
On the Null Controllability of the Heat
Equation with Hysteresis in Phase
Transition Modeling

Chiara Gavioli and Pavel Krejčí

Abstract We prove the null controllability of the relaxed Stefan problem, which
models phase transitions in two-phase systems. The technique relies on the penalty
approximation of the differential inclusion describing the phase dynamics, solving a
constrained minimization problem, and passing to the limit.

Introduction

The null controllability problem for various kinds of linear and semilinear parabolic
equations has been an intensively studied subject in the recent decades and a nice
survey can be found in the monograph [2]. Here, we propose to discuss the null
controllability problem for the parabolic equation with hysteresis of the form

ut (x, t) − �u(x, t) + F[u](x, t) = v(x, t), x ∈ � ⊂ R
n, t ∈ (0, T ) (1)

with a hysteresis operator F , a right-hand side v called the control, and initial and
boundary conditions specified below. Existence, uniqueness, and regularity results
for Eq. (1) with a given right-hand side v, can be found in the monograph [7]. The
null controllability problem for Eq. (1) consists in proving that for an arbitrary initial
condition and arbitrary final time T , it is possible to choose the control v in a suitable
class of functions of x and t in such a way that the solution satisfies u(·, T ) = 0, a.e.,
in �.

First results about the null controllability of Eq. (1) were obtained by F. Bagagiolo
in [1]: His technique relies on a linearization followed by a fixed-point procedure, and
we briefly comment on it in Sect. 2.We will see that hysteresis operators arising from
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phase transitionmodeling cannot be linearized. To establish the null controllability of
the system, new techniques based on M. Brokate’s previous works [3, 4] on optimal
control of ODEswith hysteresis need to be developed, and this will be done in Sect. 3.

1 The Physical Problem

Consider a bounded connected Lipschitzian domain � ⊂ R
3, fix an arbitrary T > 0

and define Q = � × (0, T ), � = ∂� × (0, T ). The unknown functions of the space
variable x ∈ � and time t ∈ [0, T ] are s(x, t) ∈ [−1, 1] for the phase parameter
(s = −1 solid, s = 1 liquid, s ∈ (−1, 1) mixture), and θ(x, t) > 0 for the absolute
temperature.

The system we consider is the following:

⎧
⎪⎨

⎪⎩

cθt + Lst − κ�θ = h in Q,

ρst + ∂ I (s) � L(θ − θc) in Q,

initial and boundary conditions,

(2)

where I is the indicator function of the interval [−1, 1], ∂ I is its subdifferential,
h = h(x, t) is the heat source density, and c specific heat, L latent heat, κ heat
conductivity, ρ phase relaxation parameter and θc critical temperature are given
positive constants. In the literature this is known as the relaxed Stefan problem (see,
e. g., A. Visintin’s monograph [8]), and it models the phase transition in solid–liquid
systems: the first equation is the energy balance, whereas the second one describes
the phase dynamics. In particular:

(i) the smaller ρ is, the faster the transition takes place. When ρ = 0 we get the
classical Stefan problem, in which the phase transition is assumed to be instan-
taneous;

(ii) when θ > θc then st ≥ 0,whichmeans that the substance ismelting;when θ < θc
then st ≤ 0, which means that the substance is freezing.

We now show that system (2) can be transformed into the form (1). Indeed, we define
a new unknown u by the formula

ut = L

ρ
(θ − θc).

Then the phase dynamics equation in (2) is of the form st + ∂ I (s) � ut . This is
nothing but the definition of the stop operator with threshold 1, s = s[u]; see Fig. 1.

The first equation in (2) thus reads

cρ

L
utt + Ls[u]t − κρ

L
�ut = h.
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Fig. 1 Hysteresis loop of
the stop operator

Integrating the above equation in time leads, up to constants, to an equation of the
form (1), more specifically,

cρ

L
ut + Ls[u] − κρ

L
�u = v (3)

with F[u] = s[u], and with v containing the time integral of h and additional terms
coming from the initial conditions.

