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Abstract The model of viral dynamics with random mutations is considered. This
model describes the cells’ population dynamics with significantly different life
cycles. The presence of different timescales leads to a singularly perturbed sys-
tem. The latter makes it possible to apply the technique of separating timescales and
thereby reducing the dimensionality of the model.

1 Introduction

It is well known that for the singularly perturbed systems with several small parame-
ters Tikhonov’s theorem is applicable [3]. In this theorem, the passage to the limit of
the solution to a degenerate problem in a system with several small parameters mul-
tiplying derivatives is justified. In [1], a similar theorem is formulated and proved for
the systemof singularly perturbed partial integrodifferential equationswith one small
parameter. This theorem can be generalized to the case of several small parameters.

Let us consider the singularly perturbed system of integrodifferential equations
with two small parameters

εx ′
t = f (x,

∫
�

g(s, v)ds),

ενv′
t = h(y, v),

y′
t = w(s, x, y, v,

∫
�

q(s, r, y, v)dr), (1)
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with the initial conditions x(0) = x0, v(0, s) = v0(s), y(0, s) = y0(s), where x, v,

y ∈ R, ε � 1, ν � 1 are the small positive parameters. We assume that system (1)
satisfies the following conditions:

(i) The functions f (x, z1), g(s, v), h(y, v), w(s, x, y, v, z2), and q(s, r, y, v)

and their partial derivatives with respect to all variables are uniformly con-
tinuous and bounded in the respective domains D1 = {|x | ≤ a, |z1| ≤ b1},
D2 = {s ∈ �, |v| ≤ c}, D3 = {|y| ≤ d, |v| ≤ c}, D4 = {s ∈ �, |x | ≤ a,

|y| ≤ d, |v| ≤ c, |z2| ≤ b2}, and D5 = {s, r ∈ �, |y| ≤ d, |v| ≤ c}.
(ii) The equation h(y, v) = 0 has an isolated root v = ϕ(y) in the domain

{|y| ≤ d} and in this domain the function v = ϕ(y) is continuously differ-
entiable.

(iii) The inequality hv(y,ϕ(y)) ≤ −α < 0 holds for |y| ≤ d. This condition
implies, that the stationary point v̂ = ϕ(y) of the first-order associated equa-
tion v̂′

τ = h(y, v̂), which contains y as a parameter, is Lyapunov asymptoti-
cally stable as τ → +∞ uniformly with respect to y, |y| ≤ d.

(iv) There exist a solution v̂ = v̂(τ , s)of the initial valueproblem v̂′
τ = h(y0(s), v̂),

v̂(0, s) = z0(s) for τ ≥ 0, ∀s ∈ �. Furthermore, this solution tends to the sta-
tionary point ϕ(y0(s)) as τ → +∞ ∀s ∈ �, i.e., v0(s) belongs to the domain
of attraction of the stable stationary point ϕ(y0(s)).

(v) The equation f (x, z1) = 0 has an isolated root x = ψ(z1) in domain |x | ≤ a
and in this domain function x = ψ(z1) is continuously differentiable.

(vi) The inequality fx (ψ(z1), z1) ≤ −β < 0 (z1 = ∫
�

g(s,ϕ(y))ds) holds for |y| ≤
d, i.e., the stationary point x̂ = ψ(z1) of the second-order associated equation
x̂ ′

τ = f (x̂,
∫
�

g(s,ϕ(y))ds), which contains y as a parameter, is Lyapunov
asymptotically stable as τ → +∞ uniformly with respect to y, |y| ≤ d.

(vii) There exists a solution x̂(τ ) to the problem x̂ ′
τ = f (x̂,

∫
�

g(s,ϕ(y0(s)))ds),
with initial value x̂(0) = x0 for τ ≥ 0. Further, this solution tends to the
stationary point ψ(

∫
�

g(s,ϕ(y0(s)))ds) as τ → +∞, i.e., x0 belongs to the
domain of attraction of the stable stationary point.

