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Abstract. In this work, we present the development of a neuro-inspired
approach for characterizing sensorimotor relations in robotic systems.
The proposed method has self-organizing and associative properties that
enable it to autonomously obtain these relations without any prior knowl-
edge of either the motor (e.g. mechanical structure) or perceptual (e.g.
sensor calibration) models. Self-organizing topographic properties are
used to build both sensory and motor maps, then the associative proper-
ties rule the stability and accuracy of the emerging connections between
these maps. Compared to previous works, our method introduces a new
varying density self-organizing map (VDSOM) that controls the con-
centration of nodes in regions with large transformation errors without
affecting much the computational time. A distortion metric is measured
to achieve a self-tuning sensorimotor model that adapts to changes in
either motor or sensory models. The obtained sensorimotor maps prove
to have less error than conventional self-organizing methods and poten-
tial for further development.

Keywords: Self-organizing maps · Sensorimotor models ·
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1 Introduction

Among the many interesting cognitive abilities of animals and humans is the
motor babbling process that leads to the formation of the sensorimotor map.
Many theories have been introduced about how these behaviors develop since
prenatal stages [1]. This sensorimotor adaptation paradigm has proven to be
useful in robotics for relating motor commands with sensory outputs when
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prior/exact knowledge of its model is unavailable (which is common in prac-
tice). A robot with changes to its mechanical structure (e.g. due to damage)
or perceptual system (e.g. due to sensor decalibration) is generally not able to
properly coordinate its motions without updating such sensorimotor relations.
Drawing inspiration from the adaptive properties of living organisms, artificial
neural systems can be developed to cope with these uncertainties. The devel-
opment of computational sensorimotor models with adaptation properties can
lead to the emergence of valuable self-calibrating behaviors. Additionally, these
could help to (safely) verify theories about the internal workings of the human
brain, but with machines.

Previous studies with primates have concluded a topographic arrangement
in areas dedicated to motor and sensory processing, where adjacent body parts
tend to have an adjacent representation in the brain cortex [2,3].

Thus, to represent perceptual computing units in a biologically inspired man-
ner, such topologically preserving property was considered.

Topographic models are useful for characterizing sensory and motor spaces in
robots. Yet, to co-relate how a particular motion/configuration produces a sen-
sory stimuli, additional associative properties must be considered. One common
model for linking different brain areas based on shared activity patterns is the
so-called Hebbian rule [4]. It states that if two neuronal regions are persistently
activated together, the connection between them is strengthened; the connection
is weakened if no simultaneous activity is present. Topographic and associative
properties are the basis for the sensorimotor adaptive method that we propose
in this paper.

In the literature, many efforts have been placed to model human sensorimotor
abilities with methods based on self-organizing maps (SOM) [5–7]. Most of these
works use SOMs as a topography-preserving and dimension-reducing tool, to
map several sensor readings with motor actions.

In [6], an SOM is used to form a sensory map with visual feed. However,
the learning process to form a sensorimotor map takes place mainly through
gradient-descent rule which makes it less biologically plausible. In [5], two
dynamic SOMs (DSOM) [8] representing head and arm of a humanoid robot
were used to achieve visuo-motor coordination. Yet, that model suffered from a
degradation in performance when perturbations were added to motor commands.
In [7], the sensorimotor coordination is achieved by utilizing bi-directional neu-
ral modularity such that motor output can be predicted from sensory input and
vice versa. For the proposed method in this paper, the learning paradigm allows
for the development of reciprocal correlations inherently while maintaining high
accuracy.

In this study, we propose a new method for representing sensorimotor
transformations of robotic systems. The neuro-inspired method combines self-
organizing and associative properties to model continuously adapting relations
between sensory and motor spaces. Compared to previous works, our new
method proposes a varying density SOM (VDSOM) that reduces the trans-
formation error that is typically present at the periphery of standard SOMs.
This is done by automatically adjusting a parameter that controls the density of



A Varying Density Self-organizing Network 169

neighboring nodes at regions with large transformation errors. In case of changes
in either motor or sensory models, a distortion metric is measured to readjust
the formed sensorimotor map to suit these changes. The resulting computational
model can effectively reduce the mean error over the whole map, while coping
with changes in the original sensorimotor model. Several cases of study (such
as transformation accuracy, amputation, limb extension) are presented to thor-
oughly evaluate the proposed method.

