
GenVote: Blockchain-Based Customizable
and Secure Voting Platform

Praneeth Babu Marella1, Matea Milojkovic2, Jordan Mohler3,
and Gaby G. Dagher1(B)

1 Boise State University, Boise, ID, USA
gabydagher@boisestate.edu

2 Winthrop University, Rock Hill, SC, USA
3 University of Denver, Denver, CO, USA

Abstract. Electronic voting has been popularized in recent years as an
alternative to traditional voting. Even though electronic voting addresses
the problems that traditional voting brings, it is not a perfect solution.
Electronic voting brings its own set of concerns which include: election
fraud, voter privacy, data integrity, and confidentiality. To ensure fairness
in electronic voting, a centralized system is required and the complete
process has to be overseen by an authority. Due to these requirements
it can be very expensive to roll-out on a large scale during every voting
period. Blockchain, the distributed data structure popularized by Bit-
coin, can be integrated into electronic voting systems to alleviate some
the problems involved with them while being cost-effective. With the
use of blockchain, we propose a voting system that is easily accessible,
customizable, transparent, and in-expensive. GenVote is a distributed
electronic voting system that utilizes Ethereum Blockchain, smart con-
tracts, and homomorphic encryption to achieve a transparent voting pro-
cess with non-authority based tallying and voter privacy. GenVote also
allows the ballot creation and voting process to be customizable with
different types of ballots and logic based voting. GenVote is currently a
viable solution for university-scaled elections and has been deployed on
Ethereum Ropsten testing network to evaluate its viability and scalabil-
ity as an electronic voting system.

Keywords: Blockchain · Ethereum · Smart contracts · Voting ·
Privacy · Encryption.

1 Introduction

Voting is a fundamental part of every democratic process. It allows for us to
have a voice in government process and be represented for issues that matter
most to us. With the technology advancements we made, it could be assumed
voting has become easily accessible for everyone and their votes are securely
tallied. However, even at the university level, voter fraud has been a problem.
In 2016, a fraud at Kennesaw State University brought forth the issues of voter
c© Springer Nature Switzerland AG 2019
P. Mori et al. (Eds.): ICISSP 2018, CCIS 977, pp. 152–171, 2019.
https://doi.org/10.1007/978-3-030-25109-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25109-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-25109-3_8


GenVote: Blockchain-Based Customizable and Secure Voting Platform 153

registration fraud. Students at the university believed they had signed up to vote
in the 2016 Presidential Election without knowing that their registration forms
were simply trashed. Due to this, the students were unable to cast their votes
on the day of the election1. The same year city officials in Green Bay, Wisconsin
refused to allow early voting on the University of Wisconsin’s satellite campus2.
So the only other option for students to vote was driving fifteen-minutes to a
near-by voting location. But the location was only open during business hours so
it was even more difficult for students to access the voting site. This led to a lot
of students being excluded from voicing their opinions on the election. To make
it even more difficult, student IDs are not considered a suitable identification
for voter registration at many locations. Voter registration fraud and lack of
access to voting sites for university students are important issues that must be
addressed.

Secure and privacy preserving voting systems are necessary for university-
scale elections. For instance, at many universities, one of the major objectives of
the student government organization Associated Students (AS) is to “advocate
for the interests of students at the University”. To achieve this goal, they must
provide a easily accessible platform for students to voice their choice on different
matters. This is where electronic voting systems come in to fill the need. One
such system, TIVI, uses digital authentication of voters through facial biomet-
rics: specifically, selfies3. Although TIVI solves the accessibility issue previously
mentioned, it does not completely stop fraudulent activity. Using public photos
and 3-D rendering, malicious users can break into accounts4. Helios is the first
online, open-audit voting protocol. The primary goal of Helios is data integrity
but it also provides voter privacy to an extent. To ensure data integrity, any
observer may audit the election process during its active voting period. At the
start of the voting process, voters name and encrypted vote are posted. But after
the election is completed, the votes are shuffled and then tallied to compute the
end result. Helios claims to be the optimal voting system for small groups where
coercion is unlikely but private voting is necessary [1]. Although Helios main-
tains data integrity, voter privacy is not preserved to the utmost. Another major
limitation associated with current electronic voting systems is voting fraud in
the form of database/platform manipulation [2]. With the use of centralized data
storage, current implementations of electronic voting platforms are susceptible
to vote altering. Our systems aims to address the security concerns of current
electronic voting systems by incorporating blockchain elements to it. Due to the
distributed nature of blockchains, voting systems that use a blockchain to record
and tally their votes do not have a central point of failure [3]. Voters can also
1 http://bettergeorgia.org/2016/09/11/a-different-kind-of-voter-fraud-one-to-

actually-be-worried-about/.
2 https://www.thenation.com/article/city-clerk-opposed-early-voting-site-at-uw-

green-bay-because-students-lean-more-toward-the-democrats/.
3 https://eandt.theiet.org/content/articles/2016/10/voting-online-made-possible-

with-selfie-recognition-technology/.
4 https://www.wired.com/2016/08/hackers-trick-facial-recognition-logins-photos-

facebook-thanks-zuck/.

http://bettergeorgia.org/2016/09/11/a-different-kind-of-voter-fraud-one-to-actually-be-worried-about/
http://bettergeorgia.org/2016/09/11/a-different-kind-of-voter-fraud-one-to-actually-be-worried-about/
https://www.thenation.com/article/city-clerk-opposed-early-voting-site-at-uw-green-bay-because-students-lean-more-toward-the-democrats/
https://www.thenation.com/article/city-clerk-opposed-early-voting-site-at-uw-green-bay-because-students-lean-more-toward-the-democrats/
https://eandt.theiet.org/content/articles/2016/10/voting-online-made-possible-with-selfie-recognition-technology/
https://eandt.theiet.org/content/articles/2016/10/voting-online-made-possible-with-selfie-recognition-technology/
https://www.wired.com/2016/08/hackers-trick-facial-recognition-logins-photos-facebook-thanks-zuck/
https://www.wired.com/2016/08/hackers-trick-facial-recognition-logins-photos-facebook-thanks-zuck/


154 P. B. Marella et al.

verify their vote has been recorded and not been tampered with by inspect-
ing the blockchain. This can be achieved because every vote is recorded on the
distributed ledger through transactions to the blockchain [4].

