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Abstract In this paper, a model of an unusual elastic–plastic hysteresis is con-
structed and discussed following the recent progress in investigation of the fullerene
films. The constructive model is based on the operator technique of hysteretic non-
linearities. To describe the input–output relations, we use the Ishlinkii’s operator
technique together with the probability model based on the Kolmogorov–Chapman
equation.

1 Introduction

The hysteretic effects take place in various areas of material science (at both macro-
and microlevels). Depending on purposes of investigation, both the phenomenolog-
ical and constructive (based on the first principles) models can be used and there are
many literature sources on this subject (see, e.g., [4, 5] and related references). As
a rule, in the constructive models that are described by the relations “input-state”
and “state-output” [8, 9], the dynamical properties of the hysteresis carrier were not
taken into account.

As it is known, themechanical properties almost all materials (namely, the elastic–
plastic hysteresis, or hysteretic properties of the material) remain unchanged (the
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hysteretic dependence of elastic–plastic materials does not depend on the speed of
mechanical affection). However, the results of recent experiments with the fullerene
nanofilms [6] show that the shape of hysteretic curve in the coordinates “force–
displacement” depends on the speed of force application.

In this work, we propose a dynamical probability model of hysteresis for descrip-
tion of elastic–plastic properties of nanoscale fullerene film taking into account the
electromagnetic nature of the fullerene clusters binding. This model is based on
the fact that the decay law for fullerene supercluster [C60]n (especially for n = 2)
depends on external conditions (temperature, pressure, etc.) as well as is of proba-
bilistic nature. A description of the decay law at the macroscopic level can be made
using the well-known theory of random processes (a basic object in this field is the
Kolmogorov–Chapman equation).

2 Hysteresis in Nanoscale Films

In recent years, the self-regenerating materials and covers are intensively investi-
gated [2, 3, 6, 11]. Such covers regenerate when on its surface a little injury takes
place. Usually, such covers contain the capsules with the “regenerating agent.”When
the damage takes place, the capsules break and, as a result, there are chemical reac-
tions that lead to vanishing of the injury. In this work, we consider the covers that
have self-regenerating properties, but this effect is provided by the hysteretic proper-
ties of the cover’s material. This cover is coated by two beams of buckyball, namely,
the molecular (the PVD technology) and ion (the magnetron technology). The basic
“object” in the regeneration effect is the unusual elastic–plastic hysteresis which is
caused by the depolymerization of fullerene. As it was shown in [6], on the surface
of nanofilm there are some “liftings” at small mechanical affection by the probe
with the diameter less than 200nm. It is also shown that the relief changing does not
connect with the adhesion of the film to the probe.

As it is known, the elastic–plastic hysteresis manifests in macro-level in such
a way that the hysteresis loop gets over clockwise. Herewith, as a rule, a form
and other characteristics of the loop do not depend on the speed of mechanical
affections. However, for the material under consideration, such a dependence takes
place (namely, the formof the hysteretic loop depends on the speed of force affection).

3 Dynamical Hysteretic Model

Here, we present a model of the observable effect. The dependence of the loop’s
form on time means that the presented model should be nonstationary.

It iswell known that the physical properties of nanofilms depend on the structure of
thematerials.Main processes in such nanocovers occur due to the polymerization and
depolymerization processes. These processes can be initialized by the temperature,
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light, or mechanical affections. It should be also pointed out that the polymerization
together with the depolymerization occurs according to the probability laws. The
main assumption of this model consists in the fact that the depolymerization process
is turning on when the cover is under temporal excess pressure.

The state of the cover can be described by the pair of parameters (ω1(t),ω2(t))
that are the fraction of the domains under polymerization and depolymerization,
respectively. The dynamics of these parameters can be described by theKolmogorov–
Chapman equation (here the dot displays the time derivative):

{
ω̇1 = −λ1ω1 + λ2ω2,

ω1 + ω2 = 1,
(1)

with the initial conditions ω1(0) = ω01, ω2(0) = ω02. Linear volumes, x1 and x2, are
connected to these states, respectively. At the same time, the dependence of these
linear volumes on the external force u, we can define as

x1 = x1(u), x2 = x2(u), (2)

using the Ishlinskii’s operator whichwill be described below. Finally, the dependence
of a displacement on the external force can be determined by the following relation:

l = ω1x1 + ω2x2. (3)

Equations (1)–(3) are the base of the proposed model.
At the same time, the intensities of transitions λ1 and λ2 should also depend

on the external force and are driven by the relations λ1 = λ1(u) and λ2 = λ2(u).
Identification of these dependencies from the known experimental data is a compli-
cated problem. Namely, there are certain facts which indicate that these functions
are monotonically increasing. In this work, we suppose that these functions can be
chosen in the form

λ1(u) = λ01 + c1u, λ2(u) = λ02 + c2u (4)

with the positive parameters.

