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Preface

This volume, which deals with ligated transition-metal clusters in solid-state chem-
istry, is dedicated to the memory of Professor Marcel Sergent who devoted his
professional life to this area of chemistry. Marcel was born in Douarnenez, a fishing
port located in the extreme West of Brittany, France, an area that he loved and never
forgot throughout his life. Indeed, he spoke the Breton (Celtic) language fluently in
his childhood, a local language which was still widely used in Brittany when he was
a boy. Marcel Sergent graduated in chemistry from the University of Rennes and
started his Thesis of Doctorat es Sciences Physiques under the supervision of Prof.
Jacques Prigent in the Laboratoire de Chimie Minérale B. Subsequently he was
appointed by the CNRS from 1964 until his retirement in 1999 with the first class
degree of Directeur de Recherches. Very regrettably, he passed away very suddenly
in 2015.

He earned his doctoral degree in 1969. The topic of his dissertation research was
the study of alkaline thiochromites, thiomolybdites and thiotungstites obtained by
sulphidation/reduction of the double oxides under a CS, stream at quite low tem-
peratures. He had very early in his research the intuition that direct reduction of
MoS, by elemental Mo (eventually in the presence of a second metallic element)
could be possible and lead to some interesting compounds. For this purpose he
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developed, in Rennes, the method of high-temperature syntheses using sealed
evacuated silica tubes. This approach turned out to be extremely productive as it
allowed the development in his laboratory of the very rich and varied chemistry of
transition element ligated clusters.

In the early 1970s, with his PhD student Roger Chevrel, he discovered the first
ternary molybdenum chalcogenides, based on the Moy octahedral metal-metal
bonded clusters, e.g. PbMogSg, which exhibits exceptional superconducting proper-
ties, with the highest critical temperatures and critical magnetic fields at that time.
This class contained numerous and related compounds, now well-known as
“Chevrel phases”. They were extensively studied all around the world. As a result
Marcel Sergent established a number of collaborations not only in France but also in
many foreign countries. The most prominent were with Profs. Jean Rossat-Mignot
and Robert Tournier in CRTBT (Grenoble) and Prof. @stein Fischer in DPMC of
Geneva University. Indeed, Marcel Sergent had very early appreciated the great
importance of close collaborations with solid-state physics laboratories.

Following these outstanding results on ternary molybdenum chalcogenides,
Marcel Sergent was the advisor of a large number of students and/or co-workers
who extended the chemistry to halides, chalcogenides and chalcohalides built
around tetrahedral, octahedral and condensed clusters of niobium, tantalum, molyb-
denum, tungsten and rhenium. In parallel, he supervised very original research on
transition metal compounds of phosphides and arsenides with metal-metal bonds.
Later, he also became involved in studies of high critical temperature
superconducting cuprates.

Marcel Sergent understood very early the potential in solid-state chemistry of X-
ray diffraction analyses. His rigor in the complete interpretation of any powder X-ray
diffraction patterns was at the basis of the discovery of a number of original phases.
According to him, a new compound was fully characterized only if, at least (at this
pioneering period), the unit-cell parameters and space group were determined by
single-crystal X-ray diffraction techniques. For this reason he put considerable
efforts to provide his laboratory with Weissenberg and Buerger cameras, which
led to the first Chevrel-phase structure determinations. Later, with the arrival of Prof.
Daniel Grandjean, a crystallographer, this structural approach tended to become
systematic, at a time where the automatic diffractometers still did not exist.

Having always in mind the importance of mastering the crystallization of the
compounds, synthesized by his group, he developed in Rennes various methods of
crystal growth and stimulated the emergence of a thin films growth and character-
ization research group. Also he was strongly involved in the processing of Chevrel-
phase wires (Eureka Program from EU) and the synthesis of catalysts by the
impregnation approach.

Marcel Sergent was the author and co-author of about 400 scientific publications,
mainly in international journals, and a dozen patents. He was the leader of a number
of national and international research programmes, mainly devoted to the study and
applications of Chevrel phases and related cluster compounds. He was also an able
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administrator, being Deputy Director, then Director of the CNRS Laboratory of
Solid State and Molecular Inorganic Chemistry (1981-1992) at the University of
Rennes, member of the CNRS National Committee (1983—1987) and Chargé de
Mission of the CNRS for the scientific research in the Brittany region. His achieve-
ments have been recognized by the French Chemical Society award (1981), the
French Academy of Sciences A. Guye award (1981), and the Silver Medal of CNRS,
shared with R. Chevrel (1981).

Beyond these prominent scientific skills Marcel Sergent is remembered by all his
students and co-workers for his exceptional enthusiasm, dynamism and tenacity, and
most of all for his great creativity. Indeed he worked non-stop in order to check any
of his hypotheses about the formation of new compounds and/or their structural
determination. To all of them he passed on his rigor and scientific honesty as well as
his unusual humility, receptiveness and kindness to his French colleagues and
foreign collaborators. All these qualities mark his most important legacy for those
that worked with him. Everyone who knew Marcel Sergent will have pleasant
memories of his kind, reliable and straightforward personality.

Through this collection of chapters, colleagues and friends gratefully acknowl-
edge his diverse and outstanding contributions to ligated transition-metal clusters in
solid-state chemistry. This volume opens with a historical overview of the Chevrel
phases. André Perrin, Christiane Perrin and Roger Chevrel recount the impact of the
seminal discovery of the Chevrel phases in the early 1970s and the subsequent
developments in the field to this day. The following chapters provide contemporary
accounts of a variety of experimental and theoretical studies in this fascinating area
of chemistry. Examples include the chemistry of molybdenum and rhenium octahe-
dral chalcogenide cluster compounds carried out at the Nikolaev Institute of Inor-
ganic Chemistry (Vladimir Fedorov and Nikolay Naumov), and that of niobium and
tantalum octahedral cluster halide compounds with three-dimensional frameworks
(Pierric Lemoine, Jean-Francgois Halet, Stéphane Cordier). The chapter by Lisa
Szczepura and Ernesto Soto explores the breadth of terminal ligands incorporated
into molybdenum halide and rhenium chalcogenide cluster complexes. In a subse-
quent chapter, Alvaro Mufioz-Castro, Dayan Paez-Hernandez and Ramiro Arratia-
Perez describe the bonding, optical, magnetic, redox and biological properties of
rhenium hexanuclear clusters. Finally, Christophe Candolfi and his co-authors give a
detailed account on the thermoelectric properties of ternary and quaternary molyb-
denum-based selenide clusters in their chapter. Readers will realize that almost 50
years after their discovery, the Chevrel phases and their derivatives continue to
represent a vital research area, which attracts chemists, physicists and material
scientists.

I warmly thank all of the authors for their timely contributions to this volume and
hope that their efforts will stimulate younger chemists to join the field of ligated
transition-metal clusters in solid-state chemistry and thereby keep it and the memory
of Marcel Sergent alive. I am also grateful to Christiane and André Perrin — they
were among the first actors in the field of Chevrel phases — and kindly provided me
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with important details about Marcel Sergent’s scientific career. Finally, my thanks
go to Mike Mingos, Series Editor of Structure and Bonding, who had greatly
admired Marcel's research on clusters and suggested the topic of this volume during
a short visit to Rennes in 2016.

Rennes, France Jean-Francois Halet
May 2019
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Abstract This chapter summarizes the important role played by Marcel Sergent in
the discovery in the Rennes Laboratory of the Chevrel Phases, which stimulated
considerable interest in the international solid-state chemistry community, because
of their remarkable superconducting properties. After a brief general introduction to
this topic, the seminal discoveries associated with these phases between 1970 and
1990 are described. After that their initial synthesis and structural determination was
discovered, it was necessary to establish their critical superconducting transition
temperature, the critical magnetic field, and the critical current density in wires,
single crystals, and thin films. More recently their applications as battery materials,
in catalysis, and their thermoelectric properties have been studied and are briefly
described. These phases opened up the way not only to a rich solid-state chemistry
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but also to a rich solution chemistry, which complemented the classical field of
transition metal carbonyl clusters. The basic cluster units of the Chevrel Phases
continue to be studied in the Rennes Laboratory by the heirs of Marcel Sergent and
more widely in the international community.

Keywords Chevrel Phases - Hydrodesulfurization - Marcel Sergent - Molybdenum
clusters - Rhenium clusters - Secondary batteries - Superconductivity - Ternary
molybdenum sulfide - Thermoelectricity

1 Introduction

The aim of this chapter dedicated to the memory of Dr. Marcel Sergent is to relate his
outstanding contribution to the discovery of the so-called Chevrel Phases, their
developments, and the way they have paved the way to a large and important area
of cluster chemistry. Although many people consider now that very old papers are
obsolete, we have chosen to systematically refer here to original papers in order to
get a memory of them, because they are often forgotten by the computer-assisted
bibliographic tools and their users: “if nobody remembers something, it did not ever
exist” [1]. This chapter does not provide an up-to-date and comprehensive review of
this area but a historical account of the scientific contribution of Marcel Sergent to
this area and its subsequent development. Consequently, the bibliography concen-
trates on the literature from 1970 to 1990, for which many details are covered in
reference [2], and a more comprehensive review of this area is to be found in a recent
paper by O. Pefia [3].

2 The Early Beginnings

The Thesis Dissertation [4] of Marcel Sergent, defended in 1969, was devoted to
the synthesis of new “Alkaline thiomolybdites, thiotungstites and thiochromites.”
This topic was chosen because the head of the Laboratory, Prof. J. Prigent, was a
specialist of uranium chemistry and decided to extend the study of uranates and
thiouranates to molybdenum and tungsten analogues. The experimental solid-state
route for these syntheses was the sulfuration of the metallate by CS, transported by
N, at around 300-400°C (Fig. 1). The resulting thiometallates were subsequently
reduced under H, in the range 500-700°C. This approach was chosen because
the alkaline metals are too reducing and the handling of alkaline sulfides was
problematic.

The study of molybdenum and tungsten led to a number of new compounds of
general formula MMeS, (M = alkaline metal, Me = Mo or W) where the Me metal
has the formal oxidation state of +3 [5]. Conductivity measurements showed that
they were semiconducting, and the magnetic measurements suggested the presence
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huile de
paraffine

Fig. 1 The setup used by Marcel Sergent in his Thesis for the sulfuration experiments [4]

of metal-metal bonds. A further reduction under H, of the thiotungstites produces
metallic W at temperature as low as 850°C. In contrast, thiomolybdites are reduced
near 900°C to the new compounds of divalent molybdenum: M,;MosSs (M = K, Rb,
Cs) and M,Mo,S; (M = Li, Na) [4]. The XRD patterns of the latter were very similar
to the one reported just previously by Espelund for “SnMogS-,” the pattern of which
was tentatively indexed with a pseudocubic unit cell with @ = 6.53 A [6]. Remem-
bering that SntMogSg was later shown to have a trigonal R-3 unit cell with a = 6.52 A
and a = 89.73°, it becomes clear now that these compounds were in fact the first
examples of the Chevrel Phases (hereafter abbreviated as CPs).

It is noteworthy to mention the Conclusions of the Thesis of Marcel Sergent,
relative to these thio compounds of Mo(Il): “[they] form a very original series, owing
to their electrical and magnetic properties, very different from the ones of chromium
and other transition elements. These compounds are actually characteristic of the
low valency chemistry of molybdenum, tungsten, niobium, and rhenium, based on
Me-Me chains or polymers.” We can guess that the last word in this sentence would
refer in his mind to “MoCl,” derivatives that were already known since the 1940s to
have structures based on octahedral Mog units with strong Mo-Mo bonds [7, 8].

3 The Discovery of Chevrel Phases

As he developed an independent research program, Marcel Sergent decided to
pursue this interesting emerging chemistry of ternary molybdenum(II) sulfides.
Indeed, Marcel Sergent and his student Roger Chevrel intuitively felt that it may
be possible to reduce MoS, by Mo and a third metallic element, using high-
temperature direct solid-state syntheses in evacuated sealed silica tubes (as was
done by Espelund), a method that was not well-developed at that time in the solid-
state community. They implemented it in the laboratory, enabling syntheses up to
about 1,200°C. Indeed, this approach was very fruitful and gave opportunity to
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develop in Rennes the transition element cluster chemistry of the early transition
metals. It remains, 50 years on, very commonly used in solid-state laboratories
worldwide for high-temperature solid-state syntheses.

3.1 Syntheses of the First Thio Compounds

The first attempts were carried out within the framework of the M.Sc. Diploma
(unpublished) of his student Roger Chevrel, which described the exploration of the
Fe-Mo-S system. Two new phases were detected: FeMo(Il);S, which was later
identified and assigned to the so-called Chevrel Phases (CPs) and also FeMo
(IIT),S,4. These synthetic procedures were extended to a number of ternary sulfides
and reported in the Thesis of R. Chevrel [9]. The overall approach was to explore the
range of compositions M,(I)S-Mo(IDS and MII)S-Mo(ID)S, targeting formulas
M,(I)Mo,S,..; and M(II)Mo,S,,, ;. Following several oral communications in scien-
tific meetings in the 1968—1970, the results were first published (in French; see
Fig. 2) in 1971 in the seminal paper titled “On New Molybdenum Ternary Sulfides
Phases” [10] and summarized in Table 1.

Stoichiometric compounds were obtained when M was a large cation, namely,
Ag, Sn, Pb, Sr, and Ba. From Weissenberg and Buerger X-ray photographs, it was
shown that they crystallize in the trigonal system, R3 or R-3 space groups (SG). The
unit-cell constants, refined from X-ray diffraction powder data, are all close to
a = 6.5 A and a = 90°: for instance, in the example of the Pb compound, they are
a=6.54Aand a = 89°28'.

JOURNAL OF SOLID STATE CHEMISTRY 3, 515-519 (1971

Sur de Nouvelles Phases Sulfurées Ternaires du Molybdéne

ROGER CHEVREL, MARCEL SERGENT, er JACQUES PRIGENT

Laborateire de Chimie Minérale B-Eguipe Associde au C.N.R.S.
Faculté des Sciences, Avenue du Général Leclere-35- Rennes-France

Received March 1, 1971

The authors describe the preparation of new sulfides of formula M"Mo,5,.,. If M = Ag, Sn, Ca, Sr, Pb, Ba, they
are stoichiometric; if M = Ni, Co, Fe, Cr, Mn, Cu, Mg, Zn, Cd, solid solutions are observed with 2 < n< 6,
Another series of formula M;Mo,S.+; was also prepared, where M = alkali metal and n = 2 or 5, The crystallo-
graphic properties are investigated: the phases obtained are generally rhomboedral, with an eventual triclinic
distortion,

Fig. 2 A partial facsimile of the first report on Chevrel Phases [10] (reproduced from J. Solid State
Chem., with permission)
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Table 1 M,(I)Mo,S,.,; and M(II)Mo,S,,,; compounds reported in the first paper published by
R. Chevrel, M. Sergent, and J. Prigent [10]

Cation n value or range Comment

Ag 4 Stoichiometric compounds (trigonal)
Sn 5

Pb 6

Sr 6

Ba 7

Ni 3-5 Solid solutions (trigonal)

Co 3-5

Fe 2-5

Mn 2-6

Cr 2-3 Triclinic

Cu, 34 and x = 1-2 Double solid solution

Mg 2-6 Trigonal—triclinic transition depending upon stoichiometry
Zn 3-6

Cd 3-5

Lior Na 2 Trigonal

Solid solutions, with a large variability in cation concentration, were obtained
with smaller cations, Ni, Co, Fe, and Mn. They also crystallize in the R3 or R-3 SG,
with similar unit-cell constants, but a is now slightly larger than 90°. The Cr solid
solution in contrast showed a triclinic distortion although the unit cell remains very
close to the trigonal parent, while Mg, Zn, and Cd solid solutions undergo a trigonal
to triclinic transition for high concentrations of the cations. A special mention
concerns the copper compounds as they were apparently characterized by a double
nonstoichiometry. In fact, it was found later that the solid solution Cu,MogSg
extended from x = 1.6 to x = 4.

