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Preface

This volume of the Trends in Mathematics: Research Perspectives CRM-Barcelona,
offers to your attention a selection of short papers based on the presentations that
were made at the joint 9th International Workshop on MUlti-Rate Processes and
HYSteresis (MURPHYS) and 4th International Workshop on Hysteresis and
Slow-Fast Systems (HSFS). The workshop was jointly organized by the Centre de
Recerca Matemàtica, Barcelona, and the Collaborative Research Center 910, Berlin,
and hosted by the Centre de Recerca Matemàtica, Barcelona, fromMay 28 to June 1,
2018. This meeting, MURPHYS-HSFS-2018, continued a successful series of
biennial multidisciplinary conferences on Multi-Rate Processes and Hysteresis, that
previously took place in Cork (Ireland, 2002–2008), Pécs (Hungary, 2010), Suceava
(Romania, 2012), Berlin (Germany, 2014), and Barcelona (2016), as well as the
series of workshops on Hysteresis and Slow-Fast Systems held in Lutherstadt,
Wittenberg, Berlin, and Barcelona.

MURPHYS-HSFS-2018 workshop, dedicated to mathematical theory and
applications of the singularly perturbed systems, systems with hysteresis and recent
general trends in dynamical systems, brought together over 60 researchers working
on hysteresis and multi-scale phenomena from Europe, USA, Russia, and other
countries. Participants shared and discussed recent developments of analytical
techniques in several areas of common interest. Topics in this volume include
analysis of hysteresis phenomena, multiple scale systems, self-organizing nonlinear
systems, singular perturbations, and critical phenomena, as well as applications
of the hysteresis and the theory of singularly perturbed systems to fluid dynamics,
chemical kinetics, cancer modeling, population modeling, mathematical economics,
and control. This volume is intended to give to the contributors an opportunity to
quickly report their latest research findings: the most of the short articles in this
volume are brief preliminary summaries presenting new results that were not yet
published in regular research journals.

We are happy to acknowledge support to the Workshop by the Agència de
Gestió d’Ajuts Universitaris i de Recerca (AGAUR) of the Generalitat de
Catalunya, Collaborative Research Center 910: Control of self-organizing non-
linear systems (Germany), Ministerio de Economίa, Industria y Competitividad

v



of the Spanish government, and the Centre de Recerca Matemàtica. We also would
like to express our gratitude to the CRM leadership and members of administrative
staff whose enthusiastic work contributed a lot to the workshop success.

Bellaterra, Barcelona, Spain Andrei Korobeinikov
October 2018 Magdalena Caubergh

Tomás Lázaro
Josep Sardanyés
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Constructive Method of Decomposition
in Singularly Perturbed Problems
of Non-holonomic Mechanics

Alexander Kobrin and Vladimir Sobolev

Abstract The method of decomposition of singularly perturbed differential sys-
tems is developed and application of the method to the problems of non-holonomic
mechanics is considered.

1 Introduction

Themain object of our consideration is the following systemof differential equations:

ẋ = f (x, y, t, ε), εẏ = g(x, y, t, ε), (1)

where x and f are vectors in Euclidean spaces R
m , y and g are vectors in R

n ,
t ∈ R, and ε is a small positive parameter. The goals of the paper are to construct a
transformation reducing (1) to the system

v̇ = F(v, t, ε), εż = G(v, z, t, ε),

and to discuss some applications to the problems of non-holonomic mechanics. In
this paper, themodel of Chaplygin [1] is considered as an example of the investigation

A. Kobrin was funded by the Russian Foundation for Basic Research (grant 16-01-00429).
V. Sobolev was supported by the Russian Foundation for Basic Research and the Government
of the Samara Region (grant 16-41-630524-p) and the Ministry of Education and Science of the
Russian Federation under the Competitiveness Enhancement Programme of Samara University
(2013–2020).

A. Kobrin (B)
Moscow Power Engineering Institute, Moscow, Russia
e-mail: kobrinai@yandex.ru

V. Sobolev
Department of Differential Equations and Control Theory,
Samara National Research University, Moskovskoye shosse, 34,
Samara 443086, Russian Federation
e-mail: v.sobolev@ssau.ru

© Springer Nature Switzerland AG 2019
A. Korobeinikov et al. (eds.), Extended Abstracts Spring 2018,
Trends in Mathematics 11, https://doi.org/10.1007/978-3-030-25261-8_1
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2 A. Kobrin and V. Sobolev

of the non-holonomic problem by the methods integral manifolds. Some theoretical
and applied results along these lines were obtained in [2, 4].

2 Splitting Transformation

Suppose that system (1) confirms with the following hypothesis:

I. the equation g(x, t, y, 0) = 0 has an isolated solution y = h0(x, t) for t ∈ R,
x ∈ R

m ;
II. the functions f , g, and h0 are (k + 2) times continuously differentiable (k ≥ 0)

in �0 = {(x, y, t, ε) | x ∈ R
m, ‖y − h0(x, t)‖ < ρ, t ∈ R, 0 ≤ ε ≤ ε0};

III. the eigenvalues λi (x, t) (i = 1, . . . , n) of the matrix B(x, t) = ∂g
∂y (x, h0(x, t),

t, 0) satisfy the inequality Reλi (x, t) ≤ −2γ < 0.

Under such assumptions, the system (1) has the slow integralmanifold y = h(x, t, ε).
The flowon thismanifold is described by them-dimensional system ẋ = f (x, h(x, t,
ε), t, ε). An exact calculations of h(x, t, ε) is generally impossible, and various
approximations are necessary. One possibility is the asymptotic expansions of
h(x, t, ε) in the integer power of small parameter ε:

h(x, t, ε) = h0(x, t) + εh1(x, t) + ε2h2(x, t) + · · ·

To consider the behaviour in some neighbourhood of the slow integral manifold
y = h(x, t, ε), let us introduce a new variable z by the formula y = z + h(x, t, ε).
Furthermore, we introduce an additional variable v, which satisfies the equation
v̇ = f (v, h(v, t, ε), t, ε) = F(v, t, ε), which describes the flow on the slow integral
manifold. As the next step, we introduce a variable w by the formula x = v + w.
For z, v and w, we have the differential equations

v̇ = F(v, t, ε), ẇ = W (v,w, z, t, ε), εż = B(v, t)z + Z(v,w, z, t, ε),

where

Z(v,w, z, t, ε) = g (v + w, z + h(v + w, t, ε), t, ε) − B(v, t)z − ε
∂h

∂t
(v + w, t, ε)

−ε
∂h

∂x
(v + w, t, ε) f (v + w, z + h(v + w, t, ε), t, ε),

W (v,w, z, t, ε) = f (v + w, z + h(v,w, t, ε), t, ε) − F(v, t, ε).

If all assumptions I–III hold for k ≥ 1, then there exists ε2, 0 < ε2 ≤ ε1, such that
for all ε ∈ (0, ε2], the last system possesses the integral manifoldw = εH(v, z, t, ε),
the flow on which is described by the differential system
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v̇ = F(v, t, ε), εż = G(v, z, t, ε), (2)

G(v, z, t, ε) = B(v, t)z + Z(v, εH(v, z, t, ε), z, t, ε).

In many cases, H can be found as an asymptotic expansion

H(v, z, t, ε) = H0(t, v, z) + εH1(t, v, z) + ε2H2(t, v, x) + · · ·

from the corresponding invariance equation

ε
∂H

∂t
+ ε

∂H

∂v
F(v, t, ε) + ∂H

∂z
[B(v, t)z + Z(v, εH, z, t, ε)] = W (v, εH, z, t, ε).

(3)
Our main goal is the constructing of the transformation

x = v + εH(v, z, t, ε), y = z + h(x, t, ε), (4)

which reduces the original system (1) to the form

v̇ = F(v, t, ε), εż = G(v, z, t, ε). (5)

Let (x(t), y(t)) be a solution to (1) with an initial condition x(t0) = x0, y(t0) =
y0. There exists a solution (v(t), z(t)) of (5) with the initial condition v(t0) = v0,
z(t0) = z0, such that

x(t) = v(t) + εH(v(t), z(t), t, ε), y(t) = z(t) + h(x(t), t, ε). (6)

It is sufficient to show that (6) takes place under t = t0. Substituting t = t0 in (6)
we obtain x0 = v0 + εH(v0, z0, t0, ε), y0 = z0 + h(x0, t0, ε), and, therefore, z0 =
y0 − h(x0, t0, ε). For v0, we have the equation v0 = x0 − H(v0, z0, t0, ε) = V (v0),
which has a unique solution for any x0 ∈ R

m and fixed z0 and t0, where ‖z0‖ =
‖y0 − h(x0, t0, ε)‖ ≤ ρ2, for some ρ2.

The following statement is true; see [5]:

Theorem 1 Suppose the assumptions I–III hold. Then, there exist numbers ε2 and ρ2
such that for all ε ∈ (0, ε2] any solution x = x(t, ε), y = y(t, ε) of system (1) with
the initial condition x(t0, ε) = x0, y(t0, ε) = y0, where ‖y0 − h(x0, t0, ε)‖ ≤ ρ2,
can be represented in form of (6).

This propositionmeans that in the ρ2-neighbourhood of the slow integralmanifold
y = h(x, t, ε) of system (1) can be reduced to the form (5) by the splitting transforma-
tion (4). Thus, system (1) is split into two subsystems, the first ofwhich is independent
and contains a small parameter in a regular manner. Note that the initial value v0 can
be calculated in a form of an asymptotic expansion: v0 = v00 + εv01 + ε2v02 + · · · .
For example, v00 = z0, v01 = −H(x0, z00, t0, 0), where z00 = y0 − h(x0, t0).
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3 Systems that Are Linear with Respect to Fast Variables

Consider the differential system

ẋ = f0(x, t, ε) + F1(x, t, ε)y, (7)

εẏ = g0(x, t, ε) + G1(x, t, ε)y, (8)

where x ∈ R
m, y ∈ R

n, t ∈ R.
Suppose that the following representations take place

F1(x, t, ε) =
∑

j≥0

ε j F1, j (x, t), G1(x, t, ε) =
∑

j≥0

ε j G1, j (x, t),

f0(x, t, ε) =
∑

j≥0

ε j f0, j (x, t), g0(x, t, ε) =
∑

j≥0

ε jg0, j (x, t).

Here, G1,0 = G1,0(x, t) plays the role of matrix B(x, t). The formulae for the coef-
ficients of asymptotic expansions of slow integral manifold h = h(x, t, ε) take the
form

h0 = G−1
1,0g0,0,

hk = G−1
1,0[

∂hk−1

∂t
+

k−1∑

p=0

∂h p

∂x
( f0,k−1−p +

k−1−p∑

j=0

F1, j hk−p−1− j ) − g0,k −
k∑

j=1

G1, j hk− j ],

k ≥ 1. The invariance Eq. (3) for the fast integral manifold H = H(v, z, t, ε) in this
case takes the form

ε
∂H

∂t
+ ε

∂H

∂v
[ f0(v, t, ε) + F1(v, t, ε)h(v, t, ε)] + ∂H

∂z
[G1(v + εH, t, ε)

−ε
∂h

∂x
(v + εH, t, ε)F1(v + εH, t, ε)]z = f0(v + εH, t, ε) − f0(v, t, ε)

+F1(v + εH, t, ε)(z + h(v + εH, t, ε)) − F1(v, t, ε)h(v, t, ε).

Setting ε = 0, we obtain

∂H0

∂z
G1,0(v, t)z = F1,0(v, t)z.
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It is possible to represent H0(v, t, z) in the form H0(v, z, t) = D0(v, t)z, where
matrix D0(v, t) satisfies the equation

D0(v, t)G1,0(v, t) = F1,0(v, t),

and, therefore,
H0(v, z, t) = F1,0(v, t)G−1

1,0(v, t)z.

Neglecting terms of order o(ε), we use the transformation

x = v + εH0(v, z, t), y = z + h0(x, t) + εh1(x, t) (9)

to reduce system (7) to a nonlinear block triangular form

v̇ = f0,0(v, t) + F1,0(v, t)h0(v, t) + ε[ f0,1(v, t)

+ F1,0(v, t)h1(x, t) + F1,1(v, t)h0(v, t)] + O(ε2),

εż = [G1,0(v, t) + ε(G1,1(v, t) + ∂G1,0

∂x
(v, t)H0(v, z, t)

− ∂h0
∂x

(v, t)F1,0(v, t))]z + O(ε2). (10)

4 Chaplygin Sleigh

As an example of an investigation of a non-holonomic problem by the integral mani-
folds methods, we consider the problem of Chaplygin [1]. The following differential
system

u̇ = ω (εV + hω) , Ic ω̇ = −Fh, εḞ = − Ic + mh2

mIc
F + mωu.

can be considered as the model of the Chaplygin [1, 3]. This 3D system is linear
with respect to the fast variable F , and, hence, we can reduce this 3D system by the
transformation

F = z + h0(u,ω) + εh1(u,ω), u = v1, ω = v2 + ε
h

Ic + mh2
z,

to the following two subsystems: the slow subsystem

v̇1 = mhv21 − εv2
Icmv1v2

Ic + mh2
+ O(ε2), v̇2 = − h

Ic

[
Icmv1v2

Ic + mh2
+ εh1(v1, v2)

]
+ O(ε2),
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and the fast subsystem

εż = −
[
Ic + mh2

Ic
− ε

mh

Ic + mh2
v1 + O(ε2)

]
z.
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Analysis of Temporal Dissipative Solitons
in a Delayed Model of a Ring
Semiconductor Laser

Alexander Pimenov, Andrei G. Vladimirov and Shalva Amiranashvili

Abstract Temporal dissipative solitons are short pulses observed in periodic time
traces of the electric field envelope in active and passive optical cavities. They sit
on a stable background, so that their trajectory comes close to a stable steady state
solution between the pulses. A common approach to predict and study these solitons
theoretically is based on the use of Ginzburg–Landau-type partial differential equa-
tions, which, however, cannot adequately describe the dynamics of many realistic
laser systems. Here, for the first time, we demonstrate the formation of temporal dis-
sipative soliton solutions in a time-delay model of a ring semiconductor cavity with
coherent optical injection, operating in anomalous dispersion regime, and perform
bifurcation analysis of these solutions.

1 Introduction

Temporal localized structures (TLS) of light propagating along the axial direction in
nonlinear cavities attracted significant theoretical and experimental attention in the
past decade due to their potential applications for optical data storage and transmis-
sion [3, 5, 8, 9]. Similarly to the solitons of nonlinear Schrödinger equation [15],
dissipative optical TLS known also as temporal cavity solitons are localized in time
and can be studied with the help of complex Ginzburg–Landau-type equations in the
co-moving reference frame as stationary solutions of a properly constructed ordi-
nary differential equations [6]. Although this approach allows a detailed bifurcation
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analysis of TLS solutions, complex Ginzburg–Landau models are hardly applicable
to account accurately for certain important physical effects in realistic laser devices,
such as those containing intracavity semiconductor medium [10]. On the other hand,
traveling-wave-type PDEs can be used to model any laser device [12], though TLS
are periodic solutions of these equations, and analysis of such solutions is usually
limited to direct numerical simulations. In the last few years, delay differential equa-
tions (DDEs), that can be derived from traveling wave equations under certain non-
restrictive simplifying physical assumptions [13], proved to be a viable alternative
to PDEs. In DDE models, periodic regimes such as mode-locked pulses and TLS (or
regimes that are both [11]) can be studied using well-developed Floquet theory and
software packages such as DDE-BIFTOOL, [2].

In this paper, using a time-delay model, we investigate dissipative solitons (DSs)
first predicted theoretically in the anomalous dispersion regime in the Lugiato–
Lefever equation (LLE) [7], which is equivalent to the driven damped nonlinear
Schrödinger equation. This equation describes qualitatively the dynamics of the
electric field envelope in a passive optical cavity subject to weak coherent optical
injection, when the injection frequency is close to a resonant frequency of the cavity.
However, far enough from the resonance, one can observe a bistability between two
branches of dissipative solitons corresponding to different longitudinal cavitymodes.
This phenomenon is missing in the LLE and can be studied using a traveling-wave-
type equation, [4]. Similarly to the traveling wave equation, DDE models account
fully for the multimode nature of the optical cavities, and, in addition, the anomalous
dispersion of the fiber waveguide can be described by including a distributed delay
term into model equations [10]. Here, we develop an DDE model to study dissipa-
tive soliton in an optically injected ring cavity laser containing semiconductor optical
amplifier (SOA), long dispersive fiber delay line, and a narrow bandpass spectral fil-
ter. We perform stability analysis of the injection-locked steady states in the limit
of large delay [14] and demonstrate analytically the appearance of modulational
instability and cavity solitons. Finally, we reduce fully distributed DDE model to a
simplified DDE model that preserves the effect of the chromatic dispersion on the
dynamics of the ring laser, and perform numerical continuation and stability analysis
of the periodic cavity soliton solutions in this model using DDE-BIFTOOL, [2].

2 Delayed Model of a Dispersive Semiconductor Ring Laser

Let us consider a laser consisting of an SOA as an amplifying medium, a spectral
filter, and a dispersive fiber delay line in a ring cavity (see Fig. 1) subject to a single-
mode optical injection [10]. We assume that the chromatic dispersion of the delay
line material is caused by a Lorentzian absorption line with the full-width at half-
maximum � the central frequency� detuned with respect to the reference frequency
associated with the central wavelength of the amplification line of the SOA. The
normal dispersion regime corresponds to � > 0 and the anomalous dispersion to
� < 0. We consider the following set of DDEs for the complex envelope of the
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Fig. 1 Ring laser under
optical injection consisting
of an SOA as an amplifying
medium, a spectral filter, and
a dispersive fiber delay line
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Fig. 2 Hysteresis loop formed by two bistable branches of injection-locked steady states of
(1)–(3) obtained by varying optical injection strength η for σ = 0 (left) and destabilization of
the top branch via modulational instability (MI) for σ = 2000 (center) leading to the forma-
tion of periodic dissipative solitons with the period close to T = 400 (right). Other parameters
are � = −13, � = 0.001, α = 5, κ = 0.3, γ = γg = 1, g0 = 1.19, η = 0.0058, w = w0 = 0, and

φ = −0.2 + σ(α�−�)

�2+�2 − α logκ
2

electric field A(t) at the entrance of the SOA, polarization P(t), and the saturable
gain of the SOA G(t)

d A

dt
+ (γ − iw)A = γ

√
κe(1−iα)G/2+iϕ [AT + PT ] + ηeiw0t , (1)

dG

dt
= γg

[
g0 − G − (eG − 1) |AT + PT |2] , (2)

P(t) = −σL
∫ t

−∞
e−(�+i�)(t−s) J1

[√
4σ(t − s)

]

√
σ(t − s)

A(s)ds, (3)

where AT = A(t − T ), PT = P(t − T ), T is the cavity round trip time, γ and w

describe the width and the central frequency of the filter, η is the strength of the
optical injection at the frequency w0, and σ is the total dispersion strength. The
parameters κ, ϕ, α, γg , and g0 describe, respectively, linear attenuation and phase
shift per cavity round trip, linewidth enhancement factor, carrier relaxation rate, and
the pump current.
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3 Stability Analysis in the Limit of Large Delay,
Modulational Instability, and Dissipative Solitons

We takew0 as the reference frequency (w0 = 0). Therefore, DDEs (1)–(3) have solu-
tions in form of the injection-locked steady state A(t) = A0eiϕ0 ,G(t) = G0, where
P(t) can be expressed as P(t) = P0 = (

e−σ/[�+i�] − 1
)
A0. Similarly to the case of

LLE [6], we are interested in the situation, where the branch of steady states shown
in the left panel of Fig. 2 exhibits a bistable behavior due to the presence of strong
nonlinear phase–amplitude coupling introduced by the linewidth enchancement
factor α.

We look for DSs in the vicinity of the bistability curve when the upper steady state
is destabilized at large enough dispersion strength σ via a modulational instability
in the anomalous dispersion regime (� < 0). Linearizing equations (1)–(3) near
the injection-locked steady state solution, assuming that linear perturbations evolve
exponentially in time δA, δP, δG ∝ eλt , where λ is the eigenvalue, evaluating the
integral (3) as δP ∝ eλt

(
e−σ/[�+λ+i�] − 1

)
, and taking determinant of the Jacobian

of the resulting system we obtain a transcendental characteristic equation in the
following form:

c1(λ)Y 2 + c2(λ)Y + c3(λ) = 0, (4)

where Y = e−λT is the exponential term that appears from the delayed variables
AT , PT . We look for instability of the steady state in the limit of large delay T � 1,
when the eigenvalues with vanishing real parts (Re λ ∼ 1/T � 1) that belong to
the so-called pseudo-continuous spectrum [14] cross imaginary axis. To this end, we
neglect Re λ � 1 in coefficients c1, c2, c3 and obtain Re λ as the function of Im λ

T Re λ = −Re log Yk(μ), μ = Im λ,

where Y1 and Y2 represents two roots of quadratic equation (4) and two curves of
pseudo-continuous spectrum (see Fig. 2, center). We note that the algorithm of sta-
bility analysis in the limit of large delay was developed for conventional DDEs [14],
and it is valid in the presence of distributed delay term (3) as well. In the absence of
optical injection η = 0, the necessary analytical condition for the appearance of the
modulational instability of the relative steady state of the passive system with the
rotation frequency ν is

αD2 < − 1

γ2
, (5)

where the second-order dispersion coefficient is given by D2 = Im d2

dν2

(
−σ

�+i(�+ν)

)
.

We have used this condition to locate modulational instability of the injection-locked
steady state at σ = 2000 for anomalous dispersion � = −13 (see Fig. 2, center) and
found a stable dissipative soliton using direct numerical simulation of (1)–(3) (see
Fig. 2, right).
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Fig. 3 Bifurcation diagram for steady states and periodic DS solutions of (6)–(8) obtained by
varying η (left) and magnified region of multistability (center) between various branches of DSs,
accompanied by the profiles (right) of stable periodic DSs from different branches for η = 0.006
(thick solid) and η ≈ 0.00606 (thin lines). Here, σ = 9, � = −2, � = 0, κ = 0.25, g0 = 1.33,
φ = −0.252 − α logκ

2 , and other parameters are as shown in Fig. 2

4 Reduced DDEs and DDE-BIFTOOL

Using Padé approximant of the kernel (3) in the frequency domain, we can simplify
system (1)–(3) and obtain an approximate DDE model with a single fixed delay that
is still capable of describing the formation of DSs in the anomalous dispersion regime

d A

dt
+ (γ − iw)A = γ

√
κe(1−iα)G/2+iϕ

1 + iσ
2(�−i�)

[(
1 − iσ

2(� − i�)

)
AT + PT

]
+ ηeiw0t ,

(6)

dG

dt
= γg

⎡

⎢
⎣g0 − G − (eG − 1)

∣∣
∣
(
1 − iσ

2(�−i�)

)
AT + PT

∣∣
∣
2

1 + σ(σ−4�)

4(�2+�2)

⎤

⎥
⎦ , (7)

dP

dt
= −

⎡

⎣i(� − i�) + σ

2
(
1 + iσ

2(�−i�)

)

⎤

⎦ P − σ

1 + iσ
2(�−i�)

A. (8)

Similarly to the previous subsection, we have performed stability analysis of the
injection-locked states of (6)–(8) in the limit of large delay, found the parameter
valueswhere the top branch looses the stability due to anomalous dispersion.We used
DDE-BIFTOOL [2] to confirm our prediction, perform continuation and stability
analysis of DSs (see Fig. 3), and demonstrate very good qualitative agreement with
the full model (1)–(3). Unlike to that of the LLE model [6], the DS branch shown in
Fig. 3 demonstrates a spiraling behavior, which bares similarities to the spatial cavity
soliton branches calculated earlier in the models of semiconductor devices [1].
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Multi-scale Problem for a Model of Viral
Evolution with Random Mutations

Aleksei Archibasov

Abstract The model of viral dynamics with random mutations is considered. This
model describes the cells’ population dynamics with significantly different life
cycles. The presence of different timescales leads to a singularly perturbed sys-
tem. The latter makes it possible to apply the technique of separating timescales and
thereby reducing the dimensionality of the model.

1 Introduction

It is well known that for the singularly perturbed systems with several small parame-
ters Tikhonov’s theorem is applicable [3]. In this theorem, the passage to the limit of
the solution to a degenerate problem in a system with several small parameters mul-
tiplying derivatives is justified. In [1], a similar theorem is formulated and proved for
the systemof singularly perturbed partial integrodifferential equationswith one small
parameter. This theorem can be generalized to the case of several small parameters.

Let us consider the singularly perturbed system of integrodifferential equations
with two small parameters

εx ′
t = f (x,

∫
�

g(s, v)ds),

ενv′
t = h(y, v),

y′
t = w(s, x, y, v,

∫
�

q(s, r, y, v)dr), (1)
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with the initial conditions x(0) = x0, v(0, s) = v0(s), y(0, s) = y0(s), where x, v,

y ∈ R, ε � 1, ν � 1 are the small positive parameters. We assume that system (1)
satisfies the following conditions:

(i) The functions f (x, z1), g(s, v), h(y, v), w(s, x, y, v, z2), and q(s, r, y, v)

and their partial derivatives with respect to all variables are uniformly con-
tinuous and bounded in the respective domains D1 = {|x | ≤ a, |z1| ≤ b1},
D2 = {s ∈ �, |v| ≤ c}, D3 = {|y| ≤ d, |v| ≤ c}, D4 = {s ∈ �, |x | ≤ a,

|y| ≤ d, |v| ≤ c, |z2| ≤ b2}, and D5 = {s, r ∈ �, |y| ≤ d, |v| ≤ c}.
(ii) The equation h(y, v) = 0 has an isolated root v = ϕ(y) in the domain

{|y| ≤ d} and in this domain the function v = ϕ(y) is continuously differ-
entiable.

(iii) The inequality hv(y,ϕ(y)) ≤ −α < 0 holds for |y| ≤ d. This condition
implies, that the stationary point v̂ = ϕ(y) of the first-order associated equa-
tion v̂′

τ = h(y, v̂), which contains y as a parameter, is Lyapunov asymptoti-
cally stable as τ → +∞ uniformly with respect to y, |y| ≤ d.

(iv) There exist a solution v̂ = v̂(τ , s)of the initial valueproblem v̂′
τ = h(y0(s), v̂),

v̂(0, s) = z0(s) for τ ≥ 0, ∀s ∈ �. Furthermore, this solution tends to the sta-
tionary point ϕ(y0(s)) as τ → +∞ ∀s ∈ �, i.e., v0(s) belongs to the domain
of attraction of the stable stationary point ϕ(y0(s)).

(v) The equation f (x, z1) = 0 has an isolated root x = ψ(z1) in domain |x | ≤ a
and in this domain function x = ψ(z1) is continuously differentiable.

(vi) The inequality fx (ψ(z1), z1) ≤ −β < 0 (z1 = ∫
�

g(s,ϕ(y))ds) holds for |y| ≤
d, i.e., the stationary point x̂ = ψ(z1) of the second-order associated equation
x̂ ′

τ = f (x̂,
∫
�

g(s,ϕ(y))ds), which contains y as a parameter, is Lyapunov
asymptotically stable as τ → +∞ uniformly with respect to y, |y| ≤ d.

(vii) There exists a solution x̂(τ ) to the problem x̂ ′
τ = f (x̂,

∫
�

g(s,ϕ(y0(s)))ds),
with initial value x̂(0) = x0 for τ ≥ 0. Further, this solution tends to the
stationary point ψ(

∫
�

g(s,ϕ(y0(s)))ds) as τ → +∞, i.e., x0 belongs to the
domain of attraction of the stable stationary point.

(viii) The truncated system

y′
t = w(s,ψ(z1), y,ϕ(y),

∫
�

q(s, r, y,ϕ(y))dr),

x = ψ(z1), (2)

v = ϕ(y),

z1 =
∫

�

g(s,ϕ(y))ds

with initial condition y(0, s) = y0(s) has a unique solution ȳ(t, s), x̄(t) =
ψ(

∫
�

g(s,ϕ(ȳ(t, s)))ds), v̄(t, s) = ϕ(ȳ(t, s)).
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Theorem 1 If conditions (i)–(viii) are satisfied, then, for sufficiently small ε and
ν, for some T > 0, the problem (1) has a unique solution x(t, ε, ν), v(t, s, ε, ν),
y(t, s, ε, ν), which is related to the solution x̄(t), v̄(t, s), ȳ(t, s) of the truncated
problem (2) by the limit formulas

lim
ε→+0,ν→+0

x(t, ε, ν) = x̄(t) = ψ(

∫
�

g(s,ϕ(ȳ(t, s)))ds), 0 < t ≤ T,

lim
ε→+0,ν→+0

v(t, s, ε, ν) = v̄(t, s) = ϕ(ȳ(t, s)), 0 < t ≤ T, s ∈ �,

lim
ε→+0,ν→+0

y(t, s, ε, ν) = ȳ(t, s), 0 ≤ t ≤ T, s ∈ �.

Note that the limiting equalities for the variables x and v are not uniform for
t ≥ 0. The boundary layer phenomenon occurs [4].

2 Model

Let us consider the next model of viral dynamics with random mutations.

x ′
t = b − σx(t) −

∫
�

α(s)x(t)v(t, s)ds,

y′
t =

∫
�

p1(s, r)α(r)x(t)v(t, r) dr − m(s)y(t, s),

v′
t = k(s)y(t, s) − c(s)v(t, s).

In this model, x(t) is the concentration of uninfected (susceptible) cells at the time t ,
y(t, s), v(t, s) are the density distributions of infected target cells (CD4+ cells, or T
helper cells, or Th cells) and free virus particles, respectively, in a one-dimensional
phenotype space s ∈ � at the time t . The uninfected cells susceptible to the virus
are produced at a constant rate b and die of natural reasons unrelated to the virus
infection at a rate σx(t), σ > 0. The factors α, m, k and c are characteristics of the
virus phenotype, and hence, they are functions of the variable s or r . It is assumed
that mutations occur in the process of cell infection. Function p1(s, r) describes the
probability that the infected by virus of phenotype r cell produces exclusively virus
of phenotype s.

It should be noted that there are three very different timescales: life cycles of
uninfected and infected cells and free virus particles. The presence of considerably
different timescales indicates that the model can be significantly simplified. Follow-
ing, for example [2], let us introduce the dimensionless variables and parameters
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t = T t̄, s = Ss̄, x(t) = X x̄(t̄), y(t, s) = Y (s̄)ȳ(t̄, s̄), v(t, s) = V (s̄)v̄(t̄, s̄),
(3)

T = 1/(μm0), S = 1, X = b/σ, V = (k0/c0)Y, Y = b/m0, (4)

where m0, k0, c0 are m(s), k(s), c(s) of the wild (initial or any fixed) strain. T is
measured in the units of time, while X , Y , and V are in the units of concentrations
of target cells and free virus.

Substituting (3), (4) into themodel and denoting R0(s̄) = bα(s)k(s)/(σm(s)c(s))
(the basic reproduction ratio), m̄(s̄) = m(s)/m0, ε = μm0/σ è ν = σ/c0, we get
singularly perturbed (“slow-fast”) system with two small parameters:

εx̄ ′
t̄ = 1 − x̄(t̄) −

∫
�

R0(s̄)x̄(t̄)v̄(t̄, s̄) ds̄,

ȳ′
t̄ = m̄(s̄)/μ

(∫
�

p1(s̄, r̄)R0(r̄)x̄(t̄)v̄(t̄, r̄) dr̄ − ȳ(t̄, s̄)

)
,

ενv̄′
t̄ = c(s̄)/c0

(
ȳ(t̄, s̄) − v̄(t̄, s̄)

)
.

Setting ν = 0, we obtain the first-order degenerate system

εx̄ ′
t̄ = 1 − x̄(t̄) −

∫
�

R0(s̄)x̄(t̄)v̄(t̄, s̄) ds̄,

ȳ′
t̄ = m̄(s̄)/μ

(∫
�

p1(s̄, r̄)R0(r̄)x̄(t̄)v̄(t̄, r̄) dr̄ − ȳ(t̄, s̄)

)
,

0 = c(s̄)/c0
(
ȳ(t̄, s̄) − v̄(t̄, s̄)

)
.

The third equation is algebraic and has root v̄ = ȳ. For the first-order associ-
ated equation v̂′

τ = c(s̄)/c0
(
v̂(τ , s̄) − ȳ

)
, where ȳ enters as a parameter, the root

v̂ = ϕ(ȳ) = ȳ is the asymptotically stable (in the sense ofLyapunov) stationarypoint.
Let us add the initial conditions x̄(0) = x0, ȳ(0, s̄) = y0(s̄) and v̄(0, s̄) = v0(s̄).
At the initial value of the parameter ȳ, i.e., at ȳ = y0(s̄), the first-order asso-
ciated equation with the initial condition v̄(0, s̄) = v0(s̄) has a unique solution
v̂ = y0(s̄) + (

v0(s̄) − y0(s̄)
)
exp (−c(s̄)/c0τ ), and v̂(τ , s̄) → ϕ(y0(s̄)) = y0(s̄) as

τ → +∞ ∀s̄ ∈ �. Thereby the initial point v0(s̄) of the first-order associated equa-
tion belongs to the domain of attraction of the stable stationary point ϕ(y0(s̄)).

Then let us ε = 0. We obtain the second-order degenerate system

0 = 1 − x̄(t̄) −
∫

�

R0(s̄)x̄(t̄)v̄(t̄, s̄) ds̄,

ȳ′
t̄ = m̄(s̄)/μ

(∫
�

p1(s̄, r̄)R0(r̄)x̄(t̄)v̄(t̄, r̄) dr̄ − ȳ(t̄, s̄)

)
,

0 = c(s̄)/c0
(
ȳ(t̄, s̄) − v̄(t̄, s̄)

)
.
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first equation in which is algebraic with respect to x̄ and has a root x̄ = �(v̄) =(
1 + ∫

�
R0(s̄)v̄(t̄, s̄) ds̄

)−1
. This root is the asymptotically stable stationary point

(in the sense of Lyapunov) of second-order associated to the equation

x̂ ′
τ = −(

1 +
∫

�

R0(s̄)v̄(t̄, s̄) ds̄
)
x̂(τ ) + 1.

The latter equation with the initial condition x̄(0) = x0 at the initial value of
the parameter v̄ v̄ = v0(s̄) has a unique solution x̂(τ ) = (

x0 − 1/ f
)
exp(− f τ ) +

1/ f , where 1/ f = �(v0(s̄)) = 1 + ∫
�

R0(s̄)v0(s̄) ds̄, for all τ ≥ 0, and x̂(τ ) →
�(v0(s̄)) as τ → +∞. Thus, the initial point x0 of the second-order associated
equation belongs to the domain of attraction of the stable stationary point. Thus, all
the conditions of the theorem are satisfied and, consequently, the limiting equali-
ties hold (under the assumption of the existence and uniqueness of the solution of
truncated problem).

Thus, the original system can be reduced to a single integrodifferential equation

ȳ′
t̄ = m̄(s̄)/μ

(∫
�

p1(s̄, r̄)R0(r̄)ȳ(t̄, r̄) dr̄/

(
1 +

∫
�

R0(r̄)ȳ(t̄, r̄) dr̄

)
− ȳ(t̄, s̄)

)
.

3 Conclusion

In this paper, we considered the model of viral dynamics with randommutations that
contain the population dynamics of uninfected cells, infected cells, and free virus
particles. Using the analog of Tikhonov’s theorem, timescale separation procedure is
carried out. As a result, the original systems of three integrodifferential equations are
reduced to a single one. This fact can be used to simplify the numerical simulation
of such complex systems. As a rule in evolutionary biology, mathematical models
are usually formulated as integrodifferential equations and the same technique can
be employed to the ones as well.
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A Discrete Variant Space Model
of Cancer Evolution

Andrei Korobeinikov and Stefano Pedarra

Abstract In this paper, we suggest a discrete variant space model of cancer evolu-
tion. The model is reasonably simple, deterministic, and is formulated as a system of
ordinary differential equations. The model is based on the concept of “multi-strain
modeling” (or quasi-species), which is successfully applied in modeling of the infec-
tious disease dynamics and viral dynamics. The model constructed in this paper is
mechanistic; that is, it is based upon a set of explicitly stated assumptions and hypoth-
esis (“the first principles”). This implies that model’s parameters, as well as results
obtained, can be immediately interpreted, and that a further model development, e.g.,
incorporation into the model factors such as anticancer therapies, immune response,
etc., is a reasonably straightforward procedure. To illustrate this model applicabil-
ity, results of numerical simulations, as well as their biological interpretations, are
provided.

1 Introduction

The term “cancer” refers to a group of diseases, which can affect almost any tissue
and organ and are characterized by the uncontrolled growth of abnormal cells, which
cell cycle is much faster than that of the normal cells. Cancer appears as a result
of a series of mutations of normal cells, which occur during the DNA replication
process or as a result of a somatic mutation. Cancer cells are usually characterized
by their genome instability, and as a consequence of this, by extremely high levels
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of mutability and evolvability. The genome instability, as well as the mutability
and evolvability of cancer, is one of the cancer hallmarks [3–5]. As a result of this
very high mutability, a typical tumor is composed of a very large number of cancer
genotypes. Moreover, the mutability, evolvability, and the resulting genetic diversity
of cancer make its treatment very difficult.

The mentioned genome instability, high mutability, and evolvability of cancer
makes its study from the point of view of evolutionary biology essential. Accord-
ingly, there is a growing interest and a certain progress in mathematical modeling
of cancer evolution. Usually, a mathematical model of cancer evolution utilizes the
idea of quasi-species (or multi-strain modeling) and is formulated in the form of a
system of ordinary differential equations, partial differential equations, or integrod-
ifferential equations (see, e.g., [9–11, 14, 15], and bibliography therein; the same
conceptual ideas were also developed and applied formathematical modeling of viral
evolution [1, 2, 6–8, 13]). In this paper, we use these ideas to construct a reasonably
simple mechanistic model of cancer evolution on the basis of the model of cancer
and normal cells competition.

2 Model

In order to model cancer evolution, let us assume that there is a system composed
of the normal cells and cancer cells of n different genotypes, where n → ∞ or is
a very large number. Let us denote the size of cell population of the i th genotype
at time t by Ci (t) and the size of the normal cells population by C0(t). We assume
that (i) all the cells reproduce and die; (ii) there are limited resources, which limit
populations growth through inhibiting the reproduction and accelerating the death;
(iii) cells of the different genotypes have to compete for these limited resources; (iv)
in the process of mitosis, with some probability pi j , a cell of the i th genotype can
produce a mutant daughter cell of the j th genotype, which, subsequently, goes to the
j th population; and (v) as a result of somatic mutation, with probability qi, j a cell of
the i th genotype can move to the j th genotype.

We start at the Lotka–Volterra model of competing populations which is a usual
basis for cancer modeling [12]:

Ċi (t) = riCi

⎛
⎝1 − 1

K

n∑
j=0

bi jC j

⎞
⎠ , (1)

where i = 0, 1, 2, . . . , n. In these equations, r = (ri )ni=0 represents the vector of the
growth rates, the elements of matrix B = (bi j )ni, j=0 represent the relative competitive
capabilities of the genotypes and K is the carrying capacity of the system. To intro-
duce into this model, a possibility of mutations that occur during DNA replication,
it is necessary to separate the birth and the death rates, as these mutations occur in
the process cell reproduction. For these two processes, we have
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birth rate of the i-th population = aiCi

(
1 − hi

K

n∑
k=0

bikCk

)
, (2)

death rate of the i-th population = −diCi

⎛
⎝1 + gi

K

n∑
j=0

bikCk

⎞
⎠ . (3)

Here, ai and di are the per capita birth and death rates of the i th genotype cells, and
hi and gi are weights that fine-tune the relative impacts of the lack of resources and
competition on the proliferation and death rates, respectively. These parameters are
related to ri by the equalities ri = ai − di and ri = aihi + digi .

Then, using an approach suggested in [9], we can introduce a possibility of muta-
tion into the model modifying the birth term (2). Then the growth of the i th genotype
population is represented by the following equation:

Ċi =
n∑
j=0

⎛
⎝p ji a j C j

⎛
⎝1 − h j

K

n∑
k=0

b jkCk

⎞
⎠

⎞
⎠ − diCi

⎛
⎝1 + gi

K

n∑
k=0

bikCk

⎞
⎠ +

n∑
j=0

q ji C j −
n∑
j=0

qi j Ci . (4)

Here, the diffusion-like term
∑n

j=0 q jiC j − ∑n
j=0 qi jCi represents the somatic

mutations. All the parameters of this model are positive real numbers, except for the
weights hi and gi and the elements of probability matrices P = (pi j ) and Q = (qi j ),
which can be zero.

This discrete variant space model is formulated as a system of ODEs. An equiv-
alent continuous variant space model is formulated in [11].

To non-dimensionalize the system (4), we introduce nondimensional variables
xi (τ ) and τ as the following:

xi = biiCi/K , τ = T t , T = p00a0h0 + d0g0. (5)

Please note that d0 and p00 are always positive, whereas h0 and g0 cannot be equal to
0 simultaneously and, hence, T is always positive. Substituting these variables into
the system (4) and separating the linear and the nonlinear parts of the equations, we
rewrite the system in the following form:

dxi
dτ

=
n∑
j=0

ui j x j −
n∑
j=0

n∑
k=0

vi j f jk x j xk , i = 0, . . . , n . (6)

Here,

ui j =
{

(p j j a j+q j j−d j−∑n
k=0 q jk )ei j

T if j = i ,
(p ji a j+q ji )ei j

T if j �= i ,
vi j =

{
(p j j a j h j+d jg j )ei j

T if j = i ,
p ji a j h j ei j

T if j �= i ,

and fi j = bi j/b j j and ei j = bii/b j j .
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3 Simulations

To illustrate model behavior, we run numerical simulations. In these simulations, we
assume that hi = 0 for all i = 0, . . . , n. (That is, a shortage of the resources does not
affect the reproduction; it is equivalent to an assumption that a decrease of new births
is attributed to an increment of deaths.) Furthermore, we assume that Q = (qi j ) = 0
for all i, j = 0, . . . , n. (That is, we disregards somatic mutations.) We assume that a
cell of the i th genotype can produce a daughter cell only of i th, (i − 1)th, or (i + 1)th
genotypes with probabilities given by matrix P:

P =

⎡
⎢⎢⎢⎢⎢⎣

0.9 0.1 0 · · · · · · 0
0.1 0.8 0.1 0 · · · 0
...

...
...

...
...

...

0 · · · 0 0.1 0.8 0.1
0 · · · · · · 0 0.1 0.9

⎤
⎥⎥⎥⎥⎥⎦
.

In the simulations, the environment carrying capacity K = 105 cells, and time t is
measured in days. Values of the other parameters, as well as, the initial conditions
used in the three simulations are summarized the following table:

Parameter Simulation # 1 Simulation # 2 Simulation # 3
n 50 50 200
ai 2 10 4 − 2e−i

di 0.2 0.2 0.2 − 0.1e−i

gi 9 51 19
bi j 2 − i/n 1 + i/n 2 − i/n
Ci (0) (K − 1, 1, 0, . . . , 0) (K − 1, 1, 0, . . . , 0) (K − 1, 1, 0, . . . , 0)

Results of the simulations are depicted in Figs. 1, 2, and 3, respectively. In simula-
tion #1, we used bi j = 2 − i/n for all j . This implies that the Darwinian fitness of the
genotypes grows as i increases. The initial conditions in the simulation #1 implies
that initially, there was present only one mutant cell of the first mutant genotype.
The formation of a traveling wave moving in the direction of increasing i is clearly
seen in Fig. 1. This implies that in this simulation an average fitness of the tumor
population steadily increases.

Please note that in Fig. 1, the populations of genotypes i = 47 to 50 remain
approximately constant after t ≈ 120 days: for this simulation, we consider a system
of 50 genotypes and, hence, in this simulation, the Darwinian fitness of the 50th
genotype is maximal. This enables this genotype, as well as close genotypes 47th to
49th, to eventually prevail in the system. Of course, in a real-life system, the number
of possible mutant genotypes n is significantly higher, and, hence, no such steady
prevalence of a particular mutant genotypes can be observed.
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Fig. 1 Simulation #1: variation of the genotype abundance in time

Fig. 2 Simulation #2: variation of the genotype abundance in time

Figure2 shows the results of simulation #2. For this simulation, in contrast to sim-
ulation #1, we take bi j = 1 + i/n. This implies that the Darwinian fitness decreases
as i grows. The simulation confirms an intuitive expectation that in such a case, for
whatever large levels of mutation probabilities, the mutations are unable to fix in the
system and the mutant cells will be eventually removed from the tissue.

In the simulation #3, we consider the impact of the proliferation rates on the
evolution. It is a well-known fact that cancer cells proliferate faster than the healthy
cells and that the proliferation rates depend, above all, on the degree of differentiation.
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Fig. 3 Simulation #3: variation of the genotype abundance in time

Accordingly, in the simulation #3, we used ai = 4 − 2e−i and di = 0.2 − 0.1e−i ,
in combination with the same bi j as in simulation #1. Figure3 shows the results of
simulation #3.As one can expect, in this case, a travelingwave of evolution is forming
as well. However, it moves faster than in the simulation #1, where the proliferation
and death rates were constant. Moreover, it is easy to see that in this case the speed
of the traveling wave notably decreases as i grows (and as ai and di grow).

It is hardly surprising that the system behavior in the simulations #1 and #3 is very
similar: the only difference is the higher speed of the traveling wave in simulation #3.
In both these simulations, the mean genotype number grows converging to the last
genotype that has the highest level of the Darwinian fitness. The variance of the
genotype distribution in the population initially grows until it reaches, at a certain
time t∗, itsmaximumvalue, and then it slowly decreases. Such a behavior is intriguing
and counterintuitive.

The analysis of the simulation results suggests that the comparative values of the
competition factors bi j mostly determine the system behavior and that changes of
these values can change the system qualitative behavior.
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Mathematical Modelling of HIV
Within-Host Evolution

Anna Maria Riera-Escandell and Andrei Korobeinikov

Abstract The majority of hypotheses suggested to explain the human immunode-
ficiency virus (HIV) progression explains the particularities of the disease by a very
high mutability and evolvability of the virus. For HIV, several mechanisms of muta-
tion are possible, and it is reasonable to assume that a mechanistic mathematical
model of HIV evolution reflect these mechanisms. In this contribution, we formulate
three different mathematical models of within-host HIV evolution that corresponds
to three different virus mutation mechanisms. Simulations demonstrate that, for real-
istic rates of evolution, either of the threemodels leads to a very similar (and for some
models to identical) outcome and, hence, only one of the mechanisms (presumably,
the simplest one) can be used in simulations.

1 Models of HIV Evolution

Developing a mathematical model of HIV evolution requires a mechanistic approach
that considers a combination of factors responsible for natural selection of the virus
and a mechanism that describes random. Factors responsible for natural selection
usually act on the same timescale as the lifespan of the organism involved. In contrast,
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evolution progresses at a much slower rate. This implies the inclusion in the model
of multiple timescales, which can differ one from one another by several orders of
magnitude. Furthermore, the viral and host generation timescales also differ by orders
of magnitude, thus adding an additional layer of complexity to the mathematical
analysis of HIV evolution [3, 5, 6, 8].

In order to describe HIV evolution, we formulate mathematical models of HIV
dynamics, which are based on the Nowak and May model of within-host HIV
dynamics [7]. The Nowak–May model describes the interaction of three popula-
tions; namely, the susceptible target cells, the infected cells and free virus particles.
Let us assume that X (t) and Y (t) denote the current concentrations of the susceptible
and the infected target cells, respectively, and V (t) is the current concentration of
the free virus particles. The Nowak–May model postulates that the susceptible cells
enter into the system with a constant rate λ and die at a per capita rate m; that the
susceptible cells are infected by the free virus particles at rate αXV ; that the infected
cells produce, at a per capita rate k, the free virus particles and die at a per capita
rate a; the free virions are removed from the system at a per capita rate u.

In order to describemutations in thismodel, we, first, have to assume the existence
of amultitude of viral genotypes; each genotype corresponds to a viral subpopulation.
Let us assume that there are n (n → ∞) different viral types (strains) of concentra-
tions Vi (t) and, hence, different infected subclasses Yi (t) (where i = 1, 2, . . . , n).
Moreover, properties of each type are described by the variant-specific parameters
αi , ai , ki and ui . Please note that parameters λ and m characterise the target cells
and, hence, are variant-independent.

In the framework of the Nowak–May model, three mechanisms of random muta-
tions are possible. By the first mechanism, an error can occur in the process of virus
production. That is, a cell infected by the j th viral type can, with probability ρ(1)i, j ,
produce the i th-type virion. The corresponding Model 1 is

Ẋ = λ − mX −
n∑

i=1

αi XVi ,

Ẏi = αi XVi − aiYi ,

V̇i =
n∑

j=1

k jρ
(1)
i, j Y j − ui Vi .

(1)

By the second mechanism, an error occurs in the process of transcript of the viral
genomic material to the cell nuclear. That is, due to such an error, a cell, infected
by the j th-type virion, produces exclusively the i th-type virus. Denoting ρ(2)i, j , the
probability that an infection by the j th- type results in production of the i th type, we
obtain equations of Model 2
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Ẋ = λ − mX −
n∑

i=1

αi XVi ,

Ẏi =
n∑

j=1

α jρ
(2)
i, j XVj − aiYi ,

V̇i = kiYi − ui Vi .

(2)

Finally, the third mechanism assume that a cell infected with the i th viral type
produces virus of this type for some time and then, as a result of an error, switches
to the production of the j type virus exclusively. Assuming that γ is the rate of such
mutations and that ρ(3)i, j is a probability that a mutation changes the virus production
from the j th type to the i th type, we obtain equations of Model 3 as follows:

Ẋ = λ − mX −
n∑

i=1

αi XVi ,

Ẏi = αi XVi − aiYi + γ
( n∑

j=1

ρ(3)i, j Y j − Yi
)
,

V̇i = kiYi − ui Vi .

(3)

We assume that for all models, the mutation matrix P = ||ρi, j || is strongly
diagonal-prevalent and can be written as P (l) = I − μ(l)Q(l) (l = 1, 2, 3), where
I is the identity matrix, μ(l) a small parameter and Q(l) = ||q(l)

i, j || a matrix whose
diagonal elements are of order 1.

For all three models, R0
i = λαi ki/mbiui is the basic reproduction number of the

i th viral variant.

1.1 Models Non-dimensionalisation and Order Reduction

Following [1, 2, 4, 5], we conduct the models non-dimensionalisation and order
reduction.

ForModel 1, we define ε = μ(1)b1/m, εi = m/bi and c̄i = ui/b1. Please note that
ε � 1, and, also, εi < 1 for all i . Then, assuming that ε = 0 and εi = 0 and denoting
the non-dimensional variables v̄i (t̄) and t̄ , we obtain equations

d v̄i
dt̄

= c̄i
μ(1)

· R0
i − 1

1 + ∑n
j=1 R0

j v̄ j
v̄i

(
1 −

∑n
j=1 R0

j v̄ j

R0
i − 1

)
− c̄i

1 + ∑n
j=1 R0

j v̄ j

n∑

j=1

q(1)i, j
bi
ki

k j
b j

R0
j v̄ j .

(4)
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Table 1 Values of the parameters and initial conditions used in simulations

Parameter Value Parameter Value Parameter Value

λ 20 αa 8 · 10−6 Yi (0),
i = 1, . . . , n

0

m 0.02 αb 1.8 · 10−8 V1(0) 250

bi ≡ b 0.8 γ 0.48 Vi (0),
i = 2, . . . , n

0

ki ≡ k 103 μ(i),
i = 1, 2, 3

2.5 · 10−4 n 1000

ui ≡ u 8 X (0) 1000

ForModel 2, we define b̄i = bi/b1, ε = μ(2)b1/m and νi = m/ui . Assuming that
νi = 0 and ε = 0, we obtain

d v̄i
dt̄

= b̄i
μ(2)

· R0
i − 1

1 + ∑n
j=1 R

0
j v̄ j

v̄i

(
1 −

∑n
j=1 R

0
j v̄ j

R0
i − 1

)
− b̄i

1 + ∑n
j=1 R

0
j v̄ j

n∑

j=1

q(2)i, j R
0
j v̄ j .

(5)

ForModel 3, we define ε = μ(3)b1/m, νi = m/ui , b̄i = bi/b1 and γ̄ = γ/b1, and,
as above, assume that νi = 0 and ε = 0. We get

d v̄i
d t̄

= b̄i
μ(3)

· R0
i − 1

1 + ∑n
j=1 R

0
j v̄ j

v̄i

(
1 −

∑n
j=1 R

0
j v̄ j

R0
i − 1

)
− γ̄

n∑

j=1

q(3)
i, j

bi
b j

v̄ j . (6)

2 Results

Our goal is to compare the outcomes for these three models. In order to do this, we
run numerical simulations for these models with the following assumptions made
about themodels parameters.We set ρ1,1 = ρn,n = 1 − μ, ρi,i = 1 − 2μ and ρi,i+1 =
ρi,i−1 = μ, ∀i �= 1, n. For simplicity, we assume that the only variant-depending
parameter isαi , postulating thatαi = αa + αb(i − 1),whereαa andαb are constants.
All other parameters are assumed to be the same for all viral variants. Their values
used in the simulations are shown in Table1; we used these values for all Models
except for the reduced Model 1, where we scaled parameters u and k to have c̄i = 1.

Figure1a shows how concentrations of viral variants change in time. The process
displayed in this figure is equivalent to a travelling wave in a continuous space.
Figure1b shows the typical distribution of the viral variants in a quasi-species at
specific moments for Model 1. (For all other models both pictures are very similar).
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Fig. 1 Viral concentrations in time (a) and by variants for t = 3952.5, 4003.5 and 4054.5 days (b)
for the reducedModel 1. The parameters in the simulations are from Table1, apart from μ = 0.025,
b = 0.266 and u = 24

Figure2 shows the mean value imean(t) = (
∑n

i=1 i · vi )/(∑n
i=1 vi ) in time for the

three original (Fig. 2a) and three reduced (Fig. 2b) models. It is easy to see that all
three models produce very similar outcomes. Moreover, the results for Models 1 and
2 are virtually indistinguishable for both the full and the reduced systems.