(viii) The truncated system

y′
t = w(s,ψ(z1), y,ϕ(y),

∫
�

q(s, r, y,ϕ(y))dr),

x = ψ(z1), (2)

v = ϕ(y),

z1 =
∫

�

g(s,ϕ(y))ds

with initial condition y(0, s) = y0(s) has a unique solution ȳ(t, s), x̄(t) =
ψ(

∫
�

g(s,ϕ(ȳ(t, s)))ds), v̄(t, s) = ϕ(ȳ(t, s)).
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Theorem 1 If conditions (i)–(viii) are satisfied, then, for sufficiently small ε and
ν, for some T > 0, the problem (1) has a unique solution x(t, ε, ν), v(t, s, ε, ν),
y(t, s, ε, ν), which is related to the solution x̄(t), v̄(t, s), ȳ(t, s) of the truncated
problem (2) by the limit formulas

lim
ε→+0,ν→+0

x(t, ε, ν) = x̄(t) = ψ(

∫
�

g(s,ϕ(ȳ(t, s)))ds), 0 < t ≤ T,

lim
ε→+0,ν→+0

v(t, s, ε, ν) = v̄(t, s) = ϕ(ȳ(t, s)), 0 < t ≤ T, s ∈ �,

lim
ε→+0,ν→+0

y(t, s, ε, ν) = ȳ(t, s), 0 ≤ t ≤ T, s ∈ �.

Note that the limiting equalities for the variables x and v are not uniform for
t ≥ 0. The boundary layer phenomenon occurs [4].

2 Model

Let us consider the next model of viral dynamics with random mutations.

x ′
t = b − σx(t) −

∫
�

α(s)x(t)v(t, s)ds,

y′
t =

∫
�

p1(s, r)α(r)x(t)v(t, r) dr − m(s)y(t, s),

v′
t = k(s)y(t, s) − c(s)v(t, s).

In this model, x(t) is the concentration of uninfected (susceptible) cells at the time t ,
y(t, s), v(t, s) are the density distributions of infected target cells (CD4+ cells, or T
helper cells, or Th cells) and free virus particles, respectively, in a one-dimensional
phenotype space s ∈ � at the time t . The uninfected cells susceptible to the virus
are produced at a constant rate b and die of natural reasons unrelated to the virus
infection at a rate σx(t), σ > 0. The factors α, m, k and c are characteristics of the
virus phenotype, and hence, they are functions of the variable s or r . It is assumed
that mutations occur in the process of cell infection. Function p1(s, r) describes the
probability that the infected by virus of phenotype r cell produces exclusively virus
of phenotype s.

It should be noted that there are three very different timescales: life cycles of
uninfected and infected cells and free virus particles. The presence of considerably
different timescales indicates that the model can be significantly simplified. Follow-
ing, for example [2], let us introduce the dimensionless variables and parameters
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t = T t̄, s = Ss̄, x(t) = X x̄(t̄), y(t, s) = Y (s̄)ȳ(t̄, s̄), v(t, s) = V (s̄)v̄(t̄, s̄),
(3)

T = 1/(μm0), S = 1, X = b/σ, V = (k0/c0)Y, Y = b/m0, (4)

where m0, k0, c0 are m(s), k(s), c(s) of the wild (initial or any fixed) strain. T is
measured in the units of time, while X , Y , and V are in the units of concentrations
of target cells and free virus.

Substituting (3), (4) into themodel and denoting R0(s̄) = bα(s)k(s)/(σm(s)c(s))
(the basic reproduction ratio), m̄(s̄) = m(s)/m0, ε = μm0/σ è ν = σ/c0, we get
singularly perturbed (“slow-fast”) system with two small parameters:

εx̄ ′
t̄ = 1 − x̄(t̄) −

∫
�

R0(s̄)x̄(t̄)v̄(t̄, s̄) ds̄,

ȳ′
t̄ = m̄(s̄)/μ

(∫
�

p1(s̄, r̄)R0(r̄)x̄(t̄)v̄(t̄, r̄) dr̄ − ȳ(t̄, s̄)

)
,

ενv̄′
t̄ = c(s̄)/c0

(
ȳ(t̄, s̄) − v̄(t̄, s̄)

)
.

