
Evidence of Critical Transitions
and Coexistence of Alternative States
in Nature: The Case of Malaria
Transmission

David Alonso, Andy Dobson and Mercedes Pascual

Abstract Sometimes abrupt changes occur in nature. Examples of these phenomena
exist in lakes, oceans, terrestrial ecosystems, climate, evolution, and human societies.
Dynamical systems theory has provided useful tools to understand the nature of these
changes. When certain non-linearities underlie system dynamics, rapid transitions
may happen when critical thresholds for certain parameter values are overcome.
Here we describe a malaria dynamical model that couples vector and human disease
dynamics through mosquito infectious bites, with the possibility of super-infection,
this is, the reinfection of asymptomatic hosts before they have cleared a prior infec-
tion. This key feature creates the potential for sudden transitions in the prevalence of
infected hosts that seem to characterize malaria’s response to environmental condi-
tions. This dynamic behavior may challenge control strategies in different locations.
We argue that the potential for critical transitions is a general and overlooked feature
of any model for vector borne diseases with incomplete, complex immunity.
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1 Introduction

Critical transitions have received considerable attention in ecology, geophysics,
hydrology and economics for the last decade [12]. They occur when natural sys-
tems drastically shift from one state to another. Comparatively less attention has
been given to carefully characterize the underlying dynamic structure of the system
under study.We believe the focus should change from describing, and understanding
single transitions to characterizing the full dynamic behavior of the systems along
with the environmental conditions in which these transitions occur. In epidemiology,
critical transitions may underlie and potentially enhance (or undermine) attempts to
control and eliminate infectious pathogens. Following an intervention, the trajectory
of the host-pathogen system may cross a critical transition where pathogen preva-
lence drops to apparent eradication. However, the final success of eradication efforts
depends strongly on dynamic underlying structure of the transition. Critical transi-
tions are often associated to the coexistence of alternative equilibria. In that case,
small changes in a driving parameter can lead to large shifts from low to high levels
of prevalence (or vice versa). Continuous external pressure on critical transmission
parameters, or seasonal variation in vector abundance, can also lead to hysteresis,
whereby the inertial response of the system would effectively keep it trapped longer
in either the endemic or disease-free state.

There is some (theoretical) evidence for the existence of alternative steady-states
in infectious disease dynamics [3, 6, 7]. Here, we decribe one potentially important
pre-condition for the existence of alternative steady states in malaria that stems from
the complex immune response of the host to a highly diverse pathogen, the Plasmod-
ium parasite. Humans are infected by concurrent multiple strains of the pathogen
(superinfection). As as consequence, malaria infections are not fully immunizing,
and multiplicity of infection is common in endemic regions. Under these conditions,
rates of full recovery slow down. As a consequence, significant levels of superin-
fection create a positive feedback between infecting mosquitoes, which increase as
humans remain infected longer, and disease prevalence, which also increases at the
exposure to infecting mosquitoes increases. This loop has the potential to generate
multiple alternative equilibria and associated tipping points.

We provide amodel formulation of superinfection that explicitly allows infections
to occur concurrently without interfering with each other. In addition, we present a
semi-analytical, but general approach to identify alternative equilibria in models for
vector-transmitted diseases. We then apply these methods to a vector-borne disease
model (SECIR-LXVW) that has been successfully used to understand the origins of
environmentally driven fluctuations of malaria, and the potential impact of increas-
ing temperatures, in epidemic regions [1]. We demonstrate that irrespective of the
details, superinfection consistently creates tipping points that can generate hysteresis
in responses to control efforts (as well as seasonal variation in vector abundance).
We argue that complex malaria immunity underlies abrupt transitions in response to
control strategies or slight environmental variation. Models that fail to consider the
complexity of malaria-induced immunity response may be misleading, and, there-
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fore, their utility in practice is very limited when used to examine transitions towards
low prevalence levels in response to different control strategies affecting the vectors
as well as the pathogen.

2 The Model

The model can be considering an extension of the standard Ross–McDonald model
[8–11]. Details on model formulation and parameter definitions (including biologi-
cally reasonable parameter value ranges) are found in Alonso, Bouma and Pascual
[1]). The model considers the dynamics of both humans and mosquitoes populations
by means of two sub-models (Eqs. 1 and 2) that are coupled through mosquito bites;
see Fig. 1b. The full ODE system can be written as:

dS

dt
= fH N − β S + σR − δ S + ρ C

dE

dt
= β S − δ E − γ E

d I

dt
= (1− χ) γ E − η β I + ν C − r I − � I − δ I

d R

dt
= −σR + r I − δ R

dC

dt
= χ γ E + η β I − ν C − ρ C − α C − δ C (1)

dL

dt
= f (X + V +W )

