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Abstract This note presents some advances regarding the Lyapunov constants of
some families of planar polynomial differential systems, as a first step toward the
resolution of the center and cyclicity problems. First, a parallelization approach is
computationally implemented to achieve the 14th Lyapunov constant of the complete
cubic family. Second, a technique based on interpolating some specific quantities so
as to reconstruct the structure of the Lyapunov constants is used to study a Kukles
system, some fifth-degree homogeneous systems, and a quartic system with two
invariant lines.

1 Introduction

Let us consider a real polynomial differential system in the plane with some param-
eters, λ ∈ R

d , written in complex coordinates as

{
ż = i z + Z(z, w,λ),

ẇ = −iw + W (z, w,λ),
(1)

wherew = z̄ and Z(z, w,λ),W (z, w,λ) = Z̄(z, w,λ) are polynomial perturbations
having neither linear nor constant terms in z, w. The center problem consists in
identifying whether the origin of (1) is a center or a focus, when the origin is a
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monodromic nondegenerate equilibrium point. This problem is related to the local
cyclicity problem, which aims to determine the maximum number of small limit
cycles which bifurcate from the origin when perturbing the system in a polynomial
class of fixed degree. All of them are relevant studies in the 16th Hilbert problem.

To deal with this problem let us consider the Poincaré map�, which maps a given
point ρ in a section � transversal to the orbit γ to the first intersection �(ρ) of �

and γ in positive time. The Poincaré map can be analytically extended to ρ = 0, so
we can consider its Taylor expansion and define the displacement map

d(ρ) := �(ρ) − ρ = V3 ρ3 + V4 ρ4 + V5 ρ5 + V6 ρ6 + · · · =
∞∑
n=3

Vn ρn, (2)

for certain values Vn . Observe that the center problem is equivalent to determine
whether all Vn are zero or not, since periodic orbits are fixed points of the Poincaré
map. If not all Vn vanish, the first nonzero Vn must have odd subindex. These Vn

with odd n ≥ 3 are known as Lyapunov constants, and they will be denoted by
L(n−1)/2 := Vn . According to [6], the Lyapunov constants are polynomials, whose
variables are the parameters of system (1). In this case for which not all Vn vanish,
the origin of the system is a focus and its stability is determined by the first nonzero
Lyapunov constant. As a consequence, the center problem reduces to the problem
of finding and vanishing all the Lyapunov constants Lk , that is solving the nonlinear
system {L1 = L2 = · · · = 0}. They also are an essential tool in the study of the
cyclicity problem, since the limit cycles correspond to the isolated zeroes of (2).
In this short paper, we will briefly present two methods to compute these Lyapunov
constants or study some of their useful properties to deal with the center and cyclicity
problems.

2 A Parallelization of Lyapunov Method

An algorithm to find Lyapunov constants is the so-called Lyapunov method, which
is based on the utilization of a first integral of system (1). The computations could
be made using real values (see [9]), but we consider complex coordinates because
the obtained expressions are shorter. The objective is then to find a formal first inte-
gral F = F2 + F3 + F4 + · · · of system (1), with Fk(z, w) := ∑k

j=0 hk− j, j zk− jw j

homogeneous degree k polynomials. We aim to study whether Ḟ vanishes or not.
We compute

Ḟ = Fz ż + Fw ẇ = Fz (i z + Z(z, w,λ)) + Fw (−iw + W (z, w,λ)) =
∑
k≥1

Lk(λ) (zw)k+1.

(3)
The last equality is a consequence of a result which states that if there exists such F ,
then in suitable coordinates it is analytic on zw; see [3]. Therefore, Ḟ is also analytic
on zw. Observe that if all Lk(λ) vanish then Ḟ = 0, and therefore F is a first integral,
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so the origin is a center. These Lk(λ) are actually the Lyapunov constants, which are
polynomials in the parameters λ; see [4]. For the sake of simplicity, we will denote
them simply as Lk . F can be found recursively, starting by imposing equation (3)
and performing formal operations as follows:

(F2z + F3z + F4z + · · · ) (i z + Z2 + Z3 + Z4 + · · · )+
+ (F2w + F3w + F4w + · · · ) (−iw + W2 + W3 + W4 + · · · ) =

= L1 (zw)2 + L2 (zw)3 + L3 (zw)4 + · · · .

Here we solve the linear system obtained by equating the same degree coefficients
in z, w. This way one can find the coefficients hk− j, j of each term Fk of the first
integral and use it to find the corresponding Lyapunov constants.

