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Abstract Most statistical process monitoring begins with an assumed model
(implicitly or otherwise) and further assumptions about the components of themodel.
These assumptions all play important roles in practice, in the solution that is pro-
posed for the problem at hand. Since the proposal is based on these assumptions,
it is important that they are thoroughly investigated and properly validated, so that
the results can be depended on. In this paper, we examine two of the important and
common assumptions, namely, normality and independence.We provide some exam-
ples with real data and illustrate the consequences. It is seen that the nonparametric
(distribution-free) approach may be a safer option in many applications in practice.

1 Introduction

In the modern age, large amounts of data are often available from a variety of sources
and in a variety of environments that need to be studied and analyzed. This means
one needs to make sense of the volume of data and then be able to make efficient
decisions based on the data. The study may consist of one time or cross-sectional
analysis at a given point in time or a longer term ongoingmonitoring of a process. The
analysis involves both descriptive and inferential statistics. The descriptive analysis
involves visualization and numerical summaries to help understand what is going on.
The decision making via prediction, estimation, etc., which is statistical inference,
is often based on a confidence interval or a test of hypothesis. While availability of
modern software has made this type of work routine and seemingly trivial, one must
not forget the assumptions behind the methods that must be satisfied to validate and
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justify the end results. Although each statistical inference method requires its own
assumptions, some of the most common ones are about randomness, independence
and underlying distribution of the data. Violations of one or more of the assumptions
might render the decisions invalid and hence useless even though there would seem
nothing wrong in terms of crunching the numbers. Much has been written about
the importance of checking assumptions during an analysis using statistical methods
before decisions are made. In this brief paper, we revisit some of these issues via
an example and illustrate some of the challenges associated with data analysis and
analytics in general, in practice.

Wefirst consider the assumption about the underlying distribution thatmaybe nec-
essary before a statistical method is applied. This may be necessary simply because
the theoretical derivation of the methodology requires such an assumption. How-
ever, it is fair to say that assuming (picking) a probability distribution for the data
is a daunting task. Whether acknowledged or not, this is one of the most important
and challenging aspects of data analysis since the validity of the inference drawn
from the application of the method often hinges upon this crucial assumption. The
distributions come in all sorts of shapes; the most commonly assumed distribution in
the application of statistical methods is the normal distribution which is symmetric
and bell-shaped. However, depending on the context, other distributions may also
be used, such as the exponential distribution, the uniform distribution, the Weibull
distribution, the gammadistribution, to name a few,within the class of continuous dis-
tributions. Graphs of some probability density functions of some of the well-known
continuous distributions are shown in Fig. 1. The collection includes symmetric and
skewed distributions. Note that as shown, even among the symmetric distributions,
shapes can vary and this can lead to differences in probability based assessments.
The same is true for skewed distributions.

This challenge of making and meeting the distributional assumption is faced by
practitioners and data analysts from all areas on a day to day basis. Although it
may be possible to use the law of averages and the central limit theorem to by-pass
(avoid) the distributional assumption in certain cases (like for large sample sizes)
while making statistical inference, it is somewhat of a dicey strategy, particularly in
quality control andmonitoring applicationswhere the sample sizes are often small. In
manufacturing, the typically recommended subgroup size is around five, whereas in
real time, individual monitoring of data, the subgroup size is one. Note that in many
monitoring settings, data are collected from sensors in a nearly continuous stream and
thus it is often more meaningful (and required) to monitor the individual data. Thus
applying the central limit theorem to such problems can be risky if not impossible. At
times data are aggregated into hourly, four-hourly- or six-hourly intervals to improve
the accuracy of measures but such aggregations still will not necessarily allow the
central limit to apply.

Statistical process control and monitoring methods originally arose in the context
of industrial/manufacturing applications, developed during and afterWorldWar Two,
in order to produce high quality (and high reliability) items (at a lower cost). This
regime involves designing studies (i.e., Design of Experiments), collecting (Sam-
pling), and analyzing data (Analytics). Among the many statistical tools used in



Statistical Process Monitoring and the Issue of Assumptions … 139

Fig. 1 Some continuous probability distributions

statistical process monitoring the control chart is perhaps the most well-known. This
graphic provides a simple and effective visualization of “what’s going on” in a pro-
cess at a given point in time and also over time, in order for the user tomake a decision
about the quality of the process, including indicating what might not be working and
where (andwhen) so that necessary adjustmentsmay bemade. Here the term “quality
of the process” is used in a general sense, which is context-dependent. If the process
is a manufacturing process producing say copper tubing, the quality of the process
may be reflected in the diameter of the tubes (or the average and standard deviation
of the diameter of a sample of tubes) and a control chart can describe whether or
not the machine (or the process) is producing these tubes that are “in-control” that
is meeting specifications for what is expected out of these tubes, so that they can be
sold in the market. On the other hand if the context refers to a situation other than
in manufacturing, say about the level of pollution in the environment of a certain
city, measured in terms of the concentration level of certain matters or chemicals,
the quality of the process (whether or not it is in-control) may correspond to what
may be dictated by the safety and health considerations.

