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Abstract We investigate a minimal network model consisting of a 2D linear (non-
oscillatory) resonator and a 1D linear cell, mutually inhibited with piecewise-linear
graded synapses.Wedemonstrate that this network can produce oscillations in certain
parameter regimes and the corresponding limit gradually transition from regular
oscillations (of non-relaxation type) to relaxation oscillations as the levels of mutual
inhibition increase.

1 Introduction

Membrane potential (subthreshold) resonance (MPR) refers to the ability of a neuron
to exhibit a peak in their voltage amplitude response to oscillatory input currents at a
preferred (resonant) input frequency ( fres); see [4–7] and Fig. 1a. MPR results from
the interplay of an autocatalytic process (positive feedback) and a slower negative
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Fig. 1 a Representative impedance (Z ) profiles for a band-pass (blue) and low-pass (red) filters.
For linear systems receiving sinusoidal inputs with frequency f , the output is also a sinusoidal
function with the same frequency and phase-shifted. b Network diagram of a mutually inhibited
resonator (band-pass filter) and a non-resonator (low-pass filter). cRepresentative PWLconnectivity
function for the graded synapses

feedback effect. For neurons, these are provided by the participating currents. Neu-
rons may also exhibit membrane potential (subthreshold) oscillations either damped
or sustained in the absence of any time-dependent input. However,MPR and intrinsic
oscillations are different phenomena governed by different mechanisms as demon-
strated by the fact that 2D linear systems may exhibit MPR in the absence of damped
oscillations [5–7]. We refer to the neurons that exhibit MPR as resonators. Here, we
focus on resonators that are not damped oscillators.

MPR has been measured in a variety of neuron types and it has been investigated
theoretically in [4–6, 9], and references therein. However, the role that MPR play in
the generation of network oscillations is not well understood (but see [1, 3, 8]). In this
paper, we demonstrate by means of a numerical simulation example that a minimal
networkmodel (Fig. 1b) consisting of a 2D linear resonator (e.g. Fig. 1a, blue) and 1D
linear passive cell (e.g. Fig. 1a, red) mutually inhibited with piecewise-linear (PWL)
graded synapses (Fig. 1c) can produce oscillations in certain parameter regimes. The
corresponding limit cycles experience a transition from regular oscillations (of non-
relaxation type) to relaxation oscillations as the levels of mutual inhibition increase.

2 Model: Networks of Linearized Cells with
Piecewise-Linear Graded Synapses

We used linearized biophysical (conductance based) models for the individual cells
and piecewise-linear (PWL) graded synaptic connections. The linearization process
for conductance-based models (around the resting potential for the voltage variable)
for single cells has been previously described in [5, 7]. We refer the reader to these
references for details.

The dynamics of a network of two mutually inhibitory cells are described by
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Ck
dvk

dt
= −gL ,k vk − gk wk − Gin, jk S∞(v j )(vk − Ein), (1)

τk
dwk

dt
= vk − wk, (2)

for k = 1, 2, j �= k. In Eqs. (1)–(2), t is time, vk represents the voltage (mV), wk

represents the normalized gating variable for the resonant ionic current,Ck = 1 is the
capacitance, gL ,k is the linearized leak maximal conductance, gk is the ionic current
linearized conductance, τk is the linearized time constant and the last term in Eq. (1)
is the graded synaptic current modulated by the activity of the other cell whereGin, jk

is the maximal synaptic conductance, Ein = −20 is the synaptic reversal potential
(referred to the resting potential) and S∞(v) is a PWL function of sigmoid type
(Fig. 1c) of the form

S∞(v) =
⎧
⎨

⎩

0 if v < vb
(va − vb)

−1 (v − vb) if vb < v < va
1 if v > va,

(3)

where va and vb are constants. In this paper we use g2 = 0 (cell 2 is 1D), vb = −va
and Gin = Gin,12 = Gin,21.

We use the following units: mV for vk and wk , ms for t , µF/cm2 for capacitance,
µA/cm2 for current and mS/cm2 for the maximal conductances.

The numerical solutions were computed by using the modified Euler method
(Runge–Kutta, order 2) [2] with a time step �t = 0.1 ms in MATLAB (The Math-
works, Natick, MA). Smaller values of �t have been used to check the accuracy of
the results.

3 Results

Figure2 shows the results of our numerical simulations for representative values of
Gin . Because the network is mutually inhibitory the two cells oscillate in antiphase.
The network oscillations emerge for Gin ∼ 0.1296. As Gin increases the oscillation
amplitude increases, first abruptly and then gradually (Fig. 3a). As this happens,
the network oscillation frequency decreases (Fig. 3b). The network oscillations are
terminated for Gin ∼ 0.176 (not shown).

These oscillations (Fig. 2) are a network phenomena since for the parameter values
we used, the resonator is not a damped oscillator and the passive cell is 1D. Sustained
(limit cycle) oscillations require the interplay of a resonant (negative feedback) and
amplifying (positive feedback) processes. For the network oscillations in Fig. 2, the
resonant process is provided by the resonator and the amplifying process is provided
by the network connectivity mediated by the passive cell [1].
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Fig. 2 Representative voltage traces for the resonator/passive cell mutually inhibitory network
(Fig. 1b). a Gin = 0.1296. b Gin = 0.132. c Gin = 0.16. The resonator has fres ∼ 10.4. We used
the following parameter values:C1 = C2 = 1, gL ,1 = 0.25, g1 = 0.25, τ1 = 100, gL ,2 = 0.5, va =
3, vb = −3, Ein = −20, and Gin = Gin,12 = Gin,21
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Fig. 3 Dependence of the oscillations amplitude and frequency on the levels of mutual inhibition
for the resonator/passive cell mutually inhibitory network (Fig. 1b). The parameter values are as
in Fig. 2. a Amplitude versus Gin curve. We plotted the amplitude of v1. b Network oscillations
frequency versus Gin

The transition from regular oscillations (non-relaxation type) to relaxation oscil-
lations as Gin increases in Fig. 2 is a network phenomenon. There is a time scale sep-
aration between the activator (v1) and the inhibitor (w1) in the resonator (τ1 = 100).
However, for this time scale separation at the individual cell level to be communi-
cated to the network level to produce network relaxation oscillations the levels of
mutual inhibition have to be relatively large.

4 Discussion

We have demonstrated that a minimal network model (2D resonator, 1D linear cell
and mutual inhibition) can produce sustained network oscillations in certain param-
eter regimes. These oscillations crucially depend on the negative feedback provided
by the resonator. Mutual inhibition mediated by the passive cell is responsible for the
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amplification necessary to support the existence of a limit cycle. Our results provide
an example of an oscillatory network of non-oscillatory cells, where resonance and
amplification at different levels of organization interact to produce network oscilla-
tions. For high enough levels of mutual inhibition, the time scale between the two
variables in the resonator is communicated to the network level to produce relaxation
oscillations. If the levels of mutual inhibition are not high enough, this time scale
separation remains occluded.

Our results highlight the role of MPR in isolated neurons for the generation of
network oscillations, and have implications for neuronal network dynamics described
either by conductance-based models or firing rate models with adaptation.
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