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Sergey Tikhomirov

Abstract We study speed of moving fronts in bistable spatially inhomogeneous
media at parameter regimes where the speed tends to zero. We provide a set of con-
ceptual assumptions under which we can prove power law asymptotics for the speed,
with exponent depending a local dimension of the ergodic measure near extremal
values. We also show that our conceptual assumptions are satisfied in a context of
weak inhomogeneity of the medium and almost balanced kinetics, and compare
asymptotics with numerical simulations. The presentation is based on a joint work
with Arnd Sheel.

1 Pinning in Traveling Wave Equations

Reaction—diffusion equations describe natural phenomenon in chemistry, biology,
physics, and economics and are intensively studied in the last decades. In the simplest
one-dimensional form, it can be written as follows:

Uy =ty + (), (D
u— Uiy, asx — oo,

whereu: R, xR, > R, f: R —> R, Uy, € R, f(Uy;) = 0. One of the most stud-
ied cases is when f is a derivative of a double-well potential f (1) = F’(u) with
two wells in values ¥ = Uy,. In that case, term u,, in Eq. (1) pushes function u to
become constant in space, whereas term f (u) pushes u(x, t) — UL;. Usually, a solu-
tion u(x, t) converges, as t — 00, to a traveling wave solution u(x, t) = v(x — ct).
In that case, a lot of information can be picked up from a single parameter ¢, which
describes the speed of the traveling wave. The special case when ¢ = 0 corresponds
to a stationary front and appears in a case of a symmetric potential F.
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The situation changes in a discrete environment. Let us consider a spatial dis-
cretization of a reaction—diffusion equation with a traveling wave solution, for
instance, the discrete Nagumo/Schlogel equation

. 1
Uy, = ﬁ(unJrl - 21,{,1 +up_1) + f(un)’ (2)

fu) = (u—a)w —1),

wherea € (—1, 1), a # 0, which corresponds to a nonsymmetric double-well poten-
tial. If the step of discretisation # is too large, there appears a stationary front. This
phenomenon is called pinning. In this research, we are interested in a bifurcation of
a stationary front to a traveling wave with a change of the step of discretization #.
For a review of the topic, see [6].

The pinning phenomenon is quite universal and appears in various contexts, such
as periodic environments and forces [3], nonlocal interactions [1], etc. While plenty
of heuristics are known near the bifurcation point (see, for instance, [2, 4]), there are
only few rigorous results. In particular, the speed of a traveling wave after de-pinning
is not known.

One of the known rigorous results on depinning is proved for the case of spatially
periodic forces:

up = e + (1 —wu(l +u) + 81 (x) + F), 3)

where [ is a 1-periodic function and F € R is a parameter. In this case, there exists
F, > Osuchthatif F > F, there exists a traveling wave, and for F < F, there exists
a stationary solution of (3). Dirr and Yip proved asymptotics for the speed of the
traveling wave for small § and F' — F, ~ §, but still separated from 0; we refer for
exact condition to [3]. In that case

speed ~ (F — F.)'/2. 4)

See [9] for an overview.

2 Depinning Transition in Ergodic Media

We provide an abstract framework to study speed of a traveling wave in continuous
inhomogeneous environment under depinning transition.
Consider an system in an abstract space

U =FU,0;w), ®)
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where U € X, a Banach space corresponding to u(-, t), ® € M a variable describing
the environment, M is a smooth compact manifold, and u is a depinning parameter.
We assume that the system satisfies the following conditions (see [8]):

(C1) There exists a smooth flow S; on M such that Eq.(5) have the symmetry
(T;U); = F(T U, S:(0); n), where T, : X — X corresponds to a translation
of U. Note that S, could be interpreted as translation of the environment.

(C2) There exists a family of smooth one-dimensional manifolds N, » C X invariant
under translation 7, and the flow restricted to it is generated by a C2-vector
field

£ = s5(S(0); W, (6)

where & is a coordinated on one-dimensional manifolds /,,. Note that the form
of (6) follows from condition (C1). Typically, existence of \V,, can be obtained
by establishing normal hyperbolicity in (5).

(C3) The function s is nondegenerate in the following sense: there is a unique
0, € M such that s(6;0) > 0 for 6 # 6,, s(6,;0) =0, 9,5(6,; 0) > 0, and
Dgs(Q*; 0) > 0. This condition is the most difficult to be verified.

(C4) The flow S; is ergodic with respect to an invariant measure v on M with local
dimension « at point 6,. In case when v is the Lesbeugue measure, « coincides
with the dimension of M.

The term ergodic media refers to condition (C4).

Theorem 1 (Scheel-Tikhomirov, [8]) If conditions (C1)-(C4) are satisfied, then
for v-almost 6 € M and small enough || solution is pinned for u < 0 (i.e., £(t)
is bounded), solution is depinned for u > 0 (i.e., £(t) — oo ast — 00), the speed
c(u) =limy_,» §(t)/t have the following asymptotics:

MI—K/Z’ K < 2,
c(uw) ~ 1 (og(w)| ™!, k =2, )
1, Kk > 2.

The proof is based on a skew product structure and notion of relative equilibria
[5, 7]

The easiest example of an ergodic media, satisfying assumptions of Theorem 1,
is a quasiperiodic media. Consider a modified Nagumo/Schlogel equation

up =ty + W+ p)(1—u?) +ea(x; 0)g(u) (8)

with a quasiperiodic inhomogeneity

K
a(y; 0) = Zaj cos(w;y +2m0;)
j=1
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,,,,, « and o; # 0. The function g(u) satisfies tech-
nical assumptions g(+1) = ¢'(£1) =0, g € C?; see [8].

3 Depinning Conjecture in Discrete Quasiperiodic Media

Note that results of a previous section do not provide a rigorous proof of depinning
speed asymptotic in discrete media. The author was not able to find an asymptotic
behavior c(h) of a traveling wave solution u,, () = v(n — ct) of (2) near the depin-
ning transition either.

Analogy between pinning in discrete media and continuous periodic media and
asymptotics (7) suggests to study depinning in nonhomogeneuous discrete media.
Consider nonhomogeneous discrete Nagumo—Schlogel equation

ity = dpr1 — 2uy + Up—1) + Uy — ay)(1 — ul), ©)
u, - +1, asn— %I,

where a, = a + ¢ Z];:1 b, cosQrmw;jn + 0;) is a quasiperiodic sequence, with w;
rationally independent with 1, b;, 6; € R and k is anumber of additional frequencies.
Results of numerical simulations (se Fig. 1 and [8]) show that the behavior of speed
of wave propagation strongly depends on the value of k, where speed is defined as

1 1 +00
speed = - lim — D () = uy(0).

n=—0o0

While it is hard to make a good conjecture based only on numerical simulations,
Theorem 1 suggests the following.
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Fig. 1 Speed of wave propagation as a function of a for k =0, 1, 2
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Conjecture 2 There exists a. > 0 such that if a € (0, a.) then Eq.(9) admits a sta-
tionarily solution. If a > a., then there exists a moving solution with an average
speed behavior as a — a.

(a—a)'?, k=0,
speed(a) ~ 3 (|log(a —a)|™", k =1, (10)
1, k> 2.
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