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Abstract We propose to model the mammalian lungs as a viscoelastic deformable
porous medium with a hysteretic pressure–volume relationship described by the
Preisach operator. Breathing is represented as an isothermal time-periodic process
with the gas exchange between the interior and exterior of the body. The main result
consists of proving the existence of a periodic solution under an arbitrary periodic
forcing in suitable function spaces.

1 Introduction

As pointed out in [6], the first measurements which showed a hysteretic pressure–
volumecharacteristic inmammalian lungswere obtained in [2] in 1913.Amechanical
system combining linear viscoelasticity with the rate-independent Prandtl model of
elastoplasticity was used by J. Hildebrandt in [5] to describe the breathing process of
cats. Here we refer to the analysis carried out by D. Flynn in [4], where the Preisach
operator is shown to be an appropriate model for the pressure–volume hysteresis
relationship in lungs.
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Our work focuses on representing the breathing as an isothermal, time-periodic
process described by a PDE system with hysteresis. It consists of the momentum
balance equation and the mass balance, similarly as in a more general study of
deformable porous media in [3], but with different boundary conditions. Instead of
prescribing boundary displacement as in [3], we prescribe here mechanical reaction
between lungs and their surroundings. Since viscosity is present in our model, we
also do not have any restriction on the input amplitude. The mathematical problem
thus consists of proving that our PDE system with a degenerating Preisach operator
under the time derivative admits a periodic solution for every periodic boundary
forcing with a given regularity.

2 The Model

Let u denote the displacement vector in the solid, σ the stress tensor, q the gas mass
flux and s the gas mass content in the pores. Similarly as in [1], we assume that the
system is governed by the momentum balance equation

ρutt = divσ, (1)

where ρ is the solid mass density, and by the gas mass balance

st + divq = 0, (2)

where q is the mass flux. Then we introduce two constitutive relations. In the first
one we have

σ = B∇sut + A∇su − p δ, (3)

where B, representing viscosity, and A, representing elasticity, are symmetric
positive-definite constant tensors of order 4, the symbol ∇s denotes the symmetric
gradient, p is the air pressure, and δ is the Kronecker tensor. The second constitutive
relation links pressure and volume in the form

f (p) + G[p] = 1

ρa
s − div u, (4)

where ρa > 0 is the referential airmass density at standard pressure, f : R → (0,∞)

is an increasing function, and G is a Preisach operator.
Under the small deformation hypothesis, the term div u represents the void vol-

ume difference with respect to the reference state, it means that, at constant pressure,
if div u increases, then s/ρa increases at the same rate. Similarly, at constant void
volume, the mass content s is an increasing function (with different inflation and
deflation curves) of the pressure. Eventually, at constant gas mass content, the pres-
sure increases if the void volume decreases.
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For the mass flux, we assume the Darcy law

q = −ρaμ(x)∇ p, (5)

where μ(x) > 0 is a permeability coefficient depending on space.
According to the previous analysis, the model reads

ρutt = div(B∇sut + A∇su) − ∇ p , (6)

( f (p) + G[p])t = −divut + divμ(x)∇ p , (7)

for x in a bounded connected Lipschitzian domain � ⊂ R
3 and for t ≥ 0.

On the boundary ∂�, we prescribe the following boundary conditions:

− σ · n∣
∣
∂�

= β(x)(Cu + Dut − g) + pn , (8)

1

ρa
q · n∣

∣
∂�

= α(x)(p − h) − ut · n , (9)

where n is the unit outward normal vector, β ≥ 0 is the relative elasticity modulus
of the boundary at the point x ∈ ∂�, C and D are symmetric positive- definite 3 × 3
matrices, g = g(x, t) is a given external force acting on the body �, h = h(x, t) is
the given outer air pressure, and α(x) ≥ 0 is the boundary permeability at the point
x ∈ ∂�.

The physical meaning of the first boundary condition in (8) is that on the part
of the boundary where β is positive, the body � interacts with the exterior, which
is viscoelastic with stiffness C, viscosity D, and active component g. There is no
mechanical interaction with the exterior on the part of boundary where β vanishes.
Similarly, the second boundary condition in (8) reflects the assumption that gas
exchange proportional to the inner and outer pressure difference takes place on the
part of the boundary where α is positive.

