
On Building a Visualisation Tool
for Access Control Policies

Charles Morisset1(B) and David Sanchez2

1 Newcastle University, Newcastle Upon Tyne, UK
charles.morisset@ncl.ac.uk

2 Northumbria University, Newcastle Upon Tyne, UK
david.sanchez@northumbria.ac.uk

Abstract. An access control policy usually consists of a structured set
of rules describing when an access to a resource should be permitted or
denied, based on the attributes of the different entities involved in the
access request. A policy containing a large number of rules and attributes
can be hard to navigate, making policy editing and fixing a complex task.
In some contexts, visualisation techniques are known to be helpful when
dealing with similar amounts of complexity; however, finding a useful
visual representation is a long process that requires observation, sup-
position, testing and refinement. In this paper, we report on the design
process for a visualisation tool for access control policies, which led to the
tool VisABAC. We first present a comprehensive survey of the existing
literature, followed by the description of the participatory design for Vis-
ABAC. We then describe VisABAC itself, a tool that implements Logic
Circle Packing to pursue the reduction of cognitive load on Access Con-
trol Policies. VisABAC is a web-page component, developed in Javascript
using the D3.js library, and easily usable without any particular setup.
Finally, we present a testing methodology that we developed to prove
usability by conducting a controlled experiment with 32 volunteers; we
asked them to change some attribute values in order to obtain a given
decision for a policy and measured the time taken by participant to con-
duct these tasks (the faster, the better). We obtained a small to medium
effect size (d = 0.44) that indicates that VisABAC is a promising tool
for authoring and editing access control policies.

Keywords: Visualisation · Attribute-based Access Control ·
User study · Circle Packing

1 Introduction

An access control policy can be seen as a compendium of authorisations that
regulate the use of a particular set of resources. They are defined by security
administrators and are processed by a trusted software module called access
control mechanism or reference monitor [8].

c© Springer Nature Switzerland AG 2019
P. Mori et al. (Eds.): ICISSP 2018, CCIS 977, pp. 215–239, 2019.
https://doi.org/10.1007/978-3-030-25109-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25109-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-25109-3_12


216 C. Morisset and D. Sanchez

The first access control model is usually considered to be the Access
Matrix [21], in which a head-rows indicate subjects, head-columns represent
objects and the interception-cells, the access rights granted. This approach could
be inconvenient for systems requiring a large number of subjects and objects, and
may lead to policy misconfigurations [6]. As a consequence, alternative access
control models have been introduced1 over the years that not only provide more
convenient methods for designing policies in specific contexts but also aim for
more expressivity. In that quest, General policy languages have subsequently
been created, including, but not limited to, ExPDT [43], EPAL [2] and the
standard XACML (eXtensible Access Control Markup Language) [45]. The lat-
est version, XACML 3.0, was released in 2013, and standardizes Attribute-based
Access Control, within which an access request can be seen as a set of attribute
values, an access rule as a decision (e.g., permit or deny) returned when a boolean
expression (i.e., target and/or condition) holds for a request, and an access policy
as combining the decisions returned by a collection of rules using a composition
operator (e.g., deny-overrides or permit-overrides). Although XACML is a very
general and powerful framework, its underlying format is XML, which makes
XACML policies machine readable, but arguably harder to author and edit by
hand.

The need for including human factors —which involve human-software inter-
action [22]— in security is recognised as an important problem; in the UK, for
instance, 50% of the worst 2015 breaches were caused by “inadvertent human
error” (up from 31% in 2014) [36] and there has been an increasing effort on
usable security (see, e.g., [1,17,20,48]). In fact, human cognitive capacity has
been overflowed to such extend by the need of regulatory mandates [4] that
typical Security Administrators cope with such entanglement by obviating irrel-
evant data, causing inadvertently security risks in the process [49]. Recent pri-
vacy breaches along with experiments, such as Trudeau et al. [48] corroborates
this, showing that users (including experienced policy engineers) easily oversee
details. There is therefore a clear case to build tools helping security adminis-
trators author and edit access control policies.

Reducing complexity is an essential stage in any kind of analysis and it is
perfectly possible to simplify a system without loosing essential functional prop-
erties. Information visualisation [9] comprises techniques that allow humans to
understand and manipulate huge quantities of abstract data by simplification
and it is being actively investigated by security researchers [7,47,49]. Languages
such as Mir6 [15] have demonstrated that it is even possible to specify security
visually, albeit with very limited complexity. In particular, visualisation tech-
niques have been proposed in the context of access control [15,42], including the
tools ALFA2 (Axiomatics Language for Authorization), which proposes a much
simplified textual syntax for describing XACML policies, or VisPE [29], which
proposes a Sratch-based interface. However, these approaches tend to enhance

1 See for instance [3] for an account on the variety of access control models introduced
over the past decades.

2 https://www.axiomatics.com/pure-xacml.html.

https://www.axiomatics.com/pure-xacml.html


On Building a Visualisation Tool for Access Control Policies 217

the textual representation of the policy, rather than offer a visualisation of the
evaluation of a policy.

In this paper, we fully report on the design process we followed to design
VisABAC [26], which provides an interface for evaluating access control poli-
cies represented by Circle Packing drawing technique3. Whereas our previous
work [26] focuses on the result of a usability study we conducted to validate
VisABAC, this paper focuses on the different steps of the design process as well
as the description of the tool itself. More specifically, the contributions of this
paper are:

– A comprehensive description of the design process for VisABAC was created.
A considerable amount of time was invested into exploring concepts and ideas
that have been detailed in the background section (Particularly in Sect. 2.2);
we detailed early prototypes in Sect. 3.1.

– A comprehensive description of VisABAC and its inner workings. VisABAC is
a client-side browser application that given an attribute-based access control
policy, provides a textual representation of that policy (inspired by XACML
3.0 and ALFA), a graphical visualisation using the Circle Packing method,
and an interface allowing a policy designer to change policy and attribute
values. VisABAC is, to the best of our knowledge, the first visualisation tool
to support the XACML 3.0 extended decision set, which includes multiple
indeterminate decisions (indicating missing information).

– An explanation of the methodology we designed to measure usability of a
visualisation tool, as well as the report of a controlled experiment with 32
participants, which showed that, compared to the controlled group, the tested
group was, in average, faster to answer the questions (with an effect size of
d = 0.44 over the monitored questions), and more likely to interact with
the tool (subjective preferences measured at the end of the test showed that
76.47% of participants who tested the visualisation tool manifested they felt
more confident operating the policy.)

These contributions can be particularly helpful to those intending to design a
visualisation tool for access control policies, as we highlight the key problems we
have encountered in the design process. In particular, to the best of our knowl-
edge, there is no standard benchmark for evaluating the efficiency and usability
of policy authoring/editing tool, and we believe the results of the controlled
experiments could pave the way towards establishing such a benchmark.

The rest of this paper is structured as follows: we first introduce in Sect. 2
the background on Attribute-Based Access Control and related work on access
control visualisation. We then present VisABAC in Sect. 3, how it was developed
and inner workings essentials; the experiment in Sect. 4; results are discussed in
Sect. 5 and conclusions in Sect. 6.