The rest of this paper is organized as follows: Sect. 2 describes the compu-
tational model; Sect. 3 presents its quantitative evaluation; Sect. 4 gives final
conclusions.

2 Methods

2.1 A Biologically-Inspired Sensorimotor Model

Human bodies have different morphologies which develop over years (from birth
to death) and even subject to drastic changes as in the case of amputations.
However, the brain somehow always manages to find or re-adapt such mappings
between sensory feedback and motor actions. In infants, for example, motor
babbling helps to adaptively obtain these sensorimotor relations, where by per-
forming motions covering the workspace, the brain is able to correlate bodily
configurations with its corresponding motor actions [9,10].

It is also clear from recent studies that in both sensory and motor areas in the
brain, adjacent body parts have also contiguous representations [11]. Moreover,
many of these areas are connected together by some synapses which develop
connections based on their joint activity. Among these rules is the well-known
Hebbian learning rule [4].

To represent such learning paradigm, a model for human sensorimotor map-
ping is constructed using SOM (modeling topographically arranged brain areas)
and Hebbian learning rules (modeling connections among these areas). Both of
these models have clear biologically-inspired properties as they can represent
topographic organization of neurons and modulation of strength of synaptic
connections, respectively.

SOM are built upon the underlying rules of development of cognitive func-
tions, as they encode competition, cooperation and adaptation [12]. The nodes
(neurons) of the SOM compete against each other such that only one becomes
the best matching neuron (BMU) for a given input. However not only the BMU
contribute to the output, but also the neighboring neurons as well, such that the
closer to the BMU the greater would be the contribution to the output. This
represents the lateral interaction between neurons in a network. Adaptation by
modulation of weights of BMU (and neighborhood nodes) occurs to enhance the
chance of the BMU to represent the input vector and act as the BMU again for
a similar input.

The Hebbian learning rule wires the SOMs representing the sensory space and
motor space together, such that neurons active on both sides at the same time
have the strength of the synaptic connection in between increased proportional
to the magnitude of activity of both the pre-synaptic and post-synaptic neurons.
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Fig. 1. Motor space (Ω) connected to Sensory space (Ψ) through Hebbian connections
(cij ). As learning process proceeds, active nodes in Ω (ωi) have the connections to
active ones in Ψ reinforced (ψj and neighborhood within a radius of σ).

These connections achieve sensorimotor correlation between the motor actions
and the corresponding sensory input that happen to be active at the same time.

2.2 Modeling Sensory and Motor Spaces

The SOM is formed of a 2 dimensional lattice of M neurons (nodes), each of
them associated with a weight vector (wi) of dimension as each vector in the
input space (X). These weights are initially set to random values, then, data
training points are introduced in a random fashion to the SOM. When a vector
of data x is introduced to the SOM, the node with least Euclidean distance
between its weights and the input vector is chosen to be the best matching unit
(winning neuron) based on:

i = arg min
j

‖wj − x‖ (1)

where i the denotes the index of the BMU. The weights of all the neurons in the
neighborhood around the BMU are updated to give a closer approximation of
the input vector x. This node is computed with the following update rule:

wj(t + 1) = wj(t) + α(t)hji(t)(x − wj(t)) (2)

where hji is the neighboring function, which is computed with the following
Gaussian function:

hji(t) = exp
(−‖rj − ri‖2

2σ2(t)

)
(3)

where ri and rj are the positions of the BMU and the neighboring jth node
within the lattice, respectively. The learning rate α and neighborhood radius σ
are set to decrease exponentially with time such that:

σ(t) = σinit exp
(−t

T

)
, α(t) = αinit exp

(−t

T

)
(4)
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where t is the time of current iteration, T is the desired time constant of decrease,
αinit and σinit are the initial values of the learning rate and neighborhood radius,
respectively. By tunning the adequate parameters for the learning process, the
weights of the nodes are updated to give an adequate mapping for both sensory
and motor states within the identified robot workspace.

