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Abstract An oscillator such that all motions have the same minimal period is called
isochronous. When the isochronous is forced by a time-dependent perturbation with
the same natural frequency as the oscillator the phenomenon of resonance can appear.
This fact is well understood for the harmonic oscillator and we extend it to the
nonlinear scenario.

1 Introduction

In this communication, we present some results from [4] that aim to characterize the
class of periodic forcings producing resonances in nonlinear isochronous oscillators.

A well-known fact from physics and mathematics is that the harmonic oscillator
with period 2π perturbed by a periodic forcing

ẍ + n2x = p(t),

n = 1, 2, . . ., exhibits resonance whenever the Fourier coefficient

p̂n := 1

2π

∫ 2π

0
p(t)e−int dt

does not vanish. In this context, resonance means that all solutions of the perturbed
equation are unbounded. After this example, the question that naturally arises is if
there exists an equivalent condition for general nonlinear isochronous oscillators. As
far as we know, this question was first raised by Prof. Roussarie in the Open Problems
Session of the II Symposium on Planar Vector Fields (Lleida, 2000).

In this direction, Ortega [3] proved that if the nonlinear isochronous oscillator
satisfies a Lipschitz condition then there exist functions p(t) producing resonance.
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Also, Bonheure et al. [2] give concrete examples of perturbations. Our contribution
in [4] may be interpreted as a nonlinear version of condition p̂n �= 0.

2 Statement of the Results

Consider the oscillator
ẍ + V ′(x) = 0, (1)

x ∈ R, where V ∈ C2(R) is a potential defined on the whole real line satisfying
V (0) = 0, xV ′(x) > 0 if x �= 0, and such that all its solutions are 2π -periodic. The
purpose of the following results is to identify the class of 2π -periodic perturbations
p(t) such that all the solutions of the nonautonomous equation

ẍ + V ′(x) = εp(t) (2)

are unbounded for ε �= 0 small. More precisely, we say that the equation is resonant
if every solution x(t) of (2) satisfies

lim|t |→+∞(|x(t)| + |ẋ(t)|) = +∞.

Let us denote byC := (R/2πZ) × [0,∞) the cylinderwith coordinates (θ, r). The
analogous function that plays the role of the Fourier coefficient p̂n in the nonlinear
case is given by the function �p : C → C defined by

�p(θ, r) := 1

2π

∫ 2π

0
p(t − θ)ψ(t, r)dt,

where ψ(t, r) is the complex-valued solution of the variational equation

ÿ + V ′′(ϕ(t, r))y = 0, y(0) = 1, ẏ(0) = i,

andϕ(t, r) denotes the solution of system (1)with initial data x(0) = r and ẋ(0) = 0.
According to [4, Theorem A], if V satisfies the previous conditions and V ′′ is

bounded over the reals then Eq. (2) is resonant for small ε �= 0 for any p ∈ L1(T)

satisfying the condition
inf
C

|�p(θ, r)| > 0. (3)

This result is a sufficient condition for resonance, but in fact condition (3) is not too
far from being also necessary. Under the same assumptions on V , [4, Proposition 2.2]
shows that if �p has a nondegenerate zero (θ∗, r∗) with r∗ > 0 then system (2) has
a 2π -periodic solution for small ε �= 0. In particular, resonance is excluded in this
situation.
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These two results motivate the choice of condition (3) as the nonlinear version of
p̂n �= 0 for oscillators defined in the whole real line. Indeed, for the linear oscillator
V (x) = 1

2n
2x2, n = 1, 2, . . ., elementary computations lead to the estimates

1

2πn
| p̂n| ≤ |�p(θ, r)| ≤ 1

2π
| p̂n|,

which show the equivalence between the condition p̂n �= 0 and (3). However, there
are also isochronous oscillators having a singularity. This is the case of the well-
known isochronous center

ẍ + 1

4

(
x + 1 − 1

(x + 1)3

)
= 0,

defined for all x ∈ (−1,+∞), solved explicitly by Pinney [5]. Bonheure et al. [2]
considered the perturbed equation

ẍ + 1

4

(
x + 1 − 1

(x + 1)3

)
= ε sin t (4)

and proved that all solutions are unbounded for ε �= 0 small enough. Our contribution
in this scenario is an analogous version of the sufficient condition theorem for reso-
nance. In this case, [4, Theorem B] proves that if p ∈ L1(T) satisfies condition (3)
then all solutions of the equation

ẍ + 1

4

(
x + 1 − 1

(x + 1)3

)
= εp(t) (5)

are unbounded for ε �= 0 small enough.
Although this result is stated for Pinney equation, the same proof can be extended

to a larger class of potentials V having a singularity. Indeed, Bonheure et al. [2]
observed that usually the existence of a singularity of the potential at x = a, a < 0,
determines the behavior of V at infinity. This behavior is precisely the key on the
proof of the Theorem. We refer to [4, App.] for more details.

The computation of the resonance condition (3) may be difficult in general. In this
case, thanks to the contribution of Pinney [5], we are able to compute �p explicitly
for the class of linear trigonometric forcings p(t) = a0 + a1 cos t + b1 sin t . Apply-
ing [4, Theorem B] we obtain that Eq. (5) is resonant if a21 + b21 > 9a20 . In particular,
we recover the result for (4) in [2].

Motivated bymechanical oscillators, all the perturbations taken into account up to
now have been of additive type but in general other kind of perturbations may appear.
Inspired by a problem from geometry, Ai–Chou–Wei [1] studied the equation

ẍ + x = R(t)

x3
, (6)
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x > 0, where R(t) is a T -periodic function, and proved existence of T -periodic
solutions when R is a positive C2-function and T < π . The previous equation with
R ≡ 1 turns out to be isochronous with minimal period π . This fact suggests that
condition T < π seems to be sharp due to the presence of resonance. [4, Theorem C]
is in the direction of proving this fact, showing that the π -periodic function

R(t) =
{
1 if t ∈ [0, π

2 ),

c if t ∈ [π
2 , π),

with c > 0 produces that all solutions of (6) are unbounded if c �= 1.

3 Open Problems

We end this contribution with some related problems that remain unsolved.
First, both the results concerning the identification of the forcings producing

resonance for nonlinear isochronous oscillators defined in the whole plane, we have
presented and the construction of examples by Ortega [3] require the oscillator to
be Lipschitz continuous. However, this requirement seems to be a technicality not
intrinsically linked to the problem itself but to the proof. We expect that no specific
regularity properties of the potential are needed to produce resonance or at least
weaker properties than Lipschitz continuity.

Second, we give a sufficient condition of resonance for the Eq. (5) perturbed by
a linear trigonometric function. Based on the fact that the condition (3) seems also
close to be necessary for resonance, it would be interesting to study if Eq. (5) have
periodic orbits for linear trigonometric forcings satisfying a21 + b21 ≤ 9a20 .

Third, the example R(t) we have given subscribes the idea that Eq. (6) exhibits
resonance if R is π -periodic, but it is discontinuous. We think that smooth examples
can also be constructed but the approach in [4] do not apply in this situation.

Finally, the results presented deal with nonlinear isochoronous oscillators with
one degree of freedom. In more degrees of freedom, the notion of isochronicity is
strongly related with the notion of superintegrability, at least in the Hamiltonian
framework. It would be interesting to relate properly superintegrable Hamiltonian
systems with isochronicity and to construct resonance of such systems.
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