In any event, if the variables of interest in the outputs of the process aremeasurable
and are monitored with a control chart, over time, and the concept of significance
is to be attached to the results, such as, for example, whether or not the process
is producing significantly more defectives, or, whether or not the pollution level is
significantly higher than expected, relative to what is “in-control”, an assumption
about the probability distribution of the variable being measured and monitored
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may be needed. When this information is available, it is possible to calculate the
probability (or the chance) of observing what has been observed, and decide whether
or not the observed results are significant, or extreme, compared to some nominal
threshold.

In a vast majority of the applications of statistical process monitoring and control,
as inmany applications of statistics inmany other areas, it is fairly common to assume
that the underlying probability distribution is of a (given) known form (based on
knowledge and experience), but some aspects of the distribution are unknown, say
the mean and/or the standard deviation, which are called parameters. This clearly
lessens the burden of making the distributional assumption somewhat and provides
a bit of flexibility in the choice. For example, one may assume that the diameters
of the copper tubes follow a normal distribution with an unknown mean and an
unknown standard deviation. Then standard statistical theory and methods may be
used with this knowledge of the form of the distribution, to estimate the parameters,
and to set up inference procedures. This is the pathway to setting up Shewhart control
charts to monitor the mean of the process. Control charts (and statistical methods)
developed under the assumption of a known parametric distribution are referred to
as parametric control charts (Chakraborti and Graham 2019a, b). Since the normal
distribution is among themost commonly assumeddistribution sometimes parametric
charts are almost synonymous with normal-theory control charts, but we emphasize
that many other distributions can be and are used in process monitoring, in a variety
of interesting applications.

2 Consequences of the Distributional Assumption

It is clear that if the diameters of the tubes do not follow a normal distribution,
but, some other distribution, say a gamma distribution (which is typically skewed
to the right) one can set up parametric control charts for the mean taking advantage
of that information. This control chart, including the control limits, will not be the
same as the one based on the normal distribution. Thus, one may get a different
set of results, such as whether or not the process is in control, from an application
of each chart. In other words, the statistical inference may be dependent on the
assumed distribution for the observed variable(s). Put another way, there is a practical
consequence to making the distributional assumption and that consequence, in terms
of the probability and the eventual decision, may be slight to severe, depending on
howmuch of the distributional assumptionmay be violated by the data and howmuch
each decision may end up costing. For example, assuming that the IC distribution
of the diameters of copper tubes is exponential with mean 20, the UCL = 20 + 3
× 20 = 80 and LCL = 20 − 3 × 20 = −40, so that the LCL is rounded up to
0. Hence the false alarm rate for the chart is P(X > 80) = e−80/20 = 0.0183. Thus,
where under the normal distribution assumption, for 3-sigma limits, there would
be a false alarm, on the average, once in every 1/0.0027 = 370 samples, under the
exponential distribution, there would be a false alarm, on the average, once in every
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54.59 (=1/0.0183) samples. This could mean that the manufacturer may soon be out
of business because of stopping the process so frequently and looking for a reason
that does not exist. Although the example may be somewhat extreme, the point is
that there will be a consequence of using the wrong distribution, on the inference or
the decision, which can be anywhere, from mild (bearable) to catastrophic.

The issue is that there is usually no way to fully guarantee that the assumed
distribution is the correct distribution for the data, or that the data fit the assumed
distribution perfectly, since there is always at least a 5% chance of getting it wrong
(say based on a goodness of fit test). The bottom line may be that the manufactured
copper tubes all pass the quality control check based on the control charts but may
be useless in the marketplace or, alternatively, that the tubes do not pass the check
and yet may be acceptable.

In the “classical” statistical literature, such consequences are of course well-
known and have been examined for some time in terms of what is called robustness.
In practice however, the analyst faces a dilemma. The issue is that in practice the
consequences of the violations of the assumptions are not always known, advertised,
articulated or even appreciated. Or, even if the consequences may be understood, the
implementation is not affected or may be delayed, due to lack of training, availability
of software, carelessness, …, just to mention a few reasons. In order to address this
dilemma, the area of nonparametric statistics has been developed within statistics.
Nonparametric statistical methods provide robust inferential tools (confidence inter-
vals, hypotheses tests) which can be used to make valid statistical inference without
assuming a specific parametric form of the underlying distribution. Note that these
are not “too good to be true” methods peddled by some suspicious characters at the
street corners, but have the backing of a solid theoretical basis. For instance, for the
copper tubing example, one can construct a valid 95% nonparametric confidence
interval for the median diameter, which does not require the assumption of any par-
ticular parametric form of the distribution, except continuity. This is a remarkable
result available for many years and should be utilized whenever possible. In short,
nonparametric methods apply to a larger class of probability distributions (which
may include the one that may have been most commonly used, say the normal). It
is true that being applicable to a much broader range of distributions, nonparametric
methods may lose some efficiency against parametric methods, for some specific
distribution. So if one is sure about the assumption of the distribution, it is perfectly
reasonable to proceed along that parametric path. However, it seems fair to say that
in most situations, such knowledge is all but nonexistent and one is better off using
a nonparametric method.