The blockchain is a distributed append-only data structure that grows
through adding blocks. The blocks contain transactions submitted by partici-
pants, or nodes, of a peer-to-peer network. When a transaction is submitted, it
goes into a pool that a validating node, also referred to as a miner, can extract.
Miners can gather a set of transactions from the pool into a block and append
it to the blockchain. In order for a miner to append his block to the blockchain,
he must complete a consensus proof such as Proof-of-Work or Proof-of-Stake.
Participating in the consensus proof process requires either computation power
or a stake which is cost of participation. Once a transaction has been validated
as part of a block and added to the chain, it cannot be altered. Because of these
properties, the blockchain is considered an immutable, secure data structure.
The Ethereum Blockchain expands this functionality by implementing smart
contracts [5].

Smart Contracts are blocks of code written in specific languages, usually
dictated by the blockchain being used, and contain methods/events. Methods
contained within a Smart Contract allow for interaction with the blockchain
through either external or internal calls. Smart Contracts are stored within the
blockchain so once the code is deployed, it cannot be altered and is publicly
available for anyone to interact with it. In Ethereum, to preserve the network,
every interaction with a smart contract that changes its state needs to pay a
computational fee, referred to as “gas”. Gas is the unit of measure used to
calculate amount of work a validating node will need to perform for an oper-
ation and the gas price, the amount user needs to pay, is measured in terms
of ether in Ethereum [5]. Smart contracts are also extended to private imple-
mentation of blockchains; as opposed to public blockchains, private blockchains
are implemented to be utilized within a single organization. While this sacri-
fices the decentralized nature of the blockchain, it enhances the privacy of the
blockchain [6]. For the purpose of our system, GenVote implements a private
blockchain. We believe that a private blockchain is best suited for maintaining
the integrity and privacy of the ballots within an organization scale.

Our proposed system is an extension of our previous work [7]. We expand
the functionality of our previous system by allowing voters to cast votes logically
and giving ballot creators the freedom to create different types of ballots. Our
system still uses similar concepts as [8–10], specifically in the areas of privacy
and smart contracts. Votes in all those systems are encrypted and stored on
the blockchain to achieve voter privacy and ballot transparency. These systems
also utilize hashing to ensure strong data integrity within the voting process.
In [8], the voting system may have an optional round in which voters hash and
post their encrypted vote to the blockchain. Transactions consisting of votes are
hashed before being stored on the blockchain in the system described in [9]. In
addition, [8] uses the smart contracts as part of their voting system to allow for
easy election process and perform cryptography functions.



GenVote: Blockchain-Based Customizable and Secure Voting Platform 155

1.1 Contributions

Our implemented system, GenVote, provides a secure and private electronic vot-
ing system that is easily accessible and customizable. GenVote is intended to
be used in a university scale voting system. GenVote utilizes smart contracts in
Ethereum and Paillier Homomorphic Encryption to achieve voter privacy and
ballot integrity. Our system also allows elections to be customized with differ-
ent types of ballots. Creators, of the ballots, have the freedom to create polls,
standard elections, or first to X number of votes. Creators also have the option
to either open voting for everyone or whitelist a certain set of voters to partici-
pate in the ballot. Voters have the option to vote in a traditional way or opt to
vote logically using one of these options: vote for the current leading, vote for
the runner-up, or vote for the losing candidate/choice. GenVote provides voter
privacy on all our ballots by homomorphically encrypting every vote, tallying,
and revealing the vote count using the Paillier cryptosystem. To maintain trans-
parency, all ballot and voting data is publicly available as part of the smart
contracts within the blockchain used in our system.

2 Preliminaries

2.1 Blockchain Mining

‘Mining’ is a process that is used in a trust-less blockchain network to reach a
consensus about the state of the blockchain [11]. The role of a ‘mining’ node
is to verify a group of transactions into a block by solving a computationally
intensive puzzle. The puzzle involves the ‘mining’ node to find the hash of the
block that begins with a certain number of zeros. To achieve this, a number called
a ‘nonce’ is included in each block; each time miners hash the block without
solving the computational problem, they increment the nonce and rehash the
block [11]. The difficulty of solving the hashing problem is described as ‘Proof
of Work,’ signifying the computational power and difficulty needed to append
a new block to the blockchain [11]. Once the puzzle has been solved the block
can be appended to the blockchain and the ‘mining’ node is rewarded with the
appropriate cryptocurrency.

2.2 Eth.calls

Every valid transaction executed is stored on the blockchain [5]. Due to this,
blockchains can suffer from scalability issues. Valid transactions sent to smart
contracts in the Ethereum blockchain are considered state changeable calls and
consume gas. To reduce gas consumption and the number of transactions on
the blockchain, the Ethereum blockchain allows eth.calls to be utilized in addi-
tion to transactions. Eth.calls allow nodes to send messages to other nodes or
smart contracts to retrieve its current state without storing the message on
the blockchain5. Therefore, eth.calls are similar to simulations of transactions.
5 https://github.com/ethereum/wiki/wiki/JSON-RPC.

https://github.com/ethereum/wiki/wiki/JSON-RPC


156 P. B. Marella et al.

Fig. 1. Memory field structure of smart contracts in GenVote, where lines between
fields represent relational data [7].