2 Null Controllability by Linearization

The system considered by F. Bagagiolo in [1] is the following:

⎧
⎪⎨

⎪⎩

ut (x, t) − �u(x, t) + F[u](x, t) = m(x)v(x, t) in Q,

u(x, t) = 0 on �,

u(x, 0) = u0(x) in �,

(4)

where m is the characteristic function of a set ω ⊂⊂ � and F : L2(�;C0([0, T ]))
−→ L2(�;C0([0, T ])) is a hysteresis operator satisfying the following condition:
there exist two constants L > 0 and m ∈ R such that, for all z ∈ L2(�;C0([0, T ])),
for all t ∈ [0, T ] and for a. e. x ∈ �

|F[z](x, t)| ≤ L|z(x, t)|, (5)

if z(x, t) = 0 then lim
τ→t, z(x,τ )�=0

F[z](x, τ )

z(x, τ )
= m uniformly in [0, T ]. (6)

Similarly as above, v : Q := � × (0, T ) → R is the control function which, being
multiplied by m, acts only on a compact subregion of the original domain. The null
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controllability of system (4) strongly relies on the following result from V. Barbu’s
paper [2].

Theorem 1 (Null controllability in the linear case) Let � ⊂ R
n be an open and

bounded domain with boundary of class C2, let ω ⊂ � be a compactly embedded
subset, and let a ∈ L∞(Q) be given. Then for every initial datum u0 ∈ L2(�) there
is a control function v ∈ L2(Q) such that the (unique) corresponding solution uv ∈
C0([0, T ]; L2(�)) ∩ L2(0, T ;W 1,2

0 (�)) of

⎧
⎪⎨

⎪⎩

ut (x, t) − �u(x, t) + a(x, t)u(x, t) = m(x)v(x, t) in Q,

u(x, t) = 0 on �,

u(x, 0) = u0(x) in �,

(7)

satisfies uv(x, T ) = 0 a.e. x ∈ �. Moreover, the control v can be taken in such a
way that

‖v‖L2(Q) ≤ C‖u0‖L2(�),

where the constant C only depends on ‖a‖L∞(Q).

Note that V. Barbu’s proof of this result relies on the Pontryagin’s Maximum
Principle, and the Carleman estimates.

In particular, Pontryagin’s Maximum Principle requires the study of the dual
system associated with (7), whereas Carleman estimates allow us to bound the L2-
norm of the dual variable in terms of the L2-norm of the control on the subregion
ω × (0, T ).

F. Bagagiolo’s condition (5)–(6) implies, in particular, that all hysteresis branches
pass through the origin. System (4) thus can be reduced to the form (7) with a factor
a(x, t) depending on the unknown function u. The null controllability result is then
obtained by a fixed-point argument.

In the case that the operatorF is the stop operator given by Eq. (3), the assumption
(5) is not satisfied. It is well known (cf. [7]) that typical hysteresis branches of the
stop operator do not pass through the origin as required by condition (5), see Fig. 1.

3 A New Approach: Null Controllability by Penalization

The exact values of the physical constants c, ρ, L ,κ are irrelevant for our analysis.
We can therefore represent Eq. (3) as a system of the form
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − �u + s = v in Q,

st + ∂ I (s) � ut in Q,

∇u · n = 0 on �,

u(x, 0) = u0(x) in �,

s(x, 0) = s0(x) in �.

(8)

The homogeneous Neumann boundary condition for u has the physical meaning of
a thermally insulated body in the original setting (2). The main result for the system
(8) reads as follows.

Theorem 2 Let u0 ∈ W 1,2(�) ∩ L∞(�) and s0 ∈ L∞(�) be given, |s0(x)| ≤ 1, a.e.
Then the system (8) is null controllable, that is, there exists v ∈ L2(Q) such that
the corresponding solution uv ∈ W 1,2((0, T ); L2(�)) ∩ L∞(0, T ;W 1,2(�)) of (8)
satisfies uv(·, T ) = 0, a.e., in �.

Note that controls with support restricted to a subdomain ω ⊂ � as in Theorem 1
are not admissible in Theorem 2. This is related to the problem whether Carleman
estimates are compatible with the penalty approximation. This question will be given
appropriate attention in future work.

Proof The argument consists in penalizing the subdifferential ∂ I and replacing the
differential inclusion with an ODE. In particular, we choose the penalty function

�(s) =
⎧
⎨

⎩

φ(s − 1) for s > 1,
0 for s ∈ [−1, 1],
φ(−s − 1) for s < −1,

(9)

with a convex C2-function φ : [0,∞) → [0,∞) with quadratic growth, for example

φ(r) =
{ 1

6r
3 for r ∈ [0, 1],

1
2r

2 − 1
2r + 1

6 for r > 1.

