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Chapter 16
Hemodynamic Aspects of Vessel Wall 
Imaging: 4D Flow

Pim van Ooij and Michael Markl

�Introduction

Cardiovascular MRI has undergone substantial developments over the last decades 
and offers capabilities for evaluating cardiac anatomy and function including the 
assessment of vascular anatomy and blood flow dynamic. Phase contrast (PC) MRI 
can be used to measure and quantify pulsatile blood flow in the human vascular 
system.

The basic principle has already been introduced by Carr and Purcell in 1954 who 
reported the observation of coherent motion on the MR signal [1] and by Hahn in 
1960 who proposed to use nuclear precession to measure the velocity of sea water 
by means of phase shifts produced by magnetic field gradients [2]. Two decades 
later, Grant and Back were among the first to investigate the possibility of measur-
ing flow velocity with MRI [3]. They called the technique “NMR rheotomography” 
and were visionary by remarking that “rheotomography may prove to be particu-
larly useful for the noninvasive diagnosis of cardiovascular defects.” Nearly 40 years 
later, many groups worldwide are using MRI flow measurements for the noninva-
sive diagnosis of cardiovascular defects. The first in vivo velocity map images and 
applications were reported in the early 1980s [4–7]. The initial measurement of a 
through-plane velocity profile in a two-dimensional (2D) slice of water flowing 
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through a glass U-tube has evolved, and 2D and time-resolved (ECG-gated “CINE” 
imaging) PC-MRI has become available on all modern MR systems and is an inte-
gral part of clinical protocols assessing blood flow in the heart and large vessels 
[8–10]. More recently, the combination of CINE PC-MRI with three-dimensional 
(3D) spatial encoding and three-directional velocity encoding (termed “4D flow 
MRI”) has made possible measurements of 3D blood flow dynamics in a 3D volume 
and over time (4D = 3D + time) [11–13].

This chapter will review the journey from simple 2D to 4D flow MRI for the 
advanced quantification and visualization of hemodynamic measures in vessel wall 
disease. We will describe the fundamental concepts of 4D flow MRI in terms of 
acquisition, data processing, as well as its applications to the assessment of altered 
blood flow dynamics in vascular diseases. A special emphasis is on the potential of 
4D flow MRI to quantify important characteristics of the vessel wall such as wall 
shear stress (WSS) or pulse wave velocity (PWV). The chapter will conclude with 
a discussion of the current role of 4D flow MRI and future directions.

�Background

�From 2D to 4D Flow Image Acquisition

Flow imaging with MRI is based on the phase contrast (PC) technique, which 
enables the acquisition of spatially registered information on blood flow veloci-
ties simultaneously with morphological data within a single MRI measurement. 
In current clinical routine, PC-MRI is typically accomplished using methods that 
resolve two spatial dimensions (2D) in individual slices and encode a single time-
resolved component of velocity directed perpendicularly to the 2D slice (through-
plane velocity encoding). This approach allows measurements of forward, 
regurgitant, and shunt flows in congenital and acquired heart disease. In MRI, 
magnetic field gradient coils can create linearly varying magnetic fields along all 
three spatial dimensions on top of the main (static) magnetic field B0. These mag-
netic field gradients cause spatially varying phase shifts of the source of the MRI 
signal (1H proton spins in the human body) depending on the location of the 
source along the gradient. Spins that move along the direction of the gradient, 
e.g., flowing blood, acquire a different phase shift than the spins in adjacent static 
tissue [14].

The phase shift of the static media can be nulled by applying a magnetic field 
gradient with opposite polarity, whereas a phase shift for the moving spins will 
accumulate. The combination of both gradients is called a bipolar gradient [4] (see 
Fig. 16.1).

Using appropriate bipolar velocity encoding gradients, flow-dependent phase 
changes can be measured by playing out two acquisitions with different velocity 
dependent signal phase but otherwise identical sequence parameters. Subtraction of 
the two resulting phase images (i.e., calculation of phase difference images) allows 
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for the removal of the unknown background phase and calculation of velocity 
images [9].

With a bipolar gradient applied to the main direction of the blood flow, single-
direction (e.g., through-plane) blood flow velocity is measured. Bipolar gradients 
can also be subsequently applied to two or three orthogonal axes to resolved blood 
flow velocities in two or three dimensions [15, 16].

To measure temporally resolved pulsatile blood flow velocities, a time-resolved 
(CINE) measurement can be performed [17, 18]. As illustrated in Fig. 16.2, PC-MRI 
data acquisition is split over multiple heartbeats, and data acquisition is gated to the 
cardiac cycle using the ECG signal (e.g., the R-wave) or a pulse oximeter reading. 
A series of time-resolved (CINE) images is collected representing the dynamics of 
the pulsatile blood flow during the cardiac cycle. Usually, one-directional (“through-
plane”) velocity encoding along the predominant blood flow direction is used to 
quantify blood flow in the heart, through cardiac valves, and in arteries and veins 
throughout the body. Typical 2D CINE PC-MRI images are illustrated in Fig. 16.2.

For over three decades, 2D CINE PC-MRI has been widely used for flow quan-
tification in the aorta [19], the carotid arteries [20] and the intracranial vessels [21]. 
For routinely used 2D CINE PC-MRI, a slice for a 2D measurement is manually 
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positioned perpendicular to a vessel, and blood flow velocity is encoded in one 
direction through the 2D slice. However, placement of the acquisition plane remains 
challenging and can lead to the underestimation of peak velocities if misplaced or 
not orthogonal to the flow of interest. This is a common occurrence in cases involv-
ing complex flow and where changes in flow direction occur throughout the cardiac 
cycle, such as with valvular stenosis, valvular regurgitation, complex congenital 
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Fig. 16.2  In 2D CINE PC-MRI, ECG triggering over multiple R-R intervals is used to acquire a 
series of time frames over the cardiac cycle. For each time frame, reference MRI raw data (k-space) 
lines (without bipolar gradient) and velocity encoded k-space lines (with bipolar gradient) are 
acquired. The number of k-space lines acquired for each time frame is determined by the seg-
mented k-space or turbo field echo factor. After completion, phase contrast magnitude anatomical 
images and phase difference containing the velocity information are reconstructed. The figure 
illustrates 2D PC-MRI acquisition at the site of the aortic valve peak systole (top) and diastole 
(bottom)
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heart disease, or aneurysms. These challenges can be addressed by three-dimensional 
(3D) PC-MRI with three-directional velocity encoding which can provide compre-
hensive information on the in vivo 3D blood flow dynamics with full volumetric 
coverage of the vascular region of interest. Wigström et al. were the first to imple-
ment a high spatial resolution and electrocardiogram (ECG)-gated 3D cine phase 
contrast pulse sequence, currently known as 4D flow MRI (4D = 3D+ time over the 
cardiac cycle, flow = three-directional velocity encoding) [22].