Finally, the paper mentioned some alkaline thiomolybdites that present a trigonal
unit cell similar to the abovementioned ones (for Li, Na), while M,MosSg (M = K,
Rb, Cs) are quadratic.

An important conclusion of this paper, drawn from both the chemical properties
and magnetic measurements, was that the molybdenum had a formal oxidation state
of +2 and the d* configuration was capable of establishing Mo-Mo bonds, and the
authors restated a visionary hypothesis of the formation of “metal clusters” (defined
by Cotton as “a finite group of metal atoms held together mainly or at least to a
significant extent, by bonds directly between the metal atoms, even though some
non-metal atoms may also be intimately associated with the cluster” [11]) in such
compounds, similar to that reported for MoCl, [7, 8].
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3.2 Syntheses of the First Seleno and Telluro Compounds

For the synthesis of such compounds, a valuable advantage of the sealed
tubes method is the use of elemental Se (Te), avoiding the need to handle the very
harmful H,Se (H,Te). Consequently, many ternary molybdenum(Il) selenides were
published in the next few years. O. Bars et al. reported in a short paper the synthesis
and unit cells of Mo;Se, and the solid solutions M,Mo3Se4 (M = Fe, Co, Ni) as early
as 1970 [12]. As all these compounds appeared to be isostructural, it was suggested
that the binary product would act as a host structure for counter-cations, leading to
the ternary chalcogenides. Some time later, R. Chevrel and M. Sergent extended and
completed this work [13]. It is noteworthy that in the meantime the crystal structure
of Mo3Se, was solved (see Sect. 4), giving unambiguous structural evidence for Mog
octahedral cluster-based MogSeg units. In their second full paper, Chevrel and
Sergent used the notation “M,MosSe,,” but finally, after structural determinations,
it became evident that the use of the M;MogQg (Q = chalcogen) formula was more
accurate and established that the common basic unit was the rigid Mo¢Qg entity, for
all the CPs (see Sect. 4).

As previously, large cations led to definite compounds M,MosSe, where M was
Zn, Ag, Cd, Sn, and Pb with x close to 0.6. They crystallize as above in the trigonal
R3 or R-3 SG, the unit-cell volume increasing monotonically with the radius of
M. For M = Fe, Mn, Cr, V, and Ti, a triclinic solid solution is observed
(0.5 < x < 0.7). For Cu and Co, the trigonal solid solution extends from x = 0
(i.e., Mo3Sey) to x = 1.4 and 0.7, respectively. In the example of Ni,MozSe,, the
trigonal solid solution extends in the ranges 0 < x < 0.3 and 0.6 < x < 0.8, while
in-between is observed a triclinic distortion.

3.3 Subsequent Synthetic Studies

This pioneering work resulted in an incredible blooming of new compounds during
the 1970s. Besides the main group and transition elements, they included rare-earth
[14] and actinide counter-cations [15, 16]. For example, in the late 1970s, more than
80 CP compounds were identified and characterized [2, 17]. Also it should be
mentioned that the substitution of some of the chalcogens by halogens could be
achieved and some of the molybdenum atoms could be replaced by Re or Ru. This
opened up the way to very important series of new cluster-based chalcohalides, as
discussed in more detail in Sect. 7.
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4 The Crystal Structures of Chevrel Phases

The first pertinent work related to CPs was the structure determination in 1973 of the
binary MogSeg by O. Bars et al. [18]. Indeed, this compound was synthesized some
years before by decomposition at 1180°C of MoSe, under a vacuum [19], but only
the full solid-state approach afforded single crystals easily obtained and suitable for
an X-ray diffraction analysis. This pioneering structural work established the pres-
ence of slightly distorted octahedral Mog groups, based on octahedral metal “clus-
ters,” and M. Sergent realized that they were similar to those present in MoCl, (see
Fig. 3). Within the cluster, the Mo-Mo distances are 2.68 and 2.83 A, consistent with
the presence of strong metal-metal bonds. In molybdenum metal, the Mo-Mo
distance is 2.73 A [20]. The Mog clusters are inscribed in a Seg pseudo-cube, leading
to the MogSeg units, which are the structural basis of all of the CPs. In addition, there are
six longer intercluster Mo-Mo contacts of 3.26 A. Of special interest in this paper is
another illustration of the unit-cell stacking: the small arrows in Fig. 3 represent Mo-Se
interunit bonds and evidence the fact that a selenium atom lies on each “apical” position
of the Mog octahedron (i.e., on the pseudo-quaternary axis), exactly like some of the
halogen atoms in MoCl,. The correct description of the three-dimensional structure is
based on the three-dimensional stacking of Mog[Se,'Sesn ¥1Ses ™", where the symbols

Fig. 3 The first
representation of a Chevrel
Phase structure: the empty
MogSeg binary host [18]
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aand i act as “apical” and “inner” (i.e., belonging to the Seg pseudo-cube), according to
the Schifer notation [21]. This structure forms some channels and cavities, especially at
the origin of the unit cell, and the assumption was made in the paper that it acted as a
host structure in the ternary CPs.

Indeed, this work was followed very soon by the determination of the structures
of ternary phases: NijgeMogSeg [22] and NioMogSg [23] and many others. The
structure of PbMogSg [24, 25] was particularly noteworthy, because it is considered
as the prototype of CPs with a large cation, as well as the structure of the very
extended solid solution Cu,MogSs (1.6 < x < 4) [26]. In the first case, Pb>* counter-
cations are located at the origin (“site 17”), while in the second one, the Cu* counter-
cations are statistically distributed in a puckered hexagon around this same site 1 and
on another one denoted as “site 2.” Simultaneously, the structure of the selenide
PbMogSeg was also reported [25].

In the following years, many of these structures were accurately refined, giving
evidence for some additional nonstoichiometries: as an example, “PbMogSg” was
actually PbMog 3555 [15]. However, for reasons of clarity, we will use the simplified
formulae hereafter.

5 The Electronic Structure of Chevrel Phases

Well before the discovery of CPs, the isolated cluster unit [MogClg]** was studied by
several authors [27-29] using a simple molecular orbital (MO) approach. Although
the precise ordering of the MO levels was uncertain at this stage (it was precisely
established some years later as ajg, t1,, g, >y, and €,, from the bottom to the top
[30]), the important point was the evidence of the formation of 12 metal-metal bonds
involving 24 electrons on the metal cluster, a magic number called valence electron
count (VEC) [31]. This corresponds obviously to the establishment of single bonds
with a bond order of 1, as formalized by J. D. Corbett [32].

In the late 1970s and early 1980s, such calculations were extended to the newly
discovered CPs [33-36]. The pedagogic report of T. Hughbanks and R. Hoffmann
[37] was particularly noteworthy since their calculations emphasized the crucial role
of apical S*" ligands. This point of view agrees closely with the previous statement
of Corbett that “a maxim of cluster chemistry is that the outer or exo [i.e., ‘apical’ in
the Schifer notation used here] positions are strongly bonding and are always
occupied by some basic group” [32]. Indeed, this is this feature that imposes a
rotation of about 25° (as seen in Fig. 3) of the cluster unit inside the counter-cation
pseudo-cube, in order to put a sulfur atom of a surrounding cluster unit in front of
each molybdenum of a given (MogSg) cluster unit. These additional sulfur atoms lie
onto the pseudo-quaternary axes of the octahedron. Introducing these apical sulfur
ligands in the calculation, instead of restricting to the (MogSg) cluster unit, actually
opens a gap above the e, MO, the top-most level of the Mo-d group, as illustrated in
Fig. 4. As the e, levels are fully occupied for a VEC = 24, this explains why a
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Fig. 4 Molecular orbital diagram of Chevrel Phases, illustrating the perturbation of the MogSg*~
levels by six apical S>~ ions, consequently opening the gap [37]

compound like Mo,Re,Seg, strictly isostructural with MogSeg, turns out to be a
semiconductor, as it accommodates exactly 24 e /cluster (see Sect. 7).

Similar results were reported simultaneously and independently by the team of
R. Lissillour in Rennes [38]. They extended the calculations to a number of MgLgL'¢
cluster-based compounds (M = Mo, Re; L and L' = halogen or chalcogen; see
Sect. 7) and formalized their results within their so-called three-band model, where
from the bottom to top lies a band mainly composed of p L ligand orbitals and the
second is made of 12 d M metallic orbitals (bonding) and the third, separated by the
gap, of 18 d M metallic orbitals (antibonding) [39].
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6 The Golden Age of Chevrel Phases
6.1 Superconductivity
6.1.1 Critical Temperature

A very short time after the publication of the paper of R. Chevrel, M. Sergent, and
J. Prigent on ternary molybdenum sulfides, the group of B. T. Matthias discovered a
superconducting behavior in several of them and published in Science a short paper
entitled “High-Temperature Superconductors: The First Ternary System” [40]. For
the Cd, Mg, Zn, Cu, Sn, and Pb compounds, critical temperatures (7,) of 2.3, 2.4,
2.7, 10.8, 10.9, and 12.5 K, respectively, were reported. Such a discovery initiated
immediately an intense international research on the superconductivity of CPs,
promoting in particular a very long-lasting and fruitful collaboration between the
groups of M. Sergent in Rennes and @. Fischer in Geneva. As reported in reference
[17], the T, of more than 80 compounds was measured in 1978. Figure 5 illustrates
an example of resistive transitions reported early [41].

The effect of doping by a fourth (metal) element suggested that the nature of the
counter-cations between the MogSg units plays an important role on the value of the
critical temperature [42]. However, the subsequent report that MogS¢Br, exhibits a
T, as high as that in PbMogSg (see Sect. 7) does not support this assertion. From a

Mn "035.

g Mog Sy

— - o E— 1
100 200 300 100 200 300
Lt T

Fig. 5 Early reported resistivity curves of several Chevrel Phases, illustrating the superconducting
transitions for the copper and silver compounds [41]
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study of the effect of the (partial) substitution of S by Se or Te in PbMogSg and
MogSg, it was concluded that correlations between T, and both the rhombohedral
angle a and the intercluster Mo-Mo distance [43] existed. Further research showed
no direct correlation between the superconductivity and the nature of the ternary
element M, suggesting that the 4d electrons of Mo were essentially responsible for
the superconducting properties [14]. This was confirmed some years later by theo-
retical calculations. In contrast, a clear correlation of 7. and the VEC was established
[31]. Figure 6 shows a maximum of 7. around a value of 3.7-3.8 electrons/Mo, i.e.,
around 22 electrons/Mog cluster, again in accordance with a maximum of the density
of states near this value.

6.1.2 Critical Magnetic Field

Another striking characteristic of superconducting CPs is their extraordinary high
critical magnetic field, which was only exceeded by the so-called HCTS cuprates
discovered in 1986. Indeed, the Fischer group reported in 1974 the first measure-
ments, using a pulsed magnetic field limited to 350 kG. For some samples they could
not reach the critical magnetic field H, but deduced from a model values up to about
450 and 550 kG for PbMogSg and Al-doped SnMogSs, respectively [44]. The same
year, using a new coil delivering up to 510 kG, they obtained at 4 K a critical field



12 A. Perrin et al.

estimated to 560 kG (for full destruction of superconductivity), meaning more than
600 kG at 0 K, for a slightly Gd-doped PbMogSg sample [45]. Finally, the following
year, H,., was increased to 580 kG at 4 K and more than 600 kG at 2 K for a sample
doped with both Gd and Eu, implying that a magnetic field above 700 kG would be
necessary to make it entirely normal [46]. As CPs are not cubic, experiments were
carried out on oriented single crystals. An anisotropy of about 20% was measured for
all three representative PbMogSg, PbMogSeg, and SnMogSeg, with the maximum of
H, obtained when H is perpendicular to the ternary axis [47].

6.1.3 Coexistence of Magnetism and Superconductivity

Finally, the discovery of the coexistence of magnetism and superconductivity in the
(RE)MogSg systems should be mentioned. Indeed, it was shown that a partial
substitution of Pb or Sn in PbMogSg or SnMogSg by magnetic rare-earth ions did
not destroy the superconductivity [14, 48] (see Fig. 7 [14]). A subsequent study,
involving all RE ions series, was carried out, and most of the (RE)MogSg are
superconducting above 1.1 K. It was the first time that a system containing a regular
lattice of magnetic ions was superconducting. It was concluded that the exchange
interaction between the superconducting electrons and the RE ions was very weak,
because the latter are located at the origin site, far away from the Mog cluster
[14]. This situation contrasts with the case of small magnetic transition elements
of the first group like Fe, where these ions are delocalized around several sites and
are then closer to the cluster, fully destroying the superconductivity, as expected.
Very unusual behavior was reported for some (RE)MogSsg. For instance, HoMogSsg is
superconducting at 1.2 K but becomes normal again below 0.65 K where a magnetic

T \ T T Y T T T T
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Fig. 7 Critical temperature versus concentration x of europium ions in Sn; »(j_nEu,Mog 35Sg [14]
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transition occurs [49]; this particular state was called “reentrant superconductivity”
[50]. On the other hand, EuHoMogSg exhibits a phenomenon of magnetic field-
induced superconductivity: at T < 1 K, superconductivity is destroyed in a low field
(about 10 kG), reappears at 80 kG, and finally disappears only above 200 kG
[51]. Interested readers could find more detail in [3] and references therein.