The same recommendation applies to the area of statistical processmonitoring and
control. Most of this literature is about parametric charts that are set up assuming
a normal (or some other) distribution. However, in the last twenty years, several
nonparametric control charts have been proposed in parallel. This area of research
has grown rapidly and now a number of software packages are available. In fact, the
proliferation of R programming has now reached a state of maturity where it is not
entirely unexpected that a user can program a newly proposed chart in a journal article
and apply it, even if a packaged solution is not yet available. This is an encouraging
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development. Several review papers are now available (see for example, Chakraborti,
van der Laan and Bakir 2001 and Chakraborti and Graham 2019a, b) and at least two
recent books (Qiu 2014 and Chakraborti and Graham 2019a, b) have been written on
the subject. A lot of research is currently underway in these areas, both theory and
applications.

In this paper our goal is to illustrate the issues with making some of the basic
assumptions for a valid statistical analysiswith a real dataset arising in a real situation.
We focus on this type of a dataset asmost datasets used for illustration in the literature,
although may be appropriate to illustrate a particular proposed methodology, do not
seem to conform to many applications of statistical process monitoring and control
in practice. It will be seen that the analysis of real data is hard and our example will
show the imperfections in the practical setting, but that is precisely the point. With
this is mind, various ways of monitoring such data are considered and a case is made
in favor of nonparametric statistical process monitoring.

3 Other Assumptions and Considerations When Designing
a Control Chart

The second important issue we consider here is the assumption of independence. In
a manufacturing type process monitoring context, it may be reasonable to have data
that may be presumed to be independent since it is usually possible to control the
monitoring environment quite tightly. However, while monitoring individual data or
data monitored over time, it is more often the case that the data are not stochasti-
cally independent, that is, one data point, in a sequence of data points, influences
another, positively or otherwise, that needs to be accounted for in the analysis. A
typical scenario involves data collected over time, where the time difference between
the successive observations may be small. This could lead to the data being auto-
correlated (or serially correlated). Here we consider monitoring applications where
the data stream become available (are collected) in near real-time and this could be
in the context of a continuous process in manufacturing, social media data streaming
in, or pollution data. Given the very nature of these data, there is a high likelihood
that the observations are not independent.

The first step in this setting is to define the “common cause” (what is in-control)
and “special cause” variation (what is out-of-control) that need to be flagged by the
monitoring strategy. This involves understanding the sources of variation by deciding
on, for example, what, if any, seasonal adjustments need to be made (should be
removed) or what within day influences are to be treated as common cause variation
(and should be removed). This would help define common causes of variation that
do not need to be signaled (which defines the in-control state). Also, having a clear
understanding of what special causes of variation need to be flagged (what is out-of-
control) is vital at this design phase. These decisions would have to be made before
deciding on the distributional assumptions. These considerations are to be handled
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before deciding what time series model is going to be fitted and then monitoring the
forecast residuals from that model. Deciding on the appropriate rational subgroup
also requires some thought.

In parts manufacturing type applications, the basic in-control model is generally
taken as

yt = μ + et

where μ is the mean process value or the target and the random error is given by
et ∼ n

(
0, σ 2

)
. However, in monitoring applications outside of manufacturing, this

is often defined as

yt = μt + et

where et ∼ n
(
0, σt

2
)
and the exact form ofμt and σt

2 depend on how common cause
variation is defined over time t. A visual example of μt and σt

2 that are influenced
by the seasons is presented in Fig. 1. Notice that in this case, both the mean and the
variance of the process are higher in Spring and Summer.Wemaywish to remove this
variation as nothing can be done about it. In such cases we need to be certain about
what we wish to control. In addition, the temperature, wind and humidity within a
day vary and these influences can be removed if they influence the ozone. However
before doing this we need to decide of the purpose of monitoring. If it is to discover
what is unusual process behavior, removing all potential influences is recommended,
but if the purpose is just to flag high values then no corrections should be made.

4 Applications

The practical example we consider is monitoring the level of ozone in the atmosphere
at Chullora, a suburb of the local government areas the Canterbury-BankstownCoun-
cil and in theMunicipality of Strathfield. It is located 15 kmwest of the Sydney central
business district, in the state of New South Wales, Australia. It is part of the Greater
Western Sydney region. The data, plotted in Fig. 2, involve hourly average ozone
measures for six years, from June 5, 2013 to June 5, 2019 (inclusive). Monitoring
the ozone level is important from a public health perspective since the ozone in the
air we breathe can harm our health, especially on hot sunny days when ozone can
reach unhealthy levels. Even relatively low levels of ozone can cause health effects.
People most at risk from breathing air containing ozone include people with asthma,
children, older adults, and people who are active outdoors, especially outdoor work-
ers. In addition, people with certain genetic characteristics, and people with reduced
intake of certain nutrients, such as vitamins C and E, are at greater risk from ozone
exposure.
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Fig. 2 Hourly ozone measure at Chullora, Sydney, Australia

The first phase in the analysis is to explore the sources of variation in order
to understand and define the in- and out-of-control status of the process and the
underlying distribution, among other matters. This exploratory phase is called Phase
I. We would expect ozone to have a seasonal influence, and Figs. 2 and 3 confirm
this influence. It is also evident that the data are not normally distributed given the
skewness of the boxplots particularly for months with low values.

