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Preface

Statistical process control is widely used to monitor the quality of the final product
of a process. In any production process, no matter how carefully it is maintained, a
natural variability is always present. Control charts facilitate the practitioners to
identify assignable causes so that corrective actions are carried out and the process
is restored to the desirable in-control state.

In most control charts, the process output is assumed to follow a specified
probability distribution (usually normal); therefore the techniques applied for them
are parametric ones and are affected by the distributional assumption used each
time. However, this assumption may not be fulfilled in practice and therefore the
resulting control charts cannot be applied, or, if applied, may not be accurate
enough. Therefore, the development of nonparametric methods which can be effi-
ciently used for hypothesis-testing problems without making any specific
assumptions about the distribution of the underlying process is crucial. These
techniques can also be exploited to develop control charts which can be used under
a nonparametric framework. Throughout the present manuscript, some
distribution-free monitoring schemes will be introduced and studied in detail. In
addition, a review of the majority of recent advances in the field of Nonparametric
Statistical Process Control will be presented.

In Chap. 1, an up-to-date overview of nonparametric Shewhart-type univariate
control charts is provided. In this chapter, the most recent developments on the
topic are reviewed, and more specifically only the advances that appeared during
the last decade are discussed in detail. For each distribution-free control chart, the
general setup and several performance characteristics are presented.

Chapter 2 reviews the recent literature on nonparametric control charts, giving
emphasis on multivariate schemes, which make use of order statistics, signs, or
ranks for the computation of the test statistic that is exploited for the decision
making. In addition, a simulation study is carried out in order to evaluate the
performance of these charts when compared to each other, as well as to their
parametric counterparts. Finally, some concluding remarks are given, as well as
some ideas and directions for future work.
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In Chap. 3, the problem of having observations tied to the monitored population
quantile (e.g., the median) is considered, and it is indicated that, when ties occur,
the Shewhart Sign (SN) control chart is no longer distribution-free. Some proce-
dures to handle the occurrence of ties are proposed. The authors demonstrate that
the best strategy is to implement a Bernoulli trial approach and point out that this
approach allows the distribution-free properties of the Shewhart SN to be generally
preserved.

Chapter 4 deals with the issue of assuming in practice the normality and inde-
pendence when a process is statistically monitored. Since these assumptions play an
important role in the construction of the monitoring scheme exploited for the
problem at hand, it is crucial that they are thoroughly investigated and properly
validated, so that the results can be depended on. Some examples with real data are
provided, and taking into account the corresponding consequences when the
assumptions are not fulfilled, the authors conclude that a nonparametric approach
consists of a safer option in practice.

In Chap. 5, change-point analysis-based distribution-free control charts,
designed for Phase I applications especially for individual observations, are con-
structed for retrospectively detecting single or multiple changes in location and
dispersion of univariate variables. A real example is included to unfold the capa-
bilities of the developed methodologies.

In Chap. 6, six distribution-free exponentially weighted moving average
(EWMA) schemes for simultaneously monitoring the location and scale parameters
of a univariate continuous process are investigated. More precisely, a well-known
distribution-free EWMA scheme based on the Lepage statistic is considered, and
five new EWMA schemes are introduced. Finally, a Monte-Carlo simulation study
is carried out for the comparison of the suggested schemes.

In Chap. 7, two nonparametric Shewhart-type control charts based on order
statistics with signaling runs-type rules are introduced. Exact formulae for the alarm
rate, the variance of the run length distribution, and the average run length
(ARL) for both charts are derived, along with extensive tables that may facilitate the
practitioner for the implementation of the proposed schemes. In addition, several
numerical comparisons against competitive nonparametric control charts reveal that
the new monitoring schemes are quite efficient in detecting the shift of the
underlying distribution.

In Chap. 8, a novel and effective new method for disease early detection is
proposed. To use this method, a patient’s risk to the disease is first quantified at
each time point using survival data modeling and variable selection, and then the
longitudinal pattern of the risk is monitored sequentially over time by a control
chart. A signal is produced once the cumulative difference between the risk pattern
of the patient under monitoring and the risk pattern of a typical person without the
disease in concern exceeds a control limit.

vi Preface
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Recent Advances on Univariate
Distribution-Free Shewhart-Type
Control Charts

Markos V. Koutras and Ioannis S. Triantafyllou

Abstract In this chapter, we provide an up-to-date overview of nonparametric
Shewhart-type univariate control charts. The monitoring schemes incorporated in
the present literature review depict the most recent developments on the topic, since
it has been chosen to discuss only the advances appeared during the last decade.
For each distribution-free control chart, the general setup and several performance
characteristics are presented in some detail.

Keywords Nonparametric statistical process monitoring · Shewhart-type control
charts · Run length distribution · Order statistics · Sign statistic · Wilcoxon-type
statistics · Rank-based statistics

1 Introduction

Statistical process control is widely used to monitor the quality or the final product of
a process. In any production process, no matter how carefully it is designed, a natural
variability always occurs. Control charts help the practitioners to identify assignable
causes so that the state of statistical control is achieved. Intuitively, in the event of
having an undesirable shift in the process, a control chart should detect it as quickly
as possible and give an out-of-control signal.

A great amount of control charts, already introduced in the literature, is based on
the assumption that the process follows a specified probability distribution. How-
ever, this argument is not always true in practice and therefore the resulting control
charts may not be reliable. To overcome this problem and simultaneously keep the
traditional structure of a monitoring scheme, several nonparametric control charts
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have been proposed in the literature. Celano et al. (2016a, b, c) provided some per-
formance comparisons between several parametric and nonparametric control charts
for jointly monitoring location and scale. Chakraborti et al. (2001) provided a thor-
ough overview of the univariate nonparametric control charting literature up to 2000,
while Chakraborti (2011) updated that review covering much of the literature up to
2010. McCracken and Chakraborti (2013) presented a recent literature overview
for joint monitoring of control schemes, including the schemes with known and
unknown parameters. Chakraborti and Graham (2019b) brought the aforementioned
reviews forward to 2017, discussing the most recent developments on the topic. For
a detailed and thorough study on nonparametric statistical process control, the inter-
ested reader is referred to Qiu (2018, 2019) or the excellent textbooks of Qiu (2014)
and Chakraborti and Graham (2019a).

In the control charts literature, there have been introduced several traditional
control charts which focus on improving the sensitivity of the traditional Shewhart-
type monitoring schemes; one of them is the class of the so-called synthetic control
charts. Khilare and Shirke (2010) proposed a synthetic control chart based on the
sign statistic for detection of possible shift in the process median, while Khilare
and Shirke (2012) introduced nonparametric synthetic and side-sensitive synthetic
monitoring schemes for controlling fraction non-conforming due to increase in the
process variation by combining the traditional Shewhart-type sign and the confirming
run length control charts. For an up-to-date overview of the class of synthetic control
charts, the interested reader is referred to Rakitzis et al. (2019).

In this chapter, we provide an overview of the most recent advances on Shewhart-
type univariate nonparametric control charts. More specifically, we focus mainly
on charts that have appeared in the literature during the last decade (2009–2019).
Over 100 publications on univariate Shewhart-type nonparametric control charts and
related topics are reviewed here. All monitoring schemes incorporated in the present
literature revieware classified in three distinct groups in termsof their plotted statistic:
charts based on order statistics, sign charts and charts based on ranks. For each control
scheme, its performance and several characteristics are discussed in some detail.

2 Distribution-Free Control Charts Based on Order
Statistics

In this section, we focus on the distribution-free control charts, which utilize as
charting statistics, one or more order statistics from random samples drawn from
the underlying process. One of the early published works on this topic, authored
by Janacek and Meikle (1997), introduced a two-sided Shewhart–type control chart
basedon themedianwith control limits determined froman in-control randomsample
(usually referred to as reference sample). Chakraborti et al. (2004) discussed in detail
the aforementioned scheme, studied several characteristics of it and in addition,
suggested further generalizations of it. In what follows, the order of appearance
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of the reviewed publications is chronological in an effort of setting up an easily
accessible and well-structured flow.

2.1 A Median Control Chart Based on Bootstrap Methods

Park (2009) considered the construction of a nonparametric control chart which
utilizes the sample median as monitoring statistic. The control limits of the proposed
distribution-free control chart are determined by exploiting an estimate of the sample
median variance. More precisely, the center line of the control chart established by
Park (2009) coincides to the median value of all medians of the available samples
of size n. The upper and lower control limits is obtained by applying appropriate
bootstrap methods for the estimation of the variance of the sample median. For
illustration purposes, the monitoring of real data obtained from the Ford Motor
Company (see also Alloway and Raghavachari (1991)).

Let us assume that a sample of size n, say X1, X2, . . . , Xn , is drawn from the
underlying process with an unknown continuous distribution F. If θ and ˜X denote
the population and sample median respectively, then the limiting distribution of√

n(˜X − θ) as n → ∞ is shown to be normal with mean 0 and variance (2 f (θ))−2,
where f is the corresponding probability density function of F. The main idea relies
on obtaining bootstrap control limits by approximating of the distribution for the
sample median through a Monte-Carlo approach. More precisely the Monte-Carlo
bootstrap procedure can be described briefly as follows:

• A bootstrap sample with replacement is obtained from the original test sample
X1, X2, . . . , Xn .

• Using the bootstrap sample, the bootstrap sample median is determined
• The aforementioned two steps are repeated at least 1000 times.

Park (2009) considered the construction of median control charts by applying
several bootstrap methods for obtaining the corresponding control limits, namely
the Standard Bootstrap, the Bootstrap Percentile, the Bootstrap Bias-Corrected Per-
centile, theBootstrap-t and theBootstrapHybridmethods. Formore details, the inter-
ested reader is referred to Sect. 3 therein. The proposed control chart is constructed
as follows:

• The center line is determined as the median value of all medians of the available
reference samples of size n drawn from the process.

• The Lower and Upper Control Limit is chosen as the median of {L∗
1, L∗

2, . . . , L∗
r }

and {U ∗
1 , U ∗

2 , . . . , U ∗
r } respectively, where (L∗

i , U ∗
i ), i = 1, 2, . . . , r corresponds

to a bootstrap confidence interval obtained by the implementing one of the
abovementioned bootstrap methods.
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2.2 Precedence Control Charts with Signaling Rules

Chakraborti et al. (2009) proposed two Phase II nonparametric control charts based
on precedence statistics. The plotted statistic can be any order statistic in a Phase II
test sample, while two different runs-rules are applied, namely the signaling rules
proposed byDerman andRoss (1997) andKlein (2000).More precisely, the proposed
nonparametric control charts called the 2-of-2 DR chart and the 2-of-2 KL chart
respectively, produce a signal whenever the following occurs:

• two consecutive plotted points fall on or outside the control limits (for the 2-of-2
DR chart)

• two consecutive plotted points both fall on or above the upper control limit or both
fall on or below the lower control limit (for the 2-of-2 KL chart).

In other words, Chakraborti et al. (2009) considered generalizing the standard
1-of-1 precedence chart, introduced earlier by Chakraborti et al. (2004) by incorpo-
rating the aforementioned signaling rules involving runs of the plotted statistic above
and/or below the control limits. The plotted statistic for the hth test sample of size n
is the jth order statistic Y h

j :n of the corresponding test sample. The control limits of
both monitoring schemes are two specific order statistics Xa:m, Xb:m of a reference
sample of size m drawn while the process is in-control. The waiting time until the
first signal (or alternatively the run length) of the proposed monitoring schemes is
studied in detail. If the random variables Zh and Z ′

h are defined as

Zh =
{

1, if Y h
j :n /∈ (LC L , UC L)

0, if Y h
j :n ∈ (LC L , UC L)

, h = 1, 2, 3, . . .

Z ′
h =

⎧

⎪

⎨

⎪

⎩

0, if Y h
j :n ∈ (LC L , UC L)

1, if Y h
j :n ≥ UC L

2, if Y h
j :n ≤ LC L

, h = 1, 2, 3, . . .

then the corresponding waiting time of the proposed 2-of-2 DR and 2-of-2 KL chart
can be expressed as

T2 = min{t : Zt−1 = 1, Zt = 1}

and

T ′
2 = min{T (1)

2 , T (2)
2 },

respectively, where

T (1)
2 = min{t : Z ′

t−1 = Z ′
t = 1}, T (2)

2 = min{t : Z ′
t−1 = Z ′

t = 2}.
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Denoting by λt = P(Z1 = 1, . . . , Zt = 1), t = 1, 2, . . ., the unconditional
distribution of T 2 is given by

P(T2 = x) =
x−2
∑

y=1

min(y,[(x−y−2)/2])
∑

j=0

y
∑

i=0

(−1) j (−1)i

(

y
j

)(

y
i

)(

x − 2( j + 1) − 1
y − 1

)

λx−y+i , x ≥ 3

and P(T2 = 0) = P(T2 = 1) = 0, P(T2 = 2) = λ2.
In addition to the above result, Chakraborti et al. (2009) obtained the distribution

of the waiting time of T ′
2. Given Xa:m, Xb:m , let us denote by T ∗

2 the waiting time
for two consecutive 1’s or two consecutive 2’s in the sequence of independent and
identically distributed trials Z ′

1, Z ′
2, . . .. Applying somewell-known results appeared

in Fu and Lou (2003), the distribution of T ∗
2 can be expressed as

P(T ∗
2 = x |Xa:m, Xb:m ) = ξN x−1(I − N )1′, x ≥ 2,

where

N =

⎡

⎢

⎢

⎣

0 1 − pL − pU pU pL

0 1 − pL − pU pU pL

0 1 − pL − pU 0 pL

0 1 − pL − pU pU 0

⎤

⎥

⎥

⎦

, ξ = [1 0 0 0
]

, 1 = [1 1 1 1
]

,

with the quantities pL , pU denoting the following conditional probabilities:

pL = P(Y j :n ≤ Xa:m |Xa:m = x1 ), pU = P(Y j :n ≥ Xb:m |Xb:m = x2 ).

The unconditional distribution of the waiting time T ′
2 can be readily deduced by

averaging over the joint distribution ha,b(x1, x2) of the order statistics Xa:m, Xb:m as

P(T ′
2 = x) =

∞
∫

−∞

x2
∫

−∞
P(T ∗

2 = x |Xa:m = x1, Xb:m = x2 )ha,b(x1, x2)dx1dx2.

In the publication of Chakraborti et al. (2009), explicit expressions for the mean
and standard deviation of the run length of the new control charts have been derived,
and a discussion on the computation of the corresponding false alarm rate is included.
Several numerical comparisons of the proposed charts versus the basic 1-of-1 prece-
dence chart and the classical parametric Shewhart X-chart have been carried out
revealing that the runs-type signaling rules improve the chart’s sensitivity to a location
shift.
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2.3 A Two-Chart Nonparametric Monitoring Scheme Based
on Order Statistics

Balakrishnan et al. (2010) introduced a distribution−free Shewhart−type control
chart that takes into account the location of a single order statistic of the test sample
(such as the median) as well as the number of observations that lie between the
control limits. The proposed monitoring scheme involves the construction of two
separate control charts. The plotted statistic of the first chart is the jth order statistic
of each test sample drawn from the underlying process, while the charting statistic of
the second one is related to the number of observations that lie between the control
limits.

It goes without saying that, before starting the monitoring of the process, a ref-
erence sample X1, X2, . . . , Xm should be drawn from the in−control distribution F
in order to establish the control limits and consequently test samples of size n, say
Y1, Y2, . . . , Yn will be obtained from the underlying process. The decision whether
the process is in-control or has shifted to anout−of−control distributionwith cumula-
tive distribution functionG is based on two specific order statistics from the reference
sample which are used as control limits, namely

LC L = Xa:m, UC L = Xb:m

with 1 ≤ a < b ≤ m. It is worth mentioning that the abovementioned general
framework of constructing control charts has been adopted by many authors. Since
their nonparametricmonitoring schemes are reviewed later on, wheneverwe describe
control charts which follow the aforementioned general setup, a relative quotation
to the present subsection will be mentioned.

For constructing their control chart, Balakrishnan et al. (2010) suggested that after
the test sample is collected, its jth order statistic Y j :n should be computed along with
the statistic

R = R(Y1, Y2, . . . , Yn; Xa:m, Xb:m) = |{i ∈ {1, 2, . . . , n} : Xa:m ≤ Yi ≤ Xb:m}|

which enumerates the observations in the test sample that lie between the control
limits. Then, the process is declared in-control, if the following two conditions hold
true:

LC L ≤ Y j :n ≤ UC L and R ≥ r.

The false alarm rate of the proposed monitoring scheme is given by

F AR = 1 −
∑

r−1≤c+d≤n−1

(

j − c + a − 2
a − 1

)(

m + n − b − d − j
n − j − d

)(

b + c + d − a
c + d + 1

)

(

m + n
n

) .
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If f (s, t) denotes the joint density function of two order statistics from a random
sample of size n from the Uniform distribution, the in-control average run length of
the proposed monitoring scheme is given by

ARLin =
1
∫

0

t
∫

0

1

1 − q(s, t; r)
f (s, t)dsdt,

where

q(v, w; r) =
∑

r−1≤c+d≤n−1

(

n

j − c − 1, c + d + 1, n − j − d

)

v j−c−1(w − v)c+d+1(1 − w)n− j−d ,

0 ≤ v < w ≤ 1

and

(

n
n1, n2, n3

)

= n!
n1!n2!n3! , n = n1 + n2 + n3.

In Balakrishnan et al. (2010), the out-of-control performance of the aforemen-
tioned control chart has been studied in some detail, while explicit expressions for the
computation of its alarm rate and average run length under the well-known Lehmann
alternatives G = Fγ , γ > 0 (see, e.g., Lehmann (1953)) have been derived. In
addition, several numerical results carried over by the authors, shed light on the
robustness and the efficacy of the new monitoring scheme.

2.4 A Nonparametric Control Chart Based on the Pooled
Median

Graham et al. (2010) proposed a distribution-free Shewhart-type scheme for moni-
toring the location parameter of a continuous distribution in a Phase I process control
setting. The monitoring scheme utilizes the pooled median of the available Phase I
samples and the charting statistic is the number of observations in each sample that
are less than the pooled median. More precisely, the m available random samples of
size n are first pooled together and the pooled median M of the combined sample
of N = mn observations is computed. Then, in each sample of size n the number
Ui , i = 1, 2, . . . , m of observationswhich are less thanM is computed and plotted on
the proposed control chart. Graham et al. (2010) proved that the in-control joint dis-
tribution of the random variables U1, U2, . . . , Um is the multivariate hypergeometric
distribution with probability density function fU1,U2,...Um (u1, u2, . . . , um).

For the proposed chart, the probability of at least one false alarm out of the m
samples when the process is in-control, known as False Alarm Probability (FAP), is
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investigated and the following expression is derived:

F AP = 1 −
UC L−1
∑

u1=LC L+1

UC L−1
∑

u2=LC L+1

. . .

UC L−1
∑

um=LC L+1

fU1,U2,...Um (u1, u2, . . . , um),

where LCL and UCL is the corresponding lower and upper control limit of the pro-
posed monitoring scheme. The general setup of a Phase I control chart entails that
for the fixed m and n, one may determine appropriate control limits acquiring a pre-
specified FAP value. A detailed numerical study is carried out, along with several
simulation-based comparisons which reveal that the proposed monitoring scheme
performs well and, in some cases, better than other existing competitive control
charts. For illustration purposes, the authors indicate how the proposed median con-
trol chart can be exploited for monitoring the inside diameters of the well-known
piston-rings data given in Montgomery (2009).

2.5 A Nonparametric Control Chart Based on Grouped
Observations

Bakir (2012) developed a distribution-free Shewhart-type control chart for detecting
a change in more than one parameters in the probability distribution of the under-
lying process. The proposed monitoring scheme is designed for grouped observa-
tions and calls for reference (or training) data, namely a group of m observations
X01, X02, . . . , X0m drawn from the process when it is in-control with cumulative
distribution function F0. The new chart uses as charting statistic a modified version
of the well-known two-sample Kolmogorov–Smirnov test statistic and allows the
exact determination of the conditional average run length of the proposed scheme
over the family of all symmetric and non-symmetric continuous distributions.

Let us denote by S0(z) the empirical distribution function of the reference random
sample, i.e.,

S0(z) =
⎧

⎨

⎩

0, if z < X0(1),

j/m, if X0( j) ≤ z < X0( j+1),

1, if z ≥ X0(m)

j = 1, 2, . . . , m − 1,

where X0( j) is the jth order statistic of the reference sample.At each sampling instance
t, t = 1,2,…, a test sample Yt1, Yt2, . . . , Ytn with cumulative distribution function Fy

is drawn from the process. If Yt (i) denotes the order statistics of the tth test sample,
the empirical distribution function of each test sample is given as
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St (z) =
⎧

⎨

⎩

0, if z < Yt (1),

i/n, ifYt (i) ≤ z < Yt (i+1),

1, if z ≥ Yt (n)

i = 1, 2, . . . , n − 1.

Bakir (2012) considered three different scenarios for the possible shift that may
occur in the underlying process. According to the first scenario (Case 1, hereafter),
the process may tend to produce stochastically smaller observations than the obser-
vations of the in-control state. In other words, the attention heads for testing the null
hypothesis H−

0 : Fy(z) ≤ F0(z) (for all −∞ < z < +∞) versus the alternative
H−

a : Fy(z) ≥ F0(z) (for all z) and Fy(z) > F0(z) for at least one z. Under the second
scenario (Case 2, hereafter), the proposed control chart needs to detect whether or
not the process tends to produce stochastically larger observations than the observa-
tions of the in-control phase. In statistical terms, one has to test the null hypothesis
H+

0 : Fy(z) ≥ F0(z) (for all −∞ < z < +∞) versus the alternative hypothesis
H+

a : Fy(z) ≥ F0(z) (for all z) and Fy(z) < F0(z) for at least one z. The last possible
shift studied by Bakir (2012) (Case 3, hereafter), refers to a process tending to pro-
duce smaller and/or larger observations than the in-control state, the interest focuses
in testing the null hypothesis H0 : Fy(z) = F0(z) (for all −∞ < z < +∞) versus
the alternative Ha : Fy(z) 
= F0(z) for at least one z. The charting statistics of the
proposed Shewhart-type control chart for each case takes on the following forms:

ψ−
t = min

z=x0 j

[S0(z) − St (z)] (Case 1)

ψ+
t = max

z=x0 j

[S0(z) − St (z)] (Case 2)

ψt = max
z=x0 j

|S0(z) − St (z)| (Case 3).

Note that the abovementioned statistics are modified versions of the traditional
two-sample Kolmogorov-Smirnov statistic, where the maximization is taken only
over the reference sample observations (see, also Conover (1999)). Under Cases 1,
2 and 3, the process is declared out-of-control if

S0(zmax) − St (zmax) ≤ −L

or

S0(zmax) − St (zmax) ≥ L

or

|S0(zmax) − St (zmax)| ≥ L
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respectively. Note that z = zmax corresponds to the value at which the quantity
|S0(z) − St (z)| takes on its maximum. Bakir (2012) noted that, given the reference
sample, nSt (zmax) becomes a binomial random variable Bn,π with n trials and success
probability π = Fy(zmax). The exact conditional probability of a signal of all three
proposed control charts are given below

P− = P(Bn,π ≥ n[S0(zmax) + L]|X01, X02, . . . , X0m ) (Case 1)

P+ = P(Bn,π ≤ n[S0(zmax) − L]|X01, X02, . . . , X0m ) (Case 2)

P = P− + P+, (Case 3)

while the corresponding exact conditional average run length is equal to the recip-
rocal of the respective abovementioned signaling probability. Bakir (2012) stated
that the required unconditional expectations over the reference sample cannot be
expressed via a closed form. Therefore, a simulation-based study was carried out in
order to estimate the unconditional probability of producing a signal and the uncondi-
tional average run length for the proposed monitoring schemes. At each simulation
run, a reference sample and a test random sample were generated and both con-
ditional signaling probability and conditional average run length were computed
via the corresponding explicit expressions. The above-mentioned conditional val-
ues were averaged out over the number of simulations in order to reach the desired
unconditional expectations.

Moreover, a simulation-based study was carried out for investigating the sensi-
tivity of the proposed nonparametric control chart against skewness and possible
presence of outliers.

2.6 One-Sided Control Charts Based on Precedence Statistics

Balakrishnan et al. (2015) considered one-sided control charts based on precedence
statistics. Since the aim was to study early failures, the choice of one-sided charts
seems to be more appropriate. The in- and out-of-control alarm rate as well as the
average run length of the proposed monitoring schemes were studied in some detail,
while suitable randomized procedures for selecting the best precedence control chart
have also been proposed.

Let us denote by X1, X2, . . . , Xm a reference sample drawn from the in−control
distribution F and assume that the test samples of size n, say Y1, Y2, . . . , Yn , are
coming from a process with common cumulative distribution function G. Let us
next consider the precedence statistic P(b) of order b that counts the number of Y-
observations that are smaller than the bth ordered X-observation. The probability
mass function of the random variable P(b) is given as
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P(P(b) = c) =

(

n

c

)

B(b, m − b + 1)

1
∫

0

(G F−1(u))c(1 − G F−1(u))n−cub−1(1 − u)m−bdu,

where B(·, ·) is the complete beta function. The random variable P(b) plays the
role of the monitoring statistic with an upper control limit equal to the bth order
statistic of the reference sample, namely UC L = Xb:m . Moreover, Balakrishnan
et al. (2015) implemented the above formula for obtaining the survival function of
P(b) by summation, while under the assumption F = G the following ensues:

P(P(b) = c) =

(

b + c − 1
c

)(

m + n − b − c
n − c

)

(

m + n
n

) .

Balakrishnan et al. (2015) pointed out that large values of P(b) provide evidence
that the process is out-of-control. Hence, the critical region for the proposed control
chart takes on the form Wb = {P(b) ≥ cb,a} ⇔ {Ycb,a :n < Xb:m}, where a is the pre-
specified nominal level of False Alarm Rate. Based on the aforementioned result,
one may readily determine the desired value of cb,a . More specifically, let c be such
that

n
∑

i=c+1

(

b + i − 1
i

)(

m + n − b − i

n − i

)

(

m + n
n

) ≤ a <

n
∑

i=c

(

b + i − 1
i

)(

m + n − b − i

n − i

)

(

m + n
n

) .

Therefore, the critical threshold related to the random variable P(b) can be
expressed as

cb,a =
⎧

⎨

⎩

c, if a −
n
∑

i=c+1
P(P(b) = i) ≥

n
∑

i=c
P(P(b) = i) − a

c + 1, otherwise.

It is straightforward that the distribution of the monitoring statistic P(b) depends
on F and G. Therefore, the out-of-control performance of the proposed control chart
can be evaluated only for given choices of G (in terms of F). Balakrishnan et al.
(2015) considered the well-known Lehmann-type alternatives G = Fγ , γ ∈ (0, 1)
and G = 1− (1− F)γ , γ ∈ (1,+∞) and proved that the probability mass function
of the variable P(b) can be expressed as
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P(P(b) = c) =

(

n
c

)

B(b, m − b + 1)

n−c
∑

h=0

(

n − c
h

)

(−1)h B(b + (c + h)γ, m − b + 1)

and

P(P(b) = c) =

(

n
c

)

B(b, m − b + 1)

c
∑

h=0

(

c
h

)

(−1)h B(b, m − b + γ (n + h − c) + 1)

respectively.
In addition, with regard to the run length distribution of the proposed one-sided

nonparametric control chart they proved that the average run length of the new
monitoring scheme takes on the form

ARL(F, G) = 1

B(b, m − b + 1)

1
∫

0

ub−1(1 − u)m−b

1 − pF,G(u)
du,

where

pF,G (u) = 1

B(cb,a , n − cb,a + 1)

cb,a−1
∑

h=0

(

cb,a − 1
h

)

(−1)h (1 − G F−1(u))n+h−cb,a+1

n + h − cb,a + 1
.