The above technique has been implemented in PARI/GP (or simply PARI)
programming language; see [5]. As the computation of Lyapunov constants is a
highly computationally expensive procedure, this algorithm has been optimized and
improved by means of parallelization, which allows to significantly increase compu-
tation velocity. The idea is to find each of the Lyapunov constants and the coefficients
hk− j, j of Fk of degree k in terms of the coefficients of lower degree. This part is rel-
atively fast computationally speaking since the manipulated expressions are not too
large. Then we parallelize the substitution of those coefficients with their actual
value, and here parallelization is essential because this process deals with very large
expressions.

The results of this parallelization technique are amazing, and its efficiency has
allowed our method to find Lyapunov constants in a relatively short time for cases
which had not been solved before due to the huge amount of time and computational
complexity required. In particular, we have applied this method to the complete cubic
system

{
ż = i z + r̂20z2 + r̂11zw + r̂02w2 + r̂30z3 + r̂21z2w + r̂12zw2 + r̂03w3,

ẇ = −iw + ŝ20w2 + ŝ11wz + ŝ02z2 + ŝ30w3 + ŝ21w2z + ŝ12wz2 + ŝ03z3.
(4)

We have observed that if time is rescaled by dividing by the imaginary unit i ,
computations are much more efficient and the calculation time decreases. Actually,
the computations we describe here cannot be performed if this time rescaling is not
done. If we denote r jk = r̂ jk/ i and s jk = ŝ jk/ i , the system in the new time variable
can be written as{

z′ = z + r20z2 + r11zw + r02w2 + r30z3 + r21z2w + r12zw2 + r03w3,

w′ = −w + s20w2 + s11wz + s02z2 + s30w3 + s21w2z + s12wz2 + s03z3.
(5)

Up to our knowledge, the highest known Lyapunov constant for the above system
is the 10th; see [7]. But with our parallelization technique, we have been able to
reach the 14th. To perform this computation we have used the computer network of
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Table 1 Size of the computed Lyapunov constants

Lyapunov constant Size (MB)

11 111

12 261

13 588

14 1282

our department. The parallelization has been done with the software PBala; see [8].
This server has eight nodes with Intel Xeon 2.60GHz processors. The total memory
is 640GB and 96 threads can be run at the same time. The size of the new Lyapunov
constants is shown in Table1. The total computing time was around 22 h.

It is well-known, see for example [2], that the solution of the center problem for
the general cubic differential system needs at least 11 Lyapunov constants. Now, the
obstacle to obtain a complete characterization of the cubic centers is how can we
solve the nonlinear system {L1 = L2 = · · · = 0}, and not how to construct it because
we think that we have computed enough Lyapunov constants.

3 Interpolation and Reconstruction Technique

Let us consider the ideal inC[λ]generatedbyallLyapunovconstants 〈L1, L2, L3, . . .〉
associated to the differential system (1) with some fixed degree. Due to the Hilbert
Basis Theorem, this ideal is finitely generated, so there must exist m ∈ N such that

〈L1, L2, L3, . . .〉 = 〈L1, L2, L3, . . . , Lm〉. (6)

To know this m would significantly simplify the problem, because by computing
the first m Lyapunov constants we would obtain the center conditions. Nevertheless,
as [1] states, there are no general methods to find this m and this is the reason why
the center problem has been solved only for certain polynomial families.

Let Bk := 〈L1, . . . , Lk〉 be the Bautin ideal generated by the first k Lyapunov
constants. Themethodwe suggest aims to checkwhether a certain Lyapunov constant
Ln belongs to Bn−1, and therefore it vanishes when the previous are equal to zero.
It is important to remark that to apply this technique at this step we assume that we
have been able to compute the first n Lyapunov constants.

Let us start by writing

Ln =
n−1∑
j=1

A j L j , (7)
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where A j are polynomials whose variables are the parameters of (1). Our method
consists in trying to see whether we can determine these polynomials A j , since this
will tell if expression (7) is possible or not.

Using the notation of (5) for the parameters, let us consider a monomial M =∏
k,� r

pk�
k� sqk�k� , where rk� and sk� correspond to the coefficients of zkw� of Z(z, w,λ)

and W (z, w,λ), respectively. We define the quasi-degree of M as
∑

k,�(k + � −
1)(pk� + qk�) and its weight as

∑
k,�(1 − k − �)(pk� − qk�). Then, by [4], the mono-

mials of a Lyapunov constant L j satisfy that they have quasi-degree 2 j and weight
0. Now using these properties together with the degree of L j , we can select which
monomials are candidates to be part of each A j , but with undetermined coefficients.
Thus,we have that A j are polynomialswhosemonomials have been selected and have
undetermined coefficients, and these coefficients of A j are what we try to compute.