3 VisABAC is open-source and available at https://gitlab.com/morisset/visabac.

https://gitlab.com/morisset/visabac


218 C. Morisset and D. Sanchez

2 Background and Related Work

2.1 ABAC

As briefly described in the Introduction, ABAC consists in considering an access
request as a set of attribute values. To illustrate our approach, let us consider a
health-care policy, regulating the access to a medical record, where, informally
speaking, access is permitted when there is no explicit disagreement from the
patient and when either the hospital or the concerned surgeon agrees for the
access, and access is denied otherwise.

We present here a simplified version of ABAC, aligned with the current ver-
sion of VisABAC, and we leave for future work the implementation of more
complex ABAC languages, such as PTaCL [11,12]. This simplified version is nev-
ertheless expressive enough to model missing information, which is a key aspect
of XACML 3.0 and PTaCL. In a nutshell, we consider here five key concepts:

– An atomic target consists of an attribute name and an attribute value;
– An access request provides a valuation of atomic targets to a 3-valued logic;
– A composite target is a logical composition of atomic targets;
– An access rule consists of an access decision and a composite target;
– An access policy composes rules and policies using a composition operator.

Intuitively speaking, we can define the policy described above using the fol-
lowing syntax (we provide a formal definition below):

R1: Deny if PATIENT_disagrees
R2: Permit if OR(HOSPITAL_agrees, SURGEON_agrees)
P: DOV(R1,R2)

where PATIENT_disagrees, HOSPITAL_agrees and SURGEON_agrees are atomic
targets, OR(HOSPITAL_agrees, SURGEON_agrees) is a composite target, Permit
and Deny are access decisions, R1 and R2 are access rules, DOV is the deny-
overrides composition operator, and P is an access policy.

More formally, we consider a set of attribute names A, a set of attribute
values V, and a set of atomic targets T ⊆ A × V. In the example above,
we have A = {PATIENT, HOSPITAL, SURGEON}, V = {agrees, disagrees}, and
T = {(PATIENT, disagrees), (HOSPITAL, agrees), (SURGEON, agrees)} (we
use the underscore notation in the textual representation to limit the number of
parentheses). It is worth noting that we do not associate each attribute with each
value. In practice, this can be quite significant, for instance with the encoding of
the patient consent: in this example, we model an explicit disagreement instead
of an explicit agreement.

A request is then defined as a function q : T → {1, 0,⊥}, such that, given an
atomic target t = (a, v), q(t) = 1 indicates that a has the value v in q, q(t) = 0
indicates that a does not have the value v in q, and q(t) = ⊥ indicates that we
do not know whether a has the value v in q or not. Here, we interpret 1, 0, and
⊥ as the XACML elements Match, NoMatch and Indeterminate, respectively.



On Building a Visualisation Tool for Access Control Policies 219

A composite target is defined as a proposition of atomic targets. Since, in
the controlled experiment presented in Sect. 4, we targeted participants with
no specific knowledge of access control, we only considered the conjunction (∧)
and disjunction (∨) operators, corresponding to the XACML AllOf and AnyOf
elements, respectively. We leave the study of more complex logical operators for
future work. We use a strong Kleene interpretation for the logical operators,
following the PTaCL and XACML semantics: given a request q, and two targets
t1 and t2, the target t = t1 ∧ t2 evaluates to 1 if both t1 and t2 evaluates to
1, to 0 if either t1 or t2 evaluates to 0, or to ⊥ otherwise. Similarly, the target
t = t1 ∨ t2 evaluates to 1 if either t1 or t2 evaluates to 1, to 0 if both t1 and t2
evaluates to 0, or to ⊥ otherwise.

An access rule is defined as a tuple (d, t), where d is a decision (either Permit or
Deny) and t is a target. Given a request q, a rule (d, t) evaluates to d if t evaluates
to 1, to NA (Not-Applicable) if t evaluates to 0, to Indet(P)4 if d = Permit and t
evaluates to ⊥, or to Indet(D) if d = Deny and t evaluates to ⊥.

Table 1. Evaluation of the healthcare policy example on some selected values for each
atomic target, where each row corresponds to a different access request [26].

Targets Rules Policy

t1 t2 t3 t2 ∨ t3 r1 r2 p

1 1 1 1 Deny Permit Deny

0 1 1 1 NA Permit Permit

0 0 0 0 NA NA NA

0 ⊥ 0 ⊥ NA Indet(P) Indet(P)

⊥ 1 1 1 Indet(D) Permit Indet(PD)

⊥ 0 0 0 Indet(D) NA Indet(D)

An access policy is a collection of rules, composed together with a compo-
sition operator. We implemented in VisABAC the six main XACML operators:
permit-overrides (POV), deny-overrides (DOV), permit-unless-deny (PUD),
deny-unless-permit (DUP), first-applicable (FA), only-one-applicable (OOA).
We refer to the main documentation of XACML or for instance to [27] for the
full definitions of these operators5.

The example policy given above can be formally defined as follows: let t1 =
(PATIENT,disagrees), t2 = (HOSPITAL,agrees) and t3 = (SURGEON,agrees)
be atomic targets, r1 = (Deny, t1) and r2 = (Permit, t2 ∨ t3) be access rules, and
p = DOV(r1, r2) the access policy. The evaluations of these elements are presented

4 For the sake of compactness, we abbreviate the XACML Indeterminate extended
decisions to Indet.

5 Also available with VisABAC documentation: http://homepages.cs.ncl.ac.uk/charl
es.morisset/visabac/visualiser/resources/pages/help.html.

http://homepages.cs.ncl.ac.uk/charles.morisset/visabac/visualiser/resources/pages/help.html
http://homepages.cs.ncl.ac.uk/charles.morisset/visabac/visualiser/resources/pages/help.html


220 C. Morisset and D. Sanchez

in Table 1. It is worth observing that this simple policy can in practice evaluate to
every possible XACML decision, depending on the values of the atomic targets.

2.2 Visualisation for Access Control

As previously stated, cognitive overload is a major issue in access control policy
design, deployment and maintenance and visualisation techniques could ease
those processes; unfortunately, not all visualisation mechanisms are helpful since
many of them grow too large for human cognition6. There exist a rich literature
for visualisation in security, however, few approaches deal with Attribute-based
Access Control, and these approaches tend to work on the structure of the policy
itself, such as VisPE [29], rather than on policy evaluation.

In the following subsections we summarise different visualisation techniques,
some of them actively applied into access control, that were considered in the
process of building VisABAC.

Euler Diagrams [13] visually represent containment, intersection and exclusion
using closed curves. They are largely used in math to represent set operations and
deductive reasoning [41,44] and were the first kind of diagrams considered as Vis-
ABAC framework. Security lends naturally to this kind of visualisation since poli-
cies can be represented in terms of relationship sets and they have proved [38] to
effectively visualise thousands of elements if the set intersection are simple; how-
ever, the method becomes almost unreadable when a low count of elements have
complex relationships among them. Euler diagrams prove to be very inspiring in
the prototype designed but they were not implemented since they could be partic-
ularly difficult to draw automatically [46].

Grids are matrices with policies along rows and resources as columns; results of
the evaluation of access to resources are placed in intersections. For example, [37]
propose the use of multi-level grids to visualise results of multiple types of access
control policy analysis and authoring. This approach is very simple to implement
yet very powerful; however it does not take advantage of many visualisation
concepts and it is very space consuming.