For illustration purposes, the proposed scheme was implemented for monitoring
coal mining disaster data (see also Jarett (1979)).

The aforementioned precedence statistic P(b) can be viewed as the sum of the first
b placement statistics N1, N2, . . . , Nb, namely

P(b) =
b
∑

j=1

N j ,

where N j corresponds to the number of Y-observations between the order statistics
X j−1:m and X j :m (for j = 1, 2, . . . , m). Balakrishnan et al. (2015) proposed also the
following weighted version of the precedence statistic:

P∗
(b) =

b
∑

j=1

(m − j + 1)N j .

The interested reader may refer to the full publication for a detailed performance
study of the weighted precedence control chart, where the alarm rate and the average
run length are studied in both in- and out-of-control situations.
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2.7 The Minimum and the Median Precedence Control Chart
with Improved Runs-Rules

Malela-Majika et al. (2016) studied two members of the class of precedence control
charts which has been first introduced by Chakraborti et al. (2004). According to the
general setup, a reference Phase I sample of size m is available from the in-control
process, while a test sample Y1, Y2, . . . , Yn is also drawn. The monitoring statistic
of the precedence control charts coincide to the jth order statistic Y j :n of the test
sample. The performance of the minimum and the median precedence control chart
is examined in terms of their in- and out-of-control run length properties in a detailed
simulation study. The aforementioned one-sided control schemes utilize the mini-
mum (Y1:n) and the median (Y(n+1)/2:n or (Yn/2:n + Y(n+2)/2:n)/2) of each test sample
as the monitoring statistic respectively, while their upper control limit is properly
determined as the bth order statistic of the reference sample. The theoretical results
which have been established by Chakraborti et al. (2004) are used in order to evaluate
the performance and robustness of the monitoring schemes. For the numerical study
which has been carried out, several distributions have been considered, such as the
standard normal, the student’s t or the gamma distribution.

Moreover, Malela-Majika et al. (2016) suggested adding supplementary runs-
rules in order to improve the performance of the distribution-free precedence control
charts. More precisely, the following three runs-rules were practiced (see, also Khoo
and Ariffin (2006) and Antzoulakos and Rakitzis (2008)):

• The 2-of-2 Runs-Rule, where a signal is produced when two charting statistics,
say Y h

j :n, Y h+1
j :n from two consecutive test samples, h = 1, 2, . . . , both plot on or

above the upper control limit or both plot on or below the lower control limit.
• The 2-of-2 Improved Runs-Rule, where some warning limits are introduced in
addition to the traditional control limits. The improved runs-rule signals, when
one charting statistic Y h

j :n plots on or above the upper control limit or on or below

the lower control limit or when two consecutive charting statistics, say Y h
j :n, Y h+1

j :n ,
h = 1, 2, . . . , plot between the upper warning and the upper traditional control
limit or between the lower traditional and the lower warning control limit.

• The 2-of-2 ImprovedModifiedRuns-Rule, where apart from the traditional control
limits, two additionalwarning limits and a center line are used.A signal is produced
when one charting statistic Y h

j :n plots on or above the upper control limit or plots
on or below the lower control limit or when considering two consecutive charting
statistics, say Y h

j :n, Y h+1
j :n , h = 1, 2, . . . , one plots between the center line and the

upper control limit and another one plots between the upper warning control limit
and the upper control limit, or one plots between the lower control limit and the
center line and another one plots between the lower control limit and the lower
warning control limit.

A detailed discussion on the determination of the design parameters was pro-
vided, while the impact of the size of the reference sample on the performance of the
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resulting chart was also investigated. In addition, an extensive numerical experimen-
tation that was carried out provided several interesting concluding remarks about the
in-control robustness and out-of-control performance of the proposed monitoring
schemes under several distributions, such as the standard normal distribution, the
Student’s distribution with 4 degrees of freedom or the Gamma distribution. Here is
a brief synopsis of the conclusions stated by Malela-Majika et al. (2016). Under the
standard normal distribution, the precedence control chart which utilizes as monitor-
ing statistic the minimum of each test sample, namely Y h

1:n , performs best for small
shifts when the 2-of-2 Runs-Rule and the 2-of-2 Improved Modified Runs-Rule is
applied. On the other hand, for moderate to large shifts of the underlying distribution,
the 2-of-2 Improved Modified Runs-Rule and the 2-of-2 Improved Runs-Rule out-
perform. In addition, if the median of each test sample is used as a plotted statistic,
then the corresponding precedence control chart enhanced with the 2-of-2 Improved
Modified Runs-Rule and the 2-of-2 Improved Runs-Rule seems to be preferable.
However, it should be stressed that under different distributional assumptions for the
monitored characteristic, the abovementioned remarks are slightly divergent.

2.8 Control Charts Based on the Total Median Statistic

Figueiredo and Gomes (2016) utilized the total median statistic in order to construct
a control chart for monitoring symmetric contaminated normal distributions with
heavier-than-normal tails. The proposed method is based on the so-called bootstrap
sample, which is simply obtained by randomly sampling with replacement from the
observed reference sample. More precisely, let X1, X2, . . . , Xm be a random sample
of size m from the in-control distribution F and denote by X∗

1, X∗
2, . . . , X∗

m the
corresponding bootstrap sample with cumulative distribution function estimated by
the classical empirical distribution function of the observed sample, i.e., by F∗

m(x) =
(1/n)

∑m
i=1 I{xi ≤x}, where IA is the indicator function of the set A.

The plotted statistic of the new chart is the total median statistic, which is calcu-
lated as a linear combination of all possible values of the median of the bootstrap
sample or equivalently by

T Md =
m
∑

i=1

m
∑

j=i

ai, j,m
Xi :m + X j :m

2
=

m
∑

i=1

ai,m Xi :m,

where ai,m = (1/2)
(

∑m
j=i ai, j,m +∑i

j=1 a j,i,m

)

, 1 ≤ i ≤ n. The coefficients ai, j,m

appearing in the last expression are given by
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ai, j,m =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
mm

(m−1)/2
∑

k=0

m!(i−1)k

k!(m−k)!
m−k
∑

r=[m/2]−k+1

(m−k)!(m−i)m−k−r

r !(m−k−r)! , if 1 ≤ i = j ≤ m

m!{im/2−(i−1)m/2}{(m− j+1)m/2−(m− j)m/2}
mm ((m/2)!)2 , if m even and 1 ≤ i < j ≤ m

0, if m odd and 1 ≤ i < j ≤ m.

As Figueiredo and Gomes (2016) mentioned, it is not feasible to obtain the exact
distribution of the monitoring statistic TMd in the general case, however one may
determine accurate quantiles of it by simulation and use them as lower and upper
control limits of the proposed control chart.

The performance of the proposed control was studied through an extensive numer-
ical experimentation and compared to competitive schemes under contaminated
normal data and in particular scaled- and student contaminated normal distributions.

2.9 Multiple-Chart Nonparametric Monitoring Schemes
Based on Order Statistics

Triantafyllou (2018a) introduced a nonparametric Shewhart-typemonitoring scheme
that takes into account the location of two order statistics of the test sample as well as
the number of observations from the test sample that lie between the control limits.
In fact, the proposed scheme is a generalization of the control chart established
by Balakrishnan et al. (2010) which has been reviewed in Sect. 2.3 of the present
manuscript. The monitoring scheme follows the general setup of the nonparametric
control charts proposed by Balakrishnan et al. (2010) and an additional monitoring
statistic is used.

The construction of the proposed nonparametric control scheme calls for two
order statistics of the test sample drawn from the process. More specifically, after
the test sample is collected, the jth and the kth order statistic Y j :n, Yk:n are chosen
and made use of along with the statistic R mentioned before. Then, the process is
declared in-control, if the following conditions hold true:

LC L ≤ Y j :n ≤ Yk:n ≤ UC L and R ≥ r,

where r is a positive integer. The false alarm rate of the monitoring scheme is given
by

F AR = 1 −
n−2
∑

c1=0

n−c1−c2−2
∑

c3=max(0,r−c1−c2−2)
(

a + j − c1 − 2
a − 1

)(

m + n − b − k − c3
m − b

)(

b + c1 + c2 + c3 − a + 1
b − a − 1

)(

m + n

b + k + c3 − 1

)

(

m + n

n

)(

j + c2 + m + n − k − 1
j + b + c2 + c3 − 2

)
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where c2 = k − j − 1.
Triantafyllou (2018a) provided the next explicit expression for the operating char-

acteristic function p (the probability that the proposed scheme does not signal) in the
case of Lehmann alternatives G = Fγ

p = P(Xa:m ≤ Y j :n ≤ Yk:n ≤ Xb:m and R(Y1, Y2, . . . , Yn ; Xa:m , Xb:m ) ≥ r)

=
n−2
∑

c1=0

n−c1−c2−2
∑

c3=max(0,r−c1−c2−2)

m!n!
(a − 1)!(b − a − 1)!(m − b)!( j − c1 − 1)!c1!c2!c3!(n − k − c3)!

× B(c1 + c2 + 2, c3 + 1) Bγ (γ ( j − c1 − 1) + a, b − a; c1 + c2 + c3 + 2)

× B(c1 + 1, c2 + 1) Bγ (γ (c2 + c3 + j + 1) + b, m − b + 1; n − k − c3).

where

Bγ (a, b; l) =
1
∫

0

xa−1(1 − x)b−1(1 − xγ )ldx =
l
∑

k=0

(−1)k

(

l
k

)

B(a + kγ, b).

Explicit expressions for the in- and out-of-control average run length are also
derived by applying similar arguments as the ones exploited in Chakraborti et al.
(2004) or Balakrishnan et al. (2010). An extensive numerical experimentation illus-
trated its efficacy for detecting possible shifts in the distribution of the underlying
process. A comparative numerical study carried out for comparing it to the control
charts established by Balakrishnan et al. (2009), Mukherjee and Chakraborti (2012)
and Chowdhury et al. (2014) revealed that the proposed distribution-free control
scheme performs better in all cases considered.

In addition, a class of nonparametric Shewhart–type control charts based on the
location of three order statistics of the test sample as well as the number of observa-
tions in that sample that lie between the control limits was established by Triantafyl-
lou (2018b). Within the context described above, Triantafyllou (2018b) proposed
the construction of nonparametric control schemes that exploit the location of three
test sample observations drawn from the process. More precisely, the ith, jth and
the kth order statistic Yi :n, Y j :n, Yk:n are selected and made use of along with the test
statistic R defined previously in Sect. 2.3 of the present manuscript. The class of
distribution-free control charts, introduced by Triantafyllou (2018b), makes use of
an in-control rule, which embraces the following conditions:

Condition 1. The observations Yi :n, Y j :n, Yk:n of the test sample should lie between
the order statistics Xa:m and Xb:m of the reference sample, namely
Xa:m ≤ Yi :n ≤ Y j :n ≤ Yk:n ≤ Xb:m .

Condition 2. The number of observations of the Y-sample that lie between the order
statistics Xa:m and Xb:m should be equal to or more than r, namely
R ≥ r

The conditions stated above, define four separate plotted statistics and the process
is declared in-control, if the following conditions hold true:
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Xa:m ≤ Yi :n, Y j :n, Yk:n ≤ Xb:m, R ≥ r, for i < j < k.

The False Alarm Rate of the new monitoring scheme can be computed as

F AR = 1 −
n−3
∑

c1=0

n−c1−c2−c3−3
∑

c4=max(0,r−c1−c2−c3−3)
(

a + i − c1 − 2
a − 1

)(

m − b + n − k + c4
m − b

)(

b + c1 + c2 + c3 + c4 − a + 2
b − a − 1

)

(

m + n

n

)

.

where

c2 = j − i − 1, c3 = k − j − 1.

By exploiting the condition–uncondition technique (see, e.g., Balakrishnan et al.
(2010)) Triantafyllou (2018b) deduced an expression for the exact run length distribu-
tion. More specifically, the average run length (ARL) of the proposed nonparametric
control chart, can be written as

ARL =
1
∫

0

t
∫

0

1

1 − q(G ◦ F−1(s), G ◦ F−1(t); r)
f (s, t)dsdt,

where f (s, t) is the joint density function of two order statistics of a random sample
from the Uniform distribution in the interval (0, 1) (see, e.g., Balakrishnan and Ng
(2006)). Note that the quantity q(v, w; r) is defined as

q(v, w; r) =
n−3
∑

c1=0

n−c1−c2−c3−3
∑

c4=max(0,r−c1−c2−c3−3)

qc1,c2,c3,c4(v, w), 0 ≤ v < w ≤ 1,

where

qc1,c2,c3,c4 (v, w) =
n!

(i − c1 − 1)!(n − k − c4)!(c1 + c2 + c3 + c4 + 3)! vi−c1−1(w − v)c1+c2+c3+c4+3(1 − w)n−k−c4 .

Several numerical results, displayed for the proposed family of nonparametric
control charts, depict that the proposed monitoring scheme attains competitive per-
formance in comparison with well-known distribution-free control charts. More pre-
cisely, the proposed distribution-free control scheme performs better than the other
three competitive nonparametric charts established by Mukherjee and Chakraborti
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(2012), Chowdhury et al. (2014) and Triantafyllou (2018a) for all the cases con-
sidered. Note that the abovementioned comparative results were produced under
the Normal distribution and the Laplace distribution. For illustration purposes, the
proposed monitoring scheme was implemented for reliability monitoring, where a
data-driven application by Xie et al. (2002) was discussed in some detail.

2.10 Distribution-Free Precedence Control Charts
with the 2-of-(h+1) Supplementary Runs-Rule

Malela-Majika et al. (2019) improved the precedence monitoring schemes which
were introduced by Chakraborti et al. (2004), by applying 2-out-of-(h + 1) supple-
mentary runs-rules. The authors deliberated both non-side and side-sensitive runs-
rules for their proposed schemes. More specifically, the following runs-rules were
considered:

• the non-side-sensitive w-of-(w + v) rule suggested by Derman and Ross (1997).
Based on this particular rule (DR rule, hereafter), a signal is produced whenever
w out of w + v successive samples fall on or outside the control limits, which are
separated by at most v samples that fall between the control limits. The rationale
of this runs-rule does not focus on which control limit is violated, namely there is
no need to care about whether the test samples fall above the upper control limit
or below the lower control limit of the chart.

• the side-sensitive w-of-(w + v) rule suggested by Klein (2000). Based on this
particular rule (KL rule, hereafter), a signal is produced whenever w out of w + v
successive samples fall below (above) the lower (upper) control limit, which are
separated by at most v samples that fall above (or below) the lower (upper) control
limit.

Malela-Majika et al. (2019) investigated the ability of the proposed control charts
for detecting possible shifts, in terms of several performance measures. Both in- and
out-of-control behavior of the resulting two-sided control chart was studied in detail,
while its zero- and steady-state performance was investigated via a Markov chain
approach. Among their main theoretical results, one may highlight the construction
of the corresponding transition probability matrix and an explicit expression for
the computation of the average extra quadratic loss function of the new monitoring
scheme given below

AE QL = 1

δmax − δmin

δmax
∫

δmin

(

δ2 × ARL(δ)
)× f (δ)dδ

where δ 
= 0 and ARL(δ) correspond to the specific shift in the location parameter
and the average run length of the proposed chart respectively. Note that f (δ) was



Recent Advances on Univariate Distribution-Free Shewhart-Type … 19

written as the probability density function of a Uniform distribution with parameters
0 and 1. For both zero-state and steady-state modes, the unconditional average run
length of the precedence 2-of-(h + 1) schemes is investigated and closed formulae
are delivered. For example, the unconditional zero-state average run length of the
proposed precedence control chart with 2-of-(h + 1) DR runs-rules can be expressed
as

U ARL Z S(δ) =
1
∫

0

t
∫

0

[

2 − ph
2

1 − p2 − ph
2 − ph+1

2

]

fa,b(s, t)dsdt,

where fa,b(s, t) denotes the joint probability mass function of the ath and the bth
order statistic of a random sample of size m from the Uniform distribution (0, 1) and

p2 = P(Xa:m ≤ Y j :n ≤ Xb:m |Xa:m = xa:m, Xb:m = xb:m) .

Employing analogous arguments Malela-Majika et al. (2019) obtained respective
formulae for the evaluation of the steady-state and zero-state unconditional average
run length of both proposed schemes with DR or KL runs-rules. For more details,
the interested reader is referred to Sects. 3.1 and 3.2 therein.

2.11 A Four-Chart Monitoring Scheme Based on Order
Statistics

Triantafyllou (2019a) introduced a nonparametric Shewhart–type control scheme
considering not only the position of specific ordered observations fromboth reference
and test data drawn from the process, but also the test data that are placed between the
control limits. The proposedmonitoring scheme adopts the idea of Balakrishnan et al.
(2010) and appends an additional condition, which seems to make the decision rule
more accurate. In words, the proposed distribution-free chart, enables the double
checking for detecting possible shifts of the underlying distribution. The testing
procedure thatwas implemented in order to decidewhether the in-control distribution
of the process has been shifted or not, looks for some evidence for the equality
between the in-control distribution and the distribution of test samples through three
different ways. The decision rule of the control chart requires the verification of three
conditions.

Let X1, X2, . . . , Xm denote a reference sample drawn from a process with in-
control distributionF and three particular ordered observations, say Xa:m , Xi :m, Xb:m ,
1 ≤ a < i < b ≤ m, are picked out. The integers a, i, b are design parameters and
should be appropriately selected so that a specific level of performance is reached.
Suppose next that random samples Y1, Y2, . . . , Yn with distribution G, are picked
independently in order to detect a plausible shift in the underlying distribution.
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The proposedmonitoring scheme takes advantage of the position of single ordered
observations from both test and reference sample. More precisely, the new monitor-
ing scheme asks for an order statistic of each test sample to be enveloped by two
pre-specified observations of reference sample, while at the same time an ordered
observation of the reference sample be enclosed by two pre-determined values of the
test sample.

Firstly, the test sample should be drawn. Then, the cth, jth and the dth order
statistic Yc:n, Y j :n, Yd:n are selected and implemented together with test statistic R
defined earlier.

The class of distribution-freemonitoring schemes, introduced in this paper, makes
use of an in-control rule, which embraces the following three conditions:

Condition 1. The statistic Y j :n of the test sample should lie between the observa-
tions Xa:m and Xb:m of the reference sample, namely Xa:m ≤ Y j :n ≤
Xb:m .

Condition 2. The interval (Yc:n, Yd:n) formulated by two appropriately chosen order
statistics of the test sample should enclose the value Xi :m of the
reference sample, namely Yc:n ≤ Xi :m ≤ Yd:n .

Condition 3. The number of observations of the Y-sample that are placed enclosed
by the observations Xa:m and Xb:m should be equal to or more than r,
namely R ≥ r .

Condition 1 asks for a single observation of each test sample to be enclosed
between two specific order statistics of the reference sample. A popular choice would
be to call for themedianof each test sample to lie between twopre-determinedordered
observations of the reference sample. The implementation of Condition 1 offers the
first test report concerning the equality of distributions F, G. In addition, Condition 2
makes an attempt to compare the distributions of reference and test samples by a
different point of view. More precisely, Condition 2 checks out whether a single
observation of reference sample is sealed up by two pre-specified order statistics
of the test sample. Finally, Condition 3 seems to strengthen the testing procedure
that has already been established by Condition 1. The main motivation behind the
aforementioned conditions is to produce enough evidence about the equality (or not)
of the underlying in-control distribution of the process and the distribution of test
samples drawn independently from each other. The conditions stated above, define
four separate plotted statistics.More precisely, the proposed distribution-free scheme
requires the construction of four different control charts.

The process is claimed to be in-control, if the next restrictions are satisfied

Xa:m ≤ Y j :n ≤ Xb:m, Yc:n ≤ Xi :m, Yd:n ≥ Xi :m, R ≥ r.

The large amount of design parameters of the proposed monitoring scheme, e.g.,
m, n, a, i, b, c, j, d, r , gives the practitioner a notable flexibility for achieving a pre-
specified level of in-control or out-of-control performance of the resulted chart.

The operating characteristic function of the proposed control scheme can be
expressed as
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p = p(m, n, a, i, b, c, j, d, r; F, G) =
1
∫

0

z
∫

0

t
∫

0

q(G F−1(s), G F−1(t), G F−1(z); r, d, j) f (s, t, z)dsdtdz

where

q(v1, v2, v3; r, d, j) =
n−3
∑

k3=0

n−3
∑

k4=0

n−k3−k4−3
∑

k6=max(r−d+ j−1,0)

qk3,k4,k6 (v1, v2, v3), 0 ≤ v1 < v2 < v3 ≤ 1,

with

qk3,k4,k6(v1, v2, v3) = n!
( j − k3 − k4 − 1)!k3!(k4 + k6 + d − j + 1)!(n − d − k6)!

× v j−k3−k4−1
1 (v2 − v1)

k3(v3 − v2)
k4+k6+d− j+1(1 − v3)

n−d−k6 ,

while

f (s, t, z) = m!
(a − 1)!(i − a − 1)!(b − i − 1)!(m − b)! sa−1(t − s)i−a−1(z − t)b−i−1(1 − z)m−b.

Based on the above expressions, Triantafyllou (2019a) proved that theFalse Alarm
Rate of the proposed four-chart monitoring scheme is given as

F AR = 1 −
n−3
∑

k3=0

n−3
∑

k4=0

n−k3−k4−3
∑

k6=max(r−d+ j−1,0)

⎛

⎝

i + k3 − a − 1

k3

⎞

⎠

⎛

⎝

a + j − k3 − k4 − 2

a − 1

⎞

⎠

⎛

⎝

m + n − b − d − k6
m − b

⎞

⎠

⎛

⎝

m + n

n

⎞

⎠

,

The conditioning argument mentioned before (see also Chakraborti et al. (2004))
has been used for delivering suitable expressions for in- and out- of control Average
Run Length of the proposed monitoring scheme and the numerical computations of
Average Run Length have been accomplished through appropriate numerical approx-
imations for the corresponding integral by using suitable adaptive algorithms, which
recursively subdivide the integration region as needed.

Moreover, the operating characteristic function of the monitoring scheme, under
the Lehmann alternative G = Fγ , can be expressed as

pLehmann = p(m, n, a, i, b, c, j, d, r; F, G)

=
n−3
∑

k3=0

n−3
∑

k4=0

n−k3−k4−3
∑

k6=max(r−d+ j−1,0)

Q · Bγ (γ ( j − k3 − k4) + a, i − a; k3)



22 M. V. Koutras and I. S. Triantafyllou

Bγ (γ (k6 + d + 2) + b − 1, m − b + 1; n − d − k6)

× Bγ (γ ( j − k4) + i, b − i; k4 + k6 + d − j + 2),

where Q is defined as

Q = m!n!B( j − c − k3 − k4, c)B(k4 + 1, d − j)B(k6 + 1, k4 + d − j + 1)

(a − 1)!(i − a − 1)!(b − i − 1)!(m − b)!(c − 1)!( j − c − k3 − k4 − 1)!k3!k4!(d − j − 1)!k6!(n − d − k6)!

For the proof of the abovementioned theoretical results, the interested reader is
referred to the Appendix section in Triantafyllou (2019a).

The proposed chart was compared to the so-called W-CUSUM and W-EWMA
control charts established byLi et al. (2010), toW-EWMA-BRSS proposed byMalela-
Majika and Rapoo (2016), as well as to the Mann-Whitney-based chart (MW chart
hereafter) instituted by Chakraborti and van de Wiel (2008). From the numerical
comparisons carried out by Triantafyllou (2019a), the proposed distribution-free
monitoring scheme becomes substantially efficient. More specifically, the new chart
seems to outperform the MW chart, the W-CUSUM chart and W-EWMA chart in
all cases considered, while against W-EWMA-BRSS chart the proposed chart gives
better results for almost all cases considered. The only exception (among the cases
considered) appears when, under the Gamma (3, 1) distribution, the shift is assumed
to be equal to 0.50. In addition, numerical comparisons between the proposed moni-
toring scheme and the control charts introduced by Balakrishnan et al. (2015) are also
considered. The comparisons between the aforementioned control chart and themon-
itoring scheme established by Triantafyllou (2019a) were based on the alarm rates
that the both control charts manage to attain for several Lehmann-type alternatives.
The nonparametric control scheme introduced by Triantafyllou (2019a) meets the
same or even better performance, compared to the control chart established by Bal-
akrishnan et al. (2015), in detecting the possible shift of the underlying distribution
process.

3 Distribution-Free Control Charts Based on Sign Statistics

In this section, we focus on the distribution-free control charts, which are based on
sign statistics. For each control scheme reviewed, the main results and characteristics
are discussed in somedetail.Oneof the pioneerworks on this topic,was accomplished
by Amin et al. (1995), where a 1-of-1 Shewhart-type sign chart for monitoring the
median of the underlying process was established. However, the first work on the
topic after 2010, was the publication of Human et al. (2010). The order of appearance
of the publications discussed in this section, is chronological for making the reading
more coherent.
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3.1 Nonparametric Sign Control Charts Based on Runs

Human et al. (2010) considered a class of nonparametric Shewhart-type control charts
based on the sign statistic. The proposed charts utilize a single charting statistic and
exploit at the same time runs-rules. The monitoring schemes use the information
from multiple samples including the most recent one to reach a decision whether a
signal will be triggered. This is achieved by taking into account a run of values of
the charting statistic that fall outside the control limits. The resulting charts, which
are similar in spirit to the distribution-free control charts established by Chakraborti
and Eryilmaz (2007), seem to be user-friendly, while a high level of out-of-control
performance can be achieved.

Let Xi1, Xi2, . . . , Xin denote a random sample of size n > 1 drawn at sampling
stage i = 1, 2, . . . with cumulative distribution function F. The monitoring statistic
of the proposed control chart is given as

Ti =
n
∑

j=1

I{Xi j >θ0},

where θ0 is a specified percentile. Therefore, Ti corresponds to the number of obser-
vations of the ith sample which are larger than θ0. Apparently the variable Ti follows
the binomial distribution with parameters n and p = P(Xi j > θ0). When the per-
centile of interest equals to its target value, namely θ = θ0, the process is in-control
and the probability of reaching a control decision equals

p0 = P(Xi j > θ0|the process is in-control ).

The lower and the upper control limit of the proposed monitoring scheme
established by Human et al. (2010) are determined as

LC L = a, UC L = n − b,

where the charting constants a and b are integers in the interval (0, n) under the
restriction that the LCL is smaller than UCL, i.e., a + b < n.

The proposed control charts consider a run of charting statistics that fall outside
the control limits in order to decide whether an out-of-control signal should be
produced or not. More precisely, Human et al. (2010) introduced the so-called k-
of-k (k ≥ 2) and the k-of-w (w ≥ k ≥ 1, w ≥ 2) control charts based on the sign
statistic. According to the k-of-k chart, an out-of-control signal is produced when
k consecutive plotted points fall outside the control limits. The k-of-w control chart
seems to be a natural generalization of the aforementioned scheme, since it produces
a signal whenever k out of w charting statistics plot outside the control limits.

Human et al. (2010) studied the distribution of the run length of the proposed
nonparametric control charts by applying an appropriate Markov chain approach. In
order to derive explicit expressions for the computation of the Average Run Length
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or the Standard Deviation of the Run Length, each charting statistic Ti should be
classified into one of two (three) categories for the one-sided (two-sided) control
chart depending on whether Ti plots on or above the UCL, on or below the LCL,
and/or between the LCL and UCL. In order to keep track of the aforementioned
classification, a new sequence of random variables is defined and its distribution is
used to assess the desired performance characteristics of the proposed monitoring
schemes.