�4D Flow Acquisition Methods and Techniques

�Data Acquisition

In 4D flow MRI, velocity is encoded along all three spatial dimensions throughout 
the cardiac cycle, thus providing a time-resolved 3D velocity field [8, 23, 24]. As 
shown in Fig. 16.3a, three-directional velocity measurements can be achieved by 
interleaved four-point velocity encoding which acquires one reference image and 
three velocity-encoded images along three orthogonal (x, y, z) directions [25–27]. 
As for 2D CINE PC-MRI, data acquisition is synchronized with the cardiac cycle, 
and data collection is distributed over multiple cardiac cycles using “k-space seg-
mentation” techniques (only a fraction of the entire 4D flow data is measured during 
each cardiac cycle; the data is successively collected over multiple RR intervals). 
For prospective ECG gating, where the acquisition starts after receiving the R signal 
of the QRS complex, some dead time toward the next R-wave should be reserved to 
account for heartbeat variations. The late portion of diastole is therefore not mea-
sured [17]. With retrospective gating, continuous acquisition is not synchronized to 
the heartbeat. Each k-space line is time-stamped and retrospectively interpolated to 
fixed time frames in the cardiac cycle, thereby enabling acquisition of the diastolic 
phases. After completion of the 4D flow acquisition, four time-resolved (CINE) 3D 
data sets are generated (“magnitude” data depicting anatomy and three flow data 
sets representing velocities “Vx, Vy, and Vz”) as illustrated in Fig. 16.3b.

It should be noted that increasing 4D flow spatial resolution by reducing voxel 
size is possible but is accompanied by a decrease in signal-to-noise ratio (SNR) and 
thus image quality. Moreover, for volumetric acquisitions such as 4D flow MRI, 
scan times increase cubically with isotropic voxel size reduction.

An important (user-defined) 4D flow MRI parameter is the velocity encoding 
sensitivity (VENC), which represents the maximum flow velocity that can be 
acquired without velocity aliasing. When a velocity in a voxel exceeds VENC, 
velocity aliasing can occur which is typically visible as a sudden change from high 
to low velocity within a region of flow (see Fig. 16.4). If aliasing artifacts are pres-
ent, accurate flow visualization and quantification may be compromised unless anti-
aliasing correction can be successfully performed [28]. It is important to note, 
however, that velocity noise is directly related to the VENC [8]. Therefore, selecting 
a high VENC may alleviate the issue of velocity aliasing but will also increase the 
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Fig. 16.3  Acquisition of 4D flow MRI data and analysis of hemodynamic metrics in the thoracic 
aorta of a healthy subject. (a) ECG synchronized 4D Flow MRI data acquisition. For each time 
frame, four 3D raw data sets are collected to measure three-directional blood flow velocities (vx, 
vy, vz) with a reference scan and three velocity encoded acquisitions. k-space segmentation is used 
to collect a subset (NSeg) of all required raw data (k-space) lines for each time frame. The selection 
of NSeg determines the temporal resolution and total scan time. (b) 4D flow data comprises informa-
tion along all three spatial dimensions, three velocity directions, and time in the cardiac cycle. (c) 
A 3D phase contrast angiogram (3D PC-MRA) can be calculated from 4D flow MRI data to aid 
visualization and provide a basis for the 3D segmentation of the aorta (orange rendering of aorta). 
Systolic streamlines allow for visual assessment of flow patterns and placement of analysis planes 
for retrospective flow quantification. Calculation of a systolic velocity maximum intensity projec-
tions (MIP) provides an overview over systolic velocity distribution and allows for volumetric 
quantification of peak systolic velocity (location of peak velocity is indicated by black circle in the 
ascending aorta). Advanced vessel wall characteristics can be derived such as systolic 3D wall 
shear stress (WSS) vectors along the aorta. AAo ascending aorta, DAo descending aorta
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level of velocity noise in flow velocity images. VENC should thus be chosen as 
close to the peak velocity as possible. This is often accomplished by performing a 
fast low-resolution 2D PC-MRI “VENC scout” scan prior to 4D flow MRI to esti-
mate the highest velocity in the vessel of interest and adjust VENC accordingly.

In Fig. 16.4, the principle of VENC is shown for through-plane 2D phase differ-
ence images of the aorta with severe velocity aliasing when the VENC is selected 
too low (high bipolar gradient). Unaliased flow velocities are achieved when the 
VENC is tailored to the expected maximum velocity (lower bipolar gradient).

In Table 16.1 typical ranges of scan parameters are shown for heart/aorta, carotid, 
and intracranial 4D flow MRI applications.

