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Abstract In this paper, the definitions of the periodic unfolding and averaging oper-
ators are extended to the case of two sub-domains separated by a thin interface. Their
properties are introduced and illustrative examples of these operators are given.

1 Introduction

This paper is devoted to a useful tool in the homogenization procedure for models
defined in a two-phase domain, which is the two-phase periodic unfolding technique.

The periodic unfolding technique was introduced in continuous and perforated
domains, see, e.g., [1, 3] and it is based on the periodic unfolding and the averaging
operators. The paper [2] suggests an extension of the definition of the unfolding
operator on a boundary. Our specific interest concerns the Poisson–Nernst–Planck
system in a two-phase domain with an interface, see our works [4, 5]. For this reason,
we extend the definitions to the case of two phases and their interface. We describe a
two-phase medium with a microstructure consisting of solid and pore phases, which
are separated by a thin interface. The corresponding geometry is represented by a
disconnected domain. A special interest of our consideration is the interface between
the two phases because of electrochemical reactions which occur here.

The paper has the following structure. In Sect. 2, the definitions of the periodic
unfolding and the averaging operators in the two-phase domain are introduced.
Section3 is devoted to clarifying examples of these operators.

A. Zubkova (B)
KFU, Institute for Mathematics and Scientific Computing,
Mozartgasse 14, 8010 Graz, Austria
e-mail: anna.zubkova@uni-graz.at

© Springer Nature Switzerland AG 2019
A. Korobeinikov et al. (eds.), Extended Abstracts Spring 2018,
Trends in Mathematics 11, https://doi.org/10.1007/978-3-030-25261-8_7

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25261-8_7&domain=pdf
mailto:anna.zubkova@uni-graz.at
https://doi.org/10.1007/978-3-030-25261-8_7


46 A. Zubkova

2 Definitions

We start with the two-phase geometry. A unit cell Y = (0, 1)d , d ∈ N, consists of
two open, connected sub-domains: a solid part ω and a pore part �, separated by a
thin interface ∂ω which is assumed to be Lipschitz continuous, see Fig. 1. By scaling
a unit cell Y with a small parameter ε > 0, we introduce a local cell Y l

ε with some
index l. Its solid part is denoted by ωl

ε and its pore part by �l
ε.

Every spacial point x ∈ R
d can be decomposed as the following sum:

x = ε� x
ε
� + ε{ x

ε
}, (1)

where �x/ε� ∈ Z
d is the floor part and {x/ε} ∈ Y = (0, 1)d is the fractional part of

x/ε.
We consider a domain � ⊂ R

d with a Lipschitz boundary ∂�. Based on the
decomposition (1), it is covered by repeating periodically local cells Y l

ε in such a
way that all local cells lay inside of �. The union of these periodic local cells is
denoted by �ε := ⋃

l∈I ε Y l
ε with the solid part ωε = ⋃

l∈I ε ωl
ε, and the pore part

�ε = ⋃
l∈I ε �l

ε. The interface ∂ωε := ⋃
l∈I ε ∂ωl

ε is the union of local interfaces in
each local cell. A thin boundary layer attaching the external boundary ∂� is called
� \ �ε, see Fig. 2. Summarizing, the two-phase domain� consists of the pore phase
Qε = (� \ �ε) ∪ �ε, the solid phase ωε, and the interface ∂ωε.

Fig. 1 A unit cell Y

Y

Fig. 2 The domain
� = Qε ∪ ωε
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In the prescribed geometry, we define the periodic unfolding and the averaging
operators in the two-phase domain and at the interface.

Definition 1 (two-phase unfolding operator) The linear continuous operator f (x)
�→ Tε : H 1(Qε) × H 1(ωε) �→ L2(�; H 1(�) × H 1(ω)) is defined as

(Tε f )(x, y) =
{
f
(
ε� x

ε
� + εy

)
, for a.e. x ∈ �ε and y ∈ � ∪ ω,

f (x), for a.e. x ∈ � \ �ε and y ∈ � ∪ ω.
(2)

Definition 2 (two-phase averaging operator) The left-inverse operator to Tε (lin-
ear and continuous) is defined as u(x, y) �→ T−1

ε : L2(�; H 1(�) × H 1(ω)) �→
H 1(

⋃
l∈I ε �l

ε) × H 1(� \ �ε) × H 1(ωε):

(T−1
ε u)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

|Y |
∫

�∪ω

u
(
ε� x

ε
� + εz,

{ x

ε

})
dz, for a.e. x ∈ �ε ∪ ωε,

1

|Y |
∫

�∪ω

u(x, y) dy, for a.e. x ∈ � \ �ε.