The authors compared their sign control charts based on runs, namely the 2-of-
2 and 2-of-3 runs-rules charts to the competing nonparametric monitoring schemes
introduced byChakraborti and Eryilmaz (2007) andAmin et al. (1995) under the nor-
mal, the double exponential and the Cauchy distribution. According to their numer-
ical results, the proposed sign control charts have substantially better out-of-control
performance when compared to Amin et al. (1995), while it seems to compete well
with the scheme established by Chakraborti and Eryilmaz (2007).

3.2 Improved Shewhart-Type Runs-Rules Nonparametric
Sign Charts

Kritzinger et al. (2014) incorporated runs-ruless to the well-known nonparametric
sign control chart introduced by Amin et al. (1995) in order to increase its capability
to detect large shifts in the process. The in- and out-of-control run length distribution
of the proposed control charts was studied by the aid of a Markov chain approach
and several important performance characteristics were investigated in some detail.

The monitoring statistic used in the control chart is the classical sign statistic
Ti , i = 1, 2, 3, . . . defined earlier. According to the proposed setup of the two-
sided monitoring schemes by Kritzinger et al. (2014), four control limits and a
center line are appropriately determined, namely LC L B, LC L A, UC L A, UC L B

and CL respectively which partition the control region into nine zones. A Markov
chain approach is applied in order to study the distribution of the run length of the
improved runs-rules sign control charts (for a thorough and well-documented rela-
tive text, see Fu and Lou (2003)). Appropriate transition probability matrices useful
for obtaining the waiting time distributions associated with the proposed monitoring
schemes are given, while explicit formulae for their several performance charac-
teristics of them, such as the mean and the variance of the run length variable (for
more details, the interested reader is referred to Sect. 5 in Kritzinger et al. (2014)).
Needless to say that the two-sided control chart can be routinely modified to an upper
(lower) one-sided improved sign control chart by simply dropping the control limits
LC L A, LC L B(UC L A, UC L B).

A numerical performance analysis carried out by the authors reveals that their
monitoring schemes seem to be quite competitive under four different distributions
(Normal, Student t, Exponential and Uniform) for the underlying process. In fact, the
improved runs-rules sign charts seem to be more capable in detecting large process
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shifts, while maintaining the same sensitivity as the one acquired by the runs-rules
sign control charts in detecting smaller shifts.

3.3 Shewhart-Type Sign Control Charts for Monitoring
a Finite Horizon Process

Celano et al. (2016a, b, c) investigated the statistical performance of the nonparamet-
ric Shewhart-type sign control chart introduced by Amin et al. (1995) for monitoring
the position of a continuous quality characteristic in a process with a finite production
horizon.

According to the set up examined by them, we assume that a manufacturing
process is scheduled to produce a finite number of N parts during a production
horizon of finite length, sayH hours. If I denotes the number of scheduled inspections
within the production horizonH, then the sampling interval between two consecutive
inspections equals h = H/(I + 1) hours, since it is assumed that no inspection is
scheduled at the end of the run. If we denote by Xi1, Xi2, . . . , Xin the subgroup of
observations collected at inspection i = 1, 2, . . . , I , the monitoring statistic of the
Shewhart-type sign control chart is defined as

SNi =
n
∑

j=1

sign(Xi j − TM),

where TM is the target value, while

sign(x) =
⎧

⎨

⎩

1, if x > 0
0, if x = 0
−1, if x < 0.

The in-control distributionof the variable SNi canbe readily deducedonobserving
that

SNi = 2Di − n,

where Di enumerates the positive signs in the sequence Xi j − TM , j = 1, 2, . . . , n
and follows a binomial distribution with parameters n and p0 = P(Xi j >

TM |TM = θ0 ) = 0.5 for all i = 1, 2, . . . , I ; the parameter θ0 appearing in the
last expression stands for the in-control value of the process median.

The design of the nonparametric sign control chart calls for the determination of
two parameters n and d; the second one denoting the minimum number of positive
signs within a sample such that the control chart should trigger a signal. The False
Alarm Rate of the sign control chart turns out to be
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F AR = 1 − FB

(

n + c

2
− 1
∣

∣n, p0

)

+ FB

(

n − c

2
− 1
∣

∣n, p0

)

,

where c = 2d−n andFB denotes the cumulative distribution function of the binomial
random variable with parameters n and p0 = 0.5.

On the other hand, let us assume that the process shifts away from the target value
and its out-of-control median becomes θ1 = TM + δσ0, where σ0 is the in-control
process standard deviation. Then, the out-of-control probability for an observation to
take on value larger than the target equals TM pδ = P(Xi j > TM |δ ) = 1−FX (TM |δ )

and the alarm of the sign control chart will be given by the expression

AR = 1 − FB

(

n + c

2
− 1
∣

∣n, pδ

)

− FB

(

n − c

2
− 1
∣

∣n, pδ

)

.

The truncated average run length and several other statistical performance metrics
of the control charts have been investigated by Celano et al. (2016a, b, c) (see also
Nenes and Tagaras (2010)), while both in- and out-of-control performance studies
have been carried out for evaluating the sensitivity for detecting a location shift of the
underlying process. The performance comparison with the Shewhart t control chart
proposed by Celano et al. (2011) provided strong evidence that the out-of-control
behavior of the Shewhart-type sign control chart is acceptable for a finite horizon
production.

3.4 Shewhart-Type Sign Control Charts for Low-Volume
Production

Celano et al. (2016a, b, c) considered the well-known Shewhart sign test statistic
under the assumption that the population size is small. A new approach was proposed
for extending its implementation to finite batch sizes of work to be produced. A
pioneer work that deals with a control chart for a process with a finite horizon can be
found in Ladany (1973), where an economic optimization problem for a Shewhart-
type p-chart is discussed. Shewhart-type control charts for short runs have been
introduced by Del Castillo and Montgomery (1993, 1996) and Tagaras (1996), who
considered adaptive design parameters varying according to a Bayesian rule.

Celano et al. (2016a, b, c) implemented the Shewhart-type sign control charts on
the onlinemonitoring of finite populations by treating the sign statistic as a hypergeo-
metric distributed randomvariable, when the population size is finite. Themonitoring
statistic remains the traditional sign statistic SNi = ∑n

j=1 sign(Xi j − TM) defined
earlier. Employing analogous arguments with those implemented by Celano et al.
(2016a, b, c), similar outcomes for the computation of Type I and II probability error
of the proposed statistical procedure were also derived by Celano et al. (2016a, b, c).
A simple rule for selecting the design parameters and the number of inspections to
be scheduled during a production run is suggested.
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The numerical experimentation carried out by Celano et al. (2016a, b, c) depict the
statistical properties of the Shewhart sign control chart for low-volume production.
More precisely, the authors pointed out that their approach can be implemented
for any size of the finite population such that a specific level of the False Alarm
Rate during a production run is reached. For illustration purposes, the proposed
monitoring scheme was applied for the production of mechanical parts undergoing
a drilling operation which generates a hole with specific parameters to be positioned
at a target location point.

3.5 Nonparametric Signed-Rank Control Charts
with Variable Sampling Intervals

Coehlo et al. (2017) considered a nonparametric Shewhart-type control chart based
on the variable sampling interval technique. The new chart utilized the well-known
signed-rank statistic and was compared to fixed sampling interval signed-rank charts
which have been already introduced in the literature. Since the signed-rank test
has been proved to be more powerful than the sign test (see, e.g., Gibbons and
Chakraborti (2010)), Coehlo et al. (2017) introduced a new nonparametric Variable
Sampling Interval control chart on the basis of the Wilcoxon signed-rank statistic.
The proposed monitoring scheme seems to be quite capable in detecting changes in
a specified location parameter of the distribution of the underlying process.

The key idea for the so-called Variable Sampling Interval charts is to monitor
the process by drawing samples at different time intervals, which are based upon
where the most recent charting statistic plots on the control chart. For example,
if it plots closer to the center line of the chart, then the time until the next test
sample to be collected will be larger. Let us denote by Xi = (Xi1, Xi2, . . . , Xin) the
random sample of size n which is drawn from the process at the ith time point. For
the Variable Sampling Interval chart, test samples are taken at a finite number of
intervals of length d1, d2, . . . , dη. In the special case η = 2, the lengths d1, d2 are
chosen such that l1 < di < l2, where l1(l2) is the minimum (maximum) possible
interval length. Generally speaking, the region between the lower and the upper
control limit is partitioned into η regions, say I1, I2, . . . Iη where d j , j = 1, 2, . . . , η
denotes the time unit drawing the next sample when the charting statistic plots in
I j . The time to signal on a Variable Sampling Interval chart depends on both the
time to signal and the number of samples to signal. Thus, two popular performance
measures, namely the average number of samples (ANOS) to signal and the average
time to signal (ATS), are most commonly used.

Following the framework established by Coehlo et al. (2017), when the process is
in-control, the median θ takes on a specified value θ0. In addition, the observations
drawn from the process are independent and follow an unknown but symmetric
continuous distribution. Under these assumptions, the process median coincides to
the corresponding mean and the Wilcoxon signed-rank statistic is distribution-free.
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At each sampling instance i, the aforementioned monitoring statistic is defined as

W +
i =

n
∑

j=1

I{Xi j −θ0>0} R+
i j , i = 1, 2, . . . ,

where

R+
i j = 1 +

n
∑

k=1

I{|Xik−θ0|−|Xi j −θ0|>0}.

Note that R+
i j corresponds to the so-calledwithin-group absolute rank of the devia-

tions |Xik − θ0|. The lower and upper control limit of the resultingmonitoring scheme
are given as LC L = n(n+1)

2 − c, UC L = c respectively, where c is a positive inte-
ger appropriately chosen so that a pre-specified in-control performance is achieved.
Coehlo et al. (2017) followed an analogous procedure as the one exploited by Amin
and Widmaier (1999) and partitioned the set of distinct value by the monitoring
statistic into the following two time intervals:

I1 =
{

n(n + 1)

2
− c, . . . ,

n(n + 1)

2
− k − 1

}

∪ {k + 1, . . . , c}, I2 =
{

n(n + 1)

2
− k, . . . , k

}

.

If the value of the monitoring statistic W +
i ∈ I1(W +

i ∈ I2), then we should wait
d1(d2 > d1) time units before collecting the next test sample. The proposed control
chart will produce a signal whenever a plotted point is located inside the region
{0, . . . , n − c − 1} ∪ {c + 1, . . . , n}. The probability for the monitoring scheme to
produce a signal while the process is in-control and out-of-control is given by

a0 = P

[(

W +
i <

n(n + 1)

2
− c

)

∪ (W +
i > c)|θ = θ0

]

and

a1 = P[(W +
i < n − c) ∪ (W +

i > c)|θ = θ1 ]

respectively.
In order to compare the performance of the proposed signed-rank control to other

competitive schemes, Coehlo et al. (2017) considered four different symmetric dis-
tributions (standard normal, Uniform (0, 1), Laplace (0, 1) and t distribution). The
numerical results spoke in favor of implementing the Variable Sampling Intervals
signed-rank control chart when data follow an unknown symmetric distribution.
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3.6 Sign Control Charts Based on Ranked Set Sampling

McIntyre (1952) introduced the so-called ranked set sampling (RSS) scheme for
collecting data when observing the actual measurements is difficult while ranking a
set of sample units is relatively easier and reliable. According to theRSS procedure, at
step 1wecollect k samples of size k, say X1,i , X2,i , . . . , Xk,i , i = 1, 2, . . . , k,while at
step 2 each sample is arranged in ascendingorder. Finally, the rth smallest observation
from the rth sample is selected for all r = 1, 2, . . . , k. The aforementioned steps can
be repeated m times (cycles) in order to produce a balanced RSS of size N = mk.
Asghari et al. (2018) introduced a nonparametric control chart based on RSS and the
sign statistic which is advantageous for the monitoring of a process whose units are
difficult and/or costly to measure.

Let us denote by X(r :k)i the rth order statistic from the rth sample in the ith cycle,
so that {Xt

(r :k)i , r = 1, 2, . . . , k; i = 1, 2, . . . , m} corresponds to a RSS scheme of
size N = mk from the process with in-control median θ0 at time t. The charting
statistic of the proposed monitoring scheme is given by

SN t
RSS =

k
∑

r=1

m
∑

i=1

sign(Xt
(r :k)i − θ0), t = 1, 2, . . .

or equivalently

SN t
RSS = 2Y t

RSS − mk,

where

Y t
RSS =

k
∑

r=1

m
∑

i=1

I{Xt
(r :k)i −θ0>0} =

k
∑

r=1

Ym(r).

Hettmansperger (1995) provided the mean and variance of the variable Y t
RSS , by

exploiting the fact that the random variable Ym(r) follows the binomial distribution
with parameters m and pr where

pr =
r−1
∑

l=0

(

k
l

)

[F(θ − θ0)]
l [1 − F(θ − θ0)]

k−l , r = 1, 2, . . . , k,

while Koti and Jogeph Babu (1996) proved that its probability mass function can be
expressed as

P(Y t
RSS = y) =

∑

k
∏

r=1

P(Ym(r) = ir ),



30 M. V. Koutras and I. S. Triantafyllou

where the summation is carried over all (i1, i2, . . . , ir ) satisfying the conditions
k
∑

r=1
ir = y; 0 ≤ ir ≤ m, r = 1, 2, . . . , k. In addition, Barabesi (1998) derived the

exact distribution of the random variable Y t
RSS by a generating function approach.

Based on the fact that the in-control distribution of the statistic Y t
RSS is symmetric

about zero, the control limits of the two-sided and one-sided RSS monitoring scheme
can be determined by using the following equation:

Pθ0(SN t
RSS ≥ UC L) = Pθ0

(

Y t
RSS ≥ N + UC L

2

)

.

The performance of the above scheme was investigated, under three different
distributions, by Asghari et al. (2018). Their numerical results depict the superiority
of the proposed method versus the simple random sampling technique.

4 Distribution-Free Control Charts Based on Ranks

In this section, we focus on distribution-free monitoring schemes, which use rank-
based monitoring statistics. One of the early works on the topic is attributed to Altuk-
ife (2003) who proposed nonparametric control charts based on the so-called sum-
of-rank test for detecting effectively small shifts from the process mean especially
when a heavy tailed distribution is considered.

4.1 Nonparametric Control Charts Based
on the Wilcoxon-Type Rank-Sum Statistic

Balakrishnan et al. (2009) introduced three distribution-free Shewhart-type control
charts that exploit run andWilcoxon-type rank-sum statistics to detect possible shifts
of the underlying continuous process. In this subsection, we shall discuss only the
one which utilizes ranks for constructing its monitoring statistic.

Let us then denote by X1, X2, . . . , Xm a random sample of size m from the in-
control distribution F and assume that two specific order statistics are used as control
limits, namely LC L = Xa:m, UC L = Xb:m(1 ≤ a < b ≤ m). Suppose next
that test samples Y1, Y2, . . . , Yn are drawn independently of each other (and also
independently of the reference sample) and thatwe are interested in checkingwhether
the process is still in-control or not. In statistical terms, if G denotes the cumulative
distribution function of the Yi

′s, the aim is to test the hypothesis F = G. Apparently,
under the hypothesis F = G, the number of test sample observations Y j that fall
between successiveX-observations should not attain “extreme” values,with extremes
being determined based on the proportion n/m.With this inmind, Balakrishnan et al.
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(2009) proposed to use as a monitoring statistic for deciding whether the process is
in-control the sum of ranks (from the joint sample of X and Y-observations) of
the Y-observations that lie between the control limits. The aforementioned statistic
may be expressed through the so-called “exceedance statistics” whose distributional
properties have been discussed by a number of authors including Fligner and Wolfe
(1976) and Randles andWolfe (1979); an elaborate discussion on this topic has been
provided in the monograph by Balakrishnan and Ng (2006). More specifically, let
us denote by Mi , i = 1, 2,…, m, the number of test sample observations Y j that
fall between the (i-1)th and ith order statistics of the X-sample (with the convention
that X(0) = −∞). The Wilcoxon-type rank-sum statistic mentioned above can be
expressed as

W =
b
∑

i=a+1

Wi ,

where Wi denotes the sum of the ranks of the Y-observations falling between X(i−1)

and X(i). (see, e.g., Wilcoxon (1945)). The monitoring statistic W can be expressed
in terms of Mi , as follows

W = 1

2

(

b
∑

i=a+1

Mi

)2

+
b
∑

i=a+1

i Mi +
(

M0 + a − 3

2

) b
∑

i=a+1

Mi ,

where M0 = ∑a
i=1 Mi denotes the number of observations of the Y-sample before

the LCL. The process is declared to be in-control if the following two conditions
hold true:

W ≤ w and M0 ≤ r0,

with w, r0 being the design parameters of this chart.
Balakrishnan et al. (2009) indicated that the support of W is

RW =
{

0, 1, . . . ,
n(n + 2b − 1)

2

}

and derived the distribution of it by making use of the joint distribution of
(M0, Ma+1, Ma+2, . . . , Mb).More precisely, the distribution of the rank-sum statistic
W can be expressed as

P(W = w) =
∑

m0,ma+1,mb

pa,b(m0, ma+1, . . . , mb), w ∈ RW ,

where
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pa,b(m0, ma+1, ma+2, . . . , mb) =

(

m0 + a − 1
a − 1

)

⎛

⎜

⎝

m + n − m0 −
b
∑

i=a+1
mi − b

m − r

⎞

⎟

⎠

(

m + n

n

) ,

while the summation is carried over all nonnegative integers m0, ma+1, . . . , mb

satisfying the conditions

m0 +
b
∑

i=a+1

mi ≤ n and
1

2

(

b
∑

i=a+1

mi

)2

+
b
∑

i=a+1

imi + (m0 + a − 3

2
)

b
∑

i=a+1

mi = w.

It is straightforward that the False Alarm Rate of the proposed monitoring scheme
is given by

F AR = 1 − P(W ≤ w and M0 ≤ r0).

Since the signaling events are not independent, the average run length (ARL) of
the chart cannot be calculated as the reciprocal of the signaling probability. However,
Balakrishnan et al. (2009) made use of an appropriate conditioning argument (see
also Chakraborti (2000)) in order to establish a formula for the exact run length
distribution and its mean. More specifically, if we denote by fa:b the joint density
function of the uniform order statistics (Ua, Ua+1, . . . , Ub) from a random sample
of size m (see, e.g., David and Nagaraja (2003)), the Average Run Length of the
proposed Wilcoxon-type monitoring scheme can be expressed as

ARL =
¨

. . .

∫

0≤ua≤ua+1≤...≤ub≤1

1

1 − Q(G F−1(ua), G F−1(ua+1), . . . , G F−1(ub))

× fa:b(ua, ua+1, . . . , ub)duadua+1 · · · dub,

where

Q(va, va+1, . . . , vb) =
∑

(m0,ma+1,...,mb)∈A

q(va, va+1, . . . , vb), A ⊆ {0, 1, 2, . . .}b−a,

and

q(va , va+1, . . . , vb) =

n!

m0!
(

b
∏

j=a+1
m j !
)(

n − m0 −
b
∑

j=a+1
m j

)

!
v

m0
a

b
∏

j=a+1

(v j − v j−1)
m j (1 − vb)

n−m0−
b
∑

j=a+1
m j
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is the multinomial probability, with 0 ≤ va ≤ va+1 ≤ . . . ≤ vb ≤ 1.
The Average Run Length can be evaluated numerically for any choice of the

design parameters under both in-control and specific out-of-control situations. For
more details, the interested reader is referred to Sects. 5 and 6 in Balakrishnan et al.
(2009).

4.2 A Nonparametric Control Chart Based on the Mood
Statistic

Murakami and Matsuki (2010) proposed charting statistics based on the two-sample
Mood statistic for detecting scale shifts of a distribution. They studied in detail the
new monitoring scheme, while in the case of small sample sizes, they derived exact
control limits for the suggested scheme.

Suppose that a reference sample of size m, say X1, X2, . . . , Xm is drawn from the
in-control process, while an arbitrary test sample Y1, Y2, . . . , Yn is also available. Let
R1 < R2 < · · · < Rm denote the combined-samples ranks of the X −observations
in ascending order. The monitoring statistic of the proposed control chart can be
expressed as

Mm,n =
m
∑

i=1

(

Ri − N + 1

2

)2

,

where N = m + n and the Mood chart produces a signal whenever the value of the
statistic Mm,n plots outside the control limits (Lmn, Umn). For large sample sizes,
Murakami and Matsuki (2010) stated that the lower and upper control limit of the
proposed chart can be evaluated through the following formulae:

Lmn = E(Mm,n) − c
√

Var(Mm,n), Umn = E(Mm,n) + c
√

Var(Mm,n),

where the parameter c is appropriately selected in order to achieve a specified level
of performance, while

E(Mm,n) = m(N 2 − 1)

12
,Var(Mm,n) = mn(N + 1)(N 2 − 4)

180
.

In addition, Murakami and Matsuki (2010) applied the well-known Lugannani-
Rice formula (see also Jensen (1995) or Wood et al. (1993)) for the upper-tail prob-
ability for intermediate sample sizes in order to derive a saddlepoint approximation
of the cumulative distribution function of the random variable Mm,n . Based on the
aforementioned approximation, Murakami and Matsuki (2010) provided a table of
the estimated control limits of the Mood charting statistic for a large range of the
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design parameters. They also carried out a simulation study, using several distribu-
tions such as the lognormal, the logistic or the Cauchy distribution and concluded
that the normal approximation is quite accurate only for the case m, n ≥ 150.

4.3 A Shewhart-Lepage Control Chart for the Joint
Monitoring of Location and Scale

Mukherjee andChakraborti (2012) established a single distribution-free control chart
for monitoring simultaneously the unknown location and scale parameters of a con-
tinuous distribution of the underlying process. The proposed plotted statistic SL
combines two well-known nonparametric test statistics: the Wilcoxon rank-sum test
for location and the Ansari–Bradley test for scale. The test statistic SL has been
introduced by Lepage (1971) in order to deal with a nonparametric two-sample test
for both location and dispersion.

Let X1, X2, . . . , Xm be a random sample of size m from the in-control distri-
bution F and assume that test samples Yi1, Yi2, . . . , Yin, i = 1, 2, . . . are drawn
independently of each other (and also independently of the reference sample) from
a continuous distribution G. For the comparison between the ith test sample and
the reference sample, two different nonparametric testing procedures are followed.
According to the first one, the well-known Wilcoxon rank-sum statistic, say T 1,
should be computed for testing the equality of the corresponding location parame-
ters. If we denote by Zk an indicator variable which takes on the value 1(0) when the
kth order statistic of the combined N (N = m + n) observations belongs to the test
(reference) sample, then the test statistic T 1 is defined as

T1 =
N
∑

k=1

k Zk .

The second statistic, the Ansari-Bradley test statistic, quantifies the differences in
scale between the X− and Y− observations and is defined as follows:

T2 =
N
∑

k=1

|k − 0.5(N + 1)|Zk .

Note that formulae for the computation of the mean and the variance of both
test statistics T1, T2 have already appeared in the literature (see, e.g., Gibbons and
Chakraborti (2010)). More precisely, we have

E(T1|I C) = μ1 = 0.5n(N + 1), Var(T1

∣

∣I C) = σ 2
1 = 1

12
mn(N + 1),
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E(T2|I C) = μ2 =
{

nN
4 , if N is even

n(N 2−1)
4N , if N is odd

,

VarE(T2|I C) = σ 2
2 =

{

mn(N 2−4)
48(N−1) , if N is even

mn(N+1)(N 2+3)
48N 2 , if N is odd.

The single (combined) monitoring statistic of the proposed Shewhart-Lepage
control chart for the ith test sample is given by

SLi = SW 2
i + S AB2

i , i = 1, 2, . . . ,

where SWi , S ABi are the standardized Wilcoxon rank-sum and Ansari-Bradley
statistics, i.e.,

SWi = T1i − μ1

σ1
and S ABi = T2i − μ2

σ2
.

The proposed chart produces an out-of-control signal whenever the statistic SLi
exceeds an upper control limit H. Note that since SLi ≥ 0, the lower control limit
equals to zero. When the process is declared to be out-of-control at the ith test
sample, the values of both statistics SW 2

i , S AB2
i are compared to specified constants

H1, H2 < H respectively in order to identify the type of violation. In other words,
if only SW 2

i (S AB2
i ) exceeds H1(H2), then a shift in location (scale) is implied. On

the other hand, if SW 2
i exceeds H1 and S AB2

i exceeds H2, a shift in both location
and scale is indicated.

Mukherjee and Chakraborti (2012) provided a thorough investigation of the in-
and out-of-control performance of the control chart in terms of the mean, standard
deviation, median and further percentiles of the run length distribution. Some inter-
esting remarks referring to the influence of the reference sample size have also been
included in their study.

4.4 A Shewhart–Cucconi Control Chart for the Joint
Monitoring of Location and Scale

Chowdhury et al. (2014) proposed a distribution-free Shewhart-type control chart
based on the Cucconi statistic which achieves joint monitoring of both the loca-
tion and scale parameters of the underlying process. Several nonparametric tests
for jointly monitoring location and scale parameters are based on the combination
of two separate statistical tests, one for location and one for scale (see Sect. 4.3).
The approach suggested by Cucconi (1968) addresses the location-scale problem by
considering the squares of ranks and contrary ranks (see also Marozzi (2009)).
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If we denote by Zk an indicator variable which takes on the value 1 (0) whenever
the kth order statistic of the combined sample ofN = m + n observations comes from
the reference (test) sample, thenCucconi (1968) suggested using again the statisticT 1

exploited in Sect. 4.3 and an additional statistic (Wilcoxon-type rank-sum statistic)
defined as

S1 =
N
∑

k=1

k2Zk .

The statistic S1 represents the sum of the squares of the ranks of test sample
observations in the combined sample. Finally, the next variable is defined (see also
Mood (1954))

S2 =
N
∑

k=1

(N + 1 − k)2 Ik = n(N + 1)2 − 2(N + 1)T1 + S1.

Under the assumption F = G, one may prove that

E(S1|I C ) = E(S2|I C ) = n(N + 1)(2N + 1)

6

and

Var(S1|I C ) = Var(S2|I C ) = mn(N + 1)(2N + 1)(8N + 11)

180
.

Therefore, the corresponding standardized statistics will read

U = S1 − E(S1|I C )√
Var(S1|I C )

= 6S1 − n(N + 1)(2N + 1)√
mn(N + 1)(2N + 1)(8N + 11)/5

V = S2 − E(S2|I C )√
Var(S2|I C )

= 6S2 − n(N + 1)(2N + 1)√
mn(N + 1)(2N + 1)(8N + 11)/5

.

Marozzi (2009) argued that when F = G, the correlation coefficient between the
variables U and V is given as

p = Corr(U, V |I C) = 2(N 2 − 4)

(2N + 1)(8N + 11)
− 1.

The monitoring statistic of the proposed Shewhart–Cucconi control chart for
simultaneous testing of shift in location and scale parameters is defined as

C(U, V ) = U 2 + V 2 − 2pU V

2(1 − p2)
.
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Manifestly minC(u, v) = 0 while the equation C(u, v) = constant represents an
ellipse. The proposed chart produces an out-of-control signal whenever the statistic
C exceeds an upper control limit H > 0. When the process is declared to be out-of-
control, the p-values p1, p2 for both testing procedures (Wilcoxon test for location
and Mood test for scale) are computed. If p1 is very low but not p2, there exists
evidence for a shift in the location only. On the other hand, if p1 is relatively high
but p2 is low, only a shift in scale is suspected. Finally, if both p-values are very low,
then an evidence for shift in both location and scale is provided.