6.1.4 Processing Chevrel Phases

Figure 8 illustrates clearly the superiority of PbMogSg with respect to technical
superconductors Nb-Ti, Nb3Sn, and even Nb3;Ge in terms of critical field [17].
Indeed, a considerable effort was made to produce wires of CP, because they appear
to be excellent candidates to build coils able to sustain higher magnetic fields. For
this purpose, they have to be processed in the form of wires, additionally able to
support high current density. The main drawback arises from the fact that CPs are
very brittle materials (as Nb3Sn and Nb3Ge, while in contrast Nb-Ti is a ductile

8

8

CRITICAL FIELD H_ (xGAUSS)

M 1 A "
0 2 % Iﬁ w ZlO Q2
TEMPERATURE (K)

Fig. 8 Comparison between the critical fields of PbMogSg, NbsGe, NbsSn, and the Nb-Ti
alloy [17]
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Fig. 9 A cut along the axis
of a PbMogSg wire grown on
the surface of a
molybdenum wire [52]

L
50 um

alloy). One of the first attempts was based on the sulfidation of a molybdenum wire,
followed by a heat treatment under Pb vapor (see Fig. 9) [52]. The current density
was quite modest, 2 10’A/m? in a field of 40 kG [52]. In the following years, the
technology of powder metallurgy was developed, implying in most cases the help of
specialized factories. Then several consortiums were established, for instance, in
France, University of Rennes with CGE Marcoussis, CEN Saclay and Grenoble, and
SNCI Grenoble, and in Europe, Universities of Rennes, Geneva, and Nijmegen with
Plansee, Spectrospin, and Promogap (European Union Program Eureka 96). Briefly,
the CP (pre-reacted [53] or its precursors [54]) is compacted in a copper tube
(“billet”) that is extruded and then drawn as a long monofilament wire. In further
improvements, sections of such wires were assembled in bundles and again extruded
and drawn to produce multifilament wires as shown in Fig. 10 [50, 54]. In order to
avoid any contamination of PbMogSg by Cu, an anti-diffusion barrier (mainly Nb
and in some cases Mo) was inserted [50, 53, 54]. Whatever the route used, the
critical current density was in the range 1-2 10® A/m?® at 200 kG and 4.2 K
[55]. Values of 5.4 10% and 3.1 10® A/m? were further reached at 1.9 K for fields
as high as 200 kG and 240 kG, respectively [56]. Figure 11 shows that CP wires
overpassed any technical superconductors above 170 kG [57].

Thin films are the ideal form for some physical measurements, such as critical
current density and the development of superconducting junctions. The first attempt
used RF sputtering from a composite target to grow CPs with Cu, Ag, Sn, and Pb,
deposited onto Mo substrates [58]. The films were either grown in situ on heated
substrates (750-900°C) or deposited at room temperature and subsequently annealed
in silica tube sealed under vacuum. Critical temperatures close to the one of bulk
material were achieved. Such films exhibited J.. as high as 10° A/m? at zero field [59]
and were later used to produce superconducting tunneling junctions based on CPs
[60]. In the following years, reactive physical vapor deposition was proposed [61],
but other groups used sputtering, with different variants [62, 63]. During this period,
M. Sergent decided to provide his laboratory with a miniaturized sputtering device,
and T, = 13 K and J,. = 3.10” A/m? were achieved for PbMogSg with this very
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Fig. 10 A scanning electron micrograph of a Chevrel Phase multifilament wire in copper matrix.
© A. Perrin LCMBR

simple apparatus [64, 65]. When pulsed laser deposition became popular, this
method was applied to the in situ growth of Cu,Mo¢Sg, and epitaxial thin films of
CPs were obtained for the first time [66]. More recently, films of Cu,MogSg were
synthesized by chemical solution deposition, based on the use of a polymeric
precursor: the coatings were first calcined and then sulfided under a Hy/H,S flow
and finally reduced under H, [67]. On the other hand, the preparation of a thick film
(17 pm) of Cu,MoSg was done by a chemical transport technique [68], similar to the
method used to process wires reported in [52].

Single crystals are obviously of great importance for many physical measure-
ments. Indeed, crystals suitable for structure determination were in most cases
picked from the powders resulting from the synthetic procedures. Chemical transport
reactions were carried out for Co,MogSg [9] and PbMogSg [69, 70], giving isolated
well-formed crystals, but the latter were still too small for physical measurements.
Crystallization from melt is difficult, because many of CPs undergo incongruent
melting. In addition, it is necessary to take into account the sensitivity to oxidation,
the high melting temperature, and the high chemical reactivity [71]. Then, welded
Mo crucibles [72], or high Ar or He counterpressure [73, 74] or liquid-encapsulated
melting [75], were proposed, especially in the examples of ternary sulfides with Pb,
Sn, or Cu. Obviously, much efforts were done for rare-earth ternary sulfides, because
of their outstanding properties. Sealed Mo crucibles [76], often associated with an
Al,O3 liner and an excess of RE sulfide [71], were used. A very complete study of
the kinetics of the crystal growth of REMogSg was carried out [77]. It established the
possibility of working in open crucibles under argon at atmospheric pressure, as long
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Fig. 11 A graph of the best J A /mz
critical current densities as a
function of applied magnetic %
field for single-wire Chevrel 0
Phases obtained in various !
laboratories, compared to
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superconductor [57]
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as the initial charge was sufficiently shifted in composition. A general survey
including details about the physical properties measured on REMogSg crystals is
given in [78]. The reader is also referred to a recent review [3]. Finally, the
systematic study of the crystal growth of the selenides REMogSeg was carried out
more recently [79].

6.2 Other Properties and Potentialities

As outlined in the previous section, CPs have been studied in detail for their
outstanding superconducting behavior. In addition, this series of compounds
exhibits several other striking properties, which are summarized below.

6.2.1 Electrodes for Secondary Batteries
As mentioned above, the structure of CPs provides an open framework with three-

dimensional channels, where delocalized small counter-cations are accommodated.
These metal ions are mobile within these channels. Indeed, Chevrel and Sergent
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removed the counter-cations from some small-cation CPs (e.g., copper and nickel),
by leaching them with a dilute inorganic acid and then giving access to the meta-
stable MogSg binary compound [80]. The reaction is reversible, and ternary repre-
sentatives can again be obtained using soft conditions. In addition, the process is
topotactic in character, and the authors were able to determine and refine the crystal
structure of MogSg [80]. Soon after, Schollhorn et al. succeeded in intercalation-
deintercalation reactions using an electrochemical approach. In their studies, both
transition metal CPs were removed with aqueous electrolyte and alkaline CPs with
an organic one [81]. These results opened the way to the study of CPs as cathode
materials for rechargeable batteries. Most work was devoted to the Cu-, Fe-, Ni-, and
Cr-based CPs associated with lithium and organic electrolyte [82—86]. Thick [87]
and thin films [88, 89] were also studied. More recently, the group of D. Aurbach
highlighted the potential interest of Mg/CP batteries [89] because Mg is eco-friendly,
nontoxic, abundant in the earth crust, and divalent and gives fast and reversible
intercalation in CP. These CPs have been claimed to be the currently best available
model cathode for Mg batteries, as practical energy densities of 60 W h kg~ ' (about
half of the Li-ion battery) with excellent cyclability (>3,000 cycles) were reported
[90]. For a recent, complete, and critical review, see reference [91]. As a final
remark, it is clear that CPs have a limited intrinsic massic capacity, due to their
quite high molecular weight. However, they could be very attractive for land-based
stationary battery systems, in relation to the need for the storage of intermittent
renewable energy sources like wind or sun.

6.2.2 Catalysis

In 1984, McCarty and Schridder compared the ability of several CPs as catalysts
for hydrodesulfurization of crude oils versus both classical unpromoted and
Co-promoted MoS, (usually labeled “CoMoS”) catalysts [92]. They found that all
CPs tested had efficiencies comparable and even better than the standard model
catalysts, on the basis of catalyst surface area. In addition, they showed that CPs had
a higher selectivity and stability. Their long-term activity was also better than those
of classical model catalysts. However, samples were synthesized by the standard
high-temperature solid-state route, resulting in low specific surface area, about
1 m%/g. Obviously, improved efficiency of the catalytic process depends strongly
on the specific area of the material used. Then, M. Sergent and his group launched
a program devoted to increasing the surface areas of the CPs. The work drew on
a previous result in his Thesis [4] that the hydrogen reduction of alkaline
thiomolybdites affords new compounds that turned out to be in fact CPs. The first
approach was to reduce mixtures of ammonium thiomolybdates and, for instance,
copper salts. The CP Cu,MogSg was obtained at temperature as low as 600°C, with
an intermediate step involving a mixture of MoS, and Cu [93]. Subsequently,
samples of Cu,MogSg supported on alumina were prepared by impregnation with
an ammonia solution of ammonium heptamolybdate and copper nitrate, followed by
air calcination, sulfuration under a H,S flow, and finally reduction by hydrogen
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[94]. The crystallites were so small that the CP could not be characterized by
X-ray diffraction, only by EXAFS. Also, searching for a preindustrial route for
CP preparation, finely grained Ni,MogSg powders (0.5-1 pm) were prepared by
bubbling H,S in an aqueous solution of heptamolybdate and Ni nitrate. The
coprecipitate was dried and H, treated as previously [95]. Finally, an indirect route
to prepare supported Ni-CP catalyst was to start from a commercial Ni-Mo catalyst
precursor; to sulfide it until the early formed “NiMoS” was fully dissociated in MoS,
and Ni particles, as mentioned above in the example of copper; and to react and
reduce them under hydrogen in order to synthesize the CP [96]. Catalytic activity
measurements were used to optimize the reduction treatment. It should be noticed
that Cu,MogSg was recently evaluated also as a catalyst for the ring opening of
tetrahydrofuran [97] and for hydrogenation, dehydrogenation, and hydrogenolysis
reactions, similar to those commonly catalyzed by platinum group metals [98].

6.2.3 Thermoelectricity

The figure of merit of a thermoelectric material, that is a measure of its efficiency at a
temperature T, is given by ZT = o’T/pA, where a is the Seebeck coefficient, p
the electrical resistivity, and A the thermal conductivity (both electronic and of the
lattice). The latter should be minimized, and, in this respect, compounds with heavy
constituent masses and open structures hosting mobile atoms that act as good
scattering centers for phonon are good candidates [99]. This is the case of CPs
where the counter-cations have large thermal factors, especially for smaller ones,
which are strongly delocalized and are able to “rattle” inside their cage-like site. In
addition, partial substitutions are possible both on the chalcogen positions and even
on the cluster itself, increasing the local disorder. Finally, the electrical resistivity
can be tuned, by varying the VEC. Although first evaluations of Seebeck coefficients
of metallic CPs were published quite early [100, 101], it is only in the late 1990s that
theoretical calculations were carried out for the search of CP-based thermoelectric
materials [102, 103]. The same year, T. Caillat et al. studied the semiconducting
mixed-cluster pseudo-binary (see Sect. 7) Mo,ResSeg [104], followed by the
obtention of a ZT value of 0.6 at 1150 K for Cu, 3gFey ¢sMogSeg [105]. This value
is very encouraging, because it is comparable to that of Si-Ge alloy in the same
temperature range and to the state-of-art thermoelectric materials (ZT = 1 for most of
them) and it was not yet overpassed for any MMogQg true CP, in spite of subsequent
attempts. In contrast, higher value was recently reported for the condensed cluster
(see Sect. 7) compound Ag; gMogSe;; with ZT ~ 0.7 at 800 K only, about twice the
value calculated for Cu, 3gFeq¢sMogSeg at the same temperature [106]. The ther-
moelectric properties of this very rich series of condensed clusters materials are still
the subject of extensive studies within the framework of a close French collaboration
between the Institut des Sciences Chimiques de Rennes and the Institut Jean Lamour
in Nancy ([107] and references therein). Interested readers could also refer to the
chapter of this volume entitled Thermoelectric Properties of Ternary and Quater-
nary Mogs and Mog Cluster Selenides.
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7 The Legacy of Chevrel Phases

Soon after the discovery of CPs and the understanding that they displayed outstand-
ing properties, considerable synthetic works were made in Rennes, under the
supervision of Marcel Sergent. These new approaches involved changing the con-
ditions for the synthetic procedures and thereby providing opportunities for fine-
tuning their properties. These developments are summarized below.

7.1 Condensed Clusters

In 1979 M. Sergent and R. Chevrel, working with indium counter-cation, reported
the first example of a condensed cluster based on CPs [108]. It was based on the
MogSe;; unit built from two octahedral Mog clusters sharing a common Moj face
perpendicular to the ternary axis, as displayed in Fig. 12a. This topic was extended
with M. Potel and P. Gougeon. Indeed, in the same year, the Mo, cluster (Fig. 12b)
was discovered as well as the infinite chain (Mog/,).., based on the stacking of
Mo;Q; triangular groups staggered along a ternary axis in the structure of K,MogSg
[109]. Intermediates in this series were discovered when the giant clusters Mog,
Moy, and Mosq [110, 111] were synthesized and characterized. All these cluster
units can be written by the general formula Mo3,,Q3,,,2 (n > 2). Note that in many
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Fig. 12 The MooS;; unit in K;Mo,5S;9 (a) and the M0,,S14 (b) unit in K,MogS; [109]
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cases, the condensed clusters coexist in the structure with the octahedral one:
for instance, the compound K;Mo,5S;9 corresponds to the developed formula
K>(MogSg)(Mo0oS11) [109], and, in contrast, MogSe;; alone was found in the struc-
tures of Ag.MogSe;; (x = 3.6 and x =~ 4) [112]. Many compounds based on such
high-nuclearity clusters were synthesized and structurally characterized in the fol-
lowing years. They included the giant cluster (Mo036S38)' [113], as well as the
(M0158e17)3_ [114] and (M0218e23)5_ ones [115], the latter having an odd number
of molybdenum atoms. A theoretical study of MogQ;;, M01,Q4, and (M03Q3)xo
was performed in the early stage [37], followed by a more extensive DFT calcula-
tions, which interrelated to the whole series M03,,Qs3,,.0 (n = 3-8 and 10) [116]. The
filling of all bonding orbitals leads to an optimal VEC of (13n — 2) for even n (refer
to the value of 24 for CP, with n = 2) and (13n — 3) for odd n. Also, a large HOMO-
LUMO gap is maintained in all these compounds [116, 117]. Then, depending on the
filling of the MOs, i.e., the counter-cation stoichiometry, semimetallic [112] and
semiconducting [107] behaviors were reported. As mentioned above, the latter
compounds are subject of intensive research as thermoelectric materials. InMogSe;;
and In,Mo5Se ¢ (x = 2-3) were also evaluated for catalysis [118]. Many of these
condensed cluster compounds exhibit superconductivity with 7. in the range
1.7-4 K [110]. In the example of Tl,MogSeg (T, = 2.2 K), a very high anisotropy
of the critical field was reported [119], as expected from its strongly anisotropic
structure. Finally, some of these infinite chain-containing compounds M, MogQq
(Q = Se, Te) were dispersed in polar solvents. The pristine material was recovered
after evaporation, giving access to highly oriented films by brushing a thin layer of
the solution in one direction onto a substrate: the longitudinal conductivity was five
times larger than the transverse one [120].

Finally, it is noteworthy that Marcel Sergent also initiated with P. Gougeon the
study of another type of condensed clusters, present in low-valence molybdenum
oxides, where Mog octahedra share their edges [121]. This family is very rich, and its
development is still being pursued in Rennes [122].