Choosing a small parameter γ > 0, we replace (8) with a system of one PDE and
one ODE for unknown functions (u, s) = (uγ, sγ)

{
ut − �u + s = v in Q,

st + 1
γ
� ′(s) = ut in Q,

(10)

with the same initial and boundary conditions, and with the intention to let γ tend
to 0. We choose another small parameter ε > 0 independent of γ and define the cost
functional

J (u, s, v) = 1

2

∫∫

Q
v2dxdt + 1

2ε

∫

�

u2(x, T )dx,

where the two summands represent the cost to implement the control and to reach the
desired null final state. Then, for each γ > 0 we solve the following optimal control
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problem:
minimize J (u, s, v) subject to (10). (11)

It is not difficult to see (see, e. g., Tröltzsch [6]) that for each ε > 0 problem (11) has
a unique solution (uγ

ε , s
γ
ε , vγ

ε ). It is found as a critical point of the Lagrangian

L(u, s, v) = J (u, s, v) + 〈p,G1(u, s, v)〉 + 〈q,G2(u, s, v)〉

where p, q are Lagrangemultipliers, the brackets denote the canonical scalar product
in L2(�), and the constraints are

G1(u, s, v) = ut − �u + s − v, G2(u, s, v) = st + 1

γ
� ′(s) − ut .

The first-order necessary optimality condition for (u, s, v, p, q) = (uγ
ε , s

γ
ε , vγ

ε ,

pγ
ε , qγ

ε ) reads
v = p a. e. in Q, (12)

and p ∈ W 1,2(0, T ; L2(�)) ∩ L∞(0, T ;W 1,2(�)), q ∈ W 1,2(0, T ; L2(�)) are the
solutions to the backward dual problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pt + �p − qt = 0 in Q,

qt − 1
γ
� ′′(s)q − p = 0 in Q,

∇ p · n = 0 on �,

p(x, T ) = − 1
ε
u(x, T ) in �,

q(x, T ) = 0 in �.

(13)

3.1 Estimates

In order to pass to the limits ε → 0, γ → 0, we first derive a series of estimates for
(u, s, v, p, q) = (uγ

ε , s
γ
ε , vγ

ε , pγ
ε , qγ

ε ) satisfying the system (10), (12), and (13). In
what follows, we denote by C any constant independent of γ and ε.

We first multiply the second equation of (13) by −sign(q) and integrate from an
arbitrary t ∈ [0, T ) to T to obtain

|q(x, t)| +
∫ T

t

1

γ
� ′′(s(x, τ ))|q(x, τ )|dτ ≤

∫ T

t
|p(x, τ )|dτ for a. e. x ∈ �.

(14)
In the next step, we combine the first and the second equation of (13) to get

pt + �p − 1

γ
� ′′(s)q − p = 0,
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and multiply the resulting equation by an approximation Sn(p) of −sign(p), say,
Sn(p) = −sign(p) for |p| ≥ 1/n, Sn(p) = −np for |p| < 1/n. Integrating over �
and letting n tend to infinity we obtain

− d

dt

∫

�
|p(x, t)|dx +

∫

�
|p(x, t)|dx ≤

∫

�

1

γ
� ′′(s(x, t))|q(x, t)|dx for a. e. t ∈ (0, T ).

(15)
Integrating (15) consecutively

∫ τ

0 dt and then
∫ T
0 dτ and using the estimate (14) gives

a bound for p(x, 0), namely

∫

�

|p(x, 0)|dx ≤ C
∫ T

0

∫

�

|p(x, t)|dxdt. (16)

Finally, we multiply the first equation in (10) by p, the second equation in (10)
by q, the first equation in (13) by u, the second equation in (13) by s, integrate in
space and time, and sum up (note that p = v by virtue of (12)):

∫ T

0

∫

�

p2dxdt + 1

ε

∫

�

u2(x, T )dx = −
∫

�

u0(x)p(x, 0)dx +
∫

�

u0(x)q(x, 0)dx

−
∫

�

s0(x)q(x, 0)dx + 1

γ

∫ T

0

∫

�

q
(
� ′(s) − s� ′′(s)

)
dxdt.

(17)
The choice (9) of � guarantees that

|� ′(s) − s� ′′(s)| ≤ 3

2
� ′′(s).