(3)

The operators satisfy the following properties:

Lemma 3 (Properties of the operators Tε and T−1
ε in the domain) For arbitrary

f, g, h ∈ H 1(Qε) × H 1(ωε), the following equalities hold:

(i) (T−1
ε Tε) f (x) = f (x), and (TεT−1

ε u)(x, y) = u(y), when u is constant for x ∈
Qε ∪ ωε, or a periodic function u(y) of y ∈ � ∪ ω for x ∈ �ε ∪ ωε;

(ii) composition rule: Tε(F( f )) = F(Tε f ) for any elementary function F;
(iii) integration rules:

∫

�ε∪ωε

f (x)g(x) dx = 1

|Y |
∫

�ε

∫

�∪ω

(Tε f )(x, y) · (Tεg)(x, y) dy dx,

∫

�\�ε

f (x)g(x) dx = 1

|Y |
∫

�\�ε

∫

�∪ω

(Tε f )(x, y) · (Tεg)(x, y) dy dx;

(iv) boundedness of Tε:
∫

Qε∪ωε

h2(x) dx = 1

|Y |
∫

�

∫

�∪ω

(Tεh)2(x, y) dy dx,

∫

Qε∪ωε

|∇xh|2(x) dx = 1

ε2|Y |
∫

�

∫

�∪ω

|∇y(Tεh)|2(x, y) dy dx.
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2.1 Restriction of the Operators to the Interface

The definitions (2) and (3) are extended to the interface in a natural way:

Definition 4 The restriction of the two-phase unfolding operator Tε to the interface
∂ωε is well defined as follows: f (x) �→ Tε : L2(∂ωε) �→ L2(�ε) × L2(∂ω),

(Tε f )(x, y) = f
(
ε� x

ε
� + εy

)
, for a.e. x ∈ �ε and y ∈ ∂ω. (4)

The corresponding averaging operator u(x, y) �→ T−1
ε : L2(�ε) × L2(∂ω) �→

L2(∂ωε),

(T−1
ε u)(x) = 1

|Y |
∫

�∪ω

u
(
ε� x

ε
� + εz,

{ x

ε

})
dz, for a.e. x ∈ �ε. (5)

Analogously, the following properties at the interface hold:

Lemma 5 (Properties of the operators Tε and T−1
ε at the interface) For arbitrary

f, g ∈ L2(∂ωε), the following equalities hold.

(i) (T−1
ε Tε) f (x) = f (x);

(ii) composition rule: Tε(F( f )) = F(Tε f ) for any elementary function F;
(iii) integration rule:

∫

∂ωε

f (x)g(x) dSx = 1

ε|Y |
∫

�ε

∫

∂ω

(Tε f )(x, y) · (Tεg)(x, y) dSy dx;

(iv) boundedness of Tε:
∫

∂ωε

f 2(x) dSx = 1

ε|Y |
∫

�ε

∫

∂ω

(Tε f )
2(x, y) dSy dx.

3 Examples

In this section, two examples representing the behavior of the periodic unfolding
operator is given.

Example 6 In the one-dimensional domain � = (−2π, 2π), we consider the func-
tion f (x) = sin x and the small parameter ε = 2π, which coincides with the period
of the function f . We consider a unit cell Y = (0, 1), therefore, the number of local
cells is 2 which are the intervals Y 1

ε = (−2π, 0) and Y 2
ε = (0, 2π). On the first graph

in Fig. 3, the red curve is the function f and the blue line represents the projection
of the mapping Tε f for y = 0. On the second graph, both functions are presented on
the two-dimensional (x, y)-plane, where the interval Y = (0, 1) in y-axis is a unit
cell and the intervals (−2π, 0), (0, 2π) in x-axis are local cells Y 1

ε and Y 2
ε , and the
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Fig. 3 ε = 2π

Fig. 4 ε = π

point {x = 0} is a part of the cell boundary ∂Y 1
ε . We note that in the case of peri-

odic functions f ∈ H 1(�ε) with respect to a small parameter ε, the mapping Tε f is
continuous across the boundary ∂Y l

ε .

Example 7 Weconsider the same setting as in Example 6 but with ε = π, which does
not coincide now with the period of the function f or, in other words, the function
f is not periodic with respect to ε. Comparing with the Example 6, the mapping
Tε f (x, y) is discontinuous along the x-variable, see Fig. 4. This example illustrates
that for nonperiodic functions, the averaging mapping (T−1

ε Tε) f does not belong
to the space H 1(�ε) but only to L2(�ε) even for continuous functions f from the
space H 1(�ε). Such functions can be smoothed by the gradient folding operator,
see, e.g., [6].
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