By executing eth.calls to send notifications/messages or to retrieve current
states, the size of the blockchain can be greatly reduced [7].

2.3 Paillier Encryption

Full homomorphic encryption allows us to perform computations on encrypted
data. The encrypted data can then be decrypted to reveal the same value as
it would be if the computations were done on plain data [12]. However, fully
homomorphic encryption requires fully modular multiplication which can be
computationally intensive and very slow [13]. However, because of the advan-
tages provided by homomorphic encryption, it is still a prominent encryption
scheme and partial homomorphic encryption scheme has been introduced for
faster encryption. One such scheme is the Paillier Homomorphic Encryption.
This probabilistic public-key encryption method supports addition and multi-
plication [12]. Paillier system can homomorphically add two ciphertexts but it
can only multiply a ciphertext with a plaintext integer. Since the Paillier sys-
tem cannot homomorphically multiply two ciphertexts, it is considered partially
homomorphic. The process of encryption is not completely intuitive: multiply-
ing ciphertexts is equivalent to adding the plaintexts and raising a ciphertext to
the power of another ciphertext is equivalent to multiplying the plaintexts [14].
To achieve the advantages of homomorphic encryption without the substantial
reduction in processing speed, Paillier Encryption is one of the ideal encryption
schemes.

2.4 MetaMask

MetaMask is a web broswer plugin that was created to make it easy for average
users to interact with Ethereum blockchain based Dapps. MetaMask acts as
an Ethereum browser, which allows the users to easily manage their Ethereum
wallet and interactions with decentralized applications, or Dapps, and smart
contracts. Using MetaMask removes the need for users to download a local copy
of the blockchain. Users are also able to easily manage multiple accounts and
switch between test or main network6. MetaMask facilitates the user transaction
6 https://github.com/MetaMask/metamask-extension.

https://github.com/MetaMask/metamask-extension


GenVote: Blockchain-Based Customizable and Secure Voting Platform 157

broadcasting by using a set of trusted nodes that relay the transactions to the
pool. Since transactions are signed using the sender’s private key, which is stored
locally on the user’s machine, MetaMask cannot impersonate the user and send
transactions on the user’s behalf or modify outgoing transactions. MetaMask
makes it convenient and secure for average users to interact with Dapps on the
blockchain using a simple web browser.

3 Proposed Solution: GenVote

3.1 Overview

Prior to discussing our proposed voting system, we would like to mention that
the Ethereum blockchain used in our system has not been modified in any way
and the standard proof-of-work was used for validating transactions. Our sys-
tem, GenVote, uses existing functionality and features provided by Ethereum and
Solidity to provide the ability for creating and voting on ballots. Our implemen-
tation consists of three smart contracts coded in Ethereum’s Solidity language,
two scripts written in JavaScript, and one HTML page. GenVote is an open
source project and the entirety of the code is available for public use7.

In order to participate in the system, the users have to utilize MetaMask plu-
gin or become a node by downloading the Ethereum blockchain. We assume the
administrator, creators, and voters have one of options setup and can create and

Fig. 2. The process for registering a voter in GenVote, where black dotted line represent
eth.calls and solid line represent transactions to the blockchain [7].

7 https://bit.ly/2GEVtwk.

https://bit.ly/2GEVtwk


158 P. B. Marella et al.

manage Ethereum accounts to interact with our system. We utilize Ethereum’s
Web3 framework internally, this allows our users to easily manage signed trans-
actions and interactions with the Ethereum blockchain. The only action required
of users when registering, voting, or creating ballots using MetaMask is to use
their passwords/private keys to unlock their Ethereum accounts and securely
interact with the blockchain. If the user decides not to utilize the Metamask
plugin then they are responsible for running a node on their local machine and
managing appropriate accounts to interact with our system using Web3 [7].

A brief description of all the user parts of GenVote follows:

– Administrator is responsible for deploying the initial Registrar and Creator
smart contracts. The administrator also has the ability to grant or revoke
ballot creation permission for registered voters/creators.

– Voter registers in our system with a valid student/employee ID and e-mail
address to vote on given ballot ID numbers.

– Creator is a voter with ballot creation permission.

A brief description of the front/back-end pages implemented in GenVote fol-
lows:

– VoteUI.html page is the user interface for our users. This page allows users
to enter necessary information for each of the different use cases. Once the
user enters the necessary information, the corresponding click buttons will
invoke functions in App.js.

– VotingApp.js gathers information from VoteUI.html and interacts with
Crypto.js and the Ethereum Blockchain. For each corresponding request from
VoteUI.html, it utilizes eth.calls, Crypto.js server calls, and Ethereum trans-
actions to verify, encrypt/decrypt votes, and store ballot/vote information.

– Crypto.js acts as a cryptographic server. All votes are encrypted, homomor-
phically added, and decrypted using the Paillier homomorphic encryption
system key pair in this server.

A brief overview of the smart contracts implemented in GenVote follows:

– Registrar.sol takes the role of a record and gate keeper. It keeps track of
all registered voters and creators, ballot IDs, voting contract addresses, and
whitelisted e-mail domains. Information regarding the voter and different
ballots are linked together in the contract, as seen in Fig. 1. This allows the
contract to perform voter verification, permission modification, and Voting.sol
address retrieval easily. The owner of this contract is the administrator.

