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Abstract In this report, the controlled Lotka–Volterra competition model is used to
describe the interaction of the concentrations of healthy and cancer cells. For this
controlled model, the minimization problem of the terminal functional is considered,
which is a weighted difference of the concentrations of cancerous and healthy cells
at the final moment of the treatment period. To analyze the optimal solution of this
problem, which consists of the optimal control and the corresponding optimal solu-
tions of the differential equations that determine themodel, the Pontryaginmaximum
principle is applied. It allows to highlight the values of the model parameters under
which the optimal control corresponding to them is a piecewise-constant function
with atmost one switching. Also, the values of themodel parameters are found, under
which the corresponding optimal control is either a bang–bang function with a finite
number of switchings, or in addition to the bang–bang-type portions (nonsingular
portions), it also contains a singular arc. Further, only numerical investigations of the
optimal control are possible. Therefore, the report presents the results of numerical
calculations performed using the software BOCOP-2.1.0 that lead us to the conclu-
sions about the possible type of the optimal control and the corresponding optimal
solutions.
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1 Introduction

In recent decades, a significant progress has been made in identifying and explaining
the processes that arise in the development of cancer, aswell as in developingmethods
and tools for its earlier diagnosis and treatment. A significant contribution to this
progress was made by the use of mathematical modeling, which allowed to simulate
a likely behavior of cells and organs before the actual disease develops. The most
common are the mathematical models, describing the development of a cancerous
tumor. The description of the tumor volume dynamics is possible in terms of the
dynamics of competing populations of healthy and cancer cells. For this purpose,
the classical Lotka–Volterra competing population model can be used [5, 6]. To find
effective in some sense (that should be determined) treatment strategies, the optimal
control theory can be applied.

2 Model

We consider the following nonlinear control system of differential equations:

⎧
⎪⎨

⎪⎩

ẋ(t) = r(1 − κ1w(t))(1 − x(t) − a12y(t))x(t) − m1u(t)x(t),

ẏ(t) = (1 − κ2w(t))(1 − y(t) − a21x(t))y(t) − m2u(t)y(t),

x(0) = x0, y(0) = y0; x0, y0 > 0.

t ∈ [0, T ],

(1)
This model describes the interaction between the tumor cells, of population size
or concentration y(t), and normal cells, of population size or concentration x(t).
Functions u(t) and w(t) are bounded controls that represent the intensity of the
therapies. These can be, for instance, drug concentration or intensity the radiotherapy.
We assume that control u(t) kills the cells (cytotoxic therapy), whereas control w(t)
inhibits their proliferation (cytostatic therapy), and that both controls are bounded:

0 � u(t) � umax � 1, 0 � w(t) � wmax < min{κ−1
1 , κ−1

2 }.

In this model, r is the intrinsic growth rate of the normal cells; a12 and a21 represents
the comparable compatibility of the tumor cells and healthy cells; m1 and m2 are
the efficacy (killing rates) of the therapy with respect to the normal and tumor cells,
respectively; κ1 and κ2 are the efficacies of the therapy in inhibiting the normal and
tumor cells proliferation, respectively.

In the absence of the controls, model (1) is the classical Lotka–Volterra model
of two competing populations. Qualitative behavior of such a system is completely
determined by mutual location of lines x + a12y = 1 and y + a21x = 1. Figure1
shows four possible robust scenarios of the system dynamics. (In this figure, we
disregard the fifth case, where these two lines coincide, as this case occurs on a
subset of the parameter space of measure zero.) It is easy to see that for these robust
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Fig. 1 Four robust scenarios possible for the Lotka–Volterra model of two competing populations.
(Adopted from [7])

cases, the system has up to four nonnegative equilibrium states, namely (0, 0), (0, 1),
(1, 0), and

(
(1 − a12)/(1 − a12a21), (1 − a21)/(1 − a12a21)

)
. The origin is always

an unstable node, whereas types of the other points depend on the model parameters
and can be either saddles (marked by circles in Fig. 1), or attracting nodes (marked
by dots).