There is little we can do about this seasonal influence and so we may wish to
remove this variation as common cause. We also assess the hourly influence of
ozone measures in Fig. 4. There is a clear influence of hour of the day on the ozone
measures. Note that on average lower ozone values are recorded in the afternoon
than during other times in the day. It appears as if the hourly average trend could be
fitted using a within day harmonic. There is little we can do about this influence and
so we may also wish to remove this variation as common cause.

These two sources of variation, the seasonality and the hour of the day (or within
day), should be included in the model for the ozone level that can be used to pro-
vide one hour-ahead forecasts values. This can be handled as follows. The seasonal
influence could be removed by taking first order seasonal differences of the data
with season defined as the month (12). The influence of the hour of the day may
be removed by fitting an ARIMA(1,1,1) model with “seasonal influence” being 24
hourly values. However, this model failed to remove all the significant autocorre-
lations and even more complicated ARIMA models failed to fit adequately. As an
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Fig. 3 Monthly boxplots of hourly ozone measures at Chullora

Fig. 4 Boxplots of the hourly ozone measures at Chullora

alternative, the simplest model tried was seasonal harmonics, with day harmonics
and up to three lag autoregressive parameters.

Step 1: Transform the data so as to achieve approximate normality.

The transformation that proved closest to normality was (CHUL-
LORA.OZONE.1h.average..pphm. + 0.101)ˆ0.77

which was obtained using the boxcox in function in R MASS library given as
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Fig. 5 Box-cox transformation to normality

boxcox((CHULLORA.OZONE.1h.average..pphm. + 0.101)ˆ0.77 ~ day + cos(2 *
pi * day/365.25) + sin(2 * pi * day/365.25) + dw * (Time + cos(2 * pi * Time/24)
+ sin(2 * pi * Time/24)) + Lag1 + Lag1day + Lag2 + Lag3,data = OZONE.C)
(Fig. 5).

Step 2: Fit a model to the transformed data

The fitted model was as follows:

Call:

lm(formula = (CHULLORA.OZONE.1h.average..pphm. + 0.001)ˆ0.77 ~ day +
cos(2 * pi * day/365.25) + sin(2 * pi * day/365.25) + dw * (Time + cos(2 * pi *
Time/24)+ sin(2 * pi *Time/24))+Lag1+Lag1day+Lag2+Lag3+Temperature
+ WindSpeed + Humidity, data = OZONE.C)

The output from this is as follows (Fig. 6).

The autocorrelations of the residuals from this model are shown in Fig. 7 which
indicate that there is significant autocorrelation up to 24 h but thereafter this autocor-
relation is largely small to non-significant. The partial autocorrelations are significant
for the first 24 h but the values are low (less than 0.11). Thus there is some evidence
that the model does not do a great job at correcting within day variation, and may be
improved. Nevertheless, for illustration, we decided to use this model to define the
one hour-ahead forecasts, and then use a rational sub-group of hourly average ozone
measures in a day. Given that measures were not recorded at 2 a.m. each day and
that we are using 3 lagged autoregressive terms in the model this results in mostly
21 measures in a day.

Even though the fitted model does not seem to remove all the influences of the
hour of the day since the ACF values are significant for the first 24 h, this model is a



Statistical Process Monitoring and the Issue of Assumptions … 147

Residuals: 
     Min       1Q   Median       3Q      Max  
-2.27094 -0.14918 -0.01683  0.14246  2.23760  

Call: 
lm(formula = (CHULLORA.OZONE.1h.average..pphm. + 0.001)^0.77 ~  
    day + cos(2 * pi * day/365.25) + sin(2 * pi * day/365.25) +  
        dw * (Time + cos(2 * pi * Time/24) + sin(2 * pi * Time/24)) +  
        Lag1 + Lag1day + Lag2 + Lag3 + Temperature + WindSpeed +  
        Humidity, data = OZONE) 

Residuals: 
     Min       1Q   Median       3Q      Max  
-2.29465 -0.14918 -0.01399  0.14412  2.21179  

