacturing equipment inter-
face.

• 2016
Following that, most industrial countries have their road map for Fourth Industrial
Revolution and digitized industry, researches focusedmore intensely on challenges
and adversities emerged with semiconductor industry and smart manufacturing.
Among all, some important researches are listed as follows:

– Dequeant et al. [94]: a comprehensive review on variability in semiconductor
manufacturing to meet the “Industry 4.0” obligations.

– Waschneck et al. [95]: a comprehensive review of job-shop scheduling. A dis-
cussion on the complexity issue with regards to the delegation of authority of
decisions, tractability and adaptableness, incorporation and interacting, human
aspects, and other “Industry 4.0” frustrations.

– Moyne et al. [96]: a discussion on the requirements of data analytics, merg-
ing, quality, rates, and volumes for digitalis semiconductor industry in control
process.

– Tang et al. [97]: a discussion on the application of big data and IoT for reliability
assessment in semiconductor industry.

– Weber [98]: an introduction to the e-manufacturing on semiconductor device
modeling.

– Herding and Mönch [99]: an introduction to agent-based planning control sys-
tem for semiconductor.

• 2017
Researches have exponential growth with 100% improvement compared to 2016.
Out of over 400 academic papers, the highest percentage of researches were in the
field of OR (∼50%), following by DS (∼25%), roadmap and management field
(∼12.5%) and image processing (∼12.5%) solutions.
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• 2018
The Sixth ISMI was held in February in Hsinchu, Taiwan and among all the
highlighted trends in semiconductor intelligence discussed in the area of:

– The future of smart semiconductor manufacturing
The remanufacturing issue will be a new topic in wafer industry; the sharing
economywill enter into semiconductor industry such that customers will design
the products and semiconductor manufacturers may not be known only for IC
products [100].

– Optimization of process tool operation for future semiconductor manufacturing
Chamber cleaning can meet the extreme in quality control while inducing the
complexity. However, optimization with reinforcement learning can reduce the
complexity [101].

– From smart machines to smart SCs: some missing pieces
The term “smart” doesn’t indicate of using the ICT technology to take the faster
decision. Smart means: better operations management decisions (more on-time
delivery, better asset utilization, less inventory, lower costs, higher quality) and
better systems design decisions (faster ramp, greater flexibility, higher adapt-
ability) [102].

– Manufacturing and SC optimization with “Augmented Reality” (AR) technol-
ogy and “Industry 4.0” concept
Discussion in a thriving industry and academic collaboration for the most exten-
sive shipbuilder in the world by integrating an optimization method and inno-
vative IT technology, AR. They developed an advanced SC and manufacturing
solution named SCM-AR based on AR and Mixed Reality solutions in collab-
oration with Samsung Heavy Industries Co. [103].

11.3.2 What Kind of Studies Is Being Carried out in the Field
of OR&DS in Semiconductor Manufacturing?

The main objective of the above inquiry is to focus on the sort of research is being
carried out in OR&DS field in terms of philosophical point of view along with prac-
tical assessments. To investigate this question, as the foremost step, Table11.1 is

Fig. 11.1 Class allotment of areas of manufacturing for smart semiconductor industry
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used to search all relevant articles since 2011. The articles (conference and journal
papers), which were included at least one of the minor terms in semiconductor man-
ufacturing and smart manufacturing and data science/operations research selected
for the further analysis. We explored over 900 academic publications within this
research. The classification result according to the definition of areas of manu-
facturing by Meziane et al. is depicted in Fig. 11.1. The result ratifies that there
is an extensive gap in fitting the manufacturing design for intelligence layout. The
intelligence layout design for manufacturing generally refers to system engineering
design, sensor allocation problems and design the software agent solutions merge
with high-tech computing technology or service-oriented computing. There is also a
lack of investigation on virtual manufacturing, simulation the physical environment,
e-manufacturing, and AR. In addition, trends related to the environmental issues and
health and safety such as green industry and remanufacturing are demanding topics
for smart manufacturing, which had less attention in semiconductor industry yet.

To determine the gap of the research for smart IC industry, we modified the
classification by Meziane et al. with semiconductor manufacturing context. Some of
the highlighted literature are cited as follows:

• OR

– scheduling [104–109], production planing [110–112], job-shop scheduling
[113], facility layout [114, 115], batch processing [115], bottleneck [116–
118], dispatching [119–121], cycle time reduction [122–125], material handling
[126], SC management [127, 128], inventory management [129, 130], demand
forecasting [131, 132], capacity planing [133–138], lead time [139], supplier
selection [140], purchase order [141], resource management [142, 143], pricing
[144, 145], predictive maintenance [146], condition monitoring [147], opera-
tions planing and control [148–150], product quality [151], new product devel-
opment [152, 153], industry development [154], user experience and interface
[155–158], customer behavior[159], performance measurement [160], portfo-
lio model [161], decision support system [162–164], large scale optimization
[165], and sustainability [166].

• DS

– Yield enhancement and prediction [167–172], WAT test [173], fault detection
and classification [174–176], pattern extraction [177–179], root-cause detection
[180], attribute decomposition [181], virtualmetrology [182], rule-based system
[183], and factor analysis [184].

Figure11.2, illustrates the contributions of each topic in smart semiconductor
industry. The scale of contribution defines such that the most relevant topic granted
the smart semiconductor industrywith the score of 100. Among all highlighted items,
the yield enhancement and prediction, the scheduling problems, supply chain man-
agement, sustainability, and control system, are the major field of interest in articles
since 2011. Due to dependency among process steps in wafer fabrication, challenges
are spread along the production process such that single solution cannot clear up the
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Fig. 11.2 Contribution of most frequent topics among the literature since 2011 related to smart
semiconductor industry

Fig. 11.3 Contribution ofmost frequent topics among the literature since 2011 related to scheduling
in semiconductor industry

problem. Therefore, the hybrid models are a ubiquitous solution in semiconductor-
related literature to deal with an epidemic dimension of problems. Figures11.3, 11.4,
11.5, 11.6, and 11.7 demonstrate how the hybridmethod is associatedwith each other
where we only selected the most common techniques from Fig. 11.1. The results
prove that the significant contribution is reminding among the most interesting top-
ics, and there is an obligation for forming the hybrid configuration ofOR&DSmodels
for overcoming the dynamicity and measurement/unmeasurement uncertainty.
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Fig. 11.4 Contribution of most frequent topics among the literature since 2011 related to supply
chain in semiconductor industry

Fig. 11.5 Contribution of most frequent topics among the literature since 2011 related to control
system in semiconductor industry

The classification study for the type of research method by Wieringa et al. [30]
is illustrated in Fig. 11.8a, b. Figure11.8a shows that how the type of research is
branched over topics, and Fig. 11.8b shows the contribution of each type of research
based on philosophical points of view. For simplicity of comparison, according to the
definition of “experience” in [30], and since this type of research his seldom happen
in OR&DS field, we remove the experience from the list. Concluded from Figs. 11.3,
11.4, 11.5, 11.6, 11.7, and 11.8b, the decision support system and digitization the
knowledge-based system have the lowest contribution among the other research topic
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Fig. 11.6 Contribution of most frequent topics among the literature since 2011 related to sustain-
ability in semiconductor industry

Fig. 11.7 Contribution of most frequent topics among the literature since 2011 related to yield
enhancement and prediction in semiconductor industry

in current status which are required to havemore inspection for advance development
of smart semiconductor industry.
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Fig. 11.8 Classification study

11.3.3 Which Areas of Semiconductor Manufacturing Are
OR&DS Techniques Being Applied In?

The objective of the above inquiry is to highlight the types of inputs and outcomes
from research struggles in the field of OR&DS. To categorize the literature according
to the form of their contributions [32], we divided the attributes of contributions into
two groups of variability on outcome and result (including architecture, framework,
model, methodology), and variability on input information (including theory, plat-
form, process, tool). In this category, platform indicates to the hardware or software
components which enable the applications to execute while framework is the soft-
ware solution for the problem. The process is the low-level processes to overcome the
solution for problem and methodology is the approach to reach to that solution. The
theory is the guideline or roadmap for entering to the mathematical model. Subse-
quently, the tool addresses to the utilities for proposing the solution, and architecture
is components which interact together to achieve the solution. Figure11.9, illustrates
the 2D plot between each category. The result shows that there is a vacancy for
research on integration the mathematical model with software utilities, and hard-
ware platforms. In addition, barely the mathematical solution has been used as the
roadmap for decision makers which can be investigated in the future. The theoretical
approaches for developing the smart semiconductor industry plus compatible utilities
with high-tech computing technology have opportunely for further study.

11.3.4 What Kind of Analytical Analysis Is Being Used in the
Area of OR&DS in Semiconductor Manufacturing?

The objective of the above inquiry is to discuss the analytics of OR&DS in the study
carried out to smart technologies in semiconductor industry.
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Fig. 11.9 Class allotment of areas of manufacturing for smart semiconductor industry

According to Delen et al. [33], the analytical analysis is classifying to descrip-
tive, predictive, and prescriptive analysis where the descriptive analysis enables the
business reporting, dashboards, data warehousing, and scorecards. Subsequently, the
predictive analysis facilities data mining, forecasting, text mining and web or media
mining and prescriptive analysis empower the expert systems, decision models, opti-
mization, and simulation.Althoughwe expect that the application of descriptive anal-
ysis andWeb mining or text mining in semiconductor manufacturing is sporadic, we
still considered all aspects of analytical analysis. The level of interest of each class of
taxonomy presented by Fig. 11.10. Apparently, for advancement, the smartness into
semiconductor industry, the descriptive analysis it will be an inevitable implement
mainly for visualization the production process from the event-driven process.

To concentrate more deeply on analytical methods and their applications on the
semiconductor industry, we come back to challenges discussed in Section11.2 and
review how analytic approaches applied to top challenges on control process of
semiconductor products. Generally speaking, the popularity of techniques strongly
depends on the popularity and severity of the challenges. The following are the details
of applied methods for each challenge.

• Photolithography process, overlay error—challenges for compensating over-
lay error can be investigated through image processing [185, 186] (such as deep
learning, and AI solutions [187]), optimal control algorithm design (such as lin-
ear and nonlinear programming and optimization [150, 188]), and learning-based
algorithm (such asMarkov decision process [189]) for enhancing the performance
of robots and automated devices.

• Scheduling and dispatching-techniques in this field are not varied, more focuses
are on optimization problems, however, the objective of optimizing models make
a big emphasization on researches. The general optimization techniques appear in
literature are meta-heuristic approaches or integer programming [104, 106–109,
113, 139, 190–194] in regards to the complexity and nature of problems. The
minor challenges are addressed the batch data processing and dealt with this phe-
nomena by simple techniques such as linear multivariate regression [195]. Recent
trends utilized the integration of scheduling and dispatching control problemswith
other challenges in the production process such as advanced process control or
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Fig. 11.10 Class allotment of areas of manufacturing for smart semiconductor industry

multi-agent-based system [196–198] and applied reinforcement learning for Het-
erogeneous sources [199–202] or AI models (e.g., neural network) [203] for the
propose of clustering machine subgroups. If the challenges are related to queueing
process, Markov processes also are alternative solutions in this field [204].

• R2R control—challenges for the R2R control in the semiconductor industry
is divided into the design, optimization, application and process improvement.
In the area of design, R2R controller could be designed for multi-input-multi-
output (MIMO), multi-input-single-output (MISO) and single-input-single-output
(SISO) systems, regards how is the dependency issue among the control vari-
ables [150, 168, 182, 205]. The most general structure of the R2R controller
in the semiconductor industry is exponentially weighted moving average algo-
rithm (EWMA) [206]. Consider the investigated problem and complexity of the
control system, the EWMA is adjusted to double-EWMA (for multi-stage tasks)
[207, 208] or threaded-EWMA (for the mixed process) [209]. In addition, smarter
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algorithms are intended to utilize optimal control design and replace it with tradi-
tional and popular EWMA techniques, recommended solutions are kernel-based
algorithm [210], proportional–integral–derivative controller (PID) [150], learning-
based algorithm [211], and game theoretical approaches (e.g., mini-max optimiza-
tion) [171]. Trends in this field has potential to integrate with other techniques to
deal with the different source of complexity in wafer fabrication process, such as
clustering or principal component-based model for identifying the similar batch
and design the decentralized R2R control for batch processing systems [212, 213].
The other major sources of challenges emerged with R2R control are addressing
the improvement the control process through auxiliary resources, such as stability
of control system under different sources of uncertainties and reach to steady-state
control design [214–216], introduce new indexes for measuring controllability
and reproducibility [211], enhance the precision of control parameters by auto-
mated or self-tuning algorithm [217], and emerge the control plant with metrology
equipment [210, 218–220]. In addition, the R2R controller can assist with other
phenomena rather than a control process, including, fault detection and root-cause
identification and classification [221], change point detection, and yield enhance-
ment [171]. Therefore, consider the application, the analytical approaches are spec-
ified (for details about model selection refers to other challenges). Other notable
questions are how to deal with small size of data, how to derive error smoothly,
how to design the R2R control system for dynamic system, and how to consider
within process and between process R2R control models.

• Disturbances and delay—the main purpose of researches in this field is an inves-
tigation on the stability of other solution on the presence of any source of uncer-
tainties. To do that, the first step is to simulate the unmeasurable uncertainties,
the highlighted techniques are generally based on virtual metrology tools and
can be classified on rule-based models such as fuzzy systems [222], or stochastic
processes (e.g., Gaussian and non-Gaussian processes) [223]. In addition, plans
for efficient and proper sampling can enhance the quality of data and reduce the
noise [224]. Trends for root-cause detection and classification can help to find the
source of uncertainties, the most approachable methods in this field are data min-
ing approaches (e.g., principal component analysis, neural network or in general
clustering or classification techniques) [225, 226]. In general words, challenges
are tightened up with disturbance rejection models basically are related in control
design and algorithm [227, 228].

• Packaging—since the quality of packaging strongly depends on thermal effects,
major researches are addressed this challenges through the reliability and survival
analysis such as degradation models or accelerated test [229]. In addition, before
testing the reliability of packaging the thermal effects are predictable by thermal
models based on Fourier series or Kalman filtering models [230]. To investigate
the quality of packaging, few studies indicated this phenomenon by image pro-
cessing [231, 232]. Furthermore, the packaging is almost the final production
process in wafer fabrication, therefore has a strong correlation with yield testing
result. Therefore, for the yield management purpose, one solution is to conduct
the root-cause detection and classification based on the result from the packag-
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ing process. Applicable methods in this step are clustering techniques with data
mining approaches [40, 233–235].

• Critical dimension—although most approaches in this field are related to chemi-
cal and nanoengineering area, yet from theOR&DS perspective, the challenges for
critical dimension enhancement are investigated by advanced process control and
statistical quality control approaches [236, 237]. However, the recent advanced
trends in this field are included the hybrid algorithm which could increase the
performance of controller by adding optimization into process control [238, 239].
The more intelligent hybrid techniques are combined with the sequential learn-
ing or kernel-based learning such as support vector regression or other machine
learning methods [167, 240, 241]. Some researches intended to produce virtual
data by virtual metrology tools [242] to be able to have enough data as the basis
requirements for applying traditional statistical inferences combined with learn-
ing techniques such as LASO and ridge regression [243, 244]. Other trends are
investigated on root-cause identification for identifying the source of uncertainties
and environmental protection through data mining approaches [171].

• Scheduling for automated material handling—scheduling challenges can be
cover by two approaches, first, design an intelligent scheduling system basically
through queueing theory and stochastic process [245], design the distributed net-
work system by mathematical modeling languages such as Petri net [246–248],
design the facility allocation by simulation optimization or design of experiment
techniques such as Taguchi method [249, 250]. Second, find the optimal perfor-
mance of dynamic multi-objective scheduling design through approaches such
as heuristic optimization [143], sequencing optimization [251], and combinatorial
optimization (e.g., Hungarian algorithm) [252]. The performance of the scheduling
system could be measured in the field of quality control.

11.4 Management Suggestion

In semiconductor, managers need to overcome different challenges which are being
mentioned in the above sections. Despite those challenges, in the following, we give
certain future circumstances to “Industry 4.0” standpoints.

Digitalize knowledge-based decision support system

• Incorporating the behavior of human decision makers with proposed solutions.
• Automating decisions made by humans.
• Highlighting the interface of information systems with humans

Incorporate the dynamicity into the solutions

• Developing stochastic anddynamic versions of solutions anddeterministicmodels.
• Anticipating the stochasticity in the models based on dynamic programming,
robust optimization, and stochastic programming.

Design software-based solution with user-friendly interface
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• Considering the role of high-tech computing techniques including cloud comput-
ing techniques in decision-making and parallel computing on Graphics Processing
Units (GPU).

• Knowing the restrictions of current packaged software for semiconductor man-
agement, process, and production.

• Proposing alternative software solutions including service-oriented computing and
software agents for semiconductor planning and scheduling applications.

Forming the hybrid configuration of OR&DS models

• Facilitating planning problems and decision-making-basedORperspective by data
mining techniques.

• Implementing “Manufacturing Execution System” (MES), “Enterprise Resource
Planning” (ERP), and “Advanced Planning and Scheduling” (APS) for developing
the integrated production planning and scheduling solutions.

• Decreasing the measurement uncertainty by merging the hybrid metrology with
state-of-the- art statistical analyses [253].

Simulation and data-driven solutions

• Simulating the physical environment in order to comprehend the connections amid
the real setting circumstance and planning to find solution approaches in the risk-
free environment before applying them.

