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Abstract Cancer appears as a result of mutation of normal tissue cells. In this paper,
we consider the initial stage of the cancer appearance and development. In particular,
we study the conditions that are necessary for an initial fixation of the mutant cells
in a patient tissue and their further successful development. In order to do this, we
are using a reasonably simple mutation-selection model composed of two interacting
populations, namely, the normal cells and themutant cells. Conditions for persistence
of the mutant cells are found.

1 Introduction

Cancer is characterized by uncontrolled growth of abnormal cells that appear as a
result of a series of mutations of normal cells. To develop into cancer, themutant cells
should be able to successfully compete with the normal cells. It is highly surprising
that this issue attracted significant attention; see, e.g., [3, 4], and literature therein.

In this paper, we focus at an initial stage of cancer and explore the conditions
that are necessary for the initial fixation of the malignant mutant cells in a patient.
Accordingly, we consider the dynamics of a simple mutation-selection model that
comprises two interaction populations, namely, normal cells andmutant cancer cells.
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To address this issue, in this paper, we consider a version of the cancer evolution
model suggested in [1, 2], where we consider only two classes, namely, the normal
cells and the malignant cells.

2 Model

Let us consider a model described in [1]. The model postulates the existence of the
normal cells and n cancer cell genotypes in the system. Let us denote the population
size of the i-th genotype cell at time t by Ci (t) and the population size of the normal
cells at the same time by C0(t). The model is based upon the Lotka–Volterra model
of competing populations and postulates that (i) all cells reproduce and die, (ii)
there is a resource that limit populations growth, (iii) cells of different genotypes
have to compete for this limited resource, (iv) in the process of mitosis, with some
probability pi j , a cell of the i-th genotype can produce a mutant daughter cell of the
j-th genotype, which subsequently goes to the j-th population, and (v) as a result of
somatic mutation, with probability qi, j a cell of the i-th genotype can move to the
j-th genotype. This situation can be described by the following system of ordinary
differential equations:

Ċi =
n∑

j=0

(
p ji a jC j

(
1 − h j

K

n∑

k=0

b jkCk

))
− diCi

(
1 + gi

K

n∑

k=0

bikCk

)
+

n∑

j=0

q jiC j −
n∑

j=0

qi jCi .

(1)
Here, i = 0, 1, . . . , n, ai are the replication rates, di the death rates, K the carrying
capacity, bi j the competition factors, and hi and gi reflect the competition effects on
the birth and death, respectively.

Our goal is to study the initial appearance and fixation of the mutant cells. There-
fore, we consider only one type of mutant cells, or, what is the same, assume that
all mutant cells are the same, and consider interaction of these with the normal
tissue cells. Thus, we assume that n = 1 in model (1), and the model reduces to
a two-dimensional system. Moreover, for simplicity, we assume that h0 = h1 = 0.
Mathematically, this preserves the positive invariance of the first quadrant of the
phase space; biologically, this means that the lack of resources increases the death
rate, but does not inhibit the proliferation. For this case, denoting

x = b00C0/K , y = b11C1/K , τ = d0g0t,

A = p00a0 − d0, B = (a1 p10 + q10)b00/b11, C = (a0 p01 + q01)b11/b00, D = p11a1 − d1,

α = p00a0h0 + d0g0, β = d0g0b01/b11, γ = d1g1b10/b00, δ = p11a1h1 + d1g1,

the system (1) can be written as
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dx

dτ
= 1

α
(Ax + By − αx2 − βxy) , (2)

dy

dτ
= 1

α
(Cx + Dy − γxy − δy2) . (3)

Further, we analyze this system.

3 Equilibrium States of the Model

Equilibrium states of model (2) satisfy the following system of algebraic equations:

Ax + By − αx2 − βxy = 0 , Cx + Dy − γxy − δy2 = 0 . (4)

Accordingly, for this system, the equilibrium states correspond to the intersections
of two conic curves defined by equalities (4). Of course, since the variables x and y
represent sizes of populations, we are interested only in the intersections, which are
located in the first quadrant of the phase space.

Let us start with some trivial observations expressed by the following lemmas:

Lemma 1 The origin P0 = (0, 0) is always an equilibrium state of the system and is
the only equilibrium state located on the coordinate axes, when B and C are strictly
positive.

By this lemma, the system always has at least one nonnegative equilibrium state.

Lemma 2 The system (2) has from one to four equilibrium states.

Through some geometrical observation, it is possible to obtain the following
results about the nullclines (4):

Lemma 3 Each of the nullclines (4) is either a hyperbola or a degenerate hyperbola
(two intersecting straight lines).

Lemma 4 One of the two branches of each of the nullclines (4) has no points in the
first quadrant.

Consequently,

Lemma 5 The system (2) has either one or two nonnegative equilibrium states.