Coefficients: 
                                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)                       -5.953e-02  3.852e-02  -1.545 0.122280     
day                                1.988e-05  2.005e-06   9.914  < 2e-16 *** 
cos(2 * pi * day/365.25)          -8.899e-03  3.112e-03  -2.860 0.004244 **  
sin(2 * pi * day/365.25)          -5.037e-02  2.066e-03 -24.374  < 2e-16 *** 
dwMonday                           3.484e-02  1.684e-02   2.069 0.038594 *   
dwSaturday                         4.373e-02  1.690e-02   2.587 0.009673 **  
dwSunday                           1.109e-01  1.685e-02   6.580 4.75e-11 *** 
dwThursday                         2.862e-03  1.688e-02   0.170 0.865390     
dwTuesday                         -4.222e-03  1.685e-02  -0.251 0.802133     
dwWednesday                        1.664e-02  1.686e-02   0.987 0.323844     
Time                               2.874e-03  8.365e-04   3.435 0.000592 *** 
cos(2 * pi * Time/24)             -7.426e-02  5.462e-03 -13.597  < 2e-16 *** 
sin(2 * pi * Time/24)              3.534e-02  7.344e-03   4.812 1.50e-06 *** 
Lag1                               7.398e-01  3.921e-03 188.675  < 2e-16 *** 
Lag1day                            5.470e-03  2.305e-03   2.373 0.017661 *   
Lag2                              -2.444e-01  5.065e-03 -48.250  < 2e-16 *** 
Lag3                              -1.091e-02  3.252e-03  -3.355 0.000794 *** 
Temperature                        1.783e-02  4.696e-04  37.974  < 2e-16 *** 
WindSpeed                          7.052e-02  1.226e-03  57.524  < 2e-16 *** 
Humidity                          -3.346e-03  9.357e-05 -35.763  < 2e-16 *** 
dwMonday:Time                     -1.768e-03  1.177e-03  -1.502 0.133004     
dwSaturday:Time                    1.299e-03  1.180e-03   1.101 0.270949     
dwSunday:Time                     -1.349e-03  1.177e-03  -1.146 0.251812     
dwThursday:Time                   -2.306e-04  1.180e-03  -0.195 0.845025     
dwTuesday:Time                    -1.691e-04  1.177e-03  -0.144 0.885793     
dwWednesday:Time                  -1.038e-03  1.178e-03  -0.881 0.378071     
dwMonday:cos(2 * pi * Time/24)     3.939e-03  7.329e-03   0.537 0.590930     
dwSaturday:cos(2 * pi * Time/24)  -1.329e-02  7.343e-03  -1.809 0.070399 .   
dwSunday:cos(2 * pi * Time/24)    -1.052e-02  7.321e-03  -1.437 0.150848     
dwThursday:cos(2 * pi * Time/24)  -2.575e-03  7.369e-03  -0.349 0.726778     
dwTuesday:cos(2 * pi * Time/24)    5.561e-03  7.346e-03   0.757 0.449036     
dwWednesday:cos(2 * pi * Time/24) -2.508e-03  7.354e-03  -0.341 0.733086     
dwMonday:sin(2 * pi * Time/24)    -6.434e-03  9.919e-03  -0.649 0.516547     
dwSaturday:sin(2 * pi * Time/24)   2.069e-02  9.927e-03   2.084 0.037161 *   

dwSunday:sin(2 * pi * Time/24)     4.507e-02  9.902e-03   4.551 5.34e-06 *** 
dwThursday:sin(2 * pi * Time/24)  -9.118e-03  9.980e-03  -0.914 0.360916     
dwTuesday:sin(2 * pi * Time/24)   -4.839e-04  9.947e-03  -0.049 0.961199     
dwWednesday:sin(2 * pi * Time/24) -7.039e-03  9.960e-03  -0.707 0.479706     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.2537 on 41983 degrees of freedom 
  (10035 observations deleted due to missingness) 
Multiple R-squared:  0.9119,    Adjusted R-squared:  0.9118  
F-statistic: 1.175e+04 on 37 and 41983 DF,  p-value: < 2.2e-16 

Fig. 6 Output from model fitting
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Fig. 7 Autocorrelation of the residuals of the fitted model

reasonably adequate description of in-control data, particularly if we use a rational
subgroup of daily measures. However, the other assumption in the model is that the
variance of the error term is homogeneouswhich needs to be checked. In fact, looking
at the time series in Fig. 2, there seems to be some questions about the validity of
this homoscedasticity assumption. We use the gamlss library in R to assess whether
the variance can be assumed homogeneous over time.

The R code is as follows:

Family: c(“NO”, “Normal”)
Call: gamlss(formula = (CHULLORA.OZONE.1 h.average..pphm. +

0.001)ˆ0.77 ~ day + cos(2 * pi * day/365.25) + sin(2 * pi * day/365.25) +
dw * (Time + cos(2 * pi * Time/24) + sin(2 * pi * Time/24)) + Lag1 + Lag1day
+ Lag2 + Lag3 + Temperature + WindSpeed + Humidity, sigma.formula = ~ day
+ cos(2 * pi * day/365.25) + sin(2 * pi * day/365.25) + ((dw == “Wednesday”)
+ (dw == “Sunday”) + (dw == “Saturday”)) * (Time + cos(2 * pi * Time/24)
+ sin(2 * pi * Time/24)) + Temperature + WindSpeed + Humidity, data =
na.omit(OZONE.C)).