• Visualizing production planning processes by the use of the event-driven process.
• Modeling and analyzing semiconductor challenges by utilization of various sim-
ulation paradigms (i.e., agent-based systems, hybrid models, reduced simulation
models, systems dynamics).

• Supporting the different aspect of decision-making in semiconductor by embed-
ding the actual simulation methods in existing and forthcoming information sys-
tems.

Process integration

• Integrating decisions made by the different elements in the system to avoid the ad
hoc situation.

• Integrating the high-tech computing procedures to derive the computationally
tractable models, and to discourse the diverse uncertainties come across in the
industry [254].

• Incorporating sustainability aspects into proposed solutions and deterministic
models.

• Integrating the product lifetime into account for demand planning [255].

11.5 Conclusion and Future Research Direction

As a conclusion and future research direction, we attempted to have a broader vision
on the requirements for industrial development and intelligence manufacturing of
semiconductor products. These requirements are barely indicated in literature with
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analytic context and are known as the new obligations for the next step toward smart
manufacturing. In the following, we discuss some of the highlighted topics in this
chain.

11.5.1 Supply Chain Management

Supply chain (SC) is growing exponentially and contributing substantially to the
global economy. This growth is accompanied by continuous technology migration
andminimizing cost for different applications in green energy, communication, com-
puters, automotive, medical, and electronics industries [110]. There are some survey
papers on SC in literature with the scope of needs, practices and integration issues in
[256]; (1)Research agenda framework for supply network integration (questionnaire-
based) in [257]; (2) Decision paradigms for SC management (questionnaire-based)
in [258]; (3) Successes and opportunities in modeling and integrating planning,
scheduling, equipment configuration and fab capability assessment in [259, 260];
(4) E-markets and SC collaboration in [261], and (5) Strategic SC network design
and SC simulation models in [262–264].

According to [265] and [262], one future direction of semiconductor industry
would be global SC simulation models based on a marketing operations perspective,
which lead another research direction in the area of operations management such as
production planning and demand fulfillment, inventory control, capacity and demand
planning, and marketing and sales models. Moreover, positioning the “Order Pen-
etration Points” (OPPs) in global semiconductor SC networks is another strategic
competitive decision, especially for novel product architectures with new options
which can be modeled with game theory (see [265, 266]).

11.5.2 Sustainability and Remanufacturing

Materials, products, and processes are becoming smarter, sustainable, energy aware,
and innovation driven. Sustainability includes (1) Lower use of energy andmaterials,
(2) Greater environmental friendliness [267], and (3) Circular economy and reman-
ufacturing [18]. Nowadays, semiconductor industry has significantly and exponen-
tially increased the rate of e-waste in daily life [268, 269]. There is a challenge for
inventing efficient and pollution-free high-tech recycling technologies for e-waste
which help to enhance the comprehensive utilization of resources, and consequently,
it will develop the cyclic economy. There is a critical future research direction on new
recycling electrostatic separation, which is simple and optimize energy consumption
without any wastewater discharge to recover the mixtures containing conductors
(copper), semiconductors (extrinsic silicon), and nonconductors (woven glass rein-
forced resin) in semiconductor [270].
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11.5.3 Green Smart Semiconductor Manufacturing

Another future research streamwould be data-driven decision-making and optimiza-
tion applications in integrated Smart and Green Manufacturing. Some application
challenges in this area would be: (1) Business Model Challenge: manufacturers face
threats from digital disruptors that are often quicker to adapt traditional products and
exploit new opportunities through the latest technology. (2) Data and Security Chal-
lenge: Smart manufacturing is heavily reliant on technology and data which brings
with it the challenges of protecting that data and ensuring it is secure. Smart man-
ufacturing systems and the generated data from that might also be targets for cyber
attacks. (3) Operations Challenges:Manufacturers need to be agile and respondmore
quickly to update their technology. Connecting different systems to get an end-to-end
picture of the manufacturing process, supply chain, and product usage are a further
challenge [271].

Eventually, the fast-growing semiconductor manufacturing requires a Knowledge
Management Systems (KMS) in order to support management DSS. This KMS will
identify and analyze research trend gaps and organize a future research agenda for
new product development [272].
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Chapter 12
Feedback Control Algorithms
for the Dissipation of Traffic Waves
with Autonomous Vehicles

Maria Laura Delle Monache, Thibault Liard, Anaïs Rat, Raphael Stern,
Rahul Bhadani, Benjamin Seibold, Jonathan Sprinkle, Daniel B. Work and
Benedetto Piccoli

Abstract This article considers the problem of traffic control in which an
autonomous vehicle is used to regulate human-piloted traffic to dissipate stop-and-
go traffic waves. We first investigated the controllability of well-known microscopic
traffic flow models, namely, (i) the Bando model (also known as the optimal veloc-
ity model), (ii) the follow-the-leader model, and (iii) a combined optimal velocity

M. L. Delle Monache · T. Liard
University of Grenoble Alpes, Inria, CNRS, Grenoble INP, GIPSA-Lab,
38000 Grenoble, France
e-mail: ml.dellemonache@inria.fr

T. Liard
e-mail: thibault.liard@inria.fr

A. Rat · B. Piccoli (B)
Department of Mathematics, University of Rutgers, Camden, NJ, USA
e-mail: piccoli@camden.rutgers.edu

A. Rat
e-mail: anais.rat@gmail.com

R. Stern · D. B. Work
Department of Civil and Environmental Engineering, Institute for Software
Integrated Systems, Vanderbilt University, 2301 Vanderbilt Place, Nashville,
TN 37235-1826, USA
e-mail: raphael.stern@vanderbilt.edu

D. B. Work
e-mail: dan.work@vanderbilt.edu

R. Bhadani · J. Sprinkle
Department of Electrical and Computer Engineering, University of Arizona,
1230 E. Speedway Blvd., Tucson, AZ 85721-0104, USA
e-mail: rahulbhadani@catworks.arizona.edu

J. Sprinkle
e-mail: sprinkle@ece.arizona.edu

B. Seibold
Department of Mathematics, Temple University, 1805 N. Broad Street,
Philadelphia, PA 19122, USA
e-mail: seibold@temple.edu

© Springer Nature Switzerland AG 2019
M. J. Blondin et al. (eds.), Computational Intelligence and Optimization
Methods for Control Engineering, Springer Optimization and Its Applications 150,
https://doi.org/10.1007/978-3-030-25446-9_12

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25446-9_12&domain=pdf
mailto:ml.dellemonache@inria.fr
mailto:thibault.liard@inria.fr
mailto:piccoli@camden.rutgers.edu
mailto:anais.rat@gmail.com
mailto:raphael.stern@vanderbilt.edu
mailto:dan.work@vanderbilt.edu
mailto:rahulbhadani@catworks.arizona.edu
mailto:sprinkle@ece.arizona.edu
mailto:seibold@temple.edu
https://doi.org/10.1007/978-3-030-25446-9_12


276 M. L. Delle Monache et al.

follow-the-leader model. Based on the controllability results, we proposed three
control strategies for an autonomous vehicle to stabilize the other, human-piloted
traffics. We subsequently simulate the control effects on the microscopic models
of human drivers in numerical experiments to quantify the potential benefits of the
controllers. Based on the simulations, finally, we conduct a field experiment with 22
human drivers and a fully autonomous-capable vehicle, to assess the feasibility of
autonomous vehicle-based traffic control on real human-piloted traffic.We show that
both in simulation and in the field test that an autonomous vehicle is able to dampen
waves generated by 22 cars, and that as a consequence, the total fuel consumption
of all vehicles is reduced by up to 20%.

12.1 Introduction

Currently, the vehicular transportation system is undergoing a major transition from
vehicles in which humans are responsible for all driving tasks, to one in which
automation is responsible for all driving tasks. The transition is defined [49] in
terms of various levels of automation. The levels range from level one autonomous
vehicles (AVs) available today that provide the driver with minor technological assis-
tance (e.g., stability control or lane correction assist), to level fiveAVs which operate
autonomously in all scenarios and in which humans cannot intervene. As the penetra-
tion rate of vehicles at each level of automation increases and shifts up the scale, new
opportunities are arising to use automated vehicles to begin controlling the overall
traffic flow.

A paradigm of traffic control in which some automated vehicles are also acting
as traffic control devices is beginning to emerge. In particular, the works [10, 16,
26, 57, 58], explore the possibility of adaptive cruise controlled vehicles (e.g., level
one automation) to influence traffic flow, for example, by smoothing the flow and/or
increasing theflow rate.On the extreme end,when the adaptive cruise controlled vehi-
cles are also endowed with communication capabilities between vehicles (referred
to as Cooperative Adaptive Cruise Control (CACC) systems), small headways can
be achieved and substantial increases in freeway throughput can be obtained [3, 5,
9, 12, 23, 29, 44, 50, 54]. On the experimental side, field experiments with com-
mercial adaptive cruise control vehicles illustrate current technology may, in fact,
amplify traffic oscillations [33], while correctly designed CACC systems dissipate
these oscillations [14, 33]. An experiment to harmonize speeds on a US freeway was
recently reported [31, 32].

Theuse of vehicles as traffic controllersmay also integratewithmore classical traf-
fic control infrastructure, such as ramp meters and variable speed limit systems [15,
19, 20, 35, 37, 38, 43, 51], or systems which combine the two strategies [17, 18,
30, 39]. One limitation of the infrastructure-based solutions is their limited spatial
resolution, as well as the need for driver compliance in the case of speed advisory
based systems. The interest to use automated vehicles for traffic control is partly
motivated by these limitations.



12 Feedback Control Algorithms for the Dissipation of Traffic Waves 277

Considering the new direction of traffic control in which automated vehicles act as
actuators, the main contribution of this article is to propose and assess control algo-
rithms designed to dissipate stop-and-go traffic waves with an autonomous vehicle.
Stop- and-go traffic waves are present on freeways and have many triggering events,
such as lane changes. Strikingly, in the seminal experiments of Sugiyama et al. [52]
and Tadaki et al. [55], human driving behavior alone was shown to be sufficient to
trigger stop-and-gowaves. The experiments were conducted on a single-lane circular
track with real human drivers, and the uniform flow at the experiment start, quickly
breaks down into a persistent stop-and-go wave that travels against the flow of traffic.

Motivated by this experiment, we design control algorithms to be implemented
on an autonomous vehicle with the goal of dissipating stop-and-go waves caused by
human driving behavior. We proceed as follows. First, we model the vehicular traffic
at the microscopic scale using one or a combination of two well-known microscopic
models, namely, (i) the Bando or optimal velocity (OV) model [1] and the (ii) follow
the leader (FTL) one [42, 47, 48]. With the models defined, we show that traffic
described by a linearization of the FTL model is not controllable via a single AV,
implying the nonlinear FTL model is not linearly controllable. This result prevents
the use of simple linear controllers to stabilize the traffic around the uniform speed
equilibrium traffic state. On the other hand, we show that traffic described by the
optimal velocity model is locally controllable by an autonomous vehicle. We show
that for driving dynamics, that include both the optimal velocity and follow the leader
terms, the resulting model is also locally controllable.1

We then proceed to design three different controls in which the AV is used to
dampen stop-and-go waves. The first two are based on Lyapunov functions and only
require measurements of the AV speed and the speed of nearby vehicles, while the
third is an PID-type control in which the AV is controlled using only measurements
of its own speed over several proceeding timesteps.

We first assess the effectiveness of the wave dampening controllers though numer-
ical experiments. In addition to showing a reduction in the wave strength, we also
quantify the benefits in terms of a reduction of total fuel consumed by all vehicles in
the simulation. Based on the positive performance in simulation, we proceed to field
validate one control algorithm with a dive-by-wire autonomous- capable vehicle on
a track with 22 vehicles driven by humans. The experiment shows that stop-and-
go waves can be dampened, and the projected reduction of fuel consumption from
the simulations (approximately 20%) is confirmed via real-time fuel consumption
loggers installed on the experimental vehicles.

The remainder of the article is organized as follows. In Section12.2, we review
the main microscopic traffic flow models investigated in this work. Section12.3
establishes themain controllability results of themodels,while Section12.4 describes
the design and testing the wave dissipating controllers in simulation. In Section12.5,
we test one of the wave dampening controllers in a field experiment with real human
drivers and an autonomous vehicle. Limitations and future directions are explored
in Section12.6.

1Established for n � 9 vehicles and conjectured for n > 9.
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12.2 Microscopic Traffic Models

Traffic models are usually defined in categories, depending on the scale at which
they represent vehicular traffic, including microscopic, mesoscopic, macroscopic,
and cellular. For a review of models at various scales see [2, 13, 21, 41]. Moreover,
some approaches are based onmodel-agnostic simulation tools, such as deep learning
and neural networks [7, 22, 25, 60].

In this paper, we focus on microscopic models. Microscopic models are suit-
able for in-silico verification before experimental testing since they describe human
driving behavior at the individual vehicle level. One such model is the com-
bined Bando and follow the leader model, which can be formulated as ẋi = vi ,
v̇i = f (xi+1, xi , vi+1, vi ), where xi is the position of i th car, vi its velocity, and i + 1
is the index of the car ahead.

More precisely, for what concerns the follow-the-leader model, it was introduced
in [42, 47, 48] and it assumes that the acceleration of a vehicle is given by the
neighboring vehicles. The main influence comes from the next vehicle, whose index
is i + 1, that is also called leading vehicle. The main dynamics described by this
model is given by ⎧

⎨

⎩

ẋi = vi

v̇i = C
vi+1 − vi
xi+1 − xi

1 � i � N (12.1)

where C is a constant with appropriate dimension and, for simplicity, from now on
we set C = 1. This model has the following properties:

• The acceleration depends on the relative velocity �v = vi+1 − vi .
• The velocity vi (t) of the vehicle depends on the velocity of the vehicle in front
such that the distance from the vehicle in front is safe.

A drawback of these models is that the acceleration is zero when the relative velocity
is zero independently of the headway d ≡ xi+1 − xi . That is, extremely small head-
ways are allowed even when traveling with extremely high speed, [36]. A model that
fixed this problem is the optimal velocity model (introduced by [1]) that describes
the adaptation of the actual speed to the optimal velocity V (·) which stands for the
desired speed defined by

V (x) = vmax
tanh(x − lv − ds) + tanh(lv + ds)

1 + tanh(lv + ds)
, (12.2)

where lv is the length of cars and ds > 0 is the safe distance between cars. The optimal
velocity has the property that it tends to zero for small headways and it achieves the
maximum value for large headways. The full model reads:

{
ẋi = vi
v̇i = V (xi+1 − xi ) − vi . 1 � i � N

(12.3)
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In thismodel, a driver controls acceleration or deceleration according to the difference
between the optimal velocity and his own velocity. The equilibrium point for this
model is achieved when all cars are at constant speed and have the same headway
[27]. For this model, it is possible to derive a feedback law such that the controlled
traffic system is stable [34].

12.3 Controllability Results for Microscopic Models

In this section,we provide theoretical results about controllability for themicroscopic
models introduced in Section12.2. More precisely, we will focus on a ring-road
setting, which reproduces the situation of the celebrated Sugiyama experiment [53]
with a single AV, which can be controlled, and investigate the controllability of the
corresponding control system.

Let us first recall some basic facts about control systems, referring the reader to
the books [4] and [8] for details. A control systems is a dynamical system written as

ẏ = f (y, u) (12.4)

where y ∈ IRn represents the state of the system and u ∈ U ⊂ IRm represents the
control vector, i.e., the parameters which can be chosen by an external agent. In our
setting, y represent the state of the traffic model (e.g., position and velocity of cars)
and u the acceleration or speed of the AV which can be controlled.

A system (12.4) is said to be controllable if for every states y1, y2, there exists
T > 0 and a control function ū : [0, T ] → U such that the solution to the Cauchy
problem ẏ = f (t, ū(t)), y(0) = y1 satisfies y(T ) = y2. In other words, we can steer
the system from y1 to y2 in time T > 0 with a suitable control ū.

Similarly, a system is said to be locally controllable at ȳ if for every δ > 0 suffi-
ciently small, there exists T > 0 such that we can steer the system from ȳ to any y
with |y − ȳ| < δ in time T . In other words, we can reach sufficiently close states in
uniformly bounded time.

An important tool to investigate controllability (and local ones) is linearization.
Consider a control system (12.4) such that U contains a neighborhood of 0, and an
equilibrium point (ȳ, 0), i.e., f (ȳ, 0) = 0, we can consider the linearized system at
ȳ:

ż = A · z + B · u, (12.5)

where A = Dy f (ȳ, 0) (the Jacobian matrix of f w.r.t. y computed at (ȳ, 0)) and
B = Du f (ȳ, 0) (the Jacobian matrix of f with respect to u computed at (ȳ, 0)). For
linear systems, there is a simple criterion for controllability. First, given the linear
control system (12.5), define the Kalman controllability matrix:

K (A, B) = [B, A · B, . . . , An−1 · B]. (12.6)
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Since A is an n × n matrix and B is a n × m matrix, then K (A, B) is an n × n · m
matrix. We can now state the following (see [4, Theorem 3.6.2]):

Theorem 12.1 (Kalman controllability theorem) The system (12.5) is controllable
if and only if the matrix K (A, B) has full rank (i.e., equal to n).