�Data Acquisitions: Imaging Acceleration Techniques

Long scan times on the order of 10–20 minutes have previously relegated 4D flower 
MRI to the realm of research. However, current implementations are quickly 
approaching clinically feasible scan times, on the order of 2–8  minutes. 
Methodological improvements include echo planar imaging (EPI), where multiple 
Cartesian readouts are acquired after one excitation to obtain high spatial resolution 
[29]. Additional imaging acceptation is based on parole imaging such as sensitivity 
encoding (SENSE) [30, 31], generalized autocalibrating partially parallel acquisi-
tions (GRAPPA) [32], k-t acquisition speed-up techniques (k-t BLAST) [33, 34], 
k-t GRAPPA [35], k-t principal component analysis (k-t PCA) [36, 37], and 
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Fig. 16.4  (a) Bipolar gradients of higher strength and thus a low-VENC cause (b) aliasing (black 
arrow) in the phase difference images of the aorta, whereas aliasing is avoided when VENC is 
tailored to the expected maximum velocity in (c). (d) At a high VENC, the sensitivity to changes 
in aortic velocities is decreased. AAo ascending aorta, DAo descending aorta

Table 16.1  Typical (ranges of) scan parameters for three different anatomical regions

k-space segmentation 
(turbo field echo factor)

(Isotropic) spatial 
resolution (mm3)

Temporal 
resolution (ms)

VENC 
(cm/s)

Heart/aorta 1–3 2.0–3.0 20–60 150–400
Carotid 2–3 0.8–1.4 40–60 100–150
Intracranial 2–4 0.5–1.2 40–80 70–150
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CIRCUS [38]. Another promising technique to accelerate 4D flow MRI is com-
pressed sensing where data is acquired in a sparse and random manner followed by 
nonlinear recovery of data [39, 40]. For example, aortic 4D flow MRI is now pos-
sible with a scan time of less than 2  minutes without substantial degradation of 
image quality [41].

�Data Acquisitions: Non-Cartesian Sampling

An alternative technique that is increasingly used to accelerate 4D flow MRI is 
radial data sampling combined with undersampling (e.g., PC-VIPR – vastly under-
sampled isotropic projection reconstruction [42]). Radial sampling has two impor-
tant advantages over Cartesian readouts: (1) sparse sampling results in streak image 
instead of fold-over artifacts which allows for higher undersampling factors [42] 
and (2) the center of k-space is continuously sampled and results in insensitivity to 
subject motion [43]. As an alternative, spiral k-space sampling can cover the entire 
k-space uniformly and rapidly [44], allowing for rapid 4D flow MRI velocity mea-
surements [45–47]. However, both radial and spiral sampling are sensitive to eddy 
current effects which require efficient correction strategies, and image reconstruc-
tion is more computationally demanding. Alternatively, radial- and spiral-like tra-
jectories can be implemented on a Cartesian grid, called pseudo-radial and 
pseudo-spiral trajectories [48, 49]. For example, a recently reported combination of 
pseudo-Cartesian acquisition schemes coupled with compressed sensing for imag-
ing acceleration has shown great potential for fast and robust pediatric 4D flow 
MRI [50].

�Data Acquisitions: Respiratory Control (Gating, Self-Gating)

For cardiothoracic and abdominal applications, methods for respiration control are 
needed to prevent image deterioration due to respiratory motion. Early efforts in 
MRI have focused on gating of the respiratory signal using bellows [51] or naviga-
tor echoes in a longitudinal beam placed on the diaphragm [52]. Most methods are 
based on accepting data in the expiration phase when chest motion is minimal and 
rejecting data acquired in the inspiration phase when the chest is moving. Other 
strategies minimize respiration-related image degradation by respiratory ordered 
phase encoding (ROPE): measurements at inspiration are attributed to the center of 
k-space, whereas the measurements at expiration are attributed to the edges of 
k-space [53]. Such strategies have been successfully implemented for 4D flow MRI 
[54] in combination with navigator gating [55]. Other promising approaches employ 
self-gating techniques, e.g., cross-correlation with reference breathing motion to 
identify different respiratory phases [56] or extracting respiratory and cardiac 
motion signals from additional and repeatedly sampled central k-space data [57].
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�4D Flow Analysis Methods and Techniques

�Preprocessing and Phase Offset Error Corrections

4D flow MRI data are affected by systematic velocity encoding errors caused by 
magnetic field inhomogeneity, concomitant magnetic fields (Maxwell terms) [58], 
and eddy currents [59, 60]. Correction of these errors typically includes the identi-
fication of image regions that contain static tissue in order to estimate the spatial 
distribution of background phase offsets (using a first- or second-order fit to the 
static tissue phase difference data) [61]. Background phase errors can subsequently 
be removed by subtraction of the estimated offset from the entire velocity data [62].

It is common in 4D flow MRI that the VENC setting is lower than the maximum 
velocity in the measurement and that velocity aliasing occurs. With the assumption 
that adjacent pixel velocities in the temporal or slice direction should not differ more 
than VENC [28], aliased velocities can be automatically detected and corrected [63].

�Visualization and Quantification of 4D Flow MRI 
Hemodynamics

For effective visualization of the information encoded in the large 4D flow MRI data 
sets (see Fig. 16.3b), many methods have been developed and include velocity vec-
tor display in three-dimensional space [64, 65] streamlines [66, 67], and path lines/
particle traces [67].

Figure 16.3c illustrates 4D flow MRI-based evaluation of fundamental (flow, 
peak velocity) and advanced hemodynamic metrics (wall shear stress, WSS) based 
on a single acquisition. Visualization of the vascular geometry can be achieved from 
a 4D flow acquisition by generating a non-contrast 3D PC-MR angiogram (MRA). 
A surface rendering of the vascular structure of interest (see Fig. 16.3c, left) allows 
for regional orientation, analysis, and flow visualization. For qualitative visualiza-
tion of 4D flow MRI data, 3D streamlines or time-resolved 3D path lines can be 
used for flow pattern visualization. Streamlines represent the instantaneous blood 
flow vector field for a single cardiac time-frame. For example, Fig. 16.3c illustrates 
the use of systolic 3D streamlines to visualize the spatial distribution and orientation 
of blood flow velocities. Color-coding by velocity magnitude facilitates the visual 
identification of regions with high systolic flow velocities. For visualization of the 
temporal evolution of 3D blood flow, time-resolved path lines are the method of 
choice. Time-resolved path lines are best viewed and displayed dynamically (movie 
mode) to fully appreciate the dynamic information and changes in blood flow over 
the cardiac cycle. It is important to differentiate between streamlines and path lines 
since the former represents the instantaneous tangent to the velocity vector at a 
given time in the cardiac cycle (e.g., peak systole), while the latter resemble traces 
of the dynamically time-varying blood flow over the cardiac cycle. 4D flow MRI 
can also be used to derive volumetric and maximum intensity projections (MIPs) of 
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peak velocity for easy volumetric identification of peak flow velocities (see 
Fig. 16.3c).