– Creator.sol functions as a spawner for new Voting.sol contracts. The Creator
defines the voting contract details from the required information entered in
VoteUI.html. The owner of this contract is the administrator.

– Voting.sol functions as a virtual ballot and handles the voting on the ballot.
Another set of voter verification, including vote attempts and ballot time
limit, is also conducted in this contract. As we can see in Fig. 1, ballot title
and the choice encrypted votes are also stored here so that we can retrieve at
later stages. The owner of this contract is the contract creator.



GenVote: Blockchain-Based Customizable and Secure Voting Platform 159

A brief overview of the types of ballots and voting styles implemented in
GenVote follows:

– Polling Ballot lets you create a ballot that displays results live as users
participate in this ballot and ends when the ballot reaches its end time. The
choice that has most votes wins.

– Election Ballot is a traditional election style ballot that displays its results
after the ballot end time has reached and the choice with the most votes wins.

– First to X Ballot is a hybrid ballot that displays its results live and when
one of the choices reaches the required number of votes to win then the ballots
ends. The winner is the one that reaches the X votes defined by the creator.

– Vote Limiting on Ballot can be imposed by the creator when creating
any type of ballot. This will create a limit on the number of votes each
voter/Ethereum address can send to a ballot.

– Whitelisting on Ballot can be utilized by the creator when creating any
type of ballot. This will set a restriction on who can participate on a particular
ballot. Currently the whitelisting is based on e-mail but can be customized
to many different forms of identification whiteliting.

– Traditional Voting can be used on any type of ballot. The user manu-
ally decides which choice to vote for and submits the vote. The vote is then
immediately processed and updated on the UI once its been verified.

– Logical Voting is a special type of voting. The user chooses from one of the
three options: Winning Vote, Runner-Up Vote, and Losing Vote. Depending
on which option is chosen, the system determines who to vote for and notifies
the user once the vote has been verified. The user can also choose to allow
the system to vote on their behalf at a later time with one of the options.

3.2 Initial Setup

The initial setup process needs to be kick-started by the administrator of the
system. The administrator needs to deploy Registrar and Creator contracts to
activate the system. The administrator is also responsible for including a set
of e-mail domains that are permitted to be used for registering in our system.
Once the system has been activated, the users can start registering, creating,
and voting on ballots in our system.

3.3 Register Voter

Since GenVote was implemented with a university setting in mind, anyone with
a student/employee ID number and a specific e-mail can register and use the
system. The user has to have an e-mail that contains one of the whitelisted
domains setup by the administrator to register as a voter and request ballot
creation permission. Once the user has entered the ID number, e-mail address,
and ballot creation permission fields in the registering section of VoteUI.html,
the information is parsed by VotingApp.js. The parsed information is then used
to make eth.calls to the registrar contract, as seen in step two of Fig. 2, to verify



160 P. B. Marella et al.

the user’s e-mail and registration status. If the user passes the checks, then
VotingApp.js sends a transaction to the registrar contract to store the new voter
information, including the voter’s ID, e-mail, and Ethereum address. The user’s
e-mail address and Ethereum address are linked so we can use it in the future to
prevent the user from re-registering. Users that also requested access to create
ballots are placed in a queue so that they can be manually reviewed by the
administrator.

3.4 Create Ballot

Users with ballot creation ability can use the ballot creation section in
VoteUI.html to spawn new voting contracts using the Creator contract. To cre-
ate a new ballot, the creator must provide their registered e-mail address then
choose whether this ballot will be a election, poll, or first to X votes type. Then
determine the title of the ballot to let voters are aware of what they are voting
on, voting options for the ballot, and the number of votes allowed per voter on
this ballot. During this process, the creator can also opt to make it a whitelisted
ballot. If the whitelisted ballot option is chosen, the creator is required to enter
the list of e-mail addresses allowed to vote on the ballot. But if the creator
chooses to not make it a whitelisted ballot, everyone with a registered e-mail
address will be allowed to vote on the ballot. Lastly, the creator sets the ending
date and time for the voting period for the ballot.

Once the creator has provided the necessary information to create a ballot,
VotingApp.js parses the information and continues to step two in Fig. 3 to verify
the creator status. To verify the status, VotingApp.js sends the two eth.calls to
the Registrar Contract to verify the creator’s provided e-mail address is reg-
istered in our system and whether the request originates from the registered
Ethereum address linked to the e-mail address or not. If those two checks are
passed, then VotingApp.js sends the third eth.call to determine if the user has
the permission to create ballots. If it was determined that the user is allowed
to create ballots, VotingApp.js gathers the parsed data and a randomly gener-
ated ballot ID number to include in a transaction to the Creator Contract. The
Creator Contract uses the information provided in the transaction to create a
new Voting Contract and deploy it onto the blockchain. Once the new Voting
Contract has been deployed successfully, the contract address is returned to the
Creator Contract.

VotingApp.js then sends a final eth.call to the Creator Contract to retrieve
the new Voting contract address to register it in the system. Step six in Fig. 3
shows the transaction to the Registrar Contract for storing the newly linked
ballot ID and contract address. The ballot ID is then displayed afterwards and
the creator is reminded to write down this ballot ID since it will be the unique
identifier for this ballot. The ballot identifier is then used by voters to load and
vote on the ballot.



GenVote: Blockchain-Based Customizable and Secure Voting Platform 161

Fig. 3. The process for creating a ballot as a creator in GenVote, where black dotted
lines represent eth.calls and solid lines represent transactions to the blockchain [7].