The fact thatwe can limit ourselves to the exponent n − 1 in the definition of K (A, B)

follows from Cayley–Hamilton Theorem, which ensures that A, which is an n × n
matrix, is root of its characteristic polynomial. Since the characteristic polynomial
has degree n then there exists αi such that An = ∑n−1

i=0 αi Ai .
The local controllability of a system can be investigated by looking at its lin-

earization. More precisely we have the following (see [4, Theorem 3.7.1]):

Theorem 12.2 Consider a control system (12.4) and its linearization (12.5) around
the equilibrium (ȳ, 0). If (12.5) is controllable then (12.4) is locally controllable at
(ȳ, 0).

The converse of this Theorem is not true: a nonlinear control system may be con-
trollable even if its linearization fails to be controllable. However, the controllability
of the linearization ensures the existence of linear stabilizing feedbacks, i.e., control
laws of the type u(y) = K · y that renders the system (12.4) locally asymptotically
stable at (ȳ, 0), see [4, Theorem 4.2.3].

We are now ready to define our control system for traffic control on a ring-road via
one AV, see Figure12.1. Let (a, b) ∈ (IR+)2\{(0, 0)} and consider the control system
of n vehicles along a ring-road of length L described by the FTL-Bando model:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi = vi , 1 � i � n,

v̇i = a
vi+1 − vi

(xi+1 − xi )
2 + b

[
V (xi+1 − xi ) − vi

]
, 1 � i � n − 1,

v̇n = u,

(12.7)

Fig. 12.1 Sketch of n
vehicles on a trajectory along
a ring of length L

n

1

2

3

n − 1

n − 2

v2

x2

≈ lv
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where xi is the position of the i th vehicle, vi its velocity and V (·) stands for a
desired speed which is defined in Section12.2. Notice that we can control only the
acceleration u of the nth vehicle, which represents the AV.

Remark 12.1 If b = 0, the nonlinear control system (12.7) is the Follow-The-Leader
model (FTL). If a = 0, the system (12.7) is the optimal velocity model.

Our aim is to steer the system, (12.7) to a speed equilibrium state, i.e., a state so
that all vehicles have the same velocity v̄. If b �= 0, i.e., if there is a non vanishing
optimal velocity term, a speed equilibrium corresponds to all vehicles which are
uncontrolled (i.e., all vehicles but the nth one) having the same headway distance d,
while the AV may have a different headway. Moreover, to be in speed equilibrium
we must have V (d) = v̄, thus d is fixed once v̄ is fixed. On the other hand if b = 0
then all states with same speed are an equilibrium with any set of headways. We
summarize this analysis in the following Lemma:

Lemma 12.1 Consider the control system (12.7) and a fixed speed v̄.
If b �= 0 then the following holds. Let d be such that V (d) = v̄. If d � L

n then the only
speed equilibrium is given by x(t) such that xi+1(t) − xi (t) ≡ d, i = 1, . . . , n − 1
and ẋi (t) ≡ v̄, i = 1, . . . , n. Otherwise, there exists no speed equilibrium.
If b = 0 then every x(t) such that ẋi (t) ≡ v̄, i = 1, . . . , n, is an equilibrium.

Now, fix (d, v̄) ∈ IR2
+, with V (d) = v̄ if b �= 0, then we rewrite (12.7) as

Ẏ = f (Y, u). (12.8)

where Y = (yi )i=1,...,2n−1 = (x2 − x1 − d, . . . , xn − xn−1 − d, v2 − v1, . . . , vn −
vn−1, vn − v) and f is defined by

f (Y, u) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yn
...

y2n−2

a
[

yn+1

(y2+d)2
− yn

(y1+d)2

]
+ b [V (y2 + d) − V (y1 + d) − yn]

...

a

[
y2n−2

(yn−1+d)2
− y2n−3

(yn−2+d)2

]

+ b
[
V (yn−1 + d) − V (yn−2 + d) − y2n−3

]

u − a y2n−2

(yn−1+d)2
− b

[
V (yn−1 + d)−(

y2n−1 − y2n−2 + v )]

u

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(12.9)

Notice that the vector Y has 2n − 1 component: n − 1 differences between the
headway of the n − 1 uncontrolled vehicles and the equilibrium headway d, n − 1
velocity differences with leading vehicle for the uncontrolled vehicles and the dif-
ference of AV velocity with the equilibrium ones. Moreover we have the relation
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x1 − xn = L − ∑n−1
i=1 yi + (n − 1)d expressing the headway of the AV.We are inter-

ested in speed equilibria with equispaced cars, thus we notice that Y ∗ = 0 ∈ IR2n−1

is the only equilibrium of (12.8) if b �= 0 and u = 0. In other words (Y ∗, 0) is a
speed equilibrium of the controlled system (12.8), i.e., f (Y ∗, 0) = 0. Notice that for
d = L

n , V (d) = v̄, at the speed equilibrium (0, 0), all vehicles are equispaced and
drive at the same speed vi = v̄.

We are now ready to state the controllability results for the linearized systems at
equilibria. First, we have the following:

Theorem 12.3 Let b = 0, a �= 0 and (d, v̄) ∈ IR2
+. The linearization of system

(12.8) at the speed equilibrium (Y ∗, 0) ∈ IR2n is not controllable.

In other words, the linearization FTL model at speed equilibrium is not controllable.
This does not prevent the nonlinear system to be controllable, but prevents the use
of simple linear controls to drive the system to equilibrium.

Our next result is the following:

Theorem 12.4 Let a = 0, b �= 0, (d, v̄) ∈ IR2
+ with V (d) = v̄. The linearization of

system (12.8) at the speed equilibrium (Y ∗, 0) ∈ IR2n is controllable. Therefore, the
nonlinear control system (12.8) is locally controllable at (Y ∗, 0).

Finally for the combined FTL-OV model we have the following:

Theorem 12.5 We assume that n � 9. Let (a, b) �= 0, (d, v̄) ∈ IR2
+ with V (d) = v̄.

If a �= (y∗ + d)V ′(y∗ + d) and b �= 0, the linearization of system (12.8) at the
equilibrium point (Y ∗, 0) ∈ IR2n is controllable. Therefore, the nonlinear control
system (12.8) is locally controllable at (Y ∗, 0).

Remark 12.2 Since the Optimal Velocity model is locally controllable, one can
expect the same to be true for the combined FTL-OV model, except possibly some
resonant value of the parameters. This is exactly what it proved in Theorem12.5. The
complexity of the system does not allow to deal with arbitrary large dimension (only
for n � 9), but we conjecture that, for n > 9, the nonlinear control system (12.8) is
still locally controllable at (Y ∗, 0).

The proofs of the Theorems are postponed to the Appendix.

12.4 Controls and Simulations

In this section, we describe control algorithms to stabilize a FTL-Bando model to a
speed equilibrium and test them in silico, i.e., via simulations, on a setting reproduc-
ing the Sugiyama experiment [53].

We first define controls based on Lyapunov-type functionals, using the fact that
the system is control affine, see [8, Definition 3.12], i.e., the control appear linearly
with a vector coefficient depending on the state. Such techniques are usually referred
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to as Jurdjevic–Quinn controls [24]. This analysis allows to understand the stability
properties of the system and inspires the design of more practical controls.

We then define a Proportional–Integral–Derivative (PID)-type control, which is
based on velocity measures of the AV over a fixed time horizon. The control includes
saturation terms to avoid collisions and too large headways for the AV.

12.4.1 Lyapunov-Type Functions and Feedback Control

The system (12.8) is a control affine system (see [8, Definition 3.12]).More precisely,
(12.8) can be written as

Ẏ = fa,b(Y ) + u f1(Y ),

with fa,b(Y ) given by (12.9) with u = 0 and

f1(Y ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
...

0
1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Since we want to steer the system toward the equilibrium speed, we can start

considering the Lyapunov-type function V1(y2n−1) = (vn−v̄)2

2 = y22n−1

2 associated to
the equation ẏ2n−1 = u. Here, we aim at the controlled car to align its speed to the
desired one and this may be sufficient to stabilize the system. The derivative of V
along trajectories is given by ∇V1 · u = y2n−1u. Thus, we can simply choose

u1 = −αy2n−1 = −α(vn − v), (12.10)

where α > 0 is chosen such that −αy2n−1 ∈ U . Such control is smooth, vanishes at
0, and a good candidate to stabilize the system (12.8) to the equilibrium speed.

Let us now focus on last two components ỹ = (y2n−2, y2n−1). We consider the
following system of two equations:

˙̃y =
(
ẏ2n−2

ẏ2n−1

)

=
(
u − a y2n−2

(y∗+d)2

u

)

, (12.11)

and call g = g(ỹ, u) the function on the right-hand side.We introduce the Lyapunov-

type functional associated to (12.11):V2(ỹ) = y22n−1

2 + y22n−2

2 . For every ỹ ∈ IR2\{(0, 0)},
choosing u = −αsign(y2n−1 + y2n−2) with α > 0 and ±α ∈ U we have, ∇V2 (ỹ) ·
g (ỹ, u) = (y2n−2 + y2n−1)u − a

y22n−2

(y∗+d)2
< 0. Thus, the function V2 satisfies the
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small control property associated to (12.11) (see [8, Definition 12.1]). The feedback
control function

u2 = −α(y2n−1 + y2n−2) = −α

(

vn − vn−1 + v

2

)

, (12.12)

where α > 0 is chosen such that −α(y2n−1 + y2n−2) ∈ U , is smooth, vanishes at
0 ∈ IR2 and a good candidate to stabilize the control system (12.11) to the equilibrium
speed.

12.4.2 PID Control

The idea behind this controller is that the autonomous vehicle may estimate the aver-
age speed of the vehicles in front, and then drive according to the average speed,
safety permitting. An estimate of the average speed required by the controller is
obtained by measuring the autonomous vehicle speed over a large enough time hori-
zon. Note that this requires that there are several waves present, not just a single one,
so that the past is informative of the future.

The controller determines a command velocity u following a standard
proportional-integral control logic. In order for the controller to be efficient, it needs
to be augmented with saturation: for small gaps, the autonomous vehicle should fol-
low the lead vehicle speed to avoid dangerous situations, while for large gaps, the
autonomous should catch up to the lead vehicle.

More precisely, this controller estimates the desired velocity, Vd , as a tempo-
ral average of the autonomous vehicle’s own velocity over an interval. Letting
vAV1 , . . . , vAVm denote the autonomous vehicles velocities over the last m measure-
ments, the desired velocity is computed as the temporal average Vd = 1

m

∑m
j=1 v

AV
j .

In practice, we choose m corresponding to a 38 s interval, which is approximately
the time required to travel one lap around the ring.

The desired average velocity is then translated into a target velocity depending
on the current gap between the autonomous vehicle and lead vehicle:

vtarget = Vd + 1m
s × min(max(�x−7m

23m , 0), 1) , (12.13)

This allows the autonomous vehicle to drive faster than the average velocity and
catch up to the lead vehicle, should it face a big gap, while at lower gaps, the target
velocity reduces to the average Vd .

The commanded velocity is updated via

u j+1 = β j (α j v
target
j + (1 − α j )v

lead
j ) + (1 − β j )u j , (12.14)

where the subscript j denotes the time step. This rule (12.14) chooses the new
commanded velocity as a weighted average of the prior commanded velocity, the
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target velocity, and the lead vehicle’s velocity. The weights α j and β j depend on the
gap as follows:

α j = min(max(�x−�x s

γ
, 0), 1) (12.15)

In (12.15), the distance �x s is a safety distance. We have α j = 0 if �x ≤ �x s

and α j = 1 if �x ≥ �x s + γ , meaning that for relatively short gaps, only the lead
vehicle’s velocity matters, while for relatively large gaps, only the target velocity is
averaged with the commanded velocity. The parameter γ controls the rate at which
α transitions from 0 to 1, and is set to γ = 2 m in the current implementation. This
means that when the gap is short, the autonomous vehicle has the same speed as
the lead vehicle, while when the gap is larger the autonomous speed tends toward
the target vehicle, which allows the autonomous vehicle to reduce the gap with the
lead vehicle. The parameter β j determines how rapidly the controller adjusts to new
situations (with more rapid adjustments occurring in more safety-critical situations).
At its core, this is a PID controller, but with a saturation at small gaps (for safety
purposes), and a saturation at large gaps (so that the autonomous vehicle closes gaps).

The safety distance is implemented as �x s = max(2 s × �v, 4 m). The term
2 s × �v represents the recommended safe following headway of 2 s, with a lower
bound of 4 m.

12.4.3 Simulations

In this section, we demonstrate the capabilities of the control laws described in the
previous sections via numerical simulations. The parameters used for the simulations
are as follows. We consider N = 22 vehicles, with one autonomous vehicle and
N = 21 human-driven vehicles. We consider that the human-driven vehicles follow
the dynamics described in (12.7) with the following parameters a = 0.5m/s2 and
b = 20 s−1. The speed vmax = 9.75m/s and the vehicle length is chosen to be lv = 4.5
m. Such parameters allow to fit the data from the experiment of [53], see Figure12.2.
In the figure, the red trajectory corresponds to the autonomous vehicle and the gray
ones to human-driven vehicles. One can notice the appearance of strong stop and go
waves that start at time 60 s and are propagated on the ring. Visually, they have the
effect of “wrinkles” in the pattern.

For comparison, we can now see the effects of the different controls. For the
autonomous vehicle, we will choose a different dynamics according to the control
strategy that we are going to simulate. The simulation begins with all vehicles using
the human driving dynamics described in (12.7) with no control. Control on the AV
is activated after t = 40 s.

In Figure12.3, we can see the effects of the PID control on vehicle trajectories
and on the speed profile in Figure12.4. Figure12.3 shows that the AV leaves some
extra headway to tame the effect of the stop-and-go waves. Such waves continue to
reappear but the control is able to dissipate partly the effects. The velocity profiles,
Figure12.4, show a strong oscillation reduction for the AV in the time interval 60,
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Fig. 12.2 Vehicle trajectories with no control. Note the red trajectory follows a single vehicle which
acts identically to all gray trajectories

Fig. 12.3 Vehicle trajectories of uncontrolled vehicles (gray) when using the PID control (12.14)
applied only to a single vehicle (red)

Fig. 12.4 Velocity profiles of uncontrolled vehicles (gray) when applying the PID control to a
single vehicle (red) (12.14)

100, then oscillations affect the AV and finally are more under control after time
t = 160.

Next, we show that stop-and-go waves can be dampened using the control laws
(12.10) and (12.12). Since the autonomous vehicle used in the experiment runs with
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velocity control, we will slightly modify our controls (12.10) and (12.12) as follows;
let u j ∈ IR+ be defined by u j = u(t j ) with t j = j ∗ �t , j ∈ IN and �t > 0.
First, combining (12.10) with (12.7), we have v̇n = −(vn − v̄) with v̄ ∈ IR+. Thus,
the target velocity is

vtarget1, j+1 = (u j − v̄) exp(−�t) + v̄. (12.16)

Since vn−1(s) = vn−1(t) := vn−1, j for every s ∈ [t j , t j + �t), combining (12.12)
with (12.7), the target velocity is

vtarget2, j+1 =
(

u j − vn−1, j + v̄

2

)

exp(−�t) + vn−1, j + v̄

2
. (12.17)

From now on, v̄ is a function depending on time and at every time t > 0, v̄(t) is
constructed as the minimum of the temporal average speeds of the lead vehicle and
the autonomous vehicle over (0, t). More precisely, the target velocity is

v̄ j = min

(∑ j−1
i=1 v

lead
i

j − 1
,

∑ j−1
i=1 ui
j − 1

)

(12.18)

The theory described in Section12.4.1 is still useful because, for j large enough
so that one measures data over a complete run of the ring road, v j ≈ c with c > 0
a constant. Adding the rule (12.14) described in Section12.4.2, the commanded
velocities for (12.16) and (12.17) are updated via

u j+1 = β j (α j v
target
k, j + (1 − α j )v

lead
j ) + (1 − β j )u j , k ∈ {1, 2}. (12.19)

where vtarget1, j and vtarget2, j are defined in (12.16) and (12.17), respectively, replacing v̄ by
v̄ j defined in (12.18).Above,α j andβ j are constructed as explained in Section12.4.2.
In Figure12.5 and in Figure12.6, we use the commanded velocity defined in (12.19)
with vtarget1, j and vtarget2, j respectively. Since the autonomous vehicle drives according to
(12.18), a gap is created when the lead car is affected by a stop-and-go wave.The
difference between these controls and the P I D control, defined in Section12.4.2, is
that the autonomous vehicle never needs to catch up the lead vehicle and therefore,
it does not create another stop-and-go wave for the controls defined in (12.19).
More precisely, the term min(max(�x−7m

23m , 0), 1) in (12.13) is not needed anymore.
Moreover, in (12.18), we do not use that the length of the ring is equal to L .