Figure3 shows the changes of the concentration of healthy cells and the total viral
load v(t) = ∑n

i=1 vi (t) in time for Models 1, 2 and 3. Results for Models 1 and 2



32 A. M. Riera-Escandell and A. Korobeinikov

Fig. 2 Mean viral variant imean(t) in time, for all three full (a) and three reduced (b) models

are identical. Results for Model 3 are very close to Models 1 and 2, and after some
time nearly coincide with these.

The simulations that we run for viral evolution models with the three different
mutation mechanisms show that if the speed of evolution is sufficiently slow (as it is
in real life), all these models produce equivalent or very similar results. Moreover,
simulations demonstrate that each of thesemodels can be reduced to a simpler system,
which also produces the very similar results.
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Fig. 3 Total concentrations of the susceptible cells X (t) (a) and the total viral load (b) for Mod-
els 1, 2 and 3
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Optimal Control for Anticancer Therapy

Evgenii N. Khailov, Anna D. Klimenkova and Andrei Korobeinikov

Abstract In this report, the controlled Lotka–Volterra competition model is used to
describe the interaction of the concentrations of healthy and cancer cells. For this
controlled model, the minimization problem of the terminal functional is considered,
which is a weighted difference of the concentrations of cancerous and healthy cells
at the final moment of the treatment period. To analyze the optimal solution of this
problem, which consists of the optimal control and the corresponding optimal solu-
tions of the differential equations that determine themodel, the Pontryaginmaximum
principle is applied. It allows to highlight the values of the model parameters under
which the optimal control corresponding to them is a piecewise-constant function
with atmost one switching. Also, the values of themodel parameters are found, under
which the corresponding optimal control is either a bang–bang function with a finite
number of switchings, or in addition to the bang–bang-type portions (nonsingular
portions), it also contains a singular arc. Further, only numerical investigations of the
optimal control are possible. Therefore, the report presents the results of numerical
calculations performed using the software BOCOP-2.1.0 that lead us to the conclu-
sions about the possible type of the optimal control and the corresponding optimal
solutions.

Research Perspectives CRMBarcelona, Summer 2018, vol. 11, in Trends in Mathematics Springer-
Birkhäuser, Basel.

E. N. Khailov (B) · A. D. Klimenkova
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University,
119991 Moscow, Russia
e-mail: khailov@cs.msu.su

A. D. Klimenkova
e-mail: klimenkovaad@mail.ru

A. Korobeinikov
Centre de Recerca Matemàtica, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
e-mail: akorobeinikov@crm.cat

© Springer Nature Switzerland AG 2019
A. Korobeinikov et al. (eds.), Extended Abstracts Spring 2018,
Trends in Mathematics 11, https://doi.org/10.1007/978-3-030-25261-8_6

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25261-8_6&domain=pdf
mailto:khailov@cs.msu.su
mailto:klimenkovaad@mail.ru
mailto:akorobeinikov@crm.cat
https://doi.org/10.1007/978-3-030-25261-8_6


36 E. N. Khailov et al.

1 Introduction

In recent decades, a significant progress has been made in identifying and explaining
the processes that arise in the development of cancer, aswell as in developingmethods
and tools for its earlier diagnosis and treatment. A significant contribution to this
progress was made by the use of mathematical modeling, which allowed to simulate
a likely behavior of cells and organs before the actual disease develops. The most
common are the mathematical models, describing the development of a cancerous
tumor. The description of the tumor volume dynamics is possible in terms of the
dynamics of competing populations of healthy and cancer cells. For this purpose,
the classical Lotka–Volterra competing population model can be used [5, 6]. To find
effective in some sense (that should be determined) treatment strategies, the optimal
control theory can be applied.

2 Model

We consider the following nonlinear control system of differential equations:

⎧
⎪⎨

⎪⎩

ẋ(t) = r(1 − κ1w(t))(1 − x(t) − a12y(t))x(t) − m1u(t)x(t),

ẏ(t) = (1 − κ2w(t))(1 − y(t) − a21x(t))y(t) − m2u(t)y(t),

x(0) = x0, y(0) = y0; x0, y0 > 0.

t ∈ [0, T ],

(1)
This model describes the interaction between the tumor cells, of population size
or concentration y(t), and normal cells, of population size or concentration x(t).
Functions u(t) and w(t) are bounded controls that represent the intensity of the
therapies. These can be, for instance, drug concentration or intensity the radiotherapy.
We assume that control u(t) kills the cells (cytotoxic therapy), whereas control w(t)
inhibits their proliferation (cytostatic therapy), and that both controls are bounded:

0 � u(t) � umax � 1, 0 � w(t) � wmax < min{κ−1
1 , κ−1

2 }.

In this model, r is the intrinsic growth rate of the normal cells; a12 and a21 represents
the comparable compatibility of the tumor cells and healthy cells; m1 and m2 are
the efficacy (killing rates) of the therapy with respect to the normal and tumor cells,
respectively; κ1 and κ2 are the efficacies of the therapy in inhibiting the normal and
tumor cells proliferation, respectively.

In the absence of the controls, model (1) is the classical Lotka–Volterra model
of two competing populations. Qualitative behavior of such a system is completely
determined by mutual location of lines x + a12y = 1 and y + a21x = 1. Figure1
shows four possible robust scenarios of the system dynamics. (In this figure, we
disregard the fifth case, where these two lines coincide, as this case occurs on a
subset of the parameter space of measure zero.) It is easy to see that for these robust
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Fig. 1 Four robust scenarios possible for the Lotka–Volterra model of two competing populations.
(Adopted from [7])

cases, the system has up to four nonnegative equilibrium states, namely (0, 0), (0, 1),
(1, 0), and

(
(1 − a12)/(1 − a12a21), (1 − a21)/(1 − a12a21)

)
. The origin is always

an unstable node, whereas types of the other points depend on the model parameters
and can be either saddles (marked by circles in Fig. 1), or attracting nodes (marked
by dots).

Figure1 implies that cancer can appear and develop either in Scenario 2, or in
Scenario 4, as in Scenarios 1 and 3, point (0, 1) is asymptotically stable, and, if a
small number of malicious cells appear as a result of a mutation, these are to be
eliminated by competition with the normal cells. This figure also suggests that the
objective of a therapy is the transition of the system to Scenario 1 (ideally), or, at
least, to Scenario 3, where cancer cells will be driven to extinction.

Let us assume that inequalities

a12 · a21 �= 1, m2 > m1, κ2 > κ1 (2)

hold, and that controlw(t) is constant,w(t) ≡ const . Let us denote q1 = r(1 − κ1w)

and q2 = 1 − κ2w. Then we obtain the following system:
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⎧
⎪⎨

⎪⎩

ẋ(t) = q1(1 − x(t) − a12y(t))x(t) − m1u(t)x(t),

ẏ(t) = q2(1 − y(t) − a21x(t))y(t) − m2u(t)y(t),

x(0) = x0, y(0) = y0; x0, y0 > 0.

t ∈ [0, T ], (3)

Please note that under the above-made assumption, expressionsm1q2a21 − m2q1 and
m1q2 − m2q1a12 cannot be equal zero at the same time:

m1q2a21 − m2q1 �= 0, m1q2 − m2q1a12 �= 0. (4)

The set of admissible controls �(T ) is formed by all Lebesgue measurable func-
tions u(t), which for almost t ∈ [0, T ] satisfy the constraints: 0 � u(t) � umax � 1.
The boundedness, positiveness, and continuation of solutions for system (3) are
established by the following lemma.

Lemma 1 For any admissible control u(·) ∈ �(T ), the corresponding solutions
x(t), y(t) to system (3) are defined on the entire interval [0, T ] and satisfy inclusion

(x(t), y(t)) ∈ � =
{
(x, y) : 0 < x < x0e

q1T , 0 < y < y0e
q2T

}
, t ∈ [0, T ]. (5)

For system (3), on the set of admissible controls �(T ), we consider the problem
of minimization of a terminal functional, which is a weighted difference of the
concentrations of cancerous and normal cells at the final moment of the therapy:

J (u) = y(T ) − αx(T ), (6)

where α > 0 is the given weighted coefficient. Lemma 1 guarantees the existence
of the optimal solution for the minimization problem (6): for optimal control u∗(t),
x∗(t), y∗(t) are corresponding optimal solutions of system (3); see [2].

3 Pontryagin Maximum Principle

To analyze the optimal control u∗(t) and the corresponding optimal solutions
x∗(t), y∗(t), we apply the Pontryagin maximum principle [3]. We define Hamil-
tonian

H(x, y, u, ψ1, ψ2) = (q1(1 − x − a12y)x − m1ux)ψ1 + (q2(1 − y − a21x)y − m2uy)ψ2,

where ψ1, ψ2 are the adjoint variables. By the Pontryagin maximum principle, for
optimal control u∗(t) and optimal solutions x∗(t), y∗(t), there exists vector function
ψ∗(t) = (ψ∗

1 (t), ψ∗
2 (t)), such that

(i) ψ∗(t) is a nontrivial solution of the adjoint system
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ̇∗
1 (t) = −(q1(1 − x∗(t) − a12y∗(t)) − q1x∗(t) − m1u∗(t))ψ∗

1 (t)+
+q2a21y∗(t)ψ∗

2 (t),

ψ̇∗
2 (t) = q1a12x∗(t)ψ∗

1 (t) − (q2(1 − y∗(t) − a21x∗(t)) − q2y∗(t)−
−m2u∗(t))ψ∗

2 (t),

ψ∗
1 (T ) = α, ψ∗

2 (T ) = −1;

(7)

and
(ii) the control u∗(t) maximizes the Hamiltonian H(x∗(t), y∗(t), u, ψ∗

1 (t), ψ∗
2 (t))

with respect to u ∈ [0, umax] for almost all t ∈ [0, T ], and, therefore, the follow-
ing relationship holds:

u∗(t) =

⎧
⎪⎨

⎪⎩

umax if Lu(t) > 0,

any u ∈ [0, umax] if Lu(t) = 0,

0 if Lu(t) < 0.

(8)

Here, function Lu(t) = −m1x∗(t)ψ∗
1 (t) − m2y∗(t)ψ∗

2 (t) is the switching function,
which defines the optimal control u∗(t) via formula (8). Introducing auxiliary adjoint
variables φ1(t) = −x∗(t)ψ∗

1 (t) and φ2(t) = −y∗(t)ψ∗
2 (t), we can rewrite adjoint

system (7) and the switching function as

⎧
⎪⎨

⎪⎩

φ̇1(t) = q1x∗(t)φ1(t) + q2a21x∗(t)φ2(t),

φ̇2(t) = q1a12y∗(t)φ1(t) + q2y∗(t)φ2(t),

φ1(T ) = −αx∗(T ) < 0, φ2(T ) = y∗(T ) > 0,

(9)

and
Lu(t) = m1φ1(t) + m2φ2(t).

Systems (3) and (9) allows to formulate the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

L̇u(t) = m−1
1 q1(m1x∗(t) + m2a12y∗(t))Lu(t)+

+m−1
1

(
m1(m1q2a21 − m2q1)x∗(t) + m2(m1q2 − m2q1a12)y∗(t)

)
φ2(t),

Lu(T ) = −m1αx∗(T ) + m2y∗(T ).

(10)
for function Lu(t).

An important property of functions φ1(t), φ2(t) is established by the following
lemma.

Lemma 2 The auxiliary adjoint variables φ1(t), φ2(t) are sign definite on the entire
interval [0, T ]: φ1(t) < 0, φ2(t) > 0, t ∈ [0, T ].

Our task is to estimate the number of zeros of the switching function Lu(t) and
investigate the existence of singular arcs; see [4]. Analysis of the Cauchy problem
(10) together with inequalities (4) leads us to the following conclusions:
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(i) Letm1q2a21 − m2q1 � 0,m1q2 − m2q1a12 � 0 hold. If there is t0 ∈ [0, T ] such
that Lu(t0) = 0, then L̇u(t0) > 0. Then, by (8), the optimal control u∗(t) is a
piecewise constant function with one switching of the type

u∗(t) =
{
0 t ∈ [0, θ∗],
umax t ∈ (θ∗, T ],

where θ∗ ∈ (0, T ) is the moment of switching.
(ii) Letm1q2a21 − m2q1 � 0,m1q2 − m2q1a12 � 0 hold. If there is t0 ∈ [0, T ] such

that Lu(t0) = 0, then L̇u(t0) < 0. Hence, by (8), the optimal control u∗(t) is a
piecewise constant function with one switching of the type

u∗(t) =
{
umax t ∈ [0, θ∗],
0 t ∈ (θ∗, T ],

where θ∗ ∈ (0, T ) is the moment of switching.
(iii) Let eitherm1q2a21 − m2q1 � 0 andm1q2 − m2q1a12 � 0, orm1q2a21 − m2q1 �

0 and m1q2 − m2q1a12 � 0 hold. Then switching function Lu(t) can become
zero on some interval	 ⊂ [0, T ]. This means that the optimal control u∗(t) can
have a singular arc on this interval. Then, on the interval	 equalities Lu(t) = 0
and L̇u(t) = 0 hold. Therefore,

m2(m1q2 − m2q1a12)y + m1(m1q2a21 − m2q1)x = 0. (11)

By equalities Lu(t) = 0 and L̇u(t) = 0, and assumption (2), the necessary condi-
tion of the optimality of a singular arc (the Kelly condition, see [8]) in a strengthened
form

∂

∂u
L̈u(t) = −m−1

1 m2(m2 − m1)(m1q2 − m2q1a12)y∗(t)φ2(t) > 0. (12)

By Lemmas 1 and 2 and formula (11), one can immediately conclude that the Kelly
condition (12) holds if m1q2a21 − m2q1 > 0 and m1q2 − m2q1a12 < 0 hold. This
implies that the necessary condition of the optimality of a singular arc is valid in the
strengthened form. Hence, on interval 	, the optimal control u∗(t) is

u∗
sing(t) = q2 − q1

m2 − m1
+ (m1 + m2)q1q2a12a21 − (m1q2

2a21 + m2q2
1a12)

m2(m1q2 − m2q1a12)
x∗(t).

That is, the optimal control has the form of a feedback that depends only on the
optimal solution x∗(t).

If the inclusion u∗
sing(t) ∈ (0, umax) holds for all t ∈ 	 (we are only interested

in such controls), then it is possible to concatenate the singular arc u∗
sing(t) with

bang–bang control portions u∗(t).
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Fig. 2 Optimal solutions x∗(t) and y∗(t). Here, x0 = 0.1, y0 = 0.9, α = 1, umax = 0.6, r = 0.6,
a12 = 1.25, a21 = 1.25, κ1 = 0.2, κ2 = 0.6, m1 = 0.2, m2 = 0.4, T = 30, and w = 1

If m1q2a21 − m2q1 < 0 and m1q2 − m2q1a12 > 0, then the Kelly condition (12)
is not hold and, hence, the necessary condition of the optimality of a singular arc is
not valid. Therefore, in this case the optimal control u∗(t) does not have a singular
arc on the interval	, and the optimal control on entire interval [0, T ] is a bang–bang
control taking the values 0 or umax with a finite number of switchings.

4 Numerical Results

To illustrate possible outcomes of the optimal controls, we run calculations using
software package BOCOP 2.1.0; see [1]. Some results of these are given in Figs. 2,
3, and 4.

The optimal solutions in Figs. 2 and 3 correspond to the optimal control of the
type

u∗(t) =
{
umax t ∈ [0, θ∗],
0 t ∈ (θ∗, T ],

where the moment of switching is θ∗ = 27.3 in Fig. 2 and θ∗ = 27.9 in Fig. 3. In
Figs. 2, 3 and 4 the blue lines corresponds to the optimal solutions. The red lines are
the continuations of the optimal solutions for a longer time interval (in this case, for

Fig. 3 Optimal solutions x∗(t) and y∗(t). Here, x0 = 0.1, y0 = 0.9, α = 1, umax = 0.6, r = 0.6,
a12 = 1.5, a21 = 0.9, κ1 = 0.2, κ2 = 0.7, m1 = 0.2, m2 = 0.4, T = 30, and w = 1
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Fig. 4 Phase portraits corresponding to the optimal solutions in Figs. 2 and 3, respectively

t ∈ [T, 2T ]). The green dashed curves represent the solutions in the absence of the
control (u(t) = 0). The vertical dashed lines correspond to the switching moments,
whereas the vertical dot-dashed lines correspond to t = T (the end of the control
interval). In Fig. 4, black lines are the nullclines of uncontrolled system (u = 0),
while orange lines are the nullclines of the controlled system (in this case, u = 0.6).

Please note that in both these examples, the initial conditions are located in
the domain of attraction of the point (0,1), which corresponds to the extinction of
the normal cells. The phase portraits show that the behavior of the uncontrolled
system match, respectively, Scenario 3 (the first example) and Scenario 2 (the
second example) as shown in Fig. 1. The optimal control, when it is active (i.e.,
u = umax, t ∈ [0, θ∗]), transfers the system to Scenario 1. Thereafter, when the opti-
mal control is passive (i.e., u = 0, t ∈ (θ∗, T ]), the system returns to its original
scenario. In the first example, the optimal control is able to move the state of the sys-
tem into the domain of attraction of the point (1,0), where cancer cell population goes
to extinction. For this case, further treatment is not required. In the second example,
while the therapy appears to be successful, and after the treatment, the system returns
to the scenario where the cancer cell population continues to grow.
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The Two-Scale Periodic Unfolding
Technique

Anna Zubkova

Abstract In this paper, the definitions of the periodic unfolding and averaging oper-
ators are extended to the case of two sub-domains separated by a thin interface. Their
properties are introduced and illustrative examples of these operators are given.

1 Introduction

This paper is devoted to a useful tool in the homogenization procedure for models
defined in a two-phase domain, which is the two-phase periodic unfolding technique.

The periodic unfolding technique was introduced in continuous and perforated
domains, see, e.g., [1, 3] and it is based on the periodic unfolding and the averaging
operators. The paper [2] suggests an extension of the definition of the unfolding
operator on a boundary. Our specific interest concerns the Poisson–Nernst–Planck
system in a two-phase domain with an interface, see our works [4, 5]. For this reason,
we extend the definitions to the case of two phases and their interface. We describe a
two-phase medium with a microstructure consisting of solid and pore phases, which
are separated by a thin interface. The corresponding geometry is represented by a
disconnected domain. A special interest of our consideration is the interface between
the two phases because of electrochemical reactions which occur here.

The paper has the following structure. In Sect. 2, the definitions of the periodic
unfolding and the averaging operators in the two-phase domain are introduced.
Section3 is devoted to clarifying examples of these operators.
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2 Definitions

We start with the two-phase geometry. A unit cell Y = (0, 1)d , d ∈ N, consists of
two open, connected sub-domains: a solid part ω and a pore part �, separated by a
thin interface ∂ω which is assumed to be Lipschitz continuous, see Fig. 1. By scaling
a unit cell Y with a small parameter ε > 0, we introduce a local cell Y l

ε with some
index l. Its solid part is denoted by ωl

ε and its pore part by �l
ε.

Every spacial point x ∈ R
d can be decomposed as the following sum:

x = ε� x
ε
� + ε{ x

ε
}, (1)

where �x/ε� ∈ Z
d is the floor part and {x/ε} ∈ Y = (0, 1)d is the fractional part of

x/ε.
We consider a domain � ⊂ R

d with a Lipschitz boundary ∂�. Based on the
decomposition (1), it is covered by repeating periodically local cells Y l

ε in such a
way that all local cells lay inside of �. The union of these periodic local cells is
denoted by �ε := ⋃

l∈I ε Y l
ε with the solid part ωε = ⋃

l∈I ε ωl
ε, and the pore part

�ε = ⋃
l∈I ε �l

ε. The interface ∂ωε := ⋃
l∈I ε ∂ωl

ε is the union of local interfaces in
each local cell. A thin boundary layer attaching the external boundary ∂� is called
� \ �ε, see Fig. 2. Summarizing, the two-phase domain� consists of the pore phase
Qε = (� \ �ε) ∪ �ε, the solid phase ωε, and the interface ∂ωε.

Fig. 1 A unit cell Y

Y

Fig. 2 The domain
� = Qε ∪ ωε
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In the prescribed geometry, we define the periodic unfolding and the averaging
operators in the two-phase domain and at the interface.

Definition 1 (two-phase unfolding operator) The linear continuous operator f (x)
�→ Tε : H 1(Qε) × H 1(ωε) �→ L2(�; H 1(�) × H 1(ω)) is defined as

(Tε f )(x, y) =
{
f
(
ε� x

ε
� + εy

)
, for a.e. x ∈ �ε and y ∈ � ∪ ω,

f (x), for a.e. x ∈ � \ �ε and y ∈ � ∪ ω.
(2)

Definition 2 (two-phase averaging operator) The left-inverse operator to Tε (lin-
ear and continuous) is defined as u(x, y) �→ T−1

ε : L2(�; H 1(�) × H 1(ω)) �→
H 1(

⋃
l∈I ε �l

ε) × H 1(� \ �ε) × H 1(ωε):

(T−1
ε u)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

|Y |
∫

�∪ω

u
(
ε� x

ε
� + εz,

{ x

ε

})
dz, for a.e. x ∈ �ε ∪ ωε,

1

|Y |
∫

�∪ω

u(x, y) dy, for a.e. x ∈ � \ �ε.

(3)

The operators satisfy the following properties:

Lemma 3 (Properties of the operators Tε and T−1
ε in the domain) For arbitrary

f, g, h ∈ H 1(Qε) × H 1(ωε), the following equalities hold:

(i) (T−1
ε Tε) f (x) = f (x), and (TεT−1

ε u)(x, y) = u(y), when u is constant for x ∈
Qε ∪ ωε, or a periodic function u(y) of y ∈ � ∪ ω for x ∈ �ε ∪ ωε;

(ii) composition rule: Tε(F( f )) = F(Tε f ) for any elementary function F;
(iii) integration rules:

∫

�ε∪ωε

f (x)g(x) dx = 1

|Y |
∫

�ε

∫

�∪ω

(Tε f )(x, y) · (Tεg)(x, y) dy dx,

∫

�\�ε

f (x)g(x) dx = 1

|Y |
∫

�\�ε

∫

�∪ω

(Tε f )(x, y) · (Tεg)(x, y) dy dx;

(iv) boundedness of Tε:
∫

Qε∪ωε

h2(x) dx = 1

|Y |
∫

�

∫

�∪ω

(Tεh)2(x, y) dy dx,

∫

Qε∪ωε

|∇xh|2(x) dx = 1

ε2|Y |
∫

�

∫

�∪ω

|∇y(Tεh)|2(x, y) dy dx.
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2.1 Restriction of the Operators to the Interface

The definitions (2) and (3) are extended to the interface in a natural way:

Definition 4 The restriction of the two-phase unfolding operator Tε to the interface
∂ωε is well defined as follows: f (x) �→ Tε : L2(∂ωε) �→ L2(�ε) × L2(∂ω),

(Tε f )(x, y) = f
(
ε� x

ε
� + εy

)
, for a.e. x ∈ �ε and y ∈ ∂ω. (4)

The corresponding averaging operator u(x, y) �→ T−1
ε : L2(�ε) × L2(∂ω) �→

L2(∂ωε),

(T−1
ε u)(x) = 1

|Y |
∫

�∪ω

u
(
ε� x

ε
� + εz,

{ x

ε

})
dz, for a.e. x ∈ �ε. (5)

Analogously, the following properties at the interface hold:

Lemma 5 (Properties of the operators Tε and T−1
ε at the interface) For arbitrary

f, g ∈ L2(∂ωε), the following equalities hold.

(i) (T−1
ε Tε) f (x) = f (x);

(ii) composition rule: Tε(F( f )) = F(Tε f ) for any elementary function F;
(iii) integration rule:

∫

∂ωε

f (x)g(x) dSx = 1

ε|Y |
∫

�ε

∫

∂ω

(Tε f )(x, y) · (Tεg)(x, y) dSy dx;

(iv) boundedness of Tε:
∫

∂ωε

f 2(x) dSx = 1

ε|Y |
∫

�ε

∫

∂ω

(Tε f )
2(x, y) dSy dx.

3 Examples

In this section, two examples representing the behavior of the periodic unfolding
operator is given.

Example 6 In the one-dimensional domain � = (−2π, 2π), we consider the func-
tion f (x) = sin x and the small parameter ε = 2π, which coincides with the period
of the function f . We consider a unit cell Y = (0, 1), therefore, the number of local
cells is 2 which are the intervals Y 1

ε = (−2π, 0) and Y 2
ε = (0, 2π). On the first graph

in Fig. 3, the red curve is the function f and the blue line represents the projection
of the mapping Tε f for y = 0. On the second graph, both functions are presented on
the two-dimensional (x, y)-plane, where the interval Y = (0, 1) in y-axis is a unit
cell and the intervals (−2π, 0), (0, 2π) in x-axis are local cells Y 1

ε and Y 2
ε , and the
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Fig. 3 ε = 2π

Fig. 4 ε = π

point {x = 0} is a part of the cell boundary ∂Y 1
ε . We note that in the case of peri-

odic functions f ∈ H 1(�ε) with respect to a small parameter ε, the mapping Tε f is
continuous across the boundary ∂Y l

ε .

Example 7 Weconsider the same setting as in Example 6 but with ε = π, which does
not coincide now with the period of the function f or, in other words, the function
f is not periodic with respect to ε. Comparing with the Example 6, the mapping
Tε f (x, y) is discontinuous along the x-variable, see Fig. 4. This example illustrates
that for nonperiodic functions, the averaging mapping (T−1

ε Tε) f does not belong
to the space H 1(�ε) but only to L2(�ε) even for continuous functions f from the
space H 1(�ε). Such functions can be smoothed by the gradient folding operator,
see, e.g., [6].



50 A. Zubkova

References

1. D. Cioranescu, A. Damlamian, P. Donato, G. Griso, R. Zaki, The periodic unfolding method in
domains with holes. SIAM J. Math. Anal. 44, 718–760 (2012)
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Limit Cycles for Piecewise Linear
Differential Systems via
Poincaré–Miranda Theorem

Armengol Gasull and Víctor Mañosa

Abstract In Gasull andMañosa (Periodic orbits of discrete and continuous dynami-
cal systems via Poincaré–Miranda theorem, Preprint 2018 [2]), we develop an effec-
tive procedure to prove the existence, determine the number, and locate periodic
orbits of dynamical systems of both discrete and continuous nature. It is based on the
use of the Poincaré–Miranda theorem. This note presents one of the results obtained
in that paper: a new example of piecewise linear differential system with three limit
cycles.

1 Introduction and Main Result

The study of the number of limit cycles for planar differential systems is a classical
topic in the theory of dynamical systems. In the past years, many attention has been
devoted to the study of nested limit cycles of piecewise linear systems, steered by the
applicability of these systems in the modelling of biological and mechanical appli-
cations. In 2012, S.M. Huan and X.S. Yang gave numerical evidences of a piecewise
linear system with two zones and a discontinuity straight line, having three nested
limit cycles [3]. A proof based on the Newton–Kantorovich theorem of the existence
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of these limit cycles for this example and a nearby one, was given by Llibre and
Ponce [5]. A different proof, from a bifurcation viewpoint, was presented by Freire,
Ponce and Torres in [1]. Until now, as far as we know, three is themaximum observed
number of limit cycles in a piecewise linear systems with two zones and a disconti-
nuity straight line, but it is not known if this is the maximum number that such type
of systems can have.

In this work, we present a new example, again with three limit cycles, inspired
on the ones given in [3, 5]. The main contribution is that our proof relies on the so-
called Poincaré–Miranda theorem and it is very simple. This theorem is essentially
the extension of the intermediate value theorem (or more precisely, the Bolzano’s
theorem) to higher dimensions. It was stated by H. Poincaré in 1883 and 1884, and
proved by himself in 1886 [7, 8]. In 1940, C. Miranda re-obtained the result as
an equivalent formulation of Brouwer fixed point theorem [6]. Recent proofs are
presented in [4, 10]. For completeness, we recall it. As usual, S and ∂S denote,
respectively, the closure and the boundary of a set S ⊂ R

n .

Theorem 1 (Poincaré–Miranda) Set B = {x = (x1, . . . , xn) ∈ R
n : Li < xi <

Ui , 1 ≤ i ≤ n}. Suppose that f = ( f1, f2, . . . , fn) : B → Rn is continuous, f (x) �=
0 for all x ∈ ∂B, and fi (x1, . . . , xi−1, Li , xi+1, . . . , xn) ≤ 0 and fi (x1, . . . , xi−1,

Ui , xi+1, . . . , xn) ≥ 0, for 1 ≤ i ≤ n. Then, there exists s ∈ B such that f (s) = 0.

We prove:

Theorem 2 The two zones piecewise linear differential system is

ẋ =
{
A+x if x ≥ 1,
A−x if x ≤ 1,

(1)

where x = (x, y)t ,

A− :=
(

67
50 − 833

125
1
2 − 87

50

)
and A+ :=

( 3
8 −1
1 3

8

)
,

has at least three nested hyperbolic limit cycles surrounding the origin.

2 Proof of Theorem 2

Let ϕ±(t; p) = (x±(t; p), x±(t; p)) denote the flow associated to the linear systems
ẋ = A±x. Observe that if there exists a limit cycle then it must lie on both sides
of the line x = 1, so let t− > 0 be the smaller time such that x−(t−; (1, y)) = 1
for a point (1, y) with y > 0, and let t+ > 0 be the first positive time such
that x+(−t+; (1, y)) = 1. Then any limit cycle must satisfy both conditions and
y+(−t+; (1, y)) − y−(t−; (1, y)) = 0, or equivalently,
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Fig. 1 Left part: Intersection points between g1(u, v) = 0 (in blue) and g2(u, v) = 0 (in magenta)
and some boxes containing them. Right part: the three limit cycles of system (1)

e− 3
8 u (cos (u) + y sin (u)) − 1 = 0, (2)

(
35 cos

(
49

50
v

)
+ (−238y + 55) sin

(
49

50
v

))
e− 1

5 v

35
− 1 = 0, (3)

(
−49 cos

(
49

50
v

)
y + (77y − 25) sin

(
49

50
v

))
e− v

5

49
+ e− 3

8 u (cos (u) y − sin (u)) = 0,

(4)

where u = t+ > 0 and v = t− > 0. By solving Eq. (2) we get y = (e−3u/8 −
cos(u))/sin(u). By substituting this expression in Eqs. (3) and (4), we obtain

g1(u, v) := a(v) cos(u) + b(v) sin(u) − a(v)e
3
8 u = 0,

g2(u, v) := c(v) cos(u) + d(v) sin(u) + e(v)e
3
8 u + f (v)e− 3

8 u = 0,
(5)

where

a(v) = 238 e− v
5 sin

(
49

50
v

)
, b(v) = 55 e− v

5 sin

(
49

50
v

)
+ 35 e− v

5 cos

(
49

50
v

)
− 35,

c(v) = 49 e− v
5 cos

(
49

50
v

)
− 77 e− v

5 sin

(
49

50
v

)
+ 49, d(v) = −25 e− v

5 sin

(
49

50
v

)
,

e(v) = 77 e− v
5 sin

(
49

50
v

)
− 49 e− v

5 cos

(
49

50
v

)
, f (v) = −49.

Numerically, it is easy to guess that there are three different solutions of system (5),
see Fig. 1. Their approximate values in (u, v) variables are (0.441441, 4.554696),
(0.639391, 4.105752) and (1.686596, 3.458345). Once we prove that near these
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values there are actual solutions of system (5), each one of them will correspond to
a solution of the system of Eqs. (2)–(4) and, consequently, all them will give rise to
3 limit cycles of (1), see again the Fig. 1.

To prove the existence of three solutions of system (5), we consider the three
boxes:

B1 :=
[
9

25
,
1

2

]
×

[
219

50
,
26

5

]
, B2 :=

[
1

2
,
7

5

]
×

[
71

20
,
219

50

]
, and B3 :=

[
7

5
, 2

]
×

[
17

5
,
71

20

]

which are also shown in Fig. 1 and we apply the Poincaré–Miranda theorem to each
of them. In short, we only give some details for B1. We write [u, u] := [9/25, 1/2]
and [v, v] := [219/50, 26/5].

The existence of a solution in B1 will follow by applying the Poincaré–Miranda
theorem to this box if we prove the following two claims:

(i) it holds that g2(u, v) > 0 and g2(u, v) < 0 for all u ∈ [u, u];
(ii) it holds that g1(u, v) < 0 and g1(u, v) > 0 for all v ∈ [v, v].

To control the sign of g j on the sides of each box, we use next lemma:

Lemma 3 Set h(x) = A cos(αx) + B sin(αx) + Ceβx + De−βx , with A, B,C, D
∈ R, α �= 0, β > 0, and x ∈ [x, x] ⊂ R

+. Then for each n ≥ 0 we have h(x) =
n∑
j=0

a j x j + mn(x)xn+1, where

a j = 1

j !
(
α j

[
A cos

(
j
π

2

)
+ B sin

(
j
π

2
)
)]

+ β j
[
C + (−1) j D

])
, (6)

|mn(x)| ≤ mn = |α|n+1 (|A| + |B|) + |β|n+1 (|C |eβx + |D|e−βx
)

(n + 1)! . (7)

In fact, we only give the details to prove in item (i) that g2(u, v) > 0 for all
u ∈ [u, u]. All the other sides of the box and the study of the other two boxes can be
done by adapting the same procedure. We have that

g2(u, v) = c

(
219

50

)
cos(u) + d

(
219

50

)
sin(u) + e

(
219

50

)
e

3
8 u + f

(
219

50

)
e− 3

8 u,

with

A = c
(
219
50

) = 49 e− 219
250 cos

(
10731
2500

) − 77 e− 219
250 sin

(
10731
2500

) + 49,

B = d
(
219
50

) = −25 e− 219
250 sin

(
10731
2500

)
,

C = e
(
219
50

) = (−49 cos
(
10731
2500

) + 77 sin
(
10731
2500

))
e− 219

250 , D = f
(
219
50

) = −49.

By applying Lemma 3 with n = 4, α = 1 and β = 3/8, we have that g2(u, v) =∑4
j=0 a ju j + m4(u)u5, with a j given in (6) and |m4(u)| < m4 � 0.66642 < 0.7 =
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M , see (7). Taking a−
j := Trunc(a j · 10k) · 10−k − 10−k with k = 3, for each j =

0, . . . , 4 we obtain that
∑4

j=0 a ju j >
∑4

j=0 a
−
j u

j in [u, u], where
4∑
j=0

a−
j u

j = − 1

1000
+ 1001

50
u − 39899

1000
u2 − 669

500
u3 + 357

125
u4.

Putting all the inequalities together we get that in [u, u],

g2(u, v) =
4∑
j=0

a ju
j + m(u)u5 >

4∑
j=0

a−
j u

j − 7

10
u5 := Q5(u).

Finally, Q5 is a polynomial with rational coefficients. Computing its Sturm sequence
[9] we get that it has no zeroes [u, u] and it is positive, as we wanted to prove.

On the other two sides of B1 or on the boundaries of the other two boxes we can
use the same approach. The only changes are that n and k vary from one to another,
the corresponding upper bound M must be computed and sometimes instead of g j

is is convenient to consider ev/5g j , see [2] for more details.
To prove the hyperbolicity of the limit cycles we can follow the same ideas that

in [5].
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Resonance: The Effect of Nonlinearity,
Geometry and Frequency Dispersion

Michael P. Mortell and Brian R. Seymour

Abstract Three basic experiments define nonlinear resonant oscillations in contin-
uous media: a gas in a straight closed tube, in a closed tube of variable cross section,
and shallow water in a tank. These experiments and the associated mathematical
techniques used to explain them are described.

1 Introduction

We deal with one-dimensional waves in a region of finite extent, so that reflections
from boundaries are intrinsic to the problems considered and waves pass through
each other. For linear theory, solutions can be superposed and hyperbolic waves pass
through each other without interaction or distortion. In contrast, the fundamental
difficulty for nonlinear hyperbolic waves is that such waves interact and distort, see
Riemann [10]. Then a wave traveling in one direction is affected by that traveling
in the opposite direction and the characteristic equations cannot, in general, be inte-
grated. There is, however, a class of nonlinear waves where, to first order in the
amplitude, the waves do not interact while the signal distorts. Resonant oscillations
in tubes and tanks belong to such a class.

Three basic experiments define nonlinear resonant oscillations in continuous
media. These experiments and the associated mathematical techniques used to
explain them are described here. The first involves small amplitude resonant acous-
tic oscillations in a closed tube and the appearance of shocks in the flow. Saenger
and Hudson [11] observed that the shocks travel with the linear sound speed and
do not interact after reflection. The second experiment involves resonant acoustic
oscillations in a closed tube of varying cross section, e.g., a cone or bulb shape, see
Lawrenson et al. [6]. Due to the interaction of nonlinearity and geometry, the motion
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of the gas can have a large amplitude and yet remain continuous. The final experi-
ment, reported on by Chester and Bones [2], concerns resonant sloshing of shallow
water in a tank. The presence of frequency dispersion, which spreads the wave and
counteracts the steepening due to nonlinearity, ensures the fluid motion is contin-
uous. The outcome is a series of solitary waves and is governed by a periodically
forced KdV equation, [4].

2 Experiment 1: Resonance in a Straight Closed Tube

The basic experiment is that described in Saenger and Hudson [11]. They observed
that oppositely traveling waves contain shocks, obey the rule of linear superposition
and travel at constant adiabatic sound speed. The amplitude of the flow at resonance
is significantly greater than that of the piston amplitude.

In dimensionless variables, the fluid velocity, u(x, t), and the condensation e =
ρ − 1 (ρ(x, t) is the fluid density) both satisfy the linear wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0, 0 ≤ x ≤ 1, t > 0. (1)

The boundary conditions are that the tube is closed at x = 0 and a piston oscillates
periodically at x = 1, i.e.,

u(0, t) = 0, u(1, t) = M sin(2πωt), (2)

whereM is the appliedMach number andω the dimensionless frequency. The general
solution to (1) is

u(α,β) = f (α) + g(β), e = f (α) − g(β), (3)

where f and g are arbitrary functions and the linear characteristics are

α = t − x, β = t + x − 1. (4)

Applying the boundary conditions (2) to the solution (3) implies that g(y), y = ωt ,
satisfies the linear difference equation

g(y) − g(s) = M sin(2πy), y = s + 2ω. (5)

In this notation, 2ω is the linear round-trip travel time in the tube. For ω = 1/2, the
period of the input oscillation is unity, the same as the linear travel time. Then y = s +
1 and there is no solution of (5) with unit period;ω = 1/2 is the fundamental resonant
frequency. The basic conservation laws together with the boundary conditions imply
the zero mean condition that

∫ 1
0 g(y)dy = 0.
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We will now correct the linear difference equation (5) by including a contribution
from the nonlinear travel time. We refer to this as nonlinearization, see Mortell and
Seymour [9]. Then 2ω is replaced by 2ω + ω(γ + 1)g(s), where γ is the polytropic
gas constant and g then satisfies the nonlinear difference equation

g(y) − g(s) = M sin(2πy), y = s + 2ω + ω(γ + 1)g(s). (6)

Exactly at the fundamental resonant frequency, ω = 1/2, (6) becomes

g(y) − g(s) = M sin(2πy), y = s + γ + 1

2
g(s), (7)

on using the unit periodicity of g(y).
In the small rate limit, when |g| � 1 and

∣
∣g′∣∣ � 1, (7) are approximated using a

Taylor expansion by a nonlinear ODE with solutions

g(y) = ±
( 4M

π(γ + 1)

)1/2
sin(πy). (8)

To satisfy the zero mean condition, these are combined with a discontinuity at y =
0.5, hence inserting a shock.

The required solution is a linear standing wave given by (3) with f (y) = −g(y −
1) where y = t/2 and g(y) is given by the nonlinear solution (8). Thus, u(x, t) is
the superposition of linear waves traveling at the sound speed and the signal |g| =
O(M1/2). These agree with the results of the Saenger and Hudson [11] experiment.

The full small rate solution is described in [12], while the evolution of these
oscillations is given in [3]. The finite rate evolution is given in [13].

3 Experiment 2: Resonant Macrosonic Synthesis

The purpose of the experiments described in Lawrenson et al. [6] was to examine the
effect of a variable cross section on resonant oscillations. Of particular interest was
whether shocks were present. Shocks are a dissipativemechanism, converting kinetic
energy into heat, so eliminating shocks results in higher pressures. They show that
shocks (acoustic saturation) can be avoided by shaping the resonator; with no shocks
the same energy input can produce peak acoustic overpressure exceeding 340% of
ambient pressure. The analytic underpinning for these results is given in Mortell and
Seymour [8], and numerical solutions are given in Ilinskii et al. [5].



60 M. P. Mortell and B. R. Seymour

3.1 Nonlinear Equations for Variable Tube Area

The dimensionless equations of conservation of mass and momentum relating the
velocity u(x, t) and density ρ(x, t) for a polytropic gas in Eulerian coordinates are

∂(sρ)

∂t
+ ∂

∂x
(suρ) = 0,

∂u

∂t
+ u

∂u

∂x
+ ργ−2 ∂ρ

∂x
= −a(t), (9)

where e(x, t) = ρ/ρ0 − 1 is the condensation, γ is the adiabatic constant (1.2 for
air), c0 = √

γ p0/ρ0 is the associated linear sound speed and a(t) is the acceleration
applied along the axis of the tube that is closed at both ends.

A new variable is defined by v(x, t) = s(x)u(x, t) and a(t) = ε3 cos θ, θ = ωt ,
0 < ε � 1. We seek solutions with period 2π/ω in t .

3.2 Dominant First Harmonic Approximation

A perturbation expansion of the form

e(x, t) = εe1(x, t) + ε2e2(x, t) + · · · ,

v(x, t) = εv1(x, t) + ε2v2(x, t) + · · · ,

ω(ε) = λ1 + ε2δ + · · · ,

where |ei |, |vi | = O(1), i = 1, 2, 3, . . ., and λ1 is the fundamental eigenvalue, yields
the Webster–Horn equation for v1(x, t)

∂2v1

∂t2
− s(x)

∂

∂x
(
1

s

∂v1

∂x
) = 0. (10)

The eigenfunction corresponding to λ1 is ϕ(x), where v1(x, t) = Aϕ(x) sin θ and
A(δ) is a constant. There is an infinity of eigenvalues,λ = λn , and the critical assump-
tion is that λn �= nλ1, n = 2, 3, . . ., for the given s(x).

At O(ε3) : v3(x, θ) = P(x) sin θ + Q(x) sin 3θ.

Since 3λ1 is not an eigenvalue, Q(x) exists with no restriction on A, but P(x) is
determined by

d

dx
(
1

s

d P

dx
) + λ2

1

s
P = A3G(x), P(0) = 0, P(1) = 0, (11)

where G(x) is a combination of lower order solutions. The orthogonality condition
to ensure a solution P(x) yields the amplitude–frequency relation
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N A3 − 2δλ1A = M, (12)

where M and N are constants. The experimental and theoretical curves for this rela-
tion are qualitatively similar, and show a “hard” or “soft” spring response depending
on the cylinder shape. The fundamental solution is a linear standing wave with a
signal determined by a nonlinear equation. The evolution of such solutions is given
in [7].

4 Experiment 3: Resonant Sloshing in a Shallow Tank

Near resonancewaves in the tank have high peaks and low troughs and abrupt changes
in amplitude occur at certain discrete frequencies, see [2]. The theory for periodic
resonant oscillations is given in [1] and the evolution in [4]. The derivation of the
basic equations is given in Chap.13 ofWhitham [14], but here, we follow the notation
in [4].

ϕ(x, z, t) is the velocity potential, where the particle velocity u = ∂ϕ
∂x and

z = η(x, t) is the free surface. The wavemaker at xw = 1 − ε cos(πt) implies the
boundary condition ∂ϕ

∂x (xw, z, t) = 2πεω sin(πt), while the tank is closed at x = 0,

so that ∂ϕ
∂x (0, z, t) = 0.

We assume an expansion of the form

ϕ(x, z, t) = εϕ0(x, z, t) + ε3/2ϕ1(x, z, t) + · · · ,

η(x, z, t) = εη0(x, z, t) + ε3/2η1(x, z, t) + · · · ,

where the detuning � is given by 2ω = 1 + ε1/2� + · · · , and ε is the amplitude of
the periodic input. Then at O(ε3/2) the linear differential-difference equation is

2πωε sin(πt) = ε[h(t) − h(t − 2)] + ε3/2[−κ

3
h′′′(t) + 2�h′(t)],

where the dispersion and detuning are included.
The nonlinear terms from the free surface conditions are inserted by nonlin-

earization, i.e., the linear travel time 2 is replaced by the nonlinear travel time
2 + (γ + 1)εh(t), with γ = 2, which reflects the underlying hydraulic flow.

Then we get

πω sin(πt) = 3

2
εh(t)h′(t) + ε1/2[−κ

6
h′′′(t) + �h′(t)] + O(ε3/2).

The substitution R = ε1/2h(t) reduces this equation to

πω sin(πt) = 3

2
R(t)R′(t) + �R′(t) − κ

6
R′′′(t),
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which is a periodically forced, steady state, KdV equation. The solution then is

u = ∂ϕ

∂x
= ε[h(t + x − 1) − h(t − x − 1)]

with h(t)given by the equation for R(t). Thus the solution is the superposition of
linear waves traveling in opposite directions at the linear wave speed, while the signal
is determined by a nonlinear ODE.
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On the Null Controllability of the Heat
Equation with Hysteresis in Phase
Transition Modeling

Chiara Gavioli and Pavel Krejčí

Abstract We prove the null controllability of the relaxed Stefan problem, which
models phase transitions in two-phase systems. The technique relies on the penalty
approximation of the differential inclusion describing the phase dynamics, solving a
constrained minimization problem, and passing to the limit.

Introduction

The null controllability problem for various kinds of linear and semilinear parabolic
equations has been an intensively studied subject in the recent decades and a nice
survey can be found in the monograph [2]. Here, we propose to discuss the null
controllability problem for the parabolic equation with hysteresis of the form

ut (x, t) − �u(x, t) + F[u](x, t) = v(x, t), x ∈ � ⊂ R
n, t ∈ (0, T ) (1)

with a hysteresis operator F , a right-hand side v called the control, and initial and
boundary conditions specified below. Existence, uniqueness, and regularity results
for Eq. (1) with a given right-hand side v, can be found in the monograph [7]. The
null controllability problem for Eq. (1) consists in proving that for an arbitrary initial
condition and arbitrary final time T , it is possible to choose the control v in a suitable
class of functions of x and t in such a way that the solution satisfies u(·, T ) = 0, a.e.,
in �.

First results about the null controllability of Eq. (1) were obtained by F. Bagagiolo
in [1]: His technique relies on a linearization followed by a fixed-point procedure, and
we briefly comment on it in Sect. 2.We will see that hysteresis operators arising from
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phase transitionmodeling cannot be linearized. To establish the null controllability of
the system, new techniques based on M. Brokate’s previous works [3, 4] on optimal
control of ODEswith hysteresis need to be developed, and this will be done in Sect. 3.

1 The Physical Problem

Consider a bounded connected Lipschitzian domain � ⊂ R
3, fix an arbitrary T > 0

and define Q = � × (0, T ), � = ∂� × (0, T ). The unknown functions of the space
variable x ∈ � and time t ∈ [0, T ] are s(x, t) ∈ [−1, 1] for the phase parameter
(s = −1 solid, s = 1 liquid, s ∈ (−1, 1) mixture), and θ(x, t) > 0 for the absolute
temperature.

The system we consider is the following:

⎧
⎪⎨

⎪⎩

cθt + Lst − κ�θ = h in Q,

ρst + ∂ I (s) � L(θ − θc) in Q,

initial and boundary conditions,

(2)

where I is the indicator function of the interval [−1, 1], ∂ I is its subdifferential,
h = h(x, t) is the heat source density, and c specific heat, L latent heat, κ heat
conductivity, ρ phase relaxation parameter and θc critical temperature are given
positive constants. In the literature this is known as the relaxed Stefan problem (see,
e. g., A. Visintin’s monograph [8]), and it models the phase transition in solid–liquid
systems: the first equation is the energy balance, whereas the second one describes
the phase dynamics. In particular:

(i) the smaller ρ is, the faster the transition takes place. When ρ = 0 we get the
classical Stefan problem, in which the phase transition is assumed to be instan-
taneous;

(ii) when θ > θc then st ≥ 0,whichmeans that the substance ismelting;when θ < θc
then st ≤ 0, which means that the substance is freezing.

We now show that system (2) can be transformed into the form (1). Indeed, we define
a new unknown u by the formula

ut = L

ρ
(θ − θc).

Then the phase dynamics equation in (2) is of the form st + ∂ I (s) � ut . This is
nothing but the definition of the stop operator with threshold 1, s = s[u]; see Fig. 1.

The first equation in (2) thus reads

cρ

L
utt + Ls[u]t − κρ

L
�ut = h.
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Fig. 1 Hysteresis loop of
the stop operator

Integrating the above equation in time leads, up to constants, to an equation of the
form (1), more specifically,

cρ

L
ut + Ls[u] − κρ

L
�u = v (3)

with F[u] = s[u], and with v containing the time integral of h and additional terms
coming from the initial conditions.

2 Null Controllability by Linearization

The system considered by F. Bagagiolo in [1] is the following:

⎧
⎪⎨

⎪⎩

ut (x, t) − �u(x, t) + F[u](x, t) = m(x)v(x, t) in Q,

u(x, t) = 0 on �,

u(x, 0) = u0(x) in �,

(4)

where m is the characteristic function of a set ω ⊂⊂ � and F : L2(�;C0([0, T ]))
−→ L2(�;C0([0, T ])) is a hysteresis operator satisfying the following condition:
there exist two constants L > 0 and m ∈ R such that, for all z ∈ L2(�;C0([0, T ])),
for all t ∈ [0, T ] and for a. e. x ∈ �

|F[z](x, t)| ≤ L|z(x, t)|, (5)

if z(x, t) = 0 then lim
τ→t, z(x,τ )�=0

F[z](x, τ )

z(x, τ )
= m uniformly in [0, T ]. (6)

Similarly as above, v : Q := � × (0, T ) → R is the control function which, being
multiplied by m, acts only on a compact subregion of the original domain. The null
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controllability of system (4) strongly relies on the following result from V. Barbu’s
paper [2].

Theorem 1 (Null controllability in the linear case) Let � ⊂ R
n be an open and

bounded domain with boundary of class C2, let ω ⊂ � be a compactly embedded
subset, and let a ∈ L∞(Q) be given. Then for every initial datum u0 ∈ L2(�) there
is a control function v ∈ L2(Q) such that the (unique) corresponding solution uv ∈
C0([0, T ]; L2(�)) ∩ L2(0, T ;W 1,2

0 (�)) of

⎧
⎪⎨

⎪⎩

ut (x, t) − �u(x, t) + a(x, t)u(x, t) = m(x)v(x, t) in Q,

u(x, t) = 0 on �,

u(x, 0) = u0(x) in �,

(7)

satisfies uv(x, T ) = 0 a.e. x ∈ �. Moreover, the control v can be taken in such a
way that

‖v‖L2(Q) ≤ C‖u0‖L2(�),

where the constant C only depends on ‖a‖L∞(Q).

Note that V. Barbu’s proof of this result relies on the Pontryagin’s Maximum
Principle, and the Carleman estimates.

In particular, Pontryagin’s Maximum Principle requires the study of the dual
system associated with (7), whereas Carleman estimates allow us to bound the L2-
norm of the dual variable in terms of the L2-norm of the control on the subregion
ω × (0, T ).

F. Bagagiolo’s condition (5)–(6) implies, in particular, that all hysteresis branches
pass through the origin. System (4) thus can be reduced to the form (7) with a factor
a(x, t) depending on the unknown function u. The null controllability result is then
obtained by a fixed-point argument.

In the case that the operatorF is the stop operator given by Eq. (3), the assumption
(5) is not satisfied. It is well known (cf. [7]) that typical hysteresis branches of the
stop operator do not pass through the origin as required by condition (5), see Fig. 1.

3 A New Approach: Null Controllability by Penalization

The exact values of the physical constants c, ρ, L ,κ are irrelevant for our analysis.
We can therefore represent Eq. (3) as a system of the form
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut − �u + s = v in Q,

st + ∂ I (s) � ut in Q,

∇u · n = 0 on �,

u(x, 0) = u0(x) in �,

s(x, 0) = s0(x) in �.

(8)

The homogeneous Neumann boundary condition for u has the physical meaning of
a thermally insulated body in the original setting (2). The main result for the system
(8) reads as follows.

Theorem 2 Let u0 ∈ W 1,2(�) ∩ L∞(�) and s0 ∈ L∞(�) be given, |s0(x)| ≤ 1, a.e.
Then the system (8) is null controllable, that is, there exists v ∈ L2(Q) such that
the corresponding solution uv ∈ W 1,2((0, T ); L2(�)) ∩ L∞(0, T ;W 1,2(�)) of (8)
satisfies uv(·, T ) = 0, a.e., in �.

Note that controls with support restricted to a subdomain ω ⊂ � as in Theorem 1
are not admissible in Theorem 2. This is related to the problem whether Carleman
estimates are compatible with the penalty approximation. This question will be given
appropriate attention in future work.

Proof The argument consists in penalizing the subdifferential ∂ I and replacing the
differential inclusion with an ODE. In particular, we choose the penalty function

�(s) =
⎧
⎨

⎩

φ(s − 1) for s > 1,
0 for s ∈ [−1, 1],
φ(−s − 1) for s < −1,

(9)

with a convex C2-function φ : [0,∞) → [0,∞) with quadratic growth, for example

φ(r) =
{ 1

6r
3 for r ∈ [0, 1],

1
2r

2 − 1
2r + 1

6 for r > 1.