For quantification of flow in a vessel, 2D analysis planes can be placed at any 
location along the vessel of interest (Fig. 16.3c) to calculate peak and mean veloci-
ties, total flow, net flow, or retrograde flow. Figure 16.5a illustrates aortic 4D flow 
MRI with subsequent 3D flow visualization (path lines) and flow quantification in 
six 2D analysis planes distributed along the thoracic aorta. Figure 16.5b depicts an 
example of comprehensive cerebrovascular 4D flow with 3D blood flow visualiza-
tion in the large intracranial arteries and quantification of flow-time curves at all 
major circle of Willis arteries.

�Advanced Hemodynamic Vessel Wall Metrics

In addition to 3D blood flow visualization and planar flow quantification, 4D 
flow MRI offers the opportunity to derive advanced hemodynamic measures 
such as vorticity [69, 70] and helicity [71, 72], wall shear stress (WSS) [73, 74], 
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Fig. 16.5  (a) 3D flow visualization (path lines and with flow quantification in perpendicular 2D 
analysis planes at standardized locations in the healthy aorta) [68]. (b) 3D segmentation and flow 
visualization in the circle of Willis of a healthy volunteer. Flow quantification based on perpen-
dicular 2D analysis planes allows for the systematic assessment of blood flow over the cardiac 
cycle in the entire circle of Willis
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pressure gradients [75, 76], viscous energy loss [77, 78], turbulent kinetic 
energy [79, 80], or pulse wave velocity (PWV) [81, 82]. This article will focus 
on the two parameters most relevant for vascular wall characterization: PWV 
and WSS.

�Pulse Wave Velocity

It is well understood that arterial vascular stiffening (i.e., reduction of vessel wall 
elasticity) can lead to atherosclerosis and the development of vessel wall abnor-
malities and atherosclerotic plaques. Pulse wave velocity (PWV), the best known 
surrogate measure for arterial stiffness, is the speed of the pulsatile pressure wave 
that propagates along arteries in a heartbeat [83–85]. PWV is determined by the 
elastic modulus of the vessel, the vessel wall thickness, the vessel radius, and the 
density of blood (Moens-Korteweg equation) [85]. Thus, increased PWV is 
directly associated increased elastic modulus (i.e., stiffening) and vessel wall 
thickness. Both processes occur in early atherosclerosis, and PWV is thus consid-
ered an important indicator for the onset of this disease. A meta-analysis revealed 
that increased PWV and thus reduced aortic compliance is a strong predictor of 
future cardiovascular events and all-cause mortality. Moreover, an increase in aor-
tic PWV by 1  m/s corresponded to an age-, sex-, and risk factor-adjusted risk 
increase of ca. 15% in total cardiovascular events [86]. Reliable measurement of 
PWV is thus of high interest, e.g., for monitoring vessel compliance during ther-
apy [87, 88].

Carotid-femoral PWV using tonometry is the current reference standard to mea-
sure aortic compliance [89]. This method, however, is prone to errors and does not 
focus on regional compliance. Time-resolved 2D CINE PC-MRI provides a nonin-
vasive estimate of PWV based on flow waveform measurements in analysis planes 
and allows focusing on the region of interest in patients, e.g., the thoracic aorta or 
carotid arteries [90–92]. Transit-time (TT) methods are typically employed to cal-
culate temporal differences of specific flow waveforms features, e.g., timing differ-
ences of the foot of the waveform between two locations with known distance, as 
first described in 1989 for the aortic arch [93]. The accuracy of PWV quantification 
can be improved by adding velocity encoding directions [81] or using multiple mea-
surement locations [94, 95].

PWV can be retrospectively quantified from 4D flow MRI data based on multiple 
pulsatile flow waveforms distributed homogenously along the entire course of the 
vessel. As shown in Fig. 16.6 for 4D flow-based PWV estimation in the thoracic 
aorta, flow-time curves are automatically extracted for each analysis plane, and a 
measure of blood travel time (e.g., time-to-foot) is derived. Aortic PWV (in m/s) is 
determined by a linear fit from data of the entire aorta [82, 96]. However, reliable 
PWV assessment requires measure of the rapid changes of which can only be 
achieved with sufficient temporal resolution.
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�Wall Shear Stress

The three-directional velocity fields can be used to calculate WSS (i.e., the blood 
shear rate on the endothelial cells that line the vessel wall multiplied by blood vis-
cosity), a known pathophysiological stimulus cited to alter gene expression and 
endothelial cell function [97]. Altered shear forces at the intimal surface can pro-
mote endothelial changes and create areas at risk for vascular remodeling, i.e., when 
high WSS is sensitized, growth factors and other molecules such as nitric oxide 
(NO) and matrix metalloproteinases (MMPs) are released to dilate the vessel to 
restore the normal WSS value [98]. Altered WSS has been associated with the 
development of vulnerable plaques in the carotid arteries [99], progressive aortic 
dilation [100, 101], or development of cerebrovascular aneurysms [102–104]. WSS 
can be estimated from 4D flow MRI data by multiplying the deformation tensor e  
that contains the velocity gradients in all directions at the wall, with the viscosity of 
blood. As schematically illustrated in Fig. 16.7 (top), initial studies have employed 
4D flow MRI to quantify regional time-resolved WSS based on 2D analysis planes 
[105]. The variation of WSS direction over the cardiac cycle can be used to calculate 
the oscillatory shear index (OSI) [106]. More recently, methods have been 

Fig. 16.6  Derivation of aortic pulse wave velocity from 4D flow MRI: (a) flow curves are auto-
matically extracted in multiple planes along the aortic centerline. An initial plane #0 is positioned 
at the proximal asking aorta. Subsequently, all other 2D analysis planes will be positioned down-
stream in fixed intervals. (b) For each analysis plane, flow-time curves are calculated and the time-
delay between adjacent planes is derived. (c) Aortic PWV (in m/s) is determined by a linear fit 
from data of the entire aorta. AAo: ascending aorta, DAo: descending aorta
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developed to compute volumetric 3D WSS along the 3D surface of the entire aorta, 
carotid or intracranial vasculature, or aneurysms (Fig. 16.7, bottom) [74, 107–109]. 
For the aorta, a method for the quantification of turbulent WSS variation was 
recently developed [110].