The effect of the Lyapunov controllers can be seen in the velocity profiles in
Figures12.7 and 12.8 which shows that the traffic is smoother when the control is
active. More precisely, in Figure12.7, we notice that the AV tends to have very small
oscillations when the control is active. On the other hand, the controlled vehicles tend
to keep some velocity oscillations, however apparently less than the PID controller.
Due to the presence of saturation, this control steers the systems toward a local
equilibrium. In particular, for some initial data, the control dampens the stop-and-
go waves without completely dissipating them. Figure12.8 shows a behavior pretty
similar to that of the PID controller, with even stronger oscillations for the AV.
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Fig. 12.5 Vehicles trajectories when using the control (12.19) with (12.16)

Fig. 12.6 Vehicles trajectories when using the control (12.19) with (12.17)

Fig. 12.7 Simulated velocity profiles of human-piloted vehicles (gray) and autonomous vehicle
(red) when using the control (12.19) with (12.16)
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Fig. 12.8 Simulated velocity profiles of human-piloted vehicles (gray) and autonomous vehicle
(red) when using the control (12.19) with (12.17)

12.4.4 Fuel Consumption

Fuel consumption is estimated for the simulation results using the VT-Micro fuel
consumption model [45, 46]. The VT-Micro model uses polynomial regression on
vehicle fuel consumption data collected at Oak Ridge National Lab to predict fuel
consumption based on vehicle speed and acceleration. In simulation, per-vehicle fuel
consumption averagedover an ensemble of 10 simulation runswhenall traffic is under
human control is 21.93 �/100 km. When the PID controller (12.14) is implemented
on the AV in simulation and the remaining 21 vehicles are under human control,
the average per-vehicle fuel consumption is reduced by 16.3% to 18.36 �/100km.
Similarly, when the controller in (12.19) with (12.16) is used on the AV, the average
per-vehicle fuel consumption is reduced by 17.8% to 18.03 �/100km, while when
the controller in (12.19) with (12.17) is used on the AV, the average per-vehicle fuel
consumption is reduced by 17.3% to 18.13 �/100km. The fuel consumption means
over the 10 simulation runs conducted and corresponding standard deviations are
presented in Table12.1. As described in Section12.4.3, the Lyapunov controllers
might not always dissipate the stop-and-go waves which result in a higher standard
deviation for the mean fuel consumption in Table12.1 for these controls.

Table 12.1 Simulation fuel consumption estimates over an ensemble of 10 simulation runs using
the VT-Micro fuel consumption model

Control Mean fuel consumption
(�/100km)

Standard deviation (�/100km)

No control 21.93 0.94

PID controller (12.14) 18.36 0.35

(12.19) with (12.16) 18.03 0.46

(12.19) with (12.17) 18.13 0.65
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12.5 Experimental Results

12.5.1 Experimental Design

A series of experiments were conducted to validate the development of stop-and-go
traffic waves and to demonstrate the dissipation of these waves using the designed
controller. We first describe the experiment setup and its benefits and limitations.
Then we present the experimental results of a low penetration rate of autonomous
vehicles actively dissipating stop-and-go waves.

The experiments are conducted using a similar setup to the seminal works of
Sugiyama et al. [53] and Tadaki et al. [56], which was able to isolate human driving
behavior without considering other factors. These experiments showed conclusively
that human driving behavior alone is sufficient to trigger stop-and-go waves. In this
experiment, we use the same setup because it has been shown to reliably produce the
kinds of stop-and- go waves that the controllers in this paper are designed to dampen.

While the underlying experimental setup in the work presented is similar to the
setup used by Sugiyama et al. [53], minor modifications were made to accommodate
for the larger US vehicles. Just as in [53], the experiment is conducted with a total
of 22 vehicles on the track. However, due to the substantially larger US vehicles, the
track length was increased to 260m around. While all vehicles have human drivers
in them, one of the vehicles, the University of Arizona Cognitive Autonomous Test
Vehicle (CAT Vehicle) is an autonomous-capable vehicle and can be switched from
being human-piloted to autonomous during the experiment.

The experiment begins with all vehicles evenly spaced and at rest. When the
drivers are given a signal, they begin to drive, and human-piloted traffic conditions are
observed.After some time the autonomous driving capabilities of theCATVehicle are
activated, and traffic with 21 human drivers and one autonomous vehicle is observed.

Vehicle trajectories of each vehicle were collected using a VSN Mobile V360
panoramic video camera placed at the center of the track. The video footage recorded
during the experiment was processed using image processing algorithms. More
details on the image processing algorithms used can be found in the article by Wu
et al. [59]. Additionally, vehicle performance data such as fuel consumption was
recorded during the experiment using OBDLink MX onboard diagnostics (OBD-II)
data loggers.

The ring-road experimental design is selected because it has been shown to pro-
duce traffic instabilities that are similar to those observed in real highway traffic [53].
Furthermore, using a closed-circuit experimental test track allowed us to reproduce
“infinite” traffic (where each vehicle has a vehicle in front of it and a vehicle behind
it at all times) with a finite number of vehicles. However, there are some limitations
that arise due to this experimental design. Since the track is only a single lane of
traffic, this experimental setup cannot be used to assess the robustness of the designed
algorithm to overtaking and merging.



12 Feedback Control Algorithms for the Dissipation of Traffic Waves 291

Fig. 12.9 Vehicles on test
track during the experiment

Fig. 12.10 The CAT
Vehicle, the autonomous
vehicle used during the
experiment

12.5.2 Experimental Results

An experiment was conducted to test the PID velocity controller in a field test. The
experiment was conducted on a large flat parking lot in Tucson, AZ. The human-
piloted vehicles used during this experiment were rented from the University of
Arizona Motor Pool, while the AV that was used was the CAT Vehicle. An overview
of the test track is seen in Figure12.9 where all 22 vehicles are on the track following
the experiment. The AV used to implement the traffic controller, the University of
Arizona CAT Vehicle, is seen in Figure12.10 being parked at the start position for
the experiment.

The experiment is started with all vehicles at rest on the track and under human
control. The velocity profile and vehicle trajectories for all vehicles in the experiment
is presented in Figure12.11 and Figure12.12, respectively. Here, the CAT Vehicle’s
speed and trajectory are plotted in red,while the speed and trajectory for the remaining
vehicles are plotted in gray. After 161s the small oscillations grow, and a noticeable
stop and go wave develops. In the presence of this wave, vehicles fluctuate in speed
between 0 and 14m/s as seen in Figure12.11. This same stop-and-go wave is also
seen in the vehicle trajectories in Figure12.12. After 218s the controller on the
CAT Vehicle is activated and the traffic is under AV control. This control action is
maintained until the experiment is ended after 413s.

As seen in the vehicle trajectories in Figure12.12, after roughly 320s, one of
the human-piloted vehicles introduces a small traffic wave. This wave propagates
upstream until it encounters the CAT Vehicle, which is able to partially dampen, but
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Fig. 12.11 Velocity profile of all vehicles in the experiment. The gray velocity profiles are the
human-piloted vehicles and the red profile is the CAT Vehicle. The blue vertical lines mark key
times during the experiment: the start, at what point waves are clearly visible, when control of the
CAT Vehicle is activated, and the end of the experiment

Fig. 12.12 Trajectories of all vehicles in the experiment. The gray trajectories are the human-
piloted vehicles and the red trajectory is the CAT Vehicle. The blue vertical lines mark key times
during the experiment: the start, at what point waves are clearly visible, when control of the CAT
Vehicle is activated, and the end of the experiment

not fully remove the wave. On the second pass around the track, the CAT Vehicle
is able to fully eliminate the wave. This demonstrates that a single AV may not be
sufficient to fully eliminate stop-and-go waves, but a low penetration rate of AVs
may be sufficient to eliminate, or at least substantially dampen stop-and-go waves.

The effect that the traffic controller implemented on the single AV has on the
overall traffic flow (all 21 human-piloted vehicles in addition to the CAT Vehicle) is
apparent in the velocity profile in Figure12.11 and vehicle trajectories 12.12 where
substantially smoother traffic is seen when the traffic is under the control of the AV.
Specifically, the average velocity standard deviation between the time period where
waves are present and the control period is reduced by 54.7% from 3.85 to 1.74 m/s
while not substantially effecting throughput (1755 veh/h when waves are present and
1711 veh/h when the AV is actively dissipating the stop and go waves, or a reduction
of 2.5%). Furthermore, since each vehicle in the flowwas instrumentedwith anOBD-
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II scanner, it was possible to measure the instantaneous fuel consumption of each
vehicle during the experiment. The average fuel consumption over the entire fleet
whenwaves are present was 26.3 �/100km, while the average fuel consumption of all
vehicles when the AV is actively dissipating stop-and-go waves is reduced by 21.1%
to 20.7�/100 km. It is important to note that this reduction in fuel consumption is not
only realized on the CAT Vehicle, but is the averaged quantity across all vehicles in
the experiment.

This experimental result validates the theoretical and simulation-based results and
demonstrates that even at a low penetration rate, AVs are capable of substantially
improving trafficflowby reducing velocity standard deviation. This leads to smoother
traffic and reduces fuel consumption of not only the AV, but all the vehicles in the
traffic flow.

12.6 Conclusion

In this work, we establish controllability results for two well-known microscopic
traffic flow models in the setting in which an autonomous vehicle is able to be
controlled with the aim of dissipating stop-and-go traffic waves. Based on the con-
trollability results, three control algorithms are developed and tested in simulation,
indicating that fuel consumption reductions of up to 20% may be achieved when the
flow is stabilized by the autonomous vehicle. In a first of its kind field test, we further
establish for one of the proposed control algorithms that traffic wave dissipation is
possible with real autonomous and human-piloted vehicles, and leads to a substantial
reduction in fuel consumption compared to when waves are present.

While our results show the feasibility of control of traffic viaAV, especially for fuel
consumption reduction, there are some limitations to our study. For instance, mul-
tilane traffic was not considered and, more generally, we did not include additional
challenges coming from the impact of combined complex phenomena of multilane
dynamics, merges, ramps, and non-FIFO assumptions.

Looking forward, we note that the level of difficulty to prove controllability results
of the combined optimal velocity follow the leader model for n > 9 suggests alter-
nate modeling scales, e.g., in the micro-macro direction [6, 11, 28, 40], might be
promising.
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Appendix

The linearization of system (12.8) at the equilibriumpoint (Y ∗, 0) ∈ IR2n is described
by

Ẏ = AY + Bu, (12.20)

where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0n−1

Dn−1

In−1

Fn−1

0
...
...

0
b

0 . . . . . . . . . . . . . . . . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and B =

0

0
1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. (12.21)

For n ∈ IN define the matrices (Dn−1, Fn−1) ∈ M2n−1(IR)2 by:

Dn−1 =
−γ γ (0)

−γ

γ

(0) −γ

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

, Fn−1 =
−(α + b) α (0)

−(α + b)
α

(0) −(α + b)

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

.

(12.22)

with γ = bV ′(y∗ + d) and α = a
(y∗+d)2

. Moreover, denote by 0n−1 ∈ Mn−1(IR) and
In−1 ∈ Mn−1(IR) the zero matrix and the identity matrix respectively. Let k � 1.
From (12.21), there exist (Ai,k)i∈{1,...,4} ∈ Mn−1(IR) and (Ci,k)i∈{1,2} ∈ Mn−1,1(IR)

such that,

Ak =
⎡

⎣
A1,k A2,k C1,k

A3,k A4,k C2,k

01,n−1 01,n−1 0

⎤

⎦ ,

and for every k � 1 we have

⎧
⎪⎪⎨

⎪⎪⎩

A4,k+1 = Dn−1A2,k + Fn−1A4,k,

A2,k+1 = A4,k,

C2,k+1 = Dn−1C1,k + Fn−1C2,k,

C1,k+1 = C2,k .

(12.23)

In particular, for every k � 2,
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⎧
⎪⎪⎨

⎪⎪⎩

A4,k+1 = Dn−1A4,k−1 + Fn−1A4,k,

A2,k+1 = Dn−1A2,k−1 + Fn−1A2,k,

C2,k+1 = Dn−1C2,k−1 + Fn−1C2,k,

C2,k = Dn−1C1,k−1 + Fn−1C1,k .

(12.24)

Combining (12.23) with (12.24) and using that, for every k � 1, Ak B(2n − 1) = 0,
we conclude that, for every k � 2,

Ak+1B = D Ak−1B + F Ak B, (12.25)

with

D =
⎡

⎣
Dn−1 0n−1 0
0n−1 Dn−1 0
01,n−1 01,n−1 0

⎤

⎦ and F =
⎡

⎣
Fn−1 0n−1 0
0n−1 Fn−1 0
01,n−1 01,n−1 0

⎤

⎦ . (12.26)

Moreover, we have

A2B = X + F2n−1AB with AB =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0n−2,1

1
0n−3,1

α

−α

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0n−2,1

b
0n−3,1

γ

−γ

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.27)

Proof of Theorem12.3 If b = 0 then γ = 0. From (12.25) and (12.27), for every
k � 2, {

Ak+1 = F Ak B,

A2B = F AB.

Thus, the Kalman controllability matrix (12.6) satisfies

rank (K (A, B)) = rank
(
B, AB,F AB, . . . ,F 2n−4AB

)
.

ByCayley–HamiltonTheorem, there exists (α0, . . . , αn−2) ∈ IRn−1 such that Fn−1
n−1 =

∑n−2
i=0 αi Fi

n−1. From (12.26), we conclude that

rank (K (A, B)) = rank
(
B, AB,F AB, . . . ,F n−2AB

)
.

Using the expression of AB given in (12.27) and the equalityF k =
⎡

⎣
Fk
n−1 0n−1 0

0n−1 Fk
n−1 0

01,n−1 01,n−1 0

⎤

⎦,

by straightforward computations, we have

rank
(
B, AB,F AB, . . . ,F n−2AB

) = n,

whence the conclusion.



296 M. L. Delle Monache et al.

Proof of Theorem12.4 Let’s prove by induction that, for every k � 1, there exist
(λi )i=1,...,2k and (μi )i=1,...,2k+1 such that

{
A2k+1B = ∑2k

i=1 λi Ai B + D k(AB)

A2k+2B = ∑2k+1
i=1 μi Ai B + D k(A2B)

. (Pk)

Since a = 0, we have Fn−1 = −bIn−1. Using (12.25), A3B = D AB − bA2B and
A4B = D A2B − bA3B. Thus, (Pk) holds for k = 1. Assuming that (Pk) holds for
k = p. From (12.25), we have

{
A2p+3 = D A2p+1 − bA2p+2B
A2p+4 = D A2p+2 − bA2p+3B

and D Ai B = Ai+2B + bAi+1B, i � 1.

(12.28)
Using (12.28) and (Pk) for k = p, we conclude that (Pk) holds for k = p + 1.
The equality (Pk) for k = n − 2 gives

rank(K (A, B)) = (
B, AB, . . . , A2n−3,Dn−2A2B

)

= (
B, AB, . . . , A2n−4,Dn−2AB,Dn−2A2B

)

= (
B, AB, A2B,D AB,D A2B, . . . ,Dn−2AB,Dn−2A2B

)
.

Since AB and A2B are linearly independent and D k =
⎡

⎣
Dk

n−1 0n−1 0
0n−1 Dk

n−1 0
01,n−1 01,n−1 0

⎤

⎦, by

straightforward computations, we have

rank
(
B, AB, A2B,D AB,D A2B, . . . ,Dn−2AB,Dn−2A2B

) = 2n − 1.

Thus, the linearization of system (12.8) at the equilibrium point (Y ∗, 0) is control-
lable. Using [8, Theorem 3.8], Theorem12.4 is proved.

Proof of Theorem12.5 Using the symbolic mathematics software Maple [https://
www.maplesoft.com/products/Maple/], we establish that for every 3 � n � 9,

Det(K (A, B)) = γ
n2−3n+2

2 b
n2−n
2

(
α − γ

b

) n2−n
2

.

Thus, for every α �= γ

b , γ �= 0, b �= 0, the linearization of system (12.8) at the
equilibrium point (Y ∗, 0) is controllable, whence the conclusion of Theorem12.5 by
using [8, Theorem 3.8].

https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/
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Chapter 13
Disturbance Rejection Run-to-Run
Controller for Semiconductor
Manufacturing

Marzieh Khakifirooz, Mahdi Fathi and Panos M. Pardalos

Abstract This chapter introduces a framework of disturbance rejection controller
for discrete-time Run-to-Run (R2R) control system in semiconductor manufacturing
environments.While we discussed the source of uncertainty and disturbance in wafer
fabrication process, the photolithography process as one of the cutting-edge steps
in wafer fabrication is selected for illustrating the power of disturbance rejection
algorithm for compensating the misalignment. Along with this case study, some
classification of disturbance rejection control algorithm with the structure of control
plant is discussed.

13.1 Introduction

As society explores the Fourth Industrial revolution characterized by access to and
leveraging of knowledge in themanufacturing enterprise, ameticulous and intelligent
process control is needed to achieve higher throughput and customer satisfaction [31].
Controlling a complex system is challenging because the process components and
variables operate autonomously and interoperatewith othermanufacturing segments.
The immense in manufacturing complexity causes the several sources of measurable
and unmeasurable uncertainties such as disturbance. This chapter aims to tackle the
disturbances in feedback control operation in semiconductor production process by
engaging the disturbance rejection models into the system.
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The objective of this work is to introduce readers the traditional and novel distur-
bance rejection systems for controlling the semiconductor manufacturing process.
The paper then emphasizes on design and structure of control system with R2R
architecture. It covers the technological foundations of feedback control system and
addresses current threats faced by process engineers for handling the uncertainty of
controlling the semiconductor production process alongwith existing state-of-the-art
solutions for building up the disturbance-free optimization models. The topic will
discuss from the perspectives of both practical implementations in the industry and
cutting-edge academic research to provide a holistic mindset for process engineers
and quality managers in industry, in addition to researchers and educators in the
design and manufacturing communities.

The scope of this study is to build essential knowledge around control process in
the semiconductor industry, the R2R control system and the disturbance rejection
model, and other essentials. However, we are focusing almost exclusively on issues
relevant to designing, constructing, and adapting the various disturbance rejection
(free) control system for semiconductor manufacturing based on R2R control struc-
ture and optimization algorithm.

