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Abstract We study speed of moving fronts in bistable spatially inhomogeneous
media at parameter regimes where the speed tends to zero. We provide a set of con-
ceptual assumptions under which we can prove power law asymptotics for the speed,
with exponent depending a local dimension of the ergodic measure near extremal
values. We also show that our conceptual assumptions are satisfied in a context of
weak inhomogeneity of the medium and almost balanced kinetics, and compare
asymptotics with numerical simulations. The presentation is based on a joint work
with Arnd Sheel.

1 Pinning in Traveling Wave Equations

Reaction–diffusion equations describe natural phenomenon in chemistry, biology,
physics, and economics and are intensively studied in the last decades. In the simplest
one-dimensional form, it can be written as follows:

ut = uxx + f (u), (1)

u → U±1, as x → ±∞,

where u : Rx × Rt → R, f : R → R, U±1 ∈ R, f (U±1) = 0. One of the most stud-
ied cases is when f is a derivative of a double-well potential f (u) = F ′(u) with
two wells in values u = U±1. In that case, term uxx in Eq. (1) pushes function u to
become constant in space,whereas term f (u) pushes u(x, t) → U±1. Usually, a solu-
tion u(x, t) converges, as t → ∞, to a traveling wave solution u(x, t) = v(x − ct).
In that case, a lot of information can be picked up from a single parameter c, which
describes the speed of the traveling wave. The special case when c = 0 corresponds
to a stationary front and appears in a case of a symmetric potential F .
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The situation changes in a discrete environment. Let us consider a spatial dis-
cretization of a reaction–diffusion equation with a traveling wave solution, for
instance, the discrete Nagumo/Schlogel equation

u̇n = 1

h2
(un+1 − 2un + un−1) + f (un), (2)

f (u) = (u − a)(u2 − 1),

where a ∈ (−1, 1), a �= 0, which corresponds to a nonsymmetric double-well poten-
tial. If the step of discretisation h is too large, there appears a stationary front. This
phenomenon is called pinning. In this research, we are interested in a bifurcation of
a stationary front to a traveling wave with a change of the step of discretization h.
For a review of the topic, see [6].

The pinning phenomenon is quite universal and appears in various contexts, such
as periodic environments and forces [3], nonlocal interactions [1], etc. While plenty
of heuristics are known near the bifurcation point (see, for instance, [2, 4]), there are
only few rigorous results. In particular, the speed of a traveling wave after de-pinning
is not known.

One of the known rigorous results on depinning is proved for the case of spatially
periodic forces:

ut = uxx + (1 − u)u(1 + u) + δ(l(x) + F), (3)

where l is a 1-periodic function and F ∈ R is a parameter. In this case, there exists
Fc > 0 such that if F > Fc there exists a traveling wave, and for F ≤ Fc there exists
a stationary solution of (3). Dirr and Yip proved asymptotics for the speed of the
traveling wave for small δ and F − Fc ∼ δ, but still separated from 0; we refer for
exact condition to [3]. In that case

speed ∼ (F − Fc)
1/2. (4)

See [9] for an overview.

2 Depinning Transition in Ergodic Media

We provide an abstract framework to study speed of a traveling wave in continuous
inhomogeneous environment under depinning transition.

Consider an system in an abstract space

Ut = F(U, θ;μ), (5)
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whereU ∈ X , a Banach space corresponding to u(·, t),� ∈ M a variable describing
the environment, M is a smooth compact manifold, and μ is a depinning parameter.
We assume that the system satisfies the following conditions (see [8]):

(C1) There exists a smooth flow Sζ on M such that Eq. (5) have the symmetry
(Tζ U )t = F(Tζ U, Sζ (θ);μ), where Tζ : X → X corresponds to a translation
of U. Note that Sζ could be interpreted as translation of the environment.

(C2) There exists a family of smooth one-dimensional manifoldsNμ ⊂ X invariant
under translation Tζ and the flow restricted to it is generated by a C2-vector
field

ξ ′ = s(Sξ (θ);μ), (6)

where ξ is a coordinated on one-dimensional manifoldsNμ. Note that the form
of (6) follows from condition (C1). Typically, existence ofNμ can be obtained
by establishing normal hyperbolicity in (5).

(C3) The function s is nondegenerate in the following sense: there is a unique
θ∗ ∈ M such that s(θ; 0) > 0 for θ �= θ∗, s(θ∗; 0) = 0, ∂μs(θ∗; 0) > 0, and
D2

θ s(θ∗; 0) > 0. This condition is the most difficult to be verified.
(C4) The flow Sζ is ergodic with respect to an invariant measure ν onM with local

dimension κ at point θ∗. In case when ν is the Lesbeugue measure, κ coincides
with the dimension of M .

The term ergodic media refers to condition (C4).

Theorem 1 (Scheel–Tikhomirov, [8]) If conditions (C1)–(C4) are satisfied, then
for ν-almost θ ∈ M and small enough |μ| solution is pinned for μ < 0 (i.e., ξ(t)
is bounded), solution is depinned for μ > 0 (i.e., ξ(t) → ∞ as t → ∞), the speed
c(μ) = limt→∞ ξ(t)/t have the following asymptotics:

c(μ) ∼
⎧
⎨

⎩

μ1−κ/2, κ < 2,
(| log(μ)|−1, κ = 2,
1, κ > 2.

(7)

The proof is based on a skew product structure and notion of relative equilibria
[5, 7].

The easiest example of an ergodic media, satisfying assumptions of Theorem 1,
is a quasiperiodic media. Consider a modified Nagumo/Schlogel equation

ut = uxx + (u + μ)(1 − u2) + εα(x; θ)g(u) (8)

with a quasiperiodic inhomogeneity

α(y; θ) =
κ∑

j=1

α j cos(ω j y + 2πθ j )
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with rationally independent (ω j ) j=1,...,κ and α j �= 0. The function g(u) satisfies tech-
nical assumptions g(±1) = g′(±1) = 0, g ∈ C2; see [8].

3 Depinning Conjecture in Discrete Quasiperiodic Media

Note that results of a previous section do not provide a rigorous proof of depinning
speed asymptotic in discrete media. The author was not able to find an asymptotic
behavior c(h) of a traveling wave solution un(t) = v(n − ct) of (2) near the depin-
ning transition either.

Analogy between pinning in discrete media and continuous periodic media and
asymptotics (7) suggests to study depinning in nonhomogeneuous discrete media.
Consider nonhomogeneous discrete Nagumo–Schlogel equation

u̇n = d(un+1 − 2un + un−1) + (un − an)(1 − u2
n), (9)

un → ±1, as n → ±1,

where an = a + ε
∑k

j=1 bn cos(2πω j n + θ j ) is a quasiperiodic sequence, with ω j

rationally independent with 1, b j , θ j ∈ R and k is a number of additional frequencies.
Results of numerical simulations (se Fig. 1 and [8]) show that the behavior of speed
of wave propagation strongly depends on the value of k, where speed is defined as

speed = 1

2
lim

t→∞
1

t

+∞∑

n=−∞
un(t) − un(0).

While it is hard to make a good conjecture based only on numerical simulations,
Theorem 1 suggests the following.

Fig. 1 Speed of wave propagation as a function of a for k = 0, 1, 2
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Conjecture 2 There exists ac > 0 such that if a ∈ (0, ac) then Eq. (9) admits a sta-
tionarily solution. If a > ac, then there exists a moving solution with an average
speed behavior as a → ac

speed(a) ∼
⎧
⎨

⎩

(a − ac)
1/2, k = 0,

(| log(a − ac)|−1, k = 1,
1, k ≥ 2.

(10)
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