Graphs are used to represent access policies. [25] explores them visually in
operational situations with its RubaViz prototype; however, its main use has
been as memory structures. [18], for instance, uses Multi-Terminal Binary Deci-
sion Diagrams (MTBDDs), as a way to model XACML policies in Margrave
(a proposed software tool developed in Scheme). Even though it heavily uses

6 As a side note, the abstractions and simplifications commonly used in visual tech-
niques designed for humans, can also be useful to computers, presenting even formal
proof of the correctness and normalisation of policies. For example, in [35] Graph
theory is used to validate policies and in [30] decision diagrams are used to accelerate
XACML speed evaluation; none of them show any visuals to users.



On Building a Visualisation Tool for Access Control Policies 221

graphs, no visual representation is derived from its internal structure since even
the memory arrangement of a very simple policy can generate a confusing graph
for humans. As a consequence, a standard Graph visualisation was discarded
in the early stages of the process, even though there are many interesting tools
such as Gephi [5] which are worth to be considered in future research.

Shortcomings of the Graph approach can also be appreciated in PRISM
(PRIvacy-Aware Secure Monitoring), a software tool that proposes an architec-
ture to mediate between information sources and entities on a network presented
by [28]. Access Policies controlled with this interesting visual editor provides
user-friendly administration of complex X.509 certificates7 by users with no par-
ticular expertise [28]. The interface lays out many instruments to interact with
the graph, being possible zoom-in/out, rotate and navigate. As a drawback this
kind of representation can become unreadable as the number of policies increases
and the user can easily get lost inside the graphical representation. PRISM tries
to minimise this by including a birds-eye view.

Trees are being timidly studied as a way to visually find conflicts inside access
policies; this seems surprising since trees are used to create XACML policies
itself and it is the preferred method for explaining XACML policies in the OASIS
specification [39]. [42] explore this approach for very light graphs in its XACML
Viz prototype. [35] uses trees (Matching tree and Combining Tree) to optimise
the evaluation of applicable rules in an access policy engine called XEngine.
This tool is not aimed at visualisation but uses visual concepts and matches
internal structures directly to trees representations. Illustrations were used as
inspirations for the prototype.

Semantic Substrates [9] uses spatial representation to group common
attributes by regions. [33,34] propose a visualisation toolkit called “Policy Visual-
isation Framework (PVF)” which extends XACML to support RBAC. It aims at
providing a clearer representation than a conventional role-permission tree graph,
and it seems particularly useful when combining different policies. This visualisa-
tion technique mimics three electronic breadboards that represents user, role and
permission. Nodes inside each breadboard are drawn as circles, squares and tri-
angles; they are interconnected by red, green and blue lines (wires) which assign
user-role, role-permission and role-mapping relationship respectively. Hierarchy is
achieved by arrows in the relationships [33,34]. This technique has been successful
when dealing with a relatively small number of policies but it has been insufficient
with heavily dense policy graphs [51]. As a consequence, [51] propose complement-
ing it with another techniques such as adjacency matrices.

7 [28] indicates that future works is necessary in order to make PRISM a general
purpose access control administration tool capable to support alternatives represen-
tations such as XACML.



222 C. Morisset and D. Sanchez

Adjacency Matrices are widely used in graph visualisation because they allow
a clear understanding of dense relationship structures. However, according [51]
do not favoured them when dealing with hierarchical security relationships. As
a consequence, [51] use them as a complementary representation to Semantic
Substrate when visualising compliance of security policies in SELinux. Adjacency
Matrices were discarded as a technique since they are not expressive enough.

Treemaps [16] visualise hierarchical tree structures using a root rectangle that
contains all nodes of a given tree. Each subsequent level of the tree structure
divides the above square according to a particular attribute of a node, such
as size. [34] proposes treemaps to complement Semantic Substrates instead of
adjacency matrices to form macro and micro vision respectively. It aims at the
analysis of access control polices of RBAC model when multi-domain informa-
tion is exchanged. Treemaps offer a perfect match between access policies and
efficient space utilisation. They are pleasant to the eye and can provide interac-
tivity. They were proposed for the prototype and survived along the first stages of
implementation; unfortunately, they became difficult to understand as the num-
ber of policies increased and were finally discarded after pilot testing. Pictures
of animated treemaps can be seen in Figs. 2 and 3.

Circle Packing [50] is very similar in concept to Treemaps, as it was inspired
by them. As a marked difference, it uses circles instead of rectangles which
give them a lower space efficiency ratio; however, they express more clearly the
hierarchy they represent. Figure 1 shows a three-level Circle Packing diagram.

Even though Circle Packing may seem at first glance as Euler diagrams (or
a type of Euler diagram like Venn), they are different in concept as well as in
properties. For example, Circle Packing do not comply with many of the math-
ematical Euler characteristics, such as the presence of unique labels or crossing
policies (Circle Packs do not intersect lines, while Euler diagrams do) [46]. How-
ever, for the purpose of VisABAC they provide the understandability of Euler
representation with the ease of use and programmability of Treemaps. Addition-
ally, Circle Packing provides clear containment —as Euler diagrams— but are
space efficient. This is a huge benefit when comparing them with Trees, Grids
and Graphs. [50] have shown with a file visualisation tool (FVT) that it is pos-
sible to handle efficiently thousands of nodes with this method. However, to the

Fig. 1. Simple Circle Packing Diagram [50]. Level 0 is painted light grey. Level 1 is
painted green. Level 3 is painted red. (Color figure online)



On Building a Visualisation Tool for Access Control Policies 223

best of our knowledge, Circle Packing has never been used in the context of
access control priory to the VisABAC [26] implementation.

3 VisABAC

In this section, we first explain the process with which we have designed
VisABAC, after which we describe the tool itself8.

3.1 Creating VisABAC

In general, visualisation is not only a set of techniques but also a process [24]
therefore, in order to achieve a successful representation, it is important to work
closely with users affected by the shortcomings of traditional analysis. Hence,
we work closely with 5 members of our research group using a participatory
design [40]. That expertise targeted essential usability aspects and the feedback
acquired (heuristic approach [40]) was complemented by heuristic evaluation and
informal/formal evaluation by recruited participants.

VisABAC was developed using rapid-prototyping methodology [19]. The pro-
cess involved three stages: throw-away, evolution and refinement.

The Throw-away stage involved the creation of over 70 prototypes with no
functionality using presentation software to explore almost all ideas explained
in the Sect. 2.2. Some approaches, such as: graphs, hierarchical graphs, hyper-
graphs, Euler diagrams, and binary decision diagrams (BDD), have already been
identified as too complex to implement, visualise or unsuitable to be of any prac-
tical use [14,15,18,25]. Some candidates, on the other hand, were particularly
promising, including trees and treemaps, which have been applied previously to
security visualisation. Figure 2 shows an early prototype. In this stage, as well
as the next one, we used simplified access control policies expressed as logical
boolean algebra.

Fig. 2. Early prototype: (a) shows the initial stage with a logic equation representing
an access control policy. Tapping on (a) advances to (b) and successively.

8 VisABAC is available for demonstration at http://homepages.cs.ncl.ac.uk/charles.
morisset/visabac.

http://homepages.cs.ncl.ac.uk/charles.morisset/visabac
http://homepages.cs.ncl.ac.uk/charles.morisset/visabac


224 C. Morisset and D. Sanchez

The Evolutionary stage was started once some ideas were identified as pos-
sibly useful. Under this stage many limited functional prototype were created
over a quick iteration process. These high-fidelity prototypes were developed on
Javascript using the D3 library, coded using NetBeans 8.1 and displayed on a
web browser (primarily Mozilla Firefox 47). These prototypes did not evaluate a
full ABAC policy and instead used a simplified access control policy handcrafted
in JSON. During this stage two very interesting prototypes emerged based on
treemaps and trees. However, some limitations were found during the participa-
tory process, even after trying to refine them as zoomable treemaps (Fig. 3) and
collapsible trees (Fig. 4). The most relevant limitations were:

– Users easily forgot the evaluation result of a particular policy they were
inspecting and had to waste time by going back to a previous level.