(
K0 − L

K0

)
− δL L − dL L

dX

dt
= −c a y X − δM X + dL L

dV

dt
= +c a y X − γV V − δM V

dW

dt
= γV V − δM W, (2)

where N is the total human population, which is assumed constant ( fH = δ), y is the
fraction of infectious humans (y = (C + I )/N ) or disease prevalence, β is the per
capita rate of disease acquisition by humans through infectious bites (β = a b W/N ),
and r is a function of the number of infectious mosquitoes—see Eq. (3). This is a
key point of our formulation: the way effective per capita recovery rates, r , behave
as transmission intensity (the rate of infectious bites per human) change. Under the
assumptions that (1) infectious bites arrive at a constant Poissonian rate, (2) the
individual infections within a host progress independently, and (3) last a constant
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Fig. 1 The human-mosquito SECIR-LXVW coupled model. Fluctuations in rainfall and tempera-
ture induce variability in malaria cases a through the dynamics of disease transmission represented
in themodel b including response functions that map temperature and rainfall onto certain mosquito
model parameters. Model predictions capture real variability in cases including an abrupt shift to
higher variability in the 2nd half of the time series (c) [1]. The model also predicts hysteresis (d)

period, 1/r0, Dietz, Molineax, and Thomas [4] derived the following expression for
the effective per capita recovery rate,

r(�) = �

exp(�/r0) − 1
, (3)

where � denotes the rate of total infectious bites per human (� = a W/N ), and r0,
is the basal recovery rate when disease transmission is very low (more precisely, in
the limit of the infectious mosquito population tending to zero). Thus, the higher the
rate of infectious bites per human host, �, the slower the disease clearance rate, and,
therefore, the longer humans remain infectious. In vector-borne diesase models, the
� parameter is usually measured per year, and called the entomological inoculation
rate (EIR).
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3 Results

3.1 Saddle-Point Bifurcation

Stationary points of the coupled system are identifed by a semi-analytical method
that consists of first finding the equilibria of the two submodels separately, this is,
first, finding the expression for the number of infectious mosquitoes as a function
of a given fraction of infectious humans (according to the mosquito submodel), and,
second, the expression for the fraction of infectious humans for a given number of
infectingmosquitoes (according to the human submodel). The fixed points should be,
therefore, defined by the intersection of these two curves; see Fig. 2. The generality
and feasibility of this method relies on the linearity of the human and mosquito
submodels when considered separately. This means that both the human submodel
(for a given number of infectious mosquitoes, W �), and the mosquito submodel (for
a given fraction of infectious humans, y) are linear ODE systems.

Figure2 shows that the intersection of the curves can produce more that one fixed
point. As the biting rate a increases, the system undergoes two bifurcations. The
first one corresponds to a transcritical bifurcation [5], and represents the transition
from a free-disease situation (R0 < 1) to an endemic stable equilibrium (R0 > 0).
The second one corresponds to a saddle node bifurcation (also called a tangential
or fold bifurcation). The tangential intersection of the two curves defines a critical
biting rate (aC = 0.19089). For a > aC , there is the sudden appearance of a pair
of resting points, a saddle node and a second stable point with a higher fraction
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Fig. 2 Saddle-node bifurcation and mosquito biting rates
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of total infectious humans. The first stable point corresponding to a lower disease
prevalence remains. As a result, two basins of attraction coexist, each consisting of
initial conditions that lead to one of the two alternative stable states, separated by the
existence, of an intermediate unstable state.

3.2 Hysteresis

Coexistence of stable equilibria give rise to a hysteretic behavior. When an exter-
nal perturbation is applied through a gradual increase of a model parameter (for
instance, the biting rate, a), the system responds with an abrupt, non-linear increase
in disease prevalence. However, the symmetric gradual decrease of the same param-
eter is unable to drive the system back to the initial disease incidence levels. This
involves an asymmetry in the temporal trajectories from endemicity to elimination,
and from elimination to re-emergence. These hysteresis effects are illustrated in
Fig. 1d. Although decreasing a back to its initial low values would eventually lead
the system to settle down at the initial low incidence equilibrium, the transient tra-
jectory to this state can take very long.

4 Conclusion

Our work demonstrates that inclusion of superinfection in malaria models, not only
determines the lengthening of infectious periods [4], but is a key factor responsible for
the coexistence of multiple stationary states, and the possibility of nonlinear regime
shifts, including hysteresis. This has important implications [2]. Small changes in
parameters (for instance, biting rate a or mosquitoes’ carrying capacity K ) can give
rise to large changes in disease incidence. Control efforts may see no progressive
decrease of incidence until a sudden effect finally occurs. Conversely, the progressive
relaxation of control efforts in endemic regions could generate sudden transitions
from low to high incidence. Finally, concerning variability, as it is conjectured in
Fig. 1c, since mosquito vital rates critically respond to temperature, sudden shifts
from low to large fluctuations in incidencemay follow in epidemic regions as average
temperatures slowly increase due to global warming.
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