Marozzi (2009) supplied control limits for the Shewhart–Cucconi control scheme
for some typical nominal in-control average run length values. He also proceeded
to several numerical comparisons with existing nonparametric control charts, which
revealed that the proposed monitoring scheme performs competitively.

4.5 Nonparametric Control Charts Based
on the Hogg-Fisher-Randle and the Savage Rank Statistic

Mukherjee and Sen (2015) proposed two nonparametric control charts based on
the Hogg-Fisher-Randle statistic and the Savage rank statistic. Suppose that a ref-
erence sample X1, X2, . . . , Xm from the in-control distribution F is available a pri-
ori and a test sample (or Phase II observations) of size n is sequentially observed
from the underlying process with cumulative distribution function G. In the classical
nonparametric inference, there have been considered linear test statistics of the form

T =
n
∑

j=1

aN (R j ),

where aN (R j ) denotes the so-called score function of ranks (see Hogg et al. (1975)
or Kössler (2010)). Gastwirth (1965) floated the idea of sacrificing the ranks of some
test sample observations; more specifically he suggested using a sum of partial ranks
starting from or ending at a certain pre-specified percentile. Hogg et al. (1975) pro-
posed the following score function for detecting possible shift in location parameter
when the underlying density is right-skewed:

aN (R j ) =
{

R j , if j = 1, 2, . . . , n and R j ≤ [(N + 1)/2]
0, otherwise

,

where [z] denotes the greatest integer less than or equal to z. Then he introduced a test
statistic TH obtained by summing up the ranks of the test sample observations, which
lie below the combined samplemedian.Generally speaking, theGastwirth-type score
function for right-skewed density is defined as
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aN (R j ) =
{

R j , if j = 1, 2, . . . , n and R j ≤ K , [(N + 1)/2] ≤ K < N
0, otherwise

An empirical study showed that K closer to [(3m+1)/4] gives satisfactory in-
control performance

Mukherjee and Sen (2015) used Gastwirth-type score functions to establish a
monitoring statistic of the form

TG =
n
∑

j :R j ≤K

R j ,

thereof obtaining a Hogg-Fisher-Randle control chart. On the other hand, a Savage
test statistic is introduced as

TS =
n
∑

j=1

⎛

⎝1 −
N
∑

l=R j

1

l

⎞

⎠.

Then, the corresponding standardized statistics denoted by TH F R, TS AV can be
defined via the following equations:

TH F R = TH − nK (K+1)
2N

√

mn(K+1){−3K 2+(4N−3)K+2N }
12(N−1)N 2

TS AV = TS
√

√

√

√

√

mn
N−1

⎛

⎝1 −
N
∑

l=1

1
l

N

⎞

⎠

,

respectively.
The proposed control charts produce an out-of-control signal whenever the cor-

responding monitoring statistic TH F R and TS AV exceed an upper control limit HH F R

and HS AV respectively. Mukherjee and Sen (2015) compared the aforementioned
schemes to well-known rank-based control charts, which have already been estab-
lished in the literature. A simulation-based analysis revealed that the new charts
are quite capable in detecting location shift especially when the underlying pro-
cess distribution is non-normal, while for small reference sample, the corresponding
false alarm rate seems to be quite competitive. In addition, its in-control robustness
was investigated, while detailed comparisons in terms of out-of-control run length
under various amounts of location shift were provided. The Hogg-Fisher-Randle
chart appears to be an excellent alternative to the traditional Wilcoxon chart, as it is
usually less influenced by bias in the Phase I sample and also has lower False Alarm
Rate than its competitors in most cases.
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4.6 Distribution-Free Phase II Mann–Whitney Control
Charts with Runs-Rules

Malela-Majika et al. (2016) considered adding runs-rules to enhance the performance
of the distribution-free Phase II Shewhart-type chart based on thewell-knownMann–
Whitney statistic which was introduced by Chakraborti and van de Wiel (2008).
Assume that a reference sample X1, X2, . . . , Xm is drawn from the in-control distri-
bution F and test samples Y1, Y2, . . . , Yn are sequentially observed from the under-
lying process with cumulative distribution function G. The monitoring statistic of
the proposed Mann-Whitney control chart can be expressed as

MXY =
m
∑

i=1

n
∑

j=1

I{Y j −Xi >0}.

When implementing the classical 1-of-1 Mann-Whitney control chart, the mon-
itoring statistic MXY is plotted for each test sample and an out-of-control signal is
produced whenever the plotted point falls outside the control limits (LC L , UC L).
Since the in-control distribution of the charting statistic is symmetric about mn/2, it
is reasonable to set LC L = mn − UC L .

The unconditional Average Run Length of the Mann–Whitney control chart can
be expressed as an m-dimensional integral. More specifically, conditioning on the
observed values x = (x1, x2, . . . , xm) of the reference sample, the probability that a
test sample leads to an out-of-control signal is given as

pG(x) = PG(MXY ≤ mn − UC L) + PG(MXY ≥ UC L).

Consequently, the unconditional Average Run Length of the aforementioned
monitoring scheme may be expressed as

ARL =
+∞
∫

−∞

+∞
∫

−∞
. . .

+∞
∫

−∞

1

pG(x)
dF(x1)dF(x2) . . . dF(xm).

Malela-Majika et al. (2016) stated that it is difficult and time-consuming to com-
pute the ARL based on the abovementioned formula. Instead, a Monte-Carlo simu-
lation study with 10000 simulations was carried out for evaluating the in- and out-
of-control performance of the Mann–Whitney control chart. Malela-Majika et al.
(2016) considered the 2-of-2 KL runs-rule (see Klein (2000)) and the improved
runs-rule established by Khoo and Ariffin (2006) which is a combination of the clas-
sical 1-of-1 and the 2-of-2 runs-rules. The simulation procedure for determining the
chart constants and obtaining the characteristics of the run length distribution for the
control chart with runs-rules is described in detail by Malela-Majika et al. (2016).
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The numerical comparisons reveal that the enhanced Mann-Whitney control charts
outperform other competing schemes in detecting possible shifts of the underlying
distribution.

4.7 Economically Designed Nonparametric Control Chart
Based on the Wilcoxon Rank-sum Statistic

Li et al. (2016) dealt with the problem of setting up an economical design for moni-
toring an unknown location parameter via a nonparametric control chart that makes
use of the Wilcoxon rank-sum statistic. Duncan (1956) seems to be the first to coin
the term economic design for a control chart in a seminal paper. The major objective
of an economic design is the maximization of the profit or the minimization of the
cost incurred in the course of process monitoring. Since then, the area has attracted a
lot of research interest. For example, Celano et al. (2012) or Zhang et al. (2014) con-
sidered economically designed schemes for short production runs, while Yeh et al.
(2011) and Su et al. (2014) developed economic models under non-normality. The
technique practiced by Li et al. (2016) aims at blending the advantage of economic
design with the benefit of the nonparametric approach for process monitoring.

The rationale behind themonitoring scheme has been already presented in detail in
Sect. 4.3 of the present chapter. In the economicmodel proposed by Li et al. (2016), it
is assumed that the process starts in the in-control state and the quality characteristic
of interest follows an unknown univariate continuous distribution. The aim is to
detect the occurrence of a single assignable cause that leads to a fixed shift in the
(unknown) location parameter. The time until the assignable cause occurs is assumed
to be exponentially distributed with rate λ. The process is not self-correcting, that
is, once the process shifts out-of-control, it remains at this state until the assignable
cause is detected and its effect is removed. Following standard practice as described
in Duncan (1956) or Montgomery (2009), the expected loss per unit time E(L) is
given by the expression

E(L) = (a1 + a2n)

h
+ a4 −

a4
λ

− a3 − a′
3ae−λh

1−e−λh

1
λ

+ h
1−β

− ξ + gn + D
,

where h denotes the sampling interval, a (β) represents the probability of Type I (II)
error at each sample, a1(a2) corresponds the fixed (variable) cost of sampling, a3 and
a′
3 account for the cost of finding the assignable cause and investigating a false alarm
respectively, while a4 denotes the penalty cost per unit time associated with the out-
of-control production. The parameter ξ stands for the expected time between the last
sampling and the shift while in-control and the symbols g, D denote respectively the
time to sample and chart one item and the time to spot out the assignable cause after
an action signal is triggered. For a modified version of this loss function taking into
consideration different process features, the interested reader is referred to Lorenzen
and Vance (1986).
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The optimal control chart design refers to the problem of minimizing E(L).
To achieve that, an additional cycle of observing m reference observations from
the in-control distribution is required. The False Alarm Rate of the two-sided
Wilcoxon rank-sum control chart can be obtained via enumeration or using normal
approximation. For large sample sizes, one may apply the following approximation:

F AR = �

⎛

⎝

LC L + 0.5 − n(m+n+1)
2

√

mn(m+n+1)
12

⎞

⎠+ 1 − �

⎛

⎝

UC L + 0.5 − n(m+n+1)
2

√

mn(m+n+1)
12

⎞

⎠,

where �(·) denotes the cumulative distribution function of the standard normal dis-
tribution. On the other hand, the exact distribution of the monitoring statistic when
a shift has occurred, depends on the underlying unknown process distribution G. Li
et al. (2016) proposed two different approaches for calculating the probability β of
the monitoring scheme. According to the first one, a bootstrapped sample of size n
without replacement should be drawn from the m reference observations, while a
target shift δ to each of the n observations is added (see, also Chatterjee and Qiu
(2009), Capizzi and Masarotto (2009) or Abbasi and Guillen (2013)). Afterwards,
the Wilcoxon rank-sum statistic is computed based on the m reference observations,
while n new observations obtained by adding target shift δ. The last step is repeated
10000 times and therefore 10000 replicates of Wilcoxon rank-sum statistic are com-
puted for the m reference observations and n shifted data. The desired probability β

can now be empirically estimated based on the 10000 bootstrap from the sampling
distribution of the Wilcoxon rank-sum statistic for the underlying shift. The second
approach presented by Li et al. (2016) for evaluating the probability β is based on
the asymptotic normality of the aforementioned test statistic when the sample sizes
m and n are large.

The monitoring scheme with control limits LCL = −l, UCL = l suggested by Li
et al. (2016) deploys in two stages. The first one, namely theDesign stage, calls for the
collection of the reference sample of sizem and the computation of probability a from
the exact in-control distribution of the Wilcoxon rank-sum statistic as a function of n
and l, for n = 1, 2,…. Afterwards, the probability β can be estimated by applying one
of the two proposed approaches mentioned earlier. For the two-sidedWilcoxon rank-
sum control chart the valid range of control limits requires aminimum (ormaximum)
value equal to n(n + 1)/2(or n(2m + n + 1)/2). Consequently, the optimization
calls for a grid search for values of n and l and a golden section search for h in order
to minimize the objective function E(L). Finally, a global minimum of E(L) is
achieved and once an optimal charting scheme (n, h, l) is determined, the procedure
moves to the so-called charting stage. Please mention that the charting stage includes
the classical steps of process monitoring, namely the computation of the proposed
statistic for each test sample drawn from the process and the characterization of the
process as in- or out-of-control, depending on the location of the observed points in
comparisonwith the corresponding control limits.Adetailed simulation study carried
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out by Li et al. (2016) revealed that the performance of the procedure based on the
bootstrapping is strongly encouraging and robust for several continuous distributions.

4.8 Distribution-Free Lepage-Type Circular-Grid Charts
for Joint Monitoring of Location and Scale Parameters

Mukherjee and Marozzi (2017) introduced a graphical tool, named circular-grid
charts, for simultaneously monitoring the location and scale of a process via the
Lepage-type statistics. The well-known Lepage test for jointly testing the location
and scale differences between two samples has already been presented in Sect. 4.3.
Tamura (1963) proposed a generalization of the classicalWilcoxon rank-sum statistic
T1 =∑N

k=1 k Zk by considering the quantity

Sp =
N
∑

k=1

k p Zk

for p > 0.
In addition, aiming at the comparison of the scale parameters of the samples,

Tamura (1963) introduced the following class of statistics:

Mq =
N
∑

k=1

∣

∣

∣

∣

k − N + 1

2

∣

∣

∣

∣

q

Zk, q > 0.

Note that S1 reduces to the classical Wilcoxon rank-sum statistic, while M1 and
M2 are the statistics employed in the Ansari-Bradley and Mood nonparametric scale
tests respectively. Following the technique described in Sect. 4.3 it seems sensible
to construct a Lepage-type control chart which makes use of the sum of squares

L p,q =
(

Sp − EH0(Sp)
√

VarH0(Sp)

)2

+
(

Mq − EH0(Mq)
√

VarH0(Mq)

)2

.

Manifestly the special case p = q = 1, yields the traditional Lepage test. It is worth
mentioning that several modifications of the Lepage test have been proposed in the
literature (see, e.g., Büning and Thadewald (2000), Murakami (2007) or Neuhäuser
(2011)).

After collecting the reference sample of size m, namely X1, X2, . . . , Xm , several
test samples of size n, say Yi1, Yi2, . . . , Yin, i = 1, 2, . . . are drawn from the process.
For each test sample the standardized statistics are computed as follows:

S∗
pi = Spi − EH0(Sp)

√

VarH0(Sp)
and M∗

qi = Mqi − EH0(Mq)
√

VarH0(Sq)
,
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where the quantities EH0(S1),VarH0(S1), EH0(M1),VarH0(M1) can be readily
obtained by recalling the equations appeared in Sect. 4.3 for the special case
p = q = 1. In addition, the following ensue:

EH0(M2) = n(N 2 − 1)

12
, VarH0(M2) = mn(N + 1)(N 2 − 4)

180
.

The testing procedure for the control chart suggested by Tamura (1963) is as
follows. We set up a two-dimensional chart where the X− axis stands for the S∗

p
values while the Y− axis stands for the M∗

q . We draw a circle with radius r, centered
at the origin and a square with its sides being placed at distance ±r away from the
two axes. The area inside the circle is considered to be the in-control region of the
proposed control chart. Note that the parameter r is a design parameter and should
be appropriately determined so as to achieve a specified in-control performance.

According to the previous description, the proposed Shewhart-type Lepage moni-
toring scheme is based on plotted points (S∗

pi , M∗
qi ), while the monitoring statistic of

the new chart is simply the square of the Euclidean distance of each point (S∗
pi , M∗

qi )

from the origin (0, 0). The process is declared to be in-control (out-of-control) when-
ever the plotted point (S∗

pi , M∗
qi ) falls inside (outside) the circle. If the control chart

signals at the ith step, an interesting question is whether the shift has occurred in the
location and/or the scale parameter of the process. To this end, the circular area and
the square described earlier can be proved to be very useful. Mukherjee and Marozzi
(2017) considered two different out-of-control situations depending on the location
of the plotted point. Under the first case, the point lies outside both the circle and the
square, while the second scenario is activated whenever a point lies outside both the
circle but inside the square. In all cases considered, a numerical comparison between
the values of the statistics (S∗

pi , M∗
qi ) and the parameter r, leads to a conclusion about

the kind of shift which has occurred in the distribution process.
Adetailed numerical study based onMonte-Carlo simulations for the performance

of the new distribution-free Shewhart-type chart has been carried out by Mukherjee
andMarozzi (2017), while a guideline for practitioners is also offered. An implemen-
tation strategy based on both average and median run length has been considered,
while a search algorithm for determining the chart constants of the proposed Phase
II charts is discussed as well.

4.9 Distribution-Free Fuzzy Shewhart–Lepage Control
Schemes

Chong et al. (2017) introduced a distribution-free Shewhart-Lepage-Type control
chart and further proposed a fuzzy control scheme for joint monitoring of the location
and scale parameters of the underlying process. Along with the stupendous research
growth in the area of nonparametric process control, the fuzzy logic control schemes
have also drawn significant attention among researchers. These schemes are very
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useful in practice when the information is not well organized or vague. Fuzzy control
schemes are more sensitive compared to traditional Shewhart control schemes; see
Sabegh et al. (2014) for a thorough literature review on fuzzy control schemes.

Chong et al. (2017) discussed a Shewhart-Lepage monitoring scheme based on
the max-type statistic. The general framework does not differ significantly from
the one followed by Mukherjee and Chakraborti (2012) (see Sect. 4.3), where the
standardizedWilcoxon rank-sum and Ansari-Bradley statistics S1i and S2i were used
and the squared distance of the point (S1i , S2i ) from the origin was exploited for the
simultaneous monitoring of the location and the scale parameters. As Lepage (1971)
mentioned a max-type statistic, namely
 j = max{|S1 j |, |S2 j |} can also be practiced
for simultaneous monitoring. McCracken et al. (2013) mentioned that the max-type
scheme seems to be suitable to detect large shifts in mean accompanied by no other
small shifts in the variance of a normally distributed process. Motivated by this, in
the nonparametric joint monitoring context, Chong et al. (2017) established a one-
sided monitoring scheme based on the statistic 
 j . According to his approach, if
|S2 j | < HM < |S1 j |(|S1 j | < HM < |S2 j |), a shift in location (scale) is declared,
while if both |S1 j |, |S2 j | exceed HM , shifts in both location and scale are declared.

Chong et al. (2017) introduced also a fuzzy Shewhart-Lepage scheme, using as
plotted points the couples (|S1 j |, |S2 j |). They argue that a strong evidence for an
in-control process is achieved when both the max and distance type statistics satisfy
the in-control conditions. On the other hand, when the process is declared in-control
by either the max or distance type statistics (but not by both of them) they argue
that a fuzzy in-control state is evidenced. Otherwise, the process is declared out-of-
control. For more details about the schematic form and the practical implementation
of the proposed fuzzy control chart, the interested reader is referred to Chong et al.
(2017). A detailed numerical simulation-based study carried out by them shed light
on the performance of their monitoring scheme in terms of several characteristics
associated with its run length distribution.

4.10 Generalized Shewhart-Lepage-Type Control Schemes

Mukherjee and Sen (2018) generalized the distribution-free Shewhart-type Lepage
scheme described in Sect. 4.3 applying an adaptive approach. This approach is known
in the statistical literature as percentile modifications of ranks (or adaptive Gastwirth
Score) and offers a powerful tool to improve the classical rank tests.

Let X1, X2, . . . , Xm be a random sample of size m from the in-control distri-
bution F and assume that test samples Yi1, Yi2, . . . , Yin, i = 1, 2, . . . are drawn
independently from a continuous distribution Gastwirth (1965) and Kossler (2006)
introduced the following statistics for p, r ≥ 1/N , p + r ≤ 1
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Tp =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

N
∑

i=N−P+1
(i − (N − P))Zi , if N is odd

N
∑

i=N−P+1
[i − (N − P) − 1/2]Zi , if N is even

Br =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

R
∑

i=1
((R − i + 1))Zi , if N is odd

R
∑

i=1
[(R − i + 1/2)]Zi , if N is even

where Zk denotes the indicator variable defined earlier in Sect. 4.3, while P =
[N p], R = [Nr ]. Based on Tp, Br two adaptive statistics are defined as

Wg = Tp − Br , Sg = Tp + Br .

It is evident that test statistics Wg, Sg are similar to the Wilcoxon and Ansari–
Bradley statistic respectively accounting for appropriate percentile modification.
Consequently, an adaptive Lepage-type Gastwirth statistic based on theMahalanobis
distance between Wg, Sg can be expressed as

Lg = (Wg − μWg )
2σ 2

Wg
+ 2σWg Sg (Wg − μWg ) (Sg − μSg ) + (Sg − μSg )

2σ 2
Sg

σ 2
Wg

σ 2
Sg

− (σWg Sg

)2 ,

where μWg (μSg ) and σ 2
Wg

(σ 2
Sg

) are the mean and variance of the random variable

Wg(Sg) respectively, while σ 2
Wg Sg

is the corresponding covariance.
Note that since Lg is a positive semi-definite quadratic form, therefore it seems

plausible to consider the lower control limit of the chart as zero. The proposed control
chart produces an out-of-control signal whenever the plotted statistic Lg exceeds an
upper control limit H. If the process is declared out-of-control at the ith test sample,
the next step is to investigate whether the shift occurs in the location parameter or
in the scale parameter on in both. To this end, Mukherjee and Sen (2018) suggested
to compute the p− values of the Wilcoxon test for location and the Ansari-Bradley
test for scale using both the reference and the ith test sample and use them to reach a
decision (a similar procedure has been described at the end of Sect. 4.4). The optimal
implementation strategies of the proposed class of Shewhart-type Lepage-Gastwirth
schemes to achieve lower out-of-control ARL and FAR have been well studied by
Mukherjee and Sen (2018).
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4.11 Nonparametric Control Charts Based on Modified
Wilcoxon-Type Statistics

Koutras and Triantafyllou (2018) introduced a general class of nonparametric
Shewhart-type control charts based on modified Wilcoxon-type rank-sum statis-
tics. The proposed nonparametric control charts make use of the length Mi of runs
of test sample observations Y1, Y2, . . . , Yn (from a continuous distribution G) that
lie between successive observations of the reference sample X1, X2, . . . , Xm with
cumulative distribution functionF (see Sect. 4.1). The in-control rules of these charts
embrace the following two conditions:

Condition 1. The number of observations of the Y-sample before the observation
Xa:m is less or equal to c1, namely M0 =∑a

i=1 Mi ≤ c1, where c1 is
a positive-valued parameter.

Condition 2. A properly defined continuous function g of M0 and Mi , i =
a + 1, a + 2, . . . , b does not exceed a threshold, namely
g(M0, Ma+1, Ma+2, . . . , Mb) ≤ c2, where c2 is a positive-valued
parameter

Each one of the conditions stated above, defines a separate plotted statistic. As a
consequence, the proposed distribution-free control scheme requires the construction
of two one-sided charts that are used simultaneously to reach a decision whether
the process is in-control or has shifted out-of-control. In the first one, the integer
test statistic M0 will be plotted versus an appropriate upper control limit (design
parameter c1), while in the second chart the function g(M0, Ma+1, Ma+2, . . . , Mb)

shall be plotted versus a second upper control limit (design parameter c2). The False
Alarm Rate may is given by

F AR = 1 − P(M0 ≤ c1 and g(M0, Ma+1, Ma+2, . . . , Mb) ≤ c2)

= 1 −
∑

(m0,ma+1,...,mb)∈A

Pin(Mo = m0, Ma+1 = ma+1, Ma+2 = ma+2, . . . , Mb = mb),

where A is the space containing the values of the random vector
(M0, Ma+1, Ma+2, . . . , Mb) that do not issue an alarm for the control chart in
use, while

Pin(M0 = m0 and M j = m j for a + 1 ≤ j ≤ b) =

(

m0 + a − 1
a − 1

)

⎛

⎜

⎝

m + n − m0 −
b
∑

i=a+1
mi − b

m − b

⎞

⎟

⎠

(

m + n

n

) .

Under the Lehmann alternatives G(x) = (F(x))γ , the corresponding Alarm Rate
of the nonparametric control charts of the proposed class is given by
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AR = 1 − P(M0 ≤ c1 and g(M0, Ma+1, Ma+2, . . . , Mb) ≤ c2)

= 1 −
∑

(m0,ma+1,...,mb)∈A

PL (Mo = m0, Ma+1 = ma+1, Ma+2 = ma+2, . . . , Mb = mb),

where

PL(M0 = m0 and M j = m j for a + 1 ≤ j ≤ b)

= d1d2γ
−(b−a+1)

b−1
∏

j=a

B

(

j

γ
+ m0 +

j
∑

i=a+1

mi , m j+1 + 1

)

×
m−b
∑

�=0

(−1)�
(

m − b
j

)

B

(

b + �

γ
+ m0 +

b
∑

i=a+1

mi , n − m0 −
b
∑

i=a+1

mi + 1

)

,

while

d1 = m!
(a − 1)!(m − b)! , d2 = n!

m0!
(

b
∏

j=a+1
m j !
)

(

n − m0 −
b
∑

i=a+1
m j

)

!
,

and B(a, b) denotes the well-known beta function.
It is worth mentioning that exploiting the condition-uncondition technique (see,

e.g., Chakraborti (2000)) a formula for the exact run length distribution and its mean
can be established.

Following the lines of the general setup, described in Koutras and Triantafyl-
lou (2018), for constructing nonparametric control charts, they introduced three
distribution-free control schemes by plotting into two separate one-sided charts the
quantity M0 and one of the statistics Wmin, Wmax or WE . For instance, the mini-
mum value of the Wilcoxon’s test statistic (Wmin, hereafter) is achieved when all the

remaining
(

n − M0 −∑b
i=a+1 Mi

)

observations of the test sample occur between

the bth and (b +1) -th observations of the reference sample. The monitoring statistic
Wmin can be expressed as

Wmin = (n − mo)
n + mo + 2b + 1

2
+

b
∑

i=a+1

(a − b − 2 + i)mi .

The distribution-free control scheme described above is referred as Wmin-chart.
Moreover, the Wilcoxon’s test statistic receives its maximum value when all the

remaining n − M0 −∑b
i=a+1 Mi observations of the test sample occur after the mth

observation of the reference sample. The maximal rank-sum statistic, as it is usually
referred, can be readily expressed as
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Wmax = (n − mo)
n + mo + 2m + 1

2
+

b
∑

i=a+1

(a − m − 2 + i)mi .

Employing analogous arguments, a second nonparametric control scheme could
be constructed by using as plotted statistics the random variables M0, Wmax. The
resulting distribution-free control scheme is referred as Wmax-chart.

Finally, Koutras and Triantafyllou (2018) proposed a rank-sum statistic, say WE ,
using the expected rank-sums of observations from the test sample that fall between
the bth and the (b +1)th observation, the (b +1)th and the (b +2)th observation,…,
and finally those that are placed after the mth observation of the reference sample. It
is straightforward that WE is simply the average of Wmin and Wmax, i.e.,

WE = Wmin + Wmax

2
= (n − m0)(n + m0 + b + m + 1) +

b
∑

i=a+1

(2a − b − m − 4 + 2i)mi .

In this scenario, WE plays now the role of the function g and along with M0

consist the plotted statistics of a third distribution-free control scheme, referred as
WE -chart. A numerical study carried out showed that the proposed control charts
attain competitive in- and out-of-control performance.

4.12 Distribution-Free Control Charts for Subgroup Location
and Scale Based on the Multi-sample Lepage Statistic

Li et al. (2019) introduced a distribution-free procedure for Phase I analysis which
is capable of assessing stability of both location and scale parameters of a process
using a single plotted statistic. The suggested procedure is based on the multi-sample
Lepage statistic, which was developed by Rublik (2005) by combining the rank-
based Kruskal Wallis statistic (KW, hereafter) and the multi-sample Ansari-Bradley
statistic.

Suppose that Xi1, Xi2, . . . , Xini denote independent random samples from the
distribution Fi (x), i = 1, 2, . . . , k, while Ri1, Ri2, . . . , Rini correspond to the ranks
of the observations from the ith subgroup in the pooled sample of size N =∑k

i=1 ni .

The KW statistic is given by

TK W = 1

w2
N

k
∑

i=1

ni

(

S(K W )
i

ni
− N + 1

2

)2

,

where w2
N = N (N+1)

2 and S(K W )
i are the partial sums
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S(K W )
i =

ni
∑

j=1

Ri j , i = 1, 2, . . . , k.

The multi-sample Ansari–Bradley statistic is defined as

TAB = 1

v2N

k
∑

i=1

ni

(

S(AB)
i

ni
− μN

)2

,

where

S(K W )
i =

ni
∑

j=1

(

N + 1

2
−
∣

∣

∣

∣

Ri j − N + 1

2

∣

∣

∣

∣

)

, i = 1, 2, . . . , k

and

μN =
{

N+2
4 , if N is even

(N+1)2

4N , if N is odd
, v2N =

{

N (N 2−4)
48(N−1) , if N is even

(N+1)(N 2+3)
48N , if N is odd

.