Choosing a small parameter γ > 0, we replace (8) with a system of one PDE and
one ODE for unknown functions (u, s) = (uγ, sγ)

{
ut − �u + s = v in Q,

st + 1
γ
� ′(s) = ut in Q,

(10)

with the same initial and boundary conditions, and with the intention to let γ tend
to 0. We choose another small parameter ε > 0 independent of γ and define the cost
functional

J (u, s, v) = 1

2

∫∫

Q
v2dxdt + 1

2ε

∫

�

u2(x, T )dx,

where the two summands represent the cost to implement the control and to reach the
desired null final state. Then, for each γ > 0 we solve the following optimal control
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problem:
minimize J (u, s, v) subject to (10). (11)

It is not difficult to see (see, e. g., Tröltzsch [6]) that for each ε > 0 problem (11) has
a unique solution (uγ

ε , s
γ
ε , vγ

ε ). It is found as a critical point of the Lagrangian

L(u, s, v) = J (u, s, v) + 〈p,G1(u, s, v)〉 + 〈q,G2(u, s, v)〉

where p, q are Lagrangemultipliers, the brackets denote the canonical scalar product
in L2(�), and the constraints are

G1(u, s, v) = ut − �u + s − v, G2(u, s, v) = st + 1

γ
� ′(s) − ut .

The first-order necessary optimality condition for (u, s, v, p, q) = (uγ
ε , s

γ
ε , vγ

ε ,

pγ
ε , qγ

ε ) reads
v = p a. e. in Q, (12)

and p ∈ W 1,2(0, T ; L2(�)) ∩ L∞(0, T ;W 1,2(�)), q ∈ W 1,2(0, T ; L2(�)) are the
solutions to the backward dual problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pt + �p − qt = 0 in Q,

qt − 1
γ
� ′′(s)q − p = 0 in Q,

∇ p · n = 0 on �,

p(x, T ) = − 1
ε
u(x, T ) in �,

q(x, T ) = 0 in �.

(13)

3.1 Estimates

In order to pass to the limits ε → 0, γ → 0, we first derive a series of estimates for
(u, s, v, p, q) = (uγ

ε , s
γ
ε , vγ

ε , pγ
ε , qγ

ε ) satisfying the system (10), (12), and (13). In
what follows, we denote by C any constant independent of γ and ε.

We first multiply the second equation of (13) by −sign(q) and integrate from an
arbitrary t ∈ [0, T ) to T to obtain

|q(x, t)| +
∫ T

t

1

γ
� ′′(s(x, τ ))|q(x, τ )|dτ ≤

∫ T

t
|p(x, τ )|dτ for a. e. x ∈ �.

(14)
In the next step, we combine the first and the second equation of (13) to get

pt + �p − 1

γ
� ′′(s)q − p = 0,
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and multiply the resulting equation by an approximation Sn(p) of −sign(p), say,
Sn(p) = −sign(p) for |p| ≥ 1/n, Sn(p) = −np for |p| < 1/n. Integrating over �
and letting n tend to infinity we obtain

− d

dt

∫

�
|p(x, t)|dx +

∫

�
|p(x, t)|dx ≤

∫

�

1

γ
� ′′(s(x, t))|q(x, t)|dx for a. e. t ∈ (0, T ).

(15)
Integrating (15) consecutively

∫ τ

0 dt and then
∫ T
0 dτ and using the estimate (14) gives

a bound for p(x, 0), namely

∫

�

|p(x, 0)|dx ≤ C
∫ T

0

∫

�

|p(x, t)|dxdt. (16)

Finally, we multiply the first equation in (10) by p, the second equation in (10)
by q, the first equation in (13) by u, the second equation in (13) by s, integrate in
space and time, and sum up (note that p = v by virtue of (12)):

∫ T

0

∫

�

p2dxdt + 1

ε

∫

�

u2(x, T )dx = −
∫

�

u0(x)p(x, 0)dx +
∫

�

u0(x)q(x, 0)dx

−
∫

�

s0(x)q(x, 0)dx + 1

γ

∫ T

0

∫

�

q
(
� ′(s) − s� ′′(s)

)
dxdt.

(17)
The choice (9) of � guarantees that

|� ′(s) − s� ′′(s)| ≤ 3

2
� ′′(s).

Hence, by virtue of (14)–(16), we infer from (17) the estimate

∫ T

0

∫

�

p2(x, t)dxdt + 1

ε

∫

�

u2(x, T )dx ≤ C
∫ T

0

∫

�

|p(x, t)|dxdt (18)

with a constant C depending on the L∞-norm of u0, which, together with Hölder’s
inequality, implies in turn that

∫ T

0

∫

�

(vγ
ε )2(x, t)dxdt + 1

ε

∫

�

(uγ
ε )

2(x, T )dx ≤ C (19)

with a constant C independent of γ and ε.
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3.2 Passage to the Limit

As a consequence of (19), we see by a standard result on parabolic PDEs that the solu-
tions uγ

ε , s
γ
ε of (10) are for each fixed γ > 0 uniformly bounded inW 1,2(0, T ; L2(�))

∩ L∞(0, T ;W 1,2(�)). Keeping thus γ fixed for the moment, letting ε → 0 and
using the compact embedding of W 1,2(0, T ; L2(�)) ∩ L∞(0, T ;W 1,2(�)) into
L2(�;C([0, T ])), we conclude that along a subsequence for each fixed γ we have

vγ
ε ⇀ vγ

∗ , sγ
ε → sγ

∗ , (sγ
ε )t ⇀ (sγ

∗ )t in L2(Q), ‖uγ
ε (x, T )‖2L2(�) → 0,

uγ
ε → uγ

∗ in L2(�;C([0, T ])) and uγ
∗(x, T ) = 0 a. e.

The convergence γ → 0 is more delicate. By (19), the controls contain a weakly
convergent subsequence

vγ
∗ ⇀ v∗ in L2(Q).

The same parabolic PDE argument as above yields

(uγ
∗)t ⇀ (u∗)t in L2(Q), uγ

∗ → u∗ in L2(�;C([0, T ])) with u∗(x, T ) = 0.
(20)

It remains to prove that the solutions sγ∗ to the equation

(sγ
∗ )t + 1

γ
� ′(sγ

∗ ) = (uγ
∗)t

converge weakly to s[u∗]. To this end, we denote by yγ the solution of the ODE

yγ
t + 1

γ
� ′(yγ) = (u∗)t , yγ(x, 0) = s0(x). (21)

By [5, Theorem 1.12], we have for a. e. (x, t) ∈ Q

|sγ
∗ (x, t) − yγ(x, t)| ≤ 2 max

τ∈[0,t] |u
γ
∗(x, τ ) − u∗(x, τ )|. (22)

Multiplying (21) by yγ
t and integrating over Q we see that the L2(Q)-norm of yγ

t is
bounded independently of γ. Hence, up to a subsequence,

yγ
t ⇀ yt , yγ ⇀ y,

1

γ
� ′(yγ) ⇀ w in L2(Q), (23)

and it suffices to prove that y = s[u∗]. To this end note that y and w satisfy the
equation

yt + w = (u∗)t , y(x, 0) = s0(x). (24)

Furthermore, for every function z ∈ L∞(Q) we have
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∫∫

Q
yγz dxdt ≤

∫∫

Q
|yγ | |z| dxdt ≤

∫∫

Q
(|yγ | − 1)+ |z| dxdt +

∫∫

Q
|z| dxdt,

hence, choosing z such that
∫∫

Q |z|dxdt ≤ 1, by (23)we have
∫∫

Q yz dxdt ≤ 1which
in turn implies that |y(x, t)| ≤ 1 a. e.

We now multiply (21) by yγ and (24) by y and integrate over Q. By virtue of the
weak convergence we have

∫

�
y2(x, T ) dx ≤ lim infγ→0

∫

�
(yγ)2(x, T ) dx , hence

lim inf
γ→0

1

γ

∫∫

Q
� ′(yγ)yγ dxdt ≤

∫∫

Q
wy dxdt.

Since � ′ is monotone and vanishes in [−1, 1], it follows that
∫∫

Q
� ′(yγ)(yγ − ρ) dxdt ≥ 0

for every measurable function ρ such that |ρ(x, t)| ≤ 1 a. e. Hence, for every ρ we
have ∫∫

Q
w(y − ρ) dxdt ≥ 0,

which implies that y = s[u∗], and the proof is complete.
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Evidence of Critical Transitions
and Coexistence of Alternative States
in Nature: The Case of Malaria
Transmission

David Alonso, Andy Dobson and Mercedes Pascual

Abstract Sometimes abrupt changes occur in nature. Examples of these phenomena
exist in lakes, oceans, terrestrial ecosystems, climate, evolution, and human societies.
Dynamical systems theory has provided useful tools to understand the nature of these
changes. When certain non-linearities underlie system dynamics, rapid transitions
may happen when critical thresholds for certain parameter values are overcome.
Here we describe a malaria dynamical model that couples vector and human disease
dynamics through mosquito infectious bites, with the possibility of super-infection,
this is, the reinfection of asymptomatic hosts before they have cleared a prior infec-
tion. This key feature creates the potential for sudden transitions in the prevalence of
infected hosts that seem to characterize malaria’s response to environmental condi-
tions. This dynamic behavior may challenge control strategies in different locations.
We argue that the potential for critical transitions is a general and overlooked feature
of any model for vector borne diseases with incomplete, complex immunity.
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1 Introduction

Critical transitions have received considerable attention in ecology, geophysics,
hydrology and economics for the last decade [12]. They occur when natural sys-
tems drastically shift from one state to another. Comparatively less attention has
been given to carefully characterize the underlying dynamic structure of the system
under study.We believe the focus should change from describing, and understanding
single transitions to characterizing the full dynamic behavior of the systems along
with the environmental conditions in which these transitions occur. In epidemiology,
critical transitions may underlie and potentially enhance (or undermine) attempts to
control and eliminate infectious pathogens. Following an intervention, the trajectory
of the host-pathogen system may cross a critical transition where pathogen preva-
lence drops to apparent eradication. However, the final success of eradication efforts
depends strongly on dynamic underlying structure of the transition. Critical transi-
tions are often associated to the coexistence of alternative equilibria. In that case,
small changes in a driving parameter can lead to large shifts from low to high levels
of prevalence (or vice versa). Continuous external pressure on critical transmission
parameters, or seasonal variation in vector abundance, can also lead to hysteresis,
whereby the inertial response of the system would effectively keep it trapped longer
in either the endemic or disease-free state.

There is some (theoretical) evidence for the existence of alternative steady-states
in infectious disease dynamics [3, 6, 7]. Here, we decribe one potentially important
pre-condition for the existence of alternative steady states in malaria that stems from
the complex immune response of the host to a highly diverse pathogen, the Plasmod-
ium parasite. Humans are infected by concurrent multiple strains of the pathogen
(superinfection). As as consequence, malaria infections are not fully immunizing,
and multiplicity of infection is common in endemic regions. Under these conditions,
rates of full recovery slow down. As a consequence, significant levels of superin-
fection create a positive feedback between infecting mosquitoes, which increase as
humans remain infected longer, and disease prevalence, which also increases at the
exposure to infecting mosquitoes increases. This loop has the potential to generate
multiple alternative equilibria and associated tipping points.

We provide amodel formulation of superinfection that explicitly allows infections
to occur concurrently without interfering with each other. In addition, we present a
semi-analytical, but general approach to identify alternative equilibria in models for
vector-transmitted diseases. We then apply these methods to a vector-borne disease
model (SECIR-LXVW) that has been successfully used to understand the origins of
environmentally driven fluctuations of malaria, and the potential impact of increas-
ing temperatures, in epidemic regions [1]. We demonstrate that irrespective of the
details, superinfection consistently creates tipping points that can generate hysteresis
in responses to control efforts (as well as seasonal variation in vector abundance).
We argue that complex malaria immunity underlies abrupt transitions in response to
control strategies or slight environmental variation. Models that fail to consider the
complexity of malaria-induced immunity response may be misleading, and, there-
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fore, their utility in practice is very limited when used to examine transitions towards
low prevalence levels in response to different control strategies affecting the vectors
as well as the pathogen.

2 The Model

The model can be considering an extension of the standard Ross–McDonald model
[8–11]. Details on model formulation and parameter definitions (including biologi-
cally reasonable parameter value ranges) are found in Alonso, Bouma and Pascual
[1]). The model considers the dynamics of both humans and mosquitoes populations
by means of two sub-models (Eqs. 1 and 2) that are coupled through mosquito bites;
see Fig. 1b. The full ODE system can be written as:

dS

dt
= fH N − β S + σR − δ S + ρ C

dE

dt
= β S − δ E − γ E

d I

dt
= (1− χ) γ E − η β I + ν C − r I − � I − δ I

d R

dt
= −σR + r I − δ R

dC

dt
= χ γ E + η β I − ν C − ρ C − α C − δ C (1)

dL

dt
= f (X + V +W )

(
K0 − L

K0

)
− δL L − dL L

dX

dt
= −c a y X − δM X + dL L

dV

dt
= +c a y X − γV V − δM V

dW

dt
= γV V − δM W, (2)

where N is the total human population, which is assumed constant ( fH = δ), y is the
fraction of infectious humans (y = (C + I )/N ) or disease prevalence, β is the per
capita rate of disease acquisition by humans through infectious bites (β = a b W/N ),
and r is a function of the number of infectious mosquitoes—see Eq. (3). This is a
key point of our formulation: the way effective per capita recovery rates, r , behave
as transmission intensity (the rate of infectious bites per human) change. Under the
assumptions that (1) infectious bites arrive at a constant Poissonian rate, (2) the
individual infections within a host progress independently, and (3) last a constant
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Fig. 1 The human-mosquito SECIR-LXVW coupled model. Fluctuations in rainfall and tempera-
ture induce variability in malaria cases a through the dynamics of disease transmission represented
in themodel b including response functions that map temperature and rainfall onto certain mosquito
model parameters. Model predictions capture real variability in cases including an abrupt shift to
higher variability in the 2nd half of the time series (c) [1]. The model also predicts hysteresis (d)

period, 1/r0, Dietz, Molineax, and Thomas [4] derived the following expression for
the effective per capita recovery rate,

r(�) = �

exp(�/r0) − 1
, (3)

where � denotes the rate of total infectious bites per human (� = a W/N ), and r0,
is the basal recovery rate when disease transmission is very low (more precisely, in
the limit of the infectious mosquito population tending to zero). Thus, the higher the
rate of infectious bites per human host, �, the slower the disease clearance rate, and,
therefore, the longer humans remain infectious. In vector-borne diesase models, the
� parameter is usually measured per year, and called the entomological inoculation
rate (EIR).
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3 Results

3.1 Saddle-Point Bifurcation

Stationary points of the coupled system are identifed by a semi-analytical method
that consists of first finding the equilibria of the two submodels separately, this is,
first, finding the expression for the number of infectious mosquitoes as a function
of a given fraction of infectious humans (according to the mosquito submodel), and,
second, the expression for the fraction of infectious humans for a given number of
infectingmosquitoes (according to the human submodel). The fixed points should be,
therefore, defined by the intersection of these two curves; see Fig. 2. The generality
and feasibility of this method relies on the linearity of the human and mosquito
submodels when considered separately. This means that both the human submodel
(for a given number of infectious mosquitoes, W �), and the mosquito submodel (for
a given fraction of infectious humans, y) are linear ODE systems.

Figure2 shows that the intersection of the curves can produce more that one fixed
point. As the biting rate a increases, the system undergoes two bifurcations. The
first one corresponds to a transcritical bifurcation [5], and represents the transition
from a free-disease situation (R0 < 1) to an endemic stable equilibrium (R0 > 0).
The second one corresponds to a saddle node bifurcation (also called a tangential
or fold bifurcation). The tangential intersection of the two curves defines a critical
biting rate (aC = 0.19089). For a > aC , there is the sudden appearance of a pair
of resting points, a saddle node and a second stable point with a higher fraction
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of total infectious humans. The first stable point corresponding to a lower disease
prevalence remains. As a result, two basins of attraction coexist, each consisting of
initial conditions that lead to one of the two alternative stable states, separated by the
existence, of an intermediate unstable state.

3.2 Hysteresis

Coexistence of stable equilibria give rise to a hysteretic behavior. When an exter-
nal perturbation is applied through a gradual increase of a model parameter (for
instance, the biting rate, a), the system responds with an abrupt, non-linear increase
in disease prevalence. However, the symmetric gradual decrease of the same param-
eter is unable to drive the system back to the initial disease incidence levels. This
involves an asymmetry in the temporal trajectories from endemicity to elimination,
and from elimination to re-emergence. These hysteresis effects are illustrated in
Fig. 1d. Although decreasing a back to its initial low values would eventually lead
the system to settle down at the initial low incidence equilibrium, the transient tra-
jectory to this state can take very long.

4 Conclusion

Our work demonstrates that inclusion of superinfection in malaria models, not only
determines the lengthening of infectious periods [4], but is a key factor responsible for
the coexistence of multiple stationary states, and the possibility of nonlinear regime
shifts, including hysteresis. This has important implications [2]. Small changes in
parameters (for instance, biting rate a or mosquitoes’ carrying capacity K ) can give
rise to large changes in disease incidence. Control efforts may see no progressive
decrease of incidence until a sudden effect finally occurs. Conversely, the progressive
relaxation of control efforts in endemic regions could generate sudden transitions
from low to high incidence. Finally, concerning variability, as it is conjectured in
Fig. 1c, since mosquito vital rates critically respond to temperature, sudden shifts
from low to large fluctuations in incidencemay follow in epidemic regions as average
temperatures slowly increase due to global warming.
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AMathematical Model of Cancer
Evolution

David Moreno Martos and Andrei Korobeinikov

Abstract Cancer appears as a result of mutations and, due to a very high muta-
bility of cancer cells, undergoes a continuous evolution through its development.
In this note, we introduce a mathematical model of the cancer initial development.
The model describes the cancer evolution in a continuous variant space. It is based
upon the logistic population growth model (the Lotka–Volterra model of compet-
ing populations) and includes a possibility for cell mutations and competition of
different genotypes for limited resources. Numerical simulations are performed to
demonstrate the model suitability.

1 Model

Cancer initially appears as a result of a mutation of a normal cell. Subsequently, this
mutant genotype undergoes through a series of mutations. However, in either case,
to form into a cancer, the mutant genotype has to fix and successfully reproduce in
the cell population. Thus, the mutant genotypes have to successfully compete against
normal cells for the available resources, such as oxygen, nutrients or, simply, space.
The majority of the cancer development models in the literature reflect this fact [7].
Due to a very high mutagenicity of cancer cells, mutations of cancer genotypes
continue further leading to the appearance of a very wide diversity of genotypes
simultaneously present in a tumor.

We start with an assumption that a multitude of genotypes exist and can be present
in a system. Each genotype forms a subpopulation, whose behavior is governed
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by the logistic population growth model (the Lotka–Volterra model of competing
populations). However, in order to allow the possibility of random mutations, we
have to make some modifications in this model.

Let us assume the existence of n different malicious cell genotypes. We are inter-
ested in finding the current concentration of each of these genotypes. The concentra-
tion of the i-th genotype can be defined as the number of the cells of this genotype per
a given volume and denoted by ci (t). (Here, we assume that the cell distribution is
spatially homogeneous.) For a population that comprises a single genotype, the cur-
rent concentration of this genotype c(t) can be described by the logistic population
growth model.

dc(t)

dt
= Bc(t) (1 − h bc1(t)) − Dc(t) (1 + g bc(t)) = Ac(t)(1 − bc(t)). (1)

Here, A, B and D are the per capita growth, birth, and death rates, respectively, in the
most favorable conditions, when the concentration c(t) is small; b = 1/K , where K
is the carrying capacity of the environment; and h and g are positive constants (the
weights), which reflect the impacts of the shortage of the resources on the birth and
death rates. It is obvious that the equalities B + D = A and Bh + Dg = A hold.

Likewise, for a system composed of n different genotypes, assuming the logistic
growth of these genotypes and the competition among them for the limited resources,
we can write the following ODE system for the concentrations ci (t), where i =
1, 2, . . . , n,

dci
dt

= Bici

(
1 − hi

n∑
k=1

bikck

)
− Dici

(
1 + gi

n∑
k=1

bikck

)
. (2)

Here, bii = 1/Ki and bi j reflect the comparative competitive abilities of the geno-
types; see [7]. All the parameters in Eq. (2) are nonnegative.

Model (2) does not include a possibility of mutations and, therefore, cannot be
used to describe evolution. Following the concept suggested in [5], we assume that
random mutations occur in the process of cell division and that the death rates are
not affected by mutations. That is, with probability p ji , a cell of the j-th genotype
produces a daughter cell of the i-th genotype. Then, the systemof ordinary differential
equations can be rewritten as the following:

dci
dt

=
n∑
j=1

Bj p ji c j

(
1 − h j

n∑
k=1

b jkck

)
− Dici

(
1 + gi

n∑
k=1

bikck

)
, (3)

i = 1, . . . , n.
The diversity of genotypes in a tumor is usually very large. Moreover, phenotypes

of the cells of the same genotype are never identical. Therefore, it is reasonable to
assume that in a population (in a tumor, in this case) the phenotypic traits (which are
described by the constants in the model) follow a continuous distribution. Then one
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can replace the n ordinary differential equations in model (3) by a single integro-
partial differential equation. In order to do this, following [1–6, 8], one has to assume
that function c(s, t), where s ∈ � is a variable related to are genotype and � is the
variant space, describes density distribution of the cell by their variants (or “types”
in a more general sense). The model parameters are now functions of s as well.
Then, the cell density distribution can be represented by the following integro-partial
differential equation:

∂c(s, t)

∂t
=

∫
r∈�

B(r)p(r, s)c(r, t)

(
1 − h(r)

∫
q∈�

b(r, q)c(q, t)dq

)
dr −

−D(s)c(s, t)

(
1 + g(s)

∫
q∈�

b(s, q)c(q, t)dq

)
. (4)

The dimension of variant space� is to be determined. Typically (see [1–6, 8]), the
dimension of the variant space is equal to the number of independent phenotypical
traits, but it can be reduced assuming that some of these are variant independent.

2 Numerical Simulations

For simplicity, for numerical simulations withmodel (4), we choose� = [0, 1]. Also
for simplicity, we set h(s) = 0: that is, we assume that the competition does not affect
the birth rate. We set g to be variant independent. Then, g(s) = (B − D)/D, where
B − D > 0. For the competing capabilities we postulate b(s, r) = 1 + β (r − s),
where β is constant. The density probability p(r, s) is defined by the triangle function

p(r, s) =
{

− 1
σ2 |r − s| + 1

σ
if r ∈ [s − σ, s + σ],

0 otherwise,

where the parameter σ is to be defined.
We have to define initial and boundary conditions. For simplicity, we impose

the no-flux boundary conditions at the both ends of the interval [0, 1]. As initial
conditions, we usually used a small-magnitude narrow triangular distribution near a
point of �.

2.1 Changing the Competition Coefficient

Figure1 illustrates results of numerical simulations for β̃ = 0.5 and 0.9 and for
variant independent B and D. (Here β̃ is the nondimensional analogous of parameter
β.) In this figure, one can see contour plots of the nondimensional concentration
x(s, τ ). The colors are related to the levels of x(s, τ ) as is indicated in the color bar
next to the graphics.
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(a) β̃ = 0.5 and T = 7300. (b) β̃ = 0.9 and T = 8250.

Fig. 1 Density distribution in the variant space � for β̃ = 0.5 and 0.9. The density of variants
is represented by colors (see the color bar at the right hand side of the graphic). Here, σ = 0.01,
B = 1, and D = 0.1. Please note formation of a traveling wave of evolution in the space �

Fig. 2 Traveling wave of evolution in space �. Here, σ = 0.01, B = 1, D = 0.1 and β̃ = 0.9

It is easy to see that the higher value β̃ is, the faster the system evolves. However,
the qualitative behavior in the situations is the same: namely, the Darwinian fitness
of the population grows.

Figure2 is a waterfall plot that illustrates the formation of a traveling wave of
evolution in �. For this figure we used initial conditions in the form of the triangular
function with base s = 0.02 and height 100 centered at s = 0.1. This corresponds
to the initial predominance of the normal cells in the population and ensures that the
initial total population is equal to 1.
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We also would like to note that the simulation demonstrates that variant depen-
dence of the nondimensional birth and death rates does not make any change in the
system dynamics. This is hardly surprising because B and D are mostly responsible
for the time scales.
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Resonance of Isochronous Oscillators

David Rojas

Abstract An oscillator such that all motions have the same minimal period is called
isochronous. When the isochronous is forced by a time-dependent perturbation with
the same natural frequency as the oscillator the phenomenon of resonance can appear.
This fact is well understood for the harmonic oscillator and we extend it to the
nonlinear scenario.

1 Introduction

In this communication, we present some results from [4] that aim to characterize the
class of periodic forcings producing resonances in nonlinear isochronous oscillators.

A well-known fact from physics and mathematics is that the harmonic oscillator
with period 2π perturbed by a periodic forcing

ẍ + n2x = p(t),

n = 1, 2, . . ., exhibits resonance whenever the Fourier coefficient

p̂n := 1

2π

∫ 2π

0
p(t)e−int dt

does not vanish. In this context, resonance means that all solutions of the perturbed
equation are unbounded. After this example, the question that naturally arises is if
there exists an equivalent condition for general nonlinear isochronous oscillators. As
far as we know, this question was first raised by Prof. Roussarie in the Open Problems
Session of the II Symposium on Planar Vector Fields (Lleida, 2000).

In this direction, Ortega [3] proved that if the nonlinear isochronous oscillator
satisfies a Lipschitz condition then there exist functions p(t) producing resonance.
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Also, Bonheure et al. [2] give concrete examples of perturbations. Our contribution
in [4] may be interpreted as a nonlinear version of condition p̂n �= 0.

2 Statement of the Results

Consider the oscillator
ẍ + V ′(x) = 0, (1)

x ∈ R, where V ∈ C2(R) is a potential defined on the whole real line satisfying
V (0) = 0, xV ′(x) > 0 if x �= 0, and such that all its solutions are 2π -periodic. The
purpose of the following results is to identify the class of 2π -periodic perturbations
p(t) such that all the solutions of the nonautonomous equation

ẍ + V ′(x) = εp(t) (2)

are unbounded for ε �= 0 small. More precisely, we say that the equation is resonant
if every solution x(t) of (2) satisfies

lim|t |→+∞(|x(t)| + |ẋ(t)|) = +∞.

Let us denote byC := (R/2πZ) × [0,∞) the cylinderwith coordinates (θ, r). The
analogous function that plays the role of the Fourier coefficient p̂n in the nonlinear
case is given by the function �p : C → C defined by

�p(θ, r) := 1

2π

∫ 2π

0
p(t − θ)ψ(t, r)dt,

where ψ(t, r) is the complex-valued solution of the variational equation

ÿ + V ′′(ϕ(t, r))y = 0, y(0) = 1, ẏ(0) = i,

andϕ(t, r) denotes the solution of system (1)with initial data x(0) = r and ẋ(0) = 0.
According to [4, Theorem A], if V satisfies the previous conditions and V ′′ is

bounded over the reals then Eq. (2) is resonant for small ε �= 0 for any p ∈ L1(T)

satisfying the condition
inf
C

|�p(θ, r)| > 0. (3)

This result is a sufficient condition for resonance, but in fact condition (3) is not too
far from being also necessary. Under the same assumptions on V , [4, Proposition 2.2]
shows that if �p has a nondegenerate zero (θ∗, r∗) with r∗ > 0 then system (2) has
a 2π -periodic solution for small ε �= 0. In particular, resonance is excluded in this
situation.
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These two results motivate the choice of condition (3) as the nonlinear version of
p̂n �= 0 for oscillators defined in the whole real line. Indeed, for the linear oscillator
V (x) = 1

2n
2x2, n = 1, 2, . . ., elementary computations lead to the estimates

1

2πn
| p̂n| ≤ |�p(θ, r)| ≤ 1

2π
| p̂n|,

which show the equivalence between the condition p̂n �= 0 and (3). However, there
are also isochronous oscillators having a singularity. This is the case of the well-
known isochronous center

ẍ + 1

4

(
x + 1 − 1

(x + 1)3

)
= 0,

defined for all x ∈ (−1,+∞), solved explicitly by Pinney [5]. Bonheure et al. [2]
considered the perturbed equation

ẍ + 1

4

(
x + 1 − 1

(x + 1)3

)
= ε sin t (4)

and proved that all solutions are unbounded for ε �= 0 small enough. Our contribution
in this scenario is an analogous version of the sufficient condition theorem for reso-
nance. In this case, [4, Theorem B] proves that if p ∈ L1(T) satisfies condition (3)
then all solutions of the equation

ẍ + 1

4

(
x + 1 − 1

(x + 1)3

)
= εp(t) (5)

are unbounded for ε �= 0 small enough.
Although this result is stated for Pinney equation, the same proof can be extended

to a larger class of potentials V having a singularity. Indeed, Bonheure et al. [2]
observed that usually the existence of a singularity of the potential at x = a, a < 0,
determines the behavior of V at infinity. This behavior is precisely the key on the
proof of the Theorem. We refer to [4, App.] for more details.

The computation of the resonance condition (3) may be difficult in general. In this
case, thanks to the contribution of Pinney [5], we are able to compute �p explicitly
for the class of linear trigonometric forcings p(t) = a0 + a1 cos t + b1 sin t . Apply-
ing [4, Theorem B] we obtain that Eq. (5) is resonant if a21 + b21 > 9a20 . In particular,
we recover the result for (4) in [2].

Motivated bymechanical oscillators, all the perturbations taken into account up to
now have been of additive type but in general other kind of perturbations may appear.
Inspired by a problem from geometry, Ai–Chou–Wei [1] studied the equation

ẍ + x = R(t)

x3
, (6)
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x > 0, where R(t) is a T -periodic function, and proved existence of T -periodic
solutions when R is a positive C2-function and T < π . The previous equation with
R ≡ 1 turns out to be isochronous with minimal period π . This fact suggests that
condition T < π seems to be sharp due to the presence of resonance. [4, Theorem C]
is in the direction of proving this fact, showing that the π -periodic function

R(t) =
{
1 if t ∈ [0, π

2 ),

c if t ∈ [π
2 , π),

with c > 0 produces that all solutions of (6) are unbounded if c �= 1.

3 Open Problems

We end this contribution with some related problems that remain unsolved.
First, both the results concerning the identification of the forcings producing

resonance for nonlinear isochronous oscillators defined in the whole plane, we have
presented and the construction of examples by Ortega [3] require the oscillator to
be Lipschitz continuous. However, this requirement seems to be a technicality not
intrinsically linked to the problem itself but to the proof. We expect that no specific
regularity properties of the potential are needed to produce resonance or at least
weaker properties than Lipschitz continuity.

Second, we give a sufficient condition of resonance for the Eq. (5) perturbed by
a linear trigonometric function. Based on the fact that the condition (3) seems also
close to be necessary for resonance, it would be interesting to study if Eq. (5) have
periodic orbits for linear trigonometric forcings satisfying a21 + b21 ≤ 9a20 .

Third, the example R(t) we have given subscribes the idea that Eq. (6) exhibits
resonance if R is π -periodic, but it is discontinuous. We think that smooth examples
can also be constructed but the approach in [4] do not apply in this situation.

Finally, the results presented deal with nonlinear isochoronous oscillators with
one degree of freedom. In more degrees of freedom, the notion of isochronicity is
strongly related with the notion of superintegrability, at least in the Hamiltonian
framework. It would be interesting to relate properly superintegrable Hamiltonian
systems with isochronicity and to construct resonance of such systems.
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Modeling of N-Methyl-D-Aspartate
Receptors

Denis Shchepakin, Leonid Kalachev and Michael Kavanaugh

Abstract Several reduced kinetic models for N -methyl-D-aspartate receptors were
derived in order to suit different experimental protocols. Their simultaneous appli-
cation allows for a step-wise estimation of parameters of a conventional model that
is otherwise overparameterized with respect to the existing data.

1 Introduction

One of the major subtypes of glutamate receptors on neurons is the N -methyl-D-
aspartate receptor (NMDAR). The receptor plays critical role in neural plasticity,
development, learning, and memory. Disrupted function is associated with disor-
ders including epilepsy, depression, schizophrenia, ischemic brain injury, and oth-
ers. NMDARs have been targets of numerous studies, and several models have been
proposed and published over the last two decades to explain the dynamics of the cur-
rents mediated by the NMDAR ion channel, e.g., [1, 2]. However, conclusions about
receptor kinetics based on these Markov models are typically limited by model over-
parameterizationwith respect to the available data. Such obstacles cannot be resolved
by switching fitting methods; rather the model and the experiments must be adjusted
to be in line with each other. In this work, we design the experiments alongside with
model development to resolve this issue of overparameterization.
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2 NMDAR Desensitization

For common NMDARs are commonly heterotetramers composed of two NR1- and
two NR2-subunits [2]. For NMDARs to signal by ion channel opening, they must
bind glutamate at each of two NR2 subunits as well as co-agonist (either D-serine or
glycine) at each of two NR1-type subunits. In response to prolonged agonist pulses,
NMDARs desensitize: a process in which the response amplitude decays over time.
The desensitization effect increases and speeds up in the presence of limiting co-
agonist [1]. This phenomenon could potentially be explained by different mecha-
nisms or a combination of mechanisms. One possibility is that co-agonist already
bound to the NMDAR could experience a reduction in affinity following glutamate
binding (“glycine (or D-serine)–dependent desensitization”; see [1]). Alternatively,
the effect of co-agonist concentration on desensitization may not depend on agonist–
co-agonist site interactions: upon binding all four molecules, some fraction of the
receptors transfers into a long-lived nonconductive state instead [3]. The general
chemical kinetic model of the process is shown in Fig. 1. Estimating the reaction
rates for state transitions reflecting these processes will answer the question of the
nature of NMDAR desensitization.

3 Modeling and Experiments

The activation of NMDAR receptors by agonist and co-agonist binding facilitates
flow of ions across the cell membrane and this can be recorded as a current in a patch
clamp experiment. Piezoelectric switching of solutions bathing an excised outside-
out patch allows for fast agonist application. During the experiment, one substrate
is chronically present while other one is supplied in a short pulse manner. Varying

Fig. 1 General model of
NMDA receptor with two
binding sites for L-glutamate
and D-serine agonists. R
denotes the receptor, S
denotes D-serine, and G
denotes L-glutamate.
G2R′S2 is a long-lived
nonconductive state and
G2R∗S2 is a conductive
state. Each Ki is an
equilibrium constant for the
corresponding reaction: Ki =
k+
i /k−

i , where k
+
i and k−

i are
the forward and reverse
reaction rate constants,
respectively
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the concentrations of D-serine and L-glutamate from saturating to relatively low, we
can accelerate or slow down reactions in particular directions. Applying Boundary
Function Method [4] to the model depicted in the Fig. 1 will yield different results
for different scenarios. Here, we show that the appropriate choice of an experimental
design allows for a reliable step-wise parameter estimation: the resultingmodels have
different subsets of parameters of the original model, and some parameter estimates
obtained in one experiment can be used in the other ones.

The model that correspond to the chemical kinetic scheme depicted in Fig. 1 is a
system of differential equations with 11 variables, each corresponding to one state.
Let us denote these variables using states notations, i.e., the variable R(t) is a fraction
of all receptors that are in R state, etc. Therefore, the sum of all variables is 1. For
all reduced models, we denote the leading order approximations in the following
manner:

R(t) = α(t) + O(εs), G2RS(t) = y(t) + O(εs),

RG(t) = β(t) + O(εs), GRS2(t) = ζ(t) + O(εs),

RG2(t) = γ (t) + O(εs), G2RS2(t) = z(t) + O(εs),

RS(t) = η(t) + O(εs), G2R′S2(t) = z′(t) + O(εs),

RS2(t) = x(t) + O(εs), G2R∗S2(t) = z∗(t) + O(εs),

GRS(t) = θ(t) + O(εs),

(1)

where ε is a small parameter, which is different for each experiment and is defined
individually in each corresponding section. The current recorded during the experi-
ments is directly proportional to the only conducting state G2R∗S2.

3.1 Saturating Concentration of D-Serine

In this experiment, we apply a saturating concentration of D-Serine and let the system
reach the steady state before a short pulse of L-glutamate at a low concentration. The
presence of saturating D-serine allows us to introduce a small parameter 0 < εs � 1:

S · k+
i =

˜k+
i

εs
, ˜k+

i ∼ O(1),

i = 1, 3, 5, 7, 9, 11, where S is a D-Serine saturating concentration. For the leading
order approximations of the functions (1), we obtain

α(t) ≡ 0, η(t) ≡ 0, β(t) ≡ 0, θ(t) ≡ 0, γ (t) ≡ 0, ζ(t) ≡ 0,
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dx

dt
= −k+

6 Gx + k−
6 y,

dy

dt
= k+

6 Gx − k−
6 y − k+

12Gy + k−
12z,

dz

dt
= k+

12Gy − k−
12z − k+

13z + k−
13z

′ − k+
14z + k−

14z
∗,

dz′
0

dt
= k+

13z − k−
13z

′,

dz∗
0

dt
= k+

14z − k−
14z

∗,

with initial conditions x(0) = 1, y(0) = 0, z(0) = 0, z′(0) = 0, and z∗(0) = 0.

3.2 Saturating Concentration of L-Glutamate

This casemirrors the experiment from theSect. 3.1:we apply saturating concentration
of L-glutamate and let the system reach the steady state before a short pulse of D-
serine at a limiting concentration. We introduce a small parameter 0 < εg � 1 in a
similar manner:

G · k+
i =

˜k+
i

εg
, ˜k+

i ∼ O(1),

i = 2, 4, 5, 8, 10, 12, where G is a L-Glutamate saturating concentration. For the
leading order approximations of the functions (1), we obtain

α(t) ≡ 0, η(t) ≡ 0, x(t) ≡ 0, β(t) ≡ 0, θ(t) ≡ 0, y(t) ≡ 0,

dγ

dt
= −k+

9 Sγ + k−
9 ζ,

dζ

dt
= k+

9 Sγ − k−
9 ζ0 − k+

11Sζ + k−
11z,

dz

dt
= k+

11Sζ − k−
11z − k+

13z + k−
13z

′ − k+
14z + k−

14z
∗,

dz′

dt
= k+

13z − k−
13z

′,

dz∗

dt
= k+

14z − k−
14z

∗,

with initial conditions γ (0) = 1, ζ(0) = 0, z(0) = 0, z′(0) = 0, and z∗(0) = 0.
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3.3 Saturating Concentrations of both Substrates

In this experiment, the concentrations of both agonist and co-agonist are high, there-
fore, a small parameter 0 < εb � 1 can be defined as

S · k+
i =

˜k+
i

εb
, ˜k+

i ∼ O(1),

G · k+
j =

˜k+
j

εb
, ˜k+

j ∼ O(1),

i = 1, 3, 5, 7, 9, 11, j = 2, 4, 5, 8, 10, 12. The functions (1) depend on which sub-
stance is always present and which is given in a short pulse manner. Let us consider
the case when D-serine is applied continuously throughout the whole experiment
with steps of L-glutamate. Then we have

α(t) ≡ 0, η(t) ≡ 0, β(t) ≡ 0, θ(t) ≡ 0, γ (t) ≡ 0, ζ(t) ≡ 0,

dz0
dt

= −k+
13z0 + k−

13z
′ − k+

14z0 + k−
14z

∗

dz′

dt
= k+

13z0 − k−
13z

′,

dz∗

dt
= k+

14z0 − k−
14z

∗,

with initial conditions z0(0) = 1, z′(0) = 0, and z∗(0) = 0. And

x(t) = e−k+
6 Gt ,

y(t) = k+
6

k+
12 − k+

6

(

e−k+
6 Gt − e−k+

12Gt
)

,

z(t) = z0(t) + k+
6 k

+
12

k+
12 − k+

6

(

1

k+
12

e−k+
12Gt − 1

k+
6

e−k+
6 Gt

)

.

Let us also notice that after the L-Glutamate pulse stops, one should use the model
from Sect. 3.1 with G = 0.
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4 Conclusion

The experiments and the corresponding reduced models described in Sect. 3 can
be used for the estimation of parameters of the full model depicted in Fig. 1 in a
step-wise manner. The low number of parameters at each step helps to resolve the
overparameterization issue. The estimates of reaction rates constants will give us the
answer about the nature of NMDAR desensitization.
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Some Lessons from Two Simple
Approaches to Model the Impact
of Harvest Timing on Seasonal
Populations

Eduardo Liz

Abstract Using two different discrete-time models for seasonal populations, we
review the potential effects of harvesting in regard to population abundance, stability,
and extinction, and we emphasize how these effects strongly depend on harvest
timing. We also stress the fact that census timing is crucial, and populations should
be measured as many times as a discrete event occurs during the year cycle.

1 Introduction

An important challenge in harvesting and management theory is predicting popu-
lation responses to the removal of individuals. In seasonal populations, for which
population growth is controlled by a combination of density-dependent processes
during different periods of the annual cycle, the timing of harvesting not only influ-
ences the impact of captures on population abundance, but also can alter stability
properties and extinction risk.

Recently, we have addressed this problem for discrete-time population models,
assuming proportional harvesting and using two different approaches. Both lead to
one-dimensional discrete dynamical systems, which makes the mathematical anal-
ysis simpler than with other approaches. The first model was introduced by Seno
in 2008 [12], and assumes that there is a specific season during which population
accumulates energy for reproduction. Harvesting is assumed to be a discrete event
that can occur at any moment within the season. The second model follows the ideas
introduced by Jonzén and Lundberg in 1999 [6] (see also [10]), and assumes that
there are a breeding and a nonbreeding season in the annual cycle, and harvesting is
considered as a new event that can take place after or before the breeding season.

In this note,we reviewsomepotential effects of harvesting, emphasizinghow these
effects strongly depend on harvest timing. Of particular interest is the hydra effect,
defined as a paradoxical increase in population size in response to an increasing mor-
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tality [1]. In a recent paper, McIntire–Juliano [9] found strong evidence that timing
of mortality contributes to overcompensation and the hydra effect in mosquitoes.

We also stress the fact that census timing is crucial, and populations should be
measured as many times as a discrete event occurs during the year cycle.

The paper is based on Refs. [3, 7], although it contains new insight concerning
analogies and differences between the two mentioned models; the role of harvest
timing inmodelswithAllee effects; and how to choose harvest time based on different
criteria, such as sustainability ormaximizing the yield. Paper [3] has recently won the
Bellman Prize, awarded every two years for the best paper published in the journal
Mathematical Biosciences over the preceding two years [2].

2 Seno’s Model

For many species, births occur in well-defined breeding seasons in the annual cycle,
and their life stories are usually described by discrete-timemodels.We consider a sea-
sonal population subject to some form of harvesting (e.g., fishing, hunting, control).
The simplest models assume only two processes in each generation: reproduction
and harvesting. If harvesting is proportional to population stock, so that a percentage
γx of the population size x is harvested every year, the between-year dynamics is
defined by the simple model

xn+1 = (1 − γ) f (xn), (1)

n = 0, 1, 2, . . ., starting at an initial population size x0 ≥ 0.Here, xn is the population
size after n generations and f is the production function. For a review of some
potential effects of harvesting in this simple model, we refer to [8] and references
therein. One important remark is that even in this situation, census time is relevant
for management decisions. Indeed, if population is censused after reproduction, the
model reads

xn+1 = f ((1 − γ)xn), (2)

n = 0, 1, 2, . . .. AlthoughEqs. (1) and (2) are topologically conjugated, and therefore
they exhibit the same dynamics, in case of overcompensatory dynamics (usually
represented by a unimodal map f ), Eq. (2) can exhibit hydra effects.

A manager who only measures population after reproduction and before harvest-
ing, may have the impression that increasing harvesting intensity can be beneficial
for population abundance, while if census takes place after harvesting, the message
can be the opposite; see [5] for more details.

Since we are interested in the influence of harvest timing, we need to consider
a more sophisticated model. Seno [12] suggested a model in which it is assumed
that there is a prereproductive season of length T , and harvesting can take place at
any moment τ = θT , 0 ≤ θ ≤ 1, during this season. The intraspecific density effect
on reproduction is then divided in two parts: one depending on xn , and the other
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on (1 − γ)xn . For a recruitment map f and proportional harvesting, Seno’s model
writes

xn+1 = θ(1 − γ) f (xn) + (1 − θ) f ((1 − γ)xn). (3)

In mathematical terms, the right-hand side of (3) is a convex combination of the
right-hand sides of models (1) and (2). Seno showed that, for stable overcompen-
satory populations, the earlier we harvest, the most the population size is increased.
In [3], we extended the mathematical analysis to study how harvest time may deter-
mine the stability of the equilibrium, and to analyze models with Allee effect [4],
where there is a higher risk of population extinction. In these models, overharvesting
leads population to extinction when the equilibrium x = 0 becomes globally asymp-
totically stable after a tangent bifurcation occurs. The main conclusions from Seno’s
model are the following:

(i) In models without Allee effects:

(1) the critical value of γ leading to extinction does not depend on harvest time;
(2) later harvesting leads to a decrease in population size at the equilibrium, so

early harvest is better for conservation purposes;
(3) in the presence of dynamical instabilities, intermediate harvest times can

help to stabilize the positive equilibrium, sometimes preventing population
extinction due to stochastic perturbations.

(ii) In the presence of Allee effects, mid-season harvesting can induce extinction.

In Fig. 1, we represent these effects for the Ricker map f (x) = xe2.5(1−x) (without
Allee effects), and for the Ricker–Schreiber map f (x) = 0.5x2e4(1−x)/(1 + 0.5x),
which exhibits a strong Allee effect [11].

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

harvesting rate, γ

P
op

ul
at

io
n

si
ze

,
x

(a)
θ = 0

θ = 0.5

θ = 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

harvesting rate, γ

P
op

ul
at

io
n

si
ze

,
x

(b)
θ = 0

θ = 0.5

θ = 1

Fig. 1 Bifurcation diagrams for Seno’s model (3) as harvesting rate γ is increased, with different
harvest times. a For a Ricker map, the critical value of γ leading to extinction does not depend
on θ, but intermediate values of θ help to stabilization; b For a Ricker–Schreiber map with Allee
effect, intermediate values of θ may increase the risk of extinction. In both cases, a hydra effect is
observed for early harvesting. Dashed lines correspond to unstable equilibria
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3 The Seasonal Model of Jonzén and Lundberg

There are species subject to harvesting whose annual cycle is divided into a breeding
season (typically, summer) and a nonbreeding season (typically, winter), and a har-
vesting season is only allowed either in spring or in autumn; see, e.g., [7]. For these
populations, the main lesson that we could learn from Seno’s model is that autumn
harvest is preferable to increase average population abundance. Perhaps, the main
drawback of Seno’s model is that it predices similar qualitative behavior for very
early and very late harvest within the season, because the cases θ = 0 and θ = 1 are
equivalent in Eq. (3). Hence, in regard to stability and bifurcations, it would not show
any difference between autumn and spring harvest; see Fig. 2.

The discrete-time Jonzén–Lundberg model [6, 7] consists of a composition of
three discrete events during the annual cycle: density-dependent breeding, that
we represent by a Ricker map R(x) = xer(1−x), r > 0; density-dependent mor-
tality represented by M(x) = xe−ax , a > 0; and proportional harvesting, given by
H(x) = (1 − γ)x , γ ∈ (0, 1). In this way, spring harvest is represented by equation

xn+1 = R(H(M(xn))), (4)

n = 0, 1, 2, . . ., while autumn harvest is governed by

xn+1 = R(M(H(xn))), (5)

n = 0, 1, 2, . . ..
In both models, population is sampled after reproduction, but the relative order

of the three discrete events is different, which can dramatically affect the size and
dynamics of populations [10]. Regarding permanence, it is easy to prove that the

Early harvest

�

Density-dependent
mortality

�

Late harvest

� RR

Summer Autumn Winter Spring Summer

Specific season

Fig. 2 Representation of the different seasons in the Jonzén–Lundberg model, where reproduction
(R) occurs in summer, mortality during winter, and the harvest season is either autumn or spring.
In Seno’s model (3), autumn harvest would correspond to early harvest within the specific season
(small θ), and spring harvest would correspond to late harvest within the specific season (θ close to
1)
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critical value of γ leading to extinction does not depend on harvest time, and it is the
same value predicted by Seno’s model.

Proposition 1 (Extinction) Assume that R(x) = xer(1−x), M(x) = xe−ax , H(x) =
(1 − γ)x, with r > 0, a > 0, 0 < γ < 1. Then Eqs. (4) and (5) have at least one
positive equilibrium if and only if γ < γ∗ := 1 − e−r . If γ ≥ γ∗, then all solutions
converge to zero.

Regarding stability, Jonzén–Lundberg [6] argued that increasing harvesting is
stabilizing, and the stability effect is stronger for autumn harvest. However, a further
analysis shows that this effect depends strongly on the mortality rate a. Roughly
speaking, the effect is stronger for autumn harvest only if a is large enough. Notice
that mortality rates also influence which harvest season is better for population size,
and again (5) is better for higher mortalities [7]; see Fig. 3a, b.

As far as we know, the Jonzén–Lundberg model has not been studied when the
recruitment function R exhibits Allee effects. As in Seno’s model, there is a critical
value γ∗ of the harvesting rate parameter for which a saddle–node bifurcation occurs.
This value is different for spring harvest and autumn harvest. Numerical simulations
suggest that autumn harvest can be beneficial to prevent sudden collapses; see Fig. 3c.
This issue deserves further study.

An important feature of the seasonal models (4) and (5) that it is not present
in Seno’s model is that, for large growth rates r (a necessary condition is r > 4),
the reproduction function R(x) can have 3 critical points and 3 positive equilibria.
This property opens the possibility for the coexistence of two nonzero attractors,
and increasing harvesting can either promote or prevent bistability. Moreover, other
phenomena such as non-smooth hydra effects, hysteresis and stability switches are
possible; see [7] for more details.
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Fig. 3 Bifurcation diagrams for the Jonzén–Lundberg model as harvesting rate γ is increased,
with blue color for spring harvest and black color for autumn harvest. Dashed lines correspond to
unstable equilibria. a R(x) = xe3(1−x), M(x) = xe−0.2x ; b R(x) = xe3(1−x), M(x) = xe−2x ; c
R(x) = 2x2e3(1−x)/(1 + 2x), M(x) = xe−2x
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Fig. 4 Population size at equilibrium as harvesting intensity is increased, with blue color for
spring harvest and black color for autumn harvest. a Census after reproduction; b Census after
natural mortality; c Census after harvesting

4 The Importance of Census Time

Another difference between Seno’s model and the approach of Jonzén–Lundberg is
that in the latter census can take place in three different moments, namely, after every
discrete event occurs in the annual cycle. As we have mentioned, even in simple
models with only two discrete events, census time is important for management
decisions. Although this aspect has been emphasized in previous work (e.g., [5, 7,
10]), we give an illustrative example and propose two criteria to choose between
spring and autumn harvest.

In Fig. 4, we plot the positive equilibrium of models (4) and (5), with R(x) =
xe3(1−x), M(x) = xe−0.3x , H(x) = (1 − γ)x . We denote by Nb, Nnb, and Nh the
population sizes at the end of the breeding, the nonbreeding, and the harvesting
seasons, respectively. A manager looking at panel (b) (census after winter mortality)
would say that spring harvest is preferable for conservation purposes, but panel (c)
sends the opposite message.

We suggest two criteria for choosing between autumn harvest and spring harvest.
Having in mind the diagrams in Fig. 5, we arrive at the following conclusions:

(i) looking at census with lower population densities: if the target is sustainability,
it seems autumn harvest is preferable;

(ii) looking at the yield: if the target is maximizing yield, again autumn harvest
seems to be better.

5 Discussion

Theoretical and experimental results indicate that the size of seasonal populations
depends strongly on harvest time. Using two different approaches based on discrete-
time population models, we aimed to contribute to the understanding of the influence
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Fig. 5 Comparison between spring harvest (blue color) and autumn harvest (black color). a Low
population densities are attained censusing after harvesting in the first case, and after natural mor-
tality in the second one; b The yield is obtained as the difference between the number of individuals
just after the harvesting season and just before it

of harvest time and census time in the management of exploited populations. In
summary, we list the following main conclusions:

(i) Extinction: for globally persistent models, harvest timing does not change the
critical harvest intensity leading to extinction. In models with Allee effects, a
suitable harvest timing could prevent population collapses.

(ii) Stability: harvest timing has a strong influence on the stability properties of
the population. However, choosing a suitable harvest season depends on other
population parameters (birth rate, mortality rate).

(iii) Hydra effects: population can increase in response to an increasing mortality.
Harvesting seasonal populations can lead to new forms of this paradoxical
effect.

(iv) Census time: seasonal models emphasize the importance of sampling the pop-
ulation after every discrete event occurs during one cycle.
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Global Stability Conditions
of the Disease-Free Equilibrium
for a Lymphatic Filariasis Model

Egberanmwen Barry Iyare, Daniel Okuonghae and Francis E. U. Osagiede

Abstract Thiswork presents amathematicalmodel for the spread of lymphatic filar-
iasis in a population. We use the Metzler Matrix Theory and the Kamgang–Sallet [2]
(Math Biosci 213, 1–12, 2008) algorithm to compute the threshold conditions and
global stability of the disease-free equilibrium.We showed that if R0 < 1 the disease-
free equilibrium (DFE) is globally asymptotically stable (GAS), and if R0 > 1, the
disease-free equilibrium is unstable.

1 Introduction

Lymphatic filariasis is one of the neglected tropical diseases. The disease is caused by
a microscopic thread-like parasitic worm called filariae. It is transmitted by various
species of mosquitoes [1]. The species Brugia malayi, Brugia timori, andWuchereria
bancrofti inhabit the lymphatic system, hence, the disease they cause is called lym-
phatic filariasis [3]. According to [4], over 120 million people are infected globally
with about 40million disfigured and incapacitated by the disease.