3.5 Load Ballot

Users can load the ballot information by using the unique ballot identifier pro-
vided to the voters by the Creator of the ballot. After loading the ballot, the
user can check the results of the ballot or vote on the ballot if the voting period
has not passed. Once the voter enters the ballot ID in load ballot section of
VoteUI.html, VotingApp.js sends an eth.call to the Registrar Contract to deter-
mine if the provided ballot ID is valid. If the ballot ID is valid, then the title,
voting options, and the encrypted vote count for each choice are gathered from
the Voting contract. If the voting period has ended or if the ballot is a poll
or first to X type, the vote count is decrypted and displayed in VoteUI.html.
In order for the decrypted vote count to be displayed, there is a step involved,
which can be seen in Fig. 4 as step four, that send the encrypted vote count to
the Crypto.js server. Crypto.js server will then decrypt the votes and send them
back to VoteUI.html.

3.6 Vote (Traditional)

To vote on a ballot, the user needs to first load the ballot. Once the ballot
has been loaded, the user types in the choice they want to vote for along with
their registered e-mail address in the voting section of VoteUI.html. The voting
information is parsed by VotingApp.js and sends an eth.call to the Registrar
Contract to verify the voter as well as the Ethereum address linked to the e-
mail. If the voter is verified successfully, then another eth.call is sent to the



162 P. B. Marella et al.

Fig. 4. The process for loading a ballot as a voter in GenVote, where black dotted lines
represent eth.calls to the blockchain and red dotted line represents decryption calls to
the server [7]. (Color figure online)

Voting Contract to check if this ballot is whitelisted. If the ballot is whitelisted
then it checks if the voter’s e-mail is part of the list or not. Once that check is
completed then more eth.calls are made to the Voting Contract to check if the
user has exceeded his/her voting limit and if the ballot voting period has passed.
The voting period is checked by comparing the end time set by the creator with
the current block timestamp. If those checks were passed then the vote for the
chosen choice is set to one and the rest of the votes are set to zero for the other
choices on the client side. Then those votes are sent to Crypto.js server, as we can
see in step four of Fig. 5, to be encrypted using the previously generated public
key in Crypto.js server. Once all the votes have been encrypted, the previously
encrypted vote count for every choice is retrieved using an eth.call. Then the
current encrypted votes and previously retrieved encrypted vote count are sent
to the Crypto.js server to be homomorphically added together. Then the newly
encrypted vote count for every choice is sent as an array in a transaction to the
Voting Contract. Once the transaction has been verified, the Voting Contract
has the updated encrypted vote count for each choice. Through this process we
preserve voter privacy because we hide what their voting choice was by sending
a encrypted vote to every single choice.

In the case of First to X wins ballot type, there are additional steps that
need to be taken to verify and vote on the ballot. In between steps three and
four of Fig. 5, VotingApp.js checks the status of the ballot by sending an eth.call
to the Voting Contract. If the status returned as not closed then it checks to
see if any of the choices have met the X to win condition. The check is done by
getting every individual encrypted vote with an eth.call and decrypting them
using the Crypto.js server. If none of the votes met the X to win condition then



GenVote: Blockchain-Based Customizable and Secure Voting Platform 163

Fig. 5. The process for voting on a ballot as a voter in GenVote, where black dotted
lines represent eth.calls, black solid lines represent transactions to the blockchain, and
red dotted lines represent encryption calls to the server [7]. (Color figure online)

we proceed to step four in Fig. 5. But if the condition was met then we let the
user know the ballot voting period has ended and we set the status of the ballot
as closed in the Voting Contract.

3.7 Vote (Logical)

Logical voting allows the user to vote on a ballot using a calculated method. The
user needs to first load the ballot. Once the ballot has been loaded, the user can
choose between three options: Winning Vote, Runner-Up Vote, or Losing Vote
and the option to case the vote now or at a later time. If the user chooses one of
the choices and the vote now option, the process is simple. In this scenario there
is only one extra step that is needed between step three and four in Fig. 5. That
step would involve the VotingApp.js calculating what the current standing for
all the voters are internally to choose the appropriate choice to vote for. After
the choice has been calculated then it continues with the traditional process of
voting. At the end the user gets a vote verified notification but not the choice
that was chosen on their behalf. This prevents voters from gaining knowledge
about the current standings in an election prematurely.

If the user chooses one of the choices and the vote later option, the process
gets complex and its partially detailed in Fig. 6. In this process once the user
has chosen the choice they want to use for voting, that choice is signed using



164 P. B. Marella et al.

Fig. 6. The process for voting logically at a later time on a ballot as a voter in GenVote,
where black dotted lines represent eth.calls, black solid lines represent transactions to
the blockchain, and orange dotted lines represent listening events. (Color figure online)

ethsignedTypedData. ethsignedTypedData is a function that currently only avail-
able through MetaMask and it allows us to use the user’s Ethereum address to
sign a message. Once the message containing the users choice has been signed,
it is then stored in a queue where it will reside until an event is emitted from
the Voting Contract. In Solidity events are a mechanism to log that something
has happened. When a function with an emit call gets invoked within the smart
contract, then an event is triggered and that is logged. We can take advantage
of this logging functionality by setting a function that listens for it on our front
end, specifically using JavaScript. Since we need to wait until the close to end of
the voting period, we setup a function that listens for the event from the Voting
Contract. When that event is triggered, transactions are sent to the ballot using
the Administrator Ethereum address with the user signed messages from the
queue. The Voting Contract will verify the signed messages and increment the
appropriate choice votes using separate functions. After the validation is com-
plete, the ballot closes and when someone loads ballot the votes are retrieved to
be decrypted to be displayed. Due to the experimental nature of the external
libraries required to complete the Logical Vote Later process, we only provide
the complete theoretical implementation. There are future plans to bring this
functionality to Web3 so when that rolls out we will be able to complete the
implementation.