Although 3D WSS mapping allows for compact visualization of hemodynamic 
parameters (see Fig. 16.7, (2)), it does not detect where “abnormal” values are pres-
ent. In addition, aortic WSS undergoes significant changes during healthy aging 
which underlines the importance of age-matched control cohorts in clinical studies to 
identify patients with altered WSS [111]. To address this limitation, a “WSS heatmap 
concept” was recently developed which offers the opportunity to quantify the extent 
of altered WSS [112]. The method is based on aortic 4D flow MRI data of a healthy 
control population to create an aortic “WSS atlas.” As shown in Fig. 16.8, the aortic 

Fig. 16.7  (1) 3D segmental WSS in 2D planes. (a) Planes are placed perpendicularly to the aorta 
measured with 4D flow MRI, (b) contours are manually drawn to delineate the vessel wall and to 
define the segments for WSS calculation, (c) B-spline fits through the vx and vy velocities are cre-
ated to derive the gradients at the wall that after multiplication with blood viscosity, (d) yield the 
WSS vectors in the plane. When repeated for all time frames, OSI can be calculated. (2) 3D WSS 
on the entire aorta surface. (e) At each point along the vessel wall, the z-axis is aligned with the 
inward normal vector, and with the assumption that there is no velocity through the wall, the defor-
mation tensor is reduced from nine components to two (f). Spline fits along the x and y velocities 
along the normal vector yield the vx and vy derivatives. After multiplication with viscosity and 
rotation back to the original axes system, the local WSS vector is obtained
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atlas establishes regional confidence intervals for normal physiologic WSS through-
out the aorta. Patient-specific WSS is then co-registered to the healthy control atlas to 
calculate heatmaps which represent regions of abnormally low or high WSS (i.e., 
outside of the 95% confidence interval provided by the control WSS atlas).

It should be noted that the discrete nature of the 4D flow MRI measured velocity 
field will result in a systematic underestimation of WSS. This is a common limita-
tion of the technique. While absolute accuracy when assessing WSS in vivo is chal-
lenging, the relative pattern of expression (and magnitude) can reliably be inferred, 
especially if scan parameters and the procedure for WSS estimation are consistent 
between study populations [113, 114].

�4D Flow MRI in Vessel Wall Disease: From Head to Toe

�Head

In clinical practice, transcranial Doppler ultrasound is routinely used for cerebro-
vascular flow measurements. However, the technique is operator-dependent and 
limited by the acoustic windows of the head. 2D PC-MRI can provide reliable flow 

Fig. 16.8  Patient-specific WSS heatmaps. (a) A 3D cohort-averaged WSS map of a control cohort 
(“WSS atlas”) is used as reference to provide mean, median, and normal confidence intervals 
(CI = ± 2 standard deviations, SD) of the normal physiologic aortic WSS distribution. (b) After 
delineating the regions of abnormal WSS for an individual patient, defined as values outside the CI, 
heatmaps of abnormally elevated or decreased WSS are created
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measurements in large intracranial arteries and veins, not limited by location. 
However, challenges for using 2D PC-MRI for flow measurement include small and 
tortuous vessels [115], complex vascular anatomy, and need for the manual place-
ment of 2D imaging planes in multiple vessel segments. As an alternative, 4D flow 
MRI is increasingly used to assess cerebrovascular 3D blood flow [116, 117]. 
Emerging applications include the hemodynamic evaluation of intracranial aneu-
rysms, arteriovenous malformations (AVM), and intracranial atherosclerotic dis-
ease (ICAD). Several groups have reported the successful measurement and 
evaluation of flow and WSS in intracranial aneurysms in patient feasibility studies 
[107, 118–121], indicating the potential of flow MRI to assist in the classification of 
individual aneurysms pre-intervention.

�Arteriovenous Malformations (AVMs)

In patients with cerebral AVMs, flow information is potentially valuable for a better 
understanding of the impact of a focal AVM on the flow redistribution in the brain 
and/or in treatment planning by attempting to identify the feeding arteries with 
highest flow (see Fig. 16.9), enabling efficient and targeted embolization treatment. 
Recent reports include the quantification of flow and WSS in patients using a highly 
optimized radial 4D flow technique [108, 122]. Additional studies demonstrated the 
potential of 4D flow MRI for the evaluation of global and regional AVM flow 

Fig. 16.9  Intracranial 4D flow MRI (left) and time-of-flight (TOF) 3D angiogram (right) in a 
62-year-old male patient with a large cerebral AVM (Spetzler-Martin grade = 3). The dense AVM 
vascular network and high flow velocity in a main AVM feeding artery (arrow) can clearly be 
appreciated
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characteristics [123, 124]. The findings showed that 4D flow MRI can assess 
treatment-induced changes in cerebrovascular flow distribution and was able to 
demonstrate significant associations between 4D flow metrics, cerebral perfusion 
indices, and AVM risk factors such as the Spetzler-Martin grade [124].

�Intracranial Atherosclerotic Disease (ICAD)

Intracranial atherosclerotic plaques can alter local and global hemodynamics (par-
ticularly proximal or distal to stenosed vessels). Currently, intracranial hemody-
namic disturbance in patients with ICAD is primarily assessed using transcranial 
Doppler ultrasound. Few studies have been performed to characterize the 3D blood 
flow disturbance and flow redistribution across the major cerebral arteries in patients 
with ICAD. An early study by Hope et al. reported that TOF MRA overestimated 
the degree of stenosis and that 4D flow MRI velocity measurements could improve 
accuracy of diagnosis, when compared to catheter angiography [119]. It should be 
noted that current flow imaging techniques (2D and 4D) are limited by insufficient 
spatial resolution for the characterization of blood flow at sites of critical or severe 
stenosis. Instead, post-stenotic flow is typically used to represent the regional flow 
in the stenotic artery. Higher magnetic field (7 Tesla) with increased spatial resolu-
tion may be required for improved flow assessment in the smaller vessels [125].