– The relationship between screen state utilisation and navigability was high-
lighted as very important by participants. Screen utilisation for collapsible
trees was very low (more than 50% is background)9 and caused excessive pan-
ning when dealing with large policies; on the other hand, zoomable treemaps
proposed a full screen state utilisation but users got lost inside the policy
quickly.

A tradeoff between efficiency and usability was found in circle packing, a
visualisation technique criticised [50] for not being as space efficient as treemaps
but praised for providing a better hierarchy illusion than those obtained by, for

Fig. 3. Zoommable Treemap prototype showing a simplified Access Control Policy
(Policy) composed of 3 sub-policies (P1, P2 and P3). (a) shows the initial Treemap
level O. (b) Hovering over P3 rectangle policy, the label reveals information about was
performed the evaluation for this policy (How the colour was obtained). (c) tapping on
P3 shows the immediate interior P3 level (Policy.P3).

9 A prototype version of VisABAC with collapsible trees is available alongside the
main tool, illustrating the poor screen utilisation.



On Building a Visualisation Tool for Access Control Policies 225

Fig. 4. Collapsible Tree prototype showing a simplified access control policy (Policy)
composed of 3 sub-policies (P1, P2 and P3) (a) shows Policy with first level displayed
(P1, P2 and P3). (b) shows P1 policy sublevel with their corresponding sub-sub-policies
(P11, P12 and P13).

example, treemap representations. A late prototype of this stage was embedded
into a FileMaker Pro application to combine an early version of the testing
module with a database.

The refinement stage was started once the feasibility of the app was deter-
mined as well as a testing procedure could be applied. In this stage full access con-
trol policies could be edited and evaluated. Also, the FileMaker testing module
was superseded by a Javascript one, making the new application completely web
based. This final prototype became VisABAC and will be described in Sect. 3.2.

3.2 VisABAC Interface

The VisABAC interface is designed as a web page component and, as such,
runs on any web browser. The interface consists of four main components, which
we now detail, using the visualisation of the policy described in Sect. 2.1 as an
example (Fig. 5).

The Policy component (Fig. 5(d)) is a textual box, directly editable from
the browser, which contains the definition of the policy following the syntax
described in Sect. 2.1. This definition can either be typed in, loaded from a set
of existing samples, or loaded from a file. These rules are automatically parsed
into JavaScript Object Notation (JSON), where the text of each rule is identified
by its name. For instance, the policy described in Sect. 2.1 would correspond to
the object:



226 C. Morisset and D. Sanchez

Fig. 5. (a) and (c) show the evaluation of the policy P, represented in (d), when
attributes are set as (e) (fifth row of Table 1). The largest circle (P) is filled in with
a grey pattern, since it evaluates to Indet(PD), the circle for R1 is filled in with a red
pattern, since it evaluates to Indet(D), and the circle for R2 is filled in green, since it
evaluates to Permit. (f) shows the screen section that provides common controls, such
as Add Attribute, Delete Attribute, Samples, Load Policy, Save Policy and Evaluate.
(Color figure online)

policyRules=
{"R1": "Permit if PATIENT_disagrees",
"R2": "Permit if OR(HOSPITAL_agrees,

SURGEON_agrees)"
"P": "DOV(R1,R2)"}

The Attributes component (Fig. 5(e)) allows the user to set the value for each
attribute value: true, false, or unknown. For instance, Fig. 5(e) corresponds to a
request where we do not know if the patient disagrees to the access, we know
that the hospital does not agree to the access, and that the surgeon agrees, which
corresponds to the fifth row of Table 1.



On Building a Visualisation Tool for Access Control Policies 227

The Decision component (Fig. 5(c)) lists, for each rule in the Policy com-
ponent, the decision obtained for that rule. These decisions are obtained by
iterating through the policyRules object, following the evaluation rules estab-
lished in [12]. The evaluation returns an object with the same structure, but
where each rule has been replaced by its decision. In the case where a rule is
not well-formed (e.g., missing reference, syntax error), it evaluates to Indeter-
minate(PD). Note that cycles in rule definitions are not currently detected, and
an error would occur.

Fig. 6. Circle packing visualisation of complex policies in VisABAC [26].

Finally, the Visual component (Fig. 5(a)) uses Zoomable Circle Packing to
visually explore access control policies, using the D3.js library10. The zoomable
aspect is a crucial one, as it allows the space occupied by the visualisation to
remain constant. A circle is either a rule or a composition of rules grouped by
a composition operators. As a consequence, a policy comprised of sub-policies is
represented by circles containing sub-circles in a similar hierarchy as the given
policy. The visual diagram is dynamic, and is updated when the policy or the
attributes are updated and a new evaluation is calculated. Each circle is defined
by two characteristics:

– The colour, which matches the result of the policy/rule they represent:
green is for Permit, red for Deny, white for NA, patterned-green for Indet(P),
patterned-red for Indet(D), and patterned-grey for Indet(PD). We have also
developed a colour deficiency mode, which caters for different types of colour
deficiencies. In addition, since these colours are set through a simple CSS
(Cascading Style Sheet), they could be user configurable.

10 https://d3js.org.

https://d3js.org


228 C. Morisset and D. Sanchez

– The line pattern which matches the operator used. In particular, we use full
lines for Deny-overrides and dashed lines for Permit-overrides. The lines for
the other operators can be found in the online help of the tool.

For instance, Fig. 5(a) shows that Level 0 (P) represents the whole policy by
the most outer circle line; Level 1 (R1 and R2) represent the first level of the
tree policy with smaller circles inside. A zoom on the inner circles would display
their respective targets, since they are atomic policies. Figure 6 illustrates more
complex examples of ABAC policies.

3.3 VisABAC Internals

VisABAC current version was coded in Javascript using NetBeans 8.2 on a multi-
platform environment (macOS and Windows). Javascript was employed because
it allows code transparency —source code could be easily explored and corrected
by anyone who uses the application in a modern browser—. Consequently, the
code is heavily commented and easily modifiable.

VisABAC follows standard web page creation conventions and, as such, it
separates presentation elements description from the engine itself. All VisABAC
code is located inside visualiser/resources and is categorised in classes,
images, libraries, pages, scripts and styles.

Presentation. Almost all identifiable non-essential code is contained in the
folders images, pages, scripts and styles. Files contained in each one of
them are pretty much self explanatory and provide web page structure and non-
essential elements (such as about, help, preferences, etc.); especial consideration
is required only to the following items:

– pages/VisualiserForm.html contains the essential visual framework of the
pilot VisABAC application and it could be modified to apply the engine to
different products.

– scripts/visualiserForm.js contains the scripts that send messages to the
VisABAC engine.

– styles/logicCirclePacking.css contains common styles used in the logic
Circle Packing visualisation technique regardles of colour deficiency prefer-
ences; this is an essential VisABAC component.

– styles/ visualiserForm.css, visualiserForm ColorNormal.css and
visualiserForm ColorDeficiency.css are used by visualiser
Form.html.