The multi-sample version of the Lepage statistic equals T = TK W +TAB . Assum-
ing that all subgroup observations are independent and identically distributed, it is
quite straightforward that E(T ) = 2(k − 1). Rublík (2005) showed that if k and
min(n1, . . . , nk) are sufficiently large, then T has asymptotically a χ2 distribution
with 2(k − 1) degrees of freedom. By denoting

LCi = ni

w2
N

(

S(K W )
i

ni
− N + 1

2

)2

, SCi = ni

v2N

(

S(AB)
i

ni
− μN

)2

, Li = LCi + SCi , i = 1, 2, . . . , k,

the multi-sample Lepage statistic is given as T = ∑k
i=1 Li , i = 1, 2, . . . , k. Note

that the first part of Li explains the difference in location while the second one the
difference in scale. Due to the structure of the Lepage-type statistic, when the process
is out-of-control, the statistic Li is expected to take on larger values.

In order to construct the proposed Shewhart-type Lepage control chart for Phase
I analysis, we need to have at hand k subgroups Xi1, Xi2, . . . , Xini , i = 1, 2, . . . , k
and for each one to calculate the plotted statistic Li . Afterwards, the observed values
are compared against the upper control limit, which for given k, ni is determined
with a prescribed False Alarm Probability. Note that the False Alarm Probability
is commonly used as the design criterion while constructing and evaluating various
Phase I control charts (see, e.g., Capizzi and Masarotto (2013), Jones-Farmer et al.
(2009)). The False Alarm Probability represents simply the probability of observing
at least one signal on a Phase I control chart with m plotted subgroups when the
process is in-control. The in- and out-of-control performance of the proposed Phase I
Lepage schemehas been studied byLi et al. (2019) throughMonte-Carlo simulations.
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4.13 Wilcoxon-Type Control Charts Based on Progressively
Censored Reference Data

Triantafyllou (2019b) introduced a distribution−free Shewhart−type control chart
implementing a modified Wilcoxon-type rank-sum statistic based on progressive
Type II censoring reference data. The proposed chart seems to be an effective tool
for monitoring incomplete data, because the censoring scheme applied allows the
protection of experimental units at an early stage of the testing procedure. The con-
ventional Type-I and Type-II censoring schemes do not allow the removal of units or
products at a stage other than the terminal point of the process. In order to cover the
abovementioned case, the so-called progressive Type II right censoring scheme has
been applied by many authors, including Mann (1971), Thomas and Wilson (1972),
Nelson (1982), Viveros and Balakrishnan (1994), Balakrishnan and Asgharzadeh
(2005), Balakrishnan andHan (2007), Balakrishnan and Dembińska (2008) or Yadav
et al. (2018).

Progressive Type II censoring scheme is described as follows: Suppose that a
sample of m units is placed in a testing procedure. At the time of ath failure, Ra units
are randomly removed from the remaining (m − a) surviving units. At the (a + 1)th
failure, Ra+1 units are randomly removed from the remaining (m − Ra − a − 1)
surviving units. The testing procedure continues until the bth failure occurs, where
all remaining (m − Ra − Ra+1 − · · · − Rb − b) units are removed. The censoring
scheme (Ra, Ra+1, .., Rb) is supposed to be determined before the beginning of the
failure process.

The control limits of the proposed distribution-free control chart are established
following the general setup described in Sect. 4.1. The plotted statistic suggested by
Triantafyllou (2019b) is defined in terms of the number Mi of observations of the test
sample that fall between two successive failures of the reference sample. Suppose a
progressive Type II right censoring scheme is to be adopted to the reference sample
X1, X2, . . . , Xm . The maximum value of the Wilcoxon’s test statistic is achieved
when all the progressive censored X-items in an interval fail before the smallest
of Y-failures in the corresponding interval. The corresponding test statistic, named
maximalWilcoxon-type rank-sum statistic for the progressive Type II right censoring
scheme (Ra, Ra+1, .., Rb), is given by

Wmax =
b
∑

i=a+1

Mi

⎛

⎝M0 +
i−1
∑

j=a+1

M j + (i − 1) +
i−1
∑

j=a

R j + Mi + 1

2
Mi

⎞

⎠.

The process is declared to be in-control, if the test statistic Wmax satisfies the
condition Wmax ≤ W , where the parameter W is a positive integer.

The operating characteristic function of the proposed control chart under the
Lehmann alternative G = Fγ , γ > 0 is given as
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oc(γ ) = C

γ b−a

∑

m0,ma+1,...,mb

n−m0−
b
∑

i=a+1
mi

∑

ξ=0

⎛

⎜

⎝

n − m0 −
b
∑

i=a+1
mi

ξ

⎞

⎟

⎠
(−1)ξ

Ra
∑

ja=0

· · ·
Rb−1
∑

jb−1=0

(

Ra

ja

)(

Ra+1

ja+1

)

. . .

(

Rb−1

jb−1

)

× (−1) ja+ ja+1+...+ jb−1 B

(

m0 + ja + 1

γ
, ma+1 + 1

)

× B

(

m0 + ma+1 + ja + ja+1 + 2

γ
, ma+2 + 1

)

× · · · × B

(

m0 + ma+1 + mb−1 + ja + ja+1 + . . . + jb−1 + b − a

γ
, mb + 1

)

× B

(

γ (m0 + ma+1 + mb + ξ) + ja + ja+1 + . . . + jb−1 + b − a

γ
+ 1, Rb + 1

)

,

where C is given as

C = n!(m − a + 1)(m − a + 1 − Ra − 1) . . . (m − a + 1 − Ra − . . . Rb−1 − b + a)

m0!
b
∏

i=a+1
mi !
(

n − m0 −
b
∑

i=a+1
mi

)

!
.

Based on the above expression, Triantafyllou (2019b) derived explicit formulae
for the Alarm Rate and the Average Run Length for both in-control and out-of-
control situations. A numerical study carried out by Triantafyllou (2019b) depicted
the performance and robustness of the proposed control chart.
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Multivariate Nonparametric Control
Charts Based on Ordered Samples, Signs
and Ranks

Elisavet M. Sofikitou and Markos V. Koutras

Abstract Nonparametric control charting techniques have attracted the interest of
the researchers during the past decades. However, the studies in the multivariate case
are not equally weighted as the ones that have already been done in the univariate
case. In the present work, we firstly review the recent literature of nonparametric
control charts, giving emphasis on multivariate schemes, which make use of order
statistics, signs or ranks for the computation of the test statistic that is exploited
for the decision-making whether the process is in- or out-of-control. In addition, we
carry out a simulation study in order to evaluate the performance of these charts when
compared with each other, as well as to their parametric counterparts. The numerical
results take into account different shift scenarios for the location parameter, the scale
parameter or both. Finally, some concluding remarks are given, as well as some ideas
and directions for future work.

Keywords Joint monitoring · Nonparametric control charts · Order statistics ·
Ordered samples · Ranks · Signs · Statistical process control

1 Introduction

Statistical Process Control (SPC) is a very popular area of the statistical science that
develops techniques for monitoring and controlling manufacturing processes over
time. The main statistical–graphical tools, which are used to maintain the quality
of the data at the required standards and at the same time ensure that the overall
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process operates in an efficient way, are known as Control Charts (CCs). The first
CC was introduced by Shewhart (1926) in a memorandum of Bell Laboratories. A
few years later, Shewhart (1931,1939) published two books where he described how
statistical methods could be applied/adopted in industry; in addition, he analysed the
lessons learned about their implementation froma statistical point of view. Since then,
classicalCCs were rapidly expanded and several wider approaches were established
so that its techniques can be applied in statistical inference and decision-making in
many applied fields different than industry.

The bulk of the CCs which are available in the SPC literature rely on a distri-
butional assumption (such as normality); therefore, the test statistic as well as the
Control Limits (CLs) depend on the properties of the underlying (usually completely
known) distribution for which they have been designed for. However, when one is
dealing with real-world data, the true distribution is unknown (at least in part) and
sometimes there is not enough information about the kind and the shape of the data
distribution. In these cases, the nonparametricCCs can provide useful, robust alterna-
tives. Consequently, although the parametric CCs are expected to be more effective
than their nonparametric counterparts (when there is complete knowledge of the dis-
tribution), there exist many real-life settings where they cannot be used. A detailed
review of the univariate nonparametric CCs and a synopsis of their advantages has
been provided by Chakraborti and his colleagues (see, for example, Chakraborti et
al. 2001, 2011; Chakraborti (2011); Chakraborti and Graham (2008, 2019).

The classical approach for the construction of a nonparametric CC requires the
use of two different samples: the reference or historical sample (of size m) and the
test sample (of size n). The former sample is used to establish the decision rule, as
well as the CLs and the most popular statistics exploited to this aid are the order
statistics, ranks, signs, etc. This occurs in Phase I (also known as Retrospective
Phase), during which it is very important to verify the stability of the process, by
establishing reliable CLs. In SPC parlance, a process is stable or in an in-control
stage, when no assignable or special causes of variation are present. It should be
mentioned that the CLs are appropriately chosen to achieve a pre-specified False
Alarm Rate (FAR), which is the probability to get an alarm when the process is in
fact in-control, or the in-control the Average Run Length (ARLin), which indicates
the average number of points that are plotted in the chart before an alarm is triggered
for the first time.

In Phase II (also known as Prospective Phase) the appropriately determined CLs
are used to verify if the process remains in-control or shifts to an out-of-control state.
For this purpose, successive test samples are drawn (independently of each other
and of the reference sample of course) and using them we check whether the out-of-
control signalling rule is still valid or not, e.g. whether an order statistic or a specific
quartile lies between the CLs. Phase I Analysis is closely related to the efficiency of
Phase II and may have a great impact on Phase II if not being adequately designed;
for a detailed discussion of this topic see Chakraborti et al. (2008) and Jones-Farmer
et al. (2014) as well as Jensen et al. (2006) who studied the quality and the sample
size requirements of the reference sample.
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Themajority ofCCs that have appeared in the SPC literature are usually designed
for monitoring either the mean or the variability. During the past years, there is an
increasing interest in the development of schemes for the joint detection of potential
shifts in both the location and the scale parameter of the underlying distribution.
When applying a charting technique, the critical quantity (depicted at each time
point) may be based on the most recent sample (ignoring the information contained
in previous samples) or it may use information associated with previous samples.
In the second case, the schemes are known as CCs without memory or simply
Shewhart-typeCCs. In the first case, they are known asCCs withmemory; themost
popular representatives of this family of CCs are the Cumulative Sum (CUSUM),
the Exponentially Weighted Moving Average (EWMA) and the Moving Average
(MA) type CCs.

In the present article, we restrict our presentation to nonparametric CCs which
are based on ordered samples, signs or ranks. First, in Sect. 2, we briefly review
the univariate CCs; more details on this subject can be found in Chapter1 of the
present volume. In Sect. 3, we present in detail the multivariate CCs. The schemes
are categorized into CCs for mean and/or variance and into CCs with or without
memory. Section 4 provides numerical study of the performance of a large number of
multivariate CCs presented in the literature and several comparisons between them.
Finally, conclusions and comments for future work are made in Sect. 5.

2 Brief Literature Review on Univariate Charts

For reasons of completeness, we start by describing in brief the univariateCCs which
are based on ordered samples, signs and ranks. We believe that this may be proved
helpful for the reader since, some of these schemes were the starting point for the
construction of respective charts in higher dimensions.

2.1 Monitoring of Location

It is true that the share of lion on CCs’ literature goes to CCs designed for detecting
potential shifts in the mean for univariate or multivariate processes. In this section,
we shall cover the case of nonparametric univariate CCs.

a. Univariate CCs without Memory

When there is only one quality characteristic under study, the plotted statistic of a
CC is usually the median. For instance, Alloway and Raghavachari (1991) suggested
a CC for monitoring the median of a continuous symmetric population which used
order statistics for the determination of the CLs, while Amin et al. (1995) presented
aCC for the median of population that is not necessarily symmetric. The first chart is
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based on a (distribution-free) confidence interval that is calculated using a Hodges–
Lehmann estimator and the second one uses the within sign test statistic.

A well-known CC for the median was proposed by Janacek and Meikle (1997),
theCLs of which are specific order statistics from the reference sample. Chakraborti
et al. (2004) extended the previous idea by developing a CC for a test sample quar-
tile, which exploits the so-called precedence statistics. Recently, Balakrishnan et al.
(2015) introduced a class of one-sided schemes that take into account the precedence
and the weighted precedence statistics.

Another CC , which uses as CLs appropriately chosen order statistics from the
historical sample, was developed by Albers and Kallenberg (2008). This scheme is
known asMIN CC and can be used for either individual observations or subgrouped
data (in which case the subgroup minimum is computed). Moreover, Bakir (2008)
proposed a CC for the median that uses signed-rank-like statistics, while Graham
et al. (2010) presented a CC that makes use of the pooled median of the reference
sample.

In the literature, there are available a number of schemes that use test statistics
which involve signs and/or ranks.More precisely, Bakir (2004) suggested aCC based
on a Wilcoxon signed-rank statistic. This chart was later modified by Chakraborti
and Eryilmaz (2007) by incorporating into it several runs-rules. A class of sign CCs
that is based on runs-rules was introduced by Human et al. (2010). Recently, Malela-
Majika et al. (2016) also incorporated runs-rules in aCC based on theMann–Whitney
statistics, initially suggested by Chakraborti et al. (2004). The Mann–Whitney test
has been applied for the construction of change-point models too, see, for example,
Hawkins andDeng (2010).Non-classical, nonparametric test statistics have also been
used in developing control charting techniques. In particular, Jones-Farmer et al.
(2009) developed a mean-rank CC for location which exploits an adapted version of
the Kruskal–Wallis test. Gadre and Kakade (2014) designed a group runs CC for the
median, which considers sample group as a unit. Finally, Garde and Kakade (2019)
suggested two CCs which exploit side sensitive group runs for detecting potential
shifts in the process median.

b. Univariate CCs with Memory

Bakir and Reynolds (1979) described a CUSUM procedure based on Wilcoxon
(within) grouped signed-rank statistics, while Li et al. (2010) proposed CUSUM
CCs based on Wilcoxon rank-sum statistic. McDonald (1990) provided a CUSUM
technique based on sequential ranks of individual observations andAmin et al. (1995)
suggested a scheme that uses a CUSUM of sign tests statistics. Albers and Kallen-
berg (2009) improved their MIN chart (Albers and Kallenberg (2008)) by adapting
a sequential approach in order to construct a CUSUM-like CC labelled as CUMIN
chart. The exceedance statistics have also been incorporated in aCUSUM procedure
for location monitoring, see Mukherjee et al. (2013).

Moreover, several EWMA techniques have been proposed for monitoring the
location. For instance, EWMAs of the “standardized” ranks and the sequen-
tial ranks of individual observations were, respectively, considered by Hackl and
Ledolter (1991, 1992). Amin and Searcy (1991) provided an EWMA which uses
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theWilcoxon (grouped) signed-rank statistic,whileLi et al. (2010) proposed EWMA
CCs based onWilcoxon rank-sum statistic. Zhou et al. (2009) introduced an EWMA
procedure for detecting shifts in the mean which uses an estimator based on the
Mann–Whitney statistic of the change-point.

Graham et al. (2011a, b) suggested the EWMA-SN and EWMA-SR CCs. The
former scheme is for individual observations and it is based on the sign statistic,
while the latter one makes use of the signed-rank statistic and can be applied only if
the underlying distribution is symmetric. Working in a similar fashion to Mukherjee
et al. (2013), Graham et al. (2012) considered an EWMA-EX control scheme based
on exceedance statistics. Recently, generally weighted moving average CCs based
on sign (abbrev. GWMA-SN) and signed-rank (abbrev. GWMA-SR) statistics have
been developed by Lu (2015) and Chakraborty et al. (2016), respectively. It should
be mentioned that theGWMA-SR assumes that the process distribution is symmetric.

2.2 Monitoring of Scale

The monitoring of variability might also be of interest and quite useful in a manu-
facturing process; yet, a few procedures are only available in the literature.

a. Univariate CCs without Memory

Amin et al. (1995) considered a Shewhart-type sign CC for variability which takes
into account the interquartile range of two samples. Additionally, Bakir (2010) pro-
posed a nonparametric procedure for testing homogeneity of several population vari-
ances (scale parameters) and he provided a graphical representation.

Das (2008) developed two CCs based on Mood’s (1954) and Siegel and Tukey’s
(1960) nonparametric ranks tests for equality of dispersion. In a similar context, Das
and Bhattacharya (2008) exploited Conover’s (1980) test for monitoring variability,
which is based on the joint squared ranks of squared deviations from the means.

b. Univariate CCs with Memory

Zombade and Ghute (2014) presented twoCUSUM procedures for controlling vari-
ability, theNPCSM-S and theNPCSM-M CCs. These schemes use theMood’s (1954)
and Sukhamte’s (1954) tests, respectively, for testing equality of variances.

2.3 Simultaneous Monitoring of Location and Scale

All the approaches presented in the previous subsections were talking about CCs
capable of identifying shifts either in the mean or in the variance (alternatively in the
standard deviation). As already been mentioned, the joint monitoring of both seems
to be a relatively new research area that has attracted the interest of a number of
researchers quite recently. A summarization of such charts is given in the overviews
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of Cheng and Thaga (2006) andMcCracken and Chakraborti (2013), while Reynolds
and Stoumbos (2006) and Ou et al. (2012) carried out comparison studies for some
of these schemes. The vast majority of the CCs included in the aforementioned
review articles are univariate and assume that the normality assumption is fulfilled.
Below, we present univariate CCs for simultaneous monitoring that appeared in the
nonparametric SPC literature during the past decade.

a. Univariate CCs without Memory

Some of the very first nonparametric univariate CCs capable of detecting simulta-
neous shifts in the mean and variability are the schemes suggested by Balakrishnan
et al. (2009), which exploit run and Wilcoxon-type rank-sum statistics. The authors
proposed threeCCs: the test statistic of the firstCC takes into account the maximum
run length of the test sample observations that occur between the CLs, the second
CC uses a statistic defined as the number of runs of the test sample observations
(lying between the CLs) the length of which exceeds a pre-specified level and the
third one considers the joint sample resulting by combining the reference and the test
sample observations and the decision rule uses the sum of ranks of the observations
of the latter sample that lie between the CLs (i.e. the well-known Wilcoxon-type
rank-sum statistic).

Balakrishnan et al. (2010) also suggested another CC that is based on order
statistics. More specifically, they improved the median CC (Janacek and Meikle
(1997)) and its extensions (Chakraborti et al. (2004)) by incorporating an additional
condition. The new CC uses two rules based on separate plotted statistics. The first
rule, which is used to detect plausible mean shifts, checks whether a test sample
order statistic (for example, the median) is placed between theCLs. The second one,
which controls the variability, counts the number of the test sample observations
lying between the CLs. Recently, Triantafyllou (2018) modified the first statistic of
Balakrishnan et al. (2010), while the second statistic was maintained in its original
form. The new modified statistic, instead of using a single-order statistic, is based on
the successive number of order statistics from the test sample that have been observed
between the CLs.

Of course, the CLs of the CCs described above are order statistics that have been
appropriately chosen from the reference sample. It should be underlined here that,
since the test rules are based not only on the location of a single observation but also
incorporate a measure of dispersion (that is, the number or length of observations
and number or sum of ranks), the charts become capable of detecting potential shifts
in both mean and variance. This appealing property seems not to have been widely
noticed, and as a result, these schemes are often been presented in the literature as
CCs for monitoring location only.

Mukherjee and Chakraborti (2012) constructed the Shewhart–Lepage CC , the
plotted statistic of which, is a statistic originally introduced by Lepage (1971) and
constitutes a quadratic form that combines the Wilcoxon rank-sum statistic for loca-
tion and the Ansari–Bradley statistic for scale. Motivated by this idea, Chowdhury
et al. (2014) developed the Shewhart–Cucconi CC which exploits the Cucconi’s
(1968) test for equality of the scale and the location parameters of two populations.
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This test is based on the sum of squares of the usual ranks of the first sample and the
sum of squares of the “antiranks” of the second sample.

b. Univariate CCs with Memory

The Lepage statistic has also been used for the construction of univariate CCs with
memory. In particular, Chowdhury et al. (2015) considered a CUSUM-Lepage CC
for the simultaneousmonitoring of the location and scale parameter of the underlying
distribution. Recently, Mukherjee (2017) proposed an EWMA-Lepage formulation
for subgroups.

3 Presentation of the Multivariate Control Charts

In this section, we present in some detail a number of multivariate CCs which use
in their decision rules ordered samples, signs and ranks. Usually, in these schemes
the monitoring of the mean vector and/or variance–covariance matrix of the pro-
cess distribution is achieved by exploiting the multivariate versions of well-known
nonparametric tests.

Before proceeding to our presentation, we give some definitions and notations that
will be used in the sequel. The symbol #will indicate thenumber of observations, ||x||
will denote the Euclidean norm of the vector x which is calculated by ||x|| = √

x ′x,
and I p will stand for the p × p identity matrix, i.e.

I p =

⎛
⎜⎜⎜⎝

1 0 0 · · · 0
0 1 0 · · · 0
...

. . .

0 0 0 · · · 1

⎞
⎟⎟⎟⎠ .

The following three functions will also appear quite frequently in the next sections:

• the indicator function I (·), defined as

I (C) =
{
1, if condition C is true,

0, otherwise.

• the sign function sgn(·) which is given by

sgn(x) =

⎧⎪⎨
⎪⎩

−1, if x < 0,

0, if x = 0,

+1, if x > 0.
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• the multivariate spatial sign (also called directional vector, since it indicates the
direction of the observation by mapping it on the multidimensional unit sphere)
defined as follows:

U (x) =
{

||x||−1x, if x �= 0,
0, if x = 0.

3.1 Monitoring of Location

Over the past couple of decades, several multivariate CCs with or without memory
have been developed for monitoring the mean vector of a process without setting any
requirement for prior knowledge of the underlying distribution.

a. Bivariate and Multivariate CCs without Memory

Let us start with the Shewhart-type CCs. Hayter and Tsui (1994) developed a
procedure that is based on the construction of simultaneous confidence intervals for
the mean. The plotted statistic computes the maximum deviation of the observations
from their sample means. In particular, if X̄ and S = {Si j } represent the sample
mean vector and the sample covariance matrix of a sample X1, X2, . . . , XN with
empirical Cumulative Distribution Function (CDF) F̂(·); then, Hayter and Tsui
(1994) suggested using the following statistic:

M ( j) = max
1≤i≤k

∣∣X j
i − X̄i

∣∣/√Sii ,

for 1 ≤ j ≤ N . The process is declared in-control as long as M ( j) ≤ Ca , where
a is the error rate and the critical point Ca is the solution of F̂(Ca) = 1 − a. For
the identification of the characteristic that produced the out-of-control, Hayter and
Tsui (1994) suggested checking (per variable) whether the quantity |Xi − X̄i |/√Sii
exceeds the critical value Ca . The sample means can be obtained from confidence
intervals of the form:μi ∈ [

Xi − Ca · √
Sii , Xi + Ca · √

Sii
]
. However, as stated by

Stoumbos et al. (2001), the M procedure described above fails in detecting possible
changes in the correlation structure.

Ghute and Shirke (2012) considered a CC based on the bivariate version of the
signed-rank test suggested by Bennett (1964), while Das (2009) proposed a CC
which exploits the bivariate sign test of Puri and Sen (1976). Ghute (2013) also
considered a bivariate CC based on the Hodges’s (1955) sign test. Later, Boone and
Chakraborti (2012) extended the previous ideas for monitoring the location of more
than two quality characteristics. They constructed the SN 2 and SR2 CCs which are
based on themultivariate forms of the sign and theWilcoxon signed-rank test defined
in Hettmansperger (2006).

More precisely, given a bivariate sample Xi = (X1i , X2i ), i = 1, 2, . . . , n, Ghute
and Shirke (2012) introduced first the following nonparametric (univariate) signed-
rank statistics:
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Tj =
n∑

i=1

I (X ji ≥ 0) · R(X ji ), j = 1, 2,

for the two characteristics, where R(X ji ) is the rank of |X ji | among |X j1|, |X j2|,
. . ., |X jn| for j = 1, 2. The statistics T1 and T2 were next combined together in a
quadratic form given as follows:

W = (T − v)′β̂
−1

(T − v),

where T = (T1, T2)′ is the vector of coordinate-wise univariate signed-rank statistics,
the variance-covariance matrix of vector T is

β =
(

β11 β12

β21 β22

)
and v = (v1, v2)

′

with v j standing for E(Tj |μ = μ0) for j = 1, 2; μ0 denotes the in-control sample
mean vector and if the process is in-control, then μ = μ0, v1 = v2 = n(n + 1)/4,
β11 = β22 = n(n + 1)(2n + 1)/24, β12 = β21 = ∑n

i=1 sgn(X1i )sgn(X2i )R(X1i )

R(X2i )/4. When the process is in-control, the quadratic form W follows asymp-
totically the chi-squared distribution with 2 degrees of freedom (χ2

2 ). The process
is declared out-of-control if W exceeds a pre-specified UCL . This CC requires the
distribution of the process to be symmetric. It is worth mentioning that Ghute and
Shirke (2012) improved the performance of the aforementioned CC by suggesting
its synthetic version which enhances runs-rules.

Let Xi = (X1i , X2i )
′, i = 1, 2, . . . , n be n independent vectors with their respec-

tive CDFs F1(x), F2(x), . . . , Fn(x), x ∈ R2. Das (2009) proposed a procedure for
testing whether theCDFs have n specified medians.Without loss of generality, each
pair of medians is assumed to be equal to 0 = (0, 0)′, which can be achieved by an
appropriate shift. In this case, the null hypothesis is described as follows:

H0 : Fi (0,∞) = Fi (−∞, 0) = 1/2, i = 1, 2, . . . , n.

Defining the concordance of first and second kind by the events (X1i ≤ 0, X2i ≤ 0)
and (X1i ≥ 0, X2i ≥ 0), the discordance of first and second kind by the events
(X1i ≤ 0, X2i ≥ 0) and (X1i ≥ 0, X2i ≤ 0), respectively, and denoting the condi-
tional probability of a concordance (discordance) of the first kind given that a concor-
dance (discordance) has occurred by θi (τi ) for i = 1, . . . , n, then the null hypothesis
takes on the form

H0 : θi = τi = 1/2, i = 1, 2, . . . , n.

The CC based on this principle/test uses the following statistic:

T = 4

C

(
C1 − C

2

)2

+ 4

n − C

(
D1 − n − C

2

)2

= (C1 − C2)
2

C1 + C2
+ (D1 − D2)

2

D1 + D2
,
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where C j (Dj ) is the number of concordances (discordances) of the j th kind for
j = 1, 2, C = C1 + C2, D = D1 + D2 and C + D = n. The null hypothesis H0

is rejected when T > UCL . If Fn(t |c) denotes the conditional CDF of T under
H0 given that C = c, then the UCL equals tn,a(c), a characteristic point that can
be computed as the value of t for which 1 − Fn(t |c) ≤ a ≤ 1 − Fn(t − 0|c) where
0 < a < 1. For large values of n, Fn(t |c) can be approximated by the chi-square
distribution and the UCL will be asymptotically expressed as UCL = χ2

2;a .
In order to create a sign-based CC Ghute (2013), considered the direction angle

θi of a bivariate subgroup (X1i , X2i ), i = 1, 2, . . . , n and he denoted the direction
angle of (−X1i ,−X2i ) by θ∗

i = θi + π(mod2π). In addition, Ghute (2013) defined
the following indicator function:

zi =
{
1, if θ ′

i ∈ {θ1, θ2, . . . , θn},
0, if θ ′

i ∈ {θ∗
1 , θ∗

2 , . . . , θ∗
n },

where θ ′
1 < θ ′

2,< . . . , < θ ′
2n represent the ordered angles in the joint set {θ1, . . . , θn,

θ∗
1 , . . . , θ∗

n }. The plotted statistic used in the CC is in fact the bivariate sign test
statistic of Hodges (1955), namely

H = max
0≤k≤n−1

∣∣∣∣
n∑

i=1

zk+i − n

2

∣∣∣∣.