The remainder of this study is organized as follows, Section 13.2, introduces the
structure of R2R feedback control system in the semiconductor industry. Section
13.3 discusses the source of uncertainties in wafer fabrication process. Section 13.4
introduces the design of disturbance rejection controllers including the structure of
closed-loop system and algorithm of adaptive and robust control systems. Section
13.5, illustrates the control process of Photolithography process as one of the cutting-
edge steps in wafer manufacturing and the case study of overlay error. Themain chal-
lenges in Photolithography control process will discuss, and the result of reinforce-
ment learning disturbance rejection model with traditional Exponentially Weighted
Moving Average (EWMA) model will compare for further interpretation. Section
13.6, concludes the paper.

13.2 Run-to-Run Control System

The R2R control is one of the general controlling techniques in semiconductor man-
ufacturing [38]. The primary objective of R2R control is variability reduction of the
process through the shrinking the process output error. R2R control has been exten-
sively adapted to analyze a variety of challenges in the process control of complex
semiconductor manufacturing.

R2R control consists of two major steps:

1. building a linear regressionmodel based on offline experiments between the input
variable(s) ut and the output or response variable(s) yt .

2. estimating the process variable on online experiments, while the offline model
based on the observed process and data is continuously updated and determine
the control action (tuning the online model).
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In semiconductormanufacturing, the number of runs for a specific product, recipe,
chamber, and tool is small and collecting enough observations to fit and eventually
use a model for control purposes is impossible [28]. Therefore, the control process is
required the online estimation and tuning to predict the parameter settingof controller.
In this case, at eachmachine’s utilization time (in brief called run), the updatedmodel
is used to compute the control action.

Consider a single-input-single-output (SISO) control system, the basic assump-
tion in the first step of R2R control is that the process exhibits static. This means that
the output variable yt at run t depends only on the input variable ut−1 at the end of
run t − 1 (when the inputs variable ut−1 or process output yt−1 at run t − 1 has an
effect on yt the process exhibits dynamics).1 The next assumption in the first step of
R2R is that the process is modeled by fitting (optimizing) to the simple first-order
linear process of the form

yt = α + βut−1 + εt (13.1)

where α and β are process intercept and gain (slope) parameters, εt is a white noise
error.

After optimizationwithin thefirst step, the second step tries tomaintain the process
variables as close as possible to the optimum (target) value. In R2R control system
usually, EWMA filter is used for predicting error and feedback signal. The optimal
control action for reaching the desired target T value for the process (13.1) is

û1 = T − α0

β0
. (13.2)

where α0 and β0 are the initial values of α and β, respectively. Due to dynamic
behavior of semiconductor industry, the basic assumption in R2R control is to having
a time-varying (dynamic) intercept, α. Therefore, resulting from Eq. (13.2), the
control action computes from predicted response value ŷt = at−1 + bût−1, where
b = β̂ as the gain of slope parameter estimates offline and at = α̂t+1|t computes
recursively based on the EWMA equation

at = λ(yt − bût−1) + (1 − λ)at−1. (13.3)

where λ is EWMA weighting. Figure 13.1 illustrates a block diagram of the general
structure of an R2R controller. R2R controller consists of two major steps. First, at
each run, a linear regression model is built to estimate the output measurement (inner
loop in Fig. 13.1). The estimated model by inner loop is continuously updated and
tuned based on output measurement data by the outer loop performing as a supervisor
of the inner loop. In fact the outer loop takes post-process measurements and gives
a control action for each run.

1Static model: yt = F(ut−1); Dynamic model: yt = F(yt−1, ut−1).
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Fig. 13.1 Supervisory Run-to-Run controller

The EWMA controller is the most preferred design in R2R control. However,
EWMA controller has several limitations. Some of the underlying limitations of
EWMA include

• dependency on maximum likelihood estimation (MLE) of optimal decay factor,
• dependency on limited control action by fixed filtering parameters,
• dependency on multiple filtering steps,
• inefficiency to deal with the large-scale disturbance of the real-world system.

On the other hand, the traditional EWMA controller cannot satisfy the demand for
high-mixed manufacturing process. Therefore, EWMA controller is not the best
choice for applying in real-world case studies [29].

13.3 The Source of Disturbance in Semiconductor Industry

In wafer fabrication process, the growth or expansion of uncertainty about the health
of processes and products often leads to major scrap events [28]. Thousands of
products can be scrapped and generate a major production disturbance. Therefore,
quality controls are required to take place at every stage of the production line, for
protecting manufacturing systems from tool drift.

Industrial process models need to be identified and estimated from operating data
and therefore encompass some level of uncertainty. Process variation can be caused
by unmeasured disturbances (apparent in statistical models as random errors) or
result from the uncertainty in model parameters, which are estimated from the data.
In addition to these sources of variation, some process disturbances can bemeasured.
However, themeasured disturbances, such as process delay, are uncontrollable during
actual production. Ambient temperatures and raw material variations can count as
two typical examples of noise variables, which are encountered in manufacturing.
Roughly speaking, uncertainty is divided into two categories:
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• uncertainty in model parameters,
• uncertainty in noise variables.

Therefore, when considering a state-space system, the equation for predicting the
system output, concerning the system noise and disturbance, is described as follows:

xt+1 = C1xt + C2ut + dt
yt+1 = C3xt+1 + εt

(13.4)

where dt is process disturbance, xt is states vector in state-space model for run t and
C1, C2, and C3 are coefficient matrices in state-space model, and yt , ut−1 and εt are
the same as (13.1).

Several studies have been implemented to reduce the effect of uncertainty on
the performance of the control system. However, providing a robust solution to
deal with both online variabilities of uncontrollable noise, and uncertainty in model
parameters, is still an interesting and challenging research topic. Figure 13.1, merged
the dynamic control system by uncertainties such asmeasurement noise, disturbance,
process delay, and measurement delay.

13.3.1 Process Disturbance

Knowing the basics of system disturbances will assist control systems in the identi-
fication and controlling of such disturbances, which are representative of unusable
parts of the actual value produced from any closed-loop system. Therefore, the effi-
cient manner to avoid, and eliminate disturbances in the systems, is to use system
feedback. The feedback loop assists to enable the control system to monitor the
disturbances and processing system, to reduce, minimize, or eliminate disturbances,
and achieve a state of stability in the system.

An integrated moving average (IMA(1, 1)) disturbance model, is widely
employed in the control of discrete-part manufacturing processes [33]. Consider
a process operates in closed-loop under a feedback control system. Feedback control
can be employed to minimize the variability of outputs caused by invisible dis-
turbances. In contrast, feedforward control can be used to decrease the influence
of uncontrollable variables that have been measured, and which influence process
variability. Sometimes, the prior knowledge as a form of Bayesian information can
proceed to demonstrate the closed-loop identification.
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13.3.2 Process Noise

In manufacturing processes, there are frequently, observable disturbances that can be
measured during operations. Observable, but uncontrollable variables, are referred
to as noise variables in process optimization literature.

Noise is an outcome of using sensor technologies or measuring process variables.
Concerning electrical sensors and signals, measurement noise is often produced
due to interaction with other electrical sources. Also, some physical blocking can
affect sensors, resulting in incorrect signals being detected by the controller. In a
typical process control situation, a proportional–integral–derivative (PID) controller
can make corrective actions by reducing the proportion of the error between the
process variable and the setpoint, combined with the integral and derivative, of that
difference. The derivative action is most often affected by noise and disturbances.

In statistical process optimization literature, the statistical inference solutions are
widely applied offline and are therefore not able to process adjustment methods, so
that different controllable variable settings can be recommended, which are depen-
dent on online noise variables and measured during production.

13.3.3 Stochastic Process Delay

The implementation of advanced process control (APC) in semiconductor manufac-
turing, blended with an inherent problem known as metrology delay which adversely
affects R2R control performance.

Due to the need for the provision of rapid feedback to the process control, the lack
of real-time metrology data causes extensive limitations in the R2R control. Most
semiconductor manufacturing processes suffer from issues caused by metrology
delays due to the time needed for measurements, metrology capacity, and the waiting
time in the wafer queue between the processing tool and the metrology station [18].
The stability and performance of the process will be affected by the metrology delay.
Moreover, since quality measurements perform online, the delay would not be fixed
but flows stochastically. Several other phenomena make sever disturbance including
the delay of proceeding because of bottleneck tools/processes in the system.

Thus far, numerous researches have been done in the semiconductor industry, to
study on methods to reduce the effects of infrequent measurements and extensive
metrology delays [16, 17, 51, 52, 55]. Virtual Metrology (VM) is deemed as the
most popular technique and is a potential solution for overcoming these difficulties
[34, 53].
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Fig. 13.2 Simple closed-loop operations diagram

Fig. 13.3 Closed-loop operations diagram with setpoint tracker

13.4 Design of Disturbance Rejection Control System

13.4.1 Structure of Disturbance Rejection Control Systems

The closed-loop control design is the best-suited design for disturbance rejection
controllers.

Consider a simple feedback controller in closed-loop mode. When a disturbance
added to the system, the process variable will begin to change according to the
magnitude of the load and physical characteristics of the process. However, a simple
feedback controller cannot determine how the process reacts to a disturbance, because
the process response to disturbance is faster than its response to setpoint change. (See
the simple closed loop operations diagram in Fig. 13.2).

Regards to the dependency of the closed-loop controller to the feedback signal,
this question may come to mind “what happens to the stability of system when
the feedback is inadequate?” This problem can be solved when the controller can
be equipped with setpoint-filtering. The setpoint-filtering allows that mathematical
inertia to minimize the distance between the setpoint and output variable. (See the
Closed-Loop operations diagram in Fig. 13.3).

13.4.2 Algorithms for Disturbance Rejection Control System

In control system, the algorithmmainly classifies into robust and adaptive controllers.
Robust systems are expected toworkwell with plants which change their characteris-
tics along time, or in noisy environments and have fixed control parameters. However,
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Table 13.1 Categories of feedback adaptive and robust control

Adaptive control Robust control

Optimal dual controllers [24] Sliding mode control [49]

Suboptimal dual controllers [1] Variable structure control [4, 45]

Adaptive pole placement [9] Linear–quadratic–Gaussian control [47]

Extremum-seeking controllers [46] Active Disturbance Rejection Control [26]

Iterative learning control [3] Passivity based control [39]

Gain scheduling [42] Lyapunov based control [22]

Model reference adaptive controllers [10] Quantitative feedback theory [41]

Model identification adaptive controllers [43] Tracking differentiator [20]

Multiple models [25, 54] Extended state observer [21]

it is implied that those changes are somewhat bounded and the closed-loop system
which encompasses the fixed robust controller presents stability, controllability, and
observability.

But in scenarios where the changes in the plant are extensive, often it is not
possible to design a robust controller with a fixed parameter. In this case, one uses an
adaptive controller whose parameters change with time and tracks the changes in the
plant, with the goal of designing a system which performs by the design constraints.

In other words, an adaptive controller has to adapt to unknown uncertainties while
a robust controller has to work within a compact set known a priori of uncertainties.
The goal of an adaptive controller is to estimate unknown parameters first, usually
online, and then derive the control law, while the purpose of a robust controller is
to formulate a control law, usually based on worst case scenario, so that the con-
troller works for the whole range of norm-bounded disturbance, without changing
the control law.

Therefore, an adaptive controller adapts to the changes in its environment and
modifies the control law based on the same information, while a robust controller
provides a control law that is guaranteed to work throughout the norm-bounded
disturbance range, without ever changing the control law.

Adaptive and robust control comes in many variants some of them along with
some references are summarized in Table 13.1.

Adaptive or robust control methods are less successful when facing dynamicity
(i.e., unbounded noise, change in environmental setting) or in real time obtaining
missing information (i.e., delay). In these cases, the use of artificial intelligence (AI)
tools can help to expand the capacity of complex control systems by covering tasks
which quantitative models enable or less efficient to solve them. A variety of artificial
intelligence tools can be used individually as the control system or as an auxiliary aid
for quantitative models such as: neural network control [14], Bayesian control [23],
fuzzy control [56], neuro-fuzzy control [27], expert systems [15], genetic control
[35], and cognitive/conscious control [12]. Figure 13.4 illustrates the implementation
of levels of different control models in a complex system.
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Fig. 13.4 Heterogeneous control of complex systems [50]

13.5 Case Study: Semiconductor Manufacturing and
Challenges in Controlling the Patterning Process

Semiconductor device fabrication is encompassed in several processing steps. These
steps are characterized by four primary sections, including patterning, etching/
removal, deposition, and modification, as summarized in Table 13.2. Among these
processes, the lithography process is the primary step in wafer fabrication. Following
this section, some key demand features of lithography process are introduced for the
analytical tools utilized in designing an adequate control system.

13.5.1 Photolithography Process

Lithography is one of the frequently used processes in fabricating chips, and typically
between 30 and 35%, of the overall processing costs, and between 40 and 50%, of the
completion time, is accounted for this process [37]. Additionally, the development
plan for the future of lithography process required shrinkage in die size, and therefore
lithographywill have a technical limitation tendencywhen associatedwith the feature
size reduction phenomena. Thereupon, lithography requires a high resolution, high
sensitivity, precise alignment, and low defect density to achieve visions of wafer
manufacturing. Therefore, setting up an accurate control system with high impact
on disturbance rejection is an essential appliance for the lithography process.

Currently, the step-and-scan (shortened scanner) method is one of the most com-
mercially used systems, in the lithography process. The purpose of the scanner is
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Table 13.2 Semiconductor device fabrication steps

Process Methods

Deposition: Grows, coats, or transfers a
material onto the wafer

Physical vapor deposition

Chemical vapor deposition

Electrochemical deposition

Molecular beam deposition

Atomic layer deposition

Removal: Removes material from the wafer
either in bulk mode or selectively

Wet etching

Dry etching

Chemical–mechanical planarization

Patterning: Shapes or alters the shape of the
deposited materials

Lithography

Modification: Doped transistor sources and
drains

Ion implantation

Rapid thermal anneals

Ultraviolet light processing

Fig. 13.5 Wafer fabrication
in photolithography process

to superimpose a masking pattern on top of the existing wafer pattern. Figure 13.5
illustrates the initial steps of wafer fabrication in the photolithography process when
using the scanner. The gap between the actual position of the mask over the actual
position of the wafer substrate is known as the overlay error [5, 6]. As is evident
from research, the overlay error has proven to be the most challenging issue in the
photolithography process [2, 6, 40, 44].

13.5.1.1 Overlay Error

As discussed earlier, during semiconductor fabrication process, each wafer goes
several times under the photolithography process, and at each time a layer of photo-
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Fig. 13.6 The overlay error
measurement [8]

resist material exposure on the surface of wafer. The misalignment between the
current and previous exposure layers, through the box-in-box design is called overlay
error. When the inside box is accurately patterned in the center of the outside box,
no overlay errors are apparent (Fig. 13.6).

The response variables of the overlay error, are indicated as follows:

d(x + X ) = x1−x2
2

d(y + Y ) = y1−y2
2

(13.5)

where (x, y) is intrafield coordinate system, regarding the center of the field2 and
(X ,Y ) is interfield coordinate system, regarding the center of the wafer. In Fig. 13.6,
dx and dy denote to interfield overlay error in x and y direction, respectively, and dX
and dY denote to interfield overlay error in X and Y direction, respectively.

The presence of overlay errors can be attributed to intrafield and interfield errors
[7]. The interfield overlay errors are the result of themismatch between the patterning
mask and wafer. The intrafield errors are due to fitment problems between the lens of
the scanner (light source), and the patterningmask. The interfield errors aremeasured
at the center of the wafer, and the intrafield errors at the center of the exposure. The
variables leading to intrafield, and interfield overlay errors, are presented in Fig. 13.7
and Fig. 13.8, respectively.

Various feedback controllers are designed based onR2R control for compensating
the misalignment during the photolithography process. The most commonly applied
and theoretical method is formed on EWMA estimation, other learning-based mod-
els are Kalman filters [11], artificial neural networks [32], machine learning [30],
and PID controller [8]. Following this study, we introduce a new approach for com-
pensating overlay error which has an advantage for faster disturbance rejection in
comparison to the EWMA, PID, or Kalman filters based on reinforcement learning
optimization.

2The surface of awafer can be partitioned into smaller part for increase the accuracy ofmeasurement
the overlay error, each partition is called a field.
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Fig. 13.7 Variables leading to intrafield overlay error [7]

Fig. 13.8 Variables leading
to interfield overlay error [7]

13.5.2 Reinforcement Learning Optimization

A partially observableMarkov decision process (POMDP) [36] is a generalization of
Markov decision process (MDP) [48] which only part of the information is available
about the current state, and this led to the uncertainties (i.e., delay, noise).

Consider a class of algorithms for finding good approximations to a class of learn-
ing problems inwhich agents interact in a dynamic, noisy and stochastic environment;
this interaction is conventionally modeled as an POMDP which consists of

• St : a finite set of states.
• At : a finite set of actions.
• R(St,At): a reward function.
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• P(St+1|St,At): a state transition probability function.
• Ot : a set of observations.
• P(Ot+1|St+1,At): an observation probability.
• rt ∈ [0, 1]: a discount factor.
• Bt : a distribution over state St called “Belief State”.