7.2 Mogs and Reg Cluster Compounds Derived from Chevrel
Phases

The MogSg Chevrel Phase with 20 electrons per Mog cluster is not stable and
decomposes at 470°C [80]. Its stabilization can be obtained by adding up to
24 electrons to the Mo 4d band, corresponding to the filling of the energy bands
near the Fermi level. This can be achieved by substituting sulfur ligands by halogen
ones in MogSg or by replacing molybdenum atoms of the Mog cluster by other atoms
richer in valence electrons. M. Sergent developed this topic with C. Perrin and
A. Perrin. More details are given in previous review papers [123, 124].
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7.2.1 Mog Cluster Chalcohalides

A consequence of the replacement of chalcogen by halogen in CPs, performed at
high temperature (1,000—1,200°C), resulted in new stable Mog chalcohalides where
the VEC values ranged from 20 to 24. The first discovered and structurally charac-
terized of these Mog chalcohalides were MogQg_ X, (X = halogen, Q = chalcogen,
0 < x < 2) isostructural to MogQg [125]. In these chalcohalides, the cluster units are
interconnected in the same way as in CPs by inner-apical chalcogen double bridges
(Q™/Q™*), while inner halogens lie on the 2c site located on the threefold axis of the
unit. The channels that develop in the three directions of the lattice are empty
[126]. When Q = S, definite compounds have been obtained with x = 2, namely,
MoeSeBr, and MogSgl,. They are superconducting at 7. ~ 14 K, exactly like
PbMo¢Sg, while MogSg is superconducting only at a very low temperature. A
previous ''?Sn Méssbauer study on SnMogSs (7. = 11 K) suggested that the high
T. of CPs could be due in large part to the additional soft lattice mode associated with
Sn in SnMoeSg [127]. However, the high T, reached by MogS¢Br, and MogSel,
without any counter-cation in the channels ruled out this assertion. Finally it was
assumed that it is essential that the halogen ligands occupy the 2c sites on the ternary
axis in order to maintain the symmetry and then to maintain the twofold degeneracy
of the Eg-band at the Fermi level [125]. In addition, these two chalcohalides have a
VEC value of 22 as in PbMogSg (7. = 14 K), confirming the importance of the VEC
for the superconducting properties. As discussed by theoreticians, the 22 VEC value
corresponds to a maximum of the density of states near the Fermi level [17].

When Q = Se or Te, solid solutions MosQs_, X, were obtained with X = Cl, Br,
Iand 0 < x < 2. T, increases correlatively with the VEC value up to 7.0, 7.1, and
7.6 K for Q = Se and X = Cl, Br, and I, respectively (Fig. 13). MogTeg, not
superconducting above 1 K, becomes superconducting after iodine substitution
with a maximum 7. = 2.6 K for MogTegl, [125].

Note that these compounds constituted the first molybdenum chalcohalides
obtained at high temperatures, in contrast to the previous ones synthesized around
500°C, like M0S,Cl,, MoS,Cl;, M0,ClsS;, or Mo3S,Cl, [128—-130], where molyb-
denum has a higher oxidation state. These results opened the way to new families of
stable, high-temperature Mog chalcohalides, in which the 24 VEC MogL4 (L = hal-
ogen or chalcogen) units are interconnected by shared inner and/or apical ligands as
in the following examples. The three-dimensional MogX90Q (X = Cl, Brand Q = S,
Se, Te; X = I and Q = Se, Te), with X** interunit connections developing in the
three directions of the space [131], are insulating and exhibit dielectric relaxations
[132]. The one-dimensional MogXgQ, (X =Brand Q = S; X =Tand Q = S, Se)
develops infinite chains of units via Q™ and X** bridges [133, 134]. They are
insulating and exhibit as expected a dielectric anisotropy [132]. The semiconducting
two-dimensional MogBrS; is built up from chains similar to the ones observed in
MogXgQ,, but here the units are slightly tilted in the chains to establish interchain
connections in the second direction of the space via inner-apical ligands (s
S*h [135].
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Fig. 13 Critical temperature 7, as a function of halogen concentration x for the solid solutions
MogSes_,Br,, MogSes_,I,, and MogTeg_,I, [125]

7.2.2 Reg Cluster Chalcogenides and Chalcohalides

A second way to tune the VEC in CPs was to substitute (at least in part) Mo by a
metal richer in electrons, such as Re [136] or either Ru or Rh [137]. All the
compounds synthesized are isostructural with MogSeg. As selected examples, the
solid solutions Mo,Re;Sg_,Se, (0 < x < 8) and Mo,Re,Seg [ Te, (0 < x < 1.2)
turned out to be a rare example of truly semiconducting CP, owing to the filling of
energy band near the Fermi level by 24 valence electrons (Fig. 14) [136]. In the case
of Te, the synthesis of Mo,Re,Teg failed, and in place, the diamagnetic MosRe,Teg
was obtained. With a VEC of 22, it is a superconductor with 7, = 3.55 K (Fig. 14)
and an initial slope of the upper critical field comparable to that of MogSeg
[136]. Mo4Re,Teg is — with the above-mentioned MogTegl, — a rare example of a
superconducting telluride Chevrel Phase. Note that a mixed cluster compound was
also obtained with ruthenium: the 24 VEC semiconducting Mo4Ru,Seg [137]. Any
attempt to obtain purely Reg-based CP structure is of course unattainable because it
would imply a VEC value higher than 24, corresponding to the filling of antibonding
metal-metal orbitals.

Indeed, these results prompted M. Sergent and A. Perrin to start a systematic
search for Reg chalcohalides built from RegL4 (L = halogen/chalcogen) units with
various halogen/chalcogen ratios, with a VEC = 24. At the beginning, the system
Re-Se-Cl was chosen, because it was particularly suitable for X-ray contrast of
ligands. The first isolated compound was the lamellar ResSegCl, where adjacent
units are connected in a plane by four inner-apical (Se"*/Se*) double bridges,
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Fig. 14 Temperature dependence of the resistance ratio of the semiconducting Mo,Re,Ss,
Mo,Re,S4Sey, MosResSeg, and Mo,ReySe;Te and the superconducting MosRe,Teg compounds
[136]

exactly as in CPs, while in the third direction are terminal CI* ligands [138, 139]. It is
a semiconductor with a resistivity ratio up to 10% at room temperature [140] and a
bandgap of 1.42 eV [141]. Its discovery was followed by the series of definite
compounds RegSes_,,Cls,,, (n = 1, 2, and 3) where the cluster units are linked
by CI*® halogen bridges extending along 3, 2, and 1 direction, respectively. 0-D
compounds were also obtained, namely, the neutral ResSe,Cl( (i.e., n = 4) and the
ionic compound KRegSesClg [139]. All these compounds are dielectrics [132], and
some of them are isostructural with molybdenum analogues, while others display
original structures.
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This work was subsequently extended to brominated compounds, and a number
of new structures were reported, for instance, KRegSsBrg [142] or Csy;KRegSgBr;
[143], if we restrict ourselves to the first reports. Many original arrangements
were subsequently published, the detail of which can be found in review articles
[123, 124, 144, 145]. Note that some ionic compounds with large counter-cations
(viz., cesium) are readily soluble in various solvents [144] and then could act as
starting materials for solution chemistry (see below). A review of the
photoluminescent properties of Reg cluster-based compounds, in relation with
theoretical calculations, is reported in the chapter of this volume entitled Renium
Hexanuclear Clusters: Bonding, Spectroscopy, and Applications of Molecular
Chevrel Phases.

7.3 The Beginning of Solution Chemistry of Octahedral
Clusters

The CPs are obviously insoluble in any solvent, due to the strong intercluster
bridging ligands. This is also the case of most of the cluster-based chalcohalides
mentioned above. In contrast, several Mog chalcohalides built from discrete MogL14
units are slightly soluble [146], while the molybdenum halides Cs,MogX 4 (X = Br,
I) appear as efficient precursors for solution chemistry [147]. The ionic K;RegSesClg
chalcohalide was reported to be slightly soluble in ethanol [148], but not enough to
be effective synthetic reagent. Several approaches were proposed to improve the
solubility of chalcohalides, in order to have available molecular precursors suitable
for developing novel solution chemistry:

e Replace the inorganic counter-cation by an organic one, like tetrabutyl-
ammonium, via a metathesis reaction; this pioneering approach was used for
the electro-crystallization of tetrathiafulvalene derivatives [149, 150].

» Replace the terminal ligands, either starting from an ionic compound or using an
excision reaction; prominent examples include pyridines [151]; phosphines
[152]; cyano [153-155], hydroxo [156, 157], or aquo groups [157, 158]; and
dendrimers [159].

The availability of these precursors led to an intensive research program for
making new hybrid compounds. Novel coordination compounds and self-organized
structures resulted (refer, for instance, to the reviews [123, 124, 144, 155, 157)).
Further examples can be found in the chapters of this volume entitled Octahedral
Chalcogenide Rhenium Clusters: From Solids to Isolated Cluster Complexes and
Exploring the Breath of Terminal Ligands in [M06X8]4+ and [ReéQg]2+ Based
Cluster Complexes.
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8 Conclusion

In this chapter we summarized and highlighted the essential role of Marcel Sergent
in the discovery and the development of what are now commonly described as the
Chevrel Phases and the more general cluster chemistry he and his research group in
Rennes developed after this discovery. Marcel Sergent received well-deserved and
worldwide recognition for his outstanding initiation and participation in this research
area. However, we should mention that this topic was only a small part of his scientific
activities. For instance, he found another series of ternary molybdenum chalcogenides,
namely, MMo,Qy, characterized by the presence of zigzag chains of molybdenum
[160] and series of compounds based on tetrahedral clusters, like Mo4S4Br4 [161] and
MMe,Qg (M = Al, Ga; Me = Mo, Nb, Ta, V,Re) [162, 163]. The work on MogL.;4 and
RegL 4 clusters was completed by studies devoted to the NbgL,g and TagLg ones (see
the chapter of this volume: Inorganic Niobium and Tantalum Octahedral Cluster
Halide Compounds with Three-dimensional Frameworks: A Review on their Crystal-
lographic and Electronic Structures). He started the study of Mo edge-sharing
condensed clusters, present in low-valence molybdenum oxides, as mentioned above
[121]. He also initiated a research program on ternary phosphides and arsenides with
metal chains and diamond-shaped clusters [164]. Last but not least, he was strongly
involved in the study of high-7,. superconducting cuprates, taking advantage from the
specific equipment he had previously implemented for the study of Chevrel Phases. The
scientific inheritance of Marcel Sergent endures even after several decades. He paved
the way for the present research, outside [165—171] and more especially in his original
laboratory [122, 172—178], where his heirs have built new developments from his initial
outstanding contributions to Chevrel Phases and, more generally, to cluster chemistry.

Marcel Sergent was a very effective research advisor, and we consider as a rare
privilege to have worked with him during years. We are confident that all his past
students and coworkers, in Rennes and outside, have the same feeling. We will keep
in our mind the memory of this exceptional researcher and vey kind man. Finally, we
would like to associate with this tribute to Marcel Sergent his close coworker and
very good friend @. Fisher (1942-2013). The emergence of the Chevrel Phases was,
in a large part, the fruit of their intense and non-lasting collaboration and friendship.
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32 V. E. Fedorov and N. G. Naumov

Abstract This review summarizes the numerous studies on the chemistry of molyb-
denum and rhenium octahedral chalcogenide cluster compounds carried out over the
years at the Nikolaev Institute of Inorganic Chemistry in collaboration with interna-
tional research groups. A pathway from classical solid-state cluster compounds
MogSeg, RegTe s, and K4ReqS 5, influenced by the French school of solid-state
cluster chemistry, to soluble molecular complexes with ResQg and MogQg cluster
cores is provided. Both inorganic and organic ligands can be grafted onto cluster
cages, resulting in a drastic change in the charge and properties of such complexes.

Keywords Cluster - Complex - Crystal structure - Luminescence - Molybdenum -
Rhenium - Solid state

1 Introduction

For a long time, the classical Werner’s theory served as the fundamental base of
coordination chemistry. However, in the mid-1960s of the last century, this
one-center theory underwent a certain “crisis.” In 1964, Cotton [1, 2] introduced
the term “metal atom cluster compounds,” which defined groups of polynuclear
metal complexes with direct metal-metal bonds. In subsequent decades, the chem-
istry of cluster compounds has been developing very intensively; the studies were
carried out in two, largely independent directions, namely, in solid-state chemistry
and in solution chemistry. In these years, M. Sergent and colleagues have studied the
solid-state chemistry of transition metal compounds (niobium, molybdenum, etc.)
[3, 4]. The systematic study of ternary systems M—Mo-S (where M = Sn, Pb, and
other metals) led to the discovery of new ternary molybdenum chalcogenides
containing octahedral metal cluster units MogSg (Fig. 1). The crystal structures and
precise compositions of these compounds were determined later.

Fig. 1 Structural motif of
PbMO(,Sg
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This structural type can be considered as a prototype of the wide group of related
ternary compounds MMogQg (M = Pb, Sn, and other metals; Q = S or Se), which
are now named in literature as “Chevrel phases,” in honor of Marcel Sergent’s then-
PhD student Roger Chevrel [3]. These ternary chalcogenides were investigated very
intensively in connection with their superconducting properties: for that period of
time, some compounds of this type showed critical temperatures of about 15 K and
record-breaking critical fields (about 60 Teslas) [5]. Today, the term ‘“Chevrel
phases” is included in educational and encyclopedic editions, along with Zintl
phases, Laves phases, etc. Further development of the work of this group led to
the synthesis of other new cluster solids with different nuclearities, including
heterometallic clusters [6—13].

At the same time, the research on transition metal chalcogenides was initiated at
Nikolaev Institute of Inorganic Chemistry (NIIC), Novosibirsk, Russia. The study of
Mo/Se and Mo/Te systems has revealed that the lowest molybdenum selenide and
telluride had analytical compositions of Mo3;Q, (Q = Se, Te) [14-17]. Later, single
crystal X-ray diffraction showed that crystal structures of these binary chalcogenides
contain octahedral metal clusters MogQg with the structural motif as in MMogQsg
phases and, hence, they should be described as MogQs.

A systematic investigation of binary rhenium chalcogenides has led to the
discovery of a new rhenium telluride Re,Tes [18]. Later, structural study proved
its cluster nature: the compound comprises octahedral metallocluster core RegTeg,
similar to those in Chevrel phases. These cores ReqTeg are linked in a three-
dimensional array by unusual polytelluride Te; ligands (Fig. 2) [19].

In 1978, W. Bronger has described successively the synthesis and crystal struc-
tures of three new ternary rhenium cluster solids. Alkali metal carbonates reacted
with elemental rhenium in an H,S atmosphere at 800°C, producing CssReeS;3,
K4ResS 15, and NayRegS 5. Structure investigations on single crystals showed that
six rhenium atoms formed an almost regular octahedron with Re-Re distances of
2.61 A. The eight sulfur atoms are arranged over the octahedron surface. Further S
atoms or S, groups couple the [RegSg] units via the Re atoms (Fig. 3). The alkali

Fig. 2 Linking of cluster
cores {RegTeg} through
polytelluride Te; ligands in
the structure of RegTes.
Inner p;-Te atoms are
omitted
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Fig. 3 Structure of the s « «
{[Re6Ss1S42(S2)22 1+~ \
network in K4RegS,. Inner Re | p
p3-S atoms are omitted < - e
« 1
S
& ‘»\I\ .
[ e I 9
« '
d ¢ ¢

Fig. 4 Representation of
the octahedral face-capped
[(MeQ's)L%] unit

metal cations are intercalated in interstices of these skeletal structures [20, 21]. These
findings opened the way toward a wide family of molybdenum and rhenium
octahedral chalcogenide clusters.