�Intracranial Aneurysm

A large number of studies investigating flow patterns in intracranial aneurysms were 
based on computational fluid dynamics (CFD) techniques in conjunction with subject-
specific geometries extracted from medical images [126–129]. Findings from these 
studies revealed a wide variety of complex intra-aneurysmal flow patterns that were 
strongly dependent on patient-specific vascular geometry. In addition, a number of 
studies showed that changes in WSS along the wall of intracranial aneurysms may be 
associated with risk of aneurysm growths or rupture [73, 107, 121]. However, CFD 
has limitations such as assumptions concerning blood properties, boundary condi-
tions, and vessel properties [129–131]. As an alternative, 4D flow MRI is increasingly 
used to assess intra-aneurysmal 3D hemodynamics in  vivo. Several groups have 
reported the successful measurement and evaluation of intra-aneurysmal flow and 
WSS in patient feasibility studies [73, 116, 119, 132–137], indicating the potential of 
flow MRI to assist in the classification of individual aneurysms pre-intervention.

�Neck

Carotid artery stenosis is a leading cause of ischemic stroke, and detailed insights 
into the causes for the development of atherosclerosis at this site are of interest. 
Among other risk factors, it is assumed that the development of atherosclerosis in 
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the naturally bulbic ICA is related to local hemodynamic conditions such as flow 
deceleration or recirculation associated with reduced and oscillating WSS [138]. 
Particularly, low absolute WSS and high OSI are hypothesized to determine the 
composition of atherosclerotic lesions and the development of high-risk plaques 
[99, 102]. Since blood flow through the carotid bifurcation is complex with non-
symmetric flow profiles, the full three-directional velocity information by 4D flow 
MRI can be useful for a complete in vivo assessment of the segmental distribution 
of WSS.

4D flow studies analyzing WSS in the normal carotid bifurcation confirmed 
that potentially atherogenic wall (e.g., low WSS) parameters were predominantly 
concentrated at the posterior wall of the proximal ICA [139, 140]. Cibis et  al. 
found lower WSS in regions of higher wall thickness in the carotid bifurcation 
[141, 142]. An example of a cohort-averaged map showing low WSS at locations 
of high wall thickness is displayed in Fig. 16.10. The wall thickness map is in 
concordance with the tendency of carotid atherosclerosis to affect the outer walls 
of arterial bifurcations and to mostly develop in the proximal part of the ICA bulb 
[143, 144]. Moreover, a significant relationship between the size of regions 
exposed to altered wall parameters and the individual bifurcation geometry was 
demonstrated, similar to carotid bifurcation study using CFD [138]. In patients 
with ICA stenosis, markedly altered filling and helix formation in the ICA bulb 
were observed, while revascularization partly restored normal filling and helix 
formation [145]. Furthermore, a direct comparison of mean and absolute flow 
velocities in the common carotid artery (CCA) between 4D flow MRI and Doppler 
ultrasound showed good agreement despite general underestimation of peak 
velocities by MRI [146].

4D flow MRI-derived WSS quantification could thus be a valuable technique to 
assess the individual risk of flow-mediated atherosclerosis and carotid plaque 
progression.

Fig. 16.10  Three-dimensional (a) wall shear stress and (b) wall thickness carotid bifurcation 
maps averaged over 20 subjects with plaques. In (c) the correlation between WSS and WT is shown 
with color-coding for the density of the points
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The assessment of PWV in the carotid arteries as a measure of vessel stiffness 
(and thus atherosclerotic burden) is challenging due its small size that necessitates 
high spatial and temporal resolution [147]. It is thus challenging to derive PWV 
using 4D flow MRI in the carotid arteries. For the determination of local PWV in the 
carotid arteries, the temporal resolution of through-plane 2D CINE PC-MRI was 
recently drastically improved by compressed sensing acceleration [148]. These 
novel acquisition strategies hold promise for future applications of either 2D or 4D 
flow MRI-derived PWV.

�Thorax

Cardiothoracic 4D flow imaging is typically performed as part of a standard-of-care 
aortic/pulmonary imaging protocol, which includes additional MRI techniques for 
the assessment of cardiac function and wall motion (CINE imaging), aortic and 
pulmonary dimensions and geometry (MR angiography), as well as aortic and pul-
monary valve morphology and dynamics (CINE imaging). The combination with 
4D flow MRI provides a comprehensive assessment of aortic/pulmonary structure 
and function. These data have contributed to the understanding of the development 
of vessel wall abnormalities (atherosclerosis, aortic dilation, aneurysm) as a conse-
quence of thoracic vascular diseases such as aortic valve diseases (stenosis, insuf-
ficiency, congenital bicuspid aortic valve (BAV)), aortic coarctation, or Marfan 
syndrome.

�Aortic Valve Disease and Aortopathy

The presence of aortic valve disease significantly alters the hemodynamic environ-
ment in the thoracic aorta. Several studies have shown promise of 4D flow MRI-
based blood flow visualization for the investigation of valve-related abnormal flow 
patterns (e.g., aberrant vortex or helix flow) as shown in Fig. 16.11. However, the 
visual evaluation of changes in aortic flow patterns (e.g., grading of vortex of helix 
flow) can be limited by lack of standardization, observer bias, and thus reproduc-
ibility. A more effective and representative assessment is provided by the calcula-
tion of 4D flow-derived measures that quantify the impact of altered flow 
characteristics on the vessel wall, such as flow displacement and WSS.