In this paper, we constructed a model of lymphatic filariasis. We use the Metzler
matrix theory and the techniques in [2], to study the threshold conditions and global
stability of the disease-free equilibrium.
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2 Model Formulation

The total human population at time t is denoted by Nh(t), and subdivided into five
mutually disjoint compartments of the susceptible humans Sh(t), the latent individu-
als, Eh(t), the asymptomatic individuals, Ah(t), the symptomatic individuals, Ih(t),
and the treated individuals, Th(t). The total vector population at time t is denoted
byNv(t) and subdivided into three mutually disjoint compartments of susceptible
mosquitoe,s Sv(t), the latent mosquitoes, Ev(t), and the infectious mosquitoes, Iv(t),
that is

Nh(t) = Sh(t) + Eh(t) + Ah(t) + Ih(t) + Th(t). (1)

Nv(t) = Sv(t) + Ev(t) + Iv(t) (2)

Based on the assumptions above, the model is given by the following system of
nonlinear ordinary differential equations:

Ṡh = �h − λvSh − μh Sh,

Ėh = λvSh + νλvTh − (k1 + μh)Eh,

Ȧh = k1Eh − (k2 + μh)Ah

İh = k2Ah − (τh1 + δL + μh)Ih

Ṫh = τh1 Ih − νλvTh − μhTh

Ṡv = �v − λh Sv − μvSv,

Ėv = λh Sv − kvEv − μvEv,

İv = kvEv − μv Iv, (3)

where λv = (βvσvσh Iv)/(σvNv + σh Nh) and λh = (βhσvσh(η1Eh + ηh1Ah + Ih))/
(σvNv + σh Nh). The variables of system (3) are summarize in Table1.

2.1 Global Stability of the Model

ThedomainD = Dh × Dv ,whereDh = {(Sh, Eh, Ah, Ih, Th) ∈ R
5+ : Nh ≤ �h/μh}

and Dv = {(Sv, Ev, Iv) ∈ R
3+ : Nv ≤ �v/μv}, is positively invariant and attracts all

the positive trajectories of model (3). Thus, the system (3) is dissipative on �, the
trajectories of (3) are forward bounded. We shall study the system (3) in�. As in [2],
we write system (3) in the form

ẋ1 = A1(x1, 0)(x1 − x∗
1 ), (4)

ẋ2 = A2(x) · x2, (5)
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Table 1 Description of state
variables of the model

Variable Description

Sh(t) Population of susceptible individuals

Eh(t) Population of individuals with latent LF

Ah(t) Population of individuals with
asymptomatic LF

Ih(t) Population of individuals with
symptomatic LF

Th(t) Population of individuals treated of LF

Sv(t) Population of susceptible mosquitoes

Ev(t) Population of exposed mosquitoes

Iv(t) Population of infectious mosquitoes

where x1 = (Sh, Th, Sv) are the non-transmitting compartments, x2 = (Eh, Ah, Ih,
Ev, Iv) are the transmitting compartments, and x∗

1 is the disease-free equilibrium
point.

Theorem 1 (Kamgang–Sallet, [2]) The disease-free equilibrium is globally asymp-
totically stable if all eigenvalue of A1 are real negative and A2 is a Metzler matrix.

We express the subsystem (4) as

Ṡh = �h − λvSh − μh Sh,

Ṫh = τh1 Ih − νλvTh − μhTh,

Ṡv = �v − λh Sv − μvSv, (6)

where

A1 =
⎛
⎝

−(λv + μh) 0 0
0 −(νλv + μh) 0
0 0 −(λh + μv)

⎞
⎠ . (7)

Since all the diagonal entries are negative, the subsystem is globally asymptotically
stable at the disease-free equilibrium (�h/μh, 0,�v/μv). Hence, assumptions H1

and H2 in [2] are satisfied. The subsystem (5) is given as

Ėh = λvSh + νλvTh − (k1 + μh)Eh,

Ȧh = k1Eh − (k2 + μh)Ah,

İh = k2Ah − (τh1 + δL + μh)Ih,

Ėv = λh Sv − kvEv − μvEv,

İv = kvEv − μv Iv, (8)
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where A2(x) is

A2 =

⎛
⎜⎜⎜⎜⎝

−g1 0 0 0 G1

k1 −g2 0 0 0
0 k2 −g3 0 0

η1G2 ηh1G2 G2 −g4 0
0 0 0 kv −μv

⎞
⎟⎟⎟⎟⎠

,

g1 = k1 + μh , g2 = k2 + μh , g3 = τh1 + δL + μh , g4 = kv + μv , G1 = (βvμv�h

σvσh)/ (σv�vμh + σh�hμv), and G2 = (βhμh�vσvσh)/(σv�vμh + σh�hμv).
Since all the off-diagonal entries of A2(x) are nonnegative, A2(x) is aMetzler matrix
and irreducible for x in �, satisfying assumption H3 in [2].

According to assumption H4 in [2], there exists an upper bound matrix Ā2 for
�̄ = {A2(x) | x ∈ �} with the property that either Ā2 /∈ �̄ or Ā2∈ �̄ That is, Ā2 =
max��̄. The points where these maximum is realized are contained in the disease-
free of subsystem (5).

Proposition 2 (Kamgang–Sallet, [2]) Let M be a Metzler matrix, which is block
decomposed as follows:

M =
(
A B
C D

)
,

where A and D are square matrices. Then M is Metzler stable if and only if A and
D − CA−1B are Metzler stable.

We decompose the matrix A2 in block form as follows:

A2 =
(
A B
C D

)
,

where

A =
( −g1 0 0

k1 −g2 0
0 k2 −g3

)
, B =

(
0 G1
0 0
0 0

)
, C = (

η1G2 ηh1G2 G2
0 0 0

)
, D =

( −g4 0
kv −μv

)
.

Assumption H5 in [2] requires α(A2) ≤ 0, where α is the largest eigenvalue of A2.
Matrix A2 is Metzler stable if A and D − CA−1B are Metzler stable. Obviously,

A is Metzler stable. The matrix

D − CA−1B =
(−g4 Ĝ

kv −μv

)
, CA−1B =

(
0 −Ĝ
0 0

)
,

where Ĝ = G1G2(η1g2g3 + k1ηh1g3 + k1k2)/g1g2g3, is a regular splitting with a
diagonal negative matrix.

Proposition 3 (Kamgang–Sallet, [2]) Let M = � + N be a regular splitting of a
real Metzler matrix M. Then, M is Metzler stable if and only if the spectral radius
ρ(−N�−1) < 1.
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For subsystem (8), we have

D−1 =
( −1

g4
0

kv

μvg4
−1
μv

)
, −CA−1BD−1 =

(
Ĝkv

μvg4
Ĝ
μv

0 0

)
.

The spectral radius ρ(−CA−1BD−1) is given by

R0 = σhσv

(�hμvσh + �vμhσv)

√
kvβhβv�h�vμhĜ

G1G2g4
. (9)

Now, by [2, Corollary 4.4], we establish the following result.

Theorem 4 The disease-free equilibrium of the model (3) is globally asymptotically
stable in D if R0 < 1, and is unstable ifR0 > 1.

Here, R0 is the threshold quantity called the basic reproduction number. It repre-
sent the average number of secondary cases that one individual (ormosquito) infected
with lymphatic filariasis would generate over the duration of the average infectious
period, if introduced into a susceptible human (or mosquito) population. Satisfying
the condition R0 < 1 leads to eradication of the disease in the population while
R0 > 1, leads to persistence of the disease.
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Repulsive Invariant Manifolds in
Modeling the Critical Phenomena

Elena Shchepakina

Abstract The paper shows how the repulsive invariant manifolds of multiscale
dynamical systems are used formodeling the critical phenomena.Adynamicalmodel
of fuel spray ignition is considered to illustrate this approach.

1 Introduction

The paper outlines an approach to modeling the critical phenomena in multiscale
dynamical models. Such models are usually described by singularly perturbed sys-
tems of differential equations to reflect the significant distinction in characteristic
relaxation times of different processes. The approach is based on the geometric
asymptotic method of invariant manifolds; see [4].

By a critical phenomenon, we mean a sharp change in a model’s dynamics via a
transition from a slow process to a self-acceleratingmode. According to the theory of
invariant manifolds, processes with self-acceleration correspond to trajectories that
either has no common point with an attractive slow invariant manifold, or leave it
after a while; see [3]. The last situation occurs when the trajectory reaches a boundary
separating the attractive slow invariant manifold from repulsive one.

Using a fuel spray ignitionmodel,wedemonstrate how the repulsive slow invariant
manifold can be used for modeling the critical phenomena.
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2 Model

Themodel of ignition and combustion of a fuel spray is formulated using an adiabatic
approach. The fuel spray is considered as a two-phase medium: the combustible gas
mixture and the combustible liquid droplets. The effects of changes in pressure are
neglected. The usual assumption is made that the thermal conductivity of the liquid
phase is much greater than that in the gas phase. Thus, the heat transfer coefficient
in the liquid gas mixture is supposed to be defined by the thermal properties of the
gas phase. The droplets boundary is assumed to be on a saturation line, i.e., the
liquid temperature is constant and is equal to the liquid saturation temperature. The
combustion reaction is modeled as a first order, highly exothermic chemical reaction.
The model is built with the usual assumptions of the theory of combustion processes
in chemical homogeneity at each point of the reaction vessel. The dimensionless
model has the following form (see [1])

γ
dθ

dτ
= η exp

(
θ

1 + βθ

)
− ε1rθ(1 + βθ), (1)

dr3

dτ
= −ε1ε2rθ, (2)

dη

dτ
= −η

1

1 + βθ
exp

(
θ

1 + βθ

)
+ ε1rψθ, (3)

where θ is the dimensionless fuel gas temperature; r is the dimensionless radius
of the droplets; η is the dimensionless concentration of the flammable gas; τ is the
dimensionless time; γ is the dimensionless parameter equal to the final dimensionless
adiabatic temperature thermally isolated system after the explosion;β gives the initial
temperature; ε1, ε2 characterize the interaction between the gas and liquid phases;
ψ is a parameter characterizing the ratio of the energy of combustion gas mixture to
the liquid evaporation energy.

The initial conditions for the Eqs. (1)–(3) are

θ(0) = 0, η(0) = 1, r(0) = 1.

Appropriate combination of Eqs. (1)–(3) and integration over time yields the follow-
ing energy integral

η − 1 + γ

β
ln(1 + βθ) + ψ − 1

ε2

(
r3 − 1

) = 0,

which allows to reduce the order of the system (1)–(3) to the form
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γ
dθ

dτ
=

(
1 − γ

β
ln(1 + βθ) − ψ − 1

ε2

(
r3 − 1

))
exp

(
θ

1 + βθ

)
− ε1rθ(1 + βθ),

(4)
dr3

dτ
= −ε1ε2rθ. (5)

The degenerate equation, which follows from the fast subsystem (4) for γ = 0,
describes a slow curve

	(θ, r) =
(
1 − γ

β
ln(1 + βθ) − ψ − 1

ε2

(
r3 − 1

))
exp

(
θ

1 + βθ

)
− ε1rθ(1 + βθ) = 0

in the phase plane. The flow of system (4), (5) near the slow curve has a velocity of
O(1) as γ → 0, while far from the slow curve the variable θ is changed very rapidly.
In a γ neighborhood of the slow curve, there exists a slow invariant manifold of the
system which is defined as an invariant surface of slow motions.

The set of points on the slow curvewhere ∂	/∂θ < 0 (∂	/∂θ > 0) forms a stable
(unstable) part of the slow curve. The stable and unstable parts of the slow curve are
the zero-order approximations (γ = 0) of the stable (or attractive) and unstable (or
repulsive) slow invariant manifolds of the system (4), (5), respectively.

For 0 < ψ < 1 − ε2, the slow curve is concave, see Fig. 1a. The part PT of the
slow curve is stable while the part T Q is unstable. The ordinate of the point T
depending on the parameters’ values can be equal to, greater, or less than 1. If the
point T has an ordinate greater than 1, a trajectory of the system starts from the
initial point and tends to the stable part PT of the slow curve. Then it follows PT
to the origin. This is the case of a slow combustion regime; see the trajectory C ′′ J P
in Fig. 1a.

If the point T has an ordinate less than 1, then a trajectory of the system will
pass beyond the basin of attraction of the PT . This case corresponds to an explosion
regime; see the trajectory C ′D in Fig. 1a.

3 Critical Phenomenon

A critical phenomenon corresponds to the case when the trajectory of the system
falls into a small vicinity of the point T and passes along the unstable part T Q of
the slow curve (see the trajectory CT Q in Fig. 1a). This trajectory corresponds to
the critical regime, which separates the safe regimes from explosive modes [3, 5].

The crucial result is that the repulsive slow manifold may be used to construct
the critical trajectory CT Q and to calculate the corresponding value of a control
parameter of the system, say, ε1. To do this, we use the asymptotics proposed in [2].
To make this use eligible, we introduce the new “reverse” time t = −τ in (4), (5)
that make the slow invariant manifold near T Q attractive; see [3].

The part CT of the critical trajectory can be represented in the form
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Fig. 1 a The slow curve (black) and the trajectories (green) of the system (4), (5) with 0 < ψ <

1 − ε2 in the limit case (γ = 0); b the solutions of (1)–(3) in the case of critical regime for γ = 0.01,
ε1 = 2.2100108, ε2 = 0.8, β = 0.05, ψ = 0.19

r(θ, γ ) = r∗ + γ
2
3 �

2
3
0 � sign f (θ∗, r∗) + 1

3
γ ln

1

γ
�1 sign f (θ∗, r∗) + O(γ ), (6)

where θ∗, r∗, denote the coordinates of the point T , the functions f and g are the
right parts of the system (4), (5) after the transition to the reverse time t ,

� = 2.338107, �0 =
√

2

|gθθ (θ∗, r∗)gr (θ∗, r∗)| | f (θ∗, r∗)|,

�1 = 6gθθ (θ
∗, r∗) fθ (θ∗, r∗) − 2gθθθ (θ

∗, r∗) f (θ∗, r∗)
3g2θθ (θ

∗, r∗)
.

The coordinates θ∗, r∗ can be found from the system g(θ∗, r∗) = gθ (θ
∗, r∗) = 0.

Substituting all the found values into (6) and setting r = 1 since the point C has the
coordinate r = 1, we obtain the equation for calculation the critical parameter value
ε1 = ε∗

1 in the form

ε∗
1 = ε10 + γ

2
3 ε11 + γ ln

1

γ
ε12 + O(γ ).

A direct calculation gives

ε10 = pe(ψ − 1)

ε2
, ε11 = −54�(ψ − 1)3 3

√
2

9
μ

4
3
1 μ

− 2
3

23 ε
− 4

3
10 ε

− 4
3

2
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×
{
(1 − 6β)

[
ψ − 1

ε2
(μ3

23 − 1) − 1

]
e + 2ε10μ23β

}− 1
3

[
3μ2

23e
ψ − 1

ε2
+ ε10(1 + β)

]− 1
3

,

ε12 = ε10ε2

3μ23

{
(1 − 14β)

[
ψ − 1

ε2
(μ3

23 − 1) − 1

]
e + 4ε10μ23β

}

×
{
(1 − 6β)

[
ψ − 1

ε2
(μ3

23 − 1) − 1

]
e + 2ε10μ23β

}−2

,

where

q = ε2 + ψ − 1

ψ − 1
, μ1 =

√
q2

4
+ ε310ε

3
2

27(ψ − 1)3
, μ2 = 3

√
q

2
+ μ1, μ3 = 3

√
q

2
− μ1, μ23 = μ2 + μ3,

and p is a root of the equation

1 = 3

√
q

2
+

√
q2

4
+ p3

27
+ 3

√
q

2
−

√
q2

4
+ p3

27
.

It should underline that the main feature of the critical regime is that during it the
temperature of the combustible mixture can reach a high value within the framework
of a safe process, see Fig. 1b.
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A New Approach to Canards Chase in 3D

Elena Shchepakina

Abstract A new approach to the canards chase in 3D for some class of singularly
perturbed systems is suggested. The proposed approach is discussed by the use of
a competitive model of population dynamics. The presence of an exact black swan
(a stable/unstable slow invariant manifold) makes it possible to find a new kind of
trajectories with multiple stability changes.

1 Introduction

In this paper, a new approach to the canards chase for a class of singularly perturbed
systems with two slow and one fast variables is proposed. This approach is based on
the geometric theory of invariant manifolds of singularly perturbed systems [4–6].
Recall, that canards are trajectories of a singularly perturbed system which at first
move along a stable slow invariant manifold and then continue for a while along an
unstable slow invariant manifold. A slow invariant manifold is defined as an invariant
surface of slow motions.

It should be noted that a 3D canard is a result of gluing the stable and unstable
slow invariant manifolds at one point of the breakdown surface [7]. For a fixed gluing
point, this is possible due to a proper choice of an additional scalar parameter of the
differential system. In the proposed approach, two additional parameters are used
to construct a 3D canard. Both these parameters correspond to the canards for 2D-
projections of the original system. The proposed approach is illustrated via a model
of competing populations.
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2 A Competing Predators Model

Consider two predator species competing for a single prey in a constant and uniform
environment. The singular perturbedmodel of the processes is the following (see [1]):

ẋ = x

(
m1z

β1 + z
− d1

)
, (1)

ẏ = y

(
m2z

β2 + z
− d2

)
, (2)

εż = z

(
1 − z − m1x

β1 + z
− m2y

β2 + z

)
. (3)

Here, x and y are the dimensionless population densities of the predators; z is the
dimensionless population density of the prey; ε = 1/γ , where γ is the intrinsic rate
of growth of the prey; for i = 1, 2, mi > 0 is the maximal growth or birth rate of the
i th predator; βi = ai/K , where ai is the half-saturation constant for the i-th predator,
K is the carrying capacity of the prey; di > 0 is the death rate of the i-th predator.

3 2D Canards

Consider the case of the absence of one of the predators, i.e., when, for example,
y ≡ 0. In this case the system (1)–(3) takes the form

ẋ = x

(
m1z

β1 + z
− d1

)
:= f (x, z), (4)

εż = z

(
1 − z − m1x

β1 + z

)
:= g(x, z). (5)

If we put ε = 0 into the fast subsystem, we get the degenerate equation

z

(
1 − z − m1x

β1 + z

)
= 0,

which describes the slow curve S of (4) and (5); see [5, 6]. The curve S consists of
the straight line z = 0 and the parabola. Two breakdown points,

A1

(
x = β1

m1
, z = 0

)
, A2

(
x = (1 + β1)

2

4m1
, z = 1 − β1

2

)
,



A New Approach to Canards Chase in 3D 121

divide S into the stable subsets (Ss1 and Ss2) and the unstable subsets (S
u
1 and Su2 ), see

Fig. 1.
In an ε–neighborhood of the stable (unstable) subset Ss2 (Su2 ) of the slow curve,

there exists the stable (unstable) slow invariant manifold Ss2,ε (Su2,ε). We can glue
together Ss2,ε and Su2,ε at the point A2, using the standard procedure [4–7], to get a
canard. For this, we consider d1 as a gluing parameter. The canard and the corre-
sponding parameter value d1 = dc

1(ε) allow asymptotic expansions in powers of the
small parameter ε:

z = h(x, dc
1(ε), ε) = h0(x, d10) + εh1(x, d10, d11) + O(ε3), (6)

dc
1(ε) = d10 + εd11 + O(ε2). (7)

We can calculate the functions h0, h1, etc., from the invariance equation

ε
∂h

∂x
f
(
x, h(x, dc

1(ε), ε)
) = g

(
x, h(x, dc

1(ε), ε)
)
,

which follows from the system (4) and (5) and the asymptotic expansions (6) and
(7). However, all functions in (6) have a discontinuity at the breakdown point A2. A
proper choice of d10, d11, etc., enables us to avoid this discontinuity. The outcome of
this procedure is a canard shown by the green curve in Fig. 1. The canard corresponds
to the canard point d1 = dc

1 , where

Fig. 1 The slow curve (red),
the canard (green), and the
canard doublet (blue) of (4)
and (5)

A2 �

A1
�

Ss
1Su

1

Su
2

Ss
2
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dc
1 = m1(1 − β1)

1 + β1
− ε

β2
1 (1 + β1)

2(1 − β1)2
+ O(ε2).

It should be noted that z = 0 is the exact canard of the system (4) and (5). In
this special case, the trajectories of the system, starting in the basin of attraction of
Ss1, will continue their movement for a while along Su1 . Therefore, we can transform
the single canard, corresponding to the canard point d1 = dc

1 , to a shape of a canard
doublet (see the blue curve in Fig. 1) [2, 8]. Recall, that in the case of a planar sys-
tem, the canards are exponentially close to each other near the slow curve and have
the same asymptotic expansion (6) in powers of ε. An analogous assertion is true
for corresponding parameter values (7). Namely, any two values of the parameter
d1, for which canards exist, have the same asymptotic expansions, and the differ-
ence between them is given by exp (−1/cε), where c is some positive number. For
example, for β1 = 0.1, m1 = 0.5, and ε = 0.1, the values of d1 corresponding to the
canard and the canard doublet in Fig. 1 are 0.408498400000 and 0.408498356366,
respectively.

The results of this section can be extended to the case x ≡ 0 due to the competitive
symmetry between the predators in (1)–(3). Similar reasoning gives the canard point
dc
2 of the parameter d2, where

dc
2 = m2(1 − β2)

1 + β2
− ε

β2
2 (1 + β2)

2(1 − β2)2
+ O(ε2).

4 3D Canards

We now return to the 3D system (1)–(3). Substituting the canards points for the
parameters d1 and d2 into the complete system (1)–(3), we get a canard in 3D. It
should be noted that the discussed approachmakes it possible to easily obtain various
forms of 3D canards. It can be done by slightly changing the values dc

1 or/and dc
2 .

Note that z ≡ 0 is the exact slow invariant manifold, which is divided by the line
1 − m1x/β1 − m2y/β2 = 0 into the stable and the unstable parts. Thus, z ≡ 0 is
the black swan [3, 4]. The presence of the exact black swan allows us to obtain a
new kind of trajectories with multiple changes of stability, a cascade of 3D canard
doublets.

To obtain the trajectory shown in Fig. 2a, we transform the canard on yOz-plane
to a shape of a canard doublet keeping the canard on xOz-plane. A shape of this
trajectory can be modified, from the cascade of 3D canards without head to the
cascade of 3D canard doublets that shown in Fig. 2b.

It should be noted that the considered situation, when a differential system pos-
sesses an exact black swan is typical for many biological models with two slow and
one fast variables.
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(b)(a)

Fig. 2 The cascades of 3D canard doublets of the system (1)–(3). ε = 0.1, β1 = 0.1,
β2 = 0.13, m1 = 0.5, m2 = 0.4, and a d1 = 0.408515869462, d2 = 0.307288368584; b d1 =
0.408498356366, d2 = 0.307288368584
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Slow Invariant Manifolds in the Problem
of Order Reduction of Singularly
Perturbed Systems

Elena Tropkina and Vladimir Sobolev

Abstract The method of integral manifolds is used to study singularly perturbed
systems of differential equations. The algorithms for the construction of the slow
invariantmanifolds in the casewith different dimensions of the fast and slowvariables
was derived.

1 Introduction

Consider the system of differential equations

ẋ = f (x, y, ε), (1)

ε ẏ = g(x, y, ε), (2)

where x ∈ R
n , y ∈ R

n , ε is a small positive parameter, 0 < ε � 1, functions f and
g are continuous with respect to (x, y) for all x ∈ R

n , y ∈ D ⊂ R
m (D ⊂ R

m). We
will consider a situation where the system (1), (2) has an integral manifold, that is,
when the following conditions are fulfilled (see [1, 4]):

(i) the equation g(x, y, 0) = 0 has an isolated solution y = ψ0(x) for x ∈ R
n;

(ii) the functions f and g are uniformly continuous and bounded together with their
partial derivatives with respect to all variables up to (k + 2)th order inclusively
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(k ≥ 0) in some region �0 = {(x, y, ε) : x ∈ R
n, ‖y − ψ0(x)‖ < ρ, 0 ≤ ε ≤

ε0};
(iii) the eigenvalues of the matrix

B(x) = ∂g

∂y
(x, ψ0(x), 0)

satisfy the inequality Reλi (x) ≤ −2γ < 0.

Note that some interesting aspects of the theory of slow integral manifolds and
the behavior of solutions in their neighborhood were presented in [2, 3].

The degenerated system regarding to (1), (2) has a form

ẋ = f (x, y, 0),
0 = g(x, y, 0).

(3)

It should be noted that the equations of system (3) can often be either transcendental
or polynomials of a high degree with respect to y. In these cases, a solution of
the system cannot be found in explicit form as y = ψ0(x). In these cases, for the
system-order reduction, it is possible to use a parametric form for the representation
of the slow invariant manifolds [4, 5]. Below we consider the three major cases,
where either fast variables, or only a fraction of the fast variables, or fast variables
supplemented by a certain number of slow variables, play a role of the parameters.

2 The Case n = m

Consider the case of the dimensions equality of the fast and slow variables. Suppose
that the system (3) can be solved with respect to x in the form x = ϕ0(y). In this
case, the fast vector-variable y can play a role of a parameter for the representation
of the slow invariant manifolds in the parametric form

x = ϕ(y, ε) = ϕ0(y) + εϕ1(y) + · · · + εkϕk(y) + · · · . (4)

The corresponding invariance equation is obtained by substituting (4) in (1):

∂ϕ

∂y
g(ϕ, y, ε) = ε f (ϕ, y, ε). (5)

For all functions in (5), we write the formal asymptotic expansions in the powers
of the small parameter ε:

f
( ∑

k≥0

εkϕk, y, ε
)

=
∑
k≥0

εk f (k)(ϕ0, . . . , ϕk, y),
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g
( ∑

k≥0

εkϕk, y, ε
)

= g(0)(ϕ0, y) + B(y)
∑
k≥1

εkϕk +
∑
k≥1

εkg(k)(ϕ0, . . . , ϕk−1, y),

where g(0)(ϕ0, y) = g(ϕ0, y, 0) and the nondegenerate matrix B(y) = gx (ϕ0, y, 0);
see [1, 4]. Taking these expansions into account, the invariance equation (5) takes
the form:

∑
k≥0

εk
∂ϕk

∂y

(
g(0) + B

∑
k≥1

εkϕk +
∑
k≥1

εkg(k)
)

= ε
∑
k≥0

εk f (k).

Equating the coefficients at the same of like powers of ε in the last equation,we get the
expressions, which uniquely define the coefficients in (4) when det (∂ϕ0/∂y) �= 0.

Indeed, for ε0 we have g(ϕ0, y, 0) = 0, which give the function ϕ0(y). For ε1, we
get

ϕ1 =
(∂ϕ0

∂y
B

)−1(
f (0) − ∂ϕ0

∂y
g(1)

)
.

Likewise, for εk we obtain

ϕk =
(∂ϕ0

∂y
B

)−1[
f (k−1) − ∂ϕ0

∂y
g(k) −

k−1∑
i=1

∂ϕi

∂y

(
Bϕi + g(k−i)

) ]
.

Thus, the parametric representation of the slow invariant manifold of (1), (2) is found
in the form (4).

3 The Case n < m

Consider the casewhere the number of fast variables in the system (1), (2) exceeds the
number of slow variables. Then, the system (3) containsm equations for n unknowns
and n < m. We take all components of vector x (dim(x) = n) complemented by
m − n components of vector y, as the unknowns. Thereby, the number of equations
and unknowns in the system (3) will coincide.

Suppose that the solution of (3) can be written in the form

x = ϕ0(y2), y1 = ψ0(y2),

with a parameter y2, where y = (y1, y2)T , dim y1 = m − n, dim y2 = n. The system
(1), (2) start the sentence with this can be rewritten in a more convenient form:

ẋ = f (x, y1, y2, ε), (6)

ε ẏ1 = g1(x, y1, y2, ε), (7)
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ε ẏ2 = g2(x, y1, y2, ε). (8)

We will find the slow integral manifold in the form

x = ϕ(y2, ε), (9)

y1 = ψ(y2, ε). (10)

Substituting (9), (10) into (6) and (7), and taking into account (8), we obtain the
invariance equations

∂ϕ

∂y2
g2(ϕ, ψ, y2, ε) = ε f (ϕ, ψ, y2, ε),

∂ψ

∂y2
g2(ϕ, ψ, y2, ε) = g1(ϕ, ψ, y2, ε).

For the functions ϕ(y2, ε), and ψ(y2, ε) we write the formal asymptotic expan-
sions:

ϕ(y2, ε) = ϕ0(y2) + εϕ1(y2) + · · · + εkϕk(y2) + · · · , (11)

ψ(y2, ε) = ψ0(y2) + εψ1(y2) + · · · + εkψk(y2) + · · · (12)

Equating the coefficients of the same powers of ε in the invariance equations, we
get the expressions, which uniquely define the coefficients in (11) and (12) when
det ∂ϕ0/∂y2 �= 0 and det ∂ψ0/∂y2 �= 0.

4 The Case n > m

Consider the case when the dimension of slow variables is greater than the dimension
of fast variables. We call attention to the degenerate subsystem (3). It contains m
equations for n unknowns, where n > m. To find the parametric representation of
the slow invariant manifold of (1), (2), we take all components of y complemented
by n − m components of the vector x , as the parameters. Then a solution of the
system (3) can bewritten in the parametric form x1 = ϕ0(x2, y), where x = (x1, x2)T ,
dim x1 = m, dim x2 = n − m.

The system (1), (2) in this case can be rewritten in more convenient form as

ẋ1 = f1(x1, x2, y, ε),

ẋ2 = f2(x1, x2, y, ε), (13)

ε ẏ = g2(x1, x2, y, ε).
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We will find the slow integral manifold in the form

x1 = ϕ(x2, y, ε) = ϕ0(x2, y) + εϕ1(x2, y) + · · · + εkϕk(x2, y) + · · · . (14)

The invariance equation

ε
∂ϕ

∂x2
f2(ϕ, x2, y, ε) + ∂ϕ

∂y
g(ϕ, x2, y, ε) = ε f1(ϕ, x2, y, ε) (15)

is yielded from (13) and (14). Equating the coefficients at the same powers of ε in
the last equation, we get the expressions, which uniquely define the coefficients in

(14) for the case when det
(
∂ϕ0/∂y G

)
�= 0.

Thus, formula (14) defines the slow integral manifold of the system in the para-
metric form.
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Breathing as a Periodic Gas Exchange
in a Deformable Porous Medium

Michela Eleuteri, Erica Ipocoana, Jana Kopfová and Pavel Krejčí

Abstract We propose to model the mammalian lungs as a viscoelastic deformable
porous medium with a hysteretic pressure–volume relationship described by the
Preisach operator. Breathing is represented as an isothermal time-periodic process
with the gas exchange between the interior and exterior of the body. The main result
consists of proving the existence of a periodic solution under an arbitrary periodic
forcing in suitable function spaces.

1 Introduction

As pointed out in [6], the first measurements which showed a hysteretic pressure–
volumecharacteristic inmammalian lungswere obtained in [2] in 1913.Amechanical
system combining linear viscoelasticity with the rate-independent Prandtl model of
elastoplasticity was used by J. Hildebrandt in [5] to describe the breathing process of
cats. Here we refer to the analysis carried out by D. Flynn in [4], where the Preisach
operator is shown to be an appropriate model for the pressure–volume hysteresis
relationship in lungs.
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Our work focuses on representing the breathing as an isothermal, time-periodic
process described by a PDE system with hysteresis. It consists of the momentum
balance equation and the mass balance, similarly as in a more general study of
deformable porous media in [3], but with different boundary conditions. Instead of
prescribing boundary displacement as in [3], we prescribe here mechanical reaction
between lungs and their surroundings. Since viscosity is present in our model, we
also do not have any restriction on the input amplitude. The mathematical problem
thus consists of proving that our PDE system with a degenerating Preisach operator
under the time derivative admits a periodic solution for every periodic boundary
forcing with a given regularity.

2 The Model

Let u denote the displacement vector in the solid, σ the stress tensor, q the gas mass
flux and s the gas mass content in the pores. Similarly as in [1], we assume that the
system is governed by the momentum balance equation

ρutt = divσ, (1)

where ρ is the solid mass density, and by the gas mass balance

st + divq = 0, (2)

where q is the mass flux. Then we introduce two constitutive relations. In the first
one we have

σ = B∇sut + A∇su − p δ, (3)

where B, representing viscosity, and A, representing elasticity, are symmetric
positive-definite constant tensors of order 4, the symbol ∇s denotes the symmetric
gradient, p is the air pressure, and δ is the Kronecker tensor. The second constitutive
relation links pressure and volume in the form

f (p) + G[p] = 1

ρa
s − div u, (4)

where ρa > 0 is the referential airmass density at standard pressure, f : R → (0,∞)

is an increasing function, and G is a Preisach operator.
Under the small deformation hypothesis, the term div u represents the void vol-

ume difference with respect to the reference state, it means that, at constant pressure,
if div u increases, then s/ρa increases at the same rate. Similarly, at constant void
volume, the mass content s is an increasing function (with different inflation and
deflation curves) of the pressure. Eventually, at constant gas mass content, the pres-
sure increases if the void volume decreases.
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For the mass flux, we assume the Darcy law

q = −ρaμ(x)∇ p, (5)

where μ(x) > 0 is a permeability coefficient depending on space.
According to the previous analysis, the model reads

ρutt = div(B∇sut + A∇su) − ∇ p , (6)

( f (p) + G[p])t = −divut + divμ(x)∇ p , (7)

for x in a bounded connected Lipschitzian domain � ⊂ R
3 and for t ≥ 0.

On the boundary ∂�, we prescribe the following boundary conditions:

− σ · n∣
∣
∂�

= β(x)(Cu + Dut − g) + pn , (8)

1

ρa
q · n∣

∣
∂�

= α(x)(p − h) − ut · n , (9)

where n is the unit outward normal vector, β ≥ 0 is the relative elasticity modulus
of the boundary at the point x ∈ ∂�, C and D are symmetric positive- definite 3 × 3
matrices, g = g(x, t) is a given external force acting on the body �, h = h(x, t) is
the given outer air pressure, and α(x) ≥ 0 is the boundary permeability at the point
x ∈ ∂�.

The physical meaning of the first boundary condition in (8) is that on the part
of the boundary where β is positive, the body � interacts with the exterior, which
is viscoelastic with stiffness C, viscosity D, and active component g. There is no
mechanical interaction with the exterior on the part of boundary where β vanishes.
Similarly, the second boundary condition in (8) reflects the assumption that gas
exchange proportional to the inner and outer pressure difference takes place on the
part of the boundary where α is positive.

We now write Problems (6)–(7) in variational form for all test functions φ ∈
W 1,2(�;R3) and ψ ∈ W 1,2(�) as follows:

∫

�

(

ρuttφ + (B∇sut + A∇su) : ∇sφ + ∇ p φ
)

dx +
∫

∂�
β(x)(Cu + Dut − g)φds(x) = 0 , (10)

∫

�

(

( f (p) + G[p])tψ + (μ(x)∇ p − ut )∇ψ
)

dx +
∫

∂�
α(x)(p − h)ψds(x) = 0 , (11)

and the identities (10)–(11) are supposed to hold for a. e. t > 0.
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2.1 Setting

Before presenting the main result of the present work, we must introduce the setting
we need to study our problem. In particular, we have to make appropriate mathemat-
ical assumptions about different terms involved in the model.

• Preisach operator: Let γ ∈ L∞((0,∞) × R) be a given function, γ (r, v) ≥ 0 a. e.,
and there exists B > 0 such that γ (r, v) = 0 for r + |v| ≥ B. We define

G[p] =
∫ ∞

0

∫ ξr

0
γ (r, v)dvdr,

where ξr = pr [p] is the output of the play operator applied to p. Note that for a
fixed initial distribution of the play operators and input p ∈ Lq(�;CT ), the output
G[p] of the Preisach operator is T -periodic for t ≥ T , so that we can consider G
as a (Lipschitz continuous) mapping Lq(�;CT ) → Lq(�;CT ).

• Periodic spaces: We fix a period T > 0 and denote by Lq
T the Lq -space of T -

periodic functions v : R → R for q ≥ 1, and by CT the space of continuous real
T -periodic functions on R. It is now quite natural to introduce Lq

T (W 1,2(�))

and Lq
T (W 1,2(�,R3)) of T -periodic Lq -functions v : R → W 1,2(�) and v : R →

W 1,2(�,R3), respectively, as well as with the spaces Lq(�;CT ).
• Nonlinearity: f : R → R is a C1-function such that there exist 0 < f0 < f1 and

ω ≥ 0 with the property

f0
1 + p2

≤ f ′(p) ≤ f1(1 + p2)ω,

for all p ∈ R.

Moreover, we assume that

(i) the permeability coefficient μ belongs to L∞(�) and there exists a constant
μ0 > 0 such that μ(x) ≥ μ0 a. e.;

(ii) the nonnegative functions α and β belong to L∞(∂�) and do not identically
vanish, that is,

∫

∂�
β(x)ds(x) > 0,

∫

∂�
α(x)ds(x) > 0;

(iii) the functions g, gt belong to L2
T (L2(∂�;R3)), h, ht belong to L2

T (L2(∂�)),
h ∈ L∞(∂� × (0, T ));

(iv) the symmetric positive-definite constant tensors A, B and symmetric positive-
definite constant matrices C, D are given.
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2.2 Main Result

Theorem 1 Let the assumptions from Sect.2.1 hold. Then system (10)–(11) has a
solution (u, p) such that u, ut , ∇su, ∇sut ∈ L2

T (L2(�;R3)) ∩ L∞(T, 2T;L2

(�;R3)), utt ∈ L2
T (L2(�;R3)), pt ,∇ p ∈ L2

T (L2(�)), p ∈ L∞(� × (T, 2T )).

Proof The main ideas of the proof are the following:

(i) We take a cut-off function for f ;
(ii) We use the Galerkin method, both in space and time, so we take suitable

orthonormal bases;
(iii) As a result, we get an algebraic system which has a solution by a homotopy

argument;
(iv) We derive a priori estimates with the help of Preisach energy inequality and

Korn and Poincaré inequalities;
(v) In order to get uniform estimates in time, we test the cut-off equations by ut

and utt , regularizing in time when needed;
(vi) Eventually, we are able to remove the cut-off parameter using the Moser

method. �
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Invariant Objects on Lattice Systems
with Decaying Interactions

Rubén Berenguel and Ernest Fontich

Abstract In this note, we describe the setting and main results concerning the exis-
tence of invariant tori and a class of invariant manifolds for differentiable skew
product systems in lattices having interactions with spatial decay among all nodes.
We obtain decay of the parameterizations of the objects we find.

1 Introduction

We consider systems defined on lattices with each node having its own dynamics,
and an interaction with the other nodes. The origin of the study of lattice systems
can be found in the first models of the dynamics of chains of particles under the
action of some potential, with an interaction to nearest neighbours, models which
were first considered by Prandtl [14] and Dehlinger [5]. Later these models were also
considered by Frenkel and Kontorova for specific cases [8, 9]. See also the book [2].
As a motivating example, we mention the Klein–Gordon lattice. It consists of a one-
dimensional array of particles governed by a potential V and having interactions
with the nearest neighbour through a spring type force.

The equations can be written as

q̈n + V ′(qn) = ε(qn+1 + qn−1 − 2qn),

n ∈ Z, where ε > 0 is the so-called coupling constant. It admits a (formal) Hamil-
tonian formulation
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H((qn, pn)n∈Z) =
∑

n∈Z

(1
2
p2n + V (qn) + ε

2
(qn − qn+1)

2
)
,

where (qn, pn) ∈ R
2 or (qn, pn) ∈ T × R. This can be easily generalized to n-

dimensional nodes, to N dimensional lattices and to long range interaction. The
corresponding Hamiltonian would be

H((qn, pn)n∈ZN ) =
∑

n∈ZN

(1
2
|pn|2 + V (qn) + ε

∑

j∈ZN

W j (qn − qn+ j )
)
,

where Wj is a collection of functions such that |Wj | decreases to 0 when | j | → ∞.
Stroboscopic maps of these systems are (families) of diffeomorphisms Fε : M →

M, where M is a suitable phase space described below, of the form

Fε = F0 + εF1,ε,

where F1,ε describes the interactions between the nodes.
More generally, we consider skew product systems to be able to model quasi-

periodic force interactions. Our goal is to obtain invariant tori, some of their invariant
manifolds, and to study the decay of the parameterizations of these objects in terms
of the decay of the maps.

We will be working with maps, although some results for differential equations
follow as corollaries.

2 Setting and Notation

We will consider the space of sequences

�∞ = �∞(Rn) = (Rn)Z
N = {x = (xi )i∈ZN ∈

∏

i∈ZN

R
n | ‖x‖ := sup

i∈ZN

|xi | < ∞},

or an open subset of it. Note that �∞ is a Banach space neither separable nor reflexive.
Moreover, it turns out that the matrix representation of a linear map of �∞

(Au)i =
∑

j∈ZN

Ai j u j , Ai, j = πi ◦ A ◦ emb j ∈ L(Rn,Rn),

i, j ∈ Z
N , does not completely determine the map; see [6]. Here, πi : �∞ → R

n and
emb j : Rn → �∞ are the canonical projection and embedding, respectively.

Wewill use a useful class of decay functions introduced by Jiang–de-la-Llave [12].
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Definition 1 A decay function is a map � : ZN → R
+ satisfying

(i)
∑

j∈ZN �( j) ≤ 1,
(ii)

∑
j∈ZN �(i − j)�( j − k) ≤ �(i − k).

Example 2 Given α > 0, β ≥ 0, there exists a0 = a0(α,β, N ) > 0 such that if 0 <

a < a0

�(i) =
{
a|i |−αe−β|i | if i 
= 0,
a if i = 0,

is a decay function. Note that, �(i) = a e−β|i |, with a > 0, β > 0, is not a decay
function.

These functions are used as weights to control the strength of the interaction
between nodes i , j , separated a distance |i − j |.

We start by introducing linear maps with decay, or more precisely �-linear maps.
We define

L�(�∞, �∞) = {A ∈ L(�∞, �∞) | ‖A‖� < ∞},

where

‖A‖� = max{‖A‖, γ(A)} and γ(A) = sup
i, j∈ZN

�(i − j)−1|Ai j |.

In this way, if A ∈ L� then the matrix blocks of A satisfy |Ai j | ≤ γ(A) �(i − j).
The properties of � imply that ‖AB‖� ≤ ‖A‖�‖B‖� which, in turn, implies that

the space L� is a Banach algebra. We have ‖Id‖� = �−1(0) > 1.
Obviously,we have that L�(�∞, �∞) ⊂ L(�∞, �∞) as sets. However, L�(�∞, �∞)

is not a closed subalgebra of L(�∞, �∞).
The space Lk

�(�∞, �∞) is defined as the space of k-linear maps that are �-linear
with respect to each variable. Compositions and contractions of k-linear maps with
� decay are also multilinear maps with � decay; see details in [6].

Next we define some spaces of functions. Given j ∈ Z
m and r ≥ 0, we define

Srj,� = Srj,�(Td)

= {
σ ∈ Cr (Td , �∞) | ‖σ‖Srj,� := max

0≤|k|≤r
sup
i∈Zm

sup
θ∈Td

‖∂k
θσi (θ)‖�(i − j)−1 < ∞}

.

We need to deal with two different sets of variables, x and θ, which play a slightly
different role. Therefore, we consider spaces of anisotropic regularity.

Given U an open set of �∞(Rn) and two non-negative integers t, r , we define

Ct,r (U × T
d , �∞) = {F ∈ C0(U × T

d , �∞) | Di
x∂

k
θ F exist and are

continuous and bounded for 1 ≤ i ≤ t, 0 ≤ |k| ≤ r },

where k ∈ (Z+)d and ∂k
θ stands for ∂/∂θk11 · · · ∂θkdd and
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Ct,r
� (U × T

d , �∞) = {F ∈ Ct,r (U × T
d , �∞)| Di

x∂
k
θ F exist and

Di
x∂

k
θ F ∈ C0(U × T

d , Li
�(�∞, �∞)),

1 ≤ i ≤ t, 0 ≤ |k| ≤ r, ‖F‖Ct,r
�

< ∞},

with norm

‖F‖Ct,r
�

= max
(
max

0≤|k|≤r
‖∂k

θ F‖C0 , max
1≤i≤t
0≤|k|≤r

sup
x∈U
θ∈Td

‖Di
x∂

k
θ F(x, θ)‖�

)
.

For maps depending only on x , the corresponding analogous space is Ct (U, �∞).
In a similar way to [4], where the authors have to deal with variables x and parameters
λ, we also introduce other classes of spaces. We define

Ct,r
j,�(U × T

d , �∞) = {F ∈ Ct,r
� (U × T

d , �∞) | F(x, ·) ∈ Srj,�, x ∈ U,

‖F‖Ct,r
j,�

= max
(‖F‖Ct,r

�
, sup
x∈U

‖F(x, ·)‖Srj,�

)
< ∞}.

Let �t,r = {(k, i) ∈ (Z+)d+1 | |k| ≤ r, i + |k| ≤ t + r}. We define

C�t,r (U × T
d , �∞) = {F ∈ C0(U × T

d , �∞) | Di
x∂

k
θ F exist and

are continuous and bounded for (k, i) ∈ �t,r ,

‖F‖C�t,r = max
(‖F‖C0 , max

(k,i)∈�t,r
sup
x∈U
θ∈Td

‖Di
x∂

k
θ F(x, θ)‖) < ∞},

and the decay version

C
�t,r
� (U × T

d , �∞) = {F ∈ C�t,r (U × T
d , �∞) |

Di
x∂

k
θ F ∈ C0(U × T

d , Li�(�∞, �∞)),

(k, i) ∈ �t,r , i ≥ 1, ‖F‖Ct,r
�

< ∞},

with norm

‖F‖
C

�t,r
�

= max
(

max
0≤|k|≤r

‖∂kθ F‖C0 , max
(k,i)∈�t,r ,

i≥1

sup
x∈U
θ∈Td

‖Di
x∂

k
θ F(x, θ)‖�

)
.

3 Invariant Tori and Invariant Manifolds

The skew product systems we deal with are defined on �∞(Rn) × T
d and have the

form
(x, θ) �→ (F(x, θ), θ + ω),
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where ω ∈ R
d is a fixed vector we refer to as frequency vector, and

F(x, θ) = F0(x) + F1(x, θ),

x ∈ �∞(Rn), θ ∈ T
d . We will call F0 the unperturbed system. It is uncoupled, i.e.,

the dynamics of any node under F0 are given by some map f : Rn → R
n with no

interaction between nodes. Actually, we will have (F0(x))i = f (xi ), for all i ∈ Z
N .

We assume that f has a hyperbolic fixed point at 0 ∈ R
n . Our first goal is, assuming

F1 is small in some sense, to find invariant tori near 0 ∈ �∞(Rn).
According to the parameterization method [7, 10, 11, 13] we look for the tori as

graphs of functions W0 : Td → �∞(Rn). Since the skew product sends (W0(θ), θ) to
(F(W0(θ), θ), θ + ω) the graph of W0 is invariant if and only if

F(W0(θ), θ) = W0(θ + ω). (1)

The main result concerning the existence of tori is

Theorem 3 Assume

(i) F0 ∈ Ct (U, �∞),
(ii) F1 ∈ Ct,r (U × T

d , �∞) with t ≥ r + 1, r ≥ 0,
(iii) ‖F1‖Ct,r small enough.

Then, the functional equation (1) has a solution W0 ∈ Cr (Td , �∞) close to 0.
Moreover, if F1 ∈ Ct,r

j,�(U × T
d , �∞)with t ≥ r + 2, r ≥ 0and‖F1‖Ct,r

j,�
is small enough

then W0 ∈ Srj,�(Td , �∞) which implies that the torus is localized close to the node j .

We can also find invariant manifolds of these invariant tori. We will look for non-
resonant manifolds. Let us first introduce them in the simpler setting of fixed points
of maps f of Rn . For example, the matrix

A =

⎛

⎜⎜⎜⎜⎜⎝

1/2 1
0 1/2

1/3
1/4 1
0 1/4

⎞

⎟⎟⎟⎟⎟⎠
.

A has many invariant subspaces. Denoting by Ei the i-th coordinate axis, we have
that E1, E3, E4, E1 ⊕ E2, E4 ⊕ E5, or sums of these spaces, e.g., E1 ⊕ E4, E1 ⊕ E2 ⊕
E4, . . . are invariant. If f : Rn → R

n is at least C1 and Df (0) = A we could expect to
obtain invariant manifolds tangent to these subspaces. However, for them to exist,
we need some conditions on the eigenvalues and on the regularity of f . See [3].
Non-resonant manifold in lattices for analytic systems are studied in [1].

In our setting, first we translate the torus to the origin x = 0 and denote the trans-
lated system again by F . SinceW0 = O(‖F1‖)we canwrite F(x, θ) = F0(x) + F̃1(x, θ)
and M(θ) := Dx F(0, θ) = DF0(0) + Dx F̃1(0, θ)with F̃1 small. Let M0 = Dx F0(0) and
M̃(θ) = Dx F̃1(0, θ) and consider the decomposition �∞ = E1 ⊕ E2 such that with
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respect to it M0 =
(
A11 0
0 A22

)
. Let D be the open unit disc in C. Given a set S we

denote the annulus generated by it as the set A S = {eiθs | θ ∈ [0, 2π), s ∈ S}.
Now we will address the result concerning non-resonant manifolds. In general,

Dx F(0, θ) is not in block triangular form as it is required in the theorem below. In such
a case, one can prove that with the additional hypothesisASpec A1,1 ∩ ASpec A2,2 =
∅ there is a Cr

� linear transformation turning M(θ) into block triangular form. Of
course, if the linear map is already in block triangular form, this condition can be
skipped.

Theorem 4 In the setting described above, assume that for some L the following hypotheses
hold:

(i) F ∈ C
�t,r
�

(
�∞(Rn) × T

d , �∞(Rn)
)

with t ≥ r + 1, M0, M̃(θ) ∈ L�(�∞(Rn),

�∞(Rn)) is block upper triangular, supθ∈Td ‖M̃(θ)‖� small;
(ii) ASpec (A1,1) ⊂ D\{0};
(iii) 0 /∈ Spec (A2,2);

(iv) ASpec (A1,1)
L+1 · ASpec (M−1

0 ) ⊂ D;

(v) ASpec (A1,1)
i ∩ ASpec (A2,2) = ∅ for 2 ≤ i ≤ L;

(vi) L + 1 ≤ t .

Then, we can determine a polynomial bundlemap R : E1 × T
d → E1 of degree not larger than

L in C∞,r
� (E1 × T

d , E1) such that R(0, θ) = 0, ‖Ds R(0, θ) − A1,1(θ)‖ is small and a bun-

dle map W : B(0, 1) × T
d ⊂ E1 × T

d → �∞(Rn) in C
�t,r
� (B(0, 1) × T

d ⊂ E1 × T
d , �∞)

such that
F(W (s, θ), θ) = W (R(s, θ), θ + ω), (2)

where W (0, θ) = 0, �E1DsW (0, θ) = IdE1 and �E2DsW (0, θ) = 0.

Equation (2) forces the image of W to be invariant by F , and F restricted to it to
be conjugated to R.

To solve Eq. (2) in the appropriate space first we look for approximations W≤ and
R≤ such that

W≤(s, θ) = 0 + W1(θ)s + · · · + WL (θ)s⊗L ,

R≤(s, θ) = R1(θ)s + · · · + RL (θ)s⊗L ,

satisfying
F(W≤(s, θ), θ) = W≤(R≤(s, θ), θ + ω) + O(‖s‖L+1).

To determine Wk and Rk for k ≥ 2 we have to solve the following equations,
commonly known as cohomological equations:

M(θ)Wk(θ) = W1(θ + ω)Rk(θ) + Wk(θ + ω)R⊗k
1 (θ) + Q̂k(θ), (3)

k ≥ 2, where Q̂k(θ) comes inductively and depends on D j
x F(0, θ), j ≤ k, and Wj (θ)

and R j (θ) for j < k. The solvability of (3) depends on the spectral properties of the
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so-called Sylvester operators in homogeneous polynomial bundle maps. The spectral
properties in the statement of the theorem imply that we can solve (3) recursively
from k = 2 to k = L.

When W≤ is determined, we look for W> such that

F((W≤ + W>)(s, θ), θ) = (W≤ + W>)(R≤(s, θ), θ + ω)

in the space C
�t,r
� (B(0, 1) × T

d ⊂ E1 × T
d , �∞(Rn)) by dealing with a suitable fixed

point equation.
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Wave-Pinning by Global Feedback
in the Bistable Schlögl Model

F. Font, E. Moreno and S. Alonso

Abstract In this work, we introduce a wave-pinning mechanism in the bistable
Schlögl model. Wave-pinning is induced by dynamically varying the unstable fixed
pointwith a spatial global feedback.Wepresent numerical simulations of themodel in
one and two dimensions for typical parameter values. The wave-pinning mechanism
presented here can be used to reproduce the limited presence of phosphatidylinositol
(3,4,5)-trisphosphate (PIP3) in the membrane of Dictyostelium discoideum cells,
which plays a crucial role in the polarization and motility of the cell.

1 Introduction

Pattern formation is an ubiquitous phenomena in nature. Examples range from stripe
pattern on a zebra’s coat [3], to dissolution or growth of crystals in solutions [4].
Typically, these systems are modeled by means of nonlinear reaction–diffusion
equations. A minimal model for pattern formation was formulated by Friedrich
Schlögl to describe nonequilibrium phase transitions [5]. Although the model is
commonly known as the Schlögl model, the same model was previously formulated
by Zel’dovich and Frank–Kamenetskii to describe flame propagation [6]. In the past
50 years, the Schlögl model has been adapted to describe many other systems in
physics and biology, including gas discharge between two glass plates or cardiac
dynamics.