2.3 Formation of Sensorimotor Mapping

To provide a correlation between activity of each node in motor space ai to
sensory space aj back and forth as shown in Fig. 1, the Hebbian Oja learning
rule [13] is applied by applying the equation:

cij(t + 1) = cij(t) + η
(
aiaj − cij(t)a2

j

)
(5)

where cij represents the strength of the connection between the pre and post
synaptic nodes, while η is the learning rate. Nodes from both maps that hap-
pen to be active at the same time tend to have high correlations and thus
stronger synaptic connection between these nodes. The first term in the paren-
thesis ensures applying Hebbian learning rule to achieve the correlation. The
second term guarantees the stability of the learning process where a forgetting
term is included such that in case some nodes are not active for a long time the
strength of the connection is attenuated.

The activity aj of each node is calculated by applying the following Gaussian
kernel for the Euclidean distance between the weights of the nodes and the input
vector:

aj(t) = exp
(−‖wj(t) − x‖2

σ2(t)

)
(6)

This expression gives rise of a one-to-one mapping between the nodes of the two
SOMs (that respectively model the motor and sensory spaces). The resulting
connections are reciprocal (i.e. bidirectional). This means that they can be used
to either predict the sensory states based on a given motor action, or to compute
the required motor actions to achieve a certain sensory state [14].

2.4 Varying Density Structure

The sensorimotor mappings can be achieved by combining SOM and Oja-
Hebbian learning rules, as described above. However, the naive use these method
results in regions (e.g. the periphery of the lattice) with large transformation
errors. Two initial hypothesis were assumed to cause this problem. The first is
that having a small number of training points at these regions may cause that
problem. The second one is that having comparatively low number of neurons
near the boundaries to represent the sensorimotor correlations may the culprit
(e.g. having fewer neurons affect the accuracy of the estimated values). Such
problem at the boundaries is one of the drawbacks of the SOM mentioned in the
literature [15].
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For the former hypothesis, training data with higher density at the lattice
boundaries was used, however, it did not improve the mapping accuracy. A
viable solution was to increase the density of the neurons near the problematic
regions such as the boundaries of both the sensory and motor maps to give a
better representation at these points. To achieve this behavior, the SOM update
rule was modified by proposing a different neighborhood function that gives the
required variable density of nodes. This is done by calculating the summation of
the norm of the weights of the BMU to each node in the lattice then applying
the Gaussian function. The node density coefficient ρ is computed as follows:

ρ = exp

(
−

∑
i∈O

‖wbmu − wi‖2
)

(7)

for O as the local neighborhood surrounding the neuron. This function aims to
give a smooth gradient effect of contribution of proximal nodes.

The coefficient ρ can be used to quantitatively determine neurons with a
small number of neighbors. More neurons can be attracted to these nodes to
have a denser population and therefore give a better approximation of corre-
sponding values in the sensorimotor map. The resulting map is characterized by
having a variable density (even when using uniform training data) that controls
the number of nodes in a region based on ρ; we call this network a varying den-
sity SOM (VDSOM). The additional term ρ shall have a minimal effect in the
formation of the network at the beginning and increase as the learning process
proceeds. On the other hand, if it increases at a slow rate the exponential decay
term of the neighborhood radius would make the effect of that term minimal.

To achieve this effect, the new neighborhood is defined as follows:

h(t) =
(

t

ρT

)4

exp
( −t

σ2(t)T

)
(8)

where the new term was chosen to be of the fourth order to have adequate values
without disturbing the dynamics of the learning process.