Flow displacement is an easy to obtain quantitative marker that represents out-
flow asymmetry (i.e., deviation for a symmetric flow profile). Studies have shown 
that flow displacement can detect altered systolic outflow patterns in patients with 
different types and severity of aortic valve disease [149–153] or in patients with 
aortic dilation [154]. For example, recent studies showed that different aortic valve 
fusion phenotypes in patients with BAV resulted in distinctly altered eccentric aortic 
outflow jet patterns [101, 155]. Differences in aortic dilation type were associated 
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with altered flow displacement in the ascending aorta, suggesting a physiologic 
mechanism by which valve morphology can influence aortic wall remodeling.

Patient studies have demonstrated the potential of WSS to quantify the impact of 
deranged flow on the aortic wall. Initial 4D flow studies were based on 2D-based 
planar quantification of WSS changes in patients with aortic dilation [156], aortic 
atherosclerosis [157], or aortic valve abnormalities such BAV disease [101, 158–
160]. Bieging et al. were the first to create a 3D segmentation of the aorta for the 
purpose of regional WSS estimation in patients with ascending aortic aneurysms 
[74]. More recently, Potters et al. used a modified algorithm to estimate 3D WSS on 
the entire aorta surface [109].

Interestingly, several 4D flow MRI studies have shown that the presence of aortic 
valve disease has a very different effect on aortic hemodynamics as compared to 
aortic dilation or aneurysm alone. Aortic dilation with an otherwise normal aortic 
valve generally leads to slow helix-type flow with significantly reduced WSS in the 
ascending aorta. In contrast, BAV or aortic valve stenosis will result in significantly 
elevated flow velocities, high-velocity transvalvular outflow jets, and eccentrically 
elevated WSS. These findings have been confirmed by a series of studies by Bissel 
et al., Mahadevia et al., Shan et al., and Rodríguez-Palomares et al. in larger cohorts 
(65–142 subjects, respectively) [100, 101, 155, 161]. A recent large cohort 4D flow 
MRI study in patients with aortic valve disease (>500 subjects) confirmed these 
findings. As shown in Fig. 16.12, aortic 4D flow MRI can be used to show the inci-
dence of elevated WSS for specific groups of patients and healthy controls. Results 
clearly showed that aortic valve stenosis resulted in a marked increase in regional 
WSS compared to patients with aortic dilation but normal tricuspid aortic valve 

Fig. 16.11  Velocity and WSS in two patients with a stenosed bicuspid aortic valve. (a, d) Peak 
systolic velocity path lines showing right-handed helical flow (top) and left-handed helical flow 
(bottom). Vortex flow can be seen as well (white arrows). (b, e) Stenotic flow leads to high wall 
shear stress on the right-anterior aortic wall (top) and left-posterior wall (bottom) which can be 
concisely visualized by elevated WSS heatmaps (c, f)
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[162]. In addition, the WSS heatmap concept can be employed to highlight regions 
with abnormally elevated WSS in individual patients (see Fig. 16.12) [163].

A recent study utilized the WSS heatmap concept to assess the correlation 
between abnormal in vivo 3D WSS and regional aortic tissue remodeling in BAV 
patients with AS [164]. BAV patients undergoing ascending aortic resection received 
preoperative 4D flow MRI to regionally map 3D WSS and correlate these findings 
with histologic examination of surgically resected tissue samples. Paired aortic wall 
samples (i.e., regions of both elevated and normal WSS within the same patient) 
were collected and compared for medial elastin degeneration by histology. Regions 
of increased WSS showed greater medial elastin degradation compared to adjacent 
areas with normal WSS. Another study confirmed these results and showed that in 
the presence of aortic stenosis, the correlation between WSS and elastin fiber thick-
ness was stronger than without AS [165]. These data suggest that regional valve-
mediated hemodynamics could serve as potential prognostic biomarkers of aortic 
disease.

�Marfan Syndrome

Marfan syndrome is an inherited autosomal dominant connective tissue disease, 
mostly related to mutations in the fibrillin-1 (FBN1) gene. Many organ systems can 
be involved, but most life-threatening complications are related to the cardiovascu-
lar system and include aortic wall abnormalities leading to dissection and aortic 
rupture. Although the entire aorta may dilate in Marfan syndrome, the aortic root 
and the proximal descending aorta are prone for progressive dilation and dissection 
[166–168]. Few studies have investigated aortic WSS in MFS disease cohorts 

a b

Fig. 16.12  (a) Registration and interpolation techniques are used to project regions of elevated 
WSS onto a shared aortic geometry. Summing elevated WSS regions yields a map of the regional 
incidence of elevated WSS. Group-specific 3D maps of abnormally elevated WSS for (b) tricuspid 
aortic valve (TAV) with dilation with no aortic valve stenosis (AS), mild AS and moderate and 
severe AS, and (c) BAV patients with right non-valve function morphology (RN-BAV) with no AS, 
mild AS, and moderate and severe AS
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[169–171]. Altered WSS was most pronounced in the proximal ascending aorta and 
the proximal descending aorta, which corresponds to locations where aortic dissec-
tion and rupture are most likely to occur. A recent longitudinal study in Marfan 
patient with baseline and mean follow-up 4D flow MRI (mean duration of 
3.5 ± 1.2 years) confirmed these findings [169]. MFS patients had lower segmental 
WSS in the inner proximal DAo segment which correlated with increased localized 
aberrant vortex/helix flow patterns and an enlarged diameter. Aortic hemodynamics 
were stable over multi-year follow-up, but subtle localized flow changes in the 
descending aorta were already present at young age and tended to be more pro-
nounced in the course of time. This is an important and intriguing finding, as the 
proximal descending aorta is a known initiation region for type B aortic 
dissections.

4D flow MRI was also used to calculate PWV as a measure for aortic stiffness in 
the aorta of BAV patients compared to controls and Marfan patients [172, 173]. 
Marfan patients had markedly higher aortic PWV and thus stiffer aortas compared 
to controls and BAV patients. The increased aortic stiffness may lead to further 
deterioration of aortic and LV function and may thus constitute important parameter 
for longitudinal monitoring of risk for progressive aortic dilation in these patients.