POMDP can identify as an optimal or near-optimal behavior for an uncertain
system. The MDP problem seeks to find a mapping from states to actions; however,
the challenge in POMDP problem is to find a mapping from probability distributions
over states to actions. For achieving this purpose, the key step is to calculate the
value function of a given policy (π ) which is the mapping function from the state
to the action, to maximize the expected sum of the discounted factor. Regards to the
definition of POMDP components described in above the optimization procedure of
POMDP is following below steps:

1. set up the unobserved state St of the system at each time step t
2. select an action At ,
3. maintain the distribution over St as Bt ,
4. receive the reward function R(St,At),
5. transitions to unobserved state St+1 with probability P(St+1|St,At),
6. receive an observation Ot+1 with probability P(Ot+1|St+1,At),
7. estimate a distribution on state St+1 as Bt+1(St+1) = P(St+1|Ot+1,At,Bt(St)),
8. update the reward function by R(St+1,At+1) = Bt+1(St+1) × R(St,At)

9. optimize the return function by policy π(St+1) = maxAt+1

∑
rt+1R(St+1,At+1)

and select the best action At+1,
10. update and repeat the process.

The Bellman’s optimality [19] equation says that under principal of stochastic
approximation, the average biasQ(St,At) (Q-learning) from t times simulation-based
solution is

Q(St,At) = min
At

[

R(St,At) − 1

t
E

{
∑

t

R(St,At)

}

+
∑

t

P(St|St−1,At−1)

×E

{
∑

t

R(St,At) − 1

t
E

{
∑

t

R(St,At)

}}]

(13.6)

The POMDP relies on defining the set of states and their expected values, the
action transition matrix and reward structure. The description, role, and action of
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each component in details for the control system of overlay model are summarized
as follows3:

The state-space: The output of the controller to the plant (xt), given the action
(ut), including the disturbance and process delay. Considering N overlay factors,
therefore, there are 1 × N different states in the system. Note that in practice the
actual value of xt is predictable, and not observable.

The observation space: The actual output of the plant (yt) for N overlay factors
including the metrology delay and measurement noise.

The action transition matrix: The matrix of probability which each sate (xt) can
appear in the sequence of the lithography process. Respecting the definition of vari-
ables in (13.4) the elements of transition matrix can be derived by

P(xt|xt−1,ut−1). (13.7)

The transition matrix can be computed based on the historical data and update
after each run.

Belief updating: The probability distribution over xt given the state of previous
belief and observation and action at the current run.

B(xt) = P(yt−1|xt−1,ut−1)
∑

t P(xt |xt−1,ut−1)B(xt−1)∑
t P(yt−1|xt−1,ut−1)P(xt |xt−1,ut−1)B(xt−1)

. (13.8)

Reward function: The actual error which results from action ut is

Et = yt − T (13.9)

Average bias: The optimal value of actual error after t run with regards to the
transition matrix at each run and learning from the previous runs. Since each action
is independent, the only factor that influences the total error is the gain of the actions.
Therefore, bias is interpreted as the expected total difference between the reward (Et)
and the gain (G(Et)).

bias = E

{
∑

t

Et − G(Et)

}

(13.10)

In practice when t → ∞, the optimal gain is 1
t E

{∑
t Et

}
.

Consider yt , where T = 0 in (13.9) as reward function in tth run then the average
optimality reward function based on [13] is

Q(xt,ut) = (1 − ηt)Q(xt−1,ut−1) + ηt ×
[

yt − G(yt) + min
ut

Q(xt−1,ut−1)

]

,

(13.11)

3Regards to notation in the beginning of this section xt is equivalent to St ; ut is At ; yt is Ot ;
P(xt |xt−1,ut−1) is R(St |St−1,At−1); and Et is R(St,At).
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where G(yt) can be learned and updated at each run by

G(yt) = (1 − η′
t)G(yt−1) + η′

t

[
(t − 1)G(yt−1) + yt

t

]

(13.12)

The learning parameters ηt and η′
t (similar to λ in EWMA controller) are both

decayed at run t by the following rule:

ηt, η
′
t = η0, η

′
0

1 + t2
K+t

(13.13)

where K is a very large number, and η0, η′
0 are initial values for learning parameter

η and η′, respectively.
Choosing the optimal action: The objective function of a control system in (13.9)

can beminimize by the optimal solution of stationary policy given by the observation
space:

π(B(xt)) = argmin
rt

[
rtB(xt) × Q(xt,ut)r′

t

]
. (13.14)

Using the model as a controller: For having a controllable and observable system,
the following assumptions should be satisfied:

• Themodel applies over an infinite number of runs, implying that the control system
is stationary.

• Conditioned on the true ut and control setting at run t, the P(yt|xt) is independent
from information related to the run t − 1.

• The measurement noise and process disturbance are accumulated to the yt and ut ,
respectively.

• Regards to policy function in (13.8), objective function of optimization goal in
(13.9) is updated by

argmin
rt

∑

t

{rtB(xt) × Q(xt,ut)rt} (13.15)

For investigating the efficiency of the POMDP controller in comparison with
EWMA as the most common control filter in the semiconductor industry, an SISO
process with 200 runs simulated as follows:

• generating 200 runs of uncontrollable disturbance dt and noise εt from N (0, 1)
based on the model in (13.4), where y1, u1, x1 and T are set to zero.

• fitting simulated overlay errors from200 runs into (13.4) and obtaining the effect of
cumulative disturbance on yt , ut , and xt for run t = 2, . . . , 200where the coefficient
parameters (C1,C2,C3) for simplicity set to one.
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Fig. 13.9 The power of disturbance rejection between POMDP and EWMA controller. Y axis
denotes to the total overlay error and X axis to the simulation runs

• calculate the probability distribution function in (13.7) based on empirical dis-
tribution function (in reality, we can use historical data to find the distribution
function of xt).

• optimize objective function in (13.14) subject tomodel in (13.4) for each runwhere
both η0, η

′
0 are set to 0.5, and K = 1015.

• evaluating the performance of the proposed POMDP controller with 200 runs in
comparison with EWMA controller with fixed discount factor equal to 0.3 and
b = 0.5 as presented in Eqs. (13.1)–(13.3) with εt = 0 (note that the effect of
noise and disturbance is considered in steps 1 and 2).

Figure 13.9 illustrates this comparison based on the value of (13.9) and shows
that how POMDP is performing supremely better than EWMA to compensate the
disturbance.

13.6 Conclusion

This study highlighted the importance of disturbance rejection algorithm in semi-
conductormanufacturing for overlay errorminimization during the photolithography
process. The research summarized several disturbance rejection algorithms as a com-
prehensive collection for researchers and practitioners who would like to investigate
in this field. However, the algorithm and methods for disturbance rejection are not
limited to those are mentioned in this paper. Practically, the hybrid algorithm and
technology-enabled method is more efficient than traditional control theory and are
more applicable in the smart manufacturing environment.
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Chapter 14
Energy Management Improvement
Based on Fleet Digitalization Data
Exploitation for Hybrid Electric Buses

Jon Ander López, Victor Isaac Herrera, Haritza Camblong, Aitor Milo and
Haizea Gaztañaga

Abstract The chapter focuses on a fleet energy management approach with the aim
of reducing operation and maintenance costs. A state-of-the-art is presented for the
different proposed fleet management approaches. In order to tackle the digitalization
challenge of exploiting the large data volume of a fleet of vehicles, a methodology for
improving electrified buses energy efficiency at fleet level is proposed. In addition,
an energetic analysis of a fleet based on this methodology has been performed.
The analyzed fleet is composed of buses with parallel and series configurations and
include energy storage systems based on batteries and ultracapacitors. In the first
stage, a dynamic programming approach has been applied to determine the initial
optimal operation performance for each bus route. Then, several disruptions (e.g.,
traffic jams, auxiliary consumption, and passenger variations) have been added to the
routes to simulate “real” road and daily operation conditions. This data is used for
monitoring the energetic key performance factors by learning from the buses with
the best energetic behavior. Finally, a decision-making process is applied to improve
the local energy management of the less-efficient bus.
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14.1 Introduction

In the last few years, the reduction of greenhouse gas emissions has become a major
concern. This growing concern has been driven by the current state of the road
transport. In 2016, this sector caused the 20% of the total greenhouse gas (GHG)
in Europe. In terms of road transport GHG emission reduction, light-duty vehicles
have been in the spotlight, almost neglecting the heavy-duty vehicles (HDV)s impact.
HDVs emit the quarter part of the whole road transport GHG emissions, despite the
established more restrictive EURO VI GHG emissions standard, which limits the
emissions nearly to zero. Moreover, due to the high pollution concentration in some
cities, zero-emission zones have been implemented, as shown in Fig. 14.1 [1] with a
tendency to increase over the years.

It is highlighted that buses and lorries do not affect in the same level. The most
polluted zones are urban areas. Freight transport is much less concentrated in urban
areas than the urban public transport, as they are commonly used in longer transport
distances. However, public transport is mostly running in urban areas around 16
hours a day. Adding to this fact, buses are the most used means of public transport.
Therefore, buses are an important candidate for electrification.

Due to the low maturity level, the initial investment for hybrid and electric buses
is significantly higher than in the case of conventional (fossil fuel-based) buses. On
the contrary, several studies reveal that, due to lower operation costs throughout the
lifetime of the vehicle in some particular situations (countries with high fuel prices),
the total cost of ownership is lower in the case of hybrid and electric buses beside
conventional buses.

Fig. 14.1 EURO standard greenhouse gas emission limitations
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Fig. 14.2 Digitalization of
urban transport opportunities

In the automotive industry, there is a new trend for digitalizing vehicles. The
digitalization of vehicles is the process of providing vehicles with sensors to acquire
information, storing this information in the cloud data storage, and analyzing the
data. This new trend enables to monitor the energetic operation of vehicles widening
the opportunities to improve the energetic efficiency of the vehicles, as depicted in
Fig. 14.2. However, the main challenge for the digitalization is the large data volume
to be managed by fleet managers. Therefore, new automated tools are needed, in
order to analyze, process, and make decisions based on this processed data.

The current approach for improving the energy efficiency is based on applying
local energy management strategies (EMSs), which are optimized for each vehicle
and route. Commonly, this strategy is neither updated throughout the vehicle lifetime
nor compared with the energetic performance of other vehicles in similar operation
scenarios. Here, the main issue is the lack of data for re-evaluating the strategy or
the lack of intelligent tools to analyze multiple cases (vehicles on routes) to find
improved ways to manage the energy and operate the local systems more efficiently.
The aforementioned new trend of digitalization changes the traditional scenario. A
new level is identified above the energy management at local vehicle level, with the
aim of managing the whole fleet. This new level opens up a new scope in energy
management, allowing to compare different vehicles’ energetic behavior, learning
from those with the best energetic performance.

The new digitalization tendencywith the intelligent tools will allow tomonitor the
whole fleet operation, improving the fleet energetic efficiency, and reducing operation
costs. As a result, the total cost of ownership will be controlled, with the aim to
improve as much as possible, making hybrid and electric vehicles more competitive
methodology for the analysis and management of data from a fleet of vehicles.
Consequently, the contribution of this paper lies on a proposed methodology for
managing the data at fleet level, increasing the overall fleet energy efficiency.

This paper is an extended version of [2] and it is organized into six sections. The
first section presents the state-of-the-art of the different proposed fleet management
approaches in the literature. In the second section, the analyzed fleet case study
is presented. The third section describes the basic theoretical concepts. First, the
electrical modeling of the series and parallel HEB configurations are explained. After
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that, the optimization technique is introduced. Finally, the economic model for the
fleet lifetime operation cost estimation is presented. The fourth section corresponds
to the proposed fleet learning methodology. In the fifth section, the obtained results
and analysis are presented. In the sixth and last section, the general conclusions and
contributions extracted from this chapter are presented.

14.2 Fleet Management Approaches

All sectors in Europe have recorded aGHG emission reduction since 1990, excepting
the transport sector [3], being the road transport responsible for the 72.1% of total
transport GHG emissions in 2016, as depicted in Fig. 14.3A [4]. Despite the more
restrictive established standards regarding GHG emissions (EURO VI) limiting the
Internal Combustion Engine (ICE) operation, HDVs emissions have been constantly
growing between 1990 and 2010, Fig. 14.3B [3]. The European bus fleets layout, still
in 2015 was composed of nearly 50% of the vehicles with Euro III or older ICEs
[5]. Moreover, nowadays about 98% of the lorries in Europe rely on diesel [6]. In
order to fulfill the scheduled reduction of 30% of CO2 emissions for HDVs for the
year 2030, from 2019 levels [6], a renewal of the road transport fleets to a more
sustainable scenario is needed.

Analyzing the level of pollution impact of lorries and buses is different. The most
worrying zones are urban areas, due to the high pollution and congestion levels,
where commonly buses are running around 16h a day. Moreover, buses are the most
used type of public transport, with nearly 56% of journeys in Europe in 2014, as
shown in Fig. 14.3C [7]. Therefore, with the aim of reducing urban areas pollution
levels, hybrid and electric buses need to integrate. Furthermore, several studies have
been carried out in terms of analyzing the alternative road transport HDVs different
solutions. The main alternative available technologies are biofuels, gas, fuel cell,
hybrid, and full-electric-based vehicles. The conclusion of this study states that both
hybrid and full-electric buses’ solutions are the most viable ones [8–15].

Despite being the feasible solutions, hybrid and electric buses’ integration is a
challenging process. Several studies pointed out the high initial investment cost

Fig. 14.3 Public urban transport breakdown
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besides conventional buses [9, 16–20]. To overcome this problem and tomake amore
attractive transport for investors, the total cost of ownership (TCO) is the key point to
focus on. TCO is the economic performance indicator, which includes manufactured
price and the costs for maintenance, operation, energy distribution, infrastructure,
emission, insurance, and end-of-life [18]. In this regard, several studies revealed that
operation and maintenance costs in the case of hybrid and electric HDVs throughout
the whole lifetime can be lower than the diesel buses [9, 13, 18, 21–23].

The TCO calculation is highly dependent to the operational aspect [18]. In [24],
it was studied an intention to replicate a full-electric bus fleet operation in real
conditions. The outcome of this research study was to obtain different energy con-
sumptions and performances among the bus fleet. As a result, there exit uncertainties
in the literature for the TCO estimation, regarding the real operation conditions [18].
Therefore, with the aim of reducing uncertainties, there is a need to monitor the
vehicles’ operation [25].

The continuous development of smart devices and the implementation of telem-
atics has resulted in a new information source. Traditionally, telematics have been
used for vehicle positioning. However, the new trend of cloud data storage and data
analysis, known as digitalization process, have derived in new services [26, 27]. The
newly provided services are oriented to energy savings, driving behavior, dynamic
routing, charging schedule, and diagnostics [26, 28].

In the literature, traditionally the energy management has been composed of three
levels [29, 30], as shown in Fig. 14.4. In this traditional approach, the EMS plays a
key role in order to manage the energetic behavior of each single vehicle. Therefore,
transport local EMSs have been a topic of interest for several years, with the aim of
improving the energy efficiency of each single vehicle [31–33].

The traditional EMS approach evaluates at single vehicle level, having a rela-
tively limited scope [33]. A classification of the EMSs is depicted in Fig. 14.5 [30].
However, the digitalization trend has allowed to go a step further in the energy

Fig. 14.4 Representation of the hierarchical management and control of a power electronic system,
with the proposed fleet management system
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Fig. 14.5 Energy management approaches for HEBs

management hierarchy, adding an additional level shown in Fig. 14.4. Collecting
and processing information that affects energy consumption at fleet level enables to
widen the EMS scope, becoming a thriving area of research [28, 33].

The main objective of the fleet energy management system is to analyze, process,
and make decisions based on the processed data. A wider scope allows to compare
the behavior of each vehicle on the fleet, learning from those with the best energetic
behavior. Thus, the aim is to improve the whole fleet energy efficiency, reducing the
operation and maintenance costs.

In the literature, several fleet management system approaches have been iden-
tified, with different purposes [32, 33]. Examining the proposed approaches, for a
better understanding a classification ,has been done, based on the topics of each
fleet management system approach. The main identified purposes are focused on the
following areas: traffic jams avoidance, vehicle diagnostics, itinerary planning, and
charging regulation and scheduling. In the following lines is done an overview and
a literature review with regard to the aforementioned classification.

Traffic jams avoidance has been the first developed fleet management system.
As it has been aforementioned, the first use of telematics was focused on vehicle
positioning. In this regard, Thong et al. proposed a fleet management system for
location accuracy improvement, with the aim of developing an intelligent system
for avoiding traffic jams [34]. In addition, in [35] Balaji et al. aimed to develop
a smart traffic light time optimization approach, to avoid traffic jams. Likewise,
HomChaudhuri et al. proposed a hierarchical control for energy management with
two levels of sharing information. The higher level is based on the traffic lights
information and traffic information (provided by the surrounding vehicles). This
information is used for predicting the velocity and choosing the target velocity with
the best fuel efficiency. The lower level with the above level information controls
the power split factor of the hybrid vehicle by applying the energy consumption
minimization strategy [36].
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In the automotive industry, vehicle diagnostics for predictive maintenance has
been the driving force in digitalization implementation. J. Grantner et al. proposed
an intelligent vehicle health diagnostics method, based on fuzzy logic, updating the
fuzzy rules from cluster extraction of the fleet data [37]. In regard to the fleet battery
(BT) data exploitation, the following approaches have been proposed. Haycock et al.
proposed a BT monitoring approach, with the aim to evaluate the BT utilization and
improve the TCO [38]. Likewise, Barré et al. approach a methodology for clustering
EVs according to each operation, with the aim to improve the BT state of health
(SOH) estimation [39].

Another topic of research, based on data exploitation, is the green itinerary plan-
ning. In the literature, several approaches have been proposed [40–43]. It is worth
mentioning the approach of Mehar et al. proposing an extension of the EcoDrive
green itinerary planning service [42] for EVs providing several paths taking into
account the following information. (i) Road cartography: elevation; (ii) Driving per-
turbations: traffic congestions, unexpected events, and driver habits; (iii) Vehicle
features: weight, BT type, and engine efficiency map; and (iv) Weather conditions:
air friction, wind speed, and temperature.