The output is shown in Fig. 8.
Clearly the variances for this process are not homogeneous within days with the

variance increasing with the hour of the day and there is a significant harmonic
change in variances within the day.
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Fitting method: RS()  

****************************************************************** 

Family:  c("NO", "Normal")  

Call:  gamlss(formula = (CHULLORA.OZONE.1h.average..pphm. + 0.001)^0.77 ~ day + cos(2 * 

pi * day/365.25) + sin(2 * pi * day/365.25) + dw * (Time + cos(2 * pi * Time/24) + sin(2 * pi * 

Time/24)) +  Lag1 + Lag1day + Lag2 + Lag3 + Temperature + WindSpeed +          Humidity, 

sigma.formula = ~day + cos(2 * pi * day/365.25) + sin(2 * pi * day/365.25) + ((dw == "Wednesday") 

+ (dw ==  "Sunday") + (dw == "Saturday")) * (Time + cos(2 * pi * Time/24) +      sin(2 * pi * 

Time/24)) + Temperature + WindSpeed + Humidity, data = na.omit(OZONE))  

Fitting method: RS()  

------------------------------------------------------------------ 

Mu link function:  identity 

Mu Coefficients: 

                                    Estimate Std. Error t value Pr(>|t|)     

(Intercept)                       -1.425e-01  3.565e-02  -3.998 6.40e-05 *** 

day                                1.916e-05  1.828e-06  10.481  < 2e-16 *** 

cos(2 * pi * day/365.25)          -3.318e-02  2.913e-03 -11.389  < 2e-16 *** 

sin(2 * pi * day/365.25)          -5.933e-02  1.927e-03 -30.794  < 2e-16 *** 

dwMonday                           2.588e-02  1.741e-02   1.487 0.137030     

dwSaturday                         3.880e-02  1.796e-02   2.160 0.030779 *   

dwSunday                           1.130e-01  1.751e-02   6.453 1.11e-10 *** 

dwThursday                        -5.704e-03  1.752e-02  -0.326 0.744781     

dwTuesday                         -2.926e-03  1.748e-02  -0.167 0.867069     

dwWednesday                        8.781e-03  1.773e-02   0.495 0.620444     

Time                               3.820e-03  8.700e-04   4.390 1.13e-05 *** 

cos(2 * pi * Time/24)             -7.222e-02  5.329e-03 -13.554  < 2e-16 *** 

sin(2 * pi * Time/24)              3.534e-02  6.961e-03   5.077 3.85e-07 *** 

Lag1                               7.506e-01  3.958e-03 189.630  < 2e-16 *** 

Lag1day                            7.535e-03  2.188e-03   3.444 0.000573 *** 

Lag2                              -2.532e-01  5.102e-03 -49.626  < 2e-16 *** 

Lag3                              -2.297e-03  3.264e-03  -0.704 0.481558     

Temperature                        2.160e-02  4.529e-04  47.688  < 2e-16 *** 

WindSpeed                          6.797e-02  1.103e-03  61.642  < 2e-16 *** 

Humidity                          -3.370e-03  8.389e-05 -40.174  < 2e-16 *** 

dwMonday:Time                     -1.272e-03  1.219e-03  -1.044 0.296707     

dwSaturday:Time                    1.564e-03  1.254e-03   1.248 0.212136     

dwSunday:Time                     -1.274e-03  1.229e-03  -1.036 0.300266     

dwThursday:Time                    4.396e-04  1.226e-03   0.359 0.719913     

dwTuesday:Time                    -9.983e-05  1.225e-03  -0.082 0.935033     

dwWednesday:Time                  -3.803e-04  1.236e-03  -0.308 0.758215     

dwMonday:cos(2 * pi * Time/24)     5.138e-03  7.152e-03   0.718 0.472480     

dwSaturday:cos(2 * pi * Time/24)  -1.118e-02  7.368e-03  -1.517 0.129307     

dwSunday:cos(2 * pi * Time/24)    -3.288e-03  7.106e-03  -0.463 0.643583     

dwThursday:cos(2 * pi * Time/24)  -2.260e-03  7.219e-03  -0.313 0.754240     

dwTuesday:cos(2 * pi * Time/24)    5.812e-03  7.200e-03   0.807 0.419511     

dwWednesday:cos(2 * pi * Time/24) -5.290e-03  7.271e-03  -0.728 0.466859     

dwMonday:sin(2 * pi * Time/24)    -4.399e-03  9.362e-03  -0.470 0.638469     

dwSaturday:sin(2 * pi * Time/24)   2.754e-02  9.557e-03   2.882 0.003954 **  

dwSunday:sin(2 * pi * Time/24)     6.082e-02  9.299e-03   6.541 6.17e-11 *** 

Fig. 8 Model fitting results for the location and variance using gamlss library in R
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dwThursday:sin(2 * pi * Time/24)  -5.461e-03  9.454e-03  -0.578 0.563501     

dwTuesday:sin(2 * pi * Time/24)   -3.383e-03  9.443e-03  -0.358 0.720134     

dwWednesday:sin(2 * pi * Time/24) -4.631e-03  9.441e-03  -0.490 0.623799     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