GenVote: Blockchain-Based Customizable and Secure Voting Platform 165

3.8 Get Votes

getVotes acts as a data retrieval function. Whenever a user loads the ballot
or successfully votes on a ballot, getVotes is invoked in VotingApp.js. getVotes
sends an eth.call with the hashed choices to get the current total encrypted
votes. Depending on the timelimit and election type, it would either decrypt the
votes and display them or display the time when users can check back for the
results. To decrypt the votes, getVotes sends the encrypted vote count to the
Crypto.js server to be decrypted by the private key.

4 Testnet Experiment Analysis

In order to collect data and test the viability of our system, we deployed it onto
the Ropsten Ethereum testnet and collected the gas cost for every use case. We
chose to deploy it onto the testnet to simulate a mature blockchain and test the
functionality on a blockchain that has enough validating nodes participating.
Our primary focus for data collected was gathering gas costs for each process
since it is closely related what the performance cost would be. By gathering the
performance costs we can provide better estimates for resources that would be
needed when the system is deployed onto a private blockchain. We conducted
experiments on varying styles of ballots and specified the gas and time costs for
every user, including Administrator (A), Creator (C), and Voter (V), involved
in our system.

Fig. 7. Initial deployment gas costs for the Administrator to activate the system.

The Administrator deploys the Registrar, Creator, and a base Voting con-
tract to activate the system on the blockchain. The deployment costs for this
initialization step are shown in Fig. 7. The gas cost for deploying the Registrar
contract can vary depending on the set of whitelisted domains the Administrator
chose to include during initialization. We chose to whitelist three domains which
contain an average of nine ASCII characters in length.

After the system has been deployed onto the testnet, our next step in exper-
imentation was creating, loading, and voting on different types of ballots with
varying sizes of voting options and whitelisted voters. We chose to use a poll
style of ballot for all the tests but we did check other types and learned that



166 P. B. Marella et al.

Fig. 8. Gas Costs for different types of ballots and use cases in our system.

there was no significant cost difference. The gas costs for those tests can be
viewed in Fig. 8. The number of ASCII characters in the data being passed into
the contracts has a noticeable effect on the gas cost so we used an average ASCII
character length of 10 for ID numbers, 10 for voting choices, 25 for ballot titles
and 18 for e-mail addresses. If we analyze the results in Fig. 8, we notice that it
costs nothing to load ballot information because it sends no transactions to the
blockchain. We also notice that the gas costs for a user to register into the system
also stay fairly constant because it always a set of amount of information going
to the blockchain. In our tests we chose to register all user with ballot creation
permission but if the user chose to not opt for that then the gas cost would be
lowered by roughly 10,000. In the test data we can also notice that the number
of whitelisted voters doesn’t affect the gas cost as significantly as the number
of voting choices. This is because we set the whitelisted voters once whereas we
need to manipulate the choices everytime to update vote count. We calculated
that the average change in gas cost per increment of voting choice when creating
a ballot is 100,000 whereas for voting it grows exponentially as voting choices
increase. Finally, the difference between traditional voting and the logical voting
we implemented in our extension has no significant cost difference as we can see
in Fig. 8.

To better demonstrate the relationship of increasing gas cost as voting options
increase, we create a graph (Fig. 9). The data used for the graph was derived from
the use case data in Fig. 8. We calculated the average gas cost difference between
creating and voting on non-whitelisted ballots. As we can see the increase in cost
is linear when creating ballots with increasing options but voting on them starts
to show signs of exponential growth in cost. Currently the Ropsten Ethereum
testnet has a block gas limit of 4,700,000 gas so we were able to achieve a ballot
with max ballot options of 28 without any whitelisted voters. If this system was
deployed on a private blockchain with modified block gas limit then we could
have larger ballots.



GenVote: Blockchain-Based Customizable and Secure Voting Platform 167

Fig. 9. Relationship between voting options and gas cost for creating and voting on
ballots.

In our previous work we conducted a time cost analysis by calculating how
long, in seconds, each use case would take. In this extension we chose to exclude
that due to hugely varying times it can take to validate transactions for a sin-
gle repeatable process. This happens due to the validating method, when the
transactions are placed in a pool the validating node doesn’t necessarily always
include your transaction in the validation process right away. But even without
actual time data we can say that in general time to complete will vary signif-
icantly on each of the use cases. Use cases that require sending transactions
compared to the ones that only use eth.calls will take a longer time since they
need to be validated. So the more transactions a use case utilizes the longer
it would take to complete that specific process. For example, the Load Ballot
would take the least amount time due to it only using eth.calls, which bypasses
the mining requirement, to retrieve ballot information. But in the case of Create
Ballot or Vote, they would take the longest on average since they require sending
a few transactions to the smart contracts in order to complete their process.