The bistable Schlögl model describing the evolution of a concentration field
u(x, t) is given by the reaction–diffusion equation
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Fig. 1 a Reaction term for the Schlögl model as a function of u. The fixed points are indicated
with arrows (in this case a = 0.4). b Concentration profiles for different times

∂u

∂t
= Du∇2u − k u(u − 1)(u − a), (1)

where D and k are the diffusion and reaction coefficients, respectively. In our case,
u(x, t) stands for the concentration of PIP3 in the cell membrane. The reaction term
R(u) = −k u(u − 1)(u − a) can be interpreted as the derivative of a potential field,
i.e., R(u) = −∂uV (u). In the one-dimensional case, the model has the analytical
(traveling wave) solution

u(x, t) = 1

2

[
1 − tanh

(1
2

√
k

2Du
(x − ct)

)]
, c =

√
2Du

k
(1 − 2a). (2)

From (2), one can see that the wave velocity c is positive, zero, or negative depending
on the value of the unstable fixed point a. In Fig. 1, we show the reaction term of the
Schlögl model and indicate the fixed points (panel (a)), and plot the traveling wave
solution at different times for typical parameter values (panel (b)).

In the next section, we introduce a global feedback relation in model (1) to control
the size of the wavefronts, in Sect. 3 we present and discuss numerical simulations of
the model with global feedback (in 1D and 2D) and, finally, we draw our conclusions
in Sect. 4.

2 Wave-Pinning by Global Feedback

A control of the size of the wave is important to model pattern formation in Dic-
tyostelium discoideum cells, where the area covered by the pattern is limited and
it never covers the entire cell membrane [1]. Thus, we introduce a global feedback
control mechanism in the Schlögl model that stops the wavefront when a critical size
is reached. The governing equation will now read
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∂u

∂t
= Du∇2u − ku(u − 1)(u − a(u)), (3)

with the feedback-control mechanism given by

a = a0 + �a
( ∫

A
u d A − p A

)
, (4)

where A is the area of the domain, �a the strength of the global feedback input,
and p the critical fraction of area covered by the wavefront. Note the way in which
the global feedback is introduced in the model differs from that used in previous
studies [2, 4], where the global feedback induces a vertical shift in the reaction term
R and, therefore, the value of the stable fixed points (in our case u = 0, u = 1) also
change.

3 Results and Discussion

In this section, we present numerical simulations of the model (3)–(4) in one and
two dimensions with no flux boundary conditions using an explicit finite differ-
ence scheme. The parameter values used are Du = 0.1, k = 1, a0 = 0.5, L = 45.
Although these values have physical meaning and corresponding units we omit their
description for brevity.

3.1 Simulations in 1D

In Fig. 2, we present the results of the simulations in 1D (setting ∇ = ∂x , A = L
and d A = dx in (3)–(4)), using the initial condition: u(x, 0) = 1 for x ∈ [0, L/2]
and u(x, 0) = 0 for x ∈ (L/2, L]. In panel (a), we show the evolution of the PIP3
concentration wave for the case p = 0.65 and�a = 0.02. We observe how the wave
travels forward until

∫
u dx = 0.65 L and then stops. The global feedback is pushing

the fixed point toward a = 0.5, which is precisely the value of the unstable fixed point
in the Schlögl model leading to a velocity of the traveling wave equal to 0 (see Eq.
(2)). To better visualize this phenomena, known as wave-pinning, we show in panel
(b) the position and velocity of the point in the domain where u = 0.5 that we define
as x = s(t), i.e., u(s(t), t) = 0.5.We observe that the speed of the wave, represented
by ṡ(t), increases during a short transient period and then decreases toward zero.

In panels (c) and (d), we show the reaction term and the potential, respectively,
at three different times during wave propagation. Initially, the fixed point u = 1 is
more stable thanu = 0.As time increases, (

∫
u dx − p L) → 0 anda → 0.5making

the potential symmetric with respect u = 0.5 and the fixed points u = 0 and u = 1
become equally stable.
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Fig. 2 a Space and time evolution of the concentration of PIP3 predicted by the model with global
feedback. b Speed (left y-axes) and position (right y-axes) of the wavefront as a function of time.
c Reaction term and d Potential at different times

3.2 Simulations in 2D

In Fig. 3, we compare 2D numerical simulations of the Schlögl model with and
without global feedback at several times. In this case, the imposed initial condition is
u(x, y, 0) = 1 for r ≤ L/2 and u(x, y, 0) = 0 for r > L/2, where r = √

x2 + y2.
The simulations for the Schlögl model without global feedback (panels (a)–(d))
show how a PIP3 concentration wave travels unperturbed through the medium and at
t = 720 has already coveredmost of the domain (the entirety of the domain is covered
around t ≈ 1000). In the case of the model with global feedback (panels (e)–(h)),
the wave evolves initially fast (in agreement with the observations for the 1D case),
then slows down, and eventually stops when the area covered equals the critical area
0.5 L2 (note for these simulations we have used p = 0.5 and and �a = 5 · 10−4).
We propose this mechanism as a mass conservation constraint to model the limited
availability of PIP3 on the cell membrane.
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Fig. 3 Propagation of a wave in the Schlögl model (a–d) and in the Schlögl model with global
feedback with p = 0.5 (e–h)

4 Conclusions

In this work, we have introduced a wave-pinning mechanism in the bistable Schlögl
model. The mechanism consists of the control of the total size of the wavefront
by means of a global feedback that varies dynamically the value of the unstable
fixed point of the model. The wave-pinning mechanism presented provides a route to
model the limited availability of PIP3 to form patterns that result in the polarization
and motility of Dictyostelium discoideum cells.
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Cooperativity in Neurons–Astrocytes
Coupled Dynamics

J.-P. Françoise and Hongjun Ji

Abstract Our aim in this article is to study properties of a generalized dynamical
system modeling brain lactate kinetics, with N neuron compartments and A astro-
cyte compartments. In particular, we prove the uniqueness of the stationary point
and its asymptotic stability. Furthermore, we check that the system is positive and
cooperative.

1 Introduction

The system of ODEs

dx

dt
= J − T

( x

k + x
− y

k ′ + y

)
, T, k, k ′, J > 0,

ε
dy

dt
= F(L − y) − T

( y

k ′ + y
− x

k + x

)
, ε, F, L > 0,

(1)

where ε is a small parameter was proposed and studied as a model for brain lactate
kinetics (see [1, 2, 5–7]). In this context, x = x(t) and y = y(t) correspond to the
lactate concentrations in an interstitial (i.e. extra-cellular) domain and in a capillary
domain, respectively. Furthermore, the non-linear term T

(
x/(k + x) − y/(k ′ + y)

)
stands for a co-transport through the brain–blood boundary (see [4]). Finally, J and
F are forcing and input terms, respectively, assumed frozen. The model has a unique
stationary point which is asymptotically stable. Recently, in [3, 8], a PDE’s system
obtained by adding diffusion of lactate was introduced. The authors proved existence
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and uniqueness of nonnegative solutions and obtained linear stability results. Amore
general ODE’s model for brain lactate kinetics, where the intracellular compartment
splits into neuron and astrocyte, was considered in [5, 6]. It displays

dx

dt
= I0 + T1

(
− x

k + x
+ u

kn + u

)
+ T2

(
− x

k + x
+ v

ka + v

)
− T

( x

k + x
− y

k′ + y

)

du

dt
= I1 − T1

(
− x

k + x
+ u

kn + u

)

dv

dt
= I2 − T2

(
− x

k + x
+ v

ka + v

)
− Ta

( v

ka + v
− y

k′ + y

)

dy

dt
= F(L − y) + T

( x

k + x
− y

k′ + y

)
+ Ta

( v

ka + v
− y

k′ + y

)
,

(2)
where all the constants are nonnegative. It also includes transports through cell
membranes and a direct transport from capillary to intracellular astrocyte. It was
proved in [5, 6] that this 4-dimensional system displays a unique stationary point but
its nature was left open. The stability of the unique stationary point is an important
issue as it relates with therapeutic protocols developed in the Refs. [5, 6]. Another
important issue is the boundedness of the lactate concentrations related with the
viability domain (cf. [5, 6]). We can in fact consider a natural extension of this
system into a more general N + A + 2 system. For this generalized system, we
prove both unicity and asymptotic stability of the stationary point. In this article
we do not consider fast-slow limits and we stick to the 4-dimensional case (A = 1,
N = 1).

1.1 Conditions for the Positivity of the Stationary Point

The stationary point s∗ = (s ′′, y∗) does not belong necessarily to R
4+ as it was

observed already for the 2-dimensional system in [2, 5]. Following the notations
of Eq. (1), the stationary point belongs to R2+ if and only if

T > J [1 + 1

k ′ (L + J

F
)]. (3)

Similar explicit conditions can be given for the 4-dimensional system as shown
in [5, 6].

2 Cooperative Dynamics and Asymptotic Stability
of the Stationary Point

Theorem 1 Denote J0 the Jacobian matrix JF of the system (2) for the input F = 0.
All off-diagonal elements of the matrix JF (and of J0) are nonnegative.
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Following [10], such matrices are called Metzler matrices.

Theorem 2 The stationary point of system (2) is asymptotically stable.

Proof As we can see, there are no zero elements at the first row and the first column
in matrix JF (and J0). This means that in the graph associated with the matrix, there
is a sequence of directed edges leading from Ni to N j for all i, j ∈ (1, . . . , 4). Hence,
G(JF ) is strongly connected, so JF (and J0) is an irreducible matrix. Note that the
strictly positive vector w ∈ R

4

w =
( (x + k)2

k
,
(u + kn)2

kn
,
(v + ka)2

ka
,
(y + k ′)2

k ′
)T

(4)

solves J0w = 0. By [9, (ii)], the vector w is necessarily proportional to the positive
eigenvector v which corresponds to the spectral abscissa. Hence, we obtain that
μ(J0) = 0. By [9, (iii)], μ(JF ) < μ(J0) = 0. This shows that all the real parts of
eigenvalues of the Jacobian matrix JF are negative, which means that the stationary
point of system (2) is asymptotically stable.

3 Remarks and Perspectives

A natural question (for instance for the 4-dimensional system) is whether the condi-
tions on the non-existence of stationary point inside the domain � implies that there
is no bounded positive solutions.

There is a non-autonomous version of the Brain Lactate Dynamics for which the
entries J (t) and the forcing term F(t) are time dependent. Further studies on the
cooperative nature of these dynamics will be developed.

It should be interesting to analyse the reaction–diffusion PDE system obtained by
adding diffusion to the 4-dimensional system (2) from the viewpoint of cooperative
systems.
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Resonance-Based Mechanisms
of Generation of Relaxation Oscillations
in Networks of Non-oscillatory Neurons

Andrea Bel and Horacio G. Rotstein

Abstract We investigate a minimal network model consisting of a 2D linear (non-
oscillatory) resonator and a 1D linear cell, mutually inhibited with piecewise-linear
graded synapses.Wedemonstrate that this network can produce oscillations in certain
parameter regimes and the corresponding limit gradually transition from regular
oscillations (of non-relaxation type) to relaxation oscillations as the levels of mutual
inhibition increase.

1 Introduction

Membrane potential (subthreshold) resonance (MPR) refers to the ability of a neuron
to exhibit a peak in their voltage amplitude response to oscillatory input currents at a
preferred (resonant) input frequency ( fres); see [4–7] and Fig. 1a. MPR results from
the interplay of an autocatalytic process (positive feedback) and a slower negative
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Fig. 1 a Representative impedance (Z ) profiles for a band-pass (blue) and low-pass (red) filters.
For linear systems receiving sinusoidal inputs with frequency f , the output is also a sinusoidal
function with the same frequency and phase-shifted. b Network diagram of a mutually inhibited
resonator (band-pass filter) and a non-resonator (low-pass filter). cRepresentative PWLconnectivity
function for the graded synapses

feedback effect. For neurons, these are provided by the participating currents. Neu-
rons may also exhibit membrane potential (subthreshold) oscillations either damped
or sustained in the absence of any time-dependent input. However,MPR and intrinsic
oscillations are different phenomena governed by different mechanisms as demon-
strated by the fact that 2D linear systems may exhibit MPR in the absence of damped
oscillations [5–7]. We refer to the neurons that exhibit MPR as resonators. Here, we
focus on resonators that are not damped oscillators.

MPR has been measured in a variety of neuron types and it has been investigated
theoretically in [4–6, 9], and references therein. However, the role that MPR play in
the generation of network oscillations is not well understood (but see [1, 3, 8]). In this
paper, we demonstrate by means of a numerical simulation example that a minimal
networkmodel (Fig. 1b) consisting of a 2D linear resonator (e.g. Fig. 1a, blue) and 1D
linear passive cell (e.g. Fig. 1a, red) mutually inhibited with piecewise-linear (PWL)
graded synapses (Fig. 1c) can produce oscillations in certain parameter regimes. The
corresponding limit cycles experience a transition from regular oscillations (of non-
relaxation type) to relaxation oscillations as the levels of mutual inhibition increase.

2 Model: Networks of Linearized Cells with
Piecewise-Linear Graded Synapses

We used linearized biophysical (conductance based) models for the individual cells
and piecewise-linear (PWL) graded synaptic connections. The linearization process
for conductance-based models (around the resting potential for the voltage variable)
for single cells has been previously described in [5, 7]. We refer the reader to these
references for details.

The dynamics of a network of two mutually inhibitory cells are described by
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Ck
dvk

dt
= −gL ,k vk − gk wk − Gin, jk S∞(v j )(vk − Ein), (1)

τk
dwk

dt
= vk − wk, (2)

for k = 1, 2, j �= k. In Eqs. (1)–(2), t is time, vk represents the voltage (mV), wk

represents the normalized gating variable for the resonant ionic current,Ck = 1 is the
capacitance, gL ,k is the linearized leak maximal conductance, gk is the ionic current
linearized conductance, τk is the linearized time constant and the last term in Eq. (1)
is the graded synaptic current modulated by the activity of the other cell whereGin, jk

is the maximal synaptic conductance, Ein = −20 is the synaptic reversal potential
(referred to the resting potential) and S∞(v) is a PWL function of sigmoid type
(Fig. 1c) of the form

S∞(v) =
⎧
⎨

⎩

0 if v < vb
(va − vb)

−1 (v − vb) if vb < v < va
1 if v > va,

(3)

where va and vb are constants. In this paper we use g2 = 0 (cell 2 is 1D), vb = −va
and Gin = Gin,12 = Gin,21.

We use the following units: mV for vk and wk , ms for t , µF/cm2 for capacitance,
µA/cm2 for current and mS/cm2 for the maximal conductances.

The numerical solutions were computed by using the modified Euler method
(Runge–Kutta, order 2) [2] with a time step �t = 0.1 ms in MATLAB (The Math-
works, Natick, MA). Smaller values of �t have been used to check the accuracy of
the results.

3 Results

Figure2 shows the results of our numerical simulations for representative values of
Gin . Because the network is mutually inhibitory the two cells oscillate in antiphase.
The network oscillations emerge for Gin ∼ 0.1296. As Gin increases the oscillation
amplitude increases, first abruptly and then gradually (Fig. 3a). As this happens,
the network oscillation frequency decreases (Fig. 3b). The network oscillations are
terminated for Gin ∼ 0.176 (not shown).

These oscillations (Fig. 2) are a network phenomena since for the parameter values
we used, the resonator is not a damped oscillator and the passive cell is 1D. Sustained
(limit cycle) oscillations require the interplay of a resonant (negative feedback) and
amplifying (positive feedback) processes. For the network oscillations in Fig. 2, the
resonant process is provided by the resonator and the amplifying process is provided
by the network connectivity mediated by the passive cell [1].
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Fig. 2 Representative voltage traces for the resonator/passive cell mutually inhibitory network
(Fig. 1b). a Gin = 0.1296. b Gin = 0.132. c Gin = 0.16. The resonator has fres ∼ 10.4. We used
the following parameter values:C1 = C2 = 1, gL ,1 = 0.25, g1 = 0.25, τ1 = 100, gL ,2 = 0.5, va =
3, vb = −3, Ein = −20, and Gin = Gin,12 = Gin,21
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Fig. 3 Dependence of the oscillations amplitude and frequency on the levels of mutual inhibition
for the resonator/passive cell mutually inhibitory network (Fig. 1b). The parameter values are as
in Fig. 2. a Amplitude versus Gin curve. We plotted the amplitude of v1. b Network oscillations
frequency versus Gin

The transition from regular oscillations (non-relaxation type) to relaxation oscil-
lations as Gin increases in Fig. 2 is a network phenomenon. There is a time scale sep-
aration between the activator (v1) and the inhibitor (w1) in the resonator (τ1 = 100).
However, for this time scale separation at the individual cell level to be communi-
cated to the network level to produce network relaxation oscillations the levels of
mutual inhibition have to be relatively large.

4 Discussion

We have demonstrated that a minimal network model (2D resonator, 1D linear cell
and mutual inhibition) can produce sustained network oscillations in certain param-
eter regimes. These oscillations crucially depend on the negative feedback provided
by the resonator. Mutual inhibition mediated by the passive cell is responsible for the
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amplification necessary to support the existence of a limit cycle. Our results provide
an example of an oscillatory network of non-oscillatory cells, where resonance and
amplification at different levels of organization interact to produce network oscilla-
tions. For high enough levels of mutual inhibition, the time scale between the two
variables in the resonator is communicated to the network level to produce relaxation
oscillations. If the levels of mutual inhibition are not high enough, this time scale
separation remains occluded.

Our results highlight the role of MPR in isolated neurons for the generation of
network oscillations, and have implications for neuronal network dynamics described
either by conductance-based models or firing rate models with adaptation.
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New Advances on the Lyapunov
Constants of Some Families of Planar
Differential Systems

Iván Sánchez-Sánchez and Joan Torregrosa

Abstract This note presents some advances regarding the Lyapunov constants of
some families of planar polynomial differential systems, as a first step toward the
resolution of the center and cyclicity problems. First, a parallelization approach is
computationally implemented to achieve the 14th Lyapunov constant of the complete
cubic family. Second, a technique based on interpolating some specific quantities so
as to reconstruct the structure of the Lyapunov constants is used to study a Kukles
system, some fifth-degree homogeneous systems, and a quartic system with two
invariant lines.

1 Introduction

Let us consider a real polynomial differential system in the plane with some param-
eters, λ ∈ R

d , written in complex coordinates as

{
ż = i z + Z(z, w,λ),

ẇ = −iw + W (z, w,λ),
(1)

wherew = z̄ and Z(z, w,λ),W (z, w,λ) = Z̄(z, w,λ) are polynomial perturbations
having neither linear nor constant terms in z, w. The center problem consists in
identifying whether the origin of (1) is a center or a focus, when the origin is a
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monodromic nondegenerate equilibrium point. This problem is related to the local
cyclicity problem, which aims to determine the maximum number of small limit
cycles which bifurcate from the origin when perturbing the system in a polynomial
class of fixed degree. All of them are relevant studies in the 16th Hilbert problem.

To deal with this problem let us consider the Poincaré map�, which maps a given
point ρ in a section � transversal to the orbit γ to the first intersection �(ρ) of �

and γ in positive time. The Poincaré map can be analytically extended to ρ = 0, so
we can consider its Taylor expansion and define the displacement map

d(ρ) := �(ρ) − ρ = V3 ρ3 + V4 ρ4 + V5 ρ5 + V6 ρ6 + · · · =
∞∑
n=3

Vn ρn, (2)

for certain values Vn . Observe that the center problem is equivalent to determine
whether all Vn are zero or not, since periodic orbits are fixed points of the Poincaré
map. If not all Vn vanish, the first nonzero Vn must have odd subindex. These Vn

with odd n ≥ 3 are known as Lyapunov constants, and they will be denoted by
L(n−1)/2 := Vn . According to [6], the Lyapunov constants are polynomials, whose
variables are the parameters of system (1). In this case for which not all Vn vanish,
the origin of the system is a focus and its stability is determined by the first nonzero
Lyapunov constant. As a consequence, the center problem reduces to the problem
of finding and vanishing all the Lyapunov constants Lk , that is solving the nonlinear
system {L1 = L2 = · · · = 0}. They also are an essential tool in the study of the
cyclicity problem, since the limit cycles correspond to the isolated zeroes of (2).
In this short paper, we will briefly present two methods to compute these Lyapunov
constants or study some of their useful properties to deal with the center and cyclicity
problems.

2 A Parallelization of Lyapunov Method

An algorithm to find Lyapunov constants is the so-called Lyapunov method, which
is based on the utilization of a first integral of system (1). The computations could
be made using real values (see [9]), but we consider complex coordinates because
the obtained expressions are shorter. The objective is then to find a formal first inte-
gral F = F2 + F3 + F4 + · · · of system (1), with Fk(z, w) := ∑k

j=0 hk− j, j zk− jw j

homogeneous degree k polynomials. We aim to study whether Ḟ vanishes or not.
We compute

Ḟ = Fz ż + Fw ẇ = Fz (i z + Z(z, w,λ)) + Fw (−iw + W (z, w,λ)) =
∑
k≥1

Lk(λ) (zw)k+1.

(3)
The last equality is a consequence of a result which states that if there exists such F ,
then in suitable coordinates it is analytic on zw; see [3]. Therefore, Ḟ is also analytic
on zw. Observe that if all Lk(λ) vanish then Ḟ = 0, and therefore F is a first integral,
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so the origin is a center. These Lk(λ) are actually the Lyapunov constants, which are
polynomials in the parameters λ; see [4]. For the sake of simplicity, we will denote
them simply as Lk . F can be found recursively, starting by imposing equation (3)
and performing formal operations as follows:

(F2z + F3z + F4z + · · · ) (i z + Z2 + Z3 + Z4 + · · · )+
+ (F2w + F3w + F4w + · · · ) (−iw + W2 + W3 + W4 + · · · ) =

= L1 (zw)2 + L2 (zw)3 + L3 (zw)4 + · · · .

Here we solve the linear system obtained by equating the same degree coefficients
in z, w. This way one can find the coefficients hk− j, j of each term Fk of the first
integral and use it to find the corresponding Lyapunov constants.

The above technique has been implemented in PARI/GP (or simply PARI)
programming language; see [5]. As the computation of Lyapunov constants is a
highly computationally expensive procedure, this algorithm has been optimized and
improved by means of parallelization, which allows to significantly increase compu-
tation velocity. The idea is to find each of the Lyapunov constants and the coefficients
hk− j, j of Fk of degree k in terms of the coefficients of lower degree. This part is rel-
atively fast computationally speaking since the manipulated expressions are not too
large. Then we parallelize the substitution of those coefficients with their actual
value, and here parallelization is essential because this process deals with very large
expressions.

The results of this parallelization technique are amazing, and its efficiency has
allowed our method to find Lyapunov constants in a relatively short time for cases
which had not been solved before due to the huge amount of time and computational
complexity required. In particular, we have applied this method to the complete cubic
system

{
ż = i z + r̂20z2 + r̂11zw + r̂02w2 + r̂30z3 + r̂21z2w + r̂12zw2 + r̂03w3,

ẇ = −iw + ŝ20w2 + ŝ11wz + ŝ02z2 + ŝ30w3 + ŝ21w2z + ŝ12wz2 + ŝ03z3.
(4)

We have observed that if time is rescaled by dividing by the imaginary unit i ,
computations are much more efficient and the calculation time decreases. Actually,
the computations we describe here cannot be performed if this time rescaling is not
done. If we denote r jk = r̂ jk/ i and s jk = ŝ jk/ i , the system in the new time variable
can be written as{

z′ = z + r20z2 + r11zw + r02w2 + r30z3 + r21z2w + r12zw2 + r03w3,

w′ = −w + s20w2 + s11wz + s02z2 + s30w3 + s21w2z + s12wz2 + s03z3.
(5)

Up to our knowledge, the highest known Lyapunov constant for the above system
is the 10th; see [7]. But with our parallelization technique, we have been able to
reach the 14th. To perform this computation we have used the computer network of



164 I. Sánchez-Sánchez and J. Torregrosa

Table 1 Size of the computed Lyapunov constants

Lyapunov constant Size (MB)

11 111

12 261

13 588

14 1282

our department. The parallelization has been done with the software PBala; see [8].
This server has eight nodes with Intel Xeon 2.60GHz processors. The total memory
is 640GB and 96 threads can be run at the same time. The size of the new Lyapunov
constants is shown in Table1. The total computing time was around 22 h.

It is well-known, see for example [2], that the solution of the center problem for
the general cubic differential system needs at least 11 Lyapunov constants. Now, the
obstacle to obtain a complete characterization of the cubic centers is how can we
solve the nonlinear system {L1 = L2 = · · · = 0}, and not how to construct it because
we think that we have computed enough Lyapunov constants.

3 Interpolation and Reconstruction Technique

Let us consider the ideal inC[λ]generatedbyallLyapunovconstants 〈L1, L2, L3, . . .〉
associated to the differential system (1) with some fixed degree. Due to the Hilbert
Basis Theorem, this ideal is finitely generated, so there must exist m ∈ N such that

〈L1, L2, L3, . . .〉 = 〈L1, L2, L3, . . . , Lm〉. (6)

To know this m would significantly simplify the problem, because by computing
the first m Lyapunov constants we would obtain the center conditions. Nevertheless,
as [1] states, there are no general methods to find this m and this is the reason why
the center problem has been solved only for certain polynomial families.

Let Bk := 〈L1, . . . , Lk〉 be the Bautin ideal generated by the first k Lyapunov
constants. Themethodwe suggest aims to checkwhether a certain Lyapunov constant
Ln belongs to Bn−1, and therefore it vanishes when the previous are equal to zero.
It is important to remark that to apply this technique at this step we assume that we
have been able to compute the first n Lyapunov constants.

Let us start by writing

Ln =
n−1∑
j=1

A j L j , (7)
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where A j are polynomials whose variables are the parameters of (1). Our method
consists in trying to see whether we can determine these polynomials A j , since this
will tell if expression (7) is possible or not.

Using the notation of (5) for the parameters, let us consider a monomial M =∏
k,� r

pk�
k� sqk�k� , where rk� and sk� correspond to the coefficients of zkw� of Z(z, w,λ)

and W (z, w,λ), respectively. We define the quasi-degree of M as
∑

k,�(k + � −
1)(pk� + qk�) and its weight as

∑
k,�(1 − k − �)(pk� − qk�). Then, by [4], the mono-

mials of a Lyapunov constant L j satisfy that they have quasi-degree 2 j and weight
0. Now using these properties together with the degree of L j , we can select which
monomials are candidates to be part of each A j , but with undetermined coefficients.
Thus,we have that A j are polynomialswhosemonomials have been selected and have
undetermined coefficients, and these coefficients of A j are what we try to compute.

Now knowing the structure of A j , we would substitute it in (7), expand the prod-
ucts and the sum and finally equate the coefficients ofmonomialswith the same literal
part. This gives a set of linear equations consisting of the coefficients of equality (7).
If this system of linear equations is compatible, then the polynomials A j do exist and
Ln vanishes when L1, . . . , Ln−1 are zero; otherwise, if the system is incompatible
then the polynomials A j do not exist and Ln does not belong to Bn−1. Instead of
explicitly solving the system of equations, we have compared ranks of the system
matrices to see if they are equal or not.

With this method we have studied three different families and we have obtained
the following results.

Proposition 1 Consider the Kukles differential system

{
ẋ = −y,

ẏ = x + b20x2 + b11xy + b02y2 + b30x3 + b21x2y + b12xy2 + b03y3,

which in complex coordinates is written as

{
ż = i z + r20z2 + r11zw + r02w2 + r30z3 + r21z2w + r12zw2 + r03w3,

ẇ = −iw − r20z2 − r11zw − r02w2 − r30z3 − r21z2w − r12zw2 − r03w3.

Then L9 does not belong to B8. In the case r12 = 0, L9 again does not belong to B8,
but L10 does belong to B9 since there exist A j such that L10 = ∑9

j=1 A j L j .

From the above result, we can guess that only the first 9 Lyapunov constants are
enough to solve the center problem for this family when r12 = 0. This interpolation
method works better than the standard approach using a Groebner basis for the
simplifications.

The center problem for degree 5homogeneous perturbations of the linear oscillator
is an open problem, and even the valuem in (6) is unknown. Themechanismproposed
here fails for the general family due to the size of the computations. The next result
presents some particular cases.
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Proposition 2 Consider the linear plus homogeneous degree 5 polynomial differ-
ential system

{
ż = i z + r41z4w + r32z3w2 + r23z2w3 + r14zw4 + r05w5,

ẇ = −iw + s41w4z + s32w3z2 + s23w2z3 + s14wz4 + s05z5.

Then the next properties hold:

(i) if r41 = s41 = 0, then L10 does not belong to B9 but L11 does belong to B10;
(ii) if r32 = s32 = 0, then L11 and L12 do not belong to B10 and B11, respectively.

The last considered family is a special quartic differential systemwith four invari-
ant straight lines.

Proposition 3 Consider the following system with two parallel invariant lines

{
ẋ = (1 − x2)(−y + a20x2 + a11xy + a02y2),

ẏ = (1 − y2)(x + b20x2 + b11xy + b02y2),

which can be written in complex coordinates as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż = i z + r40z
4 + r31z

3w + r22z
2w2 + r14zw

3 + r04w
4 + r21z

2w + r03w
3+

r20z
2 + r11zw + r02w

2,

ẇ = − iw + s40w
4 + s31w

3z + s22w
2z2 + s14wz3 + s04z

4 + s21w
2z + s03z

3+
s20w

2 + s11wz + s02z
2.

For this system both L7, L8, and L9 do not belong to B6, B7, and B8, respectively.
However, when r11 = s11 = 0, L7 does belong to B6.
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Canards Existence
in the Hindmarsh–Rose Model

Jean-Marc Ginoux, Jaume Llibre and Kiyoyuki Tchizawa

Abstract In two previous papers, we have proposed a new method for proving
the existence of “canard solutions” on one hand for three- and four-dimensional
singularly perturbed systems with only one fast variable and, on the other hand, for
four-dimensional singularly perturbed systems with two fast variables; see [4, 5].
The aim of this work is to extend this method, which improves the classical ones used
till now to the case of three-dimensional singularly perturbed systems with two fast
variables. This method enables to state a unique generic condition for the existence
of “canard solutions” for such three-dimensional singularly perturbed systemswhich
is based on the stability of folded singularities (pseudo singular points in this case)
of the normalized slow dynamics deduced from a well-known property of linear
algebra. Applications of this method to a famous neuronal bursting model enables
to show the existence of “canard solutions” in the Hindmarsh–Rose model.
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1 Introduction

The concept of “canard solutions” for three-dimensional singularly perturbed sys-
tems with two slow variables and one fast has been introduced at the beginning of
the 80s by Benoît [2] and Benoît–Lobry [3]. Their existence has been proved by
Benoît [2, p. 170] in the framework of “Non-Standard Analysis” according to a theo-
remwhich states that canard solutions exist in such systems provided that the pseudo
singular point of the slow dynamics, i.e., of the reduced vector field, is of the saddle
type. Nearly twenty years later, Szmolyan–Wechselberger [12] provided a “standard
version” of Benoît’s theorem [2]. Recently, Wechselberger [15] generalized this the-
orem for n-dimensional singularly perturbed systems with k slow variables and m
fast (where n = k + m). The method they used require to implement a “desingu-
larization procedure” which can be summarized as follows: first, they compute the
normal form of such a singularly perturbed system, which is expressed according
to some coefficients (a and b for dimension three and ã, b̃ and c̃1 for dimension
four) depending on the functions defining the original vector field and their partial
derivatives with respect to the variables. Secondly, they project the “desingularized
vector field” (originally called “normalized slow dynamics” by Eric Benoît [2, p.
166]) of such a normal form on the tangent bundle of the critical manifold. Finally,
they evaluate the Jacobian of the projection of this “desingularized vector field” at
the folded singularity (originally called pseudo singular points by José Argémi [1,
p. 336]). This lead Szmolyan–Wechselberger [12, p. 427] and Wechselberger [15,
p. 3298] to a “classification of folded singularities (pseudo singular points)”. Thus,
they showed that for three-dimensional (resp. four-dimensional) singularly perturbed
systems such folded singularity is of the saddle type, if the following condition is
satisfied: a < 0 (resp. ã < 0).

In a first paper entitled “Canards Existence inMemristor’s Circuits” (see Ginoux–
Llibre [4]), we presented a method enabling to state a unique “generic” condition
for the existence of “canard solutions” for three- and four-dimensional singularly
perturbed systemswith only one fast variable, which is based on the stability of folded
singularities of the normalized slow dynamics deduced from a well-known property
of linear algebra. We proved that this unique condition is completely identical to that
provided by Benoît [2], Szmolyan–Wechselberger [12] and Wechselberger [15].

In a second paper entitled: “Canards Existence in FitzHugh–Nagumo and
Hodgkin–Huxley Neuronal Models” (see Ginoux–Llibre [5]) we extended this
method to the case of four-dimensional singularly perturbed systems with k = 2
slow and m = 2 fast variables. Then, we stated that the provided condition for the
existence of canards is “generic”, since it is exactly the same for singularly perturbed
systems of dimension three and four with one or two fast variables. The method we
used ledus to the followingproposition: If the normalized slowdynamics has apseudo
singular point of saddle type, i.e., if the sum σ2 of all second-order diagonal minors
of the Jacobian matrix of the normalized slow dynamics evaluated at the pseudo
singular point is negative, i.e., if σ2 < 0, then the three-dimensional (resp. four-
dimensional) singularly perturbed system exhibits a canard solution, which evolves
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from the attractive part of the slow manifold towards its repelling part. Then, on one
hand, for three-dimensional singularly perturbed systems with only one fast variable,
we proved that the condition for which the pseudo singular point is of the saddle
type, i.e., σ2 < 0, is identical to that proposed by Benoît [2, p. 171] in his theorem,
i.e., D < 0, and also to that provided by Szmolyan–Wechselberger [12], i.e., a < 0.
On the other hand, for four-dimensional singularly perturbed systems with one or
two fast variables, we proved that the condition for which the folded singularity
(resp. the pseudo singular point) is of the saddle type, i.e., σ2 < 0, is identical to that
proposed by Wechselberger [15, p. 3298] in his theorem, i.e., ã < 0.

Note that there is no proof of the approximation: it is not established whether the
time-scaled reduced system holds on the approximation for the original system in the
case of k slowvariables (k ≥ 3) andm fast variables (m ≥ 2). Itwas proved in the case
k = 2 andm = 1 by Benoît via constructing a local model and obtaining its solution,
and in the case k = 2 and m = 2 was also extensively proved by Tchizawa [13, 14].
For the case k = 1 andm = 2 (theHindmarsh–Rosemodel),we shall construct a local
model again and we shall obtain the solutions, thus providing a constructive proof
for the approximation. The fact that the pseudo singular point a saddle or a node does
not ensure the existence of canards, because it may not satisfy the approximation.

The aim of this paper is to extend this method to the case of three-dimensional
singularly perturbed systems with one slow and two fast variables and to show that
the provided condition for the existence of canards, i.e., σ2 < 0, still holds and is
consequently “generic”.

The Hindmarsh–Rose model [8] describes the basic properties of individual neu-
rons and appears as a reduction of the conductance based in the Hodgkin–Huxley
model for neural spiking, see [9] for more details. Thus, the three-dimensional
Hindmarsh–Rose polynomial ordinary differential system was originally written as

dx

dt
= y − ax3 + bx2 − z + I,

dy

dt
= c − dx2 − y,

dz

dt
= r [s (x − α) − z] ,

(1)

where x is a transmembrane neuron potential, y and z are the characteristics of ionic
currents dynamic and I is ambient current. The other parameters (a, b, c, d, I , s,
α and r ) reflect the physical features of the neurons and the dot indicates derivative
with respect to the time t . We note that the parameter r � 1. Existence of canard
solutions in system (1) has been originally suspected by Shilnikov et al. [11, p. 2149]
and highlighted by Shchepakina [10]. Thus, according to the previous definitions, the
Hindmarsh–Rose model may be written as a three-dimensional singularly perturbed
system with k = 1 slow variable and m = 2 fast variables. By posing x → y2, y →
y1, z → x1 and t ′ → εt with ε = r , we obtain:
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ẋ1 = f1 (x1, y1, y2) = s (y2 − α) − x1,
ε ẏ1 = g1 (x1, y1, y2) = c − dy22 − y1,
ε ẏ2 = g2 (x1, y1, y2) = y1 − ay32 + by22 − x1 + I,

(2)

where x1 ∈ R, �y = (y1, y2)t ∈ R
2, 0 < ε � 1 and the functions fi and gi are

assumed to be C2 functions of (x1, y1, y2) and the dot now indicates derivative with
respect to the time t ′.

We have proved the existence of different kind of canard solutions for system (2)
see Figs. 1, 2, and 3.

In fact, Shchepakina [10] already found the canard shown in Fig. 1. We proved
the existence of this canard showing the existence of a pseudo singular point of
the saddle-type when the parameters satisfy s < (c + I )/α. With c = 1, I = 2.7
and α = −1.2, we find that s < 3.0833. Thus, Shchepakina highlighted a canard
without head in the Hindmarsh–Rose model (see Fig. 1) for the “duck parameter”
value s = 3.0810445478558141214 < 3.0833.

In the inset of Fig. 1, the zoom in highlights a large distance between the canard
solution and that of the critical manifold. This is due to the fact that this latter corre-
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Fig. 1 Canard solution of the Hindmarsh–Rose (1) model in the (x, z) plane phase with the fol-
lowing parameter set: a = 1, b = 3, c = 1, d = 0.275255, I = 2.7, α = −1.2 and for the “duck
parameter” value s = 3.0810445478558141214
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Fig. 2 Canard solution of the Hindmarsh–Rose (1) model in the (x, z) plane phase, its critical
manifold (in green) and the second-order approximation in ε of the slow invariant manifold (in
blue) with the following parameter set: a = 1, b = 3, c = 1, d = 0.275255, I = 2.7, α = −1.2
and for the “duck parameter” value s = 3.0810445478558141214

sponds to zero-order approximation in ε of the slow invariantmanifold. Nevertheless,
while using the so-called Flow Curvature Method Ginoux–Rossetto [7] have already
provided a second-order approximation in ε of the slow invariant manifold of the
Hindmarsh–Rose model (1). The result is presented in Fig. 2.

With c = 1, I = 2.7 and α = −1.2, we find that s < 2.2200954. Thus, we have
highlighted a canard with head in the Hindmarsh–Rose model (see Fig. 3) for the
“duck parameter” value s = 2.220095 < 2.2200954. For this parameters set the
second-order approximation in ε of the slow invariant manifold of the Hindmarsh–
Rose model (1) can be provided while using the Flow Curvature Method introduced
by Ginoux–Rossetto [7]. The result is presented in Fig. 3.

All the details of the existence of these three different canards in the Hindmarsh–
Rose model [8] can be found in [6].
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Fig. 3 Canard solution of the Hindmarsh–Rose (1) model in the (x, z) plane phase, its critical
manifold (in green) and the second-order approximation in ε of the slow invariant manifold (in
blue) with the following parameter set: a = 1, b = 3, c = 1, d = 0.275255, I = 2.7, α = −1.2
and for the “duck parameter” value s = 2.220095
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Effect of Delayed Harvesting
on the Stability of Single-Species
Populations

Daniel Franco, Juan Perán, Hartmut Logemann and Juan Segura

Abstract New results on the impact of harvesting times and intensities on the sta-
bility properties of Seno population models are presented. Special attention is given
to the global stability of the positive equilibrium in terms of the harvest timing.

1 Introduction

The moment of intervention is a key question in harvest programmes and is cur-
rently generating increasing interest. However, little is known about its effect on the
population stability.

We used a discrete-time equation introduced by Hiromi Seno in [4] to model
the dynamics of populations harvested at any time during the reproductive season.
For a wide family of population models described by unimodal maps, we showed
that for high harvesting efforts—below the threshold above which all populations go
eventually extinct—the moment of the intervention does not affect the stability of
the positive equilibrium, which acts as a global attractor.

For many population models involving the Ricker map, which has been shown
to be a good descriptor of the dynamics of many populations, local stability implies
global stability. We showed that this is also the case for the Ricker–Seno model.

D. Franco · J. Perán
Departamento de Matemática Aplicada, E.T.S.I. Industriales, Universidad Nacional de Educación
a Distancia (UNED), c/ Juan del Rosal 12, 28040 Madrid, Spain
e-mail: dfranco@ind.uned.es

J. Perán
e-mail: jperan@ind.uned.es

H. Logemann
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
e-mail: h.logemann@bath.ac.uk

J. Segura (B)
Departament d’Economia i Empresa, Universitat Pompeu Fabra, c/ Ramon Trias Fargas 25–27,
08005 Barcelona, Spain
e-mail: joan.segura@upf.edu

© Springer Nature Switzerland AG 2019
A. Korobeinikov et al. (eds.), Extended Abstracts Spring 2018,
Trends in Mathematics 11, https://doi.org/10.1007/978-3-030-25261-8_27

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25261-8_27&domain=pdf
mailto:dfranco@ind.uned.es
mailto:jperan@ind.uned.es
mailto:h.logemann@bath.ac.uk
mailto:joan.segura@upf.edu
https://doi.org/10.1007/978-3-030-25261-8_27


178 D. Franco et al.

Additionally, we used this model to prove that timing can be stabilizing by itself.
In other words, we showed that in some cases choosing an appropriate moment
for removing individuals can induce an asymptotically stable positive fixed point in
populations for which the same equilibrium would be unstable in case of triggering
the intervention at the beginning or at the end on the reproductive season.

Our last result consists of pointing out that timing can be destabilizing for certain
maps. We obtained specific mathematical counterexamples proving that Conjecture
3.5 in [1] is false.

2 Harvesting Model with Timing

Consider the discrete-time single-species population model

xt+1 = g(xt )xt , (1)

where xt ∈ [0,∞) is the population size at the beginning of the reproductive season
t and g : [0,∞) → R is the per-capita production function. We are interested in
populations satisfying the following conditions on g:

(i) g′(x) < 0 for all x > 0;
(ii) g(0) > 1;
(iii) there exists some d > 0 such that xg(x) is strictly increasing on (0, d) and

strictly decreasing on (d,∞).

Under these conditions, the dynamics are over-compensatory. On the other hand,
harvesting a constant fraction γ ∈ (0, 1) of the population at the end of every repro-
ductive season corresponds to multiplication of the right-hand side of (1) by the
survival fraction (1 − γ),

xt+1 = (1 − γ)g(xt )xt . (2)

Similarly, harvesting the same fraction at the beginning of the season leads to

xt+1 = g((1 − γ)xt )(1 − γ)xt . (3)

In [4], Seno puts forward the following harvesting model, which encompasses the
limit situations (2) and (3) by allowing the population to be harvested at any fixed
point in time within the season. It reads

xt+1 = [θg(xt) + (1 − θ)g((1 − γ)xt )](1 − γ)xt , (4)

where θ ∈ [0, 1] corresponds to the fixed harvesting moment. See [4] for a more
detailed explanation and a graphical scheme of the population dynamics of this
model.

Following the notation of [1], we rewrite the right-hand side of (4) as
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θF1(xt ) + (1 − θ)F0(xt ) := Fθ(xt ),

where F1(x) := (1 − γ)g(x)x and F0(x) := g((1 − γ)x)(1 − γ)x . Model (4)
includes models (2) and (3) as special cases. Taking θ = 1 corresponds to harvesting
when the season ends, and θ = 0 when it begins.

Over-compensatory models can exhibit positive unstable equilibria, which leads
to fluctuating dynamics. We start by recalling a sufficient and necessary condition
for the existence of such an equilibrium regardless of the intervention moment θ.

Proposition 1 (from Proposition 3.1 in [1]) Assume that conditions (i)–(iii) hold.
System (4) has a unique positive equilibrium (denoted by Kγ(θ)) if and only if

γ < γ∗ := 1 − 1

g(0)
.

3 Results

3.1 Timing Does Not Affect Stability for High Harvesting
Efforts

We showed that the asymptotic stability of Kγ(0) implies the asymptotic stability
of Kγ(θ) for θ ∈ [0, 1] if γ is chosen close enough to γ∗ and g satisfies conditions
(i)–(iii). Moreover, we obtained that Kγ(θ) is not only asymptotically stable, but
attracts all solutions of (4) starting with a positive initial condition.

Proposition 2 Assume that conditions (i)–(iii) hold. Then, there exists γ0 < γ∗ such
that for γ ∈ [γ0, γ∗) the fixed point Kγ(θ) of (4) is asymptotically stable for all
θ ∈ [0, 1] and all positive solutions of (4) converge to Kγ(θ).

3.2 Global Stability for Any Harvesting Time in the Ricker
Case

Proposition 2 gives a sufficient condition for the global stability of the positive
equilibrium of (4) in the Ricker case, for which g(x) = exp(r(1 − x)). But as the
growth parameter r increases, the harvesting intensity has to be chosen higher and
very close to the threshold γ∗ = 1 − e−r abovewhich all populations go extinct. This
has two important drawbacks: (1) selecting harvesting efforts near such a threshold
could be considered dangerous, and (2) attaining high harvesting intensities may be
difficult in case of constraints of harvesting/thinning management. The following
result proves that for the Ricker model the asymptotic stability of Kγ(0) implies
global stability of Kγ(θ) for all θ ∈ [0, 1].
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Fig. 1 In the blue area
changing timing does not
affect the global attraction of
the positive equilibrium of
model (4) for the Ricker map

Theorem 3 Assume g(x) = er(1−x), r > 0, and γ ∈ (0, 1) such that 1 − e2−r ≤ γ <

1 − e−r . Then, for any θ ∈ [0, 1], the positive equilibrium of Eq. (4) is G.A.S.

Figure1 illustrates the region of parameters (r, γ) for which changing timing does
not affect the global attraction of the positive equilibrium according to Theorem 3.

3.3 Timing Can Be Stabilizing by Itself

We proved that in the Ricker case it is possible to find θ ∈ (0, 1) such that Kγ(θ) for
(4) is stable when Kγ(0) is unstable.

Proposition 4 Assume g(x) = er(1−x) and r > 0. Then, there exists γc < γ∗ := 1 −
e2−r such that for any γ ∈ (γc, γ∗) it is possible to find a timing interval (θ0, θ1) with
the property that for each θ ∈ (θ0, θ1) the fixed point Kγ(θ) is asymptotically stable
for (4).

3.4 Timing Can Be Destabilizing

Proposition 4 shows that timing can be stabilizing by itself. In view of this, it is logical
to ask the opposite question: can timing be destabilizing? Cid et al. conjectured in [1]
that harvesting times θ in the interior of [0, 1] cannot be destabilizing if conditions
(i)–(iii) are satisfied.

Conjecture 5 ([1, Conj. 3.5]) Assume that conditions (i)–(iii) hold. If the positive
equilibrium Kγ(0) of (4) with θ = 0 is asymptotically stable, then the fixed point
Kγ(θ) is asymptotically stable for (4) for all θ ∈ [0, 1].
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A counterexample of this conjecture corresponds to the analytic function

g(x) = e6−15x+15x2− 11
2 x3

, (5)

for which d F0.6
dx (K0.5(0.6)) = F ′

0.6(K0.5(0.6)) ≈ −1.278 while F ′
0(K0.5(0)) = F ′

1
(K0.5(1)) ≈ −0.207.

4 Discussion and Conclusions

We studied the combined effect of harvesting intensity and harvesting time on the
stability of a discrete population model proposed by Seno [4]. Under general con-
ditions, we showed that timing has no negative effect on the stability of the positive
equilibrium if the harvesting intensity is close enough to γ∗. Moreover, we proved
that the latter stability is global. To the best of our knowledge, this is the first global
stability result for (4) valid for general over-compensatory population models, since
global stability results in [1] only cover under-compensatory models (such as the
Beverton–Holt model) and the quadratic model.

For the Ricker–Seno model, we proved that there is global stability of the positive
equilibrium regardless of the time of the intervention. Additionally, we showed that
for this model timing can be stabilizing, that is, a harvesting intensity applied at an
appropriate time of the season can asymptotically stabilize the positive equilibrium
even when it cannot be stabilized at the beginning or at the end of the reproductive
season with the same harvesting intensity.

Finally, we showed that timing can be destabilizing under natural conditions
assumed on population production maps. This provides counterexamples for a con-
jecture recently published in [1]. However, these counterexamples are the result of
mathematical constructions. Most of the population maps considered in the eco-
logical literature satisfy additional conditions, as for example to have negative
Schwarzian derivative, which may prevent any destabilizing effects of timing.

Our study leaves several open questions for future research. First, to find what
extra conditions are necessary for Conjecture 5 to hold. Second, to provide general
conditions for which timing is stabilizing by itself for population models different
from the Ricker model.

Further details and proofs of the results provided here can be found in [2, 3].
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Gevrey Asymptotics of Slow Manifolds in
Singularly Perturbed Delay Equations

Karel Kenens and Peter De Maesschalck

Abstract We study a system of singularly perturbed delay differential equations
and derive an equation for a slow manifold. To this equation, there exists a formal
series solution which is Gevrey-1. By a Borel summation procedure, quasi-solutions
are obtained from the formal solution, which determine the slow manifolds up to an
exponentially small error.

1 Introduction

The setting of this paper is singularly perturbed delay differential equations, a set-
ting that is encountered in applications on high-speed machinery [2] or mathemat-
ical neurology [8]. Compared to ordinary differential equations, the phase space of
delay equations is infinite dimensional, making the study harder. Fortunately, center
manifolds of delay equations are finitely dimensional, as well as slow manifolds of
singularly perturbed ones and hence a system reduction to such amanifold is in many
applications a key element in the global study. Here, we are concerned with the char-
acterization of slow manifolds that arise in these systems. Our goal is to characterize
such a manifold by formal series expansions, following [4]. The novelty here is that
those expansions will be shown to be of Gevrey type, which allows us to construct
functions, called quasi-solutions, which determine slow manifolds up to an expo-
nentially small error. It is in many cases precise enough to obtain rigorous results.
Moreover, quasi-solutions exhibit excellent smoothness and asymptotic properties
(the exact meaning of this will become clear throughout the text).

The paper that we present here combines ideas from [4], on delay differential
equations, with ideas from [3], on Gevrey asymptotics on ordinary differential equa-
tions. In the latter paper, the object of study is similar: characterization of the slow
manifolds by means of Gevrey analysis of the formal power series expansion. We
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are able to pursue the analysis in the DDE setting up to the construction of quasi-
invariant manifolds. The step from quasi-invariant manifold to invariant manifold is
also done in the ODE setting in [3], but we leave this as a future topic of research
since at the moment, as we have seen delicate smoothness issues in the DDE case,
much like is seen in [7].

In this text, we consider the following system of singularly perturbed delay dif-
ferential equations:

{
ẋ(t) = ε (a − γx(t))

ẏ(t) = (1 + J ) y(t) − J y(t − τ ) + x(t) − y3(t)
3 ,

(1)

with a ∈ R, γ ∈ R0, J, τ ∈ R+
0 . This model can be encountered in mathematical

neurosciences, see [8]. This is very much a toy model, allowing us to exhibit the
Gevrey expansion technique. Analog results can be obtained in a much broader class
of equations, including, for example, systems of the form

{
ẋ(t) = ε
ẏ(t) = ay(t) + by(t − τ ) + εG (x(t), y(t), y(t − τ ), ε) ,

where G is a holomorphic function.
A further application of the techniques could possibly be found in dynamicalmod-

els of chatter in drilling processes. These typically exhibit delays due to the physical
nature of the cutting tool. In [2], the authors study the model of Stone and Askari
by referring to the theory of inertial and slow manifolds developed by Chicone, [4].
This work by Chicone relates invariant manifolds of the delay differential equation
to so-called inertial manifolds, which are dealt with using asymptotic expansions. A
combination of the techniques of Chicone with the knowledge from Gevrey asymp-
totic expansions could better characterize center manifolds that appear in similar
models.

2 Statement of the Result

We are thus interested in slow manifolds of system (1), or equivalently center mani-
folds of the extended system

⎧⎨
⎩
ẋ(t) = ε(t) (a − γx(t))

ẏ(t) = (1 + J ) y(t) − J y(t − τ ) + x(t) − y3(t)
3

ε̇(t) = 0.
(2)
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There is clearly a curve of equilibria {pb : b ∈ R}, with

pb :=
(

−b + b3

3
, b, 0

)
;

see Fig. 1. Let us start the study of the center manifold with a determination of the
linearization. The linearized system around such an equilibrium is given by

⎧⎪⎨
⎪⎩
ẋ(t) = ε(t)

(
a + γ

(
b − b3

3

))
ẏ(t) = (

1 − b2
)
y(t) + J (y(t) − y(t − τ )) + x(t)

ε̇(t) = 0.

(3)

The characteristic equation associated to (3) at pb is given by

λ2
(
λ − (

1 − b2
) − J

(
1 − e−λτ

))
.

In theODE setting (τ = 0), the curve of singular points is normally hyperbolic almost
at all points pb (except for b = ±1) meaning that almost everywhere λ = 0 is a root
of order 2 and there is one nonzero root. Also in the DDE setting, p±1 splits the
curve of equilibria into three parts, each of which is a graph where 0 is a root of
order 2. Let us denote these graphs by f−, f0, f+ where f−(x) < −1 < f0(x) <
1 < f+(x); see Fig. 1. For all points on f0(x), λ = 0 is the only characteristic root
on the imaginary axis. On f±, there is a possibility for an extra pair of complex
conjugated characteristic roots of an equilibrium to lie on the imaginary axis. This,

x

y

1

−1

2/3−2/3

Fig. 1 Equilibria of system (2) in the plane ε = 0, divided into the curves f−, f0, f+
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however, can only happen in a finite number of points and it is not necessary for
such points to even exist. If, for example, Jτ ≤ 1, extra characteristic roots on the
imaginary axis do not appear.