Octahedral chalcogenide molybdenum and rhenium cluster compounds possess a
typical structure with face-capped units [MgQgLg]. As sketched in Fig. 4, Mg clusters
are face-capped by eight inner ligands p3-Q and six inorganic and/or organic apical
ligands L giving [M¢QgLg] complexes (M = Mo, Re, Q = S, Se, Te). The intrinsic
properties of Mg cluster complexes depend on the nature of the metal, the number of
cluster valence electrons (CVE), and the nature of Q and L ligands. As we can see
from Fig. 4, Mg clusters in molecular complexes [MgQgLg] have 14 ligands.

The 1995-2000 period of time has seen the development of various chemical
modification methods suggested by different research groups, including both tradi-
tional exchange reactions of the outer ligands and atom substitutions in the positions
of the cluster core resulting in heterometallic clusters (selected references: [22-29]).

In the present short contribution, we do not aim at giving a comprehensive survey
of all research executed in the field of chemistry of molybdenum and rhenium
chalcogenide octahedral clusters over the last years. This field of chemistry is well
covered in numerous excellent reviews [30-38]. Here, we only focus on some
fundamental results, obtained mainly at our Institute (NIIC) and in cooperation
with colleagues from different scientific centers. Below, we present the most
relevant examples of the excision reactions from cluster solids, assembly of new
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molybdenum and rhenium clusters, as well as examples of “assembling” new cluster
polymers from molecular complexes.

2 High-Temperature Reactions

2.1 General Approach for the Synthesis of Octahedral
Molybdenum and Rhenium Octahedral Chalcogenide
Clusters

To date, key octahedral molybdenum and rhenium cluster chalcogenides are syn-
thesized by high-temperature reactions. Exceptions are scarce. The general approach
is based on the thermodynamic stability of cluster solids at certain experimental
conditions. Thus, they can be obtained from various initial compounds taken in the
required stoichiometry. These may be either simple substances or their compounds,
for example, chalcogenides and metal chalcohalides. For instance, Fig. 5 illustrates
some possible strategies for the synthesis of RegSe4Bry.

A typical experimental technique for the synthesis of metal cluster chalcogenides
may be outlined as follows: the initial reagents are loaded into a quartz ampoule; the
ampoule is evacuated and then sealed. The sealed ampoule is placed in an oven and
heated according to a selected regime. To complete the reaction, the mixture is kept
at a chosen temperature for a required time, normally, tens of hours or several days.

ReSe, + ReSe, + ReBr;
Bra(excess) (stoichiometry)
ReGSG4Br10

(high stability)

A

ReSe, + Re + ReBr; h

(stoichiometry)

J

Fig. 5 Synthetic strategies to octahedral rthenium cluster complex RegSe4Br;o
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These cluster compounds usually possess polymeric structures with intercluster
covalent bonding, translating into insolubility in water and organic solvents and
low reactivity. Thus, their chemical properties remained poorly understood for a
long time. A breakthrough in this area came after the discovery of the ways to
transfer polymeric cluster arrays into soluble forms [23, 26]. In NIIC, some original
approaches have been developed to convert insoluble polymeric cluster compounds
into molecular soluble cluster complexes. Further progress in the study of the
octahedral molybdenum and rhenium cluster chalcogenides is associated with solu-
tion chemistry.

2.2 Excision Reactions

As noted above, progress in the chemistry of molybdenum and rhenium chalcogen-
ide octahedral clusters to a large degree is associated with solution chemistry. In
particular, we have developed several simple and effective methods for converting
the extended cluster compounds into soluble forms using reactions with molten
KCN and KOH.

Historically, the first studied process was the reaction of RegTe;s with a melt of
potassium thiocyanate KSCN at 600°C that gave the complex [ReTesSe(CN)e]* ™
[26, 39]. Such result can be explained based on thermal properties of KSCN, namely,
potassium thiocyanate melts incongruently with the formation of KCN, potassium
polysulfide, and sulfur. So, more nucleophilic sulfur atoms substitute tellurium in the
cluster core [RegTeg], and CN ligands coordinate to rhenium atoms forming the
cyanide complex [RegTesSe(CN)6]* . In subsequent experiments, we used melts of
pure KCN or NaCN for synthesis of cyanide cluster complexes. Molten alkali metal
cyanides constitute a fruitful media for excision reactions or assembling new clusters
from binary compounds, owing to the combination of their high thermal stability,
nucleophilicity of CN™ ions, as well as unique kinetic and hydrolytic stability of
formed cluster cyanides (characteristic to all cyanides). For example, the reaction of
RegTe s with molten sodium or potassium cyanide at 550-650°C leads to the
formation of sodium or potassium salt, respectively, of the anionic complex
[ReTes(CN)61*™ [26, 39, 40]:

RegTes + 6 MCN = M,y [ReﬁTeg (CN)d +M,Tex +7 — x Te (M = Na or K)

The reaction proceeds with a high yield by breaking of the polytelluride bridges,
while retaining the cluster core. In literature, related processes are often referred to as
cluster core excision reactions. Polymeric RegQgBr, (Q = S or Se) serves as a source
of RegQg>* core for preparation of [ResQs(CN)6]*~ (Q = S, Se) [26, 41] in similar
reactions with molten KCN or NaCN. All obtained anionic complexes
[RegQs(CN)6]*~ are stable in aqueous and organic media and undergo reversible
one-electron oxidation to [RegQg(CN )6]3 . To date, the cyano complexes
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[ReTeg(CN)e]* ">~ are the only soluble complexes with {RegTeg }>*** cluster core

[40, 42]. Molybdenum cluster polymers — Chevrel phases MogSeg and ZnMogSg —
may also react with molten alkali cyanides giving molecular soluble complexes
[MogQs(CN)sl’™ (Q = S, Se) [43, 44].

It was found that the cluster cyanide complexes possess high hydrolytic stability.
Their another promising and widely utilized property is the ability of ambidentate
CN ligands to further coordination that makes such complexes good building blocks
in the synthesis of complex structures, as a rule, of a polymeric nature. In particular,
chalcocyanide cluster complexes were extensively utilized as building blocks for
new generation of expanded Prussian blue-type framework solids and other
extended networks and cluster-supported compounds. This research area will be
discussed further.

Another simple and efficient approach to soluble [ResQg] clusters is the excision
reaction with molten KOH or CsOH to produce molecular octahedral cluster
hexahydroxocomplexes [Re6Q8(OH)6]47 [45, 46]. For example, the reaction of
polymeric RegQgBr; (Q = S or Se) with molten KOH results in potassium salt of
[RecQs(OH)g]*~ with a high yield. In this reaction, the highly nucleophilic OH
ligands break both Re-Br—Re and rhombic Re,-(p4-Q), bonds.

One more interesting and important reaction is the treatment of polymeric
Cs4RegSg(S)2/2(CN)4 with aqueous KOH that leads to cleavage of intercluster S
bridges in the structure and formation of ionic trans-[RegSg(CN)4(OH),]*~ cluster
complexes [47, 48].

2.3 Formation of New Cluster Solids via High-Temperature
Reactions with Molten Cyanides

Along with excision reaction, it was found that the reaction of binary chalcogenides
ReQ, (Q = S or Se) with molten KCN or NaCN is a very efficient way to prepare
new cluster compounds. The reactions of ReS, or ReSe, with molten cyanides
yield octahedral clusters of MgQg-type. In this process, reduction of transition
metal cations M** by CN™ anions takes place. Cyanide ions, as suggested, have
been oxidized and transformed to a gaseous cyanogen (CN), or amorphous solid
paracyanogen (CN),. It is especially valuable that the practically simple method
for obtaining cluster compounds in the melt of cyanides was found to be applicable
for the synthesis of several complexes with different cluster cores, namely,
Ks[MogSes(CN)s]  [49],  Csy[ReSo(CN)4]  [50],  Ku[ReeS10(CN),] - [51],
K4[RegSeo(CN)4] [51], and Kg[Re,CS17(CN)g] [52]. For example, reaction of
ReS, with KCN at elevated temperature leads to the formation of the layered
compound K4RegS o(CN), [51]. In this polymer, the RegSg units are linked into
two-dimensional grids by sharing four apical sulfide ligands. Additionally, two
“trans” rhenium atoms in the cluster core are coordinated by terminal cyano groups.
Thus, according to Schifer notation, the crystallographic formula of this compound
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may be written as K4[RegSg(CN)2(S)4/2]e- From a formal point of view, this
compound could be imagined as the product of cleavage of two Re—pi-S—Re bridges
in [{RegSg}(S)s2] and their substitution by terminal cyano ligands. The next
member of a series of My[{ReeSg}(CN)2(S)6—_2x2], where M is an alkali metal,
is the new chain polymer Cs,[{RegSg}(CN)4(S)2/2]0, Which was obtained with high
yield by high-temperature reaction of ReS, with KCN in the presence of CsCl excess
[50]. The compound completes a homologous series of octahedral cluster anions
[ResSsSenl* ™, [ReeSs(CN),Sanl*™, [ResSg(CN)4Sy]* ", and  [ResSs(CN)6l*™
which could be described as consequent cleavage of Re—-S—Re bridges and sub-
stitution of the bridged sulfide ligands by terminal cyano ones (Fig. 6).

The reaction of the mixture of ReS, and MoS, in a molar ratio of 1:1 with
an excess of KCN at 750°C leads to the formation of black crystals of
Kg[Re3sMo3Sg(CN)s] that contains {MgQg}-type Re—Mo heterometallic clusters.
This compound is isostructural with Kg[MogSeg(CN)s], which was previously
reported [49]. The metal atoms in the basal plane of each {Re;Mo3Sg} cluster core
are bound to four terminal CN ligands, and the clusters are covalently linked by the
two remaining cyanide ligands into linear chains [Re3M03Sg(CN)4(CN),5]% ., that
lie along the c-axis (Fig. 7).

4
By

pt
/ .
',
| ¥
W o -

! "\
CSaK[RGeSs(CN)s] CS4[ReeSQ(CN)4] K4[R66810(CN)2] Li4[RGGS11]
(0-D) (1-D) (2-D) (3-D)

Fig. 6 Members of the [{ResS's CN)*(S)* ™ 6_2uy2] family

Fig. 7 Fragment of the polymeric chain {[RC3M03Sg(CN)4(CN)2/2]67 Yoo
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The cluster core {Re;Mo3Sg} has 24 CVE, as confirmed by the diamagnetism of
the compound. From a formal point of view, as the reaction proceeds, the reduction
of Mo** and Re** occurs [53—55]. We assume that KCN acted as a reducing agent
according to the following reaction equation:

Re*S,+3Mo*"S, + 14KCN =Ke [Re3* " Mo3>** Sg(CN)5] +9/n (CN),, +4K,S

Additional experiments supported by mass spectroscopy revealed that the
reaction between ReSe,, MoSe,, and KCN leads to the formation of a complex
product containing molecular and polymeric cluster species with a mixture of
{Reg_Mo,Seg} (x = 0-4) cluster cores.

Surprisingly, the reaction of ReS, with KCN at 750°C resulted in the formation of
the diamagnetic compound Kg[Re,CS17(CN)g] [52] comprising the 48-electron
cluster anion [Re,(p3-S) 14(p6-C)(p—S)3(CN)6]87 (Fig. 8). This cluster can be con-
sidered as a dimer composed of two {Re¢} octahedra face-capped by seven inner
sulfide p;-S ligands and three terminal cyanide ligands. The rhenium atoms of two
triangular faces of the {Reg} octahedra are connected through a pe-C interstitial atom
and three p1,-S ligands, thus, forming a {RegCS5} prism. Dissolution of this com-
pound in H,O in the presence of air oxygen led to the two-electron oxidation and
formation of compounds based on 46-electron [Re;,CS 14(p-S)3(CN)6]67 anions.
From the chemical point of view, the presence of p,-S ligands causes a significant
difference between octahedral Reg and Re;, cluster compounds, first of all, due to
the potential lability of p,-S ligands in comparison with p3-S ones. This is the main
reason why the central fragment of {Re,,} cluster complexes — the {RegCS5} prism
— was considered to be the most interesting for investigation. The structural motif
[Re;>CS 7(CN)s]®~ reminds that of Mo;,Sg, found in the ternary molybdenum
sulfide Ba;Mo,,S;5 [56].

Fig. 8 Structure of anionic
cluster complex
[Re5CS17(CN)6]*~
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The mean Re-Re distance between metalloclusters in [ReIZCSW(CN)é]
3.17 A. This distance is sensitive to charge of anion and drops to 2.90 A after
two-electron oxidation [52]. Later extensive substitution chemistry of both apical
CN and bridging p-S ligands was developed [57-59].

Thus, high-temperature chemistry of rhenium chalcogenides still demonstrates
fascinating variety of thermodynamically stable compounds upon variation of reac-
tion conditions (temperature, stoichiometry, presence of additional ions, etc.).

2.4 Condensation Reactions

M. Sergent’s group synthesized ternary molybdenum chalcogenides, comprising
condensed Mog,3,Qg.3x (Q = S, Se; x = 1-3) clusters. The formation of such
clusters can be virtually described as the result of the successive condensation of
Moj triangles. The first member of this series, MogSe;;, contains a bi-octahedral
metal cluster Moy [60, 61]. In this compound the metal cluster is ligated by eight 3
selenium atoms and three 4 selenium atoms located in the plane of the middle Moj
triangle. In the crystal structure of the compound, the metal atoms localized in the
outer Moj triangles are additionally coordinated by six Se atoms, which are bridging
between adjacent cluster MogSe fragments.