5 Technical Difficulties

While implementing GenVote, we encountered a few technical difficulties. One
such difficulty is support for cryptography: the maximum data value in Solidity
is unsigned int of 256 bit. Many of the cryptosystems require large int numbers
that the ones currently supported in the Solidity language. Therefore, GenVote
cryptography is facilitated through a server, which can introduce new vulnera-
bilities. However, for the purpose of this paper, we assume the server is secure
and cannot be compromised. Currently signed messages via users functionality
is only limited to MetaMask but there are plans to expand it into the standard



168 P. B. Marella et al.

protocol8. Until then we are hindered in the ability to complete the Logical Vote
at a later time feature. It can also be difficult to debug while coding in Solidity
because, currently, it lacks proper debugging tools. To overcome that difficulty
we chose to debug smart contracts using Remix, an integrated development envi-
ronment for Solidity. To debug a transaction, Remix uses either the transaction’s
hash or the transaction’s block number and index. From there, Remix provides
details regarding the transaction’s execution, including local and state variables,
storage changes, and return values9. Remix allows users to step through the con-
tract execution so we can check the state changes and the resulting global state
in the system.

6 Related Works

Fair elections are heavily dependent on the privacy and correctness of the
election process. Works by McCorry et al. [8], Zyskind et al. [15], Barnes
et al. [9], Ernest [10], and Varshneya [16] explore different methods to utilize
the blockchain for the purpose of data integrity. To protect the privacy of user
data and to authenticate voters before the results are determined, [8] utilizes
zero knowledge proofs. Whereas, [9,10] encrypt their voter data using sym-
metric encryption methods. In addition, [9] also stores segmented data on the
blockchain. Follow My Vote and BitCongress are two seperate voting system
analyzed by [16]. Follow My Vote is a voting protocol that is hosted online and
encrypts voter data with symmetric encryption protcols. Voters in the Follow My
Vote system are identified with unique addresses so their real identities are never
revealed. But the system allows for third parties, like government officials, with
permission to access the real identity of the voters. The second voting protocol,
BitCongress, maintains data integrity with the use of two consensus methods,
proof of work and proof of tally. In BitCongress, a voter is authenticated using
the digital signatures of the votes cast by them. When a voter casts a vote for
a candidate in BitCongress, the action is public but other participants cannot
trace the vote to any voter in particular. This is achieved by creating a new
key pair for voters when participating in a new election. GenVote applies partial
homomorphic encryption to secure the privacy of voters and their votes on the
blockchain [7].

[15] introduces a peer-to-peer network called Enigma. Enigma based imple-
mentations consist of three components: a public distributed ledger, a hash-table
that refers to encrypted data off-chain, and a secure multi-party computation
that is distributed among random participating nodes. Enigma is mainly used
to connect to the blockchain for performing computationally sensitive data and
store these records off-chain. Data integrity and privacy is achieved in the Enigma
network by using the secure multi-party computation component. Secure multi-
party computation is used to perform data queries without having to reveal the
contents to the participating nodes. When a multi-party computation is needed,
8 https://github.com/ethereum/EIPs/pull/712.
9 https://media.readthedocs.org/pdf/remix/latest/remix.pdf.

https://github.com/ethereum/EIPs/pull/712
https://media.readthedocs.org/pdf/remix/latest/remix.pdf


GenVote: Blockchain-Based Customizable and Secure Voting Platform 169

data is distributed to a set of random nodes and the nodes process their part of
the data without revealing to each other which part they have. Information leak-
age can only occur if the majority of the selected participating nodes collude [15].
The private blockchain employed by GenVote establishes a closed voting system
to protect voters from outside privacy breaches. For internal privacy, homomor-
phic encryption mentioned above is used within the system [7].

With the use of smart contracts, voting processes can be automated. [8,15]
utilize the smart contract components to enhance their voting systems. In [8]
two smart contracts are implemented: a Voting Contract and a a Cryptography
Contract. The Voting Contract is used to process the vote for different elections
and the Cryptography Contract allows for the zero knowledge proof process used
in the system. Since every participating node has a copy of the Smart Contract,
they can reach an agreement on the contract output instead of having to rely
on someone else. Similar to smart contracts, private contracts in [15] are applied
to enhance the system’s scalability. These contracts are designed to process the
system’s private information. Three smart contracts are utilized in GenVote: a
Creation Contract, Voting Contract, and Registration Contract. The Creation
Contract establishes the poll or election; once this contract is deployed, it can
be used to create multiple, different ballots. The Registration Contract lists
the eligible voters; and the Voting Contract allows eligible voters to vote for a
candidate [7].

Providing a user interface for the voting process increases the ease of access
for voters. Ease of access can help with mass adoption of the voting systems as
well. [8] created three potential HTML5/JavaScript pages that the voters use
to access the voting system through a web browser. BitCongress [16] utilizes an
application called Axiomity as the graphical user interface through which users
create elections and vote. Axiomity also keeps a voting record history for users
to review on demand externally. Similarly, voters in the GenVote system cast
their ballots through an HTML website [7] and Javascript is used to process the
votes.

The voting processes in [8–10,16,17] are described below. The voting process
is split into give stages in [8]. The first stage involves the election administrator
creating a list of voters allowed and creates the election. The administrator also
sets the election timers, deposit for registration, and toggle for optional commit
stage. The second stage is when the voters register for the appropriate election.
The third stage is the optional commit stage, the voters has to store a hash of
their vote onto the blockchain before proceeding to the fourth stage. The fourth
stage is where the voters publish their vote and a zero proof of knowledge onto
the blockchain. Lastly, the final, fifth, stage computes the result of the election
and reveals the outcome. It is important to note that in this system, voters can
only vote for two options, typically “yes” or “no” [8].