That is, the system either has no positive coexisting equilibrium states at all, or
have only one such equilibrium state.
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3.1 Stability of Equilibrium State P0

The local analysis of the system (2) near equilibrium state P0 immediately reveals
that the eigenvalues of the linearized system are real numbers. Consequently, P0
cannot be a focus. Moreover, no Hopf bifurcation is possible at the origin. There are
the following three possibilities:

(i) if AD − BC < 0, then the origin is a saddle point;
(ii) if AD − BC > 0 and (A + D) > 0, then the origin is a repulsive (unstable)

node;
(iii) if AD − BC > 0 and (A + D) < 0, then the origin is an attractive (stable)

node.

In terms of the physical parameters, (A + D) > 0 is equivalent to condition
a0 p00 + a1 p11 > d0 + d1. Please note that A + D < 0 is not impossible, as there
can be a situation where one of the di is very large, whereas the corresponding ai pii
is sufficiently small. This means that the corresponding genotype could appear, but
cannot sustain even without competition.

Biologically, this condition means that the sum of rates of birth to the same geno-
type cells is larger than the sumof death rates. Condition AD − BC < 0 is equivalent
to the inequality (a0 p01 + q01)(a1 p10 + q01) > (a0 p00 − d0)(a1 p11 − d1).

3.2 Existence and Properties of the Positive Fixed Point

Let us consider the existence and the location of the possible positive equilibrium
state P∗ = (x∗, y∗).

Lemma 6 If either Aβ − Bα ≥ 0, or Dγ − Cδ ≥ 0, then the positive equilibrium
state P∗ exists.

If Aβ − Bα < 0 and Dγ − Cδ < 0, then the existence of P∗ is uncertain. How-
ever, in either case, equilibrium state P∗ can appear only as the result of a transcritical
bifurcation that occurs at the origin. Therefore, P∗ is generatedwhen the twohyperbo-
las have a common tangent at the origin. This implies that the transcritical bifurcation
occurs when AD − BC = 0. An intriguing fact is that the equilibrium state P∗ can
exist as when AD − BC < 0 as when AD − BC > 0.

Linearizing the system around P∗, it is easy to see that this point can be either a
saddle point, or an attractive node, or an attractive focus. It is possible to state the
following result:

Lemma 7 No Hopf bifurcation is possible at P∗.

Therefore, recalling that no Hopf bifurcation is possible at (0, 0), one can deduce
the following.
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Corollary 8 The model (2) admits no Hopf bifurcation.

Moreover, a sufficient (but not necessary) condition for the stability of P∗ obtained
via linearization is that αδ − βγ > 0. Thus, there are two sufficient conditions for
the stability of P∗:

(i) αδ − βγ > 0, or
(ii) AD − BC < 0 and A + D < 0.

We already analyzed the second condition discussing the stability of equilib-
rium state P0. In terms of the physical parameters, the first condition is equivalent
to b00b11 − b01b10 > 0, that is, det B > 0. Biologically, it means that the system
achieves the stable equilibrium when the competition effects among cells with the
same genotype are stronger than the ones between the two different genotypes. It is
very unlikely to occur in the case of cancer.

3.3 Global Properties of the Model

Denoting P(x, y) = (
(A − αx)x + (B − βx)y

)
/α and Q(x, y) = (

(C − γy)x +
(D − δy)y

)
/α, we can rewrite model (2) as follows:

dx

dτ
= P(x, y),

dy

dτ
= Q(x, y) . (5)

Let us study the direction of the vector field (P, Q) at a point (x, y) in the first quad-
rant. It is easy to see that, if x > max {A/α, B/β}, then P(x, y) < 0; analogously,
if y > max {C/γ, D/δ}, then Q(x, y) < 0. Moreover, on the positive semi-axes, the
vector flow is directed inside of the first quadrant. Thismeans that the compact square

S = {[0,max (A/α, B/β)] × [0,max (C/γ, D/δ)]}

is a positive-invariant set and an attractive region of the system. Therefore, by the
Poincaré–Bendixson Theorem, it contains at least one stable limit cycle or at least
one stable fixed point. For this system, it is possible to exclude the existence of a
limit cycle. Moreover, by choosing ϕ(x, y) = α, one immediately obtains for the
system (2):

div(ϕP,ϕQ) = A + D − (2α + γ)x − (β + 2δ)y ,

which is always negative if A + D < 0. Therefore, since S is a simply connected
region, by the Bendixson–Dulac theorem, no limit cycle is possible within S when
A + D < 0. It implies that all orbits tend to a stable fixed point. Please recall that
for A + D < 0 the origin P0 is stable if and only if AD − BC > 0. Hence, for
AD − BC < 0, positive equilibrium state P∗ must exist and be stable. This means
that for the case when A + D < 0 the necessary and sufficient condition for the
existence of P∗ is AD − BC < 0.
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