3.1 Some Remarks on Ishlinskii’s Operator

Here, we present some details on the Ishlinskii’s operator technique (details of appli-
cation of this technique can be found, e.g., in [1, 7, 10] and related references). First,
let us introduce the necessary definitions.
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The stop is an operator W [t0, x0, E, h] which connects every continuous input
u(t) (t � 0) with output x(t) by the following rule (for the monotonic inputs):

x(t) =
{
min {h, E[u(t) − u(t0)] + x(t)}, if u(t) increase,
max {−h, E[u(t) − u(t0)] + x(t)}, if u(t) decrease.

Here, E is the elastic modulus of the material (we understand u(t) and x(t) as stress
and deformation, respectively).

For the piecewise monotonic inputs, the output can be determined using the semi-
group identity

W [t0, x0, E, h]u(t) = W [t1,W [t0, x0, E, h]u(t1), E, h]u(t),

and then, using the special limit construction, such an operator can be redefined for
all continuous inputs. A detailed description of this operator as well as its properties
is presented in the book Krasnosel’skii and Pokrovskii [5].

Let U (h) = W [t0, x0, 1, h] be a single-parameter kind of stop with the elastic
modulus equal to 1 and the yield stress ±h. Let us define the nondecreasing contin-
uous function � = �(h) (h � 0) which satisfies the following condition:

∫ ∞

0
|�(h)|dh < ∞. (5)

In the following consideration, we will use the condition (5) in the form

∫ ∞

0
hd�(h) < ∞. (6)

Let us denote as Z the set of continuous functions z(h) (h � 0) that satisfy the
inequality |z(h)| � h (0 � h < ∞). Then, the pairs {u0; z(h)} form the set which
determines the state space of the operatorU . The dynamics of input–output relations
is determined as

x(t) = W [t0, z0(h), 1,�(h)]u(t) =
∫ ∞

0
U [t0, z0(h), h]u(t)d�(h), (t � t0). (7)

Here, the integral is understood in the sense of Riemann–Stieltjes. However, it should
benoted that this relation is uncomfortable for calculations of the output of Ishlinskii’s
operator.

As it follows from the definition, the operator U (h) describes the ideal plastic
fiber with the elastic modulus E = ξ and the plastic limits ±ξh. Let us consider also
the so-called charge function

χ+(u, ξ, h) =
⎧⎨
⎩

−ξh, at u � −h,

ξu, at − h < u(t) < h,

ξh, at u(t) � h.
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The analog of this function for the Ishlinskii’s operator is the function

χ+(u,�) =
∫ u

0
|�(|h|)|dh, (−∞ < u < ∞), (8)

and the discharge function

χ−(u,�) = 2χ+(
u

2
,�), (−∞ < u < ∞).

In thisway, the Ishlinskii’s operator is themodel of plastic bodywhich is composed
of the continual number of ideal plastic fibers. As it follows from the definition, for a
monotonic input and uncharged state the alternating stress can be expressed in terms
of the charge function, namely x(t) = χ+ (u(t) − u(t0),�).

On the piecewisemonotonic inputs, the Ishlinskii’s operator can be determined (in
analogous manner) using the semigroup identity. Unfortunately, relation (8) allows
to determine the output using the charge function only at zero initial state. However,
in the considered case, this condition is not restrictive because at the initial moment
the state of a nanomaterial is naturally supposed to be uncharged.

Finally, themodelwhich describes the dynamics of the systemunder consideration
is based on Eqs. (1)–(3) together with the relations

x1(t) = W [t0, z01(h), 1,�1(h)]u(t), (9)

x2(t) = W [t0, z02(h), 1,�2(h)]u(t), (10)

where u(t) is an external force applied to the fullerene film; z01(h) and z02(h) cor-
respond to initial uncharged states of polymerized and depolymerized fractions,
respectively.

In the experiments described in [6], the external charge is determined as a piece-
wise linear function, namely,

u(t) =
{

at, t ∈ [
0, T

2

]
,

−a(t − T ), t ∈ (
T
2 , T

]
.

4 Conclusions

The results of numerical simulations show that the qualitative behavior of the hys-
teretic curves (in the frame of the proposed model) significantly depends on a choice
of the parameters c1 and c2 which determine the intensity of transitions from depoly-
merized state and back. Optimization of the model by these (and other) parameters
allows to obtain the results that differ from the experimental results approximately
within 3%.
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