BitCongress [17] follows a similar voting process in their system. In Bit-
Congress, every “yes” or “no” is a token and candidate has an address. When
the election is in progress, the voters cast their votes by sending their appropri-
ate token. The tokens are then tallied and returned to voters at the end of the



170 P. B. Marella et al.

election process. In [9] the voting process is implemented in a hybrid way, it
allows for online and offline voting. This is achieved by using two separate
blockchains: one to store registered voters and one to store the actual votes. By
using two separate blockchains, [9] ensures voter privacy and anonymity. Regard-
less of how a voter registers, the same information is required that uniquely iden-
tifies the voter. When the voter wants to vote online, they registration attempt
is stored on the blockchain for government entities to mine for verification. Once
verified, the voter is sent a ballot card and password to submit a vote, which is
stored on the blockchain as a transaction. Some voting systems allow the voters
to update their vote while it is active. This feature is implemented in both [10]
and Follow My Vote discussed in [16]. Additionally, in Follow My Vote, voters
can vote for multiple candidates. An election in GenVote is established when an
administrator in the system deploys the Creation Contract in order to set up
the ballot; this include defining the candidates of the election and the election
timer. Next, the administrator defines within the Registrar Contract who is eligi-
ble to register. Lastly, the voters cast their ballots through the Voting Contract,
which encrypts each ballot to provide security and privacy to the voters. Unlike
the systems in [8,17], GenVote allows users to vote for multiple candidates with
different styles of voting.

GenVote is currently a university-scaled voting system that is deployable
on the Ethereum Blockchain. Voter privacy is handled through homomorphic
encryption and the integrity of votes is ensured with the distributed ledger. To
guarantee voter accessibility, voters cast their votes on an HTML website that
can be accessed anywhere with Internet access. GenVote also has the ability to
be used to conduct polls: similar to elections, polls allow individuals to voice
opinions on matters. However, individuals are able to view poll statistics in real-
time. Voters can also opt to let the system vote on their behalf for whoever is
most (or least) favorable through logical voting. GenVote is a secure, economical
voting system that is customizable and has the potential to be expanded from
a university scale to a larger scale.

7 Conclusions and Further Work

In this paper, we have presented a proof of concept system for GenVote. We also
deployed it on the test network for Ethereum blockchain to gather data for the
purpose of showcasing the ease of deployment and the viability of the voting
system. GenVote is setup to be used in a private blockchain within a university
setting and utilizes the smart contracts in Ethereum blockchain to achieve voter
privacy and ballot integrity. The smart contracts implemented in GenVote are
multi-functional, they act as the record keeper for all the voters and ballots,
perform access control duties to prevent voter fraud, and self tally the votes for
each ballot. With the use of Pallier Homomorphic cryptosystem, blockchain, and
smart contracts we were able to propose a system that alleviated some of the
problems that were inherited from the current electronic voting systems.

In future work, we will investigate the possibility of allowing for logical voting
at a future time using event triggers and raw transaction signing. We will also



GenVote: Blockchain-Based Customizable and Secure Voting Platform 171

further explore the possibility of implementing a partial Paillier cryptosystem
as a library contract in Solidity. With the implementation of that library smart
contract, it will help us generate individual key pairs for each ballot so that we
can make the ballot verification process more modular. This will help us achieve
individual ballot audit without the risk of compromising the other ballots in the
system.

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX security symposium,
vol. 17, pp. 335–348 (2008)

2. Tarasov, P., Tewari, H.: Internet voting using Zcash
3. Atzori, M.: Blockchain technology and decentralized governance: is the state still

necessary? (2015)
4. Blockchain technology in online voting. Web (2016)
5. Buterin, V., et al.: Ethereum white paper (2013)
6. Buterin, V.: On public and private blockchains. Ethereum Blog 7 (2015)
7. Dagher, G.G., Marella, P.B., Milojkovic, M., Mohler, J.: BroncoVote: secure vot-

ing system using Ethereum’s blockchain. In: Proceedings of the 4th International
Conference on Information Systems Security and Privacy (ICISSP), pp. 96–107
(2018)

8. McCorry, P., Shahandashti, S.F., Hao, F.: A smart contract for boardroom voting
with maximum voter privacy. IACR Cryptology ePrint Archive 2017, 110 (2017)

9. Barnes, A., Brake, C., Perry, T.: Digital voting with the use of blockchain technol-
ogy (2016)

10. Ernest, A.K.: The key to unlocking the black box: why the world needs a trans-
parent voting DAC (2014)

11. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
12. Yi, X., Paulet, R., Bertino, E.: Homomorphic Encryption and Applications.

Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12229-8
13. Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Exploring the feasibility of

fully homomorphic encryption. IEEE Trans. Comput. 64, 698–706 (2015)
14. O’Keeffe, M.: The Paillier cryptosystem: a look into the cryptosystem and its

potential application. College of New Jersey (2008)
15. Zyskind, G., Nathan, O., Pentland, A.: Enigma: decentralized computation plat-

form with guaranteed privacy. arXiv preprint arXiv:1506.03471 (2015)
16. Varshneya, A.J., Poudel, S., Vyas, X.: Blockchain voting (2015)
17. Rockwell, M.: Bitcongress whitepaper (2015)

https://doi.org/10.1007/978-3-319-12229-8
http://arxiv.org/abs/1506.03471

	GenVote: Blockchain-Based Customizable and Secure Voting Platform
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Blockchain Mining
	2.2 Eth.calls
	2.3 Paillier Encryption
	2.4 MetaMask

	3 Proposed Solution: GenVote
	3.1 Overview
	3.2 Initial Setup
	3.3 Register Voter
	3.4 Create Ballot
	3.5 Load Ballot
	3.6 Vote (Traditional)
	3.7 Vote (Logical)
	3.8 Get Votes

	4 Testnet Experiment Analysis
	5 Technical Difficulties
	6 Related Works
	7 Conclusions and Further Work
	References