Figure1 implies that cancer can appear and develop either in Scenario 2, or in
Scenario 4, as in Scenarios 1 and 3, point (0, 1) is asymptotically stable, and, if a
small number of malicious cells appear as a result of a mutation, these are to be
eliminated by competition with the normal cells. This figure also suggests that the
objective of a therapy is the transition of the system to Scenario 1 (ideally), or, at
least, to Scenario 3, where cancer cells will be driven to extinction.

Let us assume that inequalities

a12 · a21 �= 1, m2 > m1, κ2 > κ1 (2)

hold, and that controlw(t) is constant,w(t) ≡ const . Let us denote q1 = r(1 − κ1w)

and q2 = 1 − κ2w. Then we obtain the following system:
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⎧
⎪⎨

⎪⎩

ẋ(t) = q1(1 − x(t) − a12y(t))x(t) − m1u(t)x(t),

ẏ(t) = q2(1 − y(t) − a21x(t))y(t) − m2u(t)y(t),

x(0) = x0, y(0) = y0; x0, y0 > 0.

t ∈ [0, T ], (3)

Please note that under the above-made assumption, expressionsm1q2a21 − m2q1 and
m1q2 − m2q1a12 cannot be equal zero at the same time:

m1q2a21 − m2q1 �= 0, m1q2 − m2q1a12 �= 0. (4)

The set of admissible controls �(T ) is formed by all Lebesgue measurable func-
tions u(t), which for almost t ∈ [0, T ] satisfy the constraints: 0 � u(t) � umax � 1.
The boundedness, positiveness, and continuation of solutions for system (3) are
established by the following lemma.

Lemma 1 For any admissible control u(·) ∈ �(T ), the corresponding solutions
x(t), y(t) to system (3) are defined on the entire interval [0, T ] and satisfy inclusion

(x(t), y(t)) ∈ � =
{
(x, y) : 0 < x < x0e

q1T , 0 < y < y0e
q2T

}
, t ∈ [0, T ]. (5)

For system (3), on the set of admissible controls �(T ), we consider the problem
of minimization of a terminal functional, which is a weighted difference of the
concentrations of cancerous and normal cells at the final moment of the therapy:

J (u) = y(T ) − αx(T ), (6)

where α > 0 is the given weighted coefficient. Lemma 1 guarantees the existence
of the optimal solution for the minimization problem (6): for optimal control u∗(t),
x∗(t), y∗(t) are corresponding optimal solutions of system (3); see [2].

3 Pontryagin Maximum Principle

To analyze the optimal control u∗(t) and the corresponding optimal solutions
x∗(t), y∗(t), we apply the Pontryagin maximum principle [3]. We define Hamil-
tonian

H(x, y, u, ψ1, ψ2) = (q1(1 − x − a12y)x − m1ux)ψ1 + (q2(1 − y − a21x)y − m2uy)ψ2,

where ψ1, ψ2 are the adjoint variables. By the Pontryagin maximum principle, for
optimal control u∗(t) and optimal solutions x∗(t), y∗(t), there exists vector function
ψ∗(t) = (ψ∗

1 (t), ψ∗
2 (t)), such that

(i) ψ∗(t) is a nontrivial solution of the adjoint system
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ̇∗
1 (t) = −(q1(1 − x∗(t) − a12y∗(t)) − q1x∗(t) − m1u∗(t))ψ∗

1 (t)+
+q2a21y∗(t)ψ∗

2 (t),

ψ̇∗
2 (t) = q1a12x∗(t)ψ∗

1 (t) − (q2(1 − y∗(t) − a21x∗(t)) − q2y∗(t)−
−m2u∗(t))ψ∗

2 (t),

ψ∗
1 (T ) = α, ψ∗

2 (T ) = −1;

(7)

and
(ii) the control u∗(t) maximizes the Hamiltonian H(x∗(t), y∗(t), u, ψ∗

1 (t), ψ∗
2 (t))

with respect to u ∈ [0, umax] for almost all t ∈ [0, T ], and, therefore, the follow-
ing relationship holds:

u∗(t) =

⎧
⎪⎨

⎪⎩

umax if Lu(t) > 0,

any u ∈ [0, umax] if Lu(t) = 0,

0 if Lu(t) < 0.