On Building a Visualisation Tool for Access Control Policies 229

Fig. 7. Internal Tree structure formed by recurrent Node objects (JSON objects). The
tree structure corresponds to the same sample shown in Fig. 5.

Engine. Essential code is contained in the folder libraries (only carrying
d3.v3.js) and classes; the latest contains the following:

– Visualiser.js This is the class that creates the visualiser object. It stores all
code that creates on screen the interface elements. It starts by parsinPol-
icyRules and storing as an internal attribute the policy passed by the user
(policyRules and policyAttributes). The code also draws the screen com-
ponents according to the preferences, picking the right colour mode.

– LogicCirclePacking d3v3.js Very important class in which zoomable circle
packing happens; it receives a JSON tree that represents the policy previ-
ously evaluated (Fig. 7 shows a sample representation). The evaluation are
rates in the domain [−5,−4,−3,−2,−1, 0, 1] to be corresponded by the D3
library into the range [indeterminateDColour, indeterminatePColour, indeter-
minatePDColour, indeterminateDColour, notApplicableColour, denyColour,
permitColour]. These colours, as well as additional patterns are defined in this
class to correctly represent permits, denies and indeterminations (indeter-
minate permit, indeterminate deny and indeterminate permit-deny), (Fig. 9
shows the indeterminate patterns). D3 uses a svg to plot the circle packing
using very concise instructions, applying the same presentation function to all
nodes of the tree almost simultaneously. Appearance functions are appended
to lines as well and according to each rate, a particular stroke is use to draw
a circle line. Figure 8 shows lines and its significance. This class also contains
the zoom parameters required by the D3 library that allows policy navigation.

– Node.js is a class that specifies a non reducible element that recursively com-
bined creates the policy tree. Figure 7 shows five samples of them forming a
simple tree; most important attributes are:

• access e.g. Permit, Deny, IndeterminatePD...
• attribute used to mark if it is an attribute node true or false.
• children array of dependant node operations.



230 C. Morisset and D. Sanchez

• generateByRecursion flag (true or false) to mark an auxiliar node
created by a recursive evaluation.

• logic stores composition operators, e.g. DOV, POV, FA, OOA, etc.
• name e.g DOV, R1, etc. or any attribute name.
• policyID unique identifier.
• rate domain number resulting from node and its children evaluation.

– Policy.js This class provides methods and attributes to encapsulate all oper-
ations over a policy. It stores policy, policyRules, policyAttributes-
ByRule, policyRulesOrCompositions and policyTreeInJSON and provides
means to update them according to user interactions. The gist of the class are
two main methods resolveRules and parsePolicyToTree which are called
whenever there is an update or the program starts.
resolveRules iterates through all policy rules (keys) to “solve” values, e.g.

policyRules={"PA": "Permit if attribute1",
"PB": "Deny if attribute2",
"PC": "DOV(PA,PB)"}

will be transformed into:

_policy={"PA": "Permit",
"PB": "Deny",
"PC": "Permit"}

_policyAttributesByRule={"PA": "attribute1",
"PB": "attribute2",
"PC": "DOV(PA,PB)"}

These two objects policy and policyAttributesByRule allow direct
addressing either to results or attributes when parsePolicyTree is called.
resolveRules also encapsulates a series of procedures (resolveLogic,
resolveRule, resolveRuleOrComposition, resolveAttributesByRule)
that handle the policy evaluation according to user inputting.
parsePolicyToTree is the entry point to a series of methods, starting by
parseCompositionToTree that creates a tree using the policy. parseCompo-
sitionToTree uses a series of stacks and recursion to evaluate fragments of
the policy. Stacks have to be used in order to respect parenthesis hierarchy
that might exist in a complex policy. Depending on complexity, also recursive
procedures could be called. During this procedure, numeric rates are assigned
to the nodes that are being created.

– Sample.js is a support class used to store attribute values and logic inside the
Policy.js class.

4 Evaluation

VisABAC, presented in the previous section, is relatively easy to use, since it
is defined as an in-browser application. The input language for policies is rel-
atively straight-forward from an Attribute-based Access Control perspective.



On Building a Visualisation Tool for Access Control Policies 231

Fig. 8. Line conventions used by VisABAC to represent operations: (a) Deny overrides
(b) Permit overrides (c) Deny unless permit (d) Permit unless deny (e) First applicable
(f) Only one applicable. (c) and (d) may look similar in printing due to scale but they
are clearly different in the application.

Fig. 9. Operations colour conventions used by VisABAC: (a) Deny (b) Indetermi-
nate deny (c) Indeterminate permit (d) Indeterminate permit deny (e) Permit (f) Not
applicable.

More importantly, the D3.js library for Circle Packing is particularly fluid, mak-
ing the tool very responsive. Our participatory design elicited Circle Packing
as the preferred visualisation technique, compared with other techniques such
as foldable trees or treemaps. However, we are also interested in understand-
ing whether VisABAC is effectively usable, i.e, whether its proposed graphical
representation could help users in their tasks.

Nielsen and Levy argue that usability should be measured according to sub-
jective user preferences and objective performance measures, since, in some cases,
users have favoured interfaces that are measurably worse for them [32]. Similarly,
MacLean et al. [23] found that subjects inclined towards a proven slower data
entry method would still prefer it as long as it was not 20% slower than the
faster method.

Hence, in addition to a subjective user preference questionnaire, we want to
design an objective performance measure for using VisABAC. To the best of our
knowledge, there is no standard benchmark for the usability of tools for access
control policies, and therefore we define a new method in this paper. Roughly
speaking, we give the user a fixed policy, a valuation for the attributes, and ask
the user to change this valuation in order for the policy to evaluate to a specified
decision. Our hypothesis is that the faster the user is able to do this task, the
more they understand the policy, and thus the better is the tool with which the
user interacts. We now describe this experimental settings, and we discuss the
limitations of our approach in Sect. 6.



232 C. Morisset and D. Sanchez

4.1 User Interface

We conduct a controlled-group experiment, where users in different groups see
a different user interface. We define two different user interfaces (UI):

– The Graphics UI is an extension of the VisABAC interface, described in
Sect. 3.2, with the addition of two main elements: the context box, which
introduces the context of the policy, in English; and the question box, which
specifies the expected decision. The boxes for the policy, the attributes, the
decision box, and the visual decision diagram, are as described in Fig. 511.

– The Text UI is similar to the Graphics UI, as the notable exception that the
visual decision diagram box is missing. However, the user still has access to
the evaluation of the policy with the decision box.

4.2 Policy Question

The aim of either UI described above is to answer a question, given a context
and a policy. Ideally, we would like to ask questions related to any aspect of
the editing or maintenance of a policy. However, we believe that this would
introduce too many different dimensions to control, and we focus instead on
questions related to policy evaluation. We leave for future work the study of
more complex questions. The context is a simple description of the motivation
behind the policy, for instance, for the policy described in Sect. 2.1 and Fig. 5,
the context is:

Releasing medical records in a certain hospital requires compliance with
an access control policy. The system checks events with statements that
return True or False if the forms have been filled and validated by the
corresponding departments.

The attribute values are initially set so that the policy evaluates to Indet(PD),
and the question is:

Can you change the radio buttons so that PC evaluates to Deny?

The user can change any radio button, and then click on a button Evaluate,
which refreshes the different boxes with the new policy evaluation. There is no
limit on the authorised number of evaluation per question, and they can go to
the next question by clicking on the Submit button. They were also instructed
they could go to the next question at any time if they did not wish to submit an
answer for the current question, and this would be recorded as a wrong answer.