By adding that term, the lattices formed for both the sensory and motor
spaces are more dense at the boundaries. This helps to reduce the transforma-
tion errors that occurs in these regions without the need to increase the total
number of neurons in the network. This density regulation concept may not (yet)
have some proof from a neuro-biological perspective, however, varying densities
of neurons is certainly present in many different areas of the brain and within
each area. For example, in the primary visual cortex, the central region has a
higher density of neurons relative to the peripheral regions. In most primates,
the central vision area is the main region of interest when observing a scene
[16]. Additionally, the proposed mechanism to automatically increase the num-
ber of neurons agrees with studies in which high neuronal density is observed
for processing hand and face fine motions [17]. Although this study focuses on
VDSOM, the same concept can be applied to vary the structure of a Grow-
ing Neural Gas(GNG) network [18] to obtain the optimal number of nodes to
represent the same sensorimotor model.
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2.5 Adaptation to Changes in the Sensorimotor Model

Note that in case of changes in body morphology (e.g. generated by attach-
ing of an external limb or amputation) or changes in the perceptual system
(e.g. by wearing vision inverting goggles [19]) the computed sensorimotor model
is no longer representative. For this situation, both, sensory and motor maps
should be updated accordingly, as well as the inter-connections representing the
transformations between these spaces. However, in traditional SOM, once the
learning process reaches the specified number of iterations, changes in input
data—corresponding to sensory/motor information—will not modify the net-
works structure. This results in a model that no longer adapts, and therefore is
not able to represent the new (and actual) sensory/motor configurations.

To overcome this drawback, a distortion metric ζ is incorporated into the
method. If the ζ is found to exceed a give (arbitrary) threshold value after
the mapping is established, the neighborhood radius σ is reset to an adequate
value to be able to re-adapt the network’s structure. Such distortion metric is
computed as:

ζ =
1
n

n∑
i=1

∑
xεX

‖x − wi‖2 (9)

where n is the number of data vectors x available in the data set X. The new
neighborhood radius σr is set to be initially equal to σ(τ), when the distortion
metric after the perturbations occur is equal to that. Then, the value of σr(t)
can be calculated from the equation:

σr(t) = σinitexp

(−(t + τ)
T

)
(10)

If the value of distortion after perturbations is higher than that at the begin-
ning of the learning process, then the radius is set to the maximum value which
is the radius of the SOM. On the other hand, a modified version of Oja-Hebbian
connections is used to adapt better to these changes.

cij(t + 1) = cij(t) + η(aiaj − βcij(t)a2
j ) (11)

The additional term allows to control the forgetting rate of the already formed
connections.

Thus the values of the additional term β and the learning rate η are set
to allow for new connections to be formed in a faster manner. These terms

Table 1. Mean and maximum errors for forward and inverse mappings using SOM and
VDSOM.

Error X (mm) Y (mm) θ1 (◦) θ2 (◦)

Mean (Max) Mean (Max) Mean (Max) Mean (Max)

SOM 2.6 (26.0) 2.9 (29.0) 0.37 (3.45) 0.61 (6.70)

VDSOM 1.15 (11.7) 1.26 (15.0) 0.31 (2.25) 0.44 (5.36)
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Table 2. Mean and maximum errors for forward and inverse mappings using VDSOM
with different number of nodes.

Error X (mm) Y (mm) θ1 (◦) θ2 (◦)

Mean (Max) Mean (Max) Mean (Max) Mean (Max)

VDSOM (30× 30) 4.16 (36.3) 3.93 (21.1) 0.91 (4.60) 1.53 (7.62)

VDSOM (50× 50) 2.13 (13.5) 2.11 (15.3) 0.52 (2.80) 0.80 (5.05)

VDSOM (70× 70) 1.15 (11.7) 1.26 (15.0) 0.31 (2.25) 0.44 (5.36)

are assigned high values that decrease exponentially based on the following
expressions:

β(t) = βinit exp
(

T − t

T

)
, η(t) = ηinit exp

(
T − t

T

)
(12)

3 Results

3.1 Setup

A simulation for the computational model of the sensorimotor mapping was
built using Tensorflow library [20] on a PC with i7-6500 16 GB RAM. Both the
system without and with the modifications were simulated for 2D lattice SOMs
with square grid of 30 × 30, 50 × 50 and 70 × 70 nodes.