Setting ν = 0, we obtain the first-order degenerate system

εx̄ ′
t̄ = 1 − x̄(t̄) −

∫
�

R0(s̄)x̄(t̄)v̄(t̄, s̄) ds̄,

ȳ′
t̄ = m̄(s̄)/μ

(∫
�

p1(s̄, r̄)R0(r̄)x̄(t̄)v̄(t̄, r̄) dr̄ − ȳ(t̄, s̄)

)
,

0 = c(s̄)/c0
(
ȳ(t̄, s̄) − v̄(t̄, s̄)

)
.

The third equation is algebraic and has root v̄ = ȳ. For the first-order associ-
ated equation v̂′

τ = c(s̄)/c0
(
v̂(τ , s̄) − ȳ

)
, where ȳ enters as a parameter, the root

v̂ = ϕ(ȳ) = ȳ is the asymptotically stable (in the sense ofLyapunov) stationarypoint.
Let us add the initial conditions x̄(0) = x0, ȳ(0, s̄) = y0(s̄) and v̄(0, s̄) = v0(s̄).
At the initial value of the parameter ȳ, i.e., at ȳ = y0(s̄), the first-order asso-
ciated equation with the initial condition v̄(0, s̄) = v0(s̄) has a unique solution
v̂ = y0(s̄) + (

v0(s̄) − y0(s̄)
)
exp (−c(s̄)/c0τ ), and v̂(τ , s̄) → ϕ(y0(s̄)) = y0(s̄) as

τ → +∞ ∀s̄ ∈ �. Thereby the initial point v0(s̄) of the first-order associated equa-
tion belongs to the domain of attraction of the stable stationary point ϕ(y0(s̄)).

Then let us ε = 0. We obtain the second-order degenerate system

0 = 1 − x̄(t̄) −
∫

�

R0(s̄)x̄(t̄)v̄(t̄, s̄) ds̄,

ȳ′
t̄ = m̄(s̄)/μ

(∫
�

p1(s̄, r̄)R0(r̄)x̄(t̄)v̄(t̄, r̄) dr̄ − ȳ(t̄, s̄)

)
,

0 = c(s̄)/c0
(
ȳ(t̄, s̄) − v̄(t̄, s̄)

)
.



Multi-scale Problem for a Model of Viral Evolution with Random Mutations 17

first equation in which is algebraic with respect to x̄ and has a root x̄ = �(v̄) =(
1 + ∫

�
R0(s̄)v̄(t̄, s̄) ds̄

)−1
. This root is the asymptotically stable stationary point

(in the sense of Lyapunov) of second-order associated to the equation

x̂ ′
τ = −(

1 +
∫

�

R0(s̄)v̄(t̄, s̄) ds̄
)
x̂(τ ) + 1.

The latter equation with the initial condition x̄(0) = x0 at the initial value of
the parameter v̄ v̄ = v0(s̄) has a unique solution x̂(τ ) = (

x0 − 1/ f
)
exp(− f τ ) +

1/ f , where 1/ f = �(v0(s̄)) = 1 + ∫
�

R0(s̄)v0(s̄) ds̄, for all τ ≥ 0, and x̂(τ ) →
�(v0(s̄)) as τ → +∞. Thus, the initial point x0 of the second-order associated
equation belongs to the domain of attraction of the stable stationary point. Thus, all
the conditions of the theorem are satisfied and, consequently, the limiting equali-
ties hold (under the assumption of the existence and uniqueness of the solution of
truncated problem).

Thus, the original system can be reduced to a single integrodifferential equation

ȳ′
t̄ = m̄(s̄)/μ

(∫
�

p1(s̄, r̄)R0(r̄)ȳ(t̄, r̄) dr̄/

(
1 +

∫
�

R0(r̄)ȳ(t̄, r̄) dr̄

)
− ȳ(t̄, s̄)

)
.

3 Conclusion

In this paper, we considered the model of viral dynamics with randommutations that
contain the population dynamics of uninfected cells, infected cells, and free virus
particles. Using the analog of Tikhonov’s theorem, timescale separation procedure is
carried out. As a result, the original systems of three integrodifferential equations are
reduced to a single one. This fact can be used to simplify the numerical simulation
of such complex systems. As a rule in evolutionary biology, mathematical models
are usually formulated as integrodifferential equations and the same technique can
be employed to the ones as well.
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