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Abstract In this paper, we suggest a discrete variant space model of cancer evolu-
tion. The model is reasonably simple, deterministic, and is formulated as a system of
ordinary differential equations. The model is based on the concept of “multi-strain
modeling” (or quasi-species), which is successfully applied in modeling of the infec-
tious disease dynamics and viral dynamics. The model constructed in this paper is
mechanistic; that is, it is based upon a set of explicitly stated assumptions and hypoth-
esis (“the first principles”). This implies that model’s parameters, as well as results
obtained, can be immediately interpreted, and that a further model development, e.g.,
incorporation into the model factors such as anticancer therapies, immune response,
etc., is a reasonably straightforward procedure. To illustrate this model applicabil-
ity, results of numerical simulations, as well as their biological interpretations, are
provided.

1 Introduction

The term “cancer” refers to a group of diseases, which can affect almost any tissue
and organ and are characterized by the uncontrolled growth of abnormal cells, which
cell cycle is much faster than that of the normal cells. Cancer appears as a result
of a series of mutations of normal cells, which occur during the DNA replication
process or as a result of a somatic mutation. Cancer cells are usually characterized
by their genome instability, and as a consequence of this, by extremely high levels
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of mutability and evolvability. The genome instability, as well as the mutability
and evolvability of cancer, is one of the cancer hallmarks [3–5]. As a result of this
very high mutability, a typical tumor is composed of a very large number of cancer
genotypes. Moreover, the mutability, evolvability, and the resulting genetic diversity
of cancer make its treatment very difficult.

The mentioned genome instability, high mutability, and evolvability of cancer
makes its study from the point of view of evolutionary biology essential. Accord-
ingly, there is a growing interest and a certain progress in mathematical modeling
of cancer evolution. Usually, a mathematical model of cancer evolution utilizes the
idea of quasi-species (or multi-strain modeling) and is formulated in the form of a
system of ordinary differential equations, partial differential equations, or integrod-
ifferential equations (see, e.g., [9–11, 14, 15], and bibliography therein; the same
conceptual ideas were also developed and applied formathematical modeling of viral
evolution [1, 2, 6–8, 13]). In this paper, we use these ideas to construct a reasonably
simple mechanistic model of cancer evolution on the basis of the model of cancer
and normal cells competition.

2 Model

In order to model cancer evolution, let us assume that there is a system composed
of the normal cells and cancer cells of n different genotypes, where n → ∞ or is
a very large number. Let us denote the size of cell population of the i th genotype
at time t by Ci (t) and the size of the normal cells population by C0(t). We assume
that (i) all the cells reproduce and die; (ii) there are limited resources, which limit
populations growth through inhibiting the reproduction and accelerating the death;
(iii) cells of the different genotypes have to compete for these limited resources; (iv)
in the process of mitosis, with some probability pi j , a cell of the i th genotype can
produce a mutant daughter cell of the j th genotype, which, subsequently, goes to the
j th population; and (v) as a result of somatic mutation, with probability qi, j a cell of
the i th genotype can move to the j th genotype.

We start at the Lotka–Volterra model of competing populations which is a usual
basis for cancer modeling [12]:

Ċi (t) = riCi

⎛
⎝1 − 1

K

n∑
j=0

bi jC j

⎞
⎠ , (1)

where i = 0, 1, 2, . . . , n. In these equations, r = (ri )ni=0 represents the vector of the
growth rates, the elements of matrix B = (bi j )ni, j=0 represent the relative competitive
capabilities of the genotypes and K is the carrying capacity of the system. To intro-
duce into this model, a possibility of mutations that occur during DNA replication,
it is necessary to separate the birth and the death rates, as these mutations occur in
the process cell reproduction. For these two processes, we have
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birth rate of the i-th population = aiCi

(
1 − hi

K

n∑
k=0

bikCk

)
, (2)

death rate of the i-th population = −diCi

⎛
⎝1 + gi

K

n∑
j=0

bikCk

⎞
⎠ . (3)

Here, ai and di are the per capita birth and death rates of the i th genotype cells, and
hi and gi are weights that fine-tune the relative impacts of the lack of resources and
competition on the proliferation and death rates, respectively. These parameters are
related to ri by the equalities ri = ai − di and ri = aihi + digi .

Then, using an approach suggested in [9], we can introduce a possibility of muta-
tion into the model modifying the birth term (2). Then the growth of the i th genotype
population is represented by the following equation:

Ċi =
n∑
j=0

⎛
⎝p ji a j C j

⎛
⎝1 − h j

K

n∑
k=0

b jkCk

⎞
⎠

⎞
⎠ − diCi

⎛
⎝1 + gi

K

n∑
k=0

bikCk

⎞
⎠ +

n∑
j=0

q ji C j −
n∑
j=0

qi j Ci . (4)

Here, the diffusion-like term
∑n

j=0 q jiC j − ∑n
j=0 qi jCi represents the somatic

mutations. All the parameters of this model are positive real numbers, except for the
weights hi and gi and the elements of probability matrices P = (pi j ) and Q = (qi j ),
which can be zero.

This discrete variant space model is formulated as a system of ODEs. An equiv-
alent continuous variant space model is formulated in [11].