From here on out, we focus on one of the three graphs and denote it for simplicity
by f (x), we give the important remark that f is a holomorphic function and thus
has an extension to a subset of the complex plane. Choose any x0 in the domain of
f for which λ = 0 is the only root on the imaginary axis. Translating the graph to
the x axis and (x0, f (x0)) to the origin brings system (2) in the form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = ε(t) (a − γx0 − γx(t))
ẏ(t) = J ( f (x(t) + x0) − f (x(t − τ ) + x0))

+ (
1 + J − f 2 (x(t) + x0)

)
y(t) − J y(t − τ )

− f (x(t) + x0) y2(t) − y3(t)
3 − ε(t) f ′ (x(t) + x0) (a − γx0 − γx(t))

ε̇(t) = 0.
(4)

One can calculate directly that the solution to the first equation satisfies

x (t − τ ) = x(t) +
(
x(t) − a − γx0

γ

)
(eεγτ − 1) .

Thinking naively, one could then assume that a solution to the following equation,

ε(a−γx0 − γx)
∂Y

∂x
(x, ε)

=J

(
f (x + x0) − f

(
x +

(
x − a − γx0

γ

) (
eεγτ − 1

) + x0

))

+
(
1 + J − f 2 (x + x0)

)
Y (x, ε) − JY

(
x +

(
x − a − γx0

γ

) (
eεγτ − 1

)
, ε

)

− f (x + x0) Y
2(x, ε) − Y 3(x, ε)

3
− ε f ′ (x + x0) (a − γx0 − γx) , (5)

satisfying Y (x, 0) = 0, would induce a center manifold of system (4).
In the following section, we show that this equation does indeed characterize a

center manifold.
Our goal in this paper is to show the following, for the relevant terminology

regarding Gevrey series, see Sect. 4.

Theorem 1 There exists a unique formal series of the form Ŷ (x, ε) = ∑∞
n=1 yn(x)ε

n,
where all coefficients yn are holomorphic on a neighborhood of 0, which formally
solves Eq. (5).

Moreover, for any open sector S ⊂ C of opening less thanπ, there exists a function
Ỹ (x, ε), Gevrey-1 asymptotic to Ŷ w.r.t. ε, uniformly for x in a neighborhood of 0,
which satisfies Eq. (5) up to an exponentially small error, i.e., there exists K , L > 0
such that
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sup
x

∣∣∣∣ε(a − γx0 − γx)
∂Ỹ

∂x
(x, ε)

− J

(
f (x + x0) − f

(
x +

(
x − a − γx0

γ

)
(eεγτ − 1) + x0

))

− (
1 + J − f 2 (x + x0)

)
Ỹ (x, ε) + J Ỹ

(
x +

(
x − a − γx0

γ

)
(eεγτ − 1) , ε

)

+ f (x + x0) Ỹ
2(x, ε) + Ỹ 3(x, ε)

3
+ ε f ′ (x + x0) (a − γx0 − γx)

∣∣∣∣ ≤ Ke− L
|ε| .

Remark 2 While our results will be local in nature, they can be easily applied to any
compact subset of a normally hyperbolic part of the curve of equilibria.

3 Characterizing Center Manifolds

In this section, we follow [6] for the relevant definitions. Hale’s characterization of
center manifolds of delay differential equations is applied to our main equation; we
prove that in this characterization, such center manifolds relate to solutions of (5).

The generalized eigenspace, when a − γx0 �= 0, of the zero characteristic root of
the linearisation of system (4) at (0, 0, 0) is given by

{(
(a − γx0)(A + Bθ), −B(a − γx0)(1 − Jτ ), B

)T | A, B ∈ R
}
.

Remark 3 For a − γx0 = 0, the generalized eigenspace is given by {(A, 0, B)T |
A, B ∈ R}. This case does not essentially differ from when a − γx0 �= 0 and we
will thus not detail it any further.

Define h1 : R2 → C ([−τ , 0] ,R), where h1 (A, B) (θ) is given by

(a − γx0) A
(
e−γBθ − 1

) − a − γx0
γ

(
e−γBθ − 1 + γBθ

)

and h̃1 : R2 → C ([−τ , 0] ,R) where h̃1 (A, B) (θ) is given by

(a − γx0) Ae
−γBθ − a − γx0

γ

(
e−γBθ − 1

)
.

The function is nothing more than a shorthand notation and is given by

h̃1 (A, B) (θ) = (a − γx0) (A + Bθ) + h1 (A, B) (θ) .
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Furthermore, define h̃2 : G ⊂ R2 → C ([−τ , 0] ,R) given by

h̃2 (A, B) (θ) = Y
(̃
h1 (A, B) (θ) , B

)
,

where Y is a solution to (5) and G is a sufficiently small neighborhood of (0, 0).
One calculates that

h̃1 (A, B)
′ (t) = B

(
a − γx0 − γh̃1 (A, B) (t)

)
,

h̃1 (A, B) (t + θ) = h̃1

(
1

γ
+

(
A − 1

γ

)
e−γBt , B

)
(θ),

h̃1 (A, B) (θ) +
(
h̃ (A, B) (θ) − a − γx0

γ

) (
eγBτ − 1

) = h̃ (A, B) (θ − τ ) .

This implies that supplementing system (4) with initial conditions,

x0 (θ) = h̃1 (A, B) (θ) ,

y0 (θ) = h̃2 (A, B) (θ) ,

ε0 (θ) = B,

has solution given by

xt (θ) = h̃1

(
1

γ
+

(
A − 1

γ

)
e−γBt , B

)
(θ) ,

yt (θ) = h̃2

(
1

γ
+

(
A − 1

γ

)
e−γBt , B

)
(θ) ,

εt (θ) = B.

Moreover, one can see rather easily that, if we define

h2 (A, B) = h̃2 (A, B) + B (a − γx0) (1 − Jτ ) ,

we have

h1(0, 0) = 0, h2(0, 0) = 0, Dh1(0, 0) = 0, Dh2(0, 0) = 0.

Consequently, the map

h : G ⊂ R2 → C (
[−τ , 0] ,R3

) : (A, B) 	→ (h1(A, B), h2(A, B), 0)

is a center manifold. Moreover, it inherits the smoothness of Y .
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4 A Primer on Gevrey Series and Asymptotics

Definition 4 Let V ⊂ C and B > 0. A formal series

f̂ (x, ε) =
∞∑
n=0

fn(x)ε
n

is Gevrey-1 in ε, uniformly for x in V , if fn ∈ O(V ) for all n ∈ N and there exists
A > 0 such that

sup
x∈V

| fn(x)| ≤ ABnn! .

For θ ∈ [
0, 2π

[
, δ ∈ ]

0,π
[
and r > 0, we denote the (open) sector in the direction

θ with opening 2δ and radius r by

S(θ, 2δ, r) = {
ε ∈ C

∣∣ 0 < |ε| < r, Arg(εe−iθ) ∈ ]−δ, δ[
}
.

Definition 5 Consider some sector S and a subset V ⊂ C2. Let f̂ (x, ε) = ∑∞
n=0

fn(x)εn be a formal series in ε with coefficients in O(V ). We say that a function
f (x, ε), holomorphic on V × S, is Gevrey-1 asymptotic to the formal series f̂ (x, ε),
with respect to ε, uniformly for (x, y) ∈ V , if for every ε ∈ S and every N ∈ N0 we
have

sup
x∈V

∣∣∣∣∣ f (x, ε) −
N−1∑
n=0

fn(x)ε
n

∣∣∣∣∣ ≤ CDN N ! |ε|N

for certain C, D > 0. We denote this by

f (x, ε) ∼1

∞∑
n=0

fn(x)ε
n.

Remark 6 The characterization of Gevrey functions implies that the function can be
extended to the vertex ε = 0 in a C∞ smooth manner.

5 Quasi-Solutions—Proof of Theorem 1

5.1 Formal Solution

Since f is a holomorphic function at x0, there exists an R > 0 such that f (x + x0)
is holomorphic on B(0, R).
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Proposition 7 There exists a unique formal series solution to (5) of the form
Ŷ (x, ε) = ∑∞

n=1 yn(x)ε
n with yn ∈ O (B (0, R)).

Proof Plugging the formal series Ŷ (x, ε) = ∑∞
n=1 yn(x)ε

n into Eq. (5), expanding
f (x + (x − (a − γx0)/γ) (eεγτ − 1) + x0) in its Taylor series around x + x0 and
similarly expanding yn (x + (x − (a − γx0)/γ) (eεγτ − 1)) around x , we can arrive
at

∞∑
n=1

(
1 − f 2(x + x0)

)
yn(x)ε

n

= ε f ′ (x + x0) (a − γx0 − γx) +
∞∑
k=1

J
(
x − a−γx0

γ

)k

k! f (k)(x + x0) (e
εγτ − 1)k

+
∞∑
n=1

(a − γx0 − γx)y′
n(x)ε

n+1 +
∞∑
n=1

∞∑
k=1

J
(
x − aγx0

γ

)k

k! y(k)n (x) (eεγτ − 1)k εn

+ f (x + x0)

( ∞∑
n=1

yn(x)ε
n

)2

+ 1

3

( ∞∑
n=1

yn(x)ε
n

)3

.

(6)

Since the expansion in powers of ε of eεγτ − 1 has no constant term, for n ≥ 1 the
coefficient of εn+1 on the RHS (right hand side) of (6) only depends on the func-
tions y1, . . . , yn, f and their derivatives. Together with 1 − f 2(x + x0) �= 0, indeed
this follows immediately from f (x) − f 3(x)/3 + x = 0, we can thus recursively
determine the coefficients of our formal solution.

Notice that since f (x + x0) ∈ O (B(0, R)), the same holds for the coeffi-
cients yn .

5.2 Gevrey Property of Formal Solution

Wewill only state the result regarding the Gevrey property of the formal solution. For
the proof, one can follow the general outlines of a proof for the ODE case, see, for
example, [3]. The presence of a delay in Eq. (5) does present a small extra challenge
in comparison with the ODE case; we are able to overcome this but do not delve
deeper into the details for the sake of brevity.

Lemma 8 Given the unique formal solution of the form

Ŷ (x, ε) =
∞∑
n=1

yn(x)ε
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to Eq. (5), with yn ∈ O (B(0, R)). For 0 < T < R, Ŷ (x, ε) is a Gevrey-1 series in ε,
uniformly for x ∈ B(0, T ). More specifically, there exist C, D > 0 such that

sup
|x |<T

|yn(x)| ≤ C

(
D

R − T

)n

n! .

5.3 Borel Summation

Starting from our formal solution, we construct a quasi-solution “nearly” solving
(5). The exact properties such a function exhibits will become clear below.

The following theorem allows us to construct the desired function, for a proof [1]
can be consulted, among others.

Theorem 9 (Borel–Ritt–Gevrey Theorem) Given a formal series ĝ(x, ε) which is
Gevrey-1 w.r.t. ε, uniformly for x ∈ B(0, T ) and a sector S(θ, δ, r) with opening
δ < π. Then there exists a function g(x, ε), analytic in B(0, T ) × S(θ, δ, r), so that
g(x, ε) ∼1 ĝ(x, ε).

By this result, there exists a function Ỹ , analytic on B(0, T ) × S(θ, δ, r) satisfying
Ỹ (x, ε) ∼1 Ŷ (x, ε) with Ŷ the formal solution found in Proposition 7.

Since the function Ỹ arises from a Borel summation procedure (and is certainly
not unique), there is no guarantee that Ỹ is a solution to (5). However, we do have
the following.

Proposition 10 There exist s > 0, 0 < T ′ < T such that the remainder term

R(x, ε) := ε(a − γx0 − γx)
∂Ỹ

∂x
(x, ε)

− J

(
f (x + x0) − f

(
x +

(
x − a − γx0

γ

)
(eεγτ − 1) + x0

))

− (
1 + J − f 2 (x + x0)

)
Ỹ (x, ε) + J Ỹ

(
x +

(
x − a − γx0

γ

)
(eεγτ − 1) , ε

)

+ f (x + x0) Ỹ
2(x, ε) + Ỹ 3(x, ε)

3
+ ε f ′ (x + x0) (a − γx0 − γx)

(7)

is Gevrey-1 asymptotic to zero series, w.r.t. ε ∈ S(θ, δ, s) uniformly for x ∈ B(0, T ′),
i.e.,R (x, ε) ∼1 0.

Proof One can rather easily prove this by applying the Ramis–Sibuya theorem, see,
for example, [5]. We will, however, not give a proof since the exposition needed to
introduce the Ramis–Sibuya theorem would take us to far. �
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By Definition 5 of Gevrey asymptotics, R(x, ε) ∼1 0 implies that

sup
|x |<T ′

|R(x, ε)| ≤ ABN N ! |ε|N

for certain A, B > 0 and all N ∈ N0. It then follows readily that

sup
|x |<T ′

|R(x, ε)| ≤ Ke− L
|ε|

for certain K , L > 0. This proves Theorem 1.
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Four-Dimensional Canards and Their
Center Manifold

Kiyoyuki Tchizawa

Abstract We consider four-dimensional slow–fast systems, which can be repre-
sented either by one-dimensional slow vector field or three-dimensional fast vector
field and denoted asR1+3, orR2+2, orR3+1. In each of these cases, the corresponding
system can be well analyzed using blowing up the system and a time-scale reduc-
tion technique. Moreover, for each of these cases, by constructing a local model, the
existence of a singular-limit solution (that are usually called Canards) is established.
Some sufficient conditions for the existence of the canards are provided in this notice.
What kind of four-dimensional canards are there?

1 Slow–Fast System in R
2+2

We consider the following slow–fast system in R
2+2:

ε
dx

dt
= h(x, y, ε),

dy

dt
= f (x, y, ε),

(1)

where x ∈ R
2, y ∈ R

2, ε > 0 is infinitesimal, h : R4+1 → R
2, and f : R4+1 → R

2.
Note that ε is a non-standard number in a sense ofNelson, that is, using “idealization”,
“standardization”, and “transfer” principles. For this system, we make the following
five assumptions:
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(A1) S = {(x, y) ∈ R
4 | h(x, y, 0) = 0} is a two-dimensional differentiable man-

ifold, and S intersects T = {(x, y) ∈ R
4 | det[∂h(x, y, 0)/∂x] = 0} trans-

versely, so that PL = {(x, y) ∈ S ∩ T } is a one-dimensional differentiable
manifold.

(A2) f (x, y, 0) �= 0 at (x, y) ∈ PL .
(A3) For (x, y) ∈ S \ PL , rank[∂h(x, y)/∂x] = 2; for (x, y) ∈ S, rank[∂h(x, y)/

∂y] = 2. On set S, if det[∂h(x, y)/∂x] �= 0, the differentiation by t yields the
following equality:

dx/dt = −[∂h(x, y)/∂x]−1[∂h(x, y)/∂y] f (x, y, 0), (2)

where a smooth function y = g(x) exists. To avoid the degeneracy, we consider
the time-scaled-reduced system

dx/dt = − det[∂h(x, y)/∂x][∂h(x, y)/∂x]−1[∂h(x, y)/∂y] f (x, y, 0). (3)

Then, all the singular points of the time-scaled-reduced system are contained in
the set PS = {(x, y) ∈ PL | − det[∂h(x, y)/∂x][∂h(x, y)/∂x]−1[∂h(x, y)/
∂y]· f (x, y, 0) = 0}, where y = g(x). Points in the set PS are called pseudo-
singular points in R

2+2.
(A4) All the singular points of the reduced system are nondegenerate, i.e., the cor-

responding eigenvalues are nonzero.
(A5) The invariant manifold I NV (x, y) intersects the set PL transversely.

Note that in the case of k slow variables andm fast variables with k ≥ 3 orm ≥ 2, it is
not established yet whether the time-scaled-reduced system holds an approximation
for the original system. In the case k = 2 and m = 1, this was proved by Benoit [1]
by constructing a local model and obtaining its solution, and in the case k = 2 and
m = 2 this was proved extensively by Tchizawa [2].

2 Slow–Fast System in R
1+3

Let us consider the approximation regarding the reduced system constructing a local
model in the case k = 1 and m = 3.

Let the origin O be a “saddle” or a “node” point. By blowing up the coordinates
x = (x1, x2, x3) ∈ R

3 and y ∈ R as follows: x1 = α2u1, x2 = α2u2, x3 = αu3 and
y = α2v with α ≈ 0, the system is reduced to the following:
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ε
du1
dt

= h1(x, y, ε)/α
2,

ε
du2
dt

= h2(x, y, ε)/α
2,

ε
du3
dt

= h3(x, y, ε)/α,

dv

dt
= f (x, y, ε)/α2.

(4)

Let us assume that rank[∂h(x, y)/∂x] = 3 and rank[∂h(x, y)/∂y] = 1, that is,
there exists a vector function x = φ(y), φ = (φ1,φ2,φ3), which is invertible. Note
that assumption (A3) is invalid in this case, and assumption (A1) holds, as like the
set S is one-dimensional, and the set PL is zero-dimensional.

Assuming ε = 0, one get the following time-scaled-reduced system:

dx

dt
= det

[
∂h(x, y)

∂x

] [
∂h(x, y)

∂x

]−1 [
∂h(x, y)

∂y

]
dy

dt
,

dy

dt
= f (x, y, 0).

(5)

Scaling t = α2τ and ε/α2 ≈ 0 yields the local model

δ
du1
dτ

= (1/α2)h1(x, y, ε)

= h1(0)/α
2 + (∂h1(0)/∂x1)u1 + (∂h1(0)/∂x2)u2 (6)

+(∂h1(0)/∂x3)u3/α + (∂h1(0)/∂y)v + (∂2h1(0)/∂x
2
3 )u

2
3,

δ
du2
dτ

= (1/α2)h2(x, y, ε)

= h2(0)/α
2 + (∂h2(0)/∂x1)u1 + (∂h2(0)/∂x2)u2 (7)

+(∂h2(0)/∂x3)u3/α + (∂h2(0)/∂y)v + (∂2h2(0)/∂x
2
3 )u

2
3,

δ
du3
dτ

= (1/α)h3(x, y, ε)

= h3(0)/α + (α∂h3(0)/∂x1)u1 (8)

+(α∂h3(0)/∂x2)u2 + (∂h3(0)/∂x3)u3 + (α∂h3(0)/∂y)v,
dv

dτ
= f (x, y, ε)

= f (0) + α2(∂ f (0)/∂x1)u1 + α2(∂ f (0)/∂x2)u2 (9)

+α(∂ f (0)/∂x3)u3 + α2(∂ f (0)/∂y)v,

where δ = ε/α2 ≈ 0.
Let us denote ai j = ∂hi (0)/∂x j and bi j = ∂2hi (0)/∂x2j . Then the above system is

under assumptions f (0) �= 0, h(0) = 0, a13 = a23 = 0 and a33 < 0, which satisfies
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the trace condition. Taking δ = 0, we get the system of algebraic equations

a11u1 + a12u2 + (a13/α)u3 + a14v + (1/2)b13u
2
3 = 0,

a21u1 + a22u2 + (a23/α)u3 + a24v + (1/2)b23u
2
3 = 0,

a33u3 = 0,

v = f (0)t.

(10)

Solving these algebraic equations, we get

u1 = u01 = (a12a24 − a14a22) f (0)t/(a11a22 − a12a21),

u2 = u02 = (a14a21 − a11a24) f (0)t/(a11a22 − a12a21),

u3 = u03 = 0.

(11)

Now for δ ≈ 0 the solution is of the form:

u1 = u01 + L(δ), u2 = u02 + L(δ), u3 = u03 + L(δ). (12)

Theorem 1 The time-scaled-reduced system in R
1+3 has an approximation for the

original system. If the pseudo-singular point is stable, and a33 < 0, tr[∂h(0, 0)/∂x]
< 0 hold, there exists a canard in the system R

1+3.

3 Slow–Fast System in R
3+1

In the case of k = 3,m = 1, the analysis of the slow–fast system can be done by
blowing up and constructing a local model. Consider the following slow–fast system:

ε
dx

dt
= h(x, y, ε),

dy

dt
= f (x, y, ε),

(13)

where x ∈ R, y ∈ R
3, ε > 0 is infinitesimal and h : R4+1 → R, f : R4+1 → R

3. For
ε = 0, on the set S satisfying h(x, y) = 0 the differentiation by t yields

[
∂h(x, y)

∂y

]
dy

dt
+ ∂h(x, y)

∂x

dx

dt
= 0. (14)
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We assume that ∂h(x, y)/∂x �= 0. Then

dx

dt
= −

[
∂h(x, y)

∂y

]
dy

dt

/
∂h(x, y)

∂x
, (15)

where there exists a smooth function x = φ(y). The reduced system is

dx

dt
=

[
∂h(x, y)

∂y

]
f (x, y). (16)

Let the origin O be a saddle or a node, again. Blowing up the coordinates x ∈ R

and y ∈ R
3 as follows: x = α2u, y = α2v with α ≈ 0, where y = (y1, y2, y3) and

v = (v1, v2, v3). Then the system is reduced to

ε
du

dt
= 1

α2
h(x, y, ε),

dv

dt
= 1

α2
f (x, y, ε).

(17)

Assume that rank[∂h(x, y)/∂y] = 3, i.e., there exists a vector function y = ψ(x),
ψ = (ψ1,ψ2,ψ3), which is invertible. Note that assumption (A3) is also invalid,
and assumption (A1) holds, as like the set S is three-dimensional, and the set PL
is two-dimensional differentiable manifold. Scaling t = α2τ and ε/α2 ≈ 0 reduces
the system to the system:

δ
du

dτ
= 1

α2
h(x, y, ε),

dv

dτ
= f (x, y, ε).

(18)

Then, we obtain the local model as follows:

δ
du

dτ
=a11u + a12v1 + a13v2 + a14v3,

dv

dτ
= f (0).

(19)

We assume that f (0) �= 0, h(0) = 0, a11 �= 0, and a14 �= 0. For δ = 0, we get

u = u0 = −(a12v1 + a13v2 + a14v3)/a11,

v1 = v01 = f1(0)t, v2 = v02 = f2(0)t, v3 = v03 = f3(0)t.
(20)

Then, for δ �= 0, we have

u = u0 + L(δ), v = v0 + L(δ), (21)
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where v0 = (v01, v
0
2, v

0
3).

Theorem 2 The time-scaled-reduced system in R
3+1 has an approximation for the

original system. If the pseudo-singular point is a saddle (the eigenvalues are positive
and negative in the slow vector field) or a node (all the eigenvalues are of the same
sign), and a11 < 0 (or a11 > 0), f (0) �= 0, under assumptions (A3), (A4), and (A5),
then there exists a canard in the system R

3+1.

Remark 3 The trace condition, such that tr[∂h(0, 0)/∂x] < 0, ensures that one of
the eigenvalues in the fast vector field changes the sign at the pseudo-singular point.
In the case of k = 1, m = 2, put y = 0 and h2 = 0. Then one can obtain the suf-
ficient conditions for the existence of canards in the system R

1+2. Furthermore, at
the pseudo-singular point, if one of the eigenvalues on the slow manifold becomes
infinitesimal, we have a very sensitive problem regarding the center manifold. (A5)
provides the sufficient condition for the existence of the center manifold.

4 Center Manifold

The following system in R
2+2 exhibits a sufficient condition for the existence of

the center manifold. Let us return to system (1). Remember that for system (1),
x = (x1, x2), y = (y1, y2), h = (h1, h2) and f = ( f1, f2). Let us take

h1(x, y) = y1 + x2 − (1/3)x31 ,

h2(x, y) = y2 + x1 − (1/3)x32 ,

f1(x, y) = −x1 − by1,

f2(x, y) = −x2 − by2.

(22)

This is based on the coupled FitzHugh–Nagumo equations. The time-scaled-reduced
system is

dx1
dt

= x22 (x1 + b(−x2 + (1/3)x31)) − (x2 + b(−x1 + (1/3)x32)),

dx2
dt

= −(x1 + b(−x2 + (1/3)x31)) − x21 (x2 + b(−x1 + (1/3)x32)).
(23)

For b ≈ 3/2, the pseudo-singular points PS ≈ (1, 1), (−1,−1) are saddles. The
invariant manifold I NV (x, y) is I NV (x, y) = {(x, y) ∈ R4|x1 − x2 = 0, y1 − y2
= 0}. Furthermore, tr[∂h(1, 1)/∂x] = −2 and det[∂h(1, 1)/∂x] = 0. Note that the
slow manifold is in the set I NV (x, y), satisfying y1 = −x1 + (1/3)x31 , and then it
intersects with set dy1/dt = 0. That is, by1 = x1 at PS = (1, 1) for b = 3/2.

All these conditions are satisfied with the above assumptions. In this state, we
obtain the center manifold, which does not include the pseudo-singular point.
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Abstract Classification of inner processes during loading and unloading tests in
models of hypoplasticity developed by D. Kolymbas for the constitutive behavior
of granular materials is the main aim of this work. We focus on a modified model
proposed by Bauer. By introducing a dimensionless time parameter s, we transform
the constitutive equation into a rate-independent form, and study the stress paths in
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1 Introduction

We pursue here the study started in [4] of the asymptotic behavior of stress tra-
jectories under proportional loading and unloading in granular materials under the
hypoplasticity hypothesis. Note that the idea of rate-independent hypoplasticity goes
back to the works by Kolymbas, see, e.g., [10]. In engineering literature, this concept
receives a lot of attention and it is appropriate to cite at least [5, 7, 8, 12, 14–16].
Its main purpose was to explain the phenomenon of ratchetting which is very strong
in many existing rate-type constitutive models do not manifest a satisfactory agree-
ment with real experiments. Rachetting is the process of accumulation of permanent
deformation during cyclic loading and unloading. This behavior is characterized by
progressively shifted loops in the strain–stress diagram.

Indeed, ratchetting is present in nonlinear kinematic hardening models of elasto-
plasticity of Armstrong–Frederick type, see [2], and the mathematical techniques
developed in [6] for proving the well-posedness of these models have motivated the
present study. Another mathematical approach to granular and multiphase media
within the variational theory was proposed in [1, 9, 11].

An analytic identification of the asymptotic states in hypoplasticity whose exis-
tence was established in, e.g., in [13, Chap. 3.4], has been carried out in [4] for a
simple one-parameter model suggested in [3]. Localization of the parameter domain
which ensures Lyapunov stability of proportional strain paths was the main result
there. Here, we obtain similar results for a modified model involving an additional
physical parameter and discussed also in [3].

2 Description of the Model

2.1 Original Model

Our starting point is the model from [4] for inner processes in granular body under
the strain–stress law

σ̇ (t) = c1

(
ε̇(t)a2tr σ + σ

tr σ
(σ : ε̇) + a(2σ − 1

3
(tr σ )I)‖ε̇‖

)
, (1)

where ε is the strain tensor and σ is the Cauchy stress tensor, I is theKronecker tensor
tr σ = σ : I is the trace of σ , a > 0 is a model parameter, and c1 < 0 is a scaling
parameter which, as we shall see, has no influence on the asymptotic behavior of the
model. We consider proportional strain paths of the form

ε(t) = ε(t)U, ε̇(t) = ε̇(t)U, (2)
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where ε(t) : [0,∞) → R is a given monotone function, and U is a fixed symmetric
tensor

U =
⎛
⎝u11 u12 u13
u21 u22 u23
u31 u32 u33

⎞
⎠ . (3)

This is what we call a proportional loading.

2.2 Modified Model

The modification of Eq. (1) consists in including an additional physical parameter
b > 0 for a refined modelling the volume strain behaviour. The enhanced equation
reads:

σ̇ = c1

(
ε̇a2tr σ + σ

tr σ
(σ : ε̇) + btr σ tr ε̇I + a(2σ − 1

3
tr σ I)‖ε̇‖

)
. (4)

Let us denote by 〈·, ·〉 the canonical scalar product in the space of tensors 〈ε, σ 〉 =
ε : σ . With this notation and Hypothesis (2), Eq. (4) is of the form

σ̇ (t) = c1ε̇(t)
(
(a2U + 〈σ ,U〉

〈σ , I〉 σ + b 〈U, I〉 I) 〈σ , I〉 + a‖U‖ sign ε̇(t)
(
2σ − 1

3
〈σ , I〉 I)).

(5)

Our analysis of Eq. (5) will be carried out under the following hypotheses:

(i) The material is initially compressed, that is, σ (0) is a given stress state such
that 〈σ(0), I〉 < 0;

(ii) We investigate below the different dynamics of themodel under increasing com-
pression (or loading) corresponding to 〈U, I〉 > 0, decreasing compression (or
unloading) corresponding to 〈U, I〉 < 0, and volume-preserving compression
corresponding to 〈U, I〉 = 0;

(iii) ε : [0,∞) → R is absolutely continuous, ε̇(t) < 0 for a. e. t > 0, and limt→∞
ε(t) = −∞;

By introducing a time transformation s(t) through the formula ṡ(t) = c1ε̇(t),
s(0) = 0, and σ ′(s) = dσ/ ds, we are able with the above assumptions to trans-
form Eq. (5) into a rate-independent form:

σ ′ = a2 〈σ , I〉U + 〈σ ,U〉
〈σ , I〉 σ − a‖U‖

(
2σ − 1

3
〈σ , I〉 I

)
+ b 〈σ , I〉 〈U, I〉 I

= 〈σ , I〉
(
a2U + a

3
‖U‖I + b 〈U, I〉 I

)
+ σ

( 〈σ ,U〉
〈σ , I〉 − 2a‖U‖

)
.

(6)
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3 Loading

3.1 Isotropic Loading

First, we consider the case of the isotropic loading, that is, U = I Then ‖U‖ = √
3

and 〈U, I〉 = 3. In this case, Eq. (6) reduces to

σ ′ = 〈σ , I〉 (
a2 + a√

3
+ 3b

)
I + σ

(
1 − 2a

√
3
)
. (7)

The scalar product of (7) with I yields

〈
σ ′, I

〉 = λ 〈σ , I〉 , (8)

with λ = 3a2 − a
√
3 + 1 + 9b, where 3a2 − a

√
3 + 1 ≥ 3/4 and b > 0, therefore

λ > 0. Hence 〈σ (s), I〉 = 〈σ (0), I〉 eλs , and Eq. (7) can thus be written as

σ ′ = −μσ + ReλsI ,

where μ = 2a
√
3 − 1, R = 〈σ (0), I〉 (λ + μ)/3 > 0. The solution is

σ (s) = e−μsσ (0) + 〈σ (0), I〉
3

(
eλs − e−μs

)
I . (9)

In other words, we have

σ (s) − 〈σ (0), I〉
3

eλsI = e−μs

(
σ (0) − 〈σ (0), I〉

3
I
)

. (10)

The physically relevant case observed in experiments is μ > 0, that is,

a >
1

2
√
3

≈ 0.289 . (11)

Then (10) means that the trajectory of σ (s) exponentially converges to the linear tra-
jectory 〈σ (0),I〉

3 eλsI along theunit tensor Iwith initial conditiongivenby theorthogonal
projection of the initial condition σ (0) onto the line spanned by I. The phenomenon
that the influence of the initial condition is exponentially decreasing is typical for
hypoplastic materials.
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3.2 Anisotropic Loading

Let now U ∈ R
3×3 be arbitrary. As mentioned above, loading corresponds to

〈U, I〉 > 0. It follows from (6) that the term 〈σ ,U〉 / 〈σ , I〉 satisfies a linear ODE
( 〈σ ,U〉

〈σ , I〉
)′

= A − η
〈σ ,U〉
〈σ , I〉 (12)

with

A = a2‖U‖2 + a

3
‖U‖ 〈U, I〉 + b 〈U, I〉2 , η = a‖U‖ + (a2 + 3b) 〈U, I〉 .

The solution of (12) is of the form

〈σ (s),U〉
〈σ (s), I〉 = B + Ce−ηs,

with

B = A

η
, C = 〈σ (0),U〉

〈σ (0), I〉 − B.

Equation (6) is therefore equivalent to a linear equation

σ ′ = 〈σ , I〉
(
a2U + a

3
‖U‖I + b 〈U, I〉 I

)
+ σ

(
B − 2a‖U‖ + Ce−ηs

)
. (13)

To solve Eq. (13), we proceed as in the isotropic case taking the scalar product of
(13) with I, which yields

〈
σ ′, I

〉 = (
D + Ce−ηs

) 〈σ , I〉, where

D = (a2 + 3b) 〈U, I〉 − a‖U‖ + B = 1

η

(
(a2 + 3b)2 〈U, I〉2 + a

3
‖U‖ 〈U, I〉 + b 〈U, I〉2) > 0.

Hence,

〈σ (s), I〉 = 〈σ (0), I〉 e f (s), f (s) = Ds + C

η
(1 − e−ηs),

and we can rewrite (13) as

σ ′(s) = 〈σ (0), I〉 e f (s)V + g′(s)σ (s), (14)

where

V = a2U + a

3
‖U‖I + b 〈U, I〉 I, g(s) = (B − 2a‖U‖)s + C

η
(1 − e−ηs).
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From (14) it follows that

(
e−g(s)σ (s)

)′ = 〈σ (0), I〉 e f (s)−g(s)V = 〈σ (0), I〉 e(D+2a‖U‖−B)sV,

hence

e−g(s)σ (s) = σ (0) + 〈σ (0), I〉
D + 2a‖U‖ − B

e(D+2a‖U‖−B)s − 1)V,

provided D + 2a‖U‖ − B �= 0. We note that

B = 〈V,U〉
〈V, I〉 , η = 〈V, I〉 , C = 〈σ (0),U〉

〈σ (0), I〉 − 〈V,U〉
〈V, I〉 ,

and
D + 2a‖U‖ − B = a‖U‖ + a2 〈U, I〉 + 3b 〈U, I〉 = 〈V, I〉 = η. (15)

The formula for σ (s) then reads

σ (s) = eg(s)σ (0) + 〈σ (0), I〉
〈V, I〉

(
e f (s) − eg(s)

)
V . (16)

We are in the same situation as in (9) provided

lim
s→∞ g(s) = −∞, lim

s→∞ f (s) = +∞. (17)

This condition can be reformulated in terms of the parameters a, b, c, where

c = 〈U, I〉√
3 ‖U‖

is the cosine of the angle between the loading direction U and the isotropic
direction I. It can be stated as follows.

Theorem 1 The stability condition (17) is satisfied if and only if

3b(c2 − 2
√
3ac) <

(
2a2 − 1

3

)√
3ac + a2. (18)

Proof We have D > 0 according to (15), then the fact that lims→∞ f (s) = +∞
follows immediately. It remains to find conditions on U and a under which

B < 2a‖U‖ (19)

in order to obtain lims→∞ g(s) = −∞. A straightforward computation yields that
(19) is fulfilled if and only if



Modified Model for Proportional Loading and Unloading … 207

− a2 + a 〈U, I〉
3‖U‖ − 2a3 〈U, I〉

‖U‖ − 6ab 〈U, I〉
‖U‖ + b 〈U, I〉2

‖U‖2 < 0 , (20)

which we wanted to prove. �

Rewriting (16) as

σ (s) − 〈σ (0), I〉
〈V, I〉 e f (s)V = eg(s)

(
σ (0) − 〈σ (0), I〉

〈V, I〉 V
)

, (21)

we see that the trajectory of σ (s) exponentially converges to the linear trajectory
〈σ (0),I〉
〈V,I〉 e f (s)V propagating along V with initial condition given by the projection of

σ (0) orthogonal to I onto the line spanned by V.

Remark 2 The stability condition in Theorem 1 admits a geometric interpretation
in the parameter space. A more detailed discussion will be made in a forthcoming
paper. Notice only that if inequality (11) holds, then (20) holds for every U ∈ R

3×3.
Indeed, we have c ≤ 1, hence c2 − 2

√
3ac < 0 for all a satisfying (11). This means

in particular that the interval of the parameters a which ensure the stability of the
proportional path is minimal in case of isotropic loading, while for the “almost
volume-preserving loading” 〈U, I〉 /‖U‖ → 0 it becomes maximal.

4 Unloading

4.1 Isotropic Unloading

Isotropic loading can be described by U = −I. In comparison with the isotropic
loading case, in Eq. (10) the coefficients λ = −3a2 − a

√
3 − 9b − 1 < 0 and μ =

1 + 2
√
3a > 0. The condition μ > 0 is satisfied for all a > 0.

4.2 Anisotropic Unloading

The case of the anisotropic loading is described by 〈U, I〉 < 0. Asymptotic conver-
gence to the asymptotic direction V− is guaranteed by the condition g(s) → 0 and
f (s) → −∞ in the Eq. (16). It is satisfiedwhen D < 0, η > 0, and B − 2a‖U‖ < 0.
The last condition coincides with the case (18) of anisotropic loading. Here, however,
additional conditions come into play, namely, η > 0, which is equivalent to

D + 2a‖U‖ − B > 0,

and in terms of c it can be rewritten as
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√
3c > − a

a2 + 3b
.

The condition D < 0 holds provided 3((a2 + 3b)2 + b)c2 + ac/
√
3 < 0.

5 Conclusion

The modified model for constitutive behavior of granular materials proposed by
Bauer [3] was studied in here for the particular case of proportional loading and
unloading. We have determined the parameter range in which asymptotic stabilities
of the proportional loading and unloading processes are guaranteed.
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Modeling of Excitatory Amino Acid
Transporters

Denis Shchepakin, Leonid Kalachev and Michael Kavanaugh

Abstract A kinetic model for Excitatory Amino Acid Transporters (EAATs) was
derived to analyze data from patch clamp experiments. The model was fitted to
experimental data for EAAT1, and reliable parameter estimationswere obtained. This
allowed for inference and estimate of the turnover rate of EAAT1 and, potentially,
for other EAATs, which would resolve longstanding discrepancies in the literature.

1 Introduction

Glutamate transporters mediate uptake of the neurotransmitter glutamate from the
synaptic cleft and thereby limit the activation of glutamate receptors on the postsy-
naptic neuron. This is necessary to maintain the efficiency of information transfer by
pulsatile synaptic release of glutamate and to prevent excitotoxic damage from exces-
sive receptor activity. To date, five major subtypes of excitatory amino acid trans-
porters have been identified in the mammalian CNS (EAAT1-5). These transporters
are members of the solute carrier 1 (SLC1) gene family that also contains two neutral
amino acid transporters (ASCT1-2); see [9]. Various experimental approaches have
been utilized to establish and measure the kinetic characteristics of EAATs; see [5].

The present study focuses onEAAT1 (SLC1A3); amember of the SLC1gene fam-
ily that togetherwithEAAT2 (SLC1A2) iswidely expressed on astrocytes throughout
the brain. Knowledge of the characteristic time required to transfer one molecule of
glutamate by the transporters is crucial for understanding their physiological roles,
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particularly in shaping synaptic transmission. However, there is a great variety in
turnover rate estimates of EAATs, ranging from few molecules per second (see [7])
to estimates in the hundreds per second (see [1]). In this work, we derived amodel for
EAATs and fitted it to the experimental data. We obtained a fitted set of parameters
allowing us to reliably estimate the turnover rate of EAAT1 and conclude that is
similar to that previously estimated for EAAT2 (≈ 15/sec; see [7]). This establishes
a kinetic framework for understanding the role of the molecular species underlying
astrocytic glutamate transport in the brain.

2 EAAT Models

2.1 Existing Models

EAATs mediate transport of glutamate (Glu−) with the cotransport of 3 Na+ and
1 H+, and the countertransport of 1 K+, resulting in a net movement of two positive
charges into the cell [3]. Previously developed Markov models take into account
binding and unbinding of substrates, Fig. 1, e.g., [3]. Moreover, some states allow a
thermodynamically uncoupled flow of chloride ions across the cell membrane [8].
As it is yet unknown which states can mediate this conductance, it is assumed to
be possible for any state (which effectively expands the depicted model to twice as
many states).

Most individual reaction rates are not yet established, and reported estimates of
the rates obtained by fitting the full model to the experimental data are statistically
unreliable due to overparameterization of the model with respect to the existing data.
Under certain conditions (depending on the experimental design), it is possible to
reduce the full model to a smaller one with fewer states, which can describe the
experiment and predict outcomes while maintaining basic important characteristics
of the initial system, e.g., turnover rate. In an excised outside-out patch voltage
clamp experiment, one can regulate concentrations of substrates in both extracellular
and intracellular spaces and rapidly change extracellular solutions. We consider an
experimental scheme with saturating concentrations of sodium, hydrogen ions, and

ToK
r±1 To

r±2 ToNa
r±3 ToNa2

r±41 ToNa2G r±51

ToNa2GH
r±6 ToNa3GHr±42

ToNa2H
r±7

TiNa3GH
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Fig. 1 15-state model for EAATs. To and Ti stand for transporter facing extracellular and intra-
cellular spaces, respectively; Na, K , H denote corresponding ions; G is L-Glutamate; r±

i for all
i are reaction rate constants. r+

i and r−
i correspond to clockwise and counterclockwise directions,

respectively
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Fig. 2 a The simplified eight-state model for the patch clamp experiment. The states with bars are
the corresponding conducting states, which allow the flow of chloride ions. b The chemical kinetic
scheme that corresponds to the reduced model (1)

no potassium ions on the outside (and vice versa on the inside), with brief pulses
of saturating glutamate applied to the outside membrane face with a piezoelectric
switch. By selectively accelerating a subset of the state transitions in this scheme,
we will be able to effectively observe only four states out of fifteen shown in Fig. 1.
Adding four more states that correspond to chloride ion conductance, we obtain a
model, depicted in Fig. 2a.

Similarmodels have been proposed before (e.g., [1]), but because thesemodels are
still overparameterized with respect to the data obtained in patch clamp experiments
(see Fig. 3a; notice number of transitions), the conclusions drawn are not statistically
reliable.

2.2 Reduced Model

In order to use the patch experiment data to identify unique parameter values, we
need to simplify the model corresponding to the chemical kinetic scheme depicted
in Fig. 2a even further. The model is a system of differential equations with eight
variables, each corresponding to one state. Let us denote these variables using states
notations, i.e., the variable To(t) is a fraction of all transporters that are in To state,
etc. According to [8], the transitions to conducting states are much faster compared
to reactions which correspond to glutamate transportation. That allows us to define
a small parameter 0 < ε � 1:

c±
i =

˜c±
i

ε
, ˜c±

i ∼ O(1), k±
i ∼ O(1), i = 1, 4.

Using boundary function method [6], we can reduce the model. The leading order
approximations can be written in the following form:
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where functions x , y, z, and w are the solutions of the system
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The system (1) can be depicted as a chemical kinetic scheme on its own, see Fig. 2b.
The corresponding initial conditions are

x(0) = To(0) + To(0), y(0) = ToG(0) + ToG(0),
z(0) = TiG(0) + TiG(0), w(0) = Ti (0) + Ti (0).

As stated above, the functions represent fractions of all transporters in particular
states; therefore, the constant sum of all variables is 1. This stays true for both
systems depicted in Fig. 2. Since in the absence of glutamate k+

1 = m+
1 = 0, if the

system is allowed to reach a steady state before the first pulse, we have

x(0) = m+
4

m+
4 + m−

4

, y(0) = m−
4

m−
4 + m+

4

, z(0) = 0, w(0) = 0. (2)

The total current recorded during the experiment is a sumof the conductive current
due to the flow of chloride ions (proportional to conductive states), stoichiometric
current (coupled flux of glutamate molecules and ions across the membrane), and
some constant leak current; see [4]. The voltage dependence of transport suggests that
the transporter also mediates a capacitive charge transfer (gating charge movement)
resulting in two positive charges into the cell as a glutamate molecule crosses the cell
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membrane, and electrically neutral countertransport of the potassium ion (rather than
three positive charges into the cell with glutamate and one positive charge outside
from the cell with potassium); see [3]. The resulting current formula is

I = −A · To − B · ToG − C · TiG − D · Ti − E
(

k+
2 ToG − k−

2 TiG
) + Ileak .

Assuming the system is at steady state prior to the first pulse of glutamate in the patch
clamp experiment, we can set the steady state current to zero and find the formula for
Ileak . The leading order approximation of the current will depend on the functions
x , y, z, and w from the system (1). Finally, one can express any one variable using
the other three. We can rewrite the current formula in the following way:

I (t) = −A · x(t) − B · y(t) − D · w(t) + Am+
4 + Dm−

4

m+
4 + m−

4

+ O(ε), (3)
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The turnover rate is given by the influx of internal glutamate after all the other
states reached the steady state:

� = lim
t→∞

dGi
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= lim

t→∞ k+
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(4)

3 Experiments and Model Fitting

Patch clamp experiments were performed under the assumptions stated in Sect. 2.1.
The experimental technique allows one to record the current corresponding to the
flow of ions through a cell membrane; see [4]. After the current reaches steady
state in the absence of glutamate, two consecutive short pulses of glutamate were
applied. The current activates quickly and then decays to a steady state. After each
pulse, the system returns to its initial steady state. The dynamics of the current
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Fig. 3 a Current recorded during patch clamp experiment. Two consecutive pulses of glutamate
caused inward (negative) current. Single pair (left) and all recorded pairs overlapped (right); b The
data (gray) were fitted using the model (black)

Fig. 4 95 and 99% confidence regions (inner and outer contours, respectively) yielded by MCMC
method. The last picture shows the distribution of turnover rate value 15.45s−1, 99% confidence
interval: [15.31, 15.57]

were highly sensitive to the delay between pulses: the difference in current peaks
between the first and the second pulses disappears as delay increases (see Fig. 3a).
The data were fitted with the model (1), (2), and (3) using delayed rejection adaptive
Metropolis Markov Chain Monte Carlo (MCMC) method; see [2]. The fitted model
solutions practically coincide with the data curves, see Fig. 3b. Also, Fig. 4 shows
chain confidence regions and turnover rate estimate and inference, obtained using
the resulting chain and formula (4).
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Limitations in Computational Analysis
of Retrovirus Evolution

Lidia Nefedova

Abstract Retroviruses and retrotransposons with long terminal repeats (a type of
transposable elements in eukaryotic genome) are very similar in their structure and
life cycle that strongly indicates their common origin. Obviously, one of the struc-
tures transformed into others in the process of evolution. However, it is not clear
which of the structures appeared earlier. There are two quite convincing scenarios
of evolution: a scenario describing the ways of transformation of retrotransposons
into retroviruses and the reverse scenario. The Drosophila melanogaster genome
provides an excellent opportunity to analyze both possible scenarios for the evolu-
tion of retroelements, since it, unlike, for example, the human genome, is filled with
diverse families of functionally active retrotransposons, including retrotransposons–
retroviruses with infectious properties. The construction of evolutionary models—
evolutionary trees—requires alignment of conserved amino acid sequences encoded
by both types of retroelements. For phylogenetic trees construction, a variety of
algorithms are developed. The most reliable approach is based on the principle of
maximum likelihood. However, in the process of computational analysis, we meet
with several problems that algorithms for constructing phylogenetic trees usually
ignore. On the example of the model object, Drosophila, we consider the main lim-
itations of modeling the evolution of retroelements: a tendency to accumulation of
repeats, a horizontal transfer of sequences, and a rate of viral sequence evolution.

The basis of the evolutionary process is the variability of organisms, which is pro-
vided by mutations—changes in the nucleotide structure of genes. Because genomes
evolve through the gradual accumulation of mutations, the number of differences in
nucleotide sequences between a pair of genomes of different species should provide
information about how long the organisms have divided as species. Two genomes
of organisms, whose evolutionary lines have diverged recently, should have smaller
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differences than in organisms whose common ancestor existed a long time ago. It
is the way to build evolutionary trees (molecular trees) which usually reflect the
previously obtained morphological trees. The phylogeny of species is based on a
comparison of the sequences of individual protein-coding genes. Compared genomes
have thousands of genes, but only sets of several conservative genes are used for the
tree building. Here, we are waiting for the first problem: different genes evolve at
different and inconstant rates, so we cannot definitely calibrate molecular timescale
of evolution. There is a countless range of possible combinations of mutation rate
and time, and with access to only percentage data, the researchers will not be able to
determine which combination is correct; see [2].

Mutations in protein-codinggenes canbe synonymous substitutions of nucleotides
(Ks) that do not change a specific protein structure and non-synonymous substi-
tutions (Ka) that change a specific protein structure. To estimate the selection,
non-synonymous/synonymousmutation ratio (Ka/Ks ratio) is used; see [8]. Ks value
is assumed to be neutral. A ratio greater than 1 caught positive, or Darwinian, selec-
tion; less than 1 implies purifying, or stabilizing, selection (acting against change);
and a ratio of exactly 1 indicates neutral (i.e., no) selection. This approach allows
observing the consequence of the most important evolutionary process—selection—
at the level of individual genes. But Ka/Ks estimation is applicable only to the
analysis of the protein-coding part of the gene and does not estimate evolutionary
changes in the regulatory noncoding regions of the gene, which affects the level, tim-
ing or location of the gene expression. In addition, the spectrum of mutations in the
genome is not limited to only nucleotide substitutions in genes: processes of genetic
recombination often occur. Genetic recombination is a powerful tool of evolution.
Some computer algorithms take into account the possibility of recombination. But
the level of recombination is not constant over time and depends on the influence
of the environmental factors. Recombination is stimulated by chromosome breaks,
which can occur in the result of radiation, UV, and other exposure. We cannot say
with certainty what factors acted millions of years ago. Thus, Ka/Ks estimation
reflects microevolutionary processes occurring within one species and genus, but
weakly reflects macroevolutionary processes and far less reflects the phylogenetic
relationships between different species.

In most cases, the alignment of the compared nucleotide or amino acid sequences
is a necessary stage in the reconstruction of phylogenetic trees. Pairwise sequence
alignment methods are used to find the best-matching (local or global) alignments
of two query sequences. Aligned sequences are represented as rows within a matrix.
Gaps are inserted between the residues so that identical or similar characters are
aligned in successive columns. The technique of dynamic programming is applied to
produce local alignments via the Smith–Waterman algorithm, and global alignments
via the Needleman–Wunsch algorithm. But pair alignment is only the first step. For
the construction of phylogenetic relationships in phylogenetic trees, it is necessary to
compare a number of sequences, i.e., build multiple alignments. Finding the optimal
multileveling by the dynamic programming method has too much time complexity,
so multiple alignments are built on the basis of different heuristics. Clustal (cluster
alignment)—one of themostwidely used computer programs formultiple alignments



Limitations in Computational Analysis of Retrovirus Evolution 221

of nucleotide and amino acid sequences, based on progressive programming that
uses a heuristic algorithm, was developed in 1984 and has since undergone many
improvements; see [3]. But, at the same time, there are other alternative approaches
to constructing multiple alignments, which means that there is no universal method.

It seems that viruses are most convenient for comparative genome analysis and
the construction of phylogenetic trees. They have very small genomes, sometimes
in eight orders smaller than the genomes of their hosts. But, despite this, they are
the most problematic organisms for evolutionary analysis. Viruses are a noncellular
form of life and are obligate cellular parasites, and their replication outside the
cell is impossible. The genetic diversity of viruses significantly exceeds the genetic
diversity of all the other organisms combined. Due to such a high genetic diversity,
comparative phylogenetic studies of viruses are difficult; attempts to reconstruct the
evolutionary relationships between viruses with different types of replication and to
build traditional bifurcation phylogenetic trees with one common ancestor are highly
speculative. The origin of viruses is one of the most controversial issues of biology.
There are three main hypotheses for the origin of the virus domain: the regressive
hypothesis, the hypothesis of cellular origin, and the hypothesis of coevolution. Each
hypothesis has its own “pluses” and “minuses”.

From an evolutionary point of view, retroviruses are the most interesting virus
as they use in their life cycle the stage of integration of DNA copies of their RNA
genome into the host genome. The integrated form remains in the genome forever.
Thus, the retrovirus does not pass without a trace in the genome. Such “traces” can be
used for phylogenetic analysis. Remarkably, some transposable elements ofmulticel-
lular organisms—retrotransposons with long terminal repeats—and integrated DNA
copies of retroviruses have the same structure. Thus, retroviruses and retrotrans-
posons have the same evolutionary history. The fact that the transposable elements
present in the genomes of all cellular organisms says that retrotransposons and viruses
are related. Nevertheless, it is impossible to understand which structures originated
in the evolution earlier—transposable elements or viruses. When did retroviruses
arise? Numerous comparative genomic studies show that, apparently, retroviruses
should have appeared at least 250–300 million years ago together with the first ver-
tebrates of the land. However, this can be argued, if we assume that only vertebrates
have retroviruses. Then how to be with the fruit fly Drosophila, invertebrate, which
also contains retroviruses. It should be noted that all eukaryotes have retroelements,
including plants and fungi.

Evolution of the virus cannot be considered in isolation from the evolution of
the host genome. Because the viruses and their hosts coexist for a long time, their
evolutionary relations are balanced. The “Red Queen” hypothesis is used to describe
an idea based on coevolution of host and parasite; see [7]. Under this view, the
species had to “run” (evolve) in order to stay in the same place (extant). The high
rate of evolution of exogenous retroviruses and the relatively slow rate of evolution
of genomic proviral DNA (approximately 4 orders of magnitude slower) should be
manifested by serious differences in the nucleotide composition of exogenous and
endogenous retroviruses.
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Fruit fly Drosophila is an excellent model for studying the processes of evolu-
tion of retroviruses and their phylogenetic relationships with transposable elements.
Transposable elements, most of which are represented by a variety of retrotrans-
posons, account for up to 20% of the Drosophila genome. A variety of forms of
retrotransposons allows reconstructing phylogenetic relationships between them and
building a logical chain of the retroelement evolution. Using themethods of phyloge-
netic analysis, we classified all retrovirus-like transposable elements of Drosophila,
which showed that assembly of retrovirus in host genome is possible, but reverse
process degradation of retrovirus sequences and loss of genes, not necessary for the
existence of retrotransposon, also occur; see [4].