------------------------------------------------------------------ 

Sigma link function:  log 

Sigma Coefficients: 

                                              Estimate Std. Error t value Pr(>|t|)     

(Intercept)                                 -2.448e+00  1.033e-01 -23.704  < 2e-16 *** 

day                                          7.008e-06  5.573e-06   1.257 0.208626     

cos(2 * pi * day/365.25)                    -2.625e-01  8.548e-03 -30.712  < 2e-16 *** 

sin(2 * pi * day/365.25)                    -1.363e-01  5.557e-03 -24.519  < 2e-16 *** 

dw == "Wednesday"TRUE                        4.484e-02  3.704e-02   1.210 0.226099     

dw == "Sunday"TRUE                          -6.864e-02  3.698e-02  -1.856 0.063459 .   

dw == "Saturday"TRUE                         4.393e-02  3.719e-02   1.181 0.237424     

Time                                        -4.318e-03  1.159e-03  -3.726 0.000195 *** 

cos(2 * pi * Time/24)                        2.478e-01  8.231e-03  30.111  < 2e-16 *** 

sin(2 * pi * Time/24)                        3.532e-02  1.048e-02   3.371 0.000751 *** 

Temperature                                  5.746e-02  1.208e-03  47.555  < 2e-16 *** 

WindSpeed                                   -9.834e-03  3.301e-03  -2.979 0.002894 **  

Humidity                                    -1.011e-03  2.553e-04  -3.961 7.47e-05 *** 

dw == "Wednesday"TRUE:Time                  -3.716e-03  2.589e-03  -1.435 0.151217     

dw == "Wednesday"TRUE:cos(2 * pi * Time/24)  3.139e-03  1.614e-02   0.195 0.845773     

dw == "Wednesday"TRUE:sin(2 * pi * Time/24) -1.430e-02  2.186e-02  -0.654 0.512879     

dw == "Sunday"TRUE:Time                      4.493e-03  2.585e-03   1.738 0.082161 .   

dw == "Sunday"TRUE:cos(2 * pi * Time/24)     3.886e-02  1.600e-02   2.428 0.015173 *   

dw == "Sunday"TRUE:sin(2 * pi * Time/24)     1.180e-01  2.165e-02   5.451 5.04e-08 *** 

dw == "Saturday"TRUE:Time                   -6.809e-04  2.597e-03  -0.262 0.793143     

dw == "Saturday"TRUE:cos(2 * pi * Time/24)  -1.302e-04  1.609e-02  -0.008 0.993546     

dw == "Saturday"TRUE:sin(2 * pi * Time/24)   4.744e-02  2.175e-02   2.181 0.029186 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

------------------------------------------------------------------ 

No. of observations in the fit:  42021  

Degrees of Freedom for the fit:  60 

      Residual Deg. of Freedom:  41961  

                      at cycle:  7  

Global Deviance:     -580.6214  

            AIC:     -460.6214  

            SBC:     58.13409  

Fig. 8 (continued)

Time                                 1.301e-02  2.797e-03   4.651 3.31e-06 *** 

cos(2 * pi * Time/24)                3.776e-01  2.636e-02  14.322  < 2e-16 *** 

sin(2 * pi * Time/24)                2.475e-01  4.220e-02   5.866 4.50e-09 *** 

The source of variation in the variances includes seasonal variation but no sig-
nificant increase in variance over time. The changes in variances are also seasonally
influenced but the variances are not significantly increasing with each day, this was
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anticipated as we observed that variance changes significantly with season in Figs. 2
and 3.

day                                  7.008e-06  5.573e-06   1.257 0.208626

cos(2 * pi * day/365.25)            -2.625e-01  8.548e-03 -30.712  < 2e-16 *** 

sin(2 * pi * day/365.25)            -1.363e-01  5.557e-03 -24.519  < 2e-16 *** 

Indicating that the ozone values are increasing as the day number increases and
the seasonal harmonics for the mean are both statistically significant. During the day
the ozone values increase to a maximum at about noon and then decreases thereafter.

Time                               3.820e-03  8.700e-04   4.390 1.13e-05 *** 

cos(2 * pi * Time/24)             -7.222e-02  5.329e-03 -13.554  < 2e-16 *** 

sin(2 * pi * Time/24)              3.534e-02  6.961e-03   5.077 3.85e-07 *** 

Note that there is a significant and different Sunday and Saturday influence for day
of the week. This model was selected because it delivered the smallest AIC value.