Similar cluster units have not been known to exist in the chemistry of rhenium. In
1999, we discovered the condensation reaction of triangular Re; fragments using
rhenium tribromide Res;Brgy [62]. Reactions of the rhenium tribromide with cadmium
chalcogenides led to formation of octahedral complexes of different compositions
(Re¢Q4Bry and ReQgBr,) depending on the stoichiometric ratio of starting
reagents:

2 RC3BI'9 +4 CdQ = [RC@Q4BI‘4}BI'6 +4 CdBI‘Q (Q = S, Se, Te)
2 Re3Bro + 8 CdQ = [ReQg|Brs + 8 CdBr, (Q = S, Se)

The idea of such an approach was that the formation of very stable cadmium
bromide would take place in this reaction, as a result of the ligand exchange reaction
with ResBrg. In accordance with an ionic model, in such a reaction one divalent
chalcogenide ion Q*~, replacing two bromide ions Br~, liberates one coordination
site of the rhenium atom in the structure of Re;Brg. Two such coordination unsat-
urated fragments can be condensed by forming a rhenium-rhenium bond. As a result
of such a condensation, octahedral clusters were obtained. But it is very interesting
that similar cluster condensation can give bi-octahedral cluster motives of composi-
tion RegSeBrg, which is the unique example in a family of condensed octahedral
clusters [62]. This complex contains a cluster core similar to MogSe;;, with only
terminal bromine atoms acting as apical ligands (Fig. 9).
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—2

Reg in

) . 4-
Res in ResBrg Reg in ResSesBre] [ResSeBre*

[ReQSeﬁBrs]Z

Fig. 9 Demonstration of formation of octahedral and bi-octahedral rhenium clusters by conden-
sation of triangles

2.5 Reactions with Molten Organic Ligands

We proposed a simple and efficient approach to the ligand exchange reactions in
molten organic compounds, which can serve as ligands. These reactions can be
considered as a separate group of reactions. Starting compounds are cluster halides
[Re6Q8X6]4*’3* (Q =S or Se; X = Cl, Br, or I) [63-66]. Organic compounds are
various N-donor heterocycles, triphenyl pnictogens, etc. melting congruently at
temperatures of the order of 100-200°C, convenient for synthetic works. Upon
completion of the reaction, the excess of organic compound can be easily washed
off. Here are some examples of compounds produced by ligand exchange reactions,
when apical halide ions were replaced by organic ligands. For example, the cluster
complexes [RegSg(3,5-Me,PzH)4]|Br,-2(3,5-Me,PzZH) where Q = S or Se,
3,5-Me,PzH is 3,5-dimethylpyrazole, have been synthesized using reaction of
rhenium chalcobromide complexes Cs4[ReSgBre]-2H,0 and Cs3[RegSegBrg]-H,0,
respectively, with molten 3,5-dimethylpyrazole (Fig. 10).

This new synthetic approach for grafting various organic ligands to octahedral
rhenium cluster compounds has been applied.

3 Properties of Cluster Complexes

As it was noted earlier, cluster solids prepared at high temperature with low ligand/
metal ratio (L/Mg < 14) are typically extended arrays where a strong intercluster
bridging and even M—M interactions (as is the case of Chevrel phases) are realized.
These compounds demonstrate cooperative properties typical for condensed matter,
namely, band structure (in contrast to molecular orbitals for molecular complexes),
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. N
P CJ EPh, Q.0

1 (E=P, As, Sb)
Cs,[{RegS,}Brg] ‘ Cs;[{Re Q,Br}Brg] Cs,[{ReQq}Br] Cs;[{Re,Q,Br}Br,]
(=S, Se) (Q=S, n=4; Q=Se, n=3) (@35, Se)
L 160:C I 2001C
cis-[{Re¢Sg}(pyz),Br,] pyz fac-[{Re;Q,Br}(pyz);Br;] trans-[{Re,Q;}(EPh,),Br,] fac-[{Re,Q,Br}(EPh,),Br,]

Fig. 10 Reactions in molten ligands: 3,5-dimethylpyrazole and EPh; [63, 66]

conductivity, superconducting properties coupled with very high critical fields [3, 5,
67], thermoelectricity [68—74], or catalytic properties [75, 76]. The features of the
electronic structure of such compounds allow, in some cases, intercalation/
deintercalation reactions of MogSeg and LisRegS 5 [77].

The transition from extended arrays to isolated molecular cluster complexes
causes the loss of some properties characteristic of extended arrays but allows us
to get new information about the structure and new properties of cluster complexes.
Molecular complexes are soluble and in some cases can be easily modified by the
ligand exchange. Molecular complexes are better suitable for the research on such
properties of the clusters as magnetism, redox reactions, and electron and optical
spectra. On the other hand, molecular complexes, as building blocks, can be widely
used for the synthesis of new compounds with a pre-planned composition and
structure. The mutual transition of a condensed solid into molecular complexes
and back is a fruitful strategy for study of properties and for the design of various
materials.

3.1 Properties of Molecular Clusters
3.1.1 Electrochemical Behavior
Cyclovoltammetric studies of solutions of cluster salt anions [RegQg(CN)6]*~

(Q =S, Se, or Te) showed that these anions undergo quasi-reversible one-electron
oxidation [78]:

[ResQs(CN)]*™ — 1ez[ResQs(CN)y] >

At higher potentials, the irreversible multi-electron oxidation was observed.
Values of electrochemical potentials of some complexes [ResQs(CN)]*™ (Q = S,
Se, Te) vs. normal hydrogen electrode (NHE) are given in Table 1.
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Table 1 Redg)f potentials of A pion Eip V (CH:CN) Eyp. V (H,0)

[ResQs(CN)6l™ ", (Q = S, Se, [ReeSs(CN)e* 0.66 107

Te) in acetonitrile and o8 6 — : .

aqueous solution [ResSeg(CN)s] 0.36 0.82
[ReeTesg(CN)e]*~ 0.08 0.53

The decrease of E;/, in the S—Se-Te series indicates a significant contribution of
chalcogen orbitals to HOMO levels of the cluster that was confirmed by density
functional theory (DFT) calculations. As can be seen from Table 1, the solvent has a
strong effect on the cluster redox potentials. The cluster anions can be chemically
oxidized, for example, by saturated aqueous bromine solution, which appears to be a
convenient oxidizing agent (E° = 1.07 V vs. NHE), as its oxidation potential is
not too high for further irreversible oxidation of the cluster anion and its excess
can be easily removed. Oxidation results in a change of the color of the solution
(Se derivative changes color from orange to green). Oxidation by oxygen is also
possible for [ReﬁQg(CN)6]4_ (Q = Se, Te) in acidic aqueous solutions. The anions
[RCGQg(CN)6]37 (Q =S, Se, Te) were successfully isolated and characterized.

In the IR spectra of oxidized anions, intense absorption bands appeared in the
region of 500-600 nm, which is associated with a change in the color of the solution
(in particular, solution of [ReeSes(CN)g]*~ within oxidation changes color from
orange to green). The position of these bands depends on the nature of the chalcogen,
and, in the S, Se, Te series, they show a characteristic red shift. In addition, in the
long-wavelength part of the spectra (800—1,000 nm), low-energy low-intensity wide
absorption bands appeared [79]. Similar behavior was found in other rhenium
clusters [12, 13, 31, 38, 80].

Electrochemical behavior of heterometallic clusters [ResMo3Qg(CN)g]"™ (Q = S,
Se) is more complicated and demonstrates several redox waves, for example:
[ResMosSeg(CN)l” "~ (24 — 23 CVE, E;, = —1410 V),
[ResMo3Seg(CN)g]®™~ (23 — 22 CVE, E;, = -0818 V) and
[Re;Mo5Ses(CN)6]’ "#~ (22 — 21 CVE, E,» = —0.325 V). The observed potentials
agree well with inaccessibility of [Re;Mo5Ses(CN)gl”~ and [ResMo;Seg(CN)g]®~
anions in aqueous solutions, as well as with oxidation of [ResMo3Seg(CN)g]”~ anion
by air oxygen in CH;CN or DMF solution. These properties show that mixed-metal
clusters display dramatic decrease of 24/23 CVE redox potential in comparison with
values for [RegSes(CN)s]> 4~ cluster (Table 1). This complex behavior is associ-
ated with destabilization of two frontier molecular orbitals in heterometallic Re-Mo
clusters [53, 54]. On the other hand, the [MogSeg(CN)g]"™ clusters display lower
potentials of 22/21/20 CVE transitions in comparison with [ResMo03Seg(CN)g]" ™~
[44, 81].

3.1.2 Protonation

Coordinated hydroxo-groups in [RecQs(OH)s]*™ (Q = S or Se) can be easily
protonated by adjusting acidity of the aqueous solution. The protonation produces
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a homologue series of [ReQs(H20)(OH) " * (x = 0, 2, 4, 6) that was isolated
and structurally characterized [82]. Structures of these compounds comprise many
short hydrogen bonds between coordinated H,O and OH groups with O...O
distances varying from 2.49 to 2.69 A, which seems to be responsible for the
low solubility of aqua-hydroxo complexes K,[RegSg(H,0),(OH)4]-2H,O and
[RegQg(H>0)4(OH),]-12H,0 (Fig. 11). Similar short bonds are also observed in
salts based on [RegSg(CN),(OH)(H,0)]>~ anion [47].

In contrast to [Re6Q8(OH)6]47 precipitating at pH 5-9, the complex trans-
[ReGSg(CN)4(OH)2]47 remains water soluble over a wide range of pH values that
allowed to estimate the acidity constants of coordinated water molecules for the
protonated form trans-[RegSs(CN)4(OH),]* . According to [47], there are two
distinct steps that gave acidity constants to be pK,; = 3.3, and pK,, = 6.6 (Fig. 12).

L H0 = [ResSs(CN),(OH) (Hzo)]s_

+H;0™ (pK,, = 3.3),

[Re6Ss(CN),(H0),|

*” + H,0 = [RegS5(CN), (OH),] "

+ H;0" (pK,, = 6.6)

[Re6Ss(CN),(OH)(H,0)]

Coordination to metal cations gives extended polymeric frameworks based on
Re—-OH-M-OH-Re interactions [83].

Fig. 11 Fragment of
structure of
[ResQg(H20)4(OH);]
-12H,0 (Q = S or Se).
Chalcogen and hydrogen
atoms are not shown
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Fig. 12 Titration curve of the trans- [RegSs(CN)4(H,0),]*~ complex with 0.05 M solution of KOH

3.1.3 Apical Ligand Exchange

The chemistry of ligand exchange is well developed for coordination complexes, and
the known approaches are successfully used in cluster chemistry. Kinetic measure-
ments for this class of compounds are not typical. One rare example is the estimation
of k; rate constants for [RegSeg(PEt;)s(CH;CN)]** and [RegSeg(PEt;)s(DMSO)]**,
which are 3.9 x 1077 s~ ' and 7.5 x 10~® s, respectively. These values allowed
classifying the rhenium octahedral complexes as kinetically inert like Ru** or Cr**
complexes [84]. Usually, apical ligand exchange reactions take place in aqueous
solutions or organic media. We proposed simple and efficient ligand exchange
reactions in the melt of organic compounds, serving as ligands. These reactions
can be considered as a separate group (see Sect. 2.5).

The suitable starting compounds for the ligand exchange reactions were cluster
halides RegQsXe'™ (Q = S, Se; X = Cl, Br, ) and hydroxo complexes
[ReQs(OH)g]* . For example, ligand exchange reactions of [ReQs(OH)g]*~ pro-
duced acido complexes [ReGQg(RCOO)6]47 (R =H, CH3;) [85, 86], as well as N and
P donor ligands [26, 4042, 87] (Fig. 13).

We found that the promising complexes for ligand exchange are also mixed-
ligand cyano-hydroxo complexes trans-[RegQs(CN)(OH)s .]*~ (Q = S, Se)
possessing both inert (cyano-) and labile (hydroxo-) ligands. The use of these
complexes open the way to wide range of substituted derivatives with the general
formulas trans-[Re¢Qg(CN)4L,] and trans-[ResQg(CN),L4] [47, 48, 88].

The apical ligand exchange chemistry of the [R612C814(H-S)3(CN)6]67 complex
was also extensively studied. In recent years, its derivatives with apical OH ", SO327,
and Br™ ligands have been reported [89-91] (Fig. 14).
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Fig. 14 Reactivity of [RelzCS|7(CN)6]67 cluster

3.1.4 Inner Ligand Exchange Reactions

As shown above, even apical ligands L in octahedral cluster complexes [RegQg]L¢
are quite inert. The inner chalcogenide ligands Q (S, Se, Te) are associated with the
metal octahedral cluster of the p3-type, and their replacement is possible only under
rather severe experimental conditions. For example, at high temperatures (>600°C),
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it is possible to replace tellurium atoms by sulfur or selenium ones in a cluster core
[RegTeg] within very wide limits: [RegTeg_Q,] (0 < x < 8).

Generally speaking, complexes with mixed internal ligands can be formed in the
synthetic process without a directed task to replace ligands. Principally, complexes
with different chalcogenide ligands in the cluster core MQg form as a set of isomers,
the separation of which is usually a complicated task. For example, in the case of
MQsQ’», there are three possible geometric isomers, and in the case of MgQ4Q’4,
they are six. In most cases, the structure of solids with mixed ligands tethered to the
cluster core is characterized by the disordering of heteroatoms in all positions.
However, there are examples of compounds with ordered structures; as a rule, they
are formed in the case of a significant difference in the atomic radii of the internal
ligands: Te and CI in RegTegCly = RegTegCly(TeCl,),Cly [92] or Se and O in
[Reﬁse4O4C16]47 [93]. In [Re6Se4O4C16]47, the Reg cluster is surrounded by four
oxygen atoms and four selenium atoms located on the opposite faces of the Se,O,
cube (Fig. 15). This ligand environment leads to a noticeable distortion of the metal
cluster: Re—Re distances vary in the range from 2.46 A for faces coordinated by pis
oxygen atoms up to 2.62 A for the faces coordinated by p5 selenium atoms.

There was a fundamental question about the nature of the resulting solid solutions
in the cluster core [RegTeg_,Q,] (Q = S, Se; x = 0-8). In order to elucidate it, we
carried out an NMR study of the potassium salt K4[RegTeg_,Se (CN)g] formed
during the reaction of tellurium cluster with selenium [42, 87].

25Te and 7’Se NMR spectra were recorded for aqueous solutions of
K4[RegTeg_Se (CN)g] with different Te/Se ratio (Fig. 16). Data evaluation was
made using the additivity of mutual influence of inner '*>Te and ”’Se ligands on their
chemical shifts of corresponding [RegTeg ,Se (CN)g] isomers. Analysis of the data
obtained showed that solid solutions K4[RegTeg_,Se (CN)¢] are a set of isomers of
different chemical composition, as is observed in mononuclear forms in the reactions
of stepwise replacement of ligands. Thus, the ligand substitution in a cluster core

Fig. 15 Structure of
[ReeSes04Clg]*™ in
Cs11(H30)
[RCGSC4O4C]6]3-4H20
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results in a complete series of mixed-ligand complexes that are in chemical
equilibrium:

[ResTes(CN)¢]*™ + Se — [ReTesSe(CN)g]*™ + Se — [ResTesSea(CN),|*
+Se — [ " 4 Se — [RegTesSes(CN),]*
[

R66T€5563 CN 6
+Se —
+Se — [ResTeSer(CN)g]*™ + Se — [RegSes(CN)]*

]
ReﬁTe3Se5 CN 6]4 + Se — [ReﬁTCQSCG(CN)6]4_
4—

These results showed the fundamental similarity of mixed-ligand mononuclear
and cluster metal complexes.

Inner p3 coordinated halide ligands in mixed-ligand complexes seem to be
more labile and can be substituted under mild conditions. For example, one of the
ps3-Cl ligands in [RegQsCI5Clg]™ (Q = S, Se) was successfully substituted using
MesSHE (E = S, Se, Te) in solution [27]. Substitution of the inner bromide in
RegQ;Br; (Q = S, Se) in molten organic ligands was also observed. Two rhenium
octahedral cluster complexes, namely, [RegS;0(3,5Me,PzH)¢|Br,-3,5Me,PzH
and [RegSe;0(3,5Me,PzH)q]Br,-3,5-Me,PzH, were synthesized by the reaction
of rhenium chalcobromides Cs;[Reg(p3-Q7Br)Brg] (Q = S, Se) with molten
3,5-dimethylpyrazole (3,5-Me,PzH) [65].