A shift in the location parameter is declared when H > UCL for an appropriately
chosen Upper Control Limit (UCL).

As mentioned earlier, Boone and Chakraborti (2012) provided multivariate ver-
sions of the sign and signed-rank CCs. Particularly, for each characteristic they
introduced the univariate sign statistic as follows:

Sj =
n∑

i=1

sgn(X ji − θ j0), j = 1, 2, . . . , p,

where X ji represents the i th observation of the j th characteristic, n is the sample size,
and θ j0 is the pre-specified in-control median value. Manifestly,
Sj = #(X ji > θ j0) − #(X ji < θ j0) for j = 1, 2, . . . , p and i = 1, 2, . . . , n. If S is
the p × 1 vector of the Sj ’s, then the quantity n−1/2S follows asymptotically the
multivariate normal distribution with mean vector 0 and variance–covariance matrix
n−1V . The V matrix can be estimated by V̂ = (v̂ jl), j, l = 1, 2, . . . , p using the
formulae

v̂ j j = n and v̂ jl =
n∑

i=1

sgn(X ji − θ j0) · sgn(Xli − θl0).
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Finally, the plotted statistic of the SN 2 chart is the quadratic form

SN 2 = S′V̂
−1

S.

Analogously, the univariate Wilcoxon signed-rank test statistic

Wj =
n∑

i=1

R(|X ji − θ j0|) · sgn(X ji − θ j0), j = 1, 2, . . . , p,

is calculated as per characteristic, where R(|X ji − θ j0|) is the rank of |X ji − θ j0|
among |X j1 − θ j0|, . . . , |X jn − θ j0|. If W is the p × 1 vector of the Wj ’s, then the
quantity n−3/2Wj follows asymptotically the multivariate normal distribution with
mean vector 0 and variance–covariance matrix n−3L, where matrix L is estimated
by L̂ = (�̂ jl), j, l = 1, 2, . . . , p using the formulae

�̂ j j = n(n + 1)(2n + 1)/6,

�̂ jl =
n∑

i=1

R(|X ji − θ j0|) · R(|Xli − θl0|) · sgn(X ji − θ j0) · sgn(Xli − θl0).

Finally, the plotted statistic of the SR2 chart is given by

SR2 = W ′ L̂
−1
W .

In this case, the assumption of diagonal symmetry should be met.
The limiting distribution of both SN 2 and SR2 statistics is χ2 with p degrees

of freedom. So, for a given alarm rate, say a, two-sided CCs can be constructed
exploiting the next lower and upper CLs

LCL = 0 and UCL = χ2
a;p.

Abu-Shawiesh and Abdullah (2001) introduced a robust CC which uses the
Hodges–Lehmann’s (1963) and Shamos–Bickel–Lehmann’s (1976) estimators
(abbrev.HL and SBL, respectively) for monitoring a bivariate, symmetric and contin-
uous process. For a given random sample X1, X2, . . . , Xn , let the M = n(n + 1)/2
Walsh averages be defined by Wr = (Xi + X�)/2, where r = 1, 2, . . . , M and
i ≤ � = 1, 2, . . . , n. Then, the HL estimator is defined as the sample median of
the Walsh averages Wr . To define the SBL estimator, we introduce first U = (n

2

) =
n!/[2!(n − 2)!] pairwise distances Br = |Xi − X j |, r = 1, 2, . . . ,U for i < � =
1, 2, . . . , n. The SBL estimator is then the sample median of the pairwise distances
Br .

Assuming that there are p variables X1, X2, . . . , X p at hand, each of which con-
sists of m subgroups of size n, a control charting procedure can be constructed for
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testing the hypothesis H0 : (μ, v) = (μ0, v0) versus H1 : (μ, v) �= (μ0, v0), where
(μ, v) are the location parameters.

In order to achieve that, the M Walsh averages and theU pairwise distances need
to be determined first for each subgroup. Then, the entries of of the vector of HL
estimators HL = [HL j ]p×1 are given by

HL j = 1

m

m∑
k=1

HL jk, j = 1, 2, . . . , p,

where

HL jk = median
1≤i≤�≤n

{
Xi jk + Xl jk

2

}
, k = 1, 2, . . . ,m.

The SBL estimators are given by

SBL jk = median
1≤i≤�≤n

|Xi jk − Xl jk |,

for k = 1, 2, . . . ,m and j = 1, 2, . . . , p. In the case of p = 2 quality characteristics,
say X1 and X2, the variance–covariance matrix SSBL is defined as

SSBL =
(
SBL11 SBL12

SBL21 SBL22

)
=

(
SBL2(X1) Cov(X1, X2)

Cov(X1, X2) SBL2(X2)

)
,

whereCov(X1, X2) = SBL(X1)SBL(X2)r(X1, X2), r(X1, X2) is Spearman’s rank
correlation and SBL2(X j ) = SBL2

j = SBL j j for j = 1, 2. Finally, the plotted
statistic of the chart is given by

T 2
HLSBL = n(HL − HL)′ S̄−1

SBL(HL − HL),

where S̄
−1
SBL is the inverse matrix of S̄SBL and S̄SBL is calculated by averaging

the subgroup variance–covariance matrices over the m subgroups. The (bivariate)
process is declared out-of-control if, for a pre-specified FAR, the statistic T 2

HLSBL
falls outside the CLs which can be determined using simulation.

Holland and Hawkins (2014) used the Mann–Whitney statistic in a change-point
model that is analogue to the univariateCC of Hawkins andDeng (2010). For a given
sample which consists of p × 1 vectors X1, X2, . . . , Xn , the multivariate change-
point model is defined as

X i ∼
{
F(μ), if i ≤ τ,

F(μ + δ), if i > τ,

where F is the multivariate CDF of the process, δ is an arbitrary shift in the loca-
tion vector and τ is an index indicating the point at which the change occurs. The
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procedure can be applied to test the hypothesis H0 : δ = 0 versus H1 : δ �= 0 for a
given fixed value τ = k.

In the univariate case and in order to centre the ranks, R(Xi ) is set equal to
2r (i) − n − 1, where r (i) is the rank of Xi among the X1, X2, . . . , Xn . Then, R(Xi ) =∑n

j=1 sgn(Xi − X j ) and the Wilcoxon–Mann–Whitney statistic for the difference
between the two samples X1, X2, . . . , Xk and Xk+1, X2, . . . , Xn is given by uk =∑k

i=1 R(Xi ).
In the multivariate case, the centred rank is defined by

Rn(X i ) =
n∑
j=1

h(X i , X j ), 1 ≤ i ≤ n.

Choi and Marden (1997) suggested using in the above formula the kernel function
h(x, y) = (x − y)/||x − y|| so that Rn(X i ) represents the directional rank of X i ,
i.e. the sum of the unit vectors pointing from each data point to X i . Then, they
proceeded to the introduction of a directional rank test statistic as follows. Firstly,
the following notations are used to denote the within group rank vectors:

R∗
n,k(X i ) =

n∑
j=k+1

h(X i , X j ) and r̄(k)
n = 1

k

k∑
i=1

Rn(X i )

for every potential change-point k = 1, 2, . . . , n − 1. In addition, the pooled covari-
ance matrix of the centred vectors are defined by estimating the covariance matrices
of the left segments of the data {X1, X2, . . . , Xk} and the right segments of the data
{Xk+1, Xk+2, . . . , Xn} independently, i.e.

�̃k,n = n2

n − 2

(
1

k2

k∑
i=1

Rk(X i )Rk(X i )
′ + 1

(n − k)2

n∑
i=k+1

R∗
n,k(X i )R∗

n,k(X i )
′
)

,

as well as the unpooled covariance matrix, which is the sample covariance matrix of
all data vectors, i.e.

�̂n = 1

n − 1

n∑
i=1

Rn(X i )Rn(X i )
′.

Under the null hypothesis, the quantity [nk/(n − k)]r̄(k)
n

′�̃
−1
k,n r̄

(k)
n follows the χ2

distribution with p degrees of freedom and �̂n is a consistent estimator of the true
covariance matrix of the rank vectors. Then, the directional rank statistic suggested
by Choi and Marden (1997) to test the difference in the location vector between the
left and the right data segments is given by

rk,n = r̄(k)
n

′�̂
−1
k,n r̄

(k)
n ,
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where �̂k,n = [(n − k)/(nk)]�̂n . Finally, the charting procedure is constructed by
maximizing the above directional rank test statistic as follows:

rmax,c,n = max
c<k<n−c

rk,n,

where c is the number of data points near the beginning and the end of the sequence
which are not taken into account in the detection of a possible change-point. For
large values of the constant c, the distribution of rk,n is approximated by χ2

p for
all c < k < n − c. The point at which a change occurs can be estimated using τ̂ =
argmax
c<k<n−c

rk,n and the process is declared out-of-control if rmax,c,n > ha,p,c,n , where

ha,p,c,n is chosen so that P[rmax,c,n > ha,p,c,n|rmax,c, j ≤ ha,p,c,n; j < n] = a.
Bell et al. (2014) considered a multivariate mean-rank (abbrev. MMR) chart that

constitutes a multivariate extension of the scheme suggested by Jones-Farmer et al.
(2009). The CC uses the ranked Data Depth (DD) values focusing on Mahalanobis
Depth (MD) and constitutes a Phase I scheme for subgrouped data from elliptical
distributions. It goes without saying that one can estimate the Phase II parameters
by using the resulting historical, in-control sample.

More precisely, assuming that an independent and identically distributed (i.i.d.)
reference sample is available which consists of m subgroups of size n and is coming
from a p−dimensional continuous process, Xki denotes the 1 × p vector containing
info of the i th observation of the kth subgroup. To construct the MMR CC , for
each Xki a DD function D(xki ; F̂N ) is computed (preferably satisfying the four
conditions described inZuo andSerfling (2000); the notion of DD is formally defined
in Subsection 3.3), where F̂N is the empirical CDF of the pooled reference sample
of size N (= m × n). To each of those DD functions, integer ranks of the form Rki =
1, 2, . . . , N are assigned. When the process is in-control, the mean and the variance
of the random variable Rki are, respectively, given by E(Rki ) = (N + 1)/12 and
Var(Rki ) = (N − 1)(N + 1)/12. Eventually, the plotted statistic is the standardized
subgroup mean rank

Zk = R̄k − E(R̄k)√
Var(R̄k)

,

where E(R̄k) = (N + 1)/2, Var(R̄k) = (N − n)(N + 1)/(12n) and R̄k = 1
n∑n

i=1 Rki . An alarm is triggered in the process, if Zk falls outside the CLs, which
depend on the values of m, n (not on p) and can be derived empirically.

Cheng and Shiau (2015) suggested amultivariate (spatial) sign-based, Shewhart-
type CC for subgroups (abbrev. MSS CC). Let Xki , k = 1, 2, . . . ,m and i =
1, 2, . . . , n, be an i.i.d. random sample which consists ofm subgroups of size n. This
sample has a p−dimensional continuous distribution function F(x − θ0), where θ0

is the in-control location parameter. The estimation of the sample spatial median θ̂
can be defined as the quantity that minimizes the function

∑m
k=1

∑n
i=1 ||Xki − θ ||.

The desired θ̂ satisfies
∑m

k=1

∑n
i=1U (Xki − θ) = 0. Hettmansperger and Randles

(2002) suggested a procedure for estimating simultaneously the spatial median θ and
Tyler’s transformation matrix A, which satisfy the following conditions:
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E(U (A(Xki − θ))) = E

(
A(Xki − θ)

||A(Xki − θ)||
)

= 0 and

E(U (A(Xki − θ))U (A(Xki − θ))′) = E

(
A(Xki − θ)(Xki − θ)

′
A

′

||A(Xki − θ)||2
)

= 1

p
I p,

(1)

where A is a p × p upper triangular positive-definite matrix with 1 in the upper
left-hand element. Thus, the estimators of the θ and A can be obtained by the aid of
the next system of equations

1

mn

m∑
k=1

n∑
i=1

U (A(Xki − θ)) = 0 and

1

mn

m∑
k=1

n∑
i=1

U (A(Xki − θ))U (A(Xki − θ))′ = 1

p
I p.

(2)

It should be mentioned that the Hettmansperger–Randles estimators can be com-
puted in high dimensions by using an iterative algorithm, which provides estimates
for the spatialmedian θ̂ andTyler’s scattermatrix ST . Then, the correspondingTyler’s
transformation matrix AT is such that A′

T AT = S−1
T . In this case, the multivariate

sign vector for each Xki is Uki = U (AT (Xki − θ̂)) and the plotted statistic is given
by

Qk = npŪ
′
kŪk

for k = 1, 2, . . . ,m, where Ū k = ∑n
i=1 Uki/n. The process is declared out-of-

control when the quantity Qk takes values larger than a critical value.
Combining the last two procedures, Capizzi andMasarotto (2017) came up with a

scheme based onmultivariate signed-ranks which integrate both the spatial signs and
the ranks of MDs for detecting location shifts. Their procedure suggests calculating
first the scale and location estimates, which are given by

S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2(m − 1)

m∑
k=2

(Xk,1 − Xk−1,1)(Xk,1 − Xk−1,1)
′, if n = 1,

1

m(n − 1)

m∑
k=1

n∑
i=1

(Xk,i − X̄k)(Xk,i − X̄k)
′, if n > 1,

and
� = S1/2(spatial median of S1/2 X̄1, . . . , S1/2 X̄m),

respectively, where X̄k,i = (1/n)
∑n

i=1 Xk,i and S1/2 is the square root of S, i.e. a
matrix such that S = S1/2(S1/2)

′
. Using the above estimates, the observed data are

standardized as zk,i = S1/2(Xk,i − �) and the multivariate signed-ranks of the zk,i ’s
are computed by
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uk,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if zk,i = 0,√
F−1

χ2
p

(
rk,i

1 + mn

)

||zk,i || zk,i , if zi, j �= 0,

where rk,i is the rank of ||zk,i || among the ||z1,1||, . . . , ||zm,n|| and Fχ2
p
is the CDF

of a χ2 random variable with p degrees of freedom.
Then, the next steps involve fitting the following multivariate linear regression

model:

uk,i = βcommon +
m−1∑
τ=2

βstep,τ I (k ≥ τ) +
m∑

τ=1

β isolated,r I (k = τ) + (residual)k,i ,

where the β’s are unknown p−dimensional parameter vectors. In particular, βcommon

is the “stable” level of the signed-ranks, βstep,τ is a level change starting from time
τ and affecting all the subsequent observations, β isolated,τ affects only the observa-
tions at time τ and it corresponds to an isolated outlier. Then, a procedure is estab-
lished to check the hypothesis H0 : all the βstep,· and β isolated,· are zero. The next
step involves fitting amodelwith an increasing number of parameters (isolated or step
shifts) to the signed-ranks using a forward search algorithm. At the j th step, the fit-

ted values are given by û( j)
k = β̂

( j)

0 + β̂
( j)

1 ξ
(1)
k + . . . + β̂

( j)

j ξ
( j)
k for k = 1, 2, . . . ,m,

where β̂
( j)

r or r = 0, 1, . . . , j are the j−dimensional parameter vectors and ξ
( j)
k is

a scalar sequence which corresponds to either an isolated (ξ ( j)
k = I (k = τ ( j))) or a

step shift (ξ ( j)
k = I (k ≥ τ ( j))) for some τ ( j). Since, this is a regression model, the

type (either isolated or step) and the time (τ ( j)) of the shift ξ
( j)
k and the parameters

ˆ
β

( j)
r at the j th step can be determined by minimizing the residual sum of squares∑m
k=1

∑n
i=1 ||uk,i − û(k)

i ||2 on conditioning to the type and time shifts of the previous
( j − 1) steps. Finally, at every step, the explained variance

Tj = n
m∑

k=1

||û( j)
k ||2 − mn|| ¯̄u||2,

where ¯̄u = ∑m
k=1

∑n
i=1 uk,i/mn and the following (overall) testing statistic are com-

puted

WOBS = max
j=1,2,...,J

Tj − E0(Tj )√
Var0(Tj )

.

It should be mentioned that Capizzi and Masarotto (2017) provided a procedure to
compute the p − value of the process, as well as a post-signal diagnostic method
(based on the adaptive L ASSO) which can be exploited to identify the time points
at which shifts occurred and the variables that produce the out-of-control signal.
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Koutras and Sofikitou (2017a) suggested a multivariate nonparametric control
chart, the O2 (Order–Order) chart, which makes use of order statistics only as a
decision criterion. Their chart is an extension to the bivariate case of the univariate
median CC (Janacek and Meikle (1997)) and its variants (Chakraborti et al. (2004)).
To describe the procedure, let (X (R)

1 ,Y (R)
1 ), (X (R)

2 ,Y (R)
2 ), . . ., (X (R)

m ,Y (R)
m ) denote the

observations of a historical sample of size m collected from an unknown, at least
in part, continuous bivariate distribution. The associated joint CDF will be given
by F (R)

X,Y (x, y) = F(x, y), while FX (x) and FY (y) will stand for its marginal dis-
tributions. Subsequently, successive test samples of size n are drawn, which are
independent of each other and of the reference sample as well. These samples
are denoted by (X (T )

1 ,Y (T )
1 ), (X (T )

2 ,Y (T )
2 ), . . ., (X (T )

n ,Y (T )
n ), while their joint CDF

and the corresponding marginals are given by F (T )
X,Y (x, y) = G(x, y) and GX (x),

GY (y). In addition, let C(u, v) and D(u, v) stand for the bivariate copulas, asso-
ciated with the respective in-control and out-of-control joint continuous CDFs
F(x, y) and G(x, y). According to Sklar’s (1959) theorem, the joint CDF of the
bivariate random variable (X,Y ) can be expressed as F(x, y) = C(FX (x), FY (y))
when the process is in-control and G(x, y) = D(GX (x),GY (y)) when it shifts
out-of-control. Manifestly, F(F−1

X (u), F−1
Y (v)) = C(FX (F−1

X (u)), FY (F−1
Y (v))) =

C(u, v), G(G−1
X (u),G−1

Y (v)) = D(GX (G−1
X (u)),GY (G−1

Y (v))) = D(u, v). When
applying the O2 chart, the main goal is to ascertain whether the underlying pro-
cess remains in-control or shifts from its in-control (null) distribution F(x, y) to
an out-of-control distribution, say G(x, y); typically, this is equivalent to test-
ing the null hypothesis H0 : F(x, y) = G(x, y) versus its two-sided alternative
H1 : F(x, y) �= G(x, y).

To establish the O2 chart, the authors used as plotted statistic the pair (X (T )
r :n ,Y (T )

s:n )

of bivariate order statistics obtained from the test sample for 1 ≤ r, s ≤ n. The CLs
were four appropriately chosen order statistics from the reference sample, namely

LCL = (LCLX , LCLY ) = (X (R)
a:m,Y (R)

c:m ),

UCL = (UCLX ,UCLY ) = (X (R)
b:m,Y (R)

d:m ),
(3)

where 1 ≤ a < b ≤ m and 1 ≤ c < d ≤ m. Aiming at a FAR that does not exceed
a pre-specified level α, the values of the design parameters a, b, c, d are determined
through the condition FAR = 1 − P(LCL ≤ δ ≤ UCL|H0) ≤ α. Consequently,
the process is declared in-control if the following inequalities hold true:

X (R)
a:m ≤ X (T )

r :n ≤ X (R)
b:m and Y (R)

c:m ≤ Y (T )
s:n ≤ Y (R)

d:m . (4)

It should be stressed that when themedians are used, it is plausible to choose symmet-
ric CLs, i.e. b = m − a + 1 and d = m − c + 1. Moreover, if one wishes to detect
equalmean shifts (μ1 = μ2), then he/she should set a = c; otherwise, if, for example,
there is an indication that larger shifts occur in the first characteristic (say μ1 > μ2),
then it is reasonable to use a > c because theCLswhich correspond to the X−variate
become more narrow and the first condition of Rule (4) becomes more sensitive. The
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authors provided design tables (for different values of the design parameters along
with different levels of FAR) to help the practitioner choose the CLs according to
his/her needs. They also gave formulae for the calculation of the AR and the FAR.
In the first case, the characteristics share the same in-and out-of-control marginals
(i.e. FX (x) = GX (x) and FY (y) = GY (y)) but they do not have the same copula (i.e.
C(u, v) �= D(u, v)); while in order to calculate the FAR both characteristics have
the same marginals and the same copula (i.e. FX (x) = GX (x), FY (y) = GY (y) and
C(u, v) = D(u, v)). This means that the marginal effect is removed in both cases,
so that the formulae do not depend on the choice of the marginal distributions. The
performance of the O2 CC is typically affected by the dependence structure of the
monitored characteristics (as reflected through the copula) and not by their marginal
distributions. Therefore, the O2CC should be formally characterized as a semipara-
metric CC and not a nonparametric one. However, as evidenced by the extensive
numerical experimentation carried out by Koutras and Sofikitou (2017a), the values
of the FAR and the ARLin are almost the same when different distributions/copulas
are used, therefore it can be used in practice as a fully nonparametric CC .

Koutras and Sofikitou (2017b) also proposed the OC (Order statistics and
Concomitants) scheme, which is a modification of the O2 so that the depen-
dence structure of the initial characteristics has a direct impact on the decision
rule. To achieve that the CLs involve now two particular pairs from the refer-
ence sample, namely (X (R)

a:m,Y (R)
[a:m]) and (X (R)

b:m,Y (R)
[b:m]), where 1 ≤ a < b ≤ m and

Y (R)
[a:m],Y

(R)
[b:m] denote the concomitants of X (R)

a:m, X (R)
b:m , respectively. We recall that, if

the X−variates are arranged in ascending order as X (R)
1:m ≤ X (R)

2:m ≤ . . . ≤ X (R)
m:m , then

their paired Y−variates Y (R)
[1:m],Y

(R)
[2:m], . . . ,Y

(R)
[m:m] have been termed concomitants of

X (R)
1:m, X (R)

2:m, . . . , X (R)
m:m . In this case, the process is assumed to be in-control if the

following conditions hold true:

X (R)
a:m ≤ X (T )

r :n ≤ X (R)
b:m and min

{
Y (R)

[a:m],Y
(R)
[b:m]

}
≤ Y (T )

s:n ≤ max
{
Y (R)

[a:m],Y
(R)
[b:m]

}
. (5)

Notice that the use of min and max functions is unavoidable, since the true order
of Y (R)

[a:m],Y
(R)
[b:m] is not known. It should be underlined that the OC chart is capable

of identifying shifts in location as well as in correlation (because of the use of
concomitants). The chart does not require any distributional assumption about the
marginals; however, the values of FAR and ARLin do vary for different choices
of the correlation level. So, the performance of the OC chart is affected by the
dependence structure and it is to expect that the chart becomes more robust as the
correlation becomes stronger.

b.Multivariate CCs with Memory

Kapatou and Reynolds (1994, 1998) (see also Kapatou (1996)) proposed EWMA
schemes for small samples based on sign and signed-rank statistics. Let us assume
that a small sample Xk = [Xkji ] of size n is collected at equal time intervals, where
k = 1, 2, . . . denotes the time at which the samplewas collected, and j = 1, 2, . . . , p
is used to describe the p variables of the sample. Xk is also assumed to come from
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a p−dimensional CDF the marginal distributions of which are continuous and
symmetric. The EWMA sign statistic introduced by Kapatou and Reynolds is given
by

Ykj = (1 − r)Y(k−1) j + r Sk j = (1 − r)kY0 j +
k−1∑
l=0

(1 − r)lr S(k−l) j ,

for j = 1, 2, . . . , p and k = 1, 2, . . .. The starting value for Ykj ’s is defined as Y0 j =
E(Skj |μ = μ0), where μ0 is the vector with the in-control (target) values and

Skj =
n∑

i=1

Iki j = #(Xkji > μ0 j )

is the sign-based statistic, where Ik ji = I (Xkji > μ0 j ). Moreover, the EWMA
signed-rank statistic is given by

Ykj = (1 − r)Y(k−1) j + rT+
k j = (1 − r)kY0 j +

k−1∑
i=0

(1 − r) j rT+
(k−i) j ,

for j = 1, 2, . . . , p, i = 1, 2, . . . , n and k = 1, 2, . . .. The starting value is now pro-
vided by Y0 j = E(T+

k j |μ = μ0), where μ0 is the vector with the in-control (target)
values and

T+
k j =

n∑
i=1

Ik ji Rk ji

is the sign-based statistic,whichmakes use of the rank of |Xkji − μ0 j | among |Xkj1 −
μ0 j |, . . ., |Xkjn − μ0 j | a quantity denoted by Rkji in the last formula. It should be
mentioned that the aforementioned CCs lack of the affine invariance property, so
any kind of linear transformation or rotation could alter the results (Beltran (2006)).

Zou and Tsung (2011) suggested a CC for monitoring process mean which com-
bines the spatial sign test of Randles (2000) with the EWMA procedure. Let us
assume that we have at hand m0 i.i.d., reference sample observations of dimen-
sion p ≥ 1, say X−m0+1, . . . , X0, and that the t th observation from the multivariate
change-point model below

X t ∼
{
F0(x − μ0), for t = −m0 + 1, . . . , 0, 1, . . . , τ,

F0(x − μ1), for t = τ + 1, . . . ,

where τ denotes the (unknown) point at which a change occurs andμ0 �= μ1; the pri-
mary goal is to obtain a multivariate median θ0 and a transformation matrix A0 from
the reference sample. The authors suggest using the affine equivariant multivariate
median introduced by Hettmansperger and Randles (2002) along with the corre-
sponding A0, which can be constructed by solving the system of equations defined
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in (1) if Xki is replaced by X t . The sample estimates (θ̂0, Â0) can be obtained from
the historical sample by the aid of the system of equations of (2) if we set n = 1,
m and Xki are replaced by m0 and X t , respectively, and the outer summation is
performed over t ∈ {−m0 + 1, . . . , 0}.

The observation collected for future monitoring is standardized, i.e. V t =
U (A0(X t − θ0)), and a multivariate EWMA procedure is established by the recur-
sive scheme W t = (1 − λ)W t−1 + λV i is defined, where V 0 = E(V t ) = 0. The
plotted statistic is given by

Qt = 2 − λ

λ
pW

′
tW t

and the resulting CC triggers an alarm when the quantity Qt takes values larger than
a critical valueUCL > 0 (chosen so as a pre-specified ARLin is attained). It should
bementioned that in the case of subgroups (n > 1), i.e. when a group of observations
{X t1, X t2, . . . , X tn} is available for each t , then the standardization is made by using
V t = (1/n)

∑n
i=1U (A0(X ti − θ0)).

Motivated by the previous idea, Zou et al. (2012) also proposed self-starting tech-
niques which, instead of being based on spatial sign, are based on spatial ranks. In the
multivariate case, the average of the spatial signs of the pairwise differences is given
by r t = RE (X t ) = (1/n)

∑n
i=1U (X t − X i ), where RE (·) represents the empirical

spatial rank function; while the theoretical spatial rank function of the vector X (with
respect to F) is obtained by replacing the average with the expectation in RE (·), i.e.
RF (X) = EY [U (X − Y)], where Y ∼ F and EY [·] denotes the expectation with
respect to the random vector Y .