Hence, by virtue of (14)–(16), we infer from (17) the estimate

∫ T

0

∫

�

p2(x, t)dxdt + 1

ε

∫

�

u2(x, T )dx ≤ C
∫ T

0

∫

�

|p(x, t)|dxdt (18)

with a constant C depending on the L∞-norm of u0, which, together with Hölder’s
inequality, implies in turn that

∫ T

0

∫

�

(vγ
ε )2(x, t)dxdt + 1

ε

∫

�

(uγ
ε )

2(x, T )dx ≤ C (19)

with a constant C independent of γ and ε.
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3.2 Passage to the Limit

As a consequence of (19), we see by a standard result on parabolic PDEs that the solu-
tions uγ

ε , s
γ
ε of (10) are for each fixed γ > 0 uniformly bounded inW 1,2(0, T ; L2(�))

∩ L∞(0, T ;W 1,2(�)). Keeping thus γ fixed for the moment, letting ε → 0 and
using the compact embedding of W 1,2(0, T ; L2(�)) ∩ L∞(0, T ;W 1,2(�)) into
L2(�;C([0, T ])), we conclude that along a subsequence for each fixed γ we have

vγ
ε ⇀ vγ

∗ , sγ
ε → sγ

∗ , (sγ
ε )t ⇀ (sγ

∗ )t in L2(Q), ‖uγ
ε (x, T )‖2L2(�) → 0,

uγ
ε → uγ

∗ in L2(�;C([0, T ])) and uγ
∗(x, T ) = 0 a. e.

The convergence γ → 0 is more delicate. By (19), the controls contain a weakly
convergent subsequence

vγ
∗ ⇀ v∗ in L2(Q).

The same parabolic PDE argument as above yields

(uγ
∗)t ⇀ (u∗)t in L2(Q), uγ

∗ → u∗ in L2(�;C([0, T ])) with u∗(x, T ) = 0.
(20)

It remains to prove that the solutions sγ∗ to the equation

(sγ
∗ )t + 1

γ
� ′(sγ

∗ ) = (uγ
∗)t

converge weakly to s[u∗]. To this end, we denote by yγ the solution of the ODE

yγ
t + 1

γ
� ′(yγ) = (u∗)t , yγ(x, 0) = s0(x). (21)

By [5, Theorem 1.12], we have for a. e. (x, t) ∈ Q

|sγ
∗ (x, t) − yγ(x, t)| ≤ 2 max

τ∈[0,t] |u
γ
∗(x, τ ) − u∗(x, τ )|. (22)

Multiplying (21) by yγ
t and integrating over Q we see that the L2(Q)-norm of yγ

t is
bounded independently of γ. Hence, up to a subsequence,

yγ
t ⇀ yt , yγ ⇀ y,

1

γ
� ′(yγ) ⇀ w in L2(Q), (23)

and it suffices to prove that y = s[u∗]. To this end note that y and w satisfy the
equation

yt + w = (u∗)t , y(x, 0) = s0(x). (24)

Furthermore, for every function z ∈ L∞(Q) we have
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∫∫

Q
yγz dxdt ≤

∫∫

Q
|yγ | |z| dxdt ≤

∫∫

Q
(|yγ | − 1)+ |z| dxdt +

∫∫

Q
|z| dxdt,

hence, choosing z such that
∫∫

Q |z|dxdt ≤ 1, by (23)we have
∫∫

Q yz dxdt ≤ 1which
in turn implies that |y(x, t)| ≤ 1 a. e.

We now multiply (21) by yγ and (24) by y and integrate over Q. By virtue of the
weak convergence we have

∫

�
y2(x, T ) dx ≤ lim infγ→0

∫

�
(yγ)2(x, T ) dx , hence

lim inf
γ→0

1

γ

∫∫

Q
� ′(yγ)yγ dxdt ≤

∫∫

Q
wy dxdt.

Since � ′ is monotone and vanishes in [−1, 1], it follows that
∫∫

Q
� ′(yγ)(yγ − ρ) dxdt ≥ 0

for every measurable function ρ such that |ρ(x, t)| ≤ 1 a. e. Hence, for every ρ we
have ∫∫

Q
w(y − ρ) dxdt ≥ 0,

which implies that y = s[u∗], and the proof is complete.
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