In setting up a Phase II monitoring strategy, we use this model to compute the
hour-ahead forecasts for each hour of the day for the last 366 days of data. The data
used to provide these forecasts uses a moving window of 5 years of data for each
forecast so that the accuracy of the forecast are expected to be the same. The model
is used to forecast both the mean and variance of the normally distributed data for a
month ahead, and then we calculate the usual month ahead ozone value minus this
forecasted value, all divided by the forecast standard deviation. This result is assumed
to be approximately normally distributed with mean zero and standard deviation 1
and a three-sigma control chart is used to monitor these standardized residuals. Note,
generally speaking, even when the normal distribution fits the training data quite well
(in Phase I) it does not guarantee that the forecast errors will be normally distributed
(in Phase II—see qqplot in Fig. 9). However we recognize that this may contain
out-of-control data and so such judgements are difficult to make. For example, the
ozone values could increase significantly to a new steady state, and this new steady
state distribution may be different from the normal.

The hour-ahead forecasts and the forecast errors are calculated and used to (Phase
II) monitoring changes in the ozone level at Chullora. The assumptionwhen applying
the classical x-bar Shewhart chart to the forecast errors using all 23 hourly measures
during a day (so the hourly measures within a day is viewed as a subgroup) is
likely to be adequate in approximating the normal distribution because of the central
limit theorem is likely to apply. Note however, that averaging as many as 23 values is
unlikely in the application of most classical x-bar Shewhart Charts in manufacturing.

The x-bar chart with 3-sigma control limits is given for the standardized forecast
errors in Fig. 10. It is clear that ozone level is mostly out-of-control on the high side
at Chullora with an occasional signal for low ozone measures. This indicates that
the ozone measures have been mostly higher than expected during this monitoring
period.
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Fig. 9 qq-plot of the one hour-ahead standardized forecasts errors

Fig. 10 The x-bar chart or the one hour-ahead standardized forecast errors with 3-sigma control
limits
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Fig. 11 Wilcoxon signed-rank chart for the negative ranked values for the one hour-ahead
standardized forecast errors

Although the x-bar chart in Fig. 10may be appropriate for this application because
it used a relatively large rational subgroup of 23 observations and the Box-Cox trans-
formation is applied to improve the normality assumption. It is likely to provide
earlier flags of ozone measures of a health concern. The x-bar chart flags 12 out-of-
control high sided ozone days and 14 low sided ozone days. It is unclear whether
the transformation to normality will be appropriate in the long-term, while the non-
parametric Wilcoxon Signed Rank Control chart is always valid. So it may be a
safer option if the planned monitoring strategy is going to run for several years. The
Wilcoxon Signed Rank Control chart is presented in Fig. 11 and this chart flags four
out-of-control high-sided ozone days and 20 low sided ozone days.

LetN be the number of standardized hour-ahead forecast errors in a day. The value
of N varies from day to day which explains why the control limits vary according to
the number of reported values in the day. Let the rank total for positive standardized
forecast errors be T+, this is the classical Wilcoxon signed-rank statistic. The control
limits, the UCL and the LCL are defined by

UCL = N (N + 1)

4
+ 0.5 + 3

√
N (N + 1)(2n + 1)/24

and

UCL = N (N + 1)

4
− 0.5 − 3

√
N (N + 1)(2n + 1)/24
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Fig. 12 Sign chart for the number of positive values for the hour-ahead standardized forecast errors

where the mean and the variance of are obtained from, for example, Gibbons and
Chakraborti (2010), page 196. Note that sinceN is not the same every day, the control
limits change, and hence the jagged appearance of the control chart.

A required assumption for the signed-rank chart is symmetry which may or may
not be satisfied in general. On the other hand, an alternative, namely the sign chart is
more general and requires only the assumption of continuity of the data. The control
limits for the sign chart can be easily found along the lines for the signed-rank chart
using the mean and the variance of the sign statistic, which are available, also in
Gibbons and Chakraborti (2010). This chart, shown in Fig. 12, does not seem to lose
much power compared to the Wilcoxon Signed Rank control chart.

The sign control chart flags 4–5 out-of-control high sided ozone days and 12
low sided ozone days. Thus, simple nonparametric charts can do the job adequately
and one does not need to use a parametric chart and worry about the underlying
assumption(s).

5 Concluding Remarks

We have demonstrated the application of some nonparametric control charts in a
real monitoring application, using an air pollution data example involving ozone
measurements at Chullora, a suburb in Sydney, Australia. The example illustrates
how these charts can be applied for monitoring in non-traditional settings, outside
of the usual manufacturing situations. It reinforces that there are many facets to
monitoring data observed over time in practice and one size fits all recipes using the
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classical assumptions about independence and normal distribution do not work in
many situations. It also shows that in this example very little is lost in applying a
nonparametric control chart to the forecast errors (residuals) and it may be a longer
term safer option as the distribution of the variables are likely to change over time
as the ozone concentrations change. In other words, we can not assume that the plan
best at a given point in time is going to remain the best in the future. For this reason,
the nonparametric approach may be a safer option unless the parametric chart is
periodically reviewed and updated at least annually.
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