Firstly, Zou et al. (2012) suggested a theoretical spatial-based EWMA CC
(abbrev. TREWMA), which can be used to test the null hypothesis H0 : μ = μ0

versus the alternative H0 : μ �= μ0. According to the authors, a reasonable test
statistic to be used is R′

F (X)[Cov(RF (X))]−1RF (X). An affine-invariant modi-
fication of the aforementioned statistic can then be established through the for-
mula QRF = R′

F (MX)[Cov(RF (MX))]−1RF (MX), where S = (M ′M)−1. The
suggested plotted statistic of the TREWMA CC is given by

QRF
t = 2 − λ

λ
W

′
t [Cov(RF (MX))]−1W t ,

where W t is the EWMA sequence produced by the recursive scheme W t =
(1 − λ)W t−1 + λRF (MX t ) with W 0 = 0.

Secondly, Zou et al. (2012) proposed an empirical spatial-based EWMA CC
(abbrev. SREWMA). In this CC , the empirical spatial rank function of the t th
future observation is obtained from the expression RE (M̂ t−1X t ) = [1/(m0 + t −
1)]∑t−1

j=−m0+1U (M̂ t−1(X t − X j )), where Ŝt−1 = (M̂
′

t−1M̂ t−1)
−1 = ∑t−1

j=−m0+1

(X j − X̄ t−1)(X j − X̄ t−1)
′ is the sample covariance matrix obtained from the m0 +

t − 1 historical observations and X̄ t−1 denotes the corresponding sample mean. Pro-
vided that, when the process is in-control, the equality Cov(RF (Mx)) =
E[||RF (MX t )||2]I p/p holds true, the authors suggest using
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̂Cov(RE (M̂ t−1X t )) ≈ Ê[||RF (MX t )||2]I p/p and

Ê[||RF (MX t )||2] ≈ 1

m0 + t − 1

[ 0∑
j=−m0+1

||R̃E (M̂0X j )||2 +
t−1∑
j=1

||RE (M̂ j−1X j )||2
]
,

where R̃E (M̂0X j ) = (1/m0)
∑0

k=−m0+1U (M̂0(X j − Xk)). The plotted statistic of
the SREWMA CC is given by

QRE
t = 2 − λ

λξt
||V t ||2,

whereV t = (1 − λ)V t−1 + λRE (M̂ t−1X t ), v0 = 0 and ξt ≡ Ê[||RF (MX t )||2]. The
process is declared out-of-control in the event that QRE

t > UCL . The authors pro-
vided some guidance on how one should choose the smoothing weight λ, the param-
eter m0, as well as the UCLs.

Finally, Zi et al. (2013) integrated a multivariate spatial sign test and an EWMA
procedure to on-line sequential monitoring. The goal here is to test the hypothesis
H0 : θ = 0 versus its alternative H1 : θ = δd1 or θ = δd2 or . . . or θ = δdr , where
d1, d2, . . . , dr are plausible different (known) directions and δ is an unknown con-
stant. The procedure on estimating the multivariate centre θ0 and the transformation
matrix A0 remains the same as before. The plotted statistic of the proposed multi-
variate directional sign EWMA (abbrev. MDSE) CC is given by

Mt = (2 − λ)p

λ
max
1≤ j≤r

[
(d

′
j A

′
0W t )

2/||d j ||2A′
0A0

]
,

where W t = (1 − λ)W t−1 + λV t , W 0 = 0. The process is out-of-control if Mt >

UCL . If each observation consists of n subgroups, then V t = (1/n)
∑n

j=1

U (A0(X t j − θ0)). The authors also suggested the use of formula ζ ∗ = argmax
1≤ j≤r

[
(d

′
j

A
′
0W i )

2/||d j ||2A′
0A0

]
to detect the component where the shift has occurred.

Multivariate nonparametric CUSUM schemes have also been developed. For
example, Qiu and Hawkins (2001) constructed a CUSUM procedure, which is
based on the “antiranks” (i.e. the indices of order statistics) of the measurements
under study. More precisely, denoting by X(t) = (X1(t), X2(t), . . . , X p(t))′ are
p measurements taken at the t−th time point, then the antirank vector of X(t),
say A(t) = (A1(t), A2(t), . . . , Ap(t))′, is a permutation of (1, 2, . . . , p)′ such that
XA1(t) ≤ XA2(t) ≤ . . . XAp(t) are the order statistics of {X j (t), j = 1, 2, . . . , p}. In
addition, let us define ξ 1(t) := (ξ1(t), ξ2(t), . . . , ξp(t))′, where ξ j (t) = I (A1(t) =
j) is the indicator variable of the event that the j−th (1 ≤ j ≤ p) measurement takes
on the smallest value among the p measurements at the t−th time point. Accord-
ing to Qiu and Hawkins (2001), in a multivariate setting, testing the null hypothe-
sis H0 : μ1 = μ2 = . . . = μp = 0 is equivalent to testing the following combined
hypotheses H (1)

0 : μ1 = μ2 = . . . = μp and H (2)
0 : ∑p

j=1 μ j = 0. So, a violation at
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H0 indicates that at least one of the H (1)
0 , H (2)

0 are violated. Hypothesis H (1)
0 can be

tested using a multivariate CUSUM procedure, while hypothesis H (2)
0 can be tested

using a univariateCUSUM procedure based on
∑p

j=1 X j (t). The authors prove that

instead of testing H (1)
0 , one can alternatively test the hypothesis H (1)∗

0 : the distribu-
tion of A1(t) is {g j , j = 1, 2, . . . , p}. In order to set up the (multivariate) CUSUM
procedure, the following quantities need to be calculated first:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S(1)
n = 0,

S(2)
n = 0, if Cn ≤ k1,

S(1)
n = (S(1)

n−1 + ξ 1(n))(Cn − k1)/Cn,

S(2)
n = (S(2)

n−1 + g1)(Cn − k1)/Cn, if Cn > k1,

and
Cn = [(S(1)

n−1 − S(2)
n−1) + (ξ 1(n) − g1)]′

× diag((S(2)
n−1,1 + g1)

−1, . . . , (S(2)
n−1,p + gp)

−1)

× [(S(1)
n−1 − S(2)

n−1) + (ξ 1(n) − g1)],

where g1 = (g1, g2, . . . , gp)
′, S(1)

0 = S(2)
0 = 0 and k1 ≥ 0 denotes a constant. Next,

the quantity

yn = (S(1)
n − S(2)

n )′ × diag(1/S(2)
n,1, . . . , 1/S

(2)
n,p) × (S(1)

n − S(2)
n )

should be evaluated. Then, the process is declared out-of-control if yn > h1, where
h1 is a CL that can be determined using simulation. The authors showed that (a)
yn = max(0,Cn − k1) and (b) a pre-specified ARLin can be achieved if k1 takes

values in the interval

[
0, max

1≤�≤p

∑
j �=� g j

g�

)
.

Later on, Qiu and Hawkins (2003) came up with another CUSUM procedure,
which is based on the order information among the measurement components as
well as on the order information between the measurement components and their
nominal means. They denoted by B(t) = (B1(t), B2(t), . . . , Bp(t), Bp+1(t))′ the
antirank vector of Y(t) := (X1(t), X2(t), . . . , X p(t), 0)′, that is, a permutation of
(1, 2, . . . , p, p + 1)′ such that YB1(t) ≤ YB2(t) ≤ . . . YBp+1(t) are the order statistics of
Y(t). Moreover, they defined η1(t) := (η1(t), η2(t), . . . , ηp+1(t))′, where η j (t) =
I (B1(t) = j) for 1 ≤ j ≤ p + 1. Now, in order to test the hypothesis H (1)∗

0 , the
authors suggest calculating first the following vector sequence:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S(1)
n = 0,

S(2)
n = 0, if Cn ≤ k,

S(1)
n = (S(1)

n−1 + η1(n))(Cn − k)/Cn,

S(2)
n = (S(2)

n−1 + d)(Cn − k)/Cn, if Cn > k,
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and
Cn = [(S(1)

n−1 − S(2)
n−1) + (η1(n) − d)]′

× diag

(
1

S(2)
n−1,1 + d1

, . . . ,
1

S(2)
n−1,p+1 + dp+1

)

× [(S(1)
n−1 − S(2)

n−1) + (η1(n) − d)],

where d = (d1, d2, . . . , dp+1)
′, S(1)

0 = S(2)
0 = 0 and k ≥ 0 denotes a constant. Next,

we compute the quantity

yn = (S(1)
n − S(2)

n )′ × diag(1/S(2)
n,1, . . . , 1/S

(2)
n,p+1) × (S(1)

n − S(2)
n )

and the process is declared out-of-control if yn > h, where h is a CL deter-
mined via simulation. Similarly, the authors showed that (a) yn = max(0,Cn − k1)
and (b) a pre-specified ARLin can be achieved if k1 takes values in the interval[
0, max

1≤�≤p+1

∑
j �=� d j

d�

)
.

3.2 Monitoring of Scale

It seems that, in the literature of nonparametric CCs, not much work has been done
for the construction of CCs based on order statistics, ranks and signs, which are
capable of monitoring the scale parameter of a multivariate process. In what follows,
we present in some detail the few schemes that are currently available in the literature.

a. Multivariate CCs without Memory

To the best of our knowledge, only Osei-Aning et al. (2017) have considered non-
parametric Shewhart-type CCs for monitoring the covariance matrix of a bivariate
process. The plotted statistics used for these charts are the maximum of variance
measures computed separately for each of the two characteristics for the available
sample. Four different variance measures were practised, namely the standard devi-
ation, the interquartile range, the absolute deviation from the sample median and
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the median absolute deviation. Assuming that (X1,Y1), (X2,Y2), . . . , (Xn,Yn) is a
bivariate sample of size n from the monitored process, the plotted statistics are

SMAX = max{SX , SY },
QMAX = max{QX , QY },

MDMAX = max{MDX , MDY },
MADMAX = max{MADX , MADY },

where

SX =
√√√√ 1

n − 1

n∑
i=1

(Xi − X̄)2, SY =
√√√√ 1

n − 1

n∑
i=1

(Yi − Ȳ )2,

QX = (Q(3)
X − Q(1)

X )/1.34898, QY = (Q(3)
Y − Q(1)

Y )/1.34898,

MDX = 1

n

n∑
i=1

| Xi − δX |, MDY = 1

n

n∑
i=1

| Yi − δY |,

MADX = 1.4826 med | Xi − δX |, MADY = 1.4826 med | Yi − δY |,
and δX , δY are the sample medians. In each case, an alarm is triggered when the
statistic takes values higher than an upper CL , which is selected so as a the desirable
ARLin level is achieved.

b.Multivariate CCs with Memory

Haq and Khoo (2018) suggested an EWMA sign CC for monitoring process dis-
persion. Let X = (X1, X2, . . . , X p)

′ be a p−dimensional vector with mean μX =
E(X) = (E(X1), E(X2), . . . , E(Xk))

′ = (μX1 , μX2 , . . . , μX p )
′ and variance–

covariance matrix �X = Cov(X) = E[(X − μX)(X − μX)′], where p indicates
the number of characteristics under study. It is known that when the process is
in-control, the quantity (X − μX)(X − μX)′ is an unbiased estimator of �X , i.e.
E[(X − μX)(X − μX)′] = �X . Moreover, it holds true that E[tr{(X − μX)(X −
μX)′�X

−1}] = tr(I p) = p, where tr(·) is the trace of the matrix (·).
Suppose now that Xt = (X1t , X2t , . . . , Xnt ), t = 1, 2, . . . is a random sample

(of size n) drawn from the process at the t−th time point, where the random vec-
tors Xi t = (X1i t , X2i t , . . . , X pit )

′ are independent of each other for i = 1, 2, . . . , n.
It goes without saying that if the process is in-control, then E(Yit ) = E(X i t −
μX)′�X

−1(X i t − μX) = p for i = 1, 2, . . . , n. The authors considered the random
variable At = ∑n

i=1 I (Yit > p), which is the total number of instances in which
Yit > k. At follows a Bernoulli distribution with parameters n and p. If the process
is in-control, then p = p0 = P(Yit > k) and the value of p depends on the prob-
ability distribution of Yit . Then, they used the transformation Bt = sin−1(

√
At/n),

because it asymptotically follows a Normal distribution with mean sin−1(
√
p) and

variance 1/(4n). The last quantity is exploited to determine the EWMA statistic of
the CC , which is given by
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Ct = λ · Bt + (1 − λ) · Ct−1,

where C0 = sin−1(
√
p0) and λ ∈ (0, 1] is the smoothing constant.

Notice that when the process is in-control, E(Ct ) = E(Bt ) = sin−1(
√
p0) and

Var(Ct ) = (λ/(2 − λ)) · (1 − (1 − λ)2t ) · (1/(4n))
asympt.≈ (λ/(2 − λ)) · (1/(4n)).

Therefore, the CLs of the EWMA sign CC will be calculated by

UCL = sin−1(
√
p0) + w

2
√
n

·
√

λ

2 − λ
,

Centerline = sin−1(
√
p0),

LCL = sin−1(
√
p0) − w

2
√
n

·
√

λ

2 − λ
,

where w(>0) is appropriately chosen so as a pre-specified value of ARLin is
achieved.

It should be mentioned that both the values of λ and w affect the ARL . Haq
and Khoo (2018) gave formulae for the ARL and the Standard Deviation of the
Run Length (SDRL), which can be calculated by the aid of Markov chain. It is
worth mentioning that this chart was initially suggested for monitoring the process
variability; however, the numerical study revealed that it is also capable of detecting
shifts in both mean and variance.

3.3 Simultaneous Monitoring of Location and Scale

When monitoring a manufacturing process, it is of special interest to have a tool that
is capable of detecting the presence of assignable causes that trigger simultaneous
shifts to both scale and location and not separately in either mean or variability. In the
SPC literature, two different procedures have been proposed to construct CCs for
joint monitoring of both mean and variance. One technique makes use of a single,
combined plotted statistic, which is capable of monitoring both the mean and the
variance. The other technique makes use of two distinct statistics and creates a two-
chart monitoring scheme which consists of two graphs: one for monitoring the scale
and one for monitoring the location. Usually an increase in variability is related to
deterioration of the process, so in the former case it is common that the CCs have
only one CL (upper CL).

a. Bivariate and Multivariate CCs without Memory

Liu (1995) was the first who considered CCs for the joint monitoring of mean
and variability using one-chart monitoring schemes with combined statistics. She
proposed two Shewhart-typeCCc (abbrev. r and Q), which are based on the notion
of DD and constitute a generalization of the classical univariate parametric X and
X̄ charts.
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To present the proposed CCs, let us first assume that X1, X2, . . ., Xm is the
reference sample coming from an p−dimensional distribution F , and denote by
F̂m(·) the empirical distribution induced by the reference sample. In the sequel, a test
sample Y 1,Y 2, . . . ,Y n ∼ G is collected, which should be compared to the reference
sample in order to ascertain whether or not the process has remained is in-control.
This can be translated to a hypothesis problem, where

H0 : F = G with a false alarm rate a,

H1 : there is a shift in location and/or an increase in the variance.

The statistics, which are used for determining the plausible differences between the
in-and out-of-control distributions F andG, are based on the notion of DD. For each
point x ∈ Rp, the simplicial depth of x with respect to F is provided by

SDF (x) = PF {x ∈ s[X1, X2, . . . , X p+1]},

where s[X1, X2, . . . , X p+1] is a polygon whose vertices X1, X2, . . . , X p+1 are p +
1 random observations from the distribution F . The quantity SDF (x) measures how
deep or central is the point x with respect to F distribution. When the distribution F
is not known and only the sample X1, X2, . . . , Xm is available, the sample simplicial
depth of x is defined as

SDF̂m
(x) =

(
m

p + 1

)−1 ∑
I (x ∈ s[X i1 , X i2 , . . . , X i p+1]),

where the summation is carried over all the possible subsets of X1, X2, . . . , Xm of
size p + 1. The quantity SDF̂m

(x) measures how deep is the point x is with respect
to the sample X1, X2, . . . , X p+1.

Without loss of generality, the notion of DD can be based on the Mahalanobis
distance. In this case, how deep a point x is with respect to a given distribution F can
be measured by how small is its quadratic distance to the mean. The Mahalanobis
Depth is given by

MDF (x) = 1

1 + (x − μF )′�−1
F (x − μF )

,

where μF and �F are the mean vector and the variance–covariance matrix of the
distribution F , respectively. The empirical form of the quantityMDF (x) is given by

MDF̂m
(x) = 1

1 + (x − X̄)′S−1
F (x − X̄)

,

where X̄ is the sample mean of X1, X2, . . . , Xm , and SF is the sample variance–
covariance matrix. It should be stressed that MDF (·) is affine invariant.
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If the depths of X1, X2, . . . , Xm are arranged in ascending order, i.e. X [1], X [2],
. . . , X [m], then X [m] represents the most central point. The smallest the order of this
point, the more distant the point is from the F distribution.

Liu (1995) set

rF (x) = P (DF (X) ≤ DF (x) | X ∼ F),

rF̂m (x) = #{Xk | DF̂m
(X i ) ≤ DF̂m

(x), k = 1, 2, . . . ,m}
m

.

(6a)

(6b)

The quantities {rF̂m (X1), rF̂m (X2), . . .} are computed only if the X1, X2, . . . , Xm are
available, but not F .

Supposing that each subset is of size n, the means of rF (Y i ) or of rF̂m (Y i ) are

computed by the formulae Q(F, Ĝk
n) and Q(F̂m, Ĝk

n), where Ĝk
n is the empirical

distribution of the Y i which belongs to the k−th subset for k = 1, 2, . . . . Denoting
the empirical distribution of the sample Y 1,Y 2, . . . ,Y n ∼ G by Ĝn(·), the following
quantities can be defined:

Q(F,G) = P {DF (X) ≤ DF (Y) | X ∼ F,Y ∼ G},

Q(F, Ĝn) = 1

n

n∑
i=1

rF (Y i ),

Q(F̂m, Ĝn) = 1

n

n∑
i=1

rF̂m (Y i ).

(7a)

(7b)

For the constructionof the r chart, Liu (1995) suggests plotting either the quantities
{rF (Y 1), rF (Y 2), . . .} or {rF̂m (Y 1), rF̂m (Y 2), . . .} against time t = 1, 2, . . . by the aid
of Formulae (6a) or (6b). The respective CLs will be

Centreline = 1/2 and LCL = a,

where a is the FAR. In each case, the process is declared out-of-control if the
rF (Y t )’s or rF̂m (Y t )’s fall below the LCL .

For the construction of the Q chart, Liu (1995) suggests computing the means
of the quantities {rF (Y 1), rF (Y 2), . . .} or {rF̂m (Y 1), rF̂m (Y 2), . . .}, i.e. Q(F, Ĝk

n) or

Q(F̂m, Ĝk
n) with respect to the kth subset (k = 1, 2, . . .), by exploiting Formulae

(7a) and (7b). The points plotted in the chart can be {Q(F, Ĝ1
n), Q(F, Ĝ2

n), . . . , }
or {Q(F, Ĝ1

n), Q(F, Ĝ2
n), . . . , } if only X1, X2, . . . , Xm are available, against time

t = 1, 2, . . .. The CLs that correspond to the Q(F, Ĝk
n)’s and Q(F̂m, Ĝk

n)’s are
respectively given by

LCL = 1

2
− za

√
1

12n
and LCL = 1

2
− za

√
1

12

(
1

m
+ 1

n

)
,
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which obviously depend on the choice of n and m. In each case, there is a
Centreline = 1/2 and theCLs are applicable only for large values of n (i.e. n ≥ 5).
If n takes small values and at the same time a ≤ 1/n!, then the CLs are computed
by

Centreline = 1/2 and LCL = (n!a)1/n/n,

where a is the FAR.
It is of interest to note here that Hamurkaroǧlu et al. (2004) constructed the r

and Q CCs of Liu’s (1995) using the Mahalanobis depth to obtain the ranks of the
observations. Moreover, a number of researchers—motivated by the work of Liu—
exploited Principal Component Analysis (PCA)in order to reduce the number of
dimensions. In particular, Zarate (2004) extended Liu’s idea by computing first the
Mahalanobis depth ranks of the principal components and then plotting the afore-
mentioned ranks on the r chart. Working in a similar fashion, Beltran (2006) used
again the r chart, but this time, the simplicial depth ranks of the first and the last
principal components were exploited.

In addition, Li et al. (2014) provided a change-point control scheme (abbrev.
CPDP) for individual observations based also on DD. Let X1, X2, . . ., Xm be m
independent observations coming from a p−dimensional distribution F . When the
process is in-control, all the observations share the samemean vectorμ and variance–
covariance matrix �. If we assume that a shift (in the mean, variance or both) occurs
after them1th observation, then the parameters of the firstm1 observations are (μ,�)

and the parameters of the remaining m2(= m − m1) ones are (μ1,�1). In this case,
a departure from distribution F to an out-of-control distribution G is reflected by a
decrease in DD. Dai et al. (2004) defined the statistic

Q(m1) =
m∑

j=m1+1

Rm1( j),

where

Rm1( j) = #{X i |DFm1+1(X i ) < DFm1+1(X j ), i = 1, 2, . . . ,m1}
+ 1

2
#{X i |DFm1+1(X i ) = DFm1+1(X j ), i = 1, 2, . . . ,m1},

as well as its standardized form

SQ(m1) = Q(m1) − E(SQ(m1))√
Var(SQ(m1))

= Q(m1) − m1(m − m1)/2√
m1(m − m1)(m + 1)/12

, (8)

which follows a standard Normal distribution asm1 → ∞ andm2 = m − m1 → ∞.
The CPDP CC can be constructed by plotting the statistics SQ(i) versus i for
1 ≤ i < m. The process will be considered out-of-control if max

1≤i<m
SQ(i) > hm,a ,
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where hm,a is the CL and a is the FAR. The authors proved also that the maximum
likelihood estimator of the change point is given by τ̂ = arg

1<t<m
max{SQt }.

Recently, Koutras and Sofikitou (2019) incorporatedmeasures of dispersion in the
O2 CC (Koutras and Sofikitou (2017a)) and they came up with two new semipara-
metric schemes: the O2 N2 and the O4 CCs. These charts have similar properties
with the O2 CC , and can also be considered as fully nonparametric CCs. To for-
mulate the rules of these charts, we recall the notation used in (3) and define the
following enumerating function:

L(z1, z2, . . . , zn;w1,w2) = |{i ∈ {1, 2, . . . , n} : w1 ≤ zi ≤ w2}|,

which counts the number of the zi ’s located between the values w1 and w2 for given
z1, z2, . . . , zn ∈ IR and w1,w2 ∈ IR. The decision rule of O2 N2, exploits the r th
and sth order statistics of the test sample X (T )

r :n and Y (T )
s:n for 1 ≤ r, s ≤ n, along with

the following enumerating statistics:

LX = L(X (T )
1 , . . . , X (T )

n ; X (R)
a:m , X (R)

b:m) = |{i ∈ {1, . . . , n} : X (R)
a:m ≤ X (T )

i ≤ X (R)
b:m}|,

LY = L(Y (T )
1 , . . . , Y (T )

n ; Y (R)
c:m , Y (R)

d:m ) = |{ j ∈ {1, . . . , n} : Y (R)
c:m ≤ Y (T )

j ≤ Y (R)
d:m }|.

The statistics LX and LY return the number of X−and Y−observations, from the
whole range of the test sample, which lie between the CLs. According to the O2 N2
(Order–Order and Number–Number) chart, the process is declared in-control if the
next conditions hold true:

LCLX ≤ X (T )
r :n ≤ UCLX , LCLY ≤ Y (T )

s:n ≤ UCLY and LX ≥ �X , LY ≥ �Y (9)

or equivalently

X (R)
a:m ≤ X (T )

r :n ≤ X (R)
b:m

Y (R)
c:m ≤ Y (T )

s:n ≤ Y (R)
d:m

(9a)

(9b)
and

LX ≥ �X

LY ≥ �Y .

(9c)

(9d)

An appealing property of the aforementioned CC is that it can discriminate whether
the observed shifts are due to mean and/or variance; at the same time it is very easy to
detect the out-of-control characteristic(s). More precisely, if Condition (9a) or (9b)
(resp. (9c) or (9d)) is violated then the alarm is triggered because of a means (resp.
variance) shift. On the other hand, a violation only on the Conditions (9a) and/or (9c)
(resp. (9b) and/or (9d)) indicates that a mean and/or a variance shift has occurred in
the first (resp. second) characteristic.

The construction of the O4CC is based on the idea that the process is in-control if
consecutive test sample observations (belonging to the intervals IX = [X (T )

r1:n, X
(T )
r2:n]

and IY = [Y (T )
s1:n ,Y

(T )
s2:n ]) lie between the CLs. This leads to checking whether or not
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four order statistics from the test sample belong to the CLs. Thus, the process is
considered to be out-of-control if at least one of the following conditions is violated:

LCLX ≤ X (T )
r1:n ≤ X (T )

r2:n ≤ UCLX and LCLY ≤ Y (T )
s1:n ≤ Y (T )

s2:n ≤ UCLY (10)

or equivalently

X (R)
a:m ≤ X (T )

r1:n ≤ X (T )
r2:n ≤ X (R)

b:m
Y (R)
c:m ≤ Y (T )

s1:n ≤ Y (T )
s2:n ≤ Y (R)

d:m

(10a)

(10b)

where 1 ≤ r1 ≤ r2 ≤ n and 1 ≤ s1 ≤ s2 ≤ n. This CC is capable of detecting the
variable(s) that triggered the alarm but it cannot identify whether the alarm is due to
a means shift, a variance shift or both. In particular, if only Condition (10a) (resp.
(10b) is violated, we may infer that the mean and/or the variance of the first (resp.
second) characteristic has shifted out-of-control. If both Conditions (10a) and (10b)
are simultaneously violated, then the shift should be attributed to both variables.It
should be stressed that if the ranges of the intervals IX and IY are narrow, the rule
becomes more sensitive to mean shifts, while the use of wide interval ranges makes
the CC more efficient in the detection of variance shifts.

It is of interest to notice that if �X = �Y = 1 and r1 = r2, s1 = s2, Rules (9) and
(10) of the respective O2N2 and O4CCs coincide with Rule (4) of the O2 chart. As
a result, the latter chart can be viewed as a special case of the other two schemes. A
key advantage of all these three schemes is that non-symmetric CLs can be used and
thereof the CCs can be more effective in detecting specific shifts, like, for example,
shifts for a specific characteristics or shifts in either location and/or scale parameter.

b.Multivariate CCs with Memory

Up to date, the multivariate CCs with memory that have been proposed in the liter-
ature are basically couched on the notion of DD. Liu (1995) introduced the S chart
that is a DD-based generalization of the univariate CUSUM , capable of detecting
potential increasing shifts in the mean and/or variability. Let us recall the notation
used earlier to describe Liu’s r and Q charts. For the construction of the S chart,
Liu (1995) suggested to plot one of the following statistics that exploite Formulae
(6a)–(6b) or (7a)–(7b)

Sn(F) =
n∑

i=1

[
rF (X i ) − 1

2

]
= n

[
Q(F, Ĝn) − 1

2

]
,

Sn(F̂m) =
n∑

i=1

[
rF̂m (X i ) − 1

2

]
= n

[
Q(F̂m, Ĝn) − 1

2

]
,

and using as LCLs the quantities
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LCL = −za

√
n

12
and LCL = −za

√
n2

12

(
1

m
+ 1

n

)
.

In order to have a constant LCL , onemay standardize the plotted statistics as follows:

S∗
n (F) = Sn(F)

/(√
n/12

)
and S∗

n (Fm) = Sn(Fm)/

√
n2

12

(
1

m
+ 1

n

)
,

for n = 1, 2, . . . and use the simplified CLs (this scheme is known as S∗ chart)

Centreline = 0 and LCL = −za .