Recharging infrastructure optimization at fleet level has been topic of research
for HDVs, particularly applied to urban mobility, due to the fact that the profiles
are predefined. The compilation and processing of information of the recharging
operation widen the recharging management opportunities. Qin et al. exploited the
compiled information with the aim of minimizing the charging station queues [44].
In an attempt to go a step further on recharging management, Hill et al. proposed a
vehicle-to-grid (V2G) fleet model. This model shows that with BT operation mon-
itoring, the shallow cycles are avoided. Consequently, the BT lifetime increases,
making more profitable the V2G at fleet level. Lastly, Rogge et al. [45] address the
challenges of range limitation and required charging time, developing amethodology
for the charging infrastructure planning.

In regard to fleet data exploitation in [46], Wittmann et al. proposed a holistic
framework. This approach covers the fleet tracks data acquisition to the evaluation.
The data is acquired from a smartphone application and a data logger. Consequently,
this data is processed filtering the tracks, ordering according to the selected features
(such as distance, average speed, and driving behavior). Finally, the data is evaluated
making use of different developed tools. It is noteworthy the developed data analysis
tool extension used to simulate electric vehicle’s energy consumption. However, this
approach is not focused on a methodology for fleet energy management.

After the literature review, it can be concluded that there is a lack ofmethodologies,
strategies, and tools for the energetic behavior improvement at fleet level. Therefore,
a gap in the literature is identified, for developing tools to manage fleet management
systems, in regard to fleet energetic efficiency improvement to exploit the upcoming
opportunities in this thriving area of research [28, 33].
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14.3 Case Study

Based on the proposed methodology, an energetic analysis of a fleet has been per-
formed. Some data of the scenario analyzed in this paper is approached in Table14.1.
It focuses on three different HEB configurations as shown in Fig. 14.6:

• Parallel HEB with Battery (Par): a power train pulled with an ICE and an electric
motor (EM), operated by a BT pack.

• Series HEB with Battery (Ser 1): a power train pulled by an EM powered by a BT
pack and a genset (GS).

• Series HEB with Ultracapacitor (Ser 2): a power train pulled by an EM powered
by an ultracapacitors (UCs) pack and a GS.

The main parameters of the used BT and UC cells are summarized in Table14.2.
It is noteworthy that the BT cell has been selected due to the high c-rates, which
allows fast charging and longer BT lifetime than other lithium-based chemistries.

The urban routes have been generated from a database of standardized driving
cycles generating new profiles from two profiles’ combination and round trips, as

Table 14.1 Scenario approach

Par Ser 1 Ser 2

Driving cycle profiles/bus configuration 14 4 14

Electric motor power (kW) 220 220 220

Internal combustion engine power (kW) 170 – –

Genset power (kW) – 170 170

Battery pack energy (kWh) 24 24 –

Ultracapacitor energy (kWh) – – 1

Energy storage system weight (kg) 266 266 145.8

Fig. 14.6 Parallel and series HEB configurations



14 Energy Management Improvement Based on Fleet … 329

Table 14.2 Electrical parameters of BT- and UC-based cells

Battery Ultracapacitor

Nom. voltage 2.3V Nom. voltage 2.7V

Nom. capacity 20Ah Nom. capacitance 3000F

Int. resistance 0.53m� Int. resistance 0.29m�

Max C-rate disch/ch 7/8C-rate Max C-rate disch/ch 110/110C-rate

Specific energy 90Wh/kg Specific energy 6.0Wh/kg

Round-Trip

Driving Cycle

Fig. 14.7 Standardized cycles’ combination and round-trip generation

depicted in Fig. 14.7. Each of these generated cycles has been applied to an HEB, as
explained in Table14.1, generating a simulation of the fleet.

14.4 System Modeling and Optimization Methodology

In this section, the used HEB electrical models and the optimization technique for
the EMS development are described. These HEB models have been implemented in
MATLAB, in order to simulate and energetically evaluate the proposed methodol-
ogy. Finally, an economic model is introduced, used for the lifetime operation cost
calculation.

14.4.1 Electrical Model

The electrical model of the power train elements has been developed for the quasi-
static simulation method. Therefore, the used formulation has been based on back-
ward or “effect–cause” approach. The power is calculated at each discrete step fol-
lowing a predefined speed profile going upstream through the vehicle components
[47]. In order to standardize the power flow direction, the adopted sign convention
has been positive power when there is an electrical power demand or mechanical
traction and negative when there is an electrical power absorption or mechanical
braking.
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14.4.1.1 Bus Dynamics

In the quasi-static simulation, the inputs to the vehiclemodel are the speed vcyc(k)(ms ),
acceleration acyc(k) (ms2 ) and the slope angle α(k) (◦) of the predefined route [47].
From these profiles, the backward simulation is applied, starting from the calculation
of the force acting on the wheels (FT ), at each discrete state k defined as follows
[30, 47]:

FT (k) = Fa(k) + Fg(k) + Fi(k) + Fr(k) (N) (14.1)

being Fa(k) (N) aerodynamic force, Fg(k) (N) gravitational force, Fi(k) (N) inertial
force, and Fr(k) (N) rolling resistance force (depicted in Fig. 14.8), at each discrete
state k are defined as follows:

Fa(k) = 0.5 · ρair · Af · cx · v2cyc(k) (N) (14.2)

Fg(k) = mtot · g · sin(α(k)) (N) (14.3)

Fi(k) = mtot · acyc(k) (N) (14.4)

Fr(k) = crf · mtot · g · cos(α(k)) (N) (14.5)

being ρair
( kg
m3

)
the density of air, Af

(
m2

)
the frontal area of the vehicle, cx (–) the

aerodynamic drag, mtot (kg) total vehicle mass, g
(
m
s2

)
the gravitational acceleration,

and crf (–) the road rolling coefficient [30].
The total mass of the vehicle can be defined as

mtot = mveh + mESS + mpass · npass (kg) (14.6)

where mveh (kg) is the empty bus weight, mESS (kg) is the ESS weight, mpass (kg)
is the average weight per person (assumed to be 75kg), and npass is the number of
passengers [30].

Fig. 14.8 Forces acting on
the bus during driving

α

FT

Fg

mtot . g

Fr

Fa
Vcyc
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From the bus dynamic model calculation, the outputs are the wheel rotational
speed wwh(k)

(
rad
s

)
, acceleration dwwh(k)

(
rad
s2

)
, and the required torque in the wheel

Twh(k) (Nm) calculated as follows:

wwh(k) = vcyc(k)

rwh

(
rad

s

)
(14.7)

dwwh(k) = acyc(k)

rwh

(
rad

s2

)
(14.8)

Twh(k) = FT (k) · rwh (Nm) (14.9)

where vcyc(k)
(
m
s

)
is the cycle speed, acyc(k)

(
m
s2

)
is the cycle acceleration, and rwh

(m) is the wheel radius.

14.4.1.2 Transmission Model

The transmission consists of the elements placed between the motor and the drive
wheel axle. For the case of the series configuration, as the EM is more flexible in
a wider rotational speed ranges, there is no need of a gearbox and it has directly a
transmission. In the case of the parallel configuration, there is an additional element
in the power train, the gearbox, as depicted in Fig. 14.6. The gearbox transforms a
certain rotational speed to a different speed, with the aim of making the most of the
ICE [47].

In both cases, the inputs are the outputs of the dynamic modelwwh(k), awh(k), and
Twh(k). As a result, the rotational speed of the drive shaft wdrsft(k)

(
rad
s

)
, acceleration

of the drive shaft dwdrsft(k)
(
rad
s2

)
, and the required torque in the drive shaft Tdrsft(k)

(Nm) are recalculated as follows:

wdrsft(k) = wwh(k) · γ (k)

(
rad

s

)
(14.10)

dwdrsft(k) = dwwh(k) · γ (k)

(
rad

s2

)
(14.11)

Tdrsft(k) = Twh(k)[+]
γ (k) · η

+ Twh(k)[−] · η

γ (k)
(Nm) (14.12)

where γ is the gear ratio and η the efficiency of transmission model [47].
The parallel configurations EM and ICE are mechanically coupled; therefore, the

required traction is given by the torque demand Tdem(k) (N).

Tdem(k) = Tdrsft(k) + dwdrsft(k) · JICE(k) + dwdrsft(k) · JEM (k) (N) (14.13)

where JICE(k) and JEM (k) are the ICE and EM inertia, respectively.
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In the case of the series configuration, the traction is only provided by the EM
TEM (k) (Nm). However, the EM power supply is divided between the ESS and a GS,
needing to calculate total the power demand Pdem(k) (W).

TEM (k) = Tdrsft(k) + dwdrsft(k) · JEM (Nm) (14.14)

Pdem(k) = wdrsft(k) · TEM (k) (W) (14.15)

14.4.1.3 Split Factor

The information obtained from the transmission model is used to set the required
tractive demand in the backward model. This demand has to be satisfied by each
vehicle, combining as energetically efficient as possible the power sources. The
combination of the power sources use is determined by the split factor. In regard to
each configuration, the variable to split is different.

As it has been aforementioned, for the parallel configuration the torque Tdem(k)
has to be split. On the contrary, for the series configuration, the power Pdem(k) has to
be split. In the following lines, a further explanation for each configuration is given.

Parallel HEB
In the parallel configuration, the EM and the ICE are mechanically coupled and
rotating at the same speed imposed by the wheels, as shown in Fig. 14.6. The variable
deduced by the split factor U (k) is the torque Tdem(k) (Nm). The tractive torque
demand is divided between the ICE torque TICE(k) (Nm) and the EM torque TEM (k)
(Nm), as shown in Equation (14.16).

Tdem(k) =
{
TICE(k) = Tdem(k) · (1 −U (k)) (Nm)

TEM (k) = Tdem(k) ·U (k) (Nm)
(14.16)

Series HEB
The series configuration is only driven by the EM. In this case, the split factor
represents the power demand Pdem(k) (W), as the series configuration is electrically
coupled by the electric bus. This factor is divided between the ESS power PESS(k)
(W), BT or UC, and the GS power PGS(k) (W), as shown in Fig. 14.6. The GS is
composed of an ICE (speed controlled) and an electric generator (torque controlled).

Pdem(k) =
{
PGS(k) = Pdem(k) · (1 −U (k)) (W)

PESS(k) = Pdem(k) ·U (k) (W)
(14.17)

14.4.1.4 Electric Motor

As it has been aforementioned, both power train configurations use the EM for
traction purposes. The efficiency of the EM ηEM (k) (%) is calculated bymeans of the
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Fig. 14.9 EM efficiency map

wdrsft(k) and TEM (k) parameters, based on the efficiencymap shown in Fig. 14.9. The
EMmodel output is the required electric powerPEM (k) (kW) defined as follows [30]:

When wdrsft(k) > 0 and TEM (k) > 0, (traction mode):

PEM (k) = wdrsft(k) · TEM (k)

103 · ηEM (k)(wdrsft(k), TEM (k))
(kW) (14.18)

When wdrsft(k) > 0 and TEM (k) < 0, (regenerative mode):

PEM (k) = wdrsft(k) · TEM (k) · ηEM (k)(wdrsft(k), TEM (k))

103
(kW) (14.19)

14.4.1.5 Internal Combustion Engine

The ICE is used for different purposes depending on the configuration of the power
train. On the one hand, for the parallel power train, the ICE is used for traction
purpose, mechanically coupled speed coupling [48]. On the other hand, in the case
of the series power train configuration, the ICE is used for driving the generator
(connected by a clutch), in order to power the EM and the ESSs.

This power target can be obtained from different combinations of ICE rotational
speed [(wdrsft(k)

(
rad
s

)
] and torque [(TICE(k) (Nm)]. Therefore, the instantaneous fuel

mass flow mfICE(k)
( kg

s

)
consumed at each discrete state k can be defined as follows

[30, 47]:

mfICE(k) = f (wdrsft(k), TICE(k))

(
kg

s

)
(14.20)

The instantaneous fuel mass flow consumed from the ICE is obtained by inter-
polating the ICE speed and torque value in the fuel consumption map depicted in
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Fig. 14.10 ICE fuel consumption and efficiency maps

Fig. 14.10. In this case, the data of a commercial diesel motor of VOLVO used in
hybrid buses applications has been considered for the vehicle modeling.

The power generated by the ICE in the case of parallel configuration is calculated
as follows:

PICE(k) = wdrsft(k) · TICE(k)

ηICE(k)
(kW) (14.21)

where ηICE(k) (%) is the ICE efficiency (deducted from the ICE efficiency map
depicted in Fig. 14.10B).

On the contrary, for the series configuration, as the ICE drives the generator of
the GS, the ICE power can be deduced from Eq. (14.22) [30]:

PICE(k) = PGS(k)

ηGS(k) · ηINV (k)
(kW) (14.22)

where ηINV (k) (%) is the average inverter efficiency and ηGS(k) is the GS efficiency
(obtained from the GS efficiency map shown in Fig. 14.11).

14.4.1.6 Genset

The GS is only used for the series power train configuration and is made up of an
ICE and an electric generator. The GS model input is the power target PGS(k) (kW)
determined by the split factor.

The fuel consumption map has been previously optimized in order to identify
the most efficient operation points for the whole power operation range of the GS.
Figure14.11 [30] depicts the optimal operation curve for the GS, over which it will
operate. This curve has been included in the simulation model to obtain (depending
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Fig. 14.11 GS optimal operation curve and efficiency map

on the power demanded to the GS) the instantaneous targets for the ICE rotational
speed and corresponding mechanical torque [30].

14.4.1.7 Auxiliary Loads

The auxiliary loads, represented by the air conditioning, lights, and driving motors,
is represented as an average of 12.5kW for the optimization process. For the real fleet
simulation, a random disruption of the auxiliary consumption has been implemented,
as shown in Fig. 14.20.

The auxiliary loads in the case of the parallel configuration are powered by the BT.
However, in the case of the series configuration, the auxiliary loads can be powered
by the BT and the GS.

14.4.1.8 Energy Storage System Model

As it has been aforementioned in Section14.3, the HEB fleet is composed of buses
with BT pack and UC pack. Therefore, a model for each ESS has been developed as
shown in Fig. 14.12 [30], the steady-state ESS equivalents [30].

The BT cell is represented by an ideal open-circuit voltage source [VOCBT (V)] in
series with the internal resistance [RBTcell (�)]. For the SC model, a similar approach
has been developed. In this case, an equivalent circuit of a capacitorwith a capacitance
CSCcell (F) in series with a resistance RintSCcell (�) has been considered. For both
models, it has been assumed that a string contains nBT or nSC BT or SC cells in series
and the SC or BT pack groups mBT and mSC strings in parallel [30].

For the state of charge (SOC) estimation of the ESS (SOCESS(k)), for both BT
and UC, coulomb counting method has been used [49]. In this modeling, the ESS
current [IESS(k) (A)] is calculated at each sampling (k), as follows:
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IESS(k) = UESS(SOCESS(k))

2 · RESS
−

√
UESS(SOCESS(k)) − 4 · RESS · PESS(k)

2 · RESS
(A)

(14.23)

where UESS(k) (V) is the equivalent open-circuit voltage and RESS(k) (�) is the
equivalent internal resistance of the ESS, at pack level. The ESS model input is the
power target PESS(k) (W) generated by the dynamic programming (DP) function.

The SOC is updated at each sample as follows:

SOCESS(k + 1) = SOCESS(k) − IESS(k + 1)

CESS · 3600 · 100 (%) (14.24)

where CESS (Ah) is the ESS nominal capacity.

14.4.2 Optimization by Dynamic Programming

DP approach has been used to determine their optimal operation and performance for
the fuel consumption minimization, based on the function developed in [50]. This
approach has been commonly used as a baseline for benchmarking the proposed
new EMSs for hybrid electric vehicles and for offline optimization [33, 51]. The
optimization problem is based on the following cost function (J):

J =
N−1∑

k=0

�mfICE(U (k)) · Ts (14.25)

where�mf · Ts is the fuel mass consumption at each time step (Ts = 1 s), determined
by the torque (parallel configuration) or power (series configuration) split factor U,
within the urban route length (N).
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Table 14.3 Economic parameters

Acronym Value Unit

Fuel cost Cfuel 1.1 e/l

Cold start kcs 1.15 –

Energy electricity cost CkWh 0.088 e/kWh

Power electricity cost CkW 25.9 e/kW/year

Battery cost CBT 800 e/kWh

Ultracapacitor cost CUC 4000 e/kWh

ESS maintenance cost CESS−Maint 500 e/year

Interest rate I 2.5 %

Diesel density ρfuel 0.832 kg/l

Calorific value Hl 43.5e3 kJ/kg

14.4.3 Economic Model

An economic model has been developed, with the aim of evaluating the fleet life-
time operation costs of the different configurations. For this evaluation fuel cost,
recharging cost and BT replacement cost have been taken into account.

In Table14.3, the economic section values are shown. These values have been
considered for the aforementioned calculations [30, 52, 53].

14.4.3.1 Fuel Cost Calculation

The daily fuel consumption cost
[
Fuelcost

(
e
day

)]
is calculated by integrating the

results obtained from the interpolation of Fig. 14.10 fuel consumptionmap as follows:

Fuelcost =
p∑

k=1

kcs · mfICE(k)·Cfuel

ρfuel

(
e

day

)
(14.26)

where kcs (–) is the cold start mfICE(k)
( kg

s

)
is the fuel mass flow and ρfuel

( kg
m3

)
the

density of the diesel.