The rate of sequence evolution is calculated by the level of mutations. Evidently,
the rate of evolution (the speed of accumulation of mutations, the level of variability)
will be lower in sequences of those proteins whose functions are associated with
replication, and higher in those sequences that aremore often attacked by host defense
systems. It is noteworthy that phylogenetic tree for retrotransposons and retroviruses
(and, consequently, for the concept of evolution) may be different in dependence
on what sequence comparison it was constructed (the virus capsid protein or the
sequence of the proteins responsible for the virus replication).

For retroviruses, an evolution rate often estimate for their long terminal repeats
(LTRs) has been developed since left and right repeat sequences should be identical
(according to the mechanism of the retrovirus replication). Using the Ka/Ks ratio,
Drosophila retroelements’ LTR divergence was calculated. The average age of the
elements was found to be 137, 000± 89, 000 years; see [1]. This calculation was
based on two assumptions. The first assumption is that LTR sequences are not under
selection in the host genome. The second assumption is that the rate of mutations
was unchangeable during all period of evolution. But these are only assumptions and
cannot reflect the real evolutionary processes.

We have found cases of interspecific transfer in representatives of the Drosophila
genus. We consider the cases of interspecific transfer to be the presence of almost
identical sequences of retroviruses in different species of Drosophila, including quite
distant ones. Thus, the problem of evolutionary analysis of retroviruses is that they
can be transmitted both horizontally (between individuals of one or several species)
and vertically (in generations, acting as transposable elements). This fact makes their
evolutionary analysis very difficult.

We showed that new genes can arise in the Drosophila genome as a result of the
retrotransposongenesfixing; see [5].We found that the retrovirus capsid genegagwas
fixed inDrosophila genomeand evolvedunder strong stabilizing selection, but several
sites of the gene were under positive selection. Thus, our example demonstrates
complexity of the evolutionary processes inside the gene sequence. Thus, it should
be taken into account that different parts of individual genes can evolve at different
rates.

Clustal algorithm is actively used to build phylogenetic trees, despite the author’s
warnings that unedited alignments should not be used in building trees; see [6]. If one
of aligned sequences has “excess” information, it will lead to gaps in other aligned
sequences, which are highly undesirable for tree building. It means that any repeats



Limitations in Computational Analysis of Retrovirus Evolution 223

should be deleted from the set of aligned sequences. But DNAmotif accumulation is
one of the ways of retroelement evolution. For example, in Drosophila genome, there
are several copies of retroelement Tirant with different number of tandem repeats in
its regulatory sequence. The number of repeats correlates with traspositional activity
of this element. Consequently, Tirant evolved through the accumulation of certain
repeats in its sequence to change mechanism of the interaction with the host genome.
Thus, we have to consider such sequencemodifications in the analysis of this element
evolution.

Mathematical models and algorithms describing evolution are based on
parametrization of many acting factors. The main problem is to detect all the fac-
tors. These factors have to be determined only by experimental investigations. On
the other hand, mathematical models have to be confirmed experimentally for living
systems.

References

1. N.J. Bowen, J.F. McDonald, Drosophila euchromatic LTR retrotransposons are much younger
than the host species in which they reside. Genome Res. 11(9), 1527–1540 (2001)

2. S. Ho, The molecular clock and estimating species divergence. Nat. Educ. 1(1), 168 (2008)
3. P. Hogeweg, B. Hesper, The alignment of sets of sequences and the construction of phyletic

trees: an integrated method. J. Mol. Evol. 20(2), 175–186 (1984)
4. L.N. Nefedova, A.I. Kim, Molecular phylogeny and systematics of Drosophila retrotransposons

and retroviruses. Mol. Biol. (Mosk.) 43(5), 807–817 (2009)
5. L.N. Nefedova, I.V. Kuzmin, P.A. Makhnovskii, A.I. Kim, Domesticated retroviral GAG gene

in Drosophila: new functions for an old gene. Virology 450–451, 196–204 (2014)
6. J.D. Thompson, T.J. Gibson, D.G. Higgins, Multiple sequence alignment using ClustalW and

ClustalX. Currl. Protoc. Bioinform. (2002) (Chapter 2:Unit 2.3)
7. D. Vergara, J. Jokela, C.M. Lively, Infection dynamics in coexisting sexual and asexual host

populations: support for the red queen hypothesis. Am. Nat. 184(Suppl. 1), S22–30 (2014)
8. J. Zhang, R. Nielsen, Z. Yang, Evaluation of an improved branch-site likelihood method for

detecting positive selection at the molecular level. Mol. Biol. Evol. 22(12), 2472–2479 (2005)



A Non-local Formulation
of the One-Phase Stefan Problem
Based on Extended Irreversible
Thermodynamics

M. Calvo-Schwarzwälder

Abstract Non-local effects are introduced into amathematical descriptionof a solid-
ification process based on Fourier’s law with a size-dependent thermal conductivity.
An asymptotic solution based on a large Stefan number is proposed. The agreement
with the numerical solution is excellent for any Nusselt number.

1 Introduction

It is widely known that heat transport in nanostructures cannot be described by the
classical equations [2, 3]. There exist awide range of theoreticalmodelswhich extend
the classical Fourier law to account for non-local effects which become dominant
on length scales which are comparable to the phonon mean free path, such as, for
example, the hydrodynamic or the thermomass models [5, 6, 9].

Alvarez and Jou [1] propose including non-local effects into the Fourier law
by considering a size-dependent thermal conductivity. Based on the extended irre-
versible thermodynamics framework [11], they derive an expression where the key
parameter is the ratio between the phonon mean free path and the size of the system,
known as theKnudsen number. Furthermore, dependence of the thermal conductivity
on the size of the device has beenobserved experimentally [12] and analytically [4, 5].
Hennessy et al. [10] found that size-dependent thermal conductivities in solidification
problems based on the Guyer–Krumhansl equation. Recently, Font [7] included the
expression proposed by Alvarez and Jou into the formulation of the Stefan problem
with a fixed temperature boundary condition at the origin.
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Analytical solutions to phase-change problems are rare and numerics are non-
trivial due to the moving boundary. A common approach is exploiting the fact that
the Stefan number is expected to be large [7, 8, 13, 14] to obtain approximate
solutions that typically are in good agreement with the numerical simulations.

2 Mathematical Model

We consider a one-dimensional, liquid bath, which is initially at the freezing tem-
perature Tf. Due to the cold temperature Te of the environment in contact with the
bath at x = 0, the liquid bath starts solidifying and a solid phase begins to grow
into the bath, occupying the space [0, s(t)]; see Fig. 1. The liquid is assumed to be
at the freezing temperature, we only need to determine the temperature profile in
the solid, which then determines the position of the interface s(t) through an energy
balance known as Stefan condition. In addition, at the boundary that is in contact
with the cold environment we assume that the temperature exchange is described
by the temperature difference at either side of the surface in contact with the cold
environment. This is known as Newton cooling condition and it is a physically more
realistic boundary condition that has been used previously in similar studies [13, 14].

In non-dimensional formulation, the problem is described by the following set of
equations [7]:

∂T

∂t
= f (s)

∂2T

∂x2
, 0 ≤ x ≤ s(t), (1a)

f (s)
∂T

∂x
= Nu(1 + T ), x = 0, (1b)

T = 0, x = s(t), (1c)

β
ds

dt
= f (s)

∂T

∂x
, x = s(t), (1d)

s = 0, t = 0, (1e)

where f (s) = 2s(
√
s2 + 1 − s) is the non-dimensional form of the size-dependent

thermal conductivity derived in [1], β is the Stefan number and Nu is the Nusselt
number. The limit Nu → ∞ corresponds to the fixed temperature condition consid-
ered in [7]. For simplicity, we are going to avoid writing explicitly the dependence
of f on s.

solid liquid

s(t)

Tf

Te

Fig. 1 Semi-infinite bath, initially at the freezing temperature, that is solidifying from x = 0 due
to a temperature Te < Tf. The solid–liquid interface is located at x = s(t)
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3 Perturbation Solution

In many thermal problems, it is likely to expect β � 1; see [7, 13]. We can benefit
from this assumption by introducing the time variable τ = t/β and expanding T in
powers of β−1. The solution, to first order, is

T (x, τ ) ≈ A + Bx + 1

β

[
A′

2 f
x2 + B ′

6 f
x3 −

(
A′

2 f
s2 + B ′

6 f
s3

)
Nux − f

Nus + f

]
ds

dτ
,

(2)
where

A(s) = − Nus

f (s) + Nus
, B(s) = Nu

f (s) + Nus
. (3)

After substituting (2) into (1d) and rearranging terms, we obtain

ds

dτ
= β f B

β − A′s − 1
2 B

′s2 + Nu
(
1
2 A

′s2 + 1
6 B

′s3
)
(Nus + f )−1 , (4)

which, subject to (1e), is trivial to solve numerically.

4 Results and Conclusion

The approximate solutionbasedon the assumption is now tested against the numerical
solution of (1) for different values of β and Nu. For a detailed description of the
numerical scheme, we refer to [7, 8, 14].

In Fig. 2, we have plotted the evolution of the solid–liquid interface s in time
for different values of β and Nu and the dynamics in the cases of a constant and a
variable thermal conductivity are compared. In the latter case, we also compare the
perturbation method presented in Sect. 3 against the numerical solution.

The solidification rate is clearly affected by both parameters at the same time: if
either β or Nu decrease, the speed of the interface decreases as well. In addition, the
Nu has direct impact on the behaviour of the solution, in Fig. 2a and d (small Nu)
we observe s ∼ t whereas in Fig. 2c and f (large Nu) we observe a transition from a
s ∼ t to s ∼ √

t . Since the Nusselt number determines the heat flux at x = 0, which
drives the whole process, this effect is not directly related to the fact of considering
a size-dependent thermal conductivity.

The main effect that the non-local formulation has on the dynamics is a decrease
in the solidification rate, as shown in Fig. 2. Furthermore, this effect is strengthened
as the Stefan number increases, as it can be observed in Fig. 2c and f, for example.
This can be understood by looking at (1d), which states that the solidification rate
is proportional to β−1 and therefore a large Stefan number slows the process down,
making non-local effects to be dominant for a larger period of time, whichwill reduce
the solidification rate even more due to the presence of f in (1d).
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(a) β = 10, Nu = 0.1.
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(b) β = 10, Nu = 1.
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(c) β = 10, Nu = 10.
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(e) β = 100, Nu = 1.
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(f) β = 100, Nu = 10.

Fig. 2 Evolution of the solid–liquid interface for different values of β and Nu

Finally, we observe that the asymptotic solution is in very good agreement with
the numerical solution for any value of Nu and β and the accuracy increases as β
increases from 10 to 100. In the latter, both numerical and asymptotic solutions are
identical.

To conclude, the present study shows that the changes in the solidification dynam-
ics when a size-dependent conductivity is considered are only expected for certain
range of values of the key parameters. In particular, when the solidification process
is slow due to a large Stefan number, i.e. a small temperature difference between
the initial liquid and the environment, non-local effects reduce the solidification rate
even more. In any case, the perturbation method is in excellent agreement with the
numerical solution.
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Experimental Investigation
of Viscoelastic Hysteresis in a Flex Sensor

Maxim Demenkov

Abstract We consider flex (or bending) polymer-based soft sensor that measures
its own bending in terms of electrical resistance. When it is used for precise
positioning as a part of fast control feedback, e.g. in soft robotic manipulators,
sensor measurements show hysteresis-like rate-dependent behaviour typical for vis-
coelastic materials. We have constructed a simple electromechanical device for its
investigation.

1 Introduction

Various devices using resistive flex sensors [8] have been made available in different
areas such as biometric measurements for medical purposes or interfacing virtual
reality. Nevertheless, these are slow-motion, imprecise applications. The advance-
ments in soft robotics [4, 11], where such sensors could be printed directly on a
robot body or used in other capacity as a part of control feedback, pose a serious
question about reliability of their readings. Since the sensors are made of polymers,
it is natural to assume that the well-known viscoelastic behaviour of polymers (see,
e.g. [2, 3, 10]), including rate-dependent hysteresis, can affect the sensor readings.

Nonlinear rate-dependent hysteresis was not extensively studied from the mathe-
matical viewpoint, and so far only a few publications (see, e.g. [1]) are available on
the subject.Well-known classical models of hysteresis, such as the Prandtl–Ishlinskii
andKrasnoselskii–Pokrovskiimodel, do not incorporate rate dependence [7, 9]. Even
the application of the term ‘hysteresis’ in a rate-dependent setting is questionable
for some researchers in mathematics. It is therefore important to create a simple and
cheap device to analyse such behaviour in a typical university environment without
complex laboratory setup, to facilitate the development of its mathematical models.

The viscoelastic materials have a relationship between stress and strain that
depends on time or frequency. In engineering, linear viscoelastic material models
can be represented by an arbitrary composition of linear springs and dampers; see
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Fig. 1 Linear viscoelastic
model

E0 E1

η

Fig. 1. The simplest model for solids that is able to show all phenomena related to
viscoelasticity is the following three-parameter model (also called the standard linear
solid or the Zener model, see, e.g. [10]):

σ + η

E1
σ̇ = E0ε + η

E0 + E1

E1
ε̇,

where σ is stress, ε is strain, η is viscosity, E0 and E1 are Young’s modulus and the
parameters of the relaxation function, respectively:

E(t) = E0 + E1 exp(−t/τR), t > 0,

and τR = η/E1 denotes the relaxation time. In the nonlinear case, no ‘standard’
model is available.

2 Experimental Results

In our experimental device, a small oval-shaped plastic arm is attached to anArduino-
controlled servomotor and is kinematically linked with the Flex Sensor® 4.5” avail-
able from Spectra Symbol, which is connected to the same Arduino module as the
servomotor. Arduino is a popular robotics hobbyist platform, which can be also used
for data acquisition in experiments. One side of the sensor is printed with a polymer
ink that has conductive particles embedded in it. When the sensor is bent away from
the ink, the conductive particles move further apart, increasing its resistance.

The positional servomotor SG90 can approximate a trajectory of its angular
motion using a number of reference points. The delay before setting the next refer-
ence point is related to its angular speed (maximum is 500 deg/sec). Angular speed
for the sensor tip is linearly related to the angular speed of the motor, which is six
times higher.

This device (see Fig. 2) is a modification (simply the replacement of a fan with
servomotor) of Flexy [5], initially created at the Slovak University of Technology in
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Servo motor

Flex sensorMount

Fig. 2 Scheme of our device and its actual implementation
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Fig. 3 Piecewise-linear angular input (blue colour corresponds to the motor speed of 45 deg/sec,
green—90 deg/sec, magenta—450 deg/sec)

Bratislava for teaching students the basics of automatic control. Its electrical schemes
and blueprints for laser cutting are freely available [6].

To test the hypothesis of sensor viscoelastic behaviour, we have conducted a num-
ber of experiments with different piecewise-linear angular inputs, see Fig. 3. In each
case, we vary the sensor tip angle from 5 to 20 degrees (measured by a protractor).
We divide the whole angle interval into 40 reference points and then vary the delay
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Fig. 4 Sensor readings under piecewise-linear angular input (magenta colour corresponds to the
fastest motion with circles representing the reference points)

before setting a new reference point for the servo. As a result, with decreasing of the
delay we have obtained different curves for loading (angle increasing) and unloading
(angle decreasing), see Fig. 3. In the fastest case depicted in Fig. 4, a possible error
in sensor readings can be as large as 60–70%.

As one can see, under slow angular motion (blue in Fig. 3) the hysteresis curve
(also blue in Fig. 4) can cross itself. It is also not a loop: probably due to the viscosity
of the sensor, it never returns exactly to the same reading as started, but it can get
there after some time if unloaded. It appears that the hysteresis curve is asymmetrical
and its width increases with increasing of the angular speed.

3 Conclusion

We have developed a simple electromechanical device based on freely available
design, which can be used for investigation of rate-dependent viscoelastic hysteresis.
At the present time, the results are inconclusive: the servomotor has no position
feedback and cannot be used for correct system identification. Our future goal is to
improve our device which, hopefully, can help in deriving mathematical model of
the sensor.
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How Does the Hopf Bifurcation Appear
in the Hydrogen Atom in a Circularly
Polarized (CP) Microwave Field?

Mercè Ollé and Juan R. Pacha

Abstract The dynamics of the Rydberg atom in a rotating electric field can be
described by a two degree of freedom Hamiltonian depending on a parameter K .
This Hamiltonian has two equilibrium points L1 and L2. While L1 is a saddle-center
for all values of K , the hyperbolic character of L2 changes from a double center to
a complex saddle as the parameter K crosses a critical threshold, giving rise to the
Hopf bifurcation. Here we analyze the dynamics close to this transition. We finally
remark that the full details (proofs, figures, and further discussion) referred in this
extended abstract can be found in Ollé and Pacha (Commun Nonlinear Sci Numer
Simul 62:27–60, 2018, [9]).

1 Introduction

Throughout this note, we shall consider the hydrogen—or, more generally, the
Rydberg—atom interacting with a circularly polarized microwave field. In this con-
text, we shall refer this problemas the circularly polarized (CP) problem. In a suitable
rotating reference frame, and assuming planar motion for the electron, the dynam-
ics of the CP problem is described by a two degree of freedom Hamiltonian that
depends on a positive parameter K . Some aspects of this problem have been studied
by several authors; see [1, 3, 6]. However, some others remain to be well understood.
Particularly, chaotic regions are expected to appear since we know that the system is
non-integrable; see [4].

It is well known (see [1]) that the CP problem has two equilibrium points for any
positive value of the parameter K , say L1 and L2. The first one, L1, is a saddle-
center for all values of K > 0. The second, L2, is a center×center for K < Kcrit and
changes to a complex saddle as K > Kcrit . For the critical value, Kcrit = 3−4/3/2 ≈
0.11556021, the equilibrium point L2 corresponds a 1 : 1 non-semisimple resonance
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corresponding to a pairwise collision of the characteristic exponents on the imaginary
axis.

As far as we know, most of the papers are devoted to study the system for small
0 < K < Kcrit . The case K > Kcrit has been tackled in [7] (though the approach
there is perturbative without computing the current normal form) and more recently
in [9]. In this text, we give some highlights of this last paper.

2 The Hamiltonian for the Hydrogen Atom in a Circularly
Polarized Microwave Field

The Hamiltonian for the hydrogen atom subjected to a CPmicrowave field, in atomic
units (me = h̄ = e = 1) and assuming that the electronmoves in the horizontal (x, y)
plane, is the following:

H(x, y, px , py, t) = 1

2
(p2x + p2y) − 1

r
+ F(x cos ω̃t + y sin ω̃t), (1)

where (x, y) are the positions, (px , py) = (x ′ − y, y′ + x) their conjugatemomenta,
r2 = x2 + y2, ω̃ is the angular frequency of the microwave field, and F > 0 is the
field strength; see [3]. The generating function,

S(X,Y, px , py, t) = [
X cos (ω̃t) − Y sin (ω̃t)

]
px + [

X sin (ω̃t) + Y cos (ω̃t)
]
py

gives the change to a coordinate frame rotating with the same angular frequency ω̃.
The transformed Hamiltonian is

H(X,Y, PX , PY , t) = H
(
∂px S

(
X,Y, px , py, t

)
, ∂py S

(
X,Y, px , py, t

)
, px , py, t

)

− ∂t S
(
X,Y, px , py, t

)

= 1

2

(
P2
X + P2

Y

) − ω̃ (X PY − Y PX ) − 1√
X2 + Y 2

+ FX,

where px and py in the formula above are expressed in terms of the “new” positions
(X,Y ) and momenta (PX , PY ), by solving in the “old” momenta (px , py) the equa-
tions PX = ∂X S(X,Y, px , py, t) and PY = ∂Y S(X,Y, px , py, t). Note that, for the
current case, these equations are linear in (px , py), so this can be done explicitly.
We remark that the resulting Hamiltonian, H, does not depend on t . Moreover, it is
checked at once that the application of the scaling (in both time and coordinates):
t = τ/ω̃, (X,Y ) = ω̃−2/3(x, y), (PX , PY ) = ω̃1/3

(
px , py

)
, to theHamiltonian equa-

tions associated toH, yields a newHamiltonian systemwhose corresponding Hamil-
tonian function casts

H
(
x, y, px , py

) = 1

2
(p2x + p2y) − xpy + ypx − 1

r
+ Kx, (2)
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with K = F/ω̃4/3 > 0 and where, for the sake of simplicity, we use the same names
for the transformed Hamiltonian (2), and for the new position and momenta as in
the initial Hamiltonian (1). Finally, we stress that only one parameter (here, K ) is
necessary to describe the dynamics.

3 Normal Form Around L2

Reduction to normal form (NF) around the equilibrium point L2 of Hamiltonian (2)
involves several steps, roughly: shifting the origin to the L2 equilibrium point, reduc-
tion of the quadratic part, complexification, and nonlinear reduction (for example,
by means of some Lie series method) up to the required degree. Details for this case
in point can be found in [9]. Up to order four, the (real) NF turns out to be

Z̃ (4) (μ, x̃, ỹ) = α̃μ + β̃μ2 + 1

2

(
ỹ21 + ỹ22

)
+ ω(μ) (ỹ1 x̃2 − ỹ2 x̃1) − ε(μ)

2

(
x̃21 + x̃22

)

+ A
(
x̃21 + x̃22

)2 + B
(
x̃21 + x̃22

)
(ỹ1 x̃2 − ỹ2 x̃1) + C (ỹ1 x̃2 − ỹ2 x̃1)

2 ,

(3)

x̃ = (x̃1, x̃2), ỹ = (ỹ1, ỹ2), and the coefficients α̃, β̃, ω(μ), ε(μ), A, B, C are given
by

α̃ = 25

8
, β̃ = 27

32
32/3, γ̃ = 14

25
32/3

√
5,

	 =
√
5

3
, ω(μ) = 	 + γ̃μ, ε(μ) = 6

5
32/3μ,

A = 7

1250
32/3, B = − 6

625
32/3

√
5, C = − 88

28125
32/3.

Here, μ is a parameter related with K through

K := −1 + δ30 + 3δ0μ − 3δ20μ
2 + 3δ30μ

3

δ20 (1 − δ0μ)
,

μ < 1/δ0 and δ0 := 32/3/2 is the distance of L2 to the origin (x, y) = (0, 0) of the
configuration space. It turns out that K < Kcrit for μ < 0, K = Kcrit for μ = 0, and
K > Kcrit when 0 < μ < 1/δ0. Thus, Proposition 1 follows from the Hamiltonian
Hopf bifurcation theorems; see [2, 8, 10].

Proposition 1 (from [9]) The equilibrium point L2 of Hamiltonian (2) is stable for
K ≤ Kcrit and unstable for K > Kcrit . For K < Kcrit , there exist two Lyapunov
families of elliptic periodic orbits that contain the equilibrium point. Both families
become one unique family of elliptic periodic orbits for K = Kcrit . For K > Kcrit ,
the unique family of elliptic periodic orbits persists but no longer holds the equi-
librium. Moreover, if for some K close to Kcrit one singles out an elliptic periodic
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orbit, then the excitations in the elliptic directions yield the unfolding of a Cantor
family of Lagrangian 2D-tori having that periodic orbit as its fiber.

3.1 Dynamics of the Hamiltonian NF of Order 4

It is convenient to introduce polar coordinates Q, θ ∈ T
1 for the positions, and their

canonically conjugate momentum P and action J (see [5]),

x̃1 = Q cos θ, ỹ1 = P cos θ − J

Q
sin θ,

x̃2 = −Q sin θ, ỹ2 = −P sin θ − J

Q
cos θ.

In these new coordinates (θ, Q, J, P), the NF (3) transforms to a new (integrable)
Hamiltonian, �, which is written as

�(μ, Q, J, P) = �0(μ) + ω(μ)J + C J2 + P2

2
+ J2

2Q2 +
(
BJ − ε(μ)

2

)
Q2 + AQ4,

(4)

with �0(μ) = α̃μ + β̃μ2. Note that (4) does not depend explicitly on the angle θ,
so J is a first integral of �. Hence, (4) can be regarded as a one degree of freedom
Hamiltonian depending on parameters μ and J . From this point of view, it is clear
that the difference �̃ := � − �0(μ) = P2/2 + V (μ, Q, J )/2, with

V (μ, Q, J ) := 2ω(μ)J + 2C J 2 + J 2

Q2
+ (2BJ − ε(μ)) Q2 + 2AQ4

is a natural Hamiltonian, for it is a sum of a kinetic term, P2/2, and a potential
function, V (μ, Q, J )/2, that depends only on the position. Then, for μ (and so, for
K ) fixed, and for a given level of the energy E , the phase portrait of �̃ consists of
the curves

(Q, P) =
(
Q,±√

E − V (μ, Q, J )
)

, (5)

parametrized by the action J .
In Fig. 1, we plot these phase portraits for μ > 0. Figure1a corresponds to the

level set E = 0. The 2D Lagrangian tori with J < 0 are drawn in thin continuous
lines. For J = 0, the thick black line follows the stable and unstable manifolds of
L2 (at the origin in the current coordinates). In the approximation given by the NF,
these manifolds coincide. The 2D Lagrangian tori around the bifurcated periodic
orbit (that is marked with a cross in the figures) have J > 0 and are drawn in dashed
lines. In Fig. 1b, we sketch the analogous phase portrait for E < 0—the same line
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Fig. 1 Phase portraits of the Hamiltonian system �̃ for μ > 0. E = 0 in (a), and E < 0 in (b). See
the text for details

code is used continuous lines for orbits with J < 0, thick continuous line for the one
with J = 0, and dashed lines for those with J > 0.

Of course, the main difference between the two phase portraits in Fig. 1 is that
the stable and unstable invariant manifolds of L2 (recall that μ > 0 is assumed),
W±(L2), “live” in the level set E = 0, so they do not appear in Fig. 1b. In the current
polar coordinates (Q, P), their parametrization follows immediately setting E = 0
and J = 0 in (5). Hence,

W±(L2) =
{
(θ, Q, J, P) =

(
θ, Q, 0,±√−V (μ, Q, 0)

)
, θ ∈ T

1, 0 < Q ≤ √
ε(μ)/(2A)

}
,

where the plus sign describes the unstable (outgoing) manifold, whereas the minus
sign describes the stable (incoming) one.

If μ < 0, L2 is a center×center with two pure imaginary characteristic exponents
±iω1, ±iω2 (ω1 > 0, ω2 > 0 depending on μ). For E = 0, one sees just the equi-
librium point and a family of 2D Lagrangian tori. For each E > 0 (E < 0) fixed,
we have, for a suitable value of J , a stable periodic orbit that is represented on
the (Q, P)-plane by a point on the Q axis. This orbit is surrounded by a fam-
ily of closed curves, parametrized by J , that corresponds—in the whole phase
space—to a family of Lagrangian 2D tori. Variation of E > 0 (similarly of E < 0)
leads to a family of periodic orbits, characterized by the solutions of the equations
∂QV (μ, J, Q) = 0, V (μ, J, Q) = E , that are stable. This yields two families of
periodic orbits, parametrized by the energy, in accordance with the Lyapunov Center
Theorem.

Finally, L2 is a degenerate center×center for μ = 0 with characteristic expo-
nents ±iω1 = ±iω2 = ±iω (ω > 0). The two Lyapunov families of periodic orbits
parametrized by the energy E become one family in the sense that, as E tends to 0,
the period of the orbits of both families tends to the same value 2π/ω. Moreover,
as in the previous case, for a fixed E > 0 (E < 0), we have a stable periodic orbit
surrounded by 2D-invariant Lagrangian tori.
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4 Numerical Computations

Next, numerical simulations are conducted to study the resulting Hopf bifurcation
beyond the description given by the NF. In order to show the dynamics of the CP
problem from a global point of view, we consider the so-called Poincaré Section Plot
(PSP): given K , and for an energy level h fixed, we take, for some range of time,
the intersection of a solution (or a set of solutions) with the Poincaré section x ′ = 0,
y′ < 0, and we plot the (x, y) projection of such intersection points. We recall that
a detailed description of the dynamics and the consequences of the Hopf bifurcation
are explained in [9]. In this extended abstract, we just remark two comments.

On one hand, concerning the invariant manifolds of L2. We recall that the NF (3)
is integrable, so it is not useful to detect phenomena related to chaos, such as splitting.
However, the original system is non-integrable (see [4]) and we expect to have such
splitting between the manifolds W±(L2). For example, Fig. 2 shows the projection
on the (x, y) plane of the Poincaré section plot (PSP) ofW±(L2), where the splitting
is clearly seen (compare with Fig. 1b, where splitting does not show up at all).

On the other hand, focusing on the global picture of the dynamics, from our
numerical approach—coined on the basis of the different relevant invariant objects
involved—we conclude the following.

4.1 For K > Kcri t

In a region near the origin: A first global property to remark, and independent of the
Hopf bifurcation phenomenon, is the existence of the retrograde periodic stable orbit
close to the origin; this orbit together with the invariant surrounding 2d tori confine a
clear region for the electron. This was already observed in [1] for very small values
of K < Kcrit .
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Fig. 2 (x, y) projection of the PSP forWu(L2). a K = 0.1157; b K = 0.12; c a zoom close to L2
with both W±(L2)



How Does the Hopf Bifurcation Appear in the Hydrogen Atom … 243

The invariant manifolds of the Lyapunov periodic orbit, ol1: Regardless the value
of K , for h = h(L2), there is the unstable periodic orbit around L1, ol1, and their
invariant manifolds which play a clear role on the dynamics. These manifolds visit
a small (x, y) region for 0 < K < Kcrit small, but we have just shown that they
become more complex (and their homoclinic tangles as well) as K grows visiting
large regions in the (x, y) plane.

The region influenced by the Hopf bifurcation: When K is bigger and close to Kcrit ,
and for h = h(L2), the dynamics of theHopf bifurcation is very local in the sense that
W+(L2),W−(L2), the bifurcated stable periodic orbit and the surrounding invariant
2D tori are confined by the external KAM tori, so they do not play a significant role in
the global dynamics. Nevertheless, as far as K increases, these KAM tori disappear
and both invariant manifolds—those of ol1 and those of L2—are mixed, giving rise
tomany different kinds of orbits and chaos. Relevant to say (and asmentioned above)
is that, among this chaos, the stable bifurcated periodic orbit and associated 2D tori
confine a clear region among this chaotic sea. However, for bigger values of K such
that the periodic bifurcated orbit is unstable, we obtain the same kind of PSP but
there is no confinement around the periodic orbit at all.

Fast escaping orbits and erratic orbits: We finally mention that apart from chaotic
orbits, other solutions, which may escape very fast, or which are erratic and finally
escape (or not) typically appear.

4.2 For K < Kcri t

Let us take K = 0.115, very close to Kcrit and h near h(L2). As in Case K > Kcrit ,
there is the big stable region close to the origin due to the retrograde or orbit and the
intricate invariant manifolds associated with the periodic orbit ol1 that cover a big
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Fig. 3 K = 0.115 < Kcrit . PSP: the big stable region close to the origin is clearly seen.We remark
the stable equilibrium point for h = h(L2) in (a), the Lyapunov stable periodic orbit for h < h(L2)

in (b), and the one for h > h(L2) in (c)
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chaotic region in the (x, y) plane. For h = h(L2), we have the equilibrium point L2

which is stable, whereas for increasing/decreasing h we obtain the corresponding
family of stable Lyapunov periodic orbits surrounded by 2D tori. This is shown in
Fig. 3. Of course, this dynamics is in accordance with the theoretical results obtained
from the NF analysis; see Sect. 3.
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Stabilization of Unstable Periodic
Solutions for Inverted Pendulum Under
Hysteretic Control: The Magnitskii
Approach

Mikhail E. Semenov, Peter A. Meleshenko, Igor N. Ishchuk,
Valeriy N. Tyapkin and Zainib Hatif Abbas

Abstract In this paper, amathematicalmodel of the stabilization of the inverted pen-
dulum with vertically oscillating suspension under hysteretic control is constructed.
The stabilization of unstable periodic solutions for such a system is considered using
the Magnitskii approach.

1 Introduction

The problem of inverted pendulum has a long history [5, 6, 18] and remains relevant
even in the present days [1, 3, 16]. As it is well known, the model of inverted pendu-
lumplays the central role in the control theory [4, 7]. It is well-established benchmark
problem that provides many challenging problems to control design. Because of their
nonlinear nature, pendulums have maintained their usefulness and they are now used
to illustrate many of the ideas emerging in the field of nonlinear control [2]. Typ-
ical examples are feedback stabilization, variable structure control, passivity-based
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control, back-stepping and forwarding, nonlinear observers, friction compensation,
andnonlinearmodel reduction.A special role plays the systems containing oscillating
parts taking into account the hysteretic properties of the internal links or some parts
of such systems. One of the most interesting phenomena in the oscillating systems
is a resonance behavior of the dynamical parameters. Investigation of the resonance
phenomena in a system containing hysteretic nonlinearity was made in [9].

The model of inverted pendulum with oscillating suspension point (see panel a
in Fig. 1) was studied in detail by Kapitza [5, 6]. Let us recall that the equation of
motion of pendulum has the following form:

φ̈ − 1

l
[g + f̈ (t)] sin φ = 0, (1)

where φ is the angle of vertical deviation of the pendulum, l is the pendulum’s length,
g is the gravitational acceleration, and f (t) is the law of motion of the suspension
point (of course, this equation should be considered together with the corresponding
initial conditions). As it is known, if motion of the suspension point is of harmonic
character, then Eq. (1) reduces to the Mathieu equation.

In order tomake an adequately descriptionof the dynamics of real-life physical and
mechanical systems, it is necessary to take into account effects of hysteretic nature
such as “backlash”, “stops”, etc. The mathematical models of such nonlinearities,
according to the classical patterns of Krasnosel’skii and Pokrovskii [8], reduce to
operators, which are treated as converters in an appropriate function spaces. The
dynamics of such converters are described by the relation of “input-state” and “state-
output”. Let us note that the hysteretic systems are of interest in various fields of
modern physical, mathematical, and technical sciences. Interesting role plays the
hystertic phenomena in biology [12–14].

The majority of real-life physical and technical systems contain parts that can
be represented as a cylinder with a piston. Inevitably, the backlashes appear in such
systems during its long operation due to the “aging” of materials. Such backlashes

Fig. 1 Geometry of the
problem. a general view of
the inverted pendulum. b the
suspension point (cylinder
and piston)

(a) (b)
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are of hysteretic nature and the analysis of such nonlinearities is quite important and
relevant problem. In this paper, we investigate the problem of the inverted pendu-
lum under hysteretic control in the form of backlash. We pay specific attention to
stabilization of unstable periodic solutions for such a system using the Magnitskii
approach.

2 Mathematical Model

Let us consider a system where the base of the pendulum is a physical system (P, S)

formed by a cylinder of length H and the piston P (both the cylinder and the piston
are supposed to be ideal and absolutely rigid). Both the cylinder and the piston can
move in the direction of the vertical axis as it is shown in panel b of Fig. 1.

We determine the piston’s position by the coordinate f (t) and the cylinder’s
position by coordinate υ(t). The system (P, S) can be considered as a converter
� with the input signal f (t) (piston’s position) and the output signal υ(t) (cylin-
der’s position). Such a converter is called backlash. The set of its possible states
is f (t) ≤ υ(t) ≤ f (t) + H (−∞ < f (t) < ∞). The cylinder’s position υ(t) at
t > t0 is defined by υ(t) = �[t0, υ(t0)] f (t), where �[t0, υ(t0)] is the operator
defined for each υ0 = υ(t0) on the set of continuous inputs f (t) (t > t0) for which
υ0 − H < f (t) < υ0; see [8].

We suppose that the piston’s acceleration periodically changes from−aω2 to aω2

with the frequency ω. This assumption implies that the linearized equation of motion
of such a pendulum can be written in the following form:

φ̈ − 1
l [g + aω2G(t, H)w(t)]φ = 0,

w(t) = −sign[sin (ωt)],
φ(0) = φ10, φ̇(0) = φ20,

(2)

where sign(z) is the usual signum function, G(t, H)w(t) is the acceleration of the
suspension point and

G(t, H) =
{
0, t ∈ (t∗, t∗ + �t),
1, t out of (t∗, t∗ + �t),

where t∗ are the moments after which the acceleration’s sign change takes place,
�t = √

2H/aω2 is the time for which the piston passes through the cylinder.

3 Stability Zones

Passing to dimensionless units the equation of motion can be rewritten in the form
of the corresponding equivalent system:
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{
ẋ1 = x2,
ẋ2 = p(τ )x1,

x1(0) = x10, x2(0) = x20.
(3)

The matrix of this system has the following form:

P(τ ) =
(

0 1
p(τ ) 0

)
,

where p(τ ) = k − sG(τ , H)sign(sin τ ). The matrix P(τ ) is a periodic function of
time with the period 2π, namely, P(τ + 2π) ≡ P(τ ).

Following the results of Floquet [15], the investigation of the stability of such
systems reduces to the problem of finding of the fundamental matrix of the solutions
at themoment 2π (the so-calledmonodromymatrix) and evaluation of its eigenvalues
(the so-called multipliers). For the stability of the periodic system, it is necessary
and sufficient that the following condition takes place: |�| < 1 (all the multipliers
are placed inside the unit circle).

Due to the fact that thematrixP(τ ) is a piecewise constant, the fundamental system
of solutions and themonodromymatrix can be constructed in the closed analytic form
(details can be found in [17]). The characteristic equation for the fundamental matrix
A has the following form:

‖A − �E‖ =
∣∣∣∣a11 − � a12

a21 a22 − �

∣∣∣∣ = �2 + α� + β = 0, (4)

where β = (−1)2 exp
(∫ T

0 Sp[P(τ )]dτ
)

= 1 (see [11]) and α = −(a11 + a22).

The product of roots �1 and �2 of Eq. (4) is equal to unity, so the motion is stable
at |α| < 2 only. This condition can be written in the explicit form as given below:

∣∣∣ cos (k2γ)
[
2 cosh (2

√
k�τ ) cosh (k1γ) + sinh (2

√
k�τ ) sinh (k1γ)

(√
k

k1
+ k1√

k

)]
+

sin (k2γ)
[
sinh (2

√
k�τ ) cosh (k1γ)

(√
k

k2
− k2√

k

)
+ cosh2 (

√
k�τ ) sinh (k1γ)

(
k1
k2

− k2
k1

)
+

sinh2 (
√
k�τ ) sinh (k1γ)

(
k

k1k2
− k1k2

k

)] ∣∣∣ < 2.

(5)
Thus, the stability zone of the system (3) in the space of parameters is defined by the
inequality (5).

4 Periodic Regimes

Analysis of themonodromymatrix allows to get the following result: periodic behav-
ior of the pendulum corresponds to the edges of the stability zone. On the left edge
(at a11 + a22 = −2), we have a periodic regime with period T1 = 2π/ω. On the



Stabilization of Unstable Periodic Solutions for Inverted … 249

right edge (at a11 + a22 = 2), we have a periodic regime with period T2 = 4π/ω.
However, not for all of the nonzero initial values the periodic solutions exist. The
periodic regime with period T1 exists, if the following relations for initial conditions
take place:

φ10 = a12
a11 − 1

φ20, φ20 = a21
a22 − 1

φ10, (6)

In a similarmanner, the periodic regimewith period T2 exists for the initial conditions
that satisfy the following relations:

φ10 = a12
1 + a11

φ20, φ20 = a21
1 + a22

φ10. (7)

Here, we would like to note that all the periodic solutions are unstable.

4.1 Stabilization of the Periodic Regimes

Following Magnitskii [10], we consider the following approach to stabilization of
periodic solutions. We introduce the so-called expanded system describing not the
point’s motion, but the motion of a cycle. The relationship between the basic and
expanded systems can be described in the following sentences:

(i) to any periodic solution of the basic system corresponds a stationary solution
of the expanded system;

(ii) to any stationary solution of the expanded system corresponds a periodic solu-
tion of the basic system;

(iii) there is a bijection between the stability of the periodic solution of the basic
system and the stability of the stationary solution of the expanded system.

Using this technique, the stabilizing system for our mechanical system becomes

ẋ1 = x2 − x1τ
x1τ x2 + x2τ

[
k − sG(τ , H)sign(sin x)

]
x21τ + x22τ

+ εx1q,

ẋ2 = [
k − sG(τ , H)sign(sin x)

]
x1 − x2τ

x1τ x2 + x2τ
[
k − sG(τ , H)sign(sin x)

]
x21τ + x22τ

+ εx2q,

q̇ = ax

(
x2 − x1τ

x1τ x2 + x2τ
[
k − sG(τ , H)sign(sin x)

]
x21τ + x22τ

)
+

+ay

([
k − sG(τ , H)sign(sin x)

]
x1 − x2τ

x1τ x2 + x2τ
[
k − sG(τ , H)sign(sin x)

]
x21τ + x22τ

)
+ βq,

x1|τ=0 = x1|τ=2π, x2|τ=0 = x2|τ=2π, q|τ=0 = q|τ=2π,

x1τ |τ=0 = x1τ |τ=2π, x2τ |τ=0 = x2τ |τ=2π, qτ |τ=0 = qτ |τ=2π .

The numerical results for the periodic solutions of the consideredmechanical system
are presented in Fig. 2.
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(a) (b)

Fig. 2 Stabilized periodic solutions. a T1 = 2π/ω; b T2 = 4π/ω

5 Conclusions

In this paper,we have constructed themodel of inverted pendulumwith the oscillating
suspension point under hysteretic control in the form of a backlash.More specifically,
the explicit condition for the stability of such a system has been obtained using the
monodromy matrix technique. The periodic solutions in such a system are also ana-
lyzed and the corresponding relations for the parameters a and ω are obtained. Using
the Magnitskii approach, we presented a method for stabilization of the unstable
periodic solutions for such a mechanical system.

References

1. A. Arinstein, M. Gitterman, Inverted spring pendulum driven by a periodic force: linear versus
nonlinear analysis. Eur. J. Phys. 29, 385–392 (2008)

2. K.J.Åström,K. Furuta, Swinging up a pendulumby energy control.Automatica 36(2), 287–295
(2000)

3. E.I. Butikov, Oscillations of a simple pendulum with extremely large amplitudes. Eur. J. Phys.
33(6), 1555–1563 (2012)

4. J. Huang, F. Ding, T. Fukuda, T. Matsuno, Modeling and velocity control for a novel narrow
vehicle based on mobile wheeled inverted pendulum. IEEE Trans. Control Syst. Tech. 21(5),
1607–1617 (2013)

5. P.L. Kapitza, Sov. Phys. JETP 21, 588–592 (1951)
6. P.L. Kapitza, Usp. Fiz. Nauk 44, 7–15 (1951)
7. K.D. Kim, P. Kumar, Real-time middleware for networked control systems and application to

an unstable system. IEEE Trans. Control Syst. Technol. 21, 1898–1906 (2013)
8. M.A. Krasnosel’skii, A.V. Pokrovskii, Systems with Hysteresis (Springer, Berlin, 1989)
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Nonideal Relay with Random Parameters

Mikhail E. Semenov, Peter A. Meleshenko, Igor N. Ishchuk,
Dmitry D. Dmitriev, Sergey V. Borzunov and Nataliya N. Nekrasova

Abstract In this work, we introduce a novel class of hysteretic operators with
random parameters. A definition of these operators is made in terms of the “input–
output” relations. Properties of such operators are considered in an example of a
nonideal relay with random parameters.

1 Introduction

Hysteresis phenomena are of interest from both the fundamental and the applied
points of view. This interest is caused by high incidence of these phenomena in vari-
ous technical systems (robotic,mechanical, electromechanical systems,management
systems for aircraft tracking, etc.) Also, these phenomena determine some unusual
elastoplastic properties of modern nanomaterials based on fullerene films.Moreover,
the hysteretic phenomena are widely known in biology, chemistry, economics, etc.

This work was supported by the RFBR (Grants 17-01-00251-a, 18-47-310003, 18-08-00053-a and
19-08-00158-a).

M. E. Semenov (B) · P. A. Meleshenko · S. V. Borzunov
Voronezh State University, Universitetskaya sq.1, 394006 Voronezh, Russia
e-mail: mkl150@mail.ru

P. A. Meleshenko
e-mail: melechp@yandex.ru

M. E. Semenov
Geophysical Survey of Russia Academy of Science, Lenina av. 189, 249035 Obninsk, Russia

M. E. Semenov · N. N. Nekrasova
Voronezh State Technical University, XX-letiya Oktyabrya st. 84, 394006 Voronezh, Russia

M. E. Semenov · P. A. Meleshenko · I. N. Ishchuk
Zhukovsky–Gagarin Air Force Academy, Starykh Bolshevikov st. 54 “A”, 394064 Voronezh,
Russia

I. N. Ishchuk · D. D. Dmitriev
Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russia

© Springer Nature Switzerland AG 2019
A. Korobeinikov et al. (eds.), Extended Abstracts Spring 2018,
Trends in Mathematics 11, https://doi.org/10.1007/978-3-030-25261-8_37

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25261-8_37&domain=pdf
mailto:mkl150@mail.ru
mailto:melechp@yandex.ru
https://doi.org/10.1007/978-3-030-25261-8_37


254 M. E. Semenov et al.

The hysteretic behavior of such systems is caused by either their internal structure,
or the presence of separate blocks with hysteretic characteristics.

Currently usedmodels of hysteretic phenomena both constructive (nonideal relay,
Preisach and Ishlinskii–Prandtl models, etc. [6]), and phenomenological (Bouc–Wen
model, Duhem model, etc. [3]) assume the stability of the parameters that identify
the hysteretic properties of the corresponding operators. However, the stability of
parameters in real engineering systems (e.g., in the systems described in [7]) does
not always take place. Thus, such operators are the natural model in the situation
where the parameters of a hysteresis carrier are under influence of stochastic uncon-
trollable affections. These facts make it necessary to develop the extended models
of hysteretic effects, taking into account the stochastic changes of the parameters
determining the hysteretic operators. Here we would like to note that the stochastic
and unusual properties of the systems with hysteresis were considered in [2, 5]. Let
us note that the equations with random parameters were considered in [1, 10, 11].
However, principally, equations considered in these and other publications are linear.
The strongly nonlinear differential equations, containing the operator nonlinearity
with random properties, have not been considered in the literature. Thus, the hys-
teretic operators (e.g., the nonideal relay) with random parameters seem novel and
promising objects.

2 Nonideal Relay with Random Parameters

Let us consider a nonideal relay (a detailed description of this and other hysteretic
converters is given in the classical book [4]) with the switching numbers that are
not fixed and treated as random variables with absolutely continuous distribution
function. Let us make the following assumption: the probability density of each of
the switching numbers are supposed to be finite with non-intersecting supports. We
denote these switching numbers as ϕα(u) and ϕβ(u). We consider a case where the
supports of functions ϕα(u) and ϕβ(u) are contained in the intervals [u−

α , u+
α ] and

[u−
β , u+

β ], respectively.
The dynamics of the input–output relations (see [4]) for the operator of a non-

ideal relay with random switching numbers is determined by two relations, namely,
“input-state”, and “state-output”. We suppose that all permissible for the converter R
continuous inputs are given on the nonnegative semi-axis (t > 0) (the input–output
relation for this converter has the form x(t) = R [t0, x0, α, β] u(t), (t ≥ t0)). The
space of possible states of such an operator is defined as � = �(ω, p, u) (ω = 0, 1,
0 ≤ p ≤ 1, −∞ < u < +∞).

The variable state of the converter R
[
(1; p0); x0;ϕα(u);ϕβ(u)

]
u(t) is a random

value that takes the value 0with probability (1 − p(t)) and a value of 1with probabil-
ity p(t). In other words, it can be presented as a pair {1; p(t)} (here the second output
component corresponds to the probability that at the time t the first component is 1).
The output of this converter is a random function x(t) (Markovian process) taking



Nonideal Relay with Random Parameters 255

a value of 1 with probability p(t). The rule that determines the value of probability
p(t) will be given below.

2.1 Definition

The definition of the input–output relation can be made by means of a three-step
construction (see [4]):

(i) at the first step, we define the input–output relation on the monotonic inputs
only;

(ii) at the second step, using the semi-group identity, the input–output relation is
defined for all piecewise monotonic inputs;

(iii) at the third step, using the special limit construction, the corresponding converter
will be defined for all monotonic inputs.

We define the operator R on the monotonic inputs. Let us assume that at the
initial time t0 (to simplify, we assume that t0 = 0) the operator R is in the state
1; p0; u0 ∈ �, (u(0) = u0). Let the input u(t) be a monotonic increase, then for the
time t > 0 the output is x(t) = {1; p(t)}, where

p(t) = max
{
p0;

∫ u(t)

−∞
ϕβ(u)du

}
. (1)

Let t1 be an arbitrary moment of time satisfying the inequality 0 < t1 < t , then
the semi-group identity for the operator of a nonideal relay has the form (following
from the definition):

R
[
t0; p0; u0;ϕα;ϕβ

]
u(t) = R

[
t1; R

[
t0; p0; u0;ϕα;ϕβ

]
u(t1); u(t1);ϕα;ϕβ

]
u(t).
(2)

To define an operator on the piecewise monotonic inputs (in the case of a finite
interval [0, T ]), we break this interval by points t1, t2, . . . , tn into intervals of mono-
tonicity. On each of them, we define the corresponding operator as an operator on a
strictly monotonic input whose initial state will be defined as the state at the instant
corresponding to the “last” change in the behavior of the input.

To determine the operator R on continuous inputs, we use the following limit
construction. Let u(t), t ∈ [0, T ], be an arbitrary continuous input. Let us con-
sider an arbitrary sequence of piecewise monotonic inputs un(t), (n = 1, 2, . . .) that
converges uniformly to each element of this sequence u(t). A single-variable state
pn(t) (n = 1, 2, . . .) forms a sequence of state variables pn(t), (n = 1, 2, . . .). Let
us prove that the sequence pn(t) (n = 1, 2, . . .) converges uniformly. We estimate
the absolute value of the difference:
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|pn(t) − pm(t)| ≤ max
t

∣
∣
∣∣
∣

∫ un(t)

−∞
ϕα(u)du −

∫ um (t)

−∞
ϕα(u)du

∣
∣
∣∣
∣
= max

t

∣
∣
∣∣
∣

∫ um (t)

un(t
ϕα(u)du

∣
∣
∣∣
∣
.

(3)
Since the function ϕα(u) is continuous and because of uniform convergence

lim
n,m→∞max

t
|un(t) − um(t)| = 0,

as well as, using the mean value theorem:

max
t

∣∣∣∣

∫ um (t)

un(t
ϕα(u)du

∣∣∣∣ ≤ max
t

ϕα(t) [un(t) − um(t)]

the right-hand side of the inequality (3) tends to zero. Thus, the sequence pn(t) is
fundamental (the continuity is obvious). Then, there is limn→∞ pn(t) = p(t), which
is comparable to an arbitrary continuous input u(t).

2.2 Monotonicity

Let us consider the monotonicity property for the constructed converter. We deter-
mine the monotonicity with respect to the initial state of the nonideal relay, namely,
if {u(t0, x0}, {v(t0, y0} ∈ �(α, β), x0 ≤ y0, and u(t) ≤ v(t) (t ≥ t0), then the fol-
lowing inequality takes place: R [t0, x0, α, β] u(t) ≤ R [t0, x0, α, β] v(t) (t ≥ t0).

With respect to the modified operator of a nonideal relay with random parameters,
the analog of monotonicity can be presented in the form of the following theorem.

Theorem 1 Let p{x01 = 1} ≥ p{x02 = 1} and x1(t) ≥ x2(t). Then, for any
t, p{x1 = 1} ≥ p{x2 = 1}.

3 Dynamics of a System Under NonIdeal Relay
with Random Parameters

To demonstrate the action of the developed operator on the real-life physical sys-
tem, let us consider a simple oscillating system under hysteretic force with random
parameters. Such a system was considered in [8, 9] with the external force in the
form of a nonideal relay with an inversion of the switching numbers. One of the main
results of these papers is the existence of unlimited solutions with the growth rate of
amplitude as the square root of time. Let us consider an analogous systemwith a non-
ideal relay where switching numbers distributed according to an even-dimensional
law. The equation of motion together with the corresponding initial conditions has
the following form:
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Fig. 1 A solution (left-hand panel) and phase portrait (right-hand panel) for the system (4)

ẍ(t) + ω2x(t) = R[t0; p0; u0;ϕα;ϕβ]x(t),
x(0) = x0, ẋ(0) = x1.

(4)

To find a numerical solution of the system (4), it is necessary to generate a set
of random values corresponding to the switching numbers. Let us consider a case
when ϕα(u) and ϕβ(u) corresponds to the uniform distribution law for α and β.
For definiteness, we assume that these functions correspond to uniform distributions
in the intervals [−1.5,−0.5] and [0.5, 1.5], respectively. At each period, switching
numbers are selected from the corresponding distributions with the initial conditions
for the next realization corresponding to the values of the phase coordinates obtained
at the previous step. Using this algorithm, a solution to system (4) is obtained and
the corresponding law of motion together with the phase portrait is shown in Fig. 1.

The following theorem characterizes the dynamics of system (4).

Theorem 2 Let us suppose that the supports of function ϕα and ϕβ do not intersect.
Then, limt→∞ x(t) = ∞, that is the amplitude tends to infinity with probability 1.

The proof of this theorem follows from the fact that the area of the minimal
hysteretic loop is positive Smin > 0. As a consequence, an amplitude value at each
cycle satisfies the inequality: A2

n(t) ≥ nSmin .
We also note that under the conditions of the theorem, the rate of growth of the

amplitude with probability 1 is proportional to the square root of time.

4 Conclusions

The paper presents a generalization of the classical hysteretic converter in the form
of nonideal relay to the case when its switching numbers are randomly distributed
according to a corresponding law. The properties of this converter are established,



258 M. E. Semenov et al.

as well as the dynamics of the simple mechanical system in the form of oscillator
under hysteretic force determined by a nonideal relay with random parameters is
considered.
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Critical Phenomena in a Dynamical
System Under Random Perturbations

Natalia Firstova and Elena Shchepakina

Abstract Theeffect ofGaussianwhite noise on a canard cycle in dynamicalmodel of
an electrochemical reaction is analyzed. A critical noise intensity, at which the small-
amplitude oscillations are transformed into mixed-mode oscillations, is obtained.