(8)

Here, function Lu(t) = −m1x∗(t)ψ∗
1 (t) − m2y∗(t)ψ∗

2 (t) is the switching function,
which defines the optimal control u∗(t) via formula (8). Introducing auxiliary adjoint
variables φ1(t) = −x∗(t)ψ∗

1 (t) and φ2(t) = −y∗(t)ψ∗
2 (t), we can rewrite adjoint

system (7) and the switching function as

⎧
⎪⎨

⎪⎩

φ̇1(t) = q1x∗(t)φ1(t) + q2a21x∗(t)φ2(t),

φ̇2(t) = q1a12y∗(t)φ1(t) + q2y∗(t)φ2(t),

φ1(T ) = −αx∗(T ) < 0, φ2(T ) = y∗(T ) > 0,

(9)

and
Lu(t) = m1φ1(t) + m2φ2(t).

Systems (3) and (9) allows to formulate the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

L̇u(t) = m−1
1 q1(m1x∗(t) + m2a12y∗(t))Lu(t)+

+m−1
1

(
m1(m1q2a21 − m2q1)x∗(t) + m2(m1q2 − m2q1a12)y∗(t)

)
φ2(t),

Lu(T ) = −m1αx∗(T ) + m2y∗(T ).

(10)
for function Lu(t).

An important property of functions φ1(t), φ2(t) is established by the following
lemma.

Lemma 2 The auxiliary adjoint variables φ1(t), φ2(t) are sign definite on the entire
interval [0, T ]: φ1(t) < 0, φ2(t) > 0, t ∈ [0, T ].

Our task is to estimate the number of zeros of the switching function Lu(t) and
investigate the existence of singular arcs; see [4]. Analysis of the Cauchy problem
(10) together with inequalities (4) leads us to the following conclusions:
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(i) Letm1q2a21 − m2q1 � 0,m1q2 − m2q1a12 � 0 hold. If there is t0 ∈ [0, T ] such
that Lu(t0) = 0, then L̇u(t0) > 0. Then, by (8), the optimal control u∗(t) is a
piecewise constant function with one switching of the type

u∗(t) =
{
0 t ∈ [0, θ∗],
umax t ∈ (θ∗, T ],

where θ∗ ∈ (0, T ) is the moment of switching.
(ii) Letm1q2a21 − m2q1 � 0,m1q2 − m2q1a12 � 0 hold. If there is t0 ∈ [0, T ] such

that Lu(t0) = 0, then L̇u(t0) < 0. Hence, by (8), the optimal control u∗(t) is a
piecewise constant function with one switching of the type

u∗(t) =
{
umax t ∈ [0, θ∗],
0 t ∈ (θ∗, T ],

where θ∗ ∈ (0, T ) is the moment of switching.
(iii) Let eitherm1q2a21 − m2q1 � 0 andm1q2 − m2q1a12 � 0, orm1q2a21 − m2q1 �

0 and m1q2 − m2q1a12 � 0 hold. Then switching function Lu(t) can become
zero on some interval	 ⊂ [0, T ]. This means that the optimal control u∗(t) can
have a singular arc on this interval. Then, on the interval	 equalities Lu(t) = 0
and L̇u(t) = 0 hold. Therefore,

m2(m1q2 − m2q1a12)y + m1(m1q2a21 − m2q1)x = 0. (11)

By equalities Lu(t) = 0 and L̇u(t) = 0, and assumption (2), the necessary condi-
tion of the optimality of a singular arc (the Kelly condition, see [8]) in a strengthened
form

∂

∂u
L̈u(t) = −m−1

1 m2(m2 − m1)(m1q2 − m2q1a12)y∗(t)φ2(t) > 0. (12)

By Lemmas 1 and 2 and formula (11), one can immediately conclude that the Kelly
condition (12) holds if m1q2a21 − m2q1 > 0 and m1q2 − m2q1a12 < 0 hold. This
implies that the necessary condition of the optimality of a singular arc is valid in the
strengthened form. Hence, on interval 	, the optimal control u∗(t) is

u∗
sing(t) = q2 − q1

m2 − m1
+ (m1 + m2)q1q2a12a21 − (m1q2

2a21 + m2q2
1a12)

m2(m1q2 − m2q1a12)
x∗(t).

