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Abstract A new approach to the canards chase in 3D for some class of singularly
perturbed systems is suggested. The proposed approach is discussed by the use of
a competitive model of population dynamics. The presence of an exact black swan
(a stable/unstable slow invariant manifold) makes it possible to find a new kind of
trajectories with multiple stability changes.

1 Introduction

In this paper, a new approach to the canards chase for a class of singularly perturbed
systems with two slow and one fast variables is proposed. This approach is based on
the geometric theory of invariant manifolds of singularly perturbed systems [4–6].
Recall, that canards are trajectories of a singularly perturbed system which at first
move along a stable slow invariant manifold and then continue for a while along an
unstable slow invariant manifold. A slow invariant manifold is defined as an invariant
surface of slow motions.

It should be noted that a 3D canard is a result of gluing the stable and unstable
slow invariant manifolds at one point of the breakdown surface [7]. For a fixed gluing
point, this is possible due to a proper choice of an additional scalar parameter of the
differential system. In the proposed approach, two additional parameters are used
to construct a 3D canard. Both these parameters correspond to the canards for 2D-
projections of the original system. The proposed approach is illustrated via a model
of competing populations.
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2 A Competing Predators Model

Consider two predator species competing for a single prey in a constant and uniform
environment. The singular perturbedmodel of the processes is the following (see [1]):

ẋ = x

(
m1z

β1 + z
− d1

)
, (1)

ẏ = y

(
m2z

β2 + z
− d2

)
, (2)

εż = z

(
1 − z − m1x

β1 + z
− m2y

β2 + z

)
. (3)

Here, x and y are the dimensionless population densities of the predators; z is the
dimensionless population density of the prey; ε = 1/γ , where γ is the intrinsic rate
of growth of the prey; for i = 1, 2, mi > 0 is the maximal growth or birth rate of the
i th predator; βi = ai/K , where ai is the half-saturation constant for the i-th predator,
K is the carrying capacity of the prey; di > 0 is the death rate of the i-th predator.

3 2D Canards

Consider the case of the absence of one of the predators, i.e., when, for example,
y ≡ 0. In this case the system (1)–(3) takes the form

ẋ = x

(
m1z

β1 + z
− d1

)
:= f (x, z), (4)

εż = z

(
1 − z − m1x

β1 + z

)
:= g(x, z). (5)

If we put ε = 0 into the fast subsystem, we get the degenerate equation

z

(
1 − z − m1x

β1 + z

)
= 0,

which describes the slow curve S of (4) and (5); see [5, 6]. The curve S consists of
the straight line z = 0 and the parabola. Two breakdown points,

A1

(
x = β1

m1
, z = 0

)
, A2

(
x = (1 + β1)

2

4m1
, z = 1 − β1

2

)
,
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divide S into the stable subsets (Ss1 and Ss2) and the unstable subsets (S
u
1 and Su2 ), see

Fig. 1.
In an ε–neighborhood of the stable (unstable) subset Ss2 (Su2 ) of the slow curve,

there exists the stable (unstable) slow invariant manifold Ss2,ε (Su2,ε). We can glue
together Ss2,ε and Su2,ε at the point A2, using the standard procedure [4–7], to get a
canard. For this, we consider d1 as a gluing parameter. The canard and the corre-
sponding parameter value d1 = dc

1(ε) allow asymptotic expansions in powers of the
small parameter ε:

z = h(x, dc
1(ε), ε) = h0(x, d10) + εh1(x, d10, d11) + O(ε3), (6)

dc
1(ε) = d10 + εd11 + O(ε2). (7)

We can calculate the functions h0, h1, etc., from the invariance equation

ε
∂h

∂x
f
(
x, h(x, dc

1(ε), ε)
) = g

(
x, h(x, dc

1(ε), ε)
)
,

which follows from the system (4) and (5) and the asymptotic expansions (6) and
(7). However, all functions in (6) have a discontinuity at the breakdown point A2. A
proper choice of d10, d11, etc., enables us to avoid this discontinuity. The outcome of
this procedure is a canard shown by the green curve in Fig. 1. The canard corresponds
to the canard point d1 = dc

1 , where

Fig. 1 The slow curve (red),
the canard (green), and the
canard doublet (blue) of (4)
and (5)
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dc
1 = m1(1 − β1)

1 + β1
− ε

β2
1 (1 + β1)

2(1 − β1)2
+ O(ε2).

It should be noted that z = 0 is the exact canard of the system (4) and (5). In
this special case, the trajectories of the system, starting in the basin of attraction of
Ss1, will continue their movement for a while along Su1 . Therefore, we can transform
the single canard, corresponding to the canard point d1 = dc

1 , to a shape of a canard
doublet (see the blue curve in Fig. 1) [2, 8]. Recall, that in the case of a planar sys-
tem, the canards are exponentially close to each other near the slow curve and have
the same asymptotic expansion (6) in powers of ε. An analogous assertion is true
for corresponding parameter values (7). Namely, any two values of the parameter
d1, for which canards exist, have the same asymptotic expansions, and the differ-
ence between them is given by exp (−1/cε), where c is some positive number. For
example, for β1 = 0.1, m1 = 0.5, and ε = 0.1, the values of d1 corresponding to the
canard and the canard doublet in Fig. 1 are 0.408498400000 and 0.408498356366,
respectively.

The results of this section can be extended to the case x ≡ 0 due to the competitive
symmetry between the predators in (1)–(3). Similar reasoning gives the canard point
dc
2 of the parameter d2, where

dc
2 = m2(1 − β2)

1 + β2
− ε

β2
2 (1 + β2)

2(1 − β2)2
+ O(ε2).

4 3D Canards

We now return to the 3D system (1)–(3). Substituting the canards points for the
parameters d1 and d2 into the complete system (1)–(3), we get a canard in 3D. It
should be noted that the discussed approachmakes it possible to easily obtain various
forms of 3D canards. It can be done by slightly changing the values dc

1 or/and dc
2 .

Note that z ≡ 0 is the exact slow invariant manifold, which is divided by the line
1 − m1x/β1 − m2y/β2 = 0 into the stable and the unstable parts. Thus, z ≡ 0 is
the black swan [3, 4]. The presence of the exact black swan allows us to obtain a
new kind of trajectories with multiple changes of stability, a cascade of 3D canard
doublets.

To obtain the trajectory shown in Fig. 2a, we transform the canard on yOz-plane
to a shape of a canard doublet keeping the canard on xOz-plane. A shape of this
trajectory can be modified, from the cascade of 3D canards without head to the
cascade of 3D canard doublets that shown in Fig. 2b.

It should be noted that the considered situation, when a differential system pos-
sesses an exact black swan is typical for many biological models with two slow and
one fast variables.
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(b)(a)

Fig. 2 The cascades of 3D canard doublets of the system (1)–(3). ε = 0.1, β1 = 0.1,
β2 = 0.13, m1 = 0.5, m2 = 0.4, and a d1 = 0.408515869462, d2 = 0.307288368584; b d1 =
0.408498356366, d2 = 0.307288368584
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