Now knowing the structure of A j , we would substitute it in (7), expand the prod-
ucts and the sum and finally equate the coefficients ofmonomialswith the same literal
part. This gives a set of linear equations consisting of the coefficients of equality (7).
If this system of linear equations is compatible, then the polynomials A j do exist and
Ln vanishes when L1, . . . , Ln−1 are zero; otherwise, if the system is incompatible
then the polynomials A j do not exist and Ln does not belong to Bn−1. Instead of
explicitly solving the system of equations, we have compared ranks of the system
matrices to see if they are equal or not.

With this method we have studied three different families and we have obtained
the following results.

Proposition 1 Consider the Kukles differential system

{
ẋ = −y,

ẏ = x + b20x2 + b11xy + b02y2 + b30x3 + b21x2y + b12xy2 + b03y3,

which in complex coordinates is written as

{
ż = i z + r20z2 + r11zw + r02w2 + r30z3 + r21z2w + r12zw2 + r03w3,

ẇ = −iw − r20z2 − r11zw − r02w2 − r30z3 − r21z2w − r12zw2 − r03w3.

Then L9 does not belong to B8. In the case r12 = 0, L9 again does not belong to B8,
but L10 does belong to B9 since there exist A j such that L10 = ∑9

j=1 A j L j .

From the above result, we can guess that only the first 9 Lyapunov constants are
enough to solve the center problem for this family when r12 = 0. This interpolation
method works better than the standard approach using a Groebner basis for the
simplifications.

The center problem for degree 5homogeneous perturbations of the linear oscillator
is an open problem, and even the valuem in (6) is unknown. Themechanismproposed
here fails for the general family due to the size of the computations. The next result
presents some particular cases.
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Proposition 2 Consider the linear plus homogeneous degree 5 polynomial differ-
ential system

{
ż = i z + r41z4w + r32z3w2 + r23z2w3 + r14zw4 + r05w5,

ẇ = −iw + s41w4z + s32w3z2 + s23w2z3 + s14wz4 + s05z5.

Then the next properties hold:

(i) if r41 = s41 = 0, then L10 does not belong to B9 but L11 does belong to B10;
(ii) if r32 = s32 = 0, then L11 and L12 do not belong to B10 and B11, respectively.

The last considered family is a special quartic differential systemwith four invari-
ant straight lines.

Proposition 3 Consider the following system with two parallel invariant lines

{
ẋ = (1 − x2)(−y + a20x2 + a11xy + a02y2),

ẏ = (1 − y2)(x + b20x2 + b11xy + b02y2),

which can be written in complex coordinates as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż = i z + r40z
4 + r31z

3w + r22z
2w2 + r14zw

3 + r04w
4 + r21z

2w + r03w
3+

r20z
2 + r11zw + r02w

2,

ẇ = − iw + s40w
4 + s31w

3z + s22w
2z2 + s14wz3 + s04z

4 + s21w
2z + s03z

3+
s20w

2 + s11wz + s02z
2.

For this system both L7, L8, and L9 do not belong to B6, B7, and B8, respectively.
However, when r11 = s11 = 0, L7 does belong to B6.

References

1. L.A. Cherkas, V.G. Romanovski, The center conditions for a Liénard system. Comput. Math.
Appl. 52, 363–374 (2006)

2. C. Christopher, Estimating limit cycle bifurcations from centers, in Differential Equations with
Symbolic Computation (Trends Math., Birkhäuser, Basel, 2005), pp. 23–35

3. F. Dumortier, J. Llibre, J.C. Artés, Qualitative Theory of Planar Differential Systems (Universi-
text, Springer, Berlin, 2006)

4. A. Gasull, A. Guillamon, V. Mañosa, An analytic-numerical method for computation of the
Liapunov and period constants derived from their algebraic structure. SIAM J. Numerical Anal.
36, 1030–1043 (1999)

5. The PARI Group, PARI/GP version 2.9.1, University of Bordeaux (2018). http://pari.math.u-
bordeaux.fr/

6. V.G. Romanovski, D.S. Shafer, The Center and Cyclicity Problems (Birkhäuser Boston Inc.,
Boston, MA, 2009)

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/


New Advances on the Lyapunov Constants … 167

7. V.G. Romanovski, Private Communication (2017)
8. O. Saleta, PBALA version 6.0.2, Universitat Autònoma de Barcelona, Bellaterra (2017).

http://github.com/oscarsaleta/
9. S. Songling, A method of constructing cycles without contact around a weak focus. J. Differ.

Equ. 41, 301–312 (1981)

http://github.com/oscarsaleta/

	New Advances on the Lyapunov Constants of Some Families of Planar Differential Systems
	1 Introduction
	2 A Parallelization of Lyapunov Method
	3 Interpolation and Reconstruction Technique
	References