1 Introduction

It is well known that random perturbations can decisively affect the long-term behav-
ior of dynamical systems. It should be noted that all realistic systems are subject to
noise. For example, in a chemical system, the role of random perturbations can be
played by various impurities, thermal vibrations, and many other external factors.

In this paper, we analyze the influence of an external noise on a canard cycle
using an electrochemical reactor model as an example. The analysis is based on
the stochastic sensitivity functions technique [1, 2]. We investigate the stochastic
sensitivity of the equilibrium and the limit cycle of the model. We demonstrate
transitions induced by the noise and find out the critical value of the noise intensity
corresponding to the beginning of the transitions.
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2 Stochastic Model of Electrochemical Reactor

Consider a model of an electrochemical reaction of the Koper–Sluyters type [6] with
allowance for random perturbations. It is assumed that the system is affected by a
Gaussian white noise of low intensity. In this case, the model can be represented by
the following system:

du

dt
= −kae

γθ/2u(1 − θ) + kde
−γθ/2θ + 1 − u + εw1 = f (u, θ), (1)

β
dθ

dt
= kae

γθ/2u(1 − θ) − kde
−γθ/2θ − kee

α0ζEθ + εw2 = g(u, θ), (2)

where u is the dimensionless interfacial concentration of electrolyte, θ is the dimen-
sionless amount of electrolyte that is adsorbed on the electrode surface, E is the
electrode potential, β is the coverage ratio of the adsorbate, α0 is the symmetry
factor for the electron transfer, w1 and w2 are (in)dependent Wiener processes, ε
reflects the noise intensity, and the current density is given in dimensionless form by
J = keeα0ζEθ; ζ = F/(RT ), where R is the universal gas constant, F is Faraday’s
constant, and T is the temperature. The parameter γ is interpreted an interaction
parameter. Positive γ signifies attractive and negative γ signifies repulsive adsorbate
interactions.

A detailed analysis of the deterministic model was carried out in [4, 7] using the
theory of invariant manifolds. A critical regime corresponding to the canard cycle
(see, for example, [8, 9] and references therein) was discovered. It was shown that
the critical regime plays the role of a border between two main types of the reaction
modes: a nonperiodic slow regime and relaxation oscillations.

In this paper, we investigate the influence of an external noise on the canard
cycle [3, 5]. We start with the analysis of the stochastic sensitivity of the equilibrium
of the system.

3 Theoretical Sensitivity to Random Perturbations

The stochastic sensitivity function method [1, 2] is applied to analyze the sensitivity
of a stochastic equilibrium of a dynamical system to random perturbations. This
method is based on the calculation of a stochastic sensitivitymatrixW . The positively
definite symmetric matrix W characterizes the spread of random trajectories of the
system around the equilibrium position. The eigenvalues of W are the so-called
theoretical characteristics of noise sensitivity.

The matrix W is found from the solution of the matrix equation

FW + WFT + S = 0, (3)
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where

F =
(

∂ f
∂u

∂ f
∂θ

∂g
∂u

∂g
∂θ

)
(ū,θ̄)

, S =
(
1 0

0 1

)
, W =

(
w11 w12

w12 w22.

)
.

From (3), we can find the elements of the matrix W :

w11 = −1 − 2 fθw12

2 fu
, w22 = −1 − 2guw12

2gθ
, w12 = fu fθ + gugθ

2( f 2θ gθ + g2θ fu − fu fθgu − fugugθ)
,

and the eigenvalues:

λ1,2 =
w11 + w22 ±

√
(w11 + w22)2 − 4(w11w22 − w2

12)

2
. (4)

Here,

fu = ∂ f

∂u
(ū, θ̄), fθ = ∂ f

∂θ
(ū, θ̄), gu = ∂g

∂u
(ū, θ̄), gθ = ∂g

∂θ
(ū, θ̄).

Figure1a demonstrates the stochastic sensitivity of the equilibrium with respect
to parameter ke. Without loss of generality, the parameters’ values are chosen to be
ε = 0.2, γ = 8.99, ka = 10, kd = 100, α0 = 0.05, f = 38.7, E = 0.207564 unless
other values are specified in figure captions. Note that one of the eigenvalues (4)
is sufficiently small (see the red curve), so the degree of stochastic sensitivity is
determined by the highest eigenvalue. This figure shows that the equilibriumbecomes
more sensitive to random perturbations when the value of the control parameter ke
is higher.

(b)(a)

Fig. 1 a Theoretical sensitivity to the random perturbations and b the critical noise intensity value
as a function of the control parameter ke
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4 Noise-Induced Transitions

Qualitative changes are possible in the stochastic model under the noise influence:
when a certain critical value of the noise intensity εcr is reached, a transition from
one deterministic attractor (stable point) to another (limit cycle) occurs. Random
trajectories leave the pool of attraction of the deterministic attractor and wind up
the limit cycle. Such qualitative changes in the system are called noise-induced
transitions. Consider the change in the stochastic phase portrait depending on the
intensity of the noise.

For weak noise, the randomly forced system (1) and (2) exhibits the small-
amplitude stochastic oscillations near its equilibrium. Rare transitions occur through
the unstable cycle to the limit cycle and back with increasing noise intensity. In that
case, the oscillations of mixed type are observed, see Fig. 2.

However, as noise intensity increases, the large-amplitude stochastic oscillations
appear, see Fig. 3. Transitions become more frequent with further increase of noise
intensity. Thus, using the stochastic sensitivity function, we can predict the value of
the noise intensity εcr corresponding to the beginning of the transitions.

Fig. 2 Noise-induced transitions for ke = 0.85, ε = 0.0098

Fig. 3 Noise-induced transitions for ke = 0.85, ε = 0.02
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We demonstrate transitions induced by noise for the control parameter ke = 0.85
and find out that the critical value of the noise intensity approximately equals to
εcr ≈ 0.009495. After searching for the critical values of the noise intensity for the
value of the parameter ke from the stable zone, we obtain the dependence of the εcr
from the control parameter.

As it can be seen from Fig. 1b, the increase in control parameter value leads to
the decrease in the noise intensity value, at which the transitions between attractors
begin to appear.
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Burgers-Type Equations with Nonlinear
Amplification: Front Motion and
Blow-Up

Nikolay Nefedov

Abstract Recent results for some classes of initial boundary value problem for
some classes of Burgers-type equations, for which we investigate moving fronts by
using the developed comparison technique, are presented. There are also presented
our recent results on singularly perturbed reaction–advection–diffusion problems,
which are based on a further development of the asymptotic comparison principle.
An asymptotic approximation of solutions with a moving front is constructed in the
case ofmodular andquadratic nonlinearity andnonlinear amplification.The influence
exerted by nonlinear amplification on front propagation and collapse is determined.
The front localization and the collapse time are estimated.

1 Introduction

Recent results for some classes of initial boundary value problem for some classes
of Burgers-type equations, for which we investigate moving fronts by using the
developed comparison technique, are presented. There are also presented our recent
results on singularly perturbed reaction–advection–diffusion problems, which are
based on a further development of the asymptotic comparison principle (see [1–4,
6]). For these initial boundary value problems, the existence of moving fronts and
its asymptotic approximation were investigated. These results were illustrated by the
problem

ε
∂2u

∂x2
− A(u, x, t)

∂u

∂x
− ∂u

∂t
= f (u, x, t, ε), x ∈ (0, 1), 0 < t ≤ T, (1)

u(0, t, ε) = u0(t), u(1, t, ε) = u1(t), t ∈ [0, T ],
u(x, 0, ε) = uinit (x, ε), x ∈ [0, 1].
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An asymptotic approximation of solutions with a moving front for specific forms
of equation (1) in the case of modular and quadratic nonlinearity and nonlinear
amplification is constructed. Such problems are typical in numerous applications
of nonlinear wave theory; see [5] and references therein. Note that the applications
make use of a more natural formulation of problem (1) in which the coordinate and
time are swapped (“wave formulation”). Then, the equation describes quadratically
nonlinear or modular waves propagating in a nondispersive medium with cubically
nonlinear amplification. The influence exerted by nonlinear amplification on front
propagation and collapse is determined. The front localization and the collapse time
are estimated.

2 Initial Boundary Value Problems with Fronts: Motion
and Blow-Up

The author considers the following problems:

(i) the reaction–diffusion equation

ε2
∂2u

∂x2
− ∂u

∂t
= f (u, x, ε), x ∈ (0, 1), t > 0;

(ii) the reaction–advection–diffusion equation

ε
∂2u

∂x2
− A(u, x)

∂u

∂x
− ∂u

∂t
= f (u, x, ε), x ∈ (0, 1), t > 0;

(iii) the reaction–diffusion system

εq
∂2u

∂x2
− ∂v

∂t
= f (u, v, x, ε),

εp ∂2u

∂x2
− ∂u

∂t
= g(u, v, x, ε), x ∈ (0, 1), t > 0.

For these initial boundary value problems, it was proven the existence of fronts
and their asymptotic approximation was obtained. In particular, it was shown that
the principal term describing the location of the moving front is determined by the
initial value problem

dx0
dt

= V (x0), x0(0) = x00, (2)

where x00 is the initial location of the front, and V (x0) is a known function, defined by
the input data. It was proved that the Lyapunov stability of steady states of equation
(2) determine the Lyapunov stability of stationary solutions with the interior layer
of the IBVP. There are also proved that under some conditions the blow-up of the
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solution to problem (2) determines the blow-up of the interior layer solution of the
IBVP.

2.1 Reaction–Advection–Diffusion Equations

We illustrate our results by the problem

ε
∂2u

∂x2
− A(u, x)

∂u

∂x
− ∂u

∂t
= f (u, x, ε), x ∈ (0, 1), t > 0,

u(0, t, ε) = u0, u(1, t, ε) = u1, t ∈ [0, T ],
u(x, 0, ε) = uinit (x, ε), x ∈ [0, 1].

We consider a formulation similar to that for the Burgers’ equation. The initial
function represents a front formed with given outer branches. The task is to describe
the motion of the front over time.

Let also assume the following:

(H1) The equation A(u, x)du/dx + B(u, x) = 0, with the initial condition
u(0) = u0, has the solution u = ϕl(x), and with the initial condition u(1) =
u1 has the solution u = ϕr (x). Moreover, ϕl(x) < ϕr (x), x ∈ [0, 1], and
A(ϕl(x), x) > 0, A(ϕr (x), x) < 0, x ∈ [0, 1];

(H2) I (x) := ∫ ϕr (x)
ϕl (x) A(u, x)du > 0;

(H3) The initial value problem

dx0
dt

= I (x0)

ϕr (x0) − ϕl(x0)
≡ V (x0), x0(0) = x00,

where x00 is the initial location of the front, has the solution x0(t) : [0; T ] →
[0, 1] such that x0(t) ∈ (0, 1) for t ∈ [0, T ].

The main result for this problem is the theorem of existence and asymptotic approx-
imation of the moving front with the principal term of the front location x0(t).

2.2 Burgers-Type Equation with Blow-Up of the Solution

Now suppose that assumption (H1) is changed to the following one:

(H ′
1) the equation A(u, x)du/dx + B(u, x) = 0with the initial condition u(0) = u0

has the solution u = ϕl(x) with blow-up near some point xc:
ϕl(x) → −∞ for x → xc, and with the initial condition u(1) = u1 has the
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solution u = ϕr (x). Moreover,ϕl(x) < ϕr (x), x ∈ [0, xc), and A(ϕl(x), x) >
0, x ∈ [0, xc), A(ϕr (x), x) < 0, x ∈ [0, 1].

It was shown that the Burgers-type equation can exhibit the blow-up of the front-
type solution with a jump at the front tending to infinity. The solution has blow-up
near the point xc, which is the point of the blow-up for the solution of the problem
for ϕl for time t → Tc, where Tc = ∫ xc

x00
dx/V (x). In particular, we have shown that

the following Burgers-type equation with cubic amplification exhibits the blow-up
of the front-type solution:

ε
∂2u

∂x2
− ∂u

∂t
= −u

∂u

∂x
− u3, x ∈ (0, 1), t ∈ (0, 0.3],

u(0, t) = −2, u(1, t) = 1

3
,

u(x, 0) = 7

6
tanh

x − 1
4

ε
− 5

6
.

One can easily check that all conditions for this case are satisfied. The equation of
front motion of fronts from H3 has the following form:

dx0
dt

= −ϕr (x0) + ϕl(x0)

2
, x0(0) = x00, x00 ∈ (0, 1),

whereϕl = 1/(x + 1/u0) andϕr = 1/(x − 1 + 1/u1). Therefore, the blow-up point
is xc = 1/u0 and for this case xc = 1/2.

We present some examples of calculations; see Fig. 1.

2.3 Case of Modular Nonlinearity and Cubic Amplification

As it was noted in Sect. 1, nonlinear waves can be described by the Burgers equation
with the coordinate and time formally swapped. The typical situation for the nonlinear
waves is the situation where both ϕl and ϕr blow-up. This is illustrated by the
following problem:

ε
∂2u

∂t2
− ∂u

∂x
= −∂|u|

∂t
− u3, x ∈ (0, d), t ∈ [t0, t1],

u(x, t0, ε) = u0 < 0, u(x, t1, ε) = u1 > 0, x ∈ [0, d],
u(0, t, ε) = uinit (t, ε), t ∈ [t0, t1].

(3)

The functionsϕl andϕr have the formϕl = −(−1/(2t + c0))1/2 andϕr = (1/(2t +
c1))1/2, where c0 = −1/(u0)2 and c1 = 1/(u1)2. Blow-up points for ϕl and ϕr are
tcl = −c0/2 > 0 and tcr = −c1/2 < 0, respectively. The equation of front motion is
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Fig. 1 Some typical example of the direct problem’s solution u(x, t) (some refining of the mesh
in a neighborhood of the transition point and the bounds has been performed)

dt0
dx

= −ϕr (t0) + ϕl(t0)

ϕr (t0) − ϕl(t0)
= V (t0), t0(0) = t00, t00 ∈ (tcr , tcl). (4)

Thus, the problem (3) has a solution with a sharp front and its observation time
depends on the coordinate and is determined by the problem (4).
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On Uncertainty Quantification
for Models Involving Hysteresis
Operators

Olaf Klein

Abstract Parameters within hysteresis operators modeling real-world objects have
to be identified frommeasurements and are therefore subject to error inmeasurement.
To investigate the influence of these errors, themethods ofUncertaintyQuantification
(UQ) are applied.

1 Uncertainties in Models with Hysteresis Operators
and Uncertainty Quantification

Considering, e.g., magnetization, piezo-electric effects, elastoplastic behavior, or
magnetostrictive materials, one has to take into account hysteresis effects. Many
models involve therefore hysteresis operators. The parameters in the models are
identified using results from measurements, sometimes performed only for some
sample specimens but also used also for other specimens.

The parameters in the hysteresis operators are therefore also subject to uncer-
tainties. We apply the methods of Uncertainty Quantification (UQ), see, e.g., [6, 7],
to deal with these uncertainties, i.e., we describe them by introducing appropriate
random variables modeling the corresponding information/assumptions/beliefs and
use probability theory to describe and determine the influence of the uncertainties.

In this paper, we present results of Forward UQ, i.e., we consider the model
output as random variable and compute properties like expected value, variation,
and probabilities for outputs entering some interval, credible intervals, and other
Quantities of Interest (QoI).Moreover, wewill also present a brief example of Inverse
UQ, i.e., of using (further) data and measurements, to determine (reduce/adapt) the
uncertainty of the parameter, i.e., to determine a (new) random variable taking into
account the (new) information, and use the (new) random variable to represent the
parameter afterward.
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2 The Play Operator

2.1 The Play Operator with Deterministic Data

Considering some yield limit r ≥ 0 and some initial state z0, the play operator
Pr [z0, ·] maps u ∈ C[0, T ] being piecewise monotone to Pr [z0, u] ∈ C[0, T ] being
piecewise monotone and it holds, see, e.g., [1, 4, 5, 8],

Pr [z0, u](0) = max (u(0) − r,min (u(0) + r, z0))

Pr [z0, u](t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max (Pr [z0, u](t0), u(t) − r)) , if u is

increasing on [t0, t],
min (Pr [z0, u](t0), u(t) + r)) , if u is

decreasing on [t0, t],

for all t0, t ∈ [0, T ] with t0 < t such that u is monotone on [t0, t].
Now, we want to consider a situation, wherein the true value of the yield limit is

not known, but we think that its values are near to 2. Hence, interpret the yield limit

r ≥ 0 as value of the random variable R generated from N (2,
√
0.5

2
) by ignoring

(−∞, 0] and rescaling, leading to the following probability density function ρR of
R:

ρR(r) =
{

1
C e

− (r−2)2

2·0.5 if r ≥ 0,

0 if r < 0,
with C =

∫ ∞

0
e− (r−2)2

2·0.5 dr . (1)

The mapping [0,∞) � r �→ Pr [w, u](t) is continuous, see, e.g., [5, Prop. 2.5].
Hence, it follows that the composition of this mapping with R generates a random
variable, denoted by PR[w, u](t).

Fig. 1 Density function and
position and weight for Dirac
measure generating the
measure representing the
random variable PR[0, u](t5)
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We consider a piecewise monotone input function u such that the value of the
function increases from 0 to 4, decreases afterward to 0, increases afterward to
3.5, and decreases then to 0.5 until t5 > 0. The probability measure for the random
variable PR[0, u](t5) is the sum of a measure with density function shown in Fig. 1
and a Dirac measure at 0 weighted by

∫ ∞
4 ρR(r) dr ≈ 0.0000316722.

3 Identification

3.1 Considered Situation

In [3], a magnetostrictive Terfenol actuator is investigated and the hysteresis between
the current generating themagnetic field and the resulting displacement is considered,
and the data of the First-Order-Reversal-Curves (FORC) are used to determine a
Preisach operator and a generalized Prandtl–Ishlinskiı̆ operator.

A further generalized Prandtl–Ishlinskiı̆ operator has been considered in [2,
Sects. 3, 5] and is defined bymapping H ∈ C[0, T ] to Gc1,c2,c3 [H ] ∈ C[0, T ] defined
by

Gc1,c2,c3 [H ](t) =
∫ ∞

0
c1e

−r/c2Pr [λ0(r), tanh(c3u)](t) dr , (2)

with c1, c2, c3 being positive parameters and λ0 : [0,∞) → R being an appropriate
function.

In a joinedworkwithDanieleDavino andCiroVisoneof theUniversità del Sannio,
Benevento, Italy, the data measured to prepare the FORC diagram in [3] are used
to generate functions approximated by the initial loading curves. These functions
should be approximated by the initial loading curve corresponding to Gc1,c2,c3 [H ](t)
for appropriate values. Moreover, information about the uncertainty for c1 and c2
should be determined.

3.2 Identification of c3

To determine c3, we consider the generated approximations of the initial loading
curve. They are obtained after applying the transformation x �→ tanh(c3x) to the
input parameter and the value for c3 is determined by requesting that the sum over
the squared L2 difference between these generated approximations is minimized.We
ends up with the optimal value c3 = ctanh = 1.2465.
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Fig. 2 All sample pairs(
c1,1, c2,1

)
, . . . ,

(
c1,58, c2,58

)

3.3 Identification of c1,i, c2,i

For each approximation of the initial loading cure derived from the measurements,
we determine (c1,i , c2,i ) ∈ (0,∞) × (0,∞) by minimizing L2 difference between
the approximations for the initial loading and the loading curve corresponding to the
Prandtl–Ishlinskiı̆ operator in Gc1,c2,c3 [H ](t).

If an appropriate subset of the computed parameter pairs is considered, computing
themean and the standard deviation of the corresponding values for c1,i and c2,i leads
to mean(c1,i ) = 12.7, mean(c2,i ) = 0.13, std(c1,i ) = 2.6, and std(c2,i ) = 0.04.

One could now assume that the value of ci is represented by a random variable
Ci that is a normal distributed random variables with the corresponding mean and
standard deviation, maybe restricted to (δ,∞) with some small δ > 0.

If all computed parameter pairs are considered, computing the mean and the stan-
dard deviation for all values for c1 and c2, we get mean(c1,i ) = 10.9, mean(c2,i ) =
2.13, std(c1,i ) = 2.7, and std(c2,i ) = 5.95. In view of these values, it is obvious
that one cannot use them to derive a satisfying assumption for the random variables
representing the positive parameter c1 and c2.

Considering all computed parameter pairs, see Fig. 2, and taking into account that
the correlation between

(
c1,i

)

i and
(
c2,i

)

i is −0.418327, it is obvious that we cannot
get these pairs as samples if we assume that the parameter can be represented by two
independent normal distributed random variables.

4 Further Research

We need to look for other random variables C∗
1 and C∗

2 such that
(
(c1,i , c2,i )

)

i can
be considered as appropriate samples of the random variable (C∗

1 ,C
∗
2 ).

To perform this inverse UQwill be subject of further research, in addition to some
issues concerning the modeling.
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Unusual Elastic–Plastic Properties
of Fullerene Films: Dynamical Hysteretic
Model

Peter A. Meleshenko, Andrey M. Semenov, Andrey I. Barsukov,
Leonid V. Stenyukhin and Valentina P. Kuznetsova

Abstract In this paper, a model of an unusual elastic–plastic hysteresis is con-
structed and discussed following the recent progress in investigation of the fullerene
films. The constructive model is based on the operator technique of hysteretic non-
linearities. To describe the input–output relations, we use the Ishlinkii’s operator
technique together with the probability model based on the Kolmogorov–Chapman
equation.

1 Introduction

The hysteretic effects take place in various areas of material science (at both macro-
and microlevels). Depending on purposes of investigation, both the phenomenolog-
ical and constructive (based on the first principles) models can be used and there are
many literature sources on this subject (see, e.g., [4, 5] and related references). As
a rule, in the constructive models that are described by the relations “input-state”
and “state-output” [8, 9], the dynamical properties of the hysteresis carrier were not
taken into account.

As it is known, themechanical properties almost all materials (namely, the elastic–
plastic hysteresis, or hysteretic properties of the material) remain unchanged (the
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hysteretic dependence of elastic–plastic materials does not depend on the speed of
mechanical affection). However, the results of recent experiments with the fullerene
nanofilms [6] show that the shape of hysteretic curve in the coordinates “force–
displacement” depends on the speed of force application.

In this work, we propose a dynamical probability model of hysteresis for descrip-
tion of elastic–plastic properties of nanoscale fullerene film taking into account the
electromagnetic nature of the fullerene clusters binding. This model is based on
the fact that the decay law for fullerene supercluster [C60]n (especially for n = 2)
depends on external conditions (temperature, pressure, etc.) as well as is of proba-
bilistic nature. A description of the decay law at the macroscopic level can be made
using the well-known theory of random processes (a basic object in this field is the
Kolmogorov–Chapman equation).

2 Hysteresis in Nanoscale Films

In recent years, the self-regenerating materials and covers are intensively investi-
gated [2, 3, 6, 11]. Such covers regenerate when on its surface a little injury takes
place. Usually, such covers contain the capsules with the “regenerating agent.”When
the damage takes place, the capsules break and, as a result, there are chemical reac-
tions that lead to vanishing of the injury. In this work, we consider the covers that
have self-regenerating properties, but this effect is provided by the hysteretic proper-
ties of the cover’s material. This cover is coated by two beams of buckyball, namely,
the molecular (the PVD technology) and ion (the magnetron technology). The basic
“object” in the regeneration effect is the unusual elastic–plastic hysteresis which is
caused by the depolymerization of fullerene. As it was shown in [6], on the surface
of nanofilm there are some “liftings” at small mechanical affection by the probe
with the diameter less than 200nm. It is also shown that the relief changing does not
connect with the adhesion of the film to the probe.

As it is known, the elastic–plastic hysteresis manifests in macro-level in such
a way that the hysteresis loop gets over clockwise. Herewith, as a rule, a form
and other characteristics of the loop do not depend on the speed of mechanical
affections. However, for the material under consideration, such a dependence takes
place (namely, the formof the hysteretic loop depends on the speed of force affection).

3 Dynamical Hysteretic Model

Here, we present a model of the observable effect. The dependence of the loop’s
form on time means that the presented model should be nonstationary.

It iswell known that the physical properties of nanofilms depend on the structure of
thematerials.Main processes in such nanocovers occur due to the polymerization and
depolymerization processes. These processes can be initialized by the temperature,
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light, or mechanical affections. It should be also pointed out that the polymerization
together with the depolymerization occurs according to the probability laws. The
main assumption of this model consists in the fact that the depolymerization process
is turning on when the cover is under temporal excess pressure.

The state of the cover can be described by the pair of parameters (ω1(t),ω2(t))
that are the fraction of the domains under polymerization and depolymerization,
respectively. The dynamics of these parameters can be described by theKolmogorov–
Chapman equation (here the dot displays the time derivative):

{
ω̇1 = −λ1ω1 + λ2ω2,

ω1 + ω2 = 1,
(1)

with the initial conditions ω1(0) = ω01, ω2(0) = ω02. Linear volumes, x1 and x2, are
connected to these states, respectively. At the same time, the dependence of these
linear volumes on the external force u, we can define as

x1 = x1(u), x2 = x2(u), (2)

using the Ishlinskii’s operator whichwill be described below. Finally, the dependence
of a displacement on the external force can be determined by the following relation:

l = ω1x1 + ω2x2. (3)

Equations (1)–(3) are the base of the proposed model.
At the same time, the intensities of transitions λ1 and λ2 should also depend

on the external force and are driven by the relations λ1 = λ1(u) and λ2 = λ2(u).
Identification of these dependencies from the known experimental data is a compli-
cated problem. Namely, there are certain facts which indicate that these functions
are monotonically increasing. In this work, we suppose that these functions can be
chosen in the form

λ1(u) = λ01 + c1u, λ2(u) = λ02 + c2u (4)

with the positive parameters.

3.1 Some Remarks on Ishlinskii’s Operator

Here, we present some details on the Ishlinskii’s operator technique (details of appli-
cation of this technique can be found, e.g., in [1, 7, 10] and related references). First,
let us introduce the necessary definitions.
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The stop is an operator W [t0, x0, E, h] which connects every continuous input
u(t) (t � 0) with output x(t) by the following rule (for the monotonic inputs):

x(t) =
{
min {h, E[u(t) − u(t0)] + x(t)}, if u(t) increase,
max {−h, E[u(t) − u(t0)] + x(t)}, if u(t) decrease.

Here, E is the elastic modulus of the material (we understand u(t) and x(t) as stress
and deformation, respectively).

For the piecewise monotonic inputs, the output can be determined using the semi-
group identity

W [t0, x0, E, h]u(t) = W [t1,W [t0, x0, E, h]u(t1), E, h]u(t),

and then, using the special limit construction, such an operator can be redefined for
all continuous inputs. A detailed description of this operator as well as its properties
is presented in the book Krasnosel’skii and Pokrovskii [5].

Let U (h) = W [t0, x0, 1, h] be a single-parameter kind of stop with the elastic
modulus equal to 1 and the yield stress ±h. Let us define the nondecreasing contin-
uous function � = �(h) (h � 0) which satisfies the following condition:

∫ ∞

0
|�(h)|dh < ∞. (5)

In the following consideration, we will use the condition (5) in the form

∫ ∞

0
hd�(h) < ∞. (6)

Let us denote as Z the set of continuous functions z(h) (h � 0) that satisfy the
inequality |z(h)| � h (0 � h < ∞). Then, the pairs {u0; z(h)} form the set which
determines the state space of the operatorU . The dynamics of input–output relations
is determined as

x(t) = W [t0, z0(h), 1,�(h)]u(t) =
∫ ∞

0
U [t0, z0(h), h]u(t)d�(h), (t � t0). (7)

Here, the integral is understood in the sense of Riemann–Stieltjes. However, it should
benoted that this relation is uncomfortable for calculations of the output of Ishlinskii’s
operator.

As it follows from the definition, the operator U (h) describes the ideal plastic
fiber with the elastic modulus E = ξ and the plastic limits ±ξh. Let us consider also
the so-called charge function

χ+(u, ξ, h) =
⎧⎨
⎩

−ξh, at u � −h,

ξu, at − h < u(t) < h,

ξh, at u(t) � h.
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The analog of this function for the Ishlinskii’s operator is the function

χ+(u,�) =
∫ u

0
|�(|h|)|dh, (−∞ < u < ∞), (8)

and the discharge function

χ−(u,�) = 2χ+(
u

2
,�), (−∞ < u < ∞).

In thisway, the Ishlinskii’s operator is themodel of plastic bodywhich is composed
of the continual number of ideal plastic fibers. As it follows from the definition, for a
monotonic input and uncharged state the alternating stress can be expressed in terms
of the charge function, namely x(t) = χ+ (u(t) − u(t0),�).

On the piecewisemonotonic inputs, the Ishlinskii’s operator can be determined (in
analogous manner) using the semigroup identity. Unfortunately, relation (8) allows
to determine the output using the charge function only at zero initial state. However,
in the considered case, this condition is not restrictive because at the initial moment
the state of a nanomaterial is naturally supposed to be uncharged.

Finally, themodelwhich describes the dynamics of the systemunder consideration
is based on Eqs. (1)–(3) together with the relations

x1(t) = W [t0, z01(h), 1,�1(h)]u(t), (9)

x2(t) = W [t0, z02(h), 1,�2(h)]u(t), (10)

where u(t) is an external force applied to the fullerene film; z01(h) and z02(h) cor-
respond to initial uncharged states of polymerized and depolymerized fractions,
respectively.

In the experiments described in [6], the external charge is determined as a piece-
wise linear function, namely,

u(t) =
{

at, t ∈ [
0, T

2

]
,

−a(t − T ), t ∈ (
T
2 , T

]
.

4 Conclusions

The results of numerical simulations show that the qualitative behavior of the hys-
teretic curves (in the frame of the proposed model) significantly depends on a choice
of the parameters c1 and c2 which determine the intensity of transitions from depoly-
merized state and back. Optimization of the model by these (and other) parameters
allows to obtain the results that differ from the experimental results approximately
within 3%.
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Depinning of Traveling Waves
in Ergodic Media

Sergey Tikhomirov

Abstract We study speed of moving fronts in bistable spatially inhomogeneous
media at parameter regimes where the speed tends to zero. We provide a set of con-
ceptual assumptions under which we can prove power law asymptotics for the speed,
with exponent depending a local dimension of the ergodic measure near extremal
values. We also show that our conceptual assumptions are satisfied in a context of
weak inhomogeneity of the medium and almost balanced kinetics, and compare
asymptotics with numerical simulations. The presentation is based on a joint work
with Arnd Sheel.

1 Pinning in Traveling Wave Equations

Reaction–diffusion equations describe natural phenomenon in chemistry, biology,
physics, and economics and are intensively studied in the last decades. In the simplest
one-dimensional form, it can be written as follows:

ut = uxx + f (u), (1)

u → U±1, as x → ±∞,

where u : Rx × Rt → R, f : R → R, U±1 ∈ R, f (U±1) = 0. One of the most stud-
ied cases is when f is a derivative of a double-well potential f (u) = F ′(u) with
two wells in values u = U±1. In that case, term uxx in Eq. (1) pushes function u to
become constant in space,whereas term f (u) pushes u(x, t) → U±1. Usually, a solu-
tion u(x, t) converges, as t → ∞, to a traveling wave solution u(x, t) = v(x − ct).
In that case, a lot of information can be picked up from a single parameter c, which
describes the speed of the traveling wave. The special case when c = 0 corresponds
to a stationary front and appears in a case of a symmetric potential F .
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The situation changes in a discrete environment. Let us consider a spatial dis-
cretization of a reaction–diffusion equation with a traveling wave solution, for
instance, the discrete Nagumo/Schlogel equation

u̇n = 1

h2
(un+1 − 2un + un−1) + f (un), (2)

f (u) = (u − a)(u2 − 1),

where a ∈ (−1, 1), a �= 0, which corresponds to a nonsymmetric double-well poten-
tial. If the step of discretisation h is too large, there appears a stationary front. This
phenomenon is called pinning. In this research, we are interested in a bifurcation of
a stationary front to a traveling wave with a change of the step of discretization h.
For a review of the topic, see [6].

The pinning phenomenon is quite universal and appears in various contexts, such
as periodic environments and forces [3], nonlocal interactions [1], etc. While plenty
of heuristics are known near the bifurcation point (see, for instance, [2, 4]), there are
only few rigorous results. In particular, the speed of a traveling wave after de-pinning
is not known.

One of the known rigorous results on depinning is proved for the case of spatially
periodic forces:

ut = uxx + (1 − u)u(1 + u) + δ(l(x) + F), (3)

where l is a 1-periodic function and F ∈ R is a parameter. In this case, there exists
Fc > 0 such that if F > Fc there exists a traveling wave, and for F ≤ Fc there exists
a stationary solution of (3). Dirr and Yip proved asymptotics for the speed of the
traveling wave for small δ and F − Fc ∼ δ, but still separated from 0; we refer for
exact condition to [3]. In that case

speed ∼ (F − Fc)
1/2. (4)

See [9] for an overview.

2 Depinning Transition in Ergodic Media

We provide an abstract framework to study speed of a traveling wave in continuous
inhomogeneous environment under depinning transition.

Consider an system in an abstract space

Ut = F(U, θ;μ), (5)
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whereU ∈ X , a Banach space corresponding to u(·, t),� ∈ M a variable describing
the environment, M is a smooth compact manifold, and μ is a depinning parameter.
We assume that the system satisfies the following conditions (see [8]):

(C1) There exists a smooth flow Sζ on M such that Eq. (5) have the symmetry
(Tζ U )t = F(Tζ U, Sζ (θ);μ), where Tζ : X → X corresponds to a translation
of U. Note that Sζ could be interpreted as translation of the environment.

(C2) There exists a family of smooth one-dimensional manifoldsNμ ⊂ X invariant
under translation Tζ and the flow restricted to it is generated by a C2-vector
field

ξ ′ = s(Sξ (θ);μ), (6)

where ξ is a coordinated on one-dimensional manifoldsNμ. Note that the form
of (6) follows from condition (C1). Typically, existence ofNμ can be obtained
by establishing normal hyperbolicity in (5).

(C3) The function s is nondegenerate in the following sense: there is a unique
θ∗ ∈ M such that s(θ; 0) > 0 for θ �= θ∗, s(θ∗; 0) = 0, ∂μs(θ∗; 0) > 0, and
D2

θ s(θ∗; 0) > 0. This condition is the most difficult to be verified.
(C4) The flow Sζ is ergodic with respect to an invariant measure ν onM with local

dimension κ at point θ∗. In case when ν is the Lesbeugue measure, κ coincides
with the dimension of M .

The term ergodic media refers to condition (C4).

Theorem 1 (Scheel–Tikhomirov, [8]) If conditions (C1)–(C4) are satisfied, then
for ν-almost θ ∈ M and small enough |μ| solution is pinned for μ < 0 (i.e., ξ(t)
is bounded), solution is depinned for μ > 0 (i.e., ξ(t) → ∞ as t → ∞), the speed
c(μ) = limt→∞ ξ(t)/t have the following asymptotics:

c(μ) ∼
⎧
⎨

⎩

μ1−κ/2, κ < 2,
(| log(μ)|−1, κ = 2,
1, κ > 2.

(7)

The proof is based on a skew product structure and notion of relative equilibria
[5, 7].

The easiest example of an ergodic media, satisfying assumptions of Theorem 1,
is a quasiperiodic media. Consider a modified Nagumo/Schlogel equation

ut = uxx + (u + μ)(1 − u2) + εα(x; θ)g(u) (8)

with a quasiperiodic inhomogeneity

α(y; θ) =
κ∑

j=1

α j cos(ω j y + 2πθ j )
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with rationally independent (ω j ) j=1,...,κ and α j �= 0. The function g(u) satisfies tech-
nical assumptions g(±1) = g′(±1) = 0, g ∈ C2; see [8].

3 Depinning Conjecture in Discrete Quasiperiodic Media

Note that results of a previous section do not provide a rigorous proof of depinning
speed asymptotic in discrete media. The author was not able to find an asymptotic
behavior c(h) of a traveling wave solution un(t) = v(n − ct) of (2) near the depin-
ning transition either.

Analogy between pinning in discrete media and continuous periodic media and
asymptotics (7) suggests to study depinning in nonhomogeneuous discrete media.
Consider nonhomogeneous discrete Nagumo–Schlogel equation

u̇n = d(un+1 − 2un + un−1) + (un − an)(1 − u2
n), (9)

un → ±1, as n → ±1,

where an = a + ε
∑k

j=1 bn cos(2πω j n + θ j ) is a quasiperiodic sequence, with ω j

rationally independent with 1, b j , θ j ∈ R and k is a number of additional frequencies.
Results of numerical simulations (se Fig. 1 and [8]) show that the behavior of speed
of wave propagation strongly depends on the value of k, where speed is defined as

speed = 1

2
lim

t→∞
1

t

+∞∑

n=−∞
un(t) − un(0).

While it is hard to make a good conjecture based only on numerical simulations,
Theorem 1 suggests the following.

Fig. 1 Speed of wave propagation as a function of a for k = 0, 1, 2
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Conjecture 2 There exists ac > 0 such that if a ∈ (0, ac) then Eq. (9) admits a sta-
tionarily solution. If a > ac, then there exists a moving solution with an average
speed behavior as a → ac

speed(a) ∼
⎧
⎨

⎩

(a − ac)
1/2, k = 0,

(| log(a − ac)|−1, k = 1,
1, k ≥ 2.

(10)
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Cancer Evolution: The Appearance
and Fixation of Cancer Cells

Stefano Pedarra and Andrei Korobeinikov

Abstract Cancer appears as a result of mutation of normal tissue cells. In this paper,
we consider the initial stage of the cancer appearance and development. In particular,
we study the conditions that are necessary for an initial fixation of the mutant cells
in a patient tissue and their further successful development. In order to do this, we
are using a reasonably simple mutation-selection model composed of two interacting
populations, namely, the normal cells and themutant cells. Conditions for persistence
of the mutant cells are found.

1 Introduction

Cancer is characterized by uncontrolled growth of abnormal cells that appear as a
result of a series of mutations of normal cells. To develop into cancer, themutant cells
should be able to successfully compete with the normal cells. It is highly surprising
that this issue attracted significant attention; see, e.g., [3, 4], and literature therein.

In this paper, we focus at an initial stage of cancer and explore the conditions
that are necessary for the initial fixation of the malignant mutant cells in a patient.
Accordingly, we consider the dynamics of a simple mutation-selection model that
comprises two interaction populations, namely, normal cells andmutant cancer cells.
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To address this issue, in this paper, we consider a version of the cancer evolution
model suggested in [1, 2], where we consider only two classes, namely, the normal
cells and the malignant cells.

2 Model

Let us consider a model described in [1]. The model postulates the existence of the
normal cells and n cancer cell genotypes in the system. Let us denote the population
size of the i-th genotype cell at time t by Ci (t) and the population size of the normal
cells at the same time by C0(t). The model is based upon the Lotka–Volterra model
of competing populations and postulates that (i) all cells reproduce and die, (ii)
there is a resource that limit populations growth, (iii) cells of different genotypes
have to compete for this limited resource, (iv) in the process of mitosis, with some
probability pi j , a cell of the i-th genotype can produce a mutant daughter cell of the
j-th genotype, which subsequently goes to the j-th population, and (v) as a result of
somatic mutation, with probability qi, j a cell of the i-th genotype can move to the
j-th genotype. This situation can be described by the following system of ordinary
differential equations:

Ċi =
n∑

j=0

(
p ji a jC j

(
1 − h j

K

n∑

k=0

b jkCk

))
− diCi

(
1 + gi

K

n∑

k=0

bikCk

)
+

n∑

j=0

q jiC j −
n∑

j=0

qi jCi .

(1)
Here, i = 0, 1, . . . , n, ai are the replication rates, di the death rates, K the carrying
capacity, bi j the competition factors, and hi and gi reflect the competition effects on
the birth and death, respectively.

Our goal is to study the initial appearance and fixation of the mutant cells. There-
fore, we consider only one type of mutant cells, or, what is the same, assume that
all mutant cells are the same, and consider interaction of these with the normal
tissue cells. Thus, we assume that n = 1 in model (1), and the model reduces to
a two-dimensional system. Moreover, for simplicity, we assume that h0 = h1 = 0.
Mathematically, this preserves the positive invariance of the first quadrant of the
phase space; biologically, this means that the lack of resources increases the death
rate, but does not inhibit the proliferation. For this case, denoting

x = b00C0/K , y = b11C1/K , τ = d0g0t,

A = p00a0 − d0, B = (a1 p10 + q10)b00/b11, C = (a0 p01 + q01)b11/b00, D = p11a1 − d1,

α = p00a0h0 + d0g0, β = d0g0b01/b11, γ = d1g1b10/b00, δ = p11a1h1 + d1g1,

the system (1) can be written as
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dx

dτ
= 1

α
(Ax + By − αx2 − βxy) , (2)

dy

dτ
= 1

α
(Cx + Dy − γxy − δy2) . (3)

Further, we analyze this system.

3 Equilibrium States of the Model

Equilibrium states of model (2) satisfy the following system of algebraic equations:

Ax + By − αx2 − βxy = 0 , Cx + Dy − γxy − δy2 = 0 . (4)

Accordingly, for this system, the equilibrium states correspond to the intersections
of two conic curves defined by equalities (4). Of course, since the variables x and y
represent sizes of populations, we are interested only in the intersections, which are
located in the first quadrant of the phase space.

Let us start with some trivial observations expressed by the following lemmas:

Lemma 1 The origin P0 = (0, 0) is always an equilibrium state of the system and is
the only equilibrium state located on the coordinate axes, when B and C are strictly
positive.

By this lemma, the system always has at least one nonnegative equilibrium state.

Lemma 2 The system (2) has from one to four equilibrium states.

Through some geometrical observation, it is possible to obtain the following
results about the nullclines (4):

Lemma 3 Each of the nullclines (4) is either a hyperbola or a degenerate hyperbola
(two intersecting straight lines).

Lemma 4 One of the two branches of each of the nullclines (4) has no points in the
first quadrant.

Consequently,

Lemma 5 The system (2) has either one or two nonnegative equilibrium states.

That is, the system either has no positive coexisting equilibrium states at all, or
have only one such equilibrium state.
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3.1 Stability of Equilibrium State P0

The local analysis of the system (2) near equilibrium state P0 immediately reveals
that the eigenvalues of the linearized system are real numbers. Consequently, P0
cannot be a focus. Moreover, no Hopf bifurcation is possible at the origin. There are
the following three possibilities:

(i) if AD − BC < 0, then the origin is a saddle point;
(ii) if AD − BC > 0 and (A + D) > 0, then the origin is a repulsive (unstable)

node;
(iii) if AD − BC > 0 and (A + D) < 0, then the origin is an attractive (stable)

node.

In terms of the physical parameters, (A + D) > 0 is equivalent to condition
a0 p00 + a1 p11 > d0 + d1. Please note that A + D < 0 is not impossible, as there
can be a situation where one of the di is very large, whereas the corresponding ai pii
is sufficiently small. This means that the corresponding genotype could appear, but
cannot sustain even without competition.

Biologically, this condition means that the sum of rates of birth to the same geno-
type cells is larger than the sumof death rates. Condition AD − BC < 0 is equivalent
to the inequality (a0 p01 + q01)(a1 p10 + q01) > (a0 p00 − d0)(a1 p11 − d1).

3.2 Existence and Properties of the Positive Fixed Point

Let us consider the existence and the location of the possible positive equilibrium
state P∗ = (x∗, y∗).

Lemma 6 If either Aβ − Bα ≥ 0, or Dγ − Cδ ≥ 0, then the positive equilibrium
state P∗ exists.

If Aβ − Bα < 0 and Dγ − Cδ < 0, then the existence of P∗ is uncertain. How-
ever, in either case, equilibrium state P∗ can appear only as the result of a transcritical
bifurcation that occurs at the origin. Therefore, P∗ is generatedwhen the twohyperbo-
las have a common tangent at the origin. This implies that the transcritical bifurcation
occurs when AD − BC = 0. An intriguing fact is that the equilibrium state P∗ can
exist as when AD − BC < 0 as when AD − BC > 0.

Linearizing the system around P∗, it is easy to see that this point can be either a
saddle point, or an attractive node, or an attractive focus. It is possible to state the
following result:

Lemma 7 No Hopf bifurcation is possible at P∗.

Therefore, recalling that no Hopf bifurcation is possible at (0, 0), one can deduce
the following.
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Corollary 8 The model (2) admits no Hopf bifurcation.

Moreover, a sufficient (but not necessary) condition for the stability of P∗ obtained
via linearization is that αδ − βγ > 0. Thus, there are two sufficient conditions for
the stability of P∗:

(i) αδ − βγ > 0, or
(ii) AD − BC < 0 and A + D < 0.

We already analyzed the second condition discussing the stability of equilib-
rium state P0. In terms of the physical parameters, the first condition is equivalent
to b00b11 − b01b10 > 0, that is, det B > 0. Biologically, it means that the system
achieves the stable equilibrium when the competition effects among cells with the
same genotype are stronger than the ones between the two different genotypes. It is
very unlikely to occur in the case of cancer.

3.3 Global Properties of the Model

Denoting P(x, y) = (
(A − αx)x + (B − βx)y

)
/α and Q(x, y) = (

(C − γy)x +
(D − δy)y

)
/α, we can rewrite model (2) as follows:

dx

dτ
= P(x, y),

dy

dτ
= Q(x, y) . (5)

Let us study the direction of the vector field (P, Q) at a point (x, y) in the first quad-
rant. It is easy to see that, if x > max {A/α, B/β}, then P(x, y) < 0; analogously,
if y > max {C/γ, D/δ}, then Q(x, y) < 0. Moreover, on the positive semi-axes, the
vector flow is directed inside of the first quadrant. Thismeans that the compact square

S = {[0,max (A/α, B/β)] × [0,max (C/γ, D/δ)]}

is a positive-invariant set and an attractive region of the system. Therefore, by the
Poincaré–Bendixson Theorem, it contains at least one stable limit cycle or at least
one stable fixed point. For this system, it is possible to exclude the existence of a
limit cycle. Moreover, by choosing ϕ(x, y) = α, one immediately obtains for the
system (2):

div(ϕP,ϕQ) = A + D − (2α + γ)x − (β + 2δ)y ,

which is always negative if A + D < 0. Therefore, since S is a simply connected
region, by the Bendixson–Dulac theorem, no limit cycle is possible within S when
A + D < 0. It implies that all orbits tend to a stable fixed point. Please recall that
for A + D < 0 the origin P0 is stable if and only if AD − BC > 0. Hence, for
AD − BC < 0, positive equilibrium state P∗ must exist and be stable. This means
that for the case when A + D < 0 the necessary and sufficient condition for the
existence of P∗ is AD − BC < 0.
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Cheap Control Problem in a Critical Case

Vladimir Sobolev

Abstract A specific class of cheap control problems is considered. Themicro-drone
quadrocopter model is used as an illustration.

1 Introduction

Consider the control system

εẋ = A(t)x + B̄(t)u, x ∈ Rn, u ∈ Rm x(0) = x0 (1)

with the cost functional

J = 1

2
xT (t f )Fx(t f ) + 1

2

∫ t f

0
(xT (t)Q(t)x(t) + μ2uT (t)R(t)u(t))dt, (2)

where A, F, Q are (n × n)-matrices, B̄ is (n × m)-matrix, R is (m × m)-matrix,
and μ is a small positive parameter. This problem was considered in [4], where it
was shown that the solution of this problem can be obtained by use of asymptotic
expansions in fractional powers of the small parameter ε = μ1/L , where L can be
found from

BT
j QBj = 0, BT

L−1QBL−1 > 0,

for j = 0, . . . , L − 2, with B0 = B̄ and Bj = ABj−1 − Ḃ j−1, j ≥ 1. In this case,
one has to consider the problem in a much larger dimension, namely, n + Lr instead
of n. The method of integral manifolds [3, 6] for the analysis of such problems was
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applied in [5]. In this paper, it is shown that for a natural class of problems one
can analyze such a problem without increasing the dimensionality and, moreover,
without solving differential equations.

2 Construction of Control Law

We consider the problem of constructing a control law for a second-order vector
differential equation

ẍ + G(t)ẋ + N (t)x = B(t)u

with the quadratic performance index

J = 1

2
xT (t f )F1x(t f ) + 1

2
ẋ T (t f )F2 ẋ(t f )+

1

2

∫ t f

0
(xT (t)Q1(t)x(t) + ẋ T (t)Q2(t)ẋ(t) + μ2uT (t)R(t)u(t))dt.

Introducing the small parameter μ = ε2 we can rewrite this problem in the form (1)
and (2), where the corresponding matrices are

A =
(

0 I
−N −G

)
, B̄ =

(
0
B

)
, R = (1) , Q =

(
Q1 0
0 Q2

)
,

F =
(
F1 0
0 F2

)
, S̄ =

(
0 0
0 S

)
, S = BR−1BT .

The optimal control is

u = −ε−4R−1(0 BT )P

(
x
ẋ

)
,

and the matrix

P =
(

εP1 ε2P2
ε2PT

2 ε3P3

)

satisfies the matrix differential Riccati equation

Ṗ + AT P + PA + Q − ε−4PSP = 0

with boundary condition

P(t f ) =
(

εF1 0
0 ε2F2

)
.



Cheap Control Problem in a Critical Case 297

The corresponding equations are

εṖ1 − ε2(P2N + NT PT
2 ) − P2SP

T
2 + Q1 = 0,

εṖ2 + P1 − εP2G − ε2NT P3 − P2SP3 = 0,

εṖ3 + P2 + PT
2 − ε(P3G + GT P3) + Q2 − P3SP3 = 0,

with boundary condition

εP1(t f ) = F1, P2(t f ) = 0, εP3(t f ) = F2.

The Riccati equation in the equivalent form

ε4(Ṗ + AT P + PA + Q) − PSP = 0

is singularly perturbed, since when the small parameter is equal to zero the ability
to specify an arbitrary initial or boundary conditions is lost. Such systems play
an important role as mathematical models of numerous nonlinear phenomena in
different fields (see, e.g., [3, 6]. Moreover, we have so-called critical case, since
the limiting equation PSP = 0 has multiple zero solution [3, 6]. Setting the small
parameter equal to zero, we obtain the equations

−P2SP
T
2 + Q1 = 0, P1 − P2SP3 = 0, P2 + PT

2 + Q2 − P3SP3 = 0.

Suppose that these equations have the solution P1 = M1(t), P2 = M2(t), P3 =
M3(t), such that all eigenvalues λ(ε) of the matrix

D =
(

0 I
−ε−2SMT

2 − N −ε−1SM3 − G

)

have the negative real parts −ν(t, ε)/ε, ν(t, 0) > ν0 > 0. Then we can neglect the
boundary conditions, and a solution of the corresponding system of matrix equations
takes the regular part of the solution of this system, which can be regarded as a
zero-dimensional integral manifold of slow motions. In the stationary case, the role
of this solution is played by a positive definite solution of the corresponding matrix
algebraic Riccati equation. In the nonautonomous case matrices, P1, P2, P3 can be
found as asymptotic expansions [3, 5, 6]

P1 = M1 + εP11 + ε2P12 + · · · , P2 = M2 + εP21 + ε2P22 + · · · , P3 = M3 + εP31 + ε2P32 + · · · .

Note that in the case of time-invariant problem coefficients of these expansions can
be found from corresponding algebraic matrix equations.
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3 Control of Micro-drone Quadcopter

Consider the optimal control problem in the case n = 3, m = 4 with the following
matrices [1, 2]:

G = N = 0, B =
⎛
⎝−α −α α α

β −β 0 0
0 0 β −β

⎞
⎠ ,

Q1 = diag(q1, q2, q3), Q2 = diag(0, q5, q6), R = I.

The easy algebra shows that in the case under consideration we obtain P2 =
diag(b1, b2, b3), where

b1 = √
q1/2α, b2 = √

q2/(β
√
2), b3 = √

q3/(β
√
2).

Thus, we obtain

M2 + MT
2 + Q2 = diag(2b1, q5 + 2b2, q6 + 2b3),

and P3 = M3 = diag(c1, c2, c3), where

c1 = √
2b1/2α, c2 = √

2b2 + q5/(β
√
2), c3 = √

2b3 + q6/(β
√
2).

These relationships give the expression for P1:

P1 = M1 = diag(a1, a2, a3),

where a1 = 4α2b1c1, a2 = 2β2b2c2, a3 = 2β2b3c3.
It should be noted that thematrixM is positively definite if and only if aici − b2i >

0, for i = 1, 2, 3.
It is easy to check that the matrix D has the following eigenvalues:

λ1,2 = −ε−14α2c1 ± ε−12iα
√
(b1,

λ3, 4 = −ε−14β2c2 ± ε−12iβ
√
(b2,

λ5, 6 = −ε−14β2c3 ± ε−12iβ
√
(b3.

The real parts of all eigenvalues are negative. This means that we can use the control
law in the form

u1 = −ε−2(−αb1x1 + βb2x2) − ε−1(−αc1 ẋ1 + βc2 ẋ2),

u2 = −ε−2(−αb1x1 − βb2x2) − ε−1(−αc1 ẋ1 − βc2 ẋ2),
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u3 = −ε−2(αb1x1 + βb3x2) − ε−1(−αc1 ẋ1 + βc3 ẋ2),

u4 = −ε−2(αb1x1 − βb3x2) − ε−1(αc1 ẋ1 − βc3 ẋ2).

A somewhat unexpectedly the controlled system is splitted into three independent
equations

ẍ1 + ε−14α2c1 ẋ1 + ε−24α2b1x1 = 0,

ẍ2 + ε−14α2c2 ẋ2 + ε−24α2b2x2 = 0,

ẍ3 + ε−14α2c3 ẋ3 + ε−24α2b3x3 = 0.

It is clear that the solutions of these equations decay sufficiently rapidly and it is
not necessary to give any numerical calculations.
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