That is, the optimal control has the form of a feedback that depends only on the
optimal solution x∗(t).

If the inclusion u∗
sing(t) ∈ (0, umax) holds for all t ∈ 	 (we are only interested

in such controls), then it is possible to concatenate the singular arc u∗
sing(t) with

bang–bang control portions u∗(t).
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Fig. 2 Optimal solutions x∗(t) and y∗(t). Here, x0 = 0.1, y0 = 0.9, α = 1, umax = 0.6, r = 0.6,
a12 = 1.25, a21 = 1.25, κ1 = 0.2, κ2 = 0.6, m1 = 0.2, m2 = 0.4, T = 30, and w = 1

If m1q2a21 − m2q1 < 0 and m1q2 − m2q1a12 > 0, then the Kelly condition (12)
is not hold and, hence, the necessary condition of the optimality of a singular arc is
not valid. Therefore, in this case the optimal control u∗(t) does not have a singular
arc on the interval	, and the optimal control on entire interval [0, T ] is a bang–bang
control taking the values 0 or umax with a finite number of switchings.

4 Numerical Results

To illustrate possible outcomes of the optimal controls, we run calculations using
software package BOCOP 2.1.0; see [1]. Some results of these are given in Figs. 2,
3, and 4.

The optimal solutions in Figs. 2 and 3 correspond to the optimal control of the
type

u∗(t) =
{
umax t ∈ [0, θ∗],
0 t ∈ (θ∗, T ],

where the moment of switching is θ∗ = 27.3 in Fig. 2 and θ∗ = 27.9 in Fig. 3. In
Figs. 2, 3 and 4 the blue lines corresponds to the optimal solutions. The red lines are
the continuations of the optimal solutions for a longer time interval (in this case, for

Fig. 3 Optimal solutions x∗(t) and y∗(t). Here, x0 = 0.1, y0 = 0.9, α = 1, umax = 0.6, r = 0.6,
a12 = 1.5, a21 = 0.9, κ1 = 0.2, κ2 = 0.7, m1 = 0.2, m2 = 0.4, T = 30, and w = 1
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Fig. 4 Phase portraits corresponding to the optimal solutions in Figs. 2 and 3, respectively

t ∈ [T, 2T ]). The green dashed curves represent the solutions in the absence of the
control (u(t) = 0). The vertical dashed lines correspond to the switching moments,
whereas the vertical dot-dashed lines correspond to t = T (the end of the control
interval). In Fig. 4, black lines are the nullclines of uncontrolled system (u = 0),
while orange lines are the nullclines of the controlled system (in this case, u = 0.6).

Please note that in both these examples, the initial conditions are located in
the domain of attraction of the point (0,1), which corresponds to the extinction of
the normal cells. The phase portraits show that the behavior of the uncontrolled
system match, respectively, Scenario 3 (the first example) and Scenario 2 (the
second example) as shown in Fig. 1. The optimal control, when it is active (i.e.,
u = umax, t ∈ [0, θ∗]), transfers the system to Scenario 1. Thereafter, when the opti-
mal control is passive (i.e., u = 0, t ∈ (θ∗, T ]), the system returns to its original
scenario. In the first example, the optimal control is able to move the state of the sys-
tem into the domain of attraction of the point (1,0), where cancer cell population goes
to extinction. For this case, further treatment is not required. In the second example,
while the therapy appears to be successful, and after the treatment, the system returns
to the scenario where the cancer cell population continues to grow.
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