A kinematic model of two link robotic arm was used as the prototype system.
The end-effector task space is assumed to be measured with an external positions
sensor (e.g. a camera). In our sensorimotor model, the joint space is represented
with motor SOM, whereas the task space is represented with a sensory SOM.
Random joint angles within certain ranges were used to generate end-effector
positions. L1 and L2 denote the lengths of first and second link, respectively, θ1
and θ2 the joint angles of first link relative to the horizontal axis and joint angle
of second link relative to the first link. The forward kinematics relation can be
simply computed as:

X = L1 cos(θ1) + L2 cos(θ1 + θ2)
Y = L1 sin(θ1) + L2 sin(θ1 + θ2) (13)

The connections between both joint space and task space SOMs were devel-
oped, as described above, based on the Oja-Hebbian learning rule. As can be seen
from Table 1 that both the mean and the maximum error values were drastically
reduced after applying the proposed solution to the SOM for forward and inverse
mappings. It can also be concluded from Table 2 that as the number of nodes
increases the error decreases at the expense of increasing the computational time
required to build the network and establish the connections.
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Fig. 2. Motor SOM with heatmap rep-
resenting error at each node when it was
chosen as a BMU. (Color figure online)

Fig. 3. Sensory SOM with heatmap rep-
resenting error at each node when it was
chosen as a BMU. (Color figure online)

Fig. 4. Motor VDSOM with
error heatmap.

Fig. 5. Sensory VDSOM with
error heatmap.
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3.2 Enhanced Accuracy

Figures 2 and 3 show the final SOMs developed after running several trials to
obtain the most adequate parameters for each SOM. As shown in Fig. 3, the orig-
inal SOM covers the whole workspace uniformly but less dense at the peripherals.
It can be observed from the error plot in Figs. 2 and 3 that higher error values
occur at these areas, where the dark blue color and the dark red color represent
low error and high error, respectively. The effect of the added factor ρ can be
noticed in Figs. 4 and 5 where higher density can be observed at the contour of the
workspace, and less error in these areas in both forward and inverse mappings.
Although the introduced method have an error that is relatively high compared
to conventional control methods, it takes one step forward in the formation of
biologically-inspired sensorimotor maps.

3.3 Adaptation to Changes in Morphology

The robot morphology was altered to simulate attaching and removing a tool
from the end effector. To allow the system to detect such changes, the ζ is
calculated based on Eq. (9) and compared with a threshold value. Consequently,
when such changes are predicted to occur, the learning process is reset to update
the mapping. In case of limb length extension, it can be concluded from Figs. 6
and 7 that the map adapts to re-accommodate for that change and decreases the
distortions detected in the computed maps. The connections between the sensory
and motor maps are updated to represent the new configuration. Similarly, in
the case of limb length reduction, as shown in Figs. 8 and 9, the distortion is
measured. The change in distortion value, triggers the adaptation mechanism
that allows for the maps to be recomputed.

Fig. 6. Sensory VDSOM after stretching
the links with error heatmap.

Fig. 7. Distortion in sensory map before
and after stretching the links.
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Fig. 8. Sensory VDSOM after shorten-
ing a link with error heatmap.

Fig. 9. Distortion in sensory map before
and after shortening the link length.

4 Conclusions

A sensorimotor map was built to correlate sensory and motor spaces in a dis-
cretized form with bidirectional connections. This solution relies on collecting
data samples by motor babbling, thus it is adequate to be used for various robotic
manipulators without any prior information about robot kinematics. Using the
SOM introduced by Kohonen with Oja-Hebbian learning rules the mapping was
achieved with noticeable error values at the contour of the SOM -and thus the
workspace-. A new neighborhood function was proposed to increase the density
of nodes at the contour to give better approximation for the corresponding val-
ues. The proposed neighborhood increases the density of the nodes wherever the
distance between the weights of the BMU and the neighboring nodes has small
values. Finally, a perturbation was introduced to simulate a change in either
sensory or motor map. A distortion metric was used to assess the state of the
robot and reset the learning parameters to adequate values in case of changes in
the morphology. Thus adaption process takes place to update the sensorimotor
map, by allowing for changes in both the formed VDSOMs and connections.

Concerning the current limitations of this method, these maps can only be
used for coarse control. A large number of nodes would be needed for fine dis-
cretization of the workspace which is computationally inefficient. Additionally,
an extended study is needed to utilize the dimension reduction properties of
SOM to be fit for robots with higher degrees of freedom.
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