�Aortic Coarctation

Aortic coarctation accounts for 6% of congenital cardiac malformations, is asso-
ciated with hypertension and peripheral vascular disease, and often requires sur-
gical repair [174]. This disease is characterized by a congenital narrowing of the 
aorta, usually at the level of the distal arch or proximal descending aorta. To 
provide insight into the degree of stenosis and impact on distal flow as a result of 
the coarctation, traditional assessment includes aorta diameter measurements and 
post-coarctation flow velocity assessment. Using 4D flow MRI to assess this 
cohort of patients has proven to provide useful characteristics about the impact of 
coarctation and coarctation repair on flow features throughout the aorta. Recent 
studies have shown that 4D flow MRI can measure and visualize alterations in 3D 
aortic hemodynamics in coarctation patients such as elevated helix and vortex 
flow throughout the entire aorta, including the region of repair [175–178]. 
Patients with aortic coarctation tend to have flow jet eccentricity following the 
coarctation resulting in jet impingement and elevated WSS along the descending 
aorta [179, 180].

�Aortic Atherosclerosis

Stiffening of the aorta is frequently observed with increasing age and disease (e.g., 
hypertension, diabetes) due to an increase in the collagen-elastin ratio. Increased 
stiffness results in greater hemodynamic loading conditions on the aortic endothe-
lium leading to the development of atherosclerosis [84, 181].
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The most commonly measured and best surrogate for arterial stiffness is pulse 
wave velocity (PWV) [85, 182, 183]. In 2 studies with 37 and 98 subjects, respec-
tively, the reliability of 4D flow-based estimation of global aortic PWV was dem-
onstrated in volunteers and patients with aortic atherosclerotic disease with a good 
observer dependence and excellent test-retest reliability [82, 184]. Both studies 
demonstrated significant correlations of aortic stiffness with age. In addition, in 
patients with atherosclerosis, the PWV was significantly increased compared with 
controls demonstrating the sensitivity of the technique to detect elevated aortic 
stiffness. In a recent study, 4D flow MRI-derived PWV parameters correlated sig-
nificantly with echocardiographic stiffness parameters and intima-media thick-
ness in the descending aorta of stroke patients [185]. Harloff et  al. showed an 
increase in aortic PWV in older subjects that had more aortic plaque [186].

�Peripheral Arteries

Peripheral arterial occlusive disease (PAOD) is commonly explored with basic clin-
ical tests such as the ankle-brachial-index, constant load treadmill test, and Doppler 
ultrasound due to its excellent temporal and spatial resolution. A number of studies 
have reported the use of 2D PC MRI for the quantitative assessment of PAOD sever-
ity [187–190]. Similar to Doppler ultrasound, the waveforms derived in locations 
superior or inferior to stenoses were being used to characterize the severity of PAOD 
[191, 192]. In a similar fashion, 4D flow MRI can be applied to the peripheral arter-
ies, but only few studies have been reported to date. Application of this technique in 
the lower extremities has been limited to a single study which evaluated the iliac and 
proximal femoral at 3T [193]. Limitations of 4D flow in the extremities include the 
large anatomical coverage needed for vessel assessment, small vessel size (specially 
in distal vessels), and thus long scan times to achieve sufficient spatial resolution 
and SNR. Future research is warranted to extend previously published feasibility 
results to longitudinal and comparative studies investigating the potential impact of 
4D flow MRI in PAOD.

�Future Directions and Conclusions

Recent developments related to highly accelerated 4D flow MRI have resulted in 
increased flexibility for the application of 4D flow MRI with reduced scan times 
and/or increased spatiotemporal resolutions. These developments have led to more 
widespread applications of 4D flow MRI, but further improvements in spatial reso-
lution for the reliable quantification of vascular hemodynamics near the vessel wall 
or in small arteries affected are needed. 4D flow MRI acquisition at higher field 
strengths, e.g., 7T, and the associated increase in signal-to-noise ratio is promising 
in this regard. Studies have demonstrated that 7T 4D flow MRI allows for more 
detailed visualization of 3D velocity fields compared to 3T in the brain [125, 194] 
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and the aorta [195, 196]. However, 7T scanners are expensive and need tailor-made 
equipment and specialized operator expertise, which can hamper its clinical appli-
cation. As an alternative, 4D flow image quality and velocity dynamic range can be 
improved by dual- or multi-VENC flow encoding. By combining a low-VENC 
acquisition with phase unwrapping guided by a simultaneous high-VENC acquisi-
tion, aliasing-free images can be acquired with high velocity-to-noise ratio [197]. 
By interleaving the high- and low-VENC acquisitions in combination with imaging 
acceleration techniques, dual-VENC 4D flow MRI has shown promise for detailed 
velocity measurements for neurovascular and aortic applications [198, 199]. 
Alternatively, additional velocity encoding steps further improved velocity-to-noise 
ratio, and velocity unwrapping can be added to standard acquisitions at the cost of 
extra scan time [27, 200, 201]. These methods showed improved aortic and neuro-
vascular blood flow velocity visualization [202, 203].

PWV and WSS quantification are promising markers of vessel wall abnormali-
ties but require laborious and time-consuming manual placement of analysis planes 
or segmentation of the 3D vessel lumen. To make 4D flow MRI data analysis more 
time-efficient, several groups have developed methods to automate these processing 
steps. For example, Bustamante et al. used advanced atlas-based methods for time-
resolved aortic segmentation and plane placement [204]. The centerline of a 3D 
aortic segmentation can subsequently be used for automatic plane placement [151]. 
For 3D segmentation of the intracranial vasculature, highly automated algorithms 
were developed [205].

In conclusion, 4D flow MRI is a highly versatile technique which can be 
employed to derive important clinical parameters such as pulse wave velocity and 
wall shear stress in a large range of vessel wall diseases. Many studies have shown 
the additional value of 4D flow MRI in a clinical setting, but the methodology is still 
limitedly used for diagnosis or treatment planning in cardiovascular disease world-
wide. Current and future efforts in the field are dedicated to the acceleration of the 
acquisition and the automated processing of the data, with the ultimate goal of 
developing 4D flow MRI in a widespread, easy-to-use clinical tool for vessel wall 
disease assessment.
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