To non-dimensionalize the system (4), we introduce nondimensional variables
xi (τ ) and τ as the following:

xi = biiCi/K , τ = T t , T = p00a0h0 + d0g0. (5)

Please note that d0 and p00 are always positive, whereas h0 and g0 cannot be equal to
0 simultaneously and, hence, T is always positive. Substituting these variables into
the system (4) and separating the linear and the nonlinear parts of the equations, we
rewrite the system in the following form:

dxi
dτ

=
n∑
j=0

ui j x j −
n∑
j=0

n∑
k=0

vi j f jk x j xk , i = 0, . . . , n . (6)

Here,

ui j =
{

(p j j a j+q j j−d j−∑n
k=0 q jk )ei j

T if j = i ,
(p ji a j+q ji )ei j

T if j �= i ,
vi j =

{
(p j j a j h j+d jg j )ei j

T if j = i ,
p ji a j h j ei j

T if j �= i ,

and fi j = bi j/b j j and ei j = bii/b j j .
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3 Simulations

To illustrate model behavior, we run numerical simulations. In these simulations, we
assume that hi = 0 for all i = 0, . . . , n. (That is, a shortage of the resources does not
affect the reproduction; it is equivalent to an assumption that a decrease of new births
is attributed to an increment of deaths.) Furthermore, we assume that Q = (qi j ) = 0
for all i, j = 0, . . . , n. (That is, we disregards somatic mutations.) We assume that a
cell of the i th genotype can produce a daughter cell only of i th, (i − 1)th, or (i + 1)th
genotypes with probabilities given by matrix P:

P =

⎡
⎢⎢⎢⎢⎢⎣

0.9 0.1 0 · · · · · · 0
0.1 0.8 0.1 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0.1 0.8 0.1
0 · · · · · · 0 0.1 0.9

⎤
⎥⎥⎥⎥⎥⎦
.

In the simulations, the environment carrying capacity K = 105 cells, and time t is
measured in days. Values of the other parameters, as well as, the initial conditions
used in the three simulations are summarized the following table:

Parameter Simulation # 1 Simulation # 2 Simulation # 3
n 50 50 200
ai 2 10 4 − 2e−i

di 0.2 0.2 0.2 − 0.1e−i

gi 9 51 19
bi j 2 − i/n 1 + i/n 2 − i/n
Ci (0) (K − 1, 1, 0, . . . , 0) (K − 1, 1, 0, . . . , 0) (K − 1, 1, 0, . . . , 0)

Results of the simulations are depicted in Figs. 1, 2, and 3, respectively. In simula-
tion #1, we used bi j = 2 − i/n for all j . This implies that the Darwinian fitness of the
genotypes grows as i increases. The initial conditions in the simulation #1 implies
that initially, there was present only one mutant cell of the first mutant genotype.
The formation of a traveling wave moving in the direction of increasing i is clearly
seen in Fig. 1. This implies that in this simulation an average fitness of the tumor
population steadily increases.

Please note that in Fig. 1, the populations of genotypes i = 47 to 50 remain
approximately constant after t ≈ 120 days: for this simulation, we consider a system
of 50 genotypes and, hence, in this simulation, the Darwinian fitness of the 50th
genotype is maximal. This enables this genotype, as well as close genotypes 47th to
49th, to eventually prevail in the system. Of course, in a real-life system, the number
of possible mutant genotypes n is significantly higher, and, hence, no such steady
prevalence of a particular mutant genotypes can be observed.
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Fig. 1 Simulation #1: variation of the genotype abundance in time

Fig. 2 Simulation #2: variation of the genotype abundance in time

Figure2 shows the results of simulation #2. For this simulation, in contrast to sim-
ulation #1, we take bi j = 1 + i/n. This implies that the Darwinian fitness decreases
as i grows. The simulation confirms an intuitive expectation that in such a case, for
whatever large levels of mutation probabilities, the mutations are unable to fix in the
system and the mutant cells will be eventually removed from the tissue.

In the simulation #3, we consider the impact of the proliferation rates on the
evolution. It is a well-known fact that cancer cells proliferate faster than the healthy
cells and that the proliferation rates depend, above all, on the degree of differentiation.
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Fig. 3 Simulation #3: variation of the genotype abundance in time

Accordingly, in the simulation #3, we used ai = 4 − 2e−i and di = 0.2 − 0.1e−i ,
in combination with the same bi j as in simulation #1. Figure3 shows the results of
simulation #3.As one can expect, in this case, a travelingwave of evolution is forming
as well. However, it moves faster than in the simulation #1, where the proliferation
and death rates were constant. Moreover, it is easy to see that in this case the speed
of the traveling wave notably decreases as i grows (and as ai and di grow).

It is hardly surprising that the system behavior in the simulations #1 and #3 is very
similar: the only difference is the higher speed of the traveling wave in simulation #3.
In both these simulations, the mean genotype number grows converging to the last
genotype that has the highest level of the Darwinian fitness. The variance of the
genotype distribution in the population initially grows until it reaches, at a certain
time t∗, itsmaximumvalue, and then it slowly decreases. Such a behavior is intriguing
and counterintuitive.

The analysis of the simulation results suggests that the comparative values of the
competition factors bi j mostly determine the system behavior and that changes of
these values can change the system qualitative behavior.
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