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Abstract The paper shows how the repulsive invariant manifolds of multiscale
dynamical systems are used formodeling the critical phenomena.Adynamicalmodel
of fuel spray ignition is considered to illustrate this approach.

1 Introduction

The paper outlines an approach to modeling the critical phenomena in multiscale
dynamical models. Such models are usually described by singularly perturbed sys-
tems of differential equations to reflect the significant distinction in characteristic
relaxation times of different processes. The approach is based on the geometric
asymptotic method of invariant manifolds; see [4].

By a critical phenomenon, we mean a sharp change in a model’s dynamics via a
transition from a slow process to a self-acceleratingmode. According to the theory of
invariant manifolds, processes with self-acceleration correspond to trajectories that
either has no common point with an attractive slow invariant manifold, or leave it
after a while; see [3]. The last situation occurs when the trajectory reaches a boundary
separating the attractive slow invariant manifold from repulsive one.

Using a fuel spray ignitionmodel,wedemonstrate how the repulsive slow invariant
manifold can be used for modeling the critical phenomena.
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2 Model

Themodel of ignition and combustion of a fuel spray is formulated using an adiabatic
approach. The fuel spray is considered as a two-phase medium: the combustible gas
mixture and the combustible liquid droplets. The effects of changes in pressure are
neglected. The usual assumption is made that the thermal conductivity of the liquid
phase is much greater than that in the gas phase. Thus, the heat transfer coefficient
in the liquid gas mixture is supposed to be defined by the thermal properties of the
gas phase. The droplets boundary is assumed to be on a saturation line, i.e., the
liquid temperature is constant and is equal to the liquid saturation temperature. The
combustion reaction is modeled as a first order, highly exothermic chemical reaction.
The model is built with the usual assumptions of the theory of combustion processes
in chemical homogeneity at each point of the reaction vessel. The dimensionless
model has the following form (see [1])

γ
dθ

dτ
= η exp

(
θ

1 + βθ

)
− ε1rθ(1 + βθ), (1)

dr3

dτ
= −ε1ε2rθ, (2)

dη

dτ
= −η

1

1 + βθ
exp

(
θ

1 + βθ

)
+ ε1rψθ, (3)

where θ is the dimensionless fuel gas temperature; r is the dimensionless radius
of the droplets; η is the dimensionless concentration of the flammable gas; τ is the
dimensionless time; γ is the dimensionless parameter equal to the final dimensionless
adiabatic temperature thermally isolated system after the explosion;β gives the initial
temperature; ε1, ε2 characterize the interaction between the gas and liquid phases;
ψ is a parameter characterizing the ratio of the energy of combustion gas mixture to
the liquid evaporation energy.

The initial conditions for the Eqs. (1)–(3) are

θ(0) = 0, η(0) = 1, r(0) = 1.

Appropriate combination of Eqs. (1)–(3) and integration over time yields the follow-
ing energy integral

η − 1 + γ

β
ln(1 + βθ) + ψ − 1

ε2

(
r3 − 1

) = 0,

which allows to reduce the order of the system (1)–(3) to the form
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dθ
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1 − γ

β
ln(1 + βθ) − ψ − 1

ε2
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exp
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θ

1 + βθ

)
− ε1rθ(1 + βθ),

(4)
dr3

dτ
= −ε1ε2rθ. (5)

The degenerate equation, which follows from the fast subsystem (4) for γ = 0,
describes a slow curve

	(θ, r) =
(
1 − γ

β
ln(1 + βθ) − ψ − 1

ε2

(
r3 − 1

))
exp

(
θ

1 + βθ

)
− ε1rθ(1 + βθ) = 0

in the phase plane. The flow of system (4), (5) near the slow curve has a velocity of
O(1) as γ → 0, while far from the slow curve the variable θ is changed very rapidly.
In a γ neighborhood of the slow curve, there exists a slow invariant manifold of the
system which is defined as an invariant surface of slow motions.

The set of points on the slow curvewhere ∂	/∂θ < 0 (∂	/∂θ > 0) forms a stable
(unstable) part of the slow curve. The stable and unstable parts of the slow curve are
the zero-order approximations (γ = 0) of the stable (or attractive) and unstable (or
repulsive) slow invariant manifolds of the system (4), (5), respectively.

For 0 < ψ < 1 − ε2, the slow curve is concave, see Fig. 1a. The part PT of the
slow curve is stable while the part T Q is unstable. The ordinate of the point T
depending on the parameters’ values can be equal to, greater, or less than 1. If the
point T has an ordinate greater than 1, a trajectory of the system starts from the
initial point and tends to the stable part PT of the slow curve. Then it follows PT
to the origin. This is the case of a slow combustion regime; see the trajectory C ′′ J P
in Fig. 1a.

If the point T has an ordinate less than 1, then a trajectory of the system will
pass beyond the basin of attraction of the PT . This case corresponds to an explosion
regime; see the trajectory C ′D in Fig. 1a.

3 Critical Phenomenon

A critical phenomenon corresponds to the case when the trajectory of the system
falls into a small vicinity of the point T and passes along the unstable part T Q of
the slow curve (see the trajectory CT Q in Fig. 1a). This trajectory corresponds to
the critical regime, which separates the safe regimes from explosive modes [3, 5].

The crucial result is that the repulsive slow manifold may be used to construct
the critical trajectory CT Q and to calculate the corresponding value of a control
parameter of the system, say, ε1. To do this, we use the asymptotics proposed in [2].
To make this use eligible, we introduce the new “reverse” time t = −τ in (4), (5)
that make the slow invariant manifold near T Q attractive; see [3].

The part CT of the critical trajectory can be represented in the form
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Fig. 1 a The slow curve (black) and the trajectories (green) of the system (4), (5) with 0 < ψ <

1 − ε2 in the limit case (γ = 0); b the solutions of (1)–(3) in the case of critical regime for γ = 0.01,
ε1 = 2.2100108, ε2 = 0.8, β = 0.05, ψ = 0.19

r(θ, γ ) = r∗ + γ
2
3 �

2
3
0 � sign f (θ∗, r∗) + 1

3
γ ln

1

γ
�1 sign f (θ∗, r∗) + O(γ ), (6)

where θ∗, r∗, denote the coordinates of the point T , the functions f and g are the
right parts of the system (4), (5) after the transition to the reverse time t ,

� = 2.338107, �0 =
√

2

|gθθ (θ∗, r∗)gr (θ∗, r∗)| | f (θ∗, r∗)|,

�1 = 6gθθ (θ
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∗, r∗) f (θ∗, r∗)
3g2θθ (θ

∗, r∗)
.

The coordinates θ∗, r∗ can be found from the system g(θ∗, r∗) = gθ (θ
∗, r∗) = 0.

Substituting all the found values into (6) and setting r = 1 since the point C has the
coordinate r = 1, we obtain the equation for calculation the critical parameter value
ε1 = ε∗

1 in the form

ε∗
1 = ε10 + γ

2
3 ε11 + γ ln

1

γ
ε12 + O(γ ).

A direct calculation gives
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where
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It should underline that the main feature of the critical regime is that during it the
temperature of the combustible mixture can reach a high value within the framework
of a safe process, see Fig. 1b.
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