The p-527 ligands in [R612C514(|J.-S)3(CN)6]67 anion can also be considered
as inner ligands. In contrast to i3-S, they are easily oxidized in aqueous solution
by H,O, forming the [Re]2CS]4(p—SOZ)3(CN)6]6_ anion [57]. p-SO, groups are
chemically active and can be either oxidized to p-SO;, forming
[RelzCS14(p—SOZ)3_X(p—SO3)X(CN)6]67 [58], or reduced to p-S. A series of Rei,
complexes with mixed p-S, p-SO, and p-SO, groups were prepared and isolated
[58, 94]. Recently, it was shown that p-SO, ligands can be also substituted by
p-O and p-Se under mild conditions [59]. The following derivatives were
isolated and characterized: [Re;2CS;4(-O)3(CN)gI®™, [Re;2CS 4(p-0)5(0OH)s1°™,
and [R612CS]4(p-Se)3(CN)6]67. It is noteworthy that, during these transformations,
the p-bridging groups retain their formal oxidation state (2—), which causes the
resulting anions to be of the same total charge (6—) and the same CVE number (46).
The nature of the bridging ligands affects the properties of the Re, clusters, such as
absorption spectra, redox potentials, etc.

3.1.5 Magnetic Properties

Anionic complexes [ReéQs(CN)ﬁ]‘F (24 CVE per Reg) are diamagnetic, while
oxidized species [Ref,Qg(CN)6]37 (23 CVE per Reg) are paramagnetic [79, 95].
Magnetic behavior of (PhyP);[RegSg(CN)g], (PhyP),(H)[ReeSeg(CN)g]-4H,0, and
(BuyN),(H)[RegTeg(CN)g] salts was measured in the temperature range of
77-300 K. The temperature dependences followed a Curie—Weiss law with plegr
changing from 1.75 to 1.81 pg in (Ph4P)3;[ReSg(CN)g], from 1.89 to 2.19 pg in
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Fig. 17 EPR spectrum of polycrystalline [ResMo3;Qg(CN)g] sample at 77 K (g = 2.430)

(Ph4P)>,(H)[RegSeg(CN)e]-4H,O and from 1.89 to 2.02 pg in (BuyN),(H)
[RecTeg(CN)g]. Similar behavior was found in other rhenium clusters with
23 CVE [96-98].

Heterometallic clusters [ResMo3;Qg(CN)g] with an odd number of CVE (21 or 23)
are also paramagnetic. EPR spectra of these complexes demonstrate broad signals
with g-values lying in the range of 2.43-2.56 that is substantially higher than the
conventional electron spin g-factor (Fig. 17).

3.1.6 Luminescence

Complexes with the general formula [RecQgL¢] (Q =S, Se, or Te; L = halide, CN ™,
NCS™, N3, OH /H,O0, anions of carboxylic acids, pyridine and phosphine deriv-
atives, etc.) with the RegQg>* core having 24 CVE in the solid state and in solutions
emit luminescence in visible and near-infrared (NIR) regions upon ultraviolet or blue
light excitation (Fig. 18) with emission lifetimes in the microsecond range [47, 63,
64, 66, 78, 85, 86, 99-103]. They demonstrate long emission lifetimes indicating
that the emitting excited state of the hexarhenium (III) complex is a spin-triplet type
and involves orbitals that are primarily localized on the (RegQg)** core. In addition
to these experimental observations, theoretical studies of the excited state have
demonstrated that the lowest-energy unoccupied molecular orbitals (LUMOs) are
primarily localized on the (ResQg)** core. The long lifetimes, large Stokes shifts,
and excited-state quenching by O, indicate the spin-triplet nature of the luminescent
excited state of the cluster complexes, i.e., the change in spin multiplicity is
involved in the electronic transitions. The luminescence properties of Reg cluster
complexes provided an incentive to establish their potential applications [104—106].
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Fig. 18 Influence of the nature of apical ligands on emission maximum wavelength in the
photoluminescence spectra of solutions of the complexes [ReeSs(OH)61*™ (1), [ReSs(CH;CO0)4]*
(2). and [ReeSsBre]"~ (3)

Well-developed synthetic procedures for the preparation of [ResQglg] complexes
with various apical ligand environments afford a range of clusters for developing
new luminescent materials. The quenching of the phosphorescence by O, suggests
applications in optical sensor technology and singlet oxygen generation that can be
used, for example, in the photodynamic therapy of cancer [107, 108].

3.2 Electronic Structure Calculations

According to extended Hiickel calculations, electronic structure of octahedral cluster
complexes M¢QgLg in which the upper molecular orbitals are represented by a
d-block consisting of 12 MO is responsible for the metal-metal interaction.
Twenty-four valence electrons are required for the formation of twelve covalent
two-electron two-center metal-metal bonds in the metal cluster Mg. This is achieved
in compounds where the metal ion has a d* electronic configuration. This rule is
fulfilled in most Re (III) octahedral complexes containing the cluster core Re6Q82+.
For chalcogenide complexes of chromium, molybdenum, and tungsten, compounds
with electron-deficient cluster nuclei are stable (CVE = 20-22). The most prominent
examples of such compounds are molybdenum chalcogenides MogSeg (CVE = 20)
and PbMogSg (CVE = 22).

DFT calculations of the electronic structures and UV—vis absorption spectra of
the dia- and paramagnetic complexes [RegSes(CN)g]* "~ confirmed general motif
of electronic structure [109]. According to the spin-restricted calculations, under the
O, symmetry, the ground HOMO states for both diamagnetic [ReeSes(CN)g]* ™ and
paramagnetic [Reﬁseg(CN)6]3_ complexes are characterized by the same orbital e,
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symmetry (Fig. 18). However, the occupation of e, state is different: in the diamag-
netic complex, it is completely occupied with electronic configuration e4g, but it is
only partially occupied for the paramagnetic one, which is characterized by the
electronic configuration 63g (Fig. 19). Similar electronic structure was found in other
rhenium clusters [103, 110, 111].

The case of mixed-metal cluster compounds with {Re;Mo3Qg} core is more
complicated due to the existence of two cluster core isomers, namely, fac- with
C;, symmetry and mer- with C,, symmetry [53, 54]. DFT calculations of
[ResMo3Seg(CN)g]"™ (n = 4-7, CVE count from 21 to 24) were performed for
both fac- and mer-isomers of the {ResMoz} metallocluster. Molecular orbital
(MO) diagrams for different isomers are shown in Fig. 20. Below the Fermi energy
level, one can see the block of orbitals with mixed bonding—antibonding character,
and above the Fermi energy level, there is an antibonding orbital block. The MO
disposition for both heterometallic isomers [ResMo3Seg(CN)g]" ™ differs from that in
homometallic [RegSeg(CN)g]"™ ones by the presence of a gap between HOMO-1
and HOMO-2 orbitals for 24-electron cluster anions. The value of this energy gap is
about 0.4 eV. Both orbitals are bonding in character.

The HOMO and HOMO-1 orbitals for the 24e cluster anion
[Re;Mo5Seg(CN)g]”~ are composed mostly of molybdenum atomic orbitals with
minor contribution of rhenium and selenium. As one can see, consequent electron
removal leads to energy decreasing of the HOMO-1.

The special feature of heterometallic clusters is the destabilization of two bonding
levels (353A and 354A in Fig. 20) and the appearance of two additional gaps.
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Fig. 21 Calculated energy level diagrams and HOMO orbitals: (a) [Re;,CS 17(CN)6]87: The 31a2”
MO is shown perpendicular to the C; axis. Calculated charges: Rejgner (+0.083), Regyer (+0.054),
He-C (—0.209). (b) [Re;»CS7(CN)6]®~: The 13a2’ MO is shown perpendicular to the C; axis.
Arrows represent the forbidden (dotted) and allowed (solid) electronic transitions (in nm)

DFT calculations were also performed on the complexes [Re,CS7(CN )6]67 and
[Re1,CS17(CN)6 ¥~ [52]. For the [Re,CS7(CN)g]®™ complex, the highest occupied
molecular orbital (HOMO) consists predominantly of S 3p orbitals (80%) with a
small contribution from the Re 5d orbitals. There is no contribution from the pg-C
orbitals (Fig. 21). The HOMO shows antibonding properties between the Re atoms.
The HOMO-LUMO gap is calculated to be 1.08 eV for the [Re12C817(CN)6]6_ ion
and 1.44 eV for the [Re,CS{7(CN )6]87 ion. One interesting feature of the cluster is
the position of the 31a2” orbital, which strongly depends on the anion charge
(Fig. 21) and correlates with the length of the Re---Re distances. The absorption
bands in the visible region of the electronic spectrum of [Re;»CS17(CN)g]™ are in
good agreement with the calculated electronic structure. A simple valence electron
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count shows that in the [RelzCSI7(CN)6]8_ ion the rhenium atoms have a charge
of +3 [52]. Accordingly, the [R612C817(CN)6]6_ ion contains slightly oxidized
rthenium atoms (Re>!"*), which correlates with charges of rthenium atoms calculated
by DFT.

4 Coordination Polymers Based on MQg(CN)g Cluster
Building Blocks

4.1 General Organization Principles

As it was mentioned above, the complexes [MgQg(CN)g] are robust and inert toward
ligand exchange. They are accessible to reversible oxidation/reduction. The number
of reversible redox transitions depends strongly on the nature of the M¢Qg cluster
core and ranges from one ([RegQg(CN)g], Q = S, Se, Te) to three
([RezsMo3Qg(CN)gl, Q = S, Se). Structural study showed that geometry and size
are independent on the number of CVE. Preliminary studies have shown that, like
mononuclear cyanometallates, such cluster anions are capable of coordinating to
transition metal cations, forming extremely poorly soluble precipitates, indicating
the formation of strong cyanide bridges. Owing to their stability and rigid geometry,
they are suitable to serve as the secondary building units (SBU) for obtaining
coordination polymers via coordination of d- or f~metal cations through the nitrogen
atoms of apical CN ligands, as it was shown for mononuclear cyano complexes.
We should note that the topology of linking nodes resembles the one for
hexacyanometallates (Fig. 22).

Fig. 22 Comparison of size of a chalcocyanide octahedral cluster complex [MgQg(CN)s]"™ and
hexacyanoferrate anion [Fe(CN)g]* "~
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Van der Waals volumes of these clusters depend mainly on the nature of inner
ligands and vary from 387 A3 for [RegSg(CN)g] to 475 A3 for [RecTeg(CN)gl, and
only slightly on the nature of metal atoms comprising metal core: 428 A* for
[WeSg(CN)gl. In general, cyanides demonstrate geometric rigidity and stability in
a wide range of experimental conditions and, meanwhile, have larger size and ability
to one- or multi-electron redox transformations. Despite their differences (atomic
compositions, electronic structures, CVE numbers), these cluster units have rather
similar dimensions and topologies that favor the formation of common structural
types. In recent years, it was shown that octahedral cluster cyano complexes of the
general formula [MgL2(CN)g]"™ or [MgQs(CN)g]™™ can be used in design of the
coordination polymers with different dimensionality [55, 112-127]. Notably, they
can serve as promising “building blocks” for the creation of new materials. The
ambidentate nature of cyanide ligands is exploited to perform bridging coupling of
moieties forming network structures via coordination of d- or f~metal cations. The
high energy of M—CN-M’ interactions usually lead to the formation of robust
frameworks with a large number of covalent contacts. For several [MgQg(CN)g]"~
anions, atom charges were calculated by DFT, which revealed predominant charge
localization on nitrogen atoms (Table 2). The increase of the total anion charge,
evidently, increases the charge of terminal nitrogen atoms, leading to high nucleo-
philicity of [MgQg(CN)e]"™ as ligands and to the formation of strong M-
CN...M’...NC bonds.

The first example of an interaction between [ReeSes(CN)g]*~ and transition metal
cations gave the unique structure type (H30),[{M(H,0),}3{ResSeg(CN)g}-]-9H,O
(Mn*, Co®*) (Fig. 23) [128].

The structure of Cs,[{Mn(H,0),}3{RegSeg(CN)e}>]'9H,0 includes a coordina-
tion framework constructed from cluster complexes linked together by cyanide
bridges through manganese (II) cations. All six cyano groups of each cluster
complex are involved in the formation of a coordination framework. In the structural
motif of the framework [{Mn(H,0),}3{ResSes(CN)g o157, it is possible to distin-
guish a fragment formed by eight cluster complexes located at the vertices of the
cube. Six manganese (II) cations, to which nitrogen atoms of these cluster complexes
are coordinated in the equatorial plane, are located above the faces of the cube. In
Fig. 23, such a selected fragment is shown schematically. In the coordination

Table 2 Calculated atoms charges (g) in complexes [MgQg(CN)g]"™

g, ¢

Cluster anion M Q C N

[RegSs(CN)gl*~ 0.0656 —0.1524 —0.1232 —0.4058
[RegSes(CN)gI*~ 0.0339 —0.1156 —0.1275 —0.4188
[RegTes(CN)6]*~ —0.0110 —0.0730 —0.1343 —0.4241
[MogSs(CN)6]*~ 0.1408 —0.3342 —0.1803 —0.5149
[MogSs(CN)6]” ™ 0.1116 —0.3936 —0.1899 —0.5636
[MogSes(CN)6]°~ 0.1038 —0.3060 —0.1858 —0.5101
[MogSes(CN)g]”~ 0.0761 —0.3715 —0.1951 —0.5523




58 V. E. Fedorov and N. G. Naumov

Fig. 23 Structure of [{M(H,0), }3{Re6Seg(CN)6}2]27 polymeric framework in (H30),[{Co
(H20)2}3{ResSeg(CN)e }21-8.5H,0 and Cs,[{Mn(H,0); }3 {ResSes(CN)g }2]-9H,0

framework, these fragments are articulated at the vertices, i.e., two adjacent frag-
ments have a common cluster complex. Figure 23 shows schematically the structural
motif of the frame in the form of a package of “cubic” fragments. There are cavities
in the frame that are filled with a large number of water molecules disordered over
several positions.

Later, a large number of compounds with different cluster anions and transition
metal cations were obtained. In general, the transition from one cluster to another
gives new types of structures, and the general classification, which would have
predictive functions, is, apparently, still impossible. It can be stated that in the
interaction of metal aqua complexes, the charge of the cluster anion plays a signif-
icant role in the stoichiometry and topology of the resultant framework. However,
for some types of structures, it has become possible to identify some trends.

4.2 Stable Structural Types of 3D Frameworks

The structures presented here have some similarities:

» The presence of a three-dimensional framework with large number of M—CN-M
bridges.

* The presence of cavities and low packing coefficients making the frameworks
topologically stable to compression and expansion. Such structures can easily
adjust to small differences in volumes of the octahedral cluster anions, and more
importantly, they allow inclusion of cations compensating their negative charge.