The experiment consists of a total of 32 sub-questions, grouped in 8 main
questions. All sub-questions within a single main question have the same context,
and only differ on minor details. For instance, a sub-question in the same group
than the policy above use the First-Applicable (FA) operator to combine R1 and
R2 instead of the Deny-Overrides (DOV). The main questions are denoted from
Q1 to Q8, the sub-questions for the main question Qi are denoted from Qia to
Qid.
11 The full test with both interfaces is available from the front page of the tool.



On Building a Visualisation Tool for Access Control Policies 233

4.3 Protocol

Each recruited participant Pi goes through the following steps:

1. After reading and signing the participant consent form, Pi is randomly
assigned to either the Text group (the control group) or the Graphics group
(the tested group).

2. Pi is presented with a short introduction about ABAC, going through a simple
policy example (similar to that described in Sect. 2.1). At this stage, they
can use the Text UI on the introduced example (the Graphics UI is only
introduced in Step 4 for the Graphics group) and ask any question. They are
also explained what is expected of them and informed that their time will
be recorded. They are also informed that some policies are on purpose hard
to analyse, and that we are measuring how the interface helps them, rather
than assessing them. This step takes in average 10 min.

3. Once they feel confident about using the tool, they start answering the first
series of main questions, Q1 and Q2 (8 sub-questions in total), using the Text
UI, regardless of their assigned group.

4. After Q2, if Pi is in the Text group, they keep answering Q3 to Q8 (24 sub-
questions in total); if Pi is in the Graphics group, they switch to the Graphics
UI, and they are briefly introduced with the specifics of the Circle Packing
representation; they then answer Q3 to Q8 using the Graphics UI.

5. After Q8, Pi is debriefed, and explained the purpose of the experiment.
According to recommended practices [31], a £10 Amazon voucher is given
as compensation for their time.

The entire protocol was designed to take, in average, between 30 to 45 min,
including 20 min of actual assessment. The time to answer each question was
visible to the participant, and although there was no strict countdown, to avoid
adding time pressure, participants were encouraged to move on to the next ques-
tion if they were spending more than 5 min on a sub-question (which happened
in only one instance). The experiment took place in the same office and the same
computer (a 27′′ iMac), in order to control environmental changes. Participants
were asked about colour deficiency, but none was indicated in our experiment.

4.4 Objective Performance Measure

Intuitively, we want to compare the time taken by users in the two different
groups, in order to evaluate whether the Graphics UI was beneficial. However,
performance measure among different individuals varies according to the capa-
bilities of each one, and the nature of the experiment makes it hard to ensure
the distribution of users in the groups is consistent with user capabilities. As
a consequence, a procedure of normalisation had to be performed in order to
compare data.

The selected normalisation value was the inverse of the number of seconds
each participant spent on solving Q2 (i.e., the total time spent on subquestions



234 C. Morisset and D. Sanchez

Q2a, Q2b, Q2c and Q2d). We denote this as the normalisation coefficient αi, for
each participant Pi. Subsequently, the time taken by Pi to answer each question
is normalised by multiplying it by αi. If this value is lower than 1, this implies
the subject performed a particular question faster than Q2 while a larger value
represents the opposite. For instance, if P1 took 4 s to complete Q2 (α1 = 0.25)
and 6 s to complete Q3, their normalised time for Q3 is 1.5; if P2 took 16 s to
complete Q2 (α2 = 0.0625) and 23 s to complete Q3, their normalised time for
Q3 is 1.4375. In other words, even though, absolutely speaking, P2 was slower
than P1 for Q3, they were comparatively faster.

Fig. 10. Boxplots comparison of normalised times for questions Q3 to Q8 between
the Text and Graphics groups (lower is better). The body of each box represents the
intervals between the first (q1) and third quartiles (q3), the bar represents the mean,
the whiskers represent the maximal and minimal values between q3 + 1.5(q3 − q1) and
q1 − 1.5(q3 − q1), fliers represent points outside of this range.

This choice for the normalisation function comes from the fact that we have
designed different questions with different levels of difficulty, Q7 being the most
difficult for the full details of Q7). Hence, we expect that all users will spend
more time to answer Q7 than Q2, and we want to measure this difference, rather
than measuring directly the difference between users. Q2 was selected as the
normalisation value since all participants, regardless of their group, had to do it
with the Text UI, and it was assumed some familiarity was already gained by
the user after performing Q1, since Q1 and Q2 have a similar complexity level.

4.5 Subjective User Preferences

Subjective Testing was performed on users who were exposed to the visualisation
technique. A relatively standard questionnaire was presented to collect their
impressions using a Likert scale [32] after finishing the objective testing.



On Building a Visualisation Tool for Access Control Policies 235

5 Results

We recruited 32 participants over 4 weeks, mostly among undergraduate Com-
puter Science students, with no formal knowledge of ABAC, and randomly
assigned to the groups (16 participants each). The aim of this study was to
assess the impact of circle packing, so we targeted a relatively uniform group in
terms of prior knowledge, rather than experts in Access Control. Figure 10 shows
the normalised time average of participants for each question, including wrong
answers (there are 8 wrong answers in each group). The mean for the Graphics
group is lower (i.e., better) from Q4 to Q8 (comparatively to the time taken for
Q2) compared to the Text group. The mean of Graphics group is higher for Q3,
which could indicate a small learning curve with the Graphics UI.

Altogether, the normalised mean time for participants in the Text group to
answer all questions from Q3 to Q8 is mt = 10.38 (with a confidence interval
of [7.88, 12.88] and a standard deviation of σt = 5.10). In comparison, the nor-
malised mean time for participants in the Graphics group is mg = 8.58 (with a
confidence interval of [7.33, 9.83] and a standard deviation of σg = 2.55). This
allows us to conclude that the effect size12 is 0.44, which is traditionally seen as
a small to medium effect size [10].

In addition, the results of the user preferences survey showed that 82.35%
of participants described the presence of the visualisation as useful; 76.47% of
participants felt more confident operating the policy with the presence of the
graph and 47.06% agree and 35.39% agree to some extent that the presence of
the graph makes them feel they understand the policy better. Some questions
were however very conclusive, e.g. if complex mental operations were needed,
which could indicate this question was not well formulated.

6 Conclusions

Building a usable visualisation tool for access control policies is a challenging
task, as it requires: (i) to have a good understanding of the existing literature
on visualisation; (ii) to be based on a clear semantics for the access control
language; (iii) to use a participatory design process; (iv) to be validated with a
user study. We have successfully followed these steps in the design of VisABAC,
which is the first visualisation tool for attribute-based access control policies,
where composition operations seems to be adequately represented and details are
disclosed on demand thanks to the zooming and progressive disclosure of tags.
VisABAC also provides interactivity to the user and increments the exploring
of the policy in a graphical manner. The extensive literature survey presented
in Sect. 2.2 is, to the best of our knowledge, the first survey on visualisation
technique for access control policies.

The participatory design process was positive, and most users liked the con-
cept very much, found it intuitive and easy to use, although they remarked that

12 Cohen’s effect is computed as (mt − mg) divided by
√

(σ2
t + σ2

g)/2.