14.4.3.2 Grid Cost Calculation

The grid costs are calculated according to the recharged energy in each round trip.
The recharged cost [Chargingcost

(
e
day

)
] is calculated as follows:
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Chargingcost = CkW · Pcha

365
+

p∑

k=1

Pcha(k) · CkWh

3600

(
e

day

)
(14.27)

where CkW
(

e
kW/year

)
is the cost of the power, Pcha(k) (kW) is the power of the

charger, Pcha(k) (kW) is the power absorbed from the grid at each k discrete step,
and CkWh

(
e

kWh

)
the referential energy cost of the grid.

14.4.3.3 Operation Costs of the Energy Storage System

In this subsection, the BT lifetime and BT operation cost models are presented. For
a better understanding, it has been divided into two points, BT aging estimation and
BT aging operation costs.

Battery Aging Estimation
In this subsection, the BT lifetime (γ ) and the number of replacement calculation
method is described. For this calculation, BT calendar degradation, maximum full
equivalent cycles (FECs), and BT cycling degradation methods have been taken into
account.

γ = min
[
γcal,FEC, γcyc

]
(14.28)

where γcal is the number of years by means of the calendar degradation, FEC is the
accounted FEC of the BT, and γcyc is the degradation by means of the BT operation.
The calendar degradation andFEC are fixed values provided by theBTmanufacturer.
However, the BT cycling degradation has to be evaluated. In the following lines, the
BT cycling degradation calculation is introduced.

BT cycling degradation is calculated based on a rainflow cycle counting algorithm
[54] and Wöhler curve-based method [30]. The Wöhler curve-based method is a
fatigue analysis, commonly used for BT aging estimations [53, 55, 56].

The Wöhler method lies on the number of NEievt events—in this case depth of
discharge (DOD)—that can occur until the BT reaches its end-of-life (EOL).

The lifetime lost (LLievt) calculation is done by the relation of the accounted
(NEievt) and the maximum number of events (NEmax

ievt ) that the BT can withstand,
expressed as follows:

LLievt = NEievt

NEmax
ievt

(14.29)

The NEievt are accounted by means of the rainflow algorithm (Fig. 14.13), with steps
of 1% of DOD.

The NEmax
ievt are extracted from the Wöhler curve. Figure14.14 [30] depicts an

example of a Wöhler curve. The data for building this curve can be obtained directly
from the manufacturers or by means of laboratory tests.
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Fig. 14.13 Rainflow charging/discharging cycle counting algorithm

Fig. 14.14 Wöhler curve example

For determining the total lifetime loss (LL) in the whole range of DODs (from 0 to
100%), the sum of all the events in the cycling evaluated period has to be calculated
as follows [30]:

LL =
∑

ievt

LLievt (14.30)

Finally, considering the evaluated SOC profile’s time period can be calculated
as the inversion of LL, the total cycling lifetime (γcyc) can be calculated, typically
defined in years:

γcyc = 1
∑100

ievt=1

(
NEievt
NEmax

ievt

) (14.31)
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Battery Aging Operations Costs
Therefore, based on the previously estimated BT aging, the BT cost (BTcost) is cal-
culated as follows:

BTcost = BTMaint + BTIni + BTRep
365

(
e

day

)
(14.32)

where BTMaint is the annualized maintenance cost, BTIni is the annualized capital
cost related to the initial investment of the BT pack, and BTRep is the annualized
replacement cost of the BT pack. These costs are further explained in the following
lines.

BTIni = (CkWh−BT/UC · EESS) · CRF
(

e

year

)
(14.33)

where CkWh−BT/UC ( e
kWh ) is the referential cost of the BT or UC technology, EESS

(kWh) is the capacity of the installed BT pack, and CRF is the capital recovery factor.
The latter equation allows annualizing the cost considering the lifetime of the whole
system:

CRF = I · (I + T )T

1 + (I + T )T

(
1

year

)
(14.34)

where I (%) and T (years) refer to the interest rate and the lifetime of the whole
system, respectively.

The expression of BTRep is calculated as follows:

BTRep =
nRep∑

k=1

CkWh−ESS · EESS ·CRF
(I + 1)k·γ

(
e

year

)
(14.35)

where nRep is the number of ESS replacements calculated based on the previously
calculated γ and years of operation.

14.5 Fleet Learning Methodology

In order to overcome the lack of an existing methodology for energetic behavior
improvement at fleet level, the methodology shown in Fig. 14.17 has been proposed.
The methodology is composed of six different stages, which are explained in the
following subsections.
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14.5.1 Stage 1: Design Stages

The first stage lies for the design stage. This stage is composed of three substages,
which are used to create the urban profile, optimize the operation, and generate the
EMS.

Stage 1.1: Urban Route Profiles
In this substage, the urban routes have been generated from a database of 112 stan-
dardized profiles, randomly selected to complete a daily route. In order to enlarge
this database, a mixture of profiles has been done, simulating a round trip, as depicted
in Fig. 14.15.

Stage 1.2: Optimal Operation
For simulating the optimal operation,DPapproachhas beenused (seeSection14.4.2).
The obtained (power or torque) split factor, SOC profile, and fuel consumption have
been used as a baseline for the analysis and comparison of thewhole fleet. In addition,
lookup tables (LUT) have been generated and used to provide optimal operation
target, as shown in Fig. 14.16.

Stage 1.3: Energy Management Strategy
The developed EMS for each HEB has been a rule-based (RB) strategy. For evalu-
ating the efficiency increase of DP, first an RB strategy without the LUT has been
used, for having all the bus with the same EMS. After this evaluation, the following
personalized EMS for each bus has been used (Figure14.17).

Fig. 14.15 Random new “n” driving profiles

Fig. 14.16 Optimized random “n” driving profiles
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Fig. 14.18 Rule-based strategy

This RB strategy makes decisions according to the deviation from the expected
profile (tolerance of 2%), as shown in Fig. 14.18. When the “real” profile is within
the limits, LUTs are applied (driven by the distance).

When the “real” profile is outside the expected route, the following decisions
are taken. The first decision is taken according to the speed of the bus (being VMode

10km/h), using full-electric mode—all the energy is provided by the ESS—when
the speed is lower than VMode and hybrid mode—providing the required energy and
recharging the ESS from the GS—when the speed is higher than VMode.

The following rule is above the aforementioned ones. It decides based on the cur-
rent SOC. If the current SOC is below a defined minimum SOC (being the threshold
of the SOC 60% in the case of the BT pack and 40% in the case of UCs), the driving
mode is modified to the hybrid. If it is above the threshold, nothing is done.

The last decision is taken based on the SOC when the route is finished. When
this final SOC is below 85%, the HEB is connected to the grid for 5min in order to
recharge the ESS. The charger used for the BTs is a 30kW charger and for the UCs
a 60kW one [57].
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14.5.2 Stage 2: Real Operational Behavior

These stages are used to simulate the real operation behavior or to extract the data
from a real fleet.

Stage 2.1: Daily Disruptions
A daily trip journey is composed of around 16h. For simulating “real” trips, some
disruptions have been randomly introduced to these routes. For this scenario, three
disruptions have been considered.

• Road disruptions: Heavy traffic has been simulated increasing the number of
unscheduled stops and delays in the daily route for evaluating the energetic behav-
ior. In Fig. 14.19, A reflects the simulation of a traffic jam and B the heavy traffic
after a traffic jam.

• Power disruptions: These disruptions have been simulated increasing/decreasing
the auxiliary power consumption, related to temperature variations, as shown in
Fig. 14.20.

• Weight disruptions: These disruptions have been represented with the passenger
movement on each bus stop, as shown in Fig. 14.21.

These disrupted routes have been simulated applying the aforementioned RB
strategy.
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Stage 2.2: Real Fleet Data
This stage depicts the possibility of extracting the data directly from a real fleet,
instead of simulating it, by means of stage 2.1.

14.5.3 Stage 3: Watching Period

In this stage, a time period has to be set, with the aim of collecting enough data for
the processing stage. This period can be set from weeks until years, depending on
the data analysis type to be focus on. Based on the period time, two watching periods
are differentiated the short- and long-term watching periods.

On the one hand, the short-term watching period can be set from weeks to months
and it is focused on the operation performance improvement. On the other hand, the
long-term period is set from several months to years. This watching period is set with
the aim of evaluating components that need longer evaluation periods for making a
decision, such as the BT lifetime extension or the re-engineering of the power train.

14.5.4 Stage 4: Fleet Learning Period

In these stages, the collected data from the fleet is processed and analyzed, for
subsequently utilizing as a basis for making energy management decisions.

Stage 4.1: Data Processing
The collected data in the watching period stage has been processed locally (at bus
level) and at fleet level at this stage. This processed data gives the information to
compare fuel consumption, ESS power operation targets, and ESS SOC operation
range. On the one hand, the processed data at local level gives the information on
each bus. On the other hand, at fleet level, the data is processed calculating the overall
mean values. At the local level in each HEB, an aging model can be implemented to
the ESS for predicting the aging.
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Stage 4.2: Energy management decision-maker
Taken those buses with the best energetic behavior, this decision-maker stage decides
the changes to be applied.

• SOC operation range update: Analyzing the ESS SOC operation range allows
to adapt SOC range to each urban route demand. This helps to optimize the BT
operation.

• ESS/GS power operation targets update: According to each urban route power
demand, these targets are updated, in order to optimize the EMS.

• ESS lifetime maximization: Based on the result of the ESS aging prediction, the
BT operation is updated, to prolong the ESS lifetime.

• Operation cost minimization: Possible resizing of the ESS, ICE, or EM.
• Bus-to-route optimization: At first step, adapting the bus to the route with the
optimized LUTs.

• Route-to-bus optimization: After a time period, adapting the route to each bus,
switching the buses having a worse SOH and more intensive routes, with those
buses having a better SOH and less-intensive routes.

14.5.5 Stage 5: EMS Update

Based on the taken decisions in the previous 4.2 stage, the EMS is updated for each
individual bus.

14.5.6 Stage 6: Fleet Learning Period

This feedback stage is used to evaluate the whole fleet efficiency every time the EMS
has been updated, in order to analyze the impact of the taken decision. A learning
period is determined by this feedback process, obtaining the fleet learning curve, as
shown in Fig. 14.22.

As depicted in Fig. 14.22A, a baseline is set, which will be the prediction of the
fleet energetic efficiency evolution if no measures are taken. For the baseline starting
point, an initial energetic efficiency point has to be set, as the fleet is composed of
HEBs with different aging times. A desired performance target line is set, which will
represent the maximum energetic fleet improvement range.

Once the boundaries of the fleet learning period are set, based on the historical
data the improved fleet performance is represented. Analyzing Fig. 14.22B, it is
noteworthy that the fleet learning curve is divided in two periods: the initial fleet
learning period and the operation and maintenance fleet learning period.

The initial fleet learning period is split into two learning approaches: the self-
learning and the fleet learning approach. The self-learning approach is focused at
single vehicle level, optimizing the vehicle based on the route. On the contrary,
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the fleet learning approach is based on the whole fleet information, learning from
those with the best energetic behavior. This learning period can be concluded in two
situations: First, when the fleet overall efficiency has reached (or approximated to)
the desired efficiency target and it has been stabilized; and second, when the curve
has changed the tendency, as shown in Fig. 14.22C.

The final learning period is based on the operation and maintenance period. This
stage starts when there is a decreasing tendency. The decreasing tendency of the
overall efficiency is due to factors such as ESS SOHdecrease. In this new stage, some
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increasing tendencies can be observed, as depicted in Fig. 14.22D, which represent
the efficiency improvement after operation and maintenance modifications, such as
ESS replacement or auxiliary equipment efficiency increase.

14.6 Results and Analysis

In order to validate the proposed “fleet learning” methodology, a simulation of the
fleet described in Table14.1 has been carried out. The watching period has been
defined of a week (7 days), with around 16 hours a daily operation. The DP approach
results (obtained from the urban routes without perturbations) have been used as
baseline value for contrasting the disrupted results. The new proposed approach has
been applied on the disrupted urban routes.

Figure14.23 depicts the mean fuel consumption of both approaches. In the three
configurations, the proposed approach shows a lower fuel consumption compared to
the baseline. This reduction is given as a result of a constraint only applied to the DP
approach. This constraint ensures to start and finish at the same SOC level (85%).
Consequently, there is a more intensive use of the ICE and the GS in the parallel and
series configurations, respectively.

Figures14.24 and 14.25 show the results regarding the ESS information (ESS
energy consumption and theDODrespectively). In the proposed approach, in contrast
to a less fuel consumption, it is noteworthy a more intensive use of the ESS. In the
HEB with a BT pack, the ESS use is around the double from the baseline value
(Par 180% and Ser1 271%). In the case of the HEB with UCs pack, the DOD has a
minor increase. This is due to the fact that UCs have higher c-rates. As a result of
this characteristic, the charging and discharging process is faster. In addition, as UCs
have less capacity besides BTs, their use is more intensive.

In the proposed approach, when the final SOC is below 85%, for reaching the
energetic balance, a charging process is carried out (see Fig. 14.18). The recharged
energy in each power train configuration is shown in Fig. 14.26. An additional

Fig. 14.23 Fleet fuel
consumption
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Fig. 14.24 Fleet ESS
analyzed DODs

Fig. 14.25 Fleet ESS energy
consumption

Fig. 14.26 Fleet recharged
energy from the charger

flexibility degree is added with the charging process, consequently obtaining a more
intensive ESS use in the proposed approach than in the DP approach.

Comparing the three different power train configurations, it is important to high-
light that the parallel configuration is less flexible than the series one. This is due to
the fact that both the EM and ICE are fixed to the same axis. This reduces the flexibil-
ity degree of recharging the ESS, having the chance of recharging with regenerative
braking, coasting operation mode, and from the grid when the route is finished. On
the contrary, the series configuration has the possibility of recharging the BT at any
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Fig. 14.27 Fleet mean
operation costs per day

given time, while driving with the GS, with the regenerative braking and from the
grid when the route is finished.

In Fig. 14.27, the operation costs per day are shown. For this calculation, the
fuel consumption, BT replacement rate (lifetime estimation obtained with a Wöhler
degradation estimation technique [49]), and charging costs, as explained in Sub-
section14.4.3, have been considered. It is noteworthy the fuel consumption high
influence on the operation costs, reaching the value up to 90% of the total daily
operation costs.

In this regard, the fuel consumption, BT replacement rate, and charging costs
throughout the buses lifetime have been calculated as shown in Fig. 14.28. As it has
been aforementioned, it is to highlight the fuel consumption high influence on the
operation costs. Consequently, despite having the highest replacement rate of BT
packs on the series configuration, the fuel consumption reduction makes to have the
highest operation cost reduction.

In order to quantify the obtained improvement from the proposal, Fig. 14.29
depicts the examined fleet energetic efficiency. For the fleet learning improvement
quantification, results from the operation costs have been analyzed. This fleet learn-
ing period has been evaluated from the historical data in two periods, T1 and T2.
T1 represents the obtained improvement with the DP optimization compared to the
aforementioned RB strategy without the LUT, with an increase up to 46%, simi-
lar to other works such as [58]. The second evaluation period, T2, is the energetic
fleet improvement applying the proposed methodology and obtaining an increase of
18.7%. This last improvement mainly is due to the decrease of the fuel utilization, as
depicted in Fig. 14.23. The first optimization has a greater improvement besides the
proposed approach, due to the low adaptability of the EMSwithout the LUT. Finally,
an estimation of the upcoming learning period is depicted. The downward and upward
efficiency tendencies are due to ESS SOH decrease or overall bus efficiency decrease
and efficiency increase after maintenances, respectively.
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Fig. 14.28 Buses fleet lifetime operation cost estimation

Fig. 14.29 Fleet learning period for the fleet

14.7 Conclusions

In this chapter, a state-of-the-art of the different proposed fleet management
approaches in the literaturewas presented.Anoverviewof theHEBs electricalmodel,
DP optimization, and the used economical model for the fleet operation costs cal-
culation was described. In order to fill the gap of the no existing methodology for
the overall fleet energetic efficiency improvement, a “fleet learning” methodology
was proposed. This methodology approaches the design and operation stages; in
this, last is taken into account the whole fleet improvement, obtaining an energetic
improvement on the fleet up to 18.7%. In order to simulate the real operation, daily
disruptions (traffic jams, auxiliary consumption, and passenger variations) have been
simulated.
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The fuel consumption decrease in the proposed approach is up to 49.06%, con-
sequently having a more intensive use of the ESS. The ESS consumption increases
up to 88%, underlining the DOD increase in the three configurations (increasing up
to 271%). It is noteworthy the influence of the power train configuration and the
requirement of the urban route, at fleet operation level, highlighting the flexibility of
the series HEB and its operation optimization, due to the possibility to operate the
GS in the optimal speed (ICE) and torque (EG).

In the series configurations, the lifetime operation costs are reduced, not obtain-
ing the same result in the parallel configuration, as it has the least fuel consumption
reduction. The highest cost reduction is given in the power train with the highest fuel
consumption reduction, the series configuration with BT (decreasing the fuel con-
sumption up to 49.06%). Despite this configuration has the highest BT replacement
rate, due to a deeper ESS DOD, the fuel consumption has a greater influence on the
operation costs.

On the ongoing research, an intelligent decision-maker (based on machine learn-
ing techniques, stage 4.2 in Fig. 14.17) will be developed.
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