4.2.1 The Structural Type
of (H30),[{Co(H,0),}3{ResSes(CN)g}.]-9H,0

This structure was considered shortly in previous section (Fig. 23). This
framework crystallizes in two space groups: R’c and Im * m. Compounds
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(H30)2[{Co(H20) }3{ResSes(CN)g }2]-9H,0 and Cs,[{Mn(Hz0)s }3{ResSes(CN)g }2]
‘9H,O crystallize in R*c space group [128]. This framework easily adopts a lot of
solvate water molecules as in (H30),[{Mn(H,0), 5}3{ResSes(CN)s }2]- 19H,0, as
well as Mey,N*, Et,N*, compensating negative framework charge. A series of com-
pounds (R4N)>[{M(H,0),,}3{ResQs(CN)s }2IxH,0 (Q =S, Se; n = 1,5, 2, M = Mn,
Co, Ni) crystallize in space group Im> m [114]. Highly charged [Mosseg(CN)6]77
anion also adopts this structure, forming (MeyN),[{Mn(H,0),}; sMoeSeg(CN)g]-
4H,0 [129].

4.2.2 The Structural Type of Prussian Blue

A series of compounds crystallize in highly symmetrical 3D framework with
Prussian blue structural type with NaCl packing. The anions are bound through all
six CN groups by M** cations, which occupy a special position 4b with the same
high point symmetry located at the middle of the unit cell edge. In turn, the metal
cations are surrounded by the nitrogen atoms of six cluster anions (Fig. 24). In a
whole, the framework is topologically identical to observed in the Prussian blue
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Fig. 24 Fragment of the coordination three-dimensional polymer {MnMof,Ses(CN)(,}} in KsMn
[MogSeg(CN)g]-xH,0. View down [100] of the crystal packing
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(M,[Fe(CN)g]) and the rock salt (NaCl) and has pcu symbol, according to
O’Keeffe classification [130]. This framework occurs for [RegSes(CN)g]®~, with the
charge 3- [118], and for highly charged [MogSe,Brs(CN)6]*~, [ResM03Ss(CN)g]®~
[131], and [M06Seg(CN)6]77 [129] with various cations compensating the negative
framework charge. Since the cluster anion size is considerably larger than the
hexacyanoferrate size, there is an additional space in the framework available for
various cations compensating its high charge and for solvate water molecules. Such
framework type is as yet the most typical of the known coordination polymers
based on different anionic cluster cyano complexes, namely, [Nb6C112(CN)6]47,
[NbsClyO3(CN)s]*~, [ResSes(CN)gl* ">, and [ResTeg(CN)s]* . All these compounds
crystallize in the Fr’m space group, resulting in a high symmetry of the cluster anions
in the structures, even in the case of asymmetric [Nb6C19O3(CN)6]57. In structures
Gay[RegSeg(CN)gl3-38H,0,  Fey[RegTeg(CN)gl3xH, O (v =~ 27)  [132],
FC4[R€6868(CN)6]3'36H2O, C03[R66368(CN)6]2'25H20, Ni3[Re(,Seg(CN)6]2~33H20,
Ga[RegSeg(CN)6]-6H,O [118], (MesN),Mn[NbeCl;»(CN)¢] [133], and Cs;Mn
[NbsCloO5(CN)g]-3H,O [134], the frameworks carry a total charge from O (neutral
framework) to —5, due to different charges of the counterions. Negative charges of the
frameworks are compensated by additional cations located within the cavities.

4.2.3 Structures with Cationic Dimers

The polymeric framework with cationic dimers was found in the structures
of  K3{{Mny(H,0)4}Mo0gSes(CN)g}, Cdy(H20)4[ResSes(CN)g]-14H,O  [135],
Co,(H50)4[RegSg(CN)]- 10H,O  [115], and Co,(H,0)4[RegSeg(CN)g]-8H,O
[136]. Their structure consists of cluster anions and {M,(u¢-H,0),(H,0), }** cationic
dimers (Fig. 25). {Mz(,u-Hzo)z(HzO)z}4+/[M6Q8(CN)6]"’ ratio is 1/1; therefore, in
the case of rhenium cluster complexes, the framework is neutral, while in the

Fig. 25 Schematic representation of the framework (a) and structure of the cationic dimer {Co,(u-
H,0),(H;0),}** (b) in Cox(H,0)4[ReSes(CN)g]-8H,0
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Fig. 26 Fragment of the coordination two-dimensional network {[Co(HZO)zRe(,SS(CN)é]z’ }oo in
Cs,[Co(H20),ResSs(CN)e]

structure K3 {{Mn,((H>0),}MogSeg(CN)g}, the framework is negatively charged
adopting extra potassium cations. If the whole {Mz(u—Hzo)z(HQO)z}4+ dimer is
considered as a cationic site, the framework topology corresponds to the one
found in the Prussian blue and NaCl (pcu).

4.3 Layered Compounds

The compounds Cs,[trans-M(H,0),][RegSg(CN)g] (M = Mn, Fe, Co, Zn, and Cd)
[118, 137] have a layered structure, where the layers are formed by [Re658(CN)6]4_
cluster anions and M>* cations. Four of six CN ligands of anion coordinate to M
atoms, giving covalent Re—-C = N-M-N = C-Re interactions, while the other two
terminal CN groups are not coordinated. Metal cations M>* have an octahedral
environment, being coordinated by four nitrogen atoms of CN ligands of cluster
anions and two water molecules in frans-position. The layer with a connectivity 4:4
presents a square lattice of clusters bonded through the metal atoms (Fig. 26). The
connectivity of {M(H,0),[ReSg(CN)g] }27 layers resembles that in (NMey),[Mn
(H,0)4][Fe(CN)¢]-4H,0O and Hofmann clathrates, having Ni(CN),>~ anions linked
by other transition metals in “planar” 4 + 2 coordination [138]. The same structural
motif is observed in a series of isotypical compounds with the anions
[MogBreS»(CN)s]* ">~ and [MogBrg(CN)s]>~ [139].

4.4 Examples of One-Dimensional Polymers

As can be seen from previous sections, the interaction of aqueous solutions
of transition metal cations and [M¢Qg(CN)e]"™ cluster anions leads to formation of
extended frameworks with numerous M—CN.. . M’-NC-M bridges. The use of
polydentate ligands to restrict the coordination abilities of transition metals favors
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the formation of low-dimensional frameworks (2D, 1D, and molecular). The list of
chelate ligands includes bpy, en, dien, trien, threo-tab, salen, gly, erthitrhol, etc.
Below some examples of low-dimensional structures are presented.

Reaction of [RegQg(CN)s]"™ with M** (M = Mn, Co, Ni) in the presence of
ethylenediamine (en) resulted in the formation of numerous compounds with
low-dimensional structures, depending on the nature of transition metal and reaction
conditions [55, 121, 140]. Figure 27 shows two examples of these polymeric
compounds, namely, [M(NHj3),(en),],[{M(en), }ResTeg(CN)g]Cl,-xH,O and [{Mn
(H,O)(en), }{Mn(en), }ResTeg(CN)g]-3H,0. Coordination of bridging [Ni(en)2]2+
to frans-cyano ligands of octahedral clusters gives linear chain, while coordination
of [Mn(en),] to cis-cyano ligands results in zigzag chains.

A set of low-dimensional compounds was prepared with the use of (SnMe3)" cation.
This building block was successfully used earlier for linking cyanometallate complexes
[M(CN)s]"™ to get highly porous compounds, namely, super Prussian blue [141-
143]. In the case of the reaction of [RegQg(CN)gl"™ with SnMesCl, low-dimensional
compounds are usually formed where cluster anions are linked by tin atoms
[122, 144]. The type of structure depends on the acidity of the solution. Compounds
[{SnMe;(H,0)}>{SnMe; } {ResSeg(CN)s}-HyO, Cs[{SnMes }3{ResSes(CN)s}], and
[(SnMe3);(OH),|[{SnMejs }3{ResSeg(CN)g}] were obtained in acidic, neutral, and
basic solutions, respectively. Cs[{SnMe; }3{RegSeg(CN)g}] is a quite unique example,
featuring anions linked into infinite chains by three bridges between two adjacent
anions (Fig. 28).
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Fig. 27 Linear and zigzag chains in [Ni(NHj3),(en),]»[{Ni(en), }ResTeg(CN)g]Cl,-xH,O (a) and
[{Mn(H;0)(en), }{Mn(en), }RegTeg(CN)g]-3H,0 (b). Hydrogen and tellurium atoms are omitted

o r . ' . .
v o T~ ol ™~ o

¥ W EUROETRE
A A 1 S ‘\-, o T . -:f ’

a) b)

Fig. 28 One-dimensional chains in the [{SnMe3(H,0)},{SnMes}{ResSes(CN)s}]-H,O (a) and
Cs[{SnMes }3{ReSes(CN)s} (b)



Octahedral Chalcogenide Rhenium Clusters: From Solids to Isolated. . . 63

Fig. 29 Structural motif in (a) [{Ndy(bpy)s(H>0)(p-OH);,}{RecSeg(CN)g}] and (b)
[{Yb,(C404Hg)>(H,0), }{ResSeg(CN)g }1-5H,0. Hydrogen atoms are omitted

4.5 Formation of Polycationic Complexes

Large linear and voluminous dimensions of [M¢Qg(CN)g]"™ cluster anions often
favor stabilization of polycationic species in the crystal structures. In most cases
with 3d transition metals and lanthanides, these polycationic species have a charge
+4, balancing the charge of the [ReﬁQS(CN)6]47 anions, as it was found in
Co,y(H,0)4[RegSeg(CN)g]-8H,O [136]. The compounds with rare earth elements
coordinated by chelate ligands provide a large variety of binuclear cationic com-
plexes. In the case of Ln**, 4+ charge can be achieved by deprotonation of bridging
ligands (H,O or polyalcohols). The structure of [{Ln,(bpy)s(H,0),(p,-OH),}
{RegSes(CN)s}]-6H,0 (Ln = Nd, Eu) comprises {Lny(bpy)s(H>0),(p-OH),}**
dimers, where Ln atoms are bridged by two hydroxo-groups. Each Ln atom in the
complex has one accessible site for coordination of CN ligands, giving the chain
structure.

Compounds containing polyatomic alcohols, namely, glycerol and erythritol,
comprise centrosymmetric binuclear cations, where Ln atoms are effectively coor-
dinated by polyalcohols in a variety of ways. Partial deprotonation of the secondary
OH group allows adjusting charge balance of the complexes. Structural motif in
[{Yb,(C404Hy)>(H,0),}{ReeSeg(CN)g }-5H, 0, for example, is given in Fig. 29.

4.6 Non-covalent Interactions Between Clusters

The high energy of M—CN-M’ interactions usually leads to the formation of robust
frameworks with a large number of covalent contacts. In general, strong M—CN-M’
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covalent interactions dominate over weak dispersive forces. Nevertheless, the rela-
tively weak interactions between specific groups often play a key role in the
formation of polymeric structures from solutions. Along with strong and rigid
coordination bonds, the structures of cluster compounds often comprise multiple
non-covalent interactions determining the overall structure motif: hydrogen bonds
and n—r stacking between aromatic rings [48, 145, 146].

Hydrogen bonds between solvate water molecules and cyano groups of cluster
complexes are characteristic of most crystalline hydrates. The crystallization of the
cluster anions [ReGQg(CN)6]47/37 from acidic solutions (pH < 7) leads to the
formation of acid salts containing hydrogen ions. Acidic protons can be localized
either in the water sub-lattice (H(H,0),)* [147, 148] or between cyano groups
forming short and strong hydrogen bonds, as it was found in [(H){Ln(H,0),}
{RegSg(CN)6}-2H,0O, Ln = Yb, Lu [149] or in H[cis-Fe(H,0),][RegSeg(CN)g]
-2H,0 [118]. CN...NC distances in these compounds range from 2.50 to 2.69 A.
The anions having both water molecules and hydroxo-groups form strong hydrogen
bonding between OH and H,O ligands, producing H3O,~ groups with distances
between donor oxygen atoms ranging from 2.33 to 2.50 A. Such bonds determine
the structures of aqua-hydroxo RegQg(H,0)4(OH), 12H,O and cyano-hydroxo
complexes (BH4N)3[RC6S§;(CN)4(OH)(H20)]2H20 and (Ph4P)3[RC658(CN)4(OH)
(H,0)]-3.5H,0 (Fig. 30).

a)

b)

Fig. 30 (a) H-bonded chain with N. . .N separation of 2.673 A in [(H){Ln(H,0)4}{ResSs(CN)g }-
2H,0, Ln = Yb, Lu. (b) The fragment of the anionic chain formed by hydrogen bonds (indicated by
dashed lines) between the anions trans—[Re(,Sg(CN)4(OH)(H20)]3"in (Ph4P);3[ResSg(CN)4(OH)
(H,0)]-3.5H,0
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5 Applications of Cluster Complexes

We should note the difference in the properties of condensed metal cluster materials
and molecular cluster complexes. Strong intercluster interactions in the structures of
condensed materials influence the band structure of solids and their wide range of
transport and other physical properties, suggesting their potential use as supercon-
ductors [3], semiconductors, thermoelectrics (see, e.g., selected references: [63—66,
153]), catalysts, etc. Molecular complexes are able to go into solution and may be
easily modified by ligand substitution. Molecular complexes, as building blocks, can
be widely used in numerous reactions for the synthesis of new compounds with a
predesigned composition and structure. Molecular complexes constitute convenient
models to study such cluster properties as magnetism, redox reactions, electronic and
optical spectra, and properties of metal-containing liquid crystals. Besides, they
exhibit X-ray contrast properties, photocatalytic activity, and photoluminescence
properties [102, 105, 107, 108, 150—152]. The mutual transition of a condensed solid
into molecular complexes and back is a fruitful strategy in the design of various
types of materials. Many interesting applied properties of chalcogenide cluster
compounds are discussed in a recent review [153].

6 Conclusion

In this short review, we attempted to overview studies on the chemistry of molyb-
denum and rhenium octahedral chalcogenide cluster compounds carried out by NIIC
researchers in collaboration with international research groups. We tried to show
a pathway from classical solid-state cluster compounds MogSes, RegTe;s, and
K4RegS;; to soluble molecular complexes with RegQg and MogQg cluster cores.
Both inorganic and organic ligands can be grafted onto cluster cages, resulting in
drastic change in the charge and properties of such complexes. Without diminishing
the merits of other authors, we would like to emphasize here the role and importance
of the research of the French school of chemistry, and first of all the University of
Rennes 1, namely, the Laboratoire de Chimie du Solide et Inorganique Moléculaire
(now known as the Institut des Sciences Chimiques de Rennes), where cluster
chemistry of niobium, tantalum, molybdenum, and rhenium was developed. Profes-
sor Sergent and his closest colleagues made a great contribution to the cluster
chemistry of transition metals including many rhenium chalcohalides, and this article
dedicated to him is not only a tribute to his memory but also to his outstanding
scientific achievements.
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