236 C. Morisset and D. Sanchez

some training could have decrease their response time. Crucially, the experiment
showed a small to medium effect size [26], allowing us to conclude that VisABAC
improves the handling of attribute-based access control policies for a population
with no formal training. Of course, at this stage, it is not yet clear whether
VisABAC can provide a significant contribution to access control experts, but
we believe the tool as presented here and our results pave the way towards an
experiment at a larger scale.

Future Work. VisABAC is specifically designed to be open and easy to extend.
The underlying infrastructure uses HTML (for the basic interface), JSON (for
the encoding of the policies), and Javascript (for the evaluation of policies and the
visualisation elements), making it possible to consider other visualisation tech-
niques. In particular, the collapsible tree approach (see Sect. 3.1) has received
some positive response during the participatory design phase of VisABAC (poli-
cies tend to be naturally seen as trees), but suffers from a space occupation
issue. The textual input for VisABAC can also be straightforwardly extended,
for instance by parsing directly XACML policies, making it possible to com-
pare real XACML cases against their visualisation (and not synthetic ones), and
include authoring tools such as VisPE [29].

Acknowledgements. This work was partially supported by the UK National Centre
for Cyber-Security, in the context of the Research Institute in the Science of Cyber-
Security. The authors would also like to thank Nick Holliman from Newcastle University
for very useful discussions on visualisation techniques.

References

1. Alavi, R., Islam, S., Mouratidis, H.: A conceptual framework to analyze human fac-
tors of Information Security Management System (ISMS) in organizations. In: Try-
fonas, T., Askoxylakis, I. (eds.) HAS 2014. LNCS, vol. 8533, pp. 297–305. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07620-1 26

2. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (EPAL). IBM Research (2003)

3. Barker, S.: The next 700 access control models or a unifying meta-model? In:
SACMAT, pp. 187–196. ACM (2009)

4. Barrett, R., Kandogan, E., Maglio, P.P., Haber, E.M., Takayama, L.A., Prabaker,
M.: Field studies of computer system administrators: analysis of system manage-
ment tools and practices. In: Proceedings of the 2004 ACM Conference on Com-
puter Supported Cooperative Work, CSCW 2004, pp. 388–395 (2004). https://doi.
org/10.1145/1031607.1031672

5. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for explor-
ing and manipulating networks. In: Third International AAAI Conference on
Weblogs and Social Media (2009)

6. Bauer, L., Garriss, S., Reiter, M.K.: Detecting and resolving policy misconfigura-
tions in access-control systems. In: SACMAT, pp. 185–194. ACM (2008)

https://doi.org/10.1007/978-3-319-07620-1_26
https://doi.org/10.1145/1031607.1031672
https://doi.org/10.1145/1031607.1031672


On Building a Visualisation Tool for Access Control Policies 237

7. Becker, J., Heddier, M., Öksüz, A., Knackstedt, R.: The effect of providing visu-
alizations in privacy policies on trust in data privacy and security. In: 2014
47th Hawaii International Conference on System Sciences, pp. 3224–3233 (2014).
https://doi.org/10.1109/HICSS.2014.399

8. Benantar, M.: Access Control Systems: Security, Identity Management and Trust
Models. Springer, Boston (2005). https://doi.org/10.1007/0-387-27716-1

9. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visu-
alization: Using Vision to Think. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

10. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, pp. 20–26.
Lawrence Earlbaum Associates, Hillsdale (1988)

11. Crampton, J., Morisset, C.: PTaCL: a language for attribute-based access control
in open systems. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol.
7215, pp. 390–409. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28641-4 21

12. Crampton, J., Morisset, C., Zannone, N.: On missing attributes in access control:
Non-deterministic and probabilistic attribute retrieval. In: SACMAT, pp. 99–109.
ACM (2015)

13. Euler, L.: Lettres a une princesse d’allemagne. Sur divers sujets de physique et de
philosophie, vol. 2. Birkhauser, Basel (1761)

14. Fisler, K., Krishnamurthi, S., Meyerovich, L.A., Tschantz, M.C.: Verification and
change-impact analysis of access-control policies. In: Proceedings of the 27th Inter-
national Conference on Software Engineering, ICSE 2005, pp. 196–205. ACM, New
York (2005). https://doi.org/10.1145/1062455.1062502

15. Heydon, A., Maimone, M.W., Tygar, J.D., Wing, J.M., Zaremski, A.M.: Miro:
visual specification of security. IEEE Trans. Softw. Eng. 16(10), 1185–1197 (1990).
https://doi.org/10.1109/32.60298

16. Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualiza-
tion of hierarchical information structures. In: Proceedings of the 2nd Conference
on Visualization 1991, Los Alamitos, CA, USA, pp. 284–291. IEEE (1991)

17. Kirlappos, I., Sasse, M.A.: What usable security really means: trusting and engag-
ing users. In: Tryfonas, T., Askoxylakis, I. (eds.) HAS 2014. LNCS, vol. 8533, pp.
69–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07620-1 7

18. Kolovski, V.: Logic-based access control policy specification and management.
Technical report, Department of Computer Science, University of Maryland, Col-
lege Park (2007)

19. Kordon, F.: An introduction to rapid system prototyping. IEEE Trans. Softw. Eng.
28(9), 817–821 (2002). https://doi.org/10.1109/TSE.2002.1033222

20. Lacey, D.: Managing the Human Factor in Information Security: How to Win over
Staff and Influence Business Managers. Wiley, Hoboken (2009)

21. Lampson, B.W.: Protection. Oper. Syst. Rev. 8(1), 18–24 (1974). https://doi.org/
10.1145/775265.775268

22. Licht, D.M., Polzella, D.J., Boff, K.R.: Human factors, ergonomics and human fac-
tors engineering: an analysis of definitions. Crew System Ergonomics Information
Analysis Center (1989)

23. MacLean, A., Barnard, P., Wilson, M.: Evaluating the human interface of a data
entry system: user choice and performance measures yield different tradeoff func-
tions. People Comput. Des. Interface 5, 45–61 (1985)

24. Meyer, M.: Information visualization for scientific discovery, April 2011. https://
www.youtube.com/watch?v=Sua0xDCf8MA

https://doi.org/10.1109/HICSS.2014.399
https://doi.org/10.1007/0-387-27716-1
https://doi.org/10.1007/978-3-642-28641-4_21
https://doi.org/10.1007/978-3-642-28641-4_21
https://doi.org/10.1145/1062455.1062502
https://doi.org/10.1109/32.60298
https://doi.org/10.1007/978-3-319-07620-1_7
https://doi.org/10.1109/TSE.2002.1033222
https://doi.org/10.1145/775265.775268
https://doi.org/10.1145/775265.775268
https://www.youtube.com/watch?v=Sua0xDCf8MA
https://www.youtube.com/watch?v=Sua0xDCf8MA


238 C. Morisset and D. Sanchez

25. Montemayor, J., Freeman, A., Gersh, J., Llanso, T., Patrone, D.: Information visu-
alization for rule-based resource access control. In: Proceedings of International
Symposium on Usable Privacy and Security (SOUPS), p. 24 (2006)

26. Morisset, C., Sanchez, D.: VisABAC: a tool for visualising ABAC policies. In: Pro-
ceedings of the 4th International Conference on Information Systems Security and
Privacy - Volume 1: ICISSP, pp. 117–126. INSTICC, SciTePress (2018). https://
doi.org/10.5220/0006647401170126