We now write Problems (6)–(7) in variational form for all test functions φ ∈
W 1,2(�;R3) and ψ ∈ W 1,2(�) as follows:

∫

�

(

ρuttφ + (B∇sut + A∇su) : ∇sφ + ∇ p φ
)

dx +
∫

∂�
β(x)(Cu + Dut − g)φds(x) = 0 , (10)

∫

�

(

( f (p) + G[p])tψ + (μ(x)∇ p − ut )∇ψ
)

dx +
∫

∂�
α(x)(p − h)ψds(x) = 0 , (11)

and the identities (10)–(11) are supposed to hold for a. e. t > 0.
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2.1 Setting

Before presenting the main result of the present work, we must introduce the setting
we need to study our problem. In particular, we have to make appropriate mathemat-
ical assumptions about different terms involved in the model.

• Preisach operator: Let γ ∈ L∞((0,∞) × R) be a given function, γ (r, v) ≥ 0 a. e.,
and there exists B > 0 such that γ (r, v) = 0 for r + |v| ≥ B. We define

G[p] =
∫ ∞

0

∫ ξr

0
γ (r, v)dvdr,

where ξr = pr [p] is the output of the play operator applied to p. Note that for a
fixed initial distribution of the play operators and input p ∈ Lq(�;CT ), the output
G[p] of the Preisach operator is T -periodic for t ≥ T , so that we can consider G
as a (Lipschitz continuous) mapping Lq(�;CT ) → Lq(�;CT ).

• Periodic spaces: We fix a period T > 0 and denote by Lq
T the Lq -space of T -

periodic functions v : R → R for q ≥ 1, and by CT the space of continuous real
T -periodic functions on R. It is now quite natural to introduce Lq

T (W 1,2(�))

and Lq
T (W 1,2(�,R3)) of T -periodic Lq -functions v : R → W 1,2(�) and v : R →

W 1,2(�,R3), respectively, as well as with the spaces Lq(�;CT ).
• Nonlinearity: f : R → R is a C1-function such that there exist 0 < f0 < f1 and

ω ≥ 0 with the property

f0
1 + p2

≤ f ′(p) ≤ f1(1 + p2)ω,

for all p ∈ R.

Moreover, we assume that

(i) the permeability coefficient μ belongs to L∞(�) and there exists a constant
μ0 > 0 such that μ(x) ≥ μ0 a. e.;

(ii) the nonnegative functions α and β belong to L∞(∂�) and do not identically
vanish, that is,

∫

∂�
β(x)ds(x) > 0,

∫

∂�
α(x)ds(x) > 0;

(iii) the functions g, gt belong to L2
T (L2(∂�;R3)), h, ht belong to L2

T (L2(∂�)),
h ∈ L∞(∂� × (0, T ));

(iv) the symmetric positive-definite constant tensors A, B and symmetric positive-
definite constant matrices C, D are given.
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2.2 Main Result

Theorem 1 Let the assumptions from Sect.2.1 hold. Then system (10)–(11) has a
solution (u, p) such that u, ut , ∇su, ∇sut ∈ L2

T (L2(�;R3)) ∩ L∞(T, 2T;L2

(�;R3)), utt ∈ L2
T (L2(�;R3)), pt ,∇ p ∈ L2

T (L2(�)), p ∈ L∞(� × (T, 2T )).

Proof The main ideas of the proof are the following:

(i) We take a cut-off function for f ;
(ii) We use the Galerkin method, both in space and time, so we take suitable

orthonormal bases;
(iii) As a result, we get an algebraic system which has a solution by a homotopy

argument;
(iv) We derive a priori estimates with the help of Preisach energy inequality and

Korn and Poincaré inequalities;
(v) In order to get uniform estimates in time, we test the cut-off equations by ut

and utt , regularizing in time when needed;
(vi) Eventually, we are able to remove the cut-off parameter using the Moser

method. �
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