27. Morisset, C., Zannone, N.: Reduction of access control decisions. In: SACMAT,
pp. 53–62. ACM (2014)

28. Mousas, A.S., Antonakopoulou, A., Gogoulos, F., Lioudakis, G.V., Kaklamani,
D.I., Venieris, I.S.: Visualising access control: the prism approach. In: 2010
14th Panhellenic Conference on Informatics (PCI), pp. 107–111, September 2010.
https://doi.org/10.1109/PCI.2010.52

29. Nergaard, H., Ulltveit-Moe, N., Gjøsæter, T.: ViSPE: a graphical policy editor for
XACML. In: Camp, O., Weippl, E., Bidan, C., Aı̈meur, E. (eds.) ICISSP 2015.
CCIS, vol. 576, pp. 107–121. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-27668-7 7

30. Ngo, C., Makkes, M.X., Demchenko, Y., de Laat, C.: Multi-data-types interval
decision diagrams for XACML evaluation engine. In: 2013 Eleventh Annual Inter-
national Conference on Privacy, Security and Trust (PST), pp. 257–266, July 2013.
https://doi.org/10.1109/PST.2013.6596061

31. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1993)

32. Nielsen, J., Levy, J.: Measuring usability: preference vs. performance. Commun.
ACM 37(4), 66–75 (1994). https://doi.org/10.1145/175276.175282

33. Pan, L., Liu, N., Zi, X.: Visualization framework for inter-domain access control
policy integration. China Commun. 10(3), 67–75 (2013). https://doi.org/10.1109/
CC.2013.6488831

34. Pan, L., Xu, Q.: Visualization analysis of multi-domain access control policy inte-
gration based on tree-maps and semantic substrates. Intell. Inf. Manag. 4(5), 188–
193 (2012)

35. Pina Ros, S., Lischka, M., Gómez Mármol, F.: Graph-based XACML evaluation.
In: Proceedings of the 17th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT 2012, pp. 83–92. ACM, New York (2012). https://doi.org/10.
1145/2295136.2295153

36. PwC: 2015 information security breaches survey. Technical report, HM Government
and PwC Consulting and Infosecurity Europe, April 2015

37. Rao, P., Ghinita, G., Bertino, E., Lobo, J.: Visualization for access control pol-
icy analysis results using multi-level grids. In: IEEE International Symposium on
Policies for Distributed Systems and Networks, pp. 25–28 (2009). https://doi.org/
10.1109/POLICY.2009.29

38. Riche, N.H., Dwyer, T.: Untangling Euler diagrams. IEEE Trans. Vis. Comput.
Graph. 16(6), 1090–1099 (2010). https://doi.org/10.1109/TVCG.2010.210

39. Rissanen, E., Lockhart, H., Moses, T.: XACML V3.0 administration and delegation
profile version 1.0. Committee Draft 1 (2009)

40. Ritter, F.E., Baxter, G.D., Churchill, E.F.: Foundations for Designing User-
Centered Systems. Springer, London (2014). https://doi.org/10.1007/978-1-4471-
5134-0

41. Rodgers, P.: A survey of Euler diagrams. J. Vis. Lang. Comput. 25(3), 134–155
(2014). https://doi.org/10.1016/j.jvlc.2013.08.006

https://doi.org/10.5220/0006647401170126
https://doi.org/10.5220/0006647401170126
https://doi.org/10.1109/PCI.2010.52
https://doi.org/10.1007/978-3-319-27668-7_7
https://doi.org/10.1007/978-3-319-27668-7_7
https://doi.org/10.1109/PST.2013.6596061
https://doi.org/10.1145/175276.175282
https://doi.org/10.1109/CC.2013.6488831
https://doi.org/10.1109/CC.2013.6488831
https://doi.org/10.1145/2295136.2295153
https://doi.org/10.1145/2295136.2295153
https://doi.org/10.1109/POLICY.2009.29
https://doi.org/10.1109/POLICY.2009.29
https://doi.org/10.1109/TVCG.2010.210
https://doi.org/10.1007/978-1-4471-5134-0
https://doi.org/10.1007/978-1-4471-5134-0
https://doi.org/10.1016/j.jvlc.2013.08.006


On Building a Visualisation Tool for Access Control Policies 239

42. Rosa, W.D.: Toward visualizing potential policy conflicts in eXtensible Access Con-
trol Markup Language (XACML). Theses and dissertations, University of New
Orleans, New Orleans, May 2009

43. Sackmann, S., Kähmer, M.: ExPDT: Ein policy-basierter ansatz zur automa-
tisierung von compliance. Wirtschaftsinformatik 50(5), 366–374 (2008)

44. Sato, Y., Mineshima, K., Takemura, R.: The efficacy of Euler and Venn diagrams
in deductive reasoning: empirical findings. In: Goel, A.K., Jamnik, M., Narayanan,
N.H. (eds.) Diagrams 2010. LNCS (LNAI), vol. 6170, pp. 6–22. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14600-8 6

45. OASIS Standard: eXtensible Access Control Markup Language (XACML) version
2.0 (2005)

46. Stapleton, G., Zhang, L., Howse, J., Rodgers, P.: Drawing Euler diagrams with
circles. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010. LNCS
(LNAI), vol. 6170, pp. 23–38. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14600-8 7

47. Stepien, B., Matwin, S., Felty, A.: Strategies for reducing risks of inconsistencies in
access control policies. In: 2010 International Conference on Availability, Reliability
and Security, pp. 140-147 (2010)

48. Trudeau, S., Sinclair, S., Smith, S.W.: The effects of introspection on creating
privacy policy. In: WPES 2009: Proceedings of the 8th ACM Workshop on Privacy
in the Electronic Society, pp. 1–10. ACM, New York (2009). https://doi.org/10.
1145/1655188.1655190

49. Vaniea, K., Ni, Q., Cranor, L., Bertino, E.: Access control policy analysis and
visualization tools for security professionals. In: SOUPS Workshop (USM) (2008)

50. Wang, W., Wang, H., Dai, G., Wang, H.: Visualization of large hierarchical data
by circle packing. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI 2006, pp. 517–520. ACM, New York (2006). https://
doi.org/10.1145/1124772.1124851

51. Xu, W., Shehab, M., Ahn, G.J.: Visualization based policy analysis: case study in
SELinux. In: Proceedings of the 13th ACM Symposium on Access Control Models
and Technologies, SACMAT 2008, pp. 165–174. ACM, New York (2008). https://
doi.org/10.1145/1377836.1377863

https://doi.org/10.1007/978-3-642-14600-8_6
https://doi.org/10.1007/978-3-642-14600-8_7
https://doi.org/10.1007/978-3-642-14600-8_7
https://doi.org/10.1145/1655188.1655190
https://doi.org/10.1145/1655188.1655190
https://doi.org/10.1145/1124772.1124851
https://doi.org/10.1145/1124772.1124851
https://doi.org/10.1145/1377836.1377863
https://doi.org/10.1145/1377836.1377863

	On Building a Visualisation Tool for Access Control Policies
	1 Introduction
	2 Background and Related Work
	2.1 ABAC
	2.2 Visualisation for Access Control

	3 VisABAC
	3.1 Creating VisABAC
	3.2 VisABAC Interface
	3.3 VisABAC Internals

	4 Evaluation
	4.1 User Interface
	4.2 Policy Question
	4.3 Protocol
	4.4 Objective Performance Measure
	4.5 Subjective User Preferences

	5 Results
	6 Conclusions
	References