Dai et al. (2004) considered also a CUSUM CC based on DD for Phase I. The
rationale is very similar to the procedure described in the change-point model of
Li et al. (2014), the difference lying in the formulation of the plotted statistic. The
CUSUM statistic has the following form:

Si = max{0, Si−1 − SQi − k},

where the quantity SQi is calculated by Equation (8), S0 = 0 and k is a design
parameter which, as mentioned by the authors, has an optimal value equal to 2. An
alarm is triggered if Si exceeds a threshold hm,p for which the authors suggested the
approximate formula hm,p = 1.0936n − 1.4746p. They also gave an estimate of the
position of shift, that is, τ̂ = arg

1<t<m
max{|SQt |}.

Li et al. (2013) presented two CUSUM procedures based on spatial sign and
DD (abbrev. SS-CUSUM, DD-CUSUM) which are affine invariant under rotation-
scale transformations on all components. They employed the transformation method
proposed by Hettmansperger and Randles (2002). Assuming that X1, X2, . . . , Xm

represents the reference sample andY 1,Y 2, . . . the test samples, then theobservations
X i and Y i are transformed as follows:

X∗
i = Âm(X i − θ̂m) and Y ∗

i = Âm(Y i − θ̂m). (11)

The parameters (θ̂m, Âm) are obtained by solving the system of Eq. (2) for n = 1.
To construct the nonparametric SS-CUSUM chart, Li et al. (2013) extended the

multivariate (parametric) CUSUM procedure of Crosier (1988) by replacing the
original observations with their spatial signs. More specifically, they introduced the
following statistics:

Cn = [(Sn−1 + Un)
′(Sn−1 + Un)]1/2,

Sn =
{
0, if Cn ≤ k,

Sn = (Sn+1 + Un)(1 − k/Cn), if Cn > k,
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where Un = U (Y ∗
n) is the spatial sign of Y ∗

n , k > 0 and S0 = 0. In this case, an
alarm is triggered if the quantity Ln = (S′

nSn)
1/2 > h, where h is the CL that can

be predetermined on the basis of k and a desired level of ARLin .
Motivated by Crosier’s (1988) procedure, Li et al. (2013) replaced the squared

root of Hotelling’s T 2 appearing there by 1 − rF̂m (Y n) and created the following
CUSUM procedure:

Sn = max(0, Sn−1 + (1 − rF̂m
(Yn)) − k)

asympt.≈ max(0, Sn−1 + (0.5 − rF̂m
(Yn)) − k);

the quantity rF̂m (Y n) is computed by the aid of Equation (6a). Finally, in order to
attain the affine invariance property, the authors suggested using the transformed data
X∗

n,Y
∗
n (defined in (11)) instead of Xn,Y n . Consequently, the plotted statistic of the

DD-CUSUM chart takes on the form

Sn = max(0, Sn−1 + (0.5 − rF̂∗
m
(Y ∗

n)) − k),

where S0 = 0, k > 0 and rF̂∗
m
(Y ∗

n) is computed via Formula (6b). The process is
considered out-of-control if Sn takes values greater than h, which depends on k and
ARLin .

Messaoud et al. (2004, 2008) generalized the (univariate) EWMA scheme for
individual observations of Hackl and Ledolter (1992) by considering a multivariate
EWMA chart which takes into account the sequential ranks of DD. We will begin
by introducing first some new definitions. According to Hackl and Ledolter (1992),
if Xt , t = 1, 2, . . ., are independent (univariate) samples coming from a continuous
distribution F(x), the sequential rank that is the rank of Xt among the most recent
m (m > 1) observations Xt , Xt−1, . . . , Xt−m+1, is defined as

R∗
t = 1 +

t∑
i=t−m+1

I (Xt > Xi ). (12)

The standardized sequential rank is then defined by

R(m)
t = 2

m

(
R∗
t − m + 1

2

)
.

For the formulation of the chart, let us assume that the reference consists of the
m most recent observations X t−m+1, X t−m+2, . . . , X t , where X t = (Xt1, Xt2, . . . ,

Xtp)
′ stands for a vector with p characteristics. The depth of X t is calculated with

respect to the aforementioned sample and the sequential rank (R∗
t ) of Dm(X t ) among

Dm(X t−m), . . . , Dm(X t−1) by the aid of Eq. (12), i.e.

R∗
t = 1 +

t∑
i=t−m+1

I (Dm(X t ) > Dm(X i )).
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The plotted statistics of the EWMA scheme is given by

Tt = min{B, (1 − λ)Tt−1 + λR(m)
t )},

for t = 1, 2, . . ., where R(m)
t is the standardized sequential rank of Dm(X t ) among

Dm(X t−m), . . . , Dm(X t−1) and 0 < λ ≤ 1 is a smoothing parameter; B is a reflection
boundary and T0 = u with h ≤ u ≤ B. The process is declared out-of-control when
Tt > h, where h is an appropriate LCL (h < 0). Since the choice of the parameters
B, λ and u depends on the ARL of the lower sided EWMA, Messaoud et al. (2004)
provided a formula for the determination of the ARL as a function of u when h, B
and λ are fixed.

As mentioned earlier in the present section, Haq and Khoo (2018) introduced a
multivariate EWMA sign CC for scale monitoring which was subsequently proved
capable of detecting potential shifts in both process mean and/or variance. Therefore,
that CC could be used for the joint monitoring of location and scale.

Finally, Liu et al. (2004) studied a DD-based MA chart (abbrev. DDMA) for
detecting process shifts in both location and scale. If X1, X2, . . . , Xm ∼ F and
Y 1,Y 2, . . . ,Y n ∼ G represent the reference and the test sample, respectively, then,
their MA chart uses the following moving averages of length q:

Ỹ q = (Y 1 + . . . + Y q)/q,

Ỹ q+1 = (Y 2 + . . . + Y q+1)/q,

...

Ỹ n = (Y n−q+1 + . . . + Y n)/q.

Let Ỹ i ∈ Ỹ = {Ỹ q , . . . , Ỹ n}. The corresponding reference sample used for monitor-
ing Ỹ i ∈ Ỹ is X̃ = {X̃q , . . . , X̃m}, where

X̃q = (X1 + . . . + Xq)/q,

X̃q+1 = (X2 + . . . + Xq+1)/q,

...

X̃m = (Xm−q+1 + . . . + Xm)/q.

The plotted statistic of the DDMA CC is simply

r ˆ̃Fm−q+1
(Ỹ i ) =

#{X̃k | D ˆ̃Fm−q+1
(X̃k) < D ˆ̄Fm−q+1

(X̃ i ), k = q, . . . ,m}
m − q + 1

, (13)
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where D ˆ̃Fm−q+1
(·) is the empirical depth with respect to ˆ̃Fm−q+1, i.e. the empirical

distribution of X̃ . Once again, the CLs are

Centreline = 1/2 and LCL = a,

where a is the FAR we wish to reach.

4 Comparison Study

The purpose of the present Section is to examine the performance of some of the
multivariate nonparametric CCs presented earlier under different shift scenarios.
To set up fair comparisons, we do not contrast charts which do not belong in the
same family/category (i.e.CCs with memory versusCCs without memory;CCs for
individual observations versusCCs for subgroups) or charts which are not capable of
detecting the same kind of shift (i.e. mean shifts, variance shifts or both). Therefore,
we focus on comparing the Shewhart-type CCs between each other, excluding
those which are based on a change-point formulation. In addition, we do not provide
any numerical calculations for CCs with memory given that there are only a few
schemes available per category (EWMA,CUSUM, MA) which may not be built
to test exactly the same hypotheses.

The assessment of the performance of the CCs under comparison is based on the
ARL . The ARLin of all the charts of our numerical experimentation is set to 200
(approximately) and then the out-of-control ARL (ARLout ) is computed for three
different shift scenarios in location and/or scale. In every case, semiparametric or
nonparametricCCs are compared to each other, as well as to their popular parametric
counterparts.

Scenario I: Shifts in Mean

Firstly, we generate data from a bivariate normal and a student’s t−distribution with
5 degrees of freedom, utilizing the following in-control distribution parameters:

μin =
(
1
1

)
, �in =

(
1.0 0.7
0.7 1.0

)
and �t (5) =

(
0.60 0.42
0.42 0.60

)
= 3

5
�in.

Note that the matrix �t (5) is chosen so that the same covariance matrix is achieved
for both distributions. In this way, it is secured that shifts occur only in the mean
vector μ of each distribution and not in the variance–covariance matrix or in the
correlation. It should bementioned that the standard deviations in both characteristics
are assumed to remain equal to 1 (σX = σY = 1) and the correlation was chosen to
be moderate/relatively strong (ρ = 0.7).

Under this scenario, we compare the parametric χ2 chart, the nonparametric SN 2

and SR2 charts proposed by Boone and Chakraborti (2012) and the semiparametric
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O2, OC , O2N2, O4 charts proposed by Koutras and Sofikitou (2019, 2017a, b).
In the case that the asymptotic CLs of the χ2, SN 2 and SR2 CCs do not yield an
ARLin ≈ 200, the CLs are estimated so as the desired ARLin value is achieved. In
the O2, OC and O2N2 charts, the test sample medians are used so that the number
of tabulated parameters be reduced. For this purpose, the parameters r, s appearing in
(4), (5) and (9) are set equal to (n + 1)/2. In addition, the design parameters of the O4
chart are given by r1 = (n + 1)/2 − tX , s1 = (n + 1)/2 − tY , r2 = (n + 1)/2 + tX ,
s2 = (n + 1)/2 − tY . It is of interest to note that, should one use the same values for
tX , tY , i.e. tX = tY = t , the decision rule of the resulting CC will make use of the
most central pairs of the test sample.

As a consequence, when the medians or the most central pairs are used then the
limits of the O2, O2N2 and O4 charts (as defined in (3)) are symmetrically placed,
i.e. b = m − a + 1, d = m − c + 1. The corresponding CLs are determined in two
ways: when equal mean shifts occur per characteristic, then the choice a = c (and
b = d) is made; should larger shifts be expected to occur in the mean of the first
characteristic (μX > μY ), then it is intuitively obvious that one should select a > c.
Finally, in the case of the OC scheme, both symmetric and asymmetric CLs are
exploited, which are, respectively, denoted by a, b (= m − a + 1) and a∗, b∗. Of
course, in each case the CLs with respect to the second characteristic are just the
corresponding concomitants. The reference and test sample sizes used were set equal
to m = 1000 and n = 15.

It should be stressed that although the O2N2 and O4 CCs may have originally
been constructed for detecting possible simultaneous shifts in the mean and variabil-
ity, they can also be applied when only mean shifts occur. This can be achieved by
making Rules (9) and (10) much more sensitive to mean shifts than to shifts in vari-
ability. Since under Scenario I there are no shifts in the variance, we set �X = �Y = �

and tX = tY = t . Apparently, when it comes to the conditions which control the vari-
ability, only a few test sample observations should be expected to lie between the
CLs. Hence, a natural choice would be the use of relatively small values for the
parameters � and t , in which case the performance of the O2N2 and O4 schemes
will be very similar to the one of the O2 chart.

All the numerical results are summarized in Tables 1 and 2, where the values in
bold indicate the smaller ARLout and, as a result, the chart with the fastest detection
capability. The underlined ARLout values indicate the second-fastest chart. The num-
bers, presented in Table 1, were calculated using bivariate normal data. As expected,
the parametric χ2 CC overperforms the semiparametric and nonparametric coun-
terparts except for the OC chart with non-symmetric CLs, which has uniformly
the best performance for small shifts. Table 2 illustrates the behaviour of the CCs
when bivariate t(5) data are used. In the event of equal shifts in the means of both
characteristics (μX = μY = 1.0(0.3)1.9), the semiparametric O2, OC , O2N2, O4
charts and the nonparametric SN 2, SR2 charts have almost the same performance.

When larger shifts occur in the first characteristic (μX = 1.0(0.1)1.5 and μY =
1.0), the CLs are adjusted so that the detection rule of the semiparametric CCs
−corresponding to the mean of characteristic X (i.e. first condition of Rules (4),
(5) and Conditions (9a), (10a)− becomes more sensitive. In this case, O2, O4 and
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O2N2 have similar performance and they overperform compared to the SN 2 but
underperform compared to the SR2 chart. The OC with asymmetric CLs has the
fastest detection capability when small shifts occur, while the χ2 and the SR2 CCs
are faster in detecting smaller mean shifts.

Scenario II: Shifts in Variability

Here, we study the performance of the classical parametric |S| scheme introduced by
Alt (1985) and the nonparametric QMAX , SMAX , MDMAX , MADMAX charts
of Osei-Aning et al. (2017), all of which have been proposed for monitoring the
process variability. The aforementioned charts are compared in terms of the in-and
out-of-control performance to the semiparametric O2N2 and O4 charts which have
been recently suggested byKoutras andSofikitou (2019) formonitoring simultaneous
shifts in mean and variability.

Under this scenario, we also generate data from both bivariate normal and t(5)
data, but now we assume that the process mean vector remains constant (μ = 1) and
shifts occur only in the variance–covariance matrix of the process. More precisely,
the in-control distribution parameters are the ones practised before, i.e.

μin =
(
1
1

)
, �in =

(
1.0 0.7
0.7 1.0

)
and �t (5) =

(
0.60 0.42
0.42 0.60

)
= 3

5
�in.

The ARLout was evaluated by shifting the process, variance–covariance matrix from
�in to

�out =
(

δ2Xσ 2
X δXδYσXY

δXδYσXY δ2Yσ 2
Y

)
,

where σXY = ρσXσY and δX , δY are used to control the variance shifts per charac-
teristic. For our experimentation, we used values σX = σY = 1 and ρ = 0.7.

A common sample size (n = 15) was used for all charts. For the O2N2 and O4
charts, the design parameters were calculated by b = m − a + 1, d = m − c + 1,
r1 = (n + 1)/2 − tX , s1 = (n + 1)/2 − tY , r2 = (n + 1)/2 + tX , s2 = (n + 1)/2 −
tY and the reference sample m was determined so that ARLin ≈ 200.

Tables 3 and 4 illustrate the performance of all charts when the process charac-
teristics are distributed as normal and t (5), respectively. The bold and underlined
values indicate the charts with the first and second best performance. When normal
data are used and equal shifts occur in variance, the |S| chart has the best perfor-
mance. However, the SMAX and MDMAX seem to detect shifts more quickly than
the other charts. It should be emphasized that this is not the case when larger shifts
occur to the X characteristic. In fact, the performance of the O2N2 and O4 charts,
especially using non-normal distribution, is the best among the rest of the charts.
This can be attributed to the fact that the CLs of the O2N2 and O4 charts can be
chosen asymmetrically with respect to the characteristics under study, and therefore
those charts provide increased flexibility to deal with cases where unequal shifts need
to be detected. To be more specific, for δX > δY , one should choose the rest of the
parameters so that �X > �Y and r1 < r2, s1 < s2.
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Scenario III: Simultaneous Shifts in Mean, Variability and Correlation

Under the last scenario, the Q chart (of Liu (1995)), the O2N2 and O4 semipara-
metric schemes (proposed by Koutras and Sofikitou (2019)), as well as the classical
parametric, BV-MAX chart (introduced by Khoo (2004)) are compared in terms of
their ARL performance, when simultaneous shifts occur in the process mean vector
and the variance–covariance matrix.

To carry out the comparison, we generate data from a bivariate normal distribution
and we assume that the process is in-control when

μin =
(
1
1

)
, �in =

(
1 0
0 1

)
and ρ = 0.

These quantities represent the null values of themean vector, the variance–covariance
matrix and the correlation coefficient, respectively. Then, the process means shifts
to the out-of-control through equal shifts in each characteristic, namely μ = μX =
μY = 1.00(0.30)1.90, while the matrix � shifts to

� =
(
1 + ρ2 ρ

ρ 1 + ρ2

)
and ρ = 0.1(0.3)0.9.

The design parameters of the aforementioned CCs were selected so that an
ARLin = 200 (approximately) is achieved. In each chart, a test sample of size n = 5
was selected. The results of this comparison are reported in Table 5, where the bold-
faced figures indicate the CC with the best performance, and the underlined figures
indicate theCC with the next better performance. It is obvious that for small shifts in
the mean (e.g. when μ = 1.00), the Q chart has always faster detection power than
the rest of the schemes. As one should expect, the parametric (Shewhart-type) BV-
MAX chart is capable of detecting quickly only large mean shifts, more specifically
μ ≥ 1.3.

In the latter case that larger shifts occur in the mean, one may argue that the
performance of Q, O2N2 and O4 charts is very similar. However, a more careful
inspection may easily reveal that the O4 chart overperforms when larger shifts occur
in both μ and ρ, while the O2N2 is a better choice when larger shifts occur in μ and
relatively small shifts in ρ. It should be stressed that the parameters a, b, c, d and
�X , �y or tX , ty of the semiparametric O2N2, O4 charts can be appropriately chosen
or adjusted to meet the practitioner’s needs, like, for example, the need for detecting
equal or unequal potential shifts in the process mean and/or variability. All in all
and taking also into account the fact that the Q chart requires high computational
effort, the O2N2 and O4 schemes seem to offer a better alternative, especially for
non-normal processes.
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Table 5 ARLout performance of the Q, BV-MAX, O2N2 and O4 charts with common ARLin ≈
200 for bivariate normal data

Mean shifts Parametric BV-MAX chart

Design ρ

μ = μX = μY ARLin = 199.53 0.1 0.3 0.6 0.9

1.00 UCL = 3.023 193.54 136.37 49.52 15.26

1.30 n = 5 82.48 51.98 23.90 10.80

1.60 14.92 11.43 7.91 5.19

1.90 3.77 3.50 3.16 2.76

Mean shifts Nonparametric Q chart

Design ρ

μ = μX = μY ARLin = 198.19 0.1 0.3 0.6 0.9

1.00 UCL = 0.18 186.29 119.69 39.21 13.05

1.30 n = 5 110.76 75.53 30.19 11.42

1.60 m = 100 32.21 27.80 15.62 7.93

1.90 a = 0.005 9.32 9.19 7.33 5.06

Mean shifts Semiparametric O4 chart

Design ρ

μ = μX = μY ARLin = 201.60 0.1 0.3 0.6 0.9

1.00 m = 255 189.93 123.68 43.84 14.86

1.30 n = 5 106.53 71.59 29.12 11.42

1.60 a = c = 3 31.83 24.87 13.08 6.73

1.90 t = 1 10.55 8.81 5.85 3.83

Mean shifts Semiparametric O2N2 chart

Design ρ

μ = μX = μY ARLin = 202.66 0.1 0.3 0.6 0.9

1.00 m = 100 194.64 137.59 55.14 21.37

1.30 n = 5 98.11 72.13 34.58 16.08

1.60 a = c = 5 25.14 21.63 13.80 8.18

1.90 �X = �Y = 2 7.82 7.24 5.62 4.27

5 Conclusion—Future Research

Nonparametric techniques—including, among others, hypothesis testing, decision-
making, estimation and prediction procedures— have gained widespread acceptance
and have nowadays been used in several practical applications dealing with complex
real-world problems. The technology advances in computational power and storage
has offered effective tools to deal with the computational aspects related to these
problems. As a result, nonparametric methods were quickly appreciated, developed
and applied in various research areas, one of which is SPC .
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During the past decades, a tremendous increase has been observed in the SPC
literature. In the beginning, most charts were proposed for monitoring the location
parameter of a single quality characteristic; however very quickly, theCC techniques
were spread out in order to cover the need for monitoring the scale or both location
and scale of a characteristic. Multivariate surveillance using nonparametric methods
attracted the attention of practitioners relatively recently. The development of multi-
variate nonparametric CCs for mean and CCs for simultaneous monitoring of mean
and variability occurred almost at the same time. However, not much work has been
done in the detection of potential shifts in scale of either a univariate or a multivariate
process. Hopefully, more nonparametric CCs for variance/standard deviation will
be studied in the future, since in SPC variability is closely related to the stability of
the process.

When it comes to themultivariate SPC , there are two important issues that should
be addressed. Thefirst one is the dependence structure of the observations under study
and the second is the identification of the out-of-control variables. The vast majority
of the multivariate (parametric or nonparametric) CCs fail in detecting correlation
shifts. This may have an impact on the determination of the variables which triggered
an alarm; variables that are highly correlated to each other have an additive impact
in the plotted statistic and may easily shift the process to an out-of-control condition.
Future perspectives could be the development of schemes sensitive to correlation
shifts (such as the one proposed by Koutras and Sofikitou (2017b)), as well as the
refinement/improvement of the techniques that already exist in order to handle the
problem of detecting the variable(s) responsible for the out-of-control shift of the
monitored process.

Generally speaking, the multivariate CCs currently available in the literature
consist of direct extensions from univariate schemes. A majority of CCs are based
onmultivariate quadratic forms and therefore the test statistics asymptotically follow
aχ2 distribution. Some of these tests require the process distribution to be continuous
and symmetric.

In real-life scenarios, symmetry does not often exist, therefore it is important that
non-symmetric CLs be used. This is feasible when the CLs pertain percentiles or
order statistics from the reference sample which are not symmetrically placed. This
appealing property is observed in the median CC and its univariate or multivariate
extensions.

The construction of other multivariate nonparametric CCs involves exploiting—
in the broader sense—distance measures (such as data, simplicial or spatial depth,
Euclidean and Mahalanobis distances, etc.), which are used to estimate how far the
future observations are placed from the reference sample or some null historical val-
ues. Usually these CCs require extensive computational effort, which makes their
applicability difficult and time consuming, especially for large samples and data
dimensionality. To overcome this issue, one may try to reduce the number of dimen-
sions using techniques like PCA and then apply the charting techniques only to
the most important components. For more information, the interested reader might
wish to consult the related articles presented earlier in Section3.3. However, such
techniques may not always provide a small number of components without missing



100 E. M. Sofikitou and M. V. Koutras

a large proportion of data information. This unveils the need and importance of con-
structing schemes which remain invariant under transformations and do not require
complex computational manipulations.

Another important point that should be mentioned is that currently there is lack of
software availability, which makes the implementation ofCCs by practitioners quite
difficult. A few packages are currently available in R Software; for a more detailed
description of this topic we refer to Chakraborti and Graham (2019).

It should also be stressed that a lot of nonparametric CCs use a relatively large
reference (historical) sample to determine appropriate CLs. This links with the sam-
ple size calculations and requirements needed to set up the decision rule. The sample
size effect and the impact of Phase I Analysis on Phase II have been studied by
a few authors (see Sect. 1); however, this seems to be an open problem for further
investigation.

In closing we mention that for monitoring attributes, count or discrete data only
parametric CCs have been proposed up to date. Although some discussion can be
found on the nonparametric framework of this problem in Qiu and Li (2011) and Qiu
et al. (2019), it seems that there is a shortage in the literature on that matter.
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The Shewhart Sign Chart with Ties:
Performance and Alternatives
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and Petros E. Maravelakis

Abstract The Shewhart Sign (SN) control chart is a well-known distribution-free
statistical process monitoring tool due to its robustness to the violation of the nor-
mality assumption for observations. To the best of our knowledge, there is not yet a
thorough understanding ofwhat happens to the statistical properties of the SN control
chart in the presence of observations tied to the monitored population quantile, for
example, themedian: this is an event occurring in practice, in particular when the pro-
cess runs in-control, because of the measurement device resolution, which inevitably
introduces a rounding-off error. In this paper, we tackle the problem and show that
when ties occur, the Shewhart SN control chart is no longer distribution-free, even in
the presence of a small probability of having ties. To solve the problem, we discuss
some procedures to handle the occurrence of ties. The study shows that the best strat-
egy simply consists in implementing a Bernoulli trial approach: in practice, ties are
reconsidered by 50% chance as being greater or smaller than the monitored popula-
tion quantile. We quantitatively show that this approach allows the distribution-free
properties of the Shewhart SN to be generally preserved.
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1 Introduction

Control charts have been widely recognized as a primary tool of Statistical Pro-
cess Monitoring (SPM) that are frequently used for improving process capability
and productivity by reducing variability in the process, (see Montgomery 2013). In
SPM literature, several control charts for monitoring the process mean and/or the
dispersion have been proposed. These control charts are often designed by assuming
that the observations are normally distributed. However, when the actual distribution
of the observations is not normal or the one anticipated by the quality practitioner,
many false alarms can be triggered by the control chart. In this context, the use of a
nonparametric (or distribution-free) control chart can be a good solution to overcome
the problems related to the distributional assumptions. In the SPM literature, the first
work that dealt with a nonparametric control chart was by McGilchrist andWoodyer
(1975), who proposed a distribution-free cumulative sum technique applied to the
monitoring of rainfall amounts. Then, the properties and design of distribution-free-
type control charts have been thoroughly investigated by many authors. For further
details see, Bakir and Reynolds (1979), Amin and Searcy (1991), Chakraborti et al.
(2001), Li et al. (2010), Graham et al. (2011), Zou and Tsung (2011), Yang et al.
(2011), Lu (2015) and Abid et al. (2017).

In recent years, many researchers have paid attention to the development and
implementation of new nonparametric control charts. Chakraborty et al. (2016) pro-
posed a distribution-free generally weighted moving average (GWMA) control chart
based on theWilcoxon signed-rank statistic. Capizzi (2015) discussed about the need
for a nonparametric approach to Phase I analysis and the use of variable selection-
based control charts in multivariate Phase II monitoring. The control charts moni-
toring a sign statistic have been originally introduced by Amin et al. (1995). EWMA
control charts with sign statistics have been investigated by Graham et al. (2011) and
Yang et al. (2011). More recently, Celano et al. (2016a) have investigated the statis-
tical performance of a Shewhart Sign (SN) control chart in a process with a finite
production horizon and they have shown that it often outperforms the parametric t
control chart. Then, Celano et al. (2016b) investigated the statistical performance of
the Shewhart SN control chart for finite populations demonstrating the change of the
distribution properties of the sign statistic and suggesting a simple rule to select its
design parameters. Castagliola et al. (2019) proposed a new Phase II EWMA-type
chart for count data, based on the sign statistic and they also provided a methodology
to compute the exact run length properties of the proposed chart. Very recently, Qiu
(2018) discussed some perspectives on issues related to the robustness of conven-
tional SPM charts and to the strengths and limitations of various nonparametric SPM
charts.

A central role in the implementation of a control chart is played by the measure-
ment system. A measuring device inevitably introduces some errors in the observed
value, thus making unobservable the actual value of the characteristic under control.
Control charts with measurement error have been widely investigated in the litera-
ture, in particular with reference to the bias and precision errors, for more details
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see the recent review by Maleki et al. (2017). However, an important role in the
distribution definition of the observed values is played by the measurement system
resolution, which introduces a rounding-off error resulting in a discretization of the
observed measures. Rounding-off errors also result in “ties”, that is, observations
having the same observed value, even if their true distribution is continuous. The
treatment of ties in a nonparametric approach is of great importance since the choice
of techniques for treating them can markedly affect its distribution-free properties,
see Putter (1955) and Gibson and Melsa (1976) for more details.

To the best of our knowledge, there is not yet a thorough understanding of what
happens to the statistical properties of the Shewhart SN control chart in the presence
of observations tied to the monitored population quantile. In this paper, we tackle the
problem and show that when ties occur the Shewhart SN control chart is no longer
distribution-free, even in the presence of a small probability of ties. To overcome this
problem, we discuss some procedures to handle the occurrence of such ties.

The rest of this paper proceeds as follows: in Sect. 2, the Shewhart SN chart
“without ties” is briefly introduced; In Sect. 3, the Shewhart SN chart “with ties”
is defined; Sect. 4 provides the effect of the measurement system resolution on the
Shewhart SN chart. In Sect. 5, we discuss procedures to tackle the occurrence of
rounding-off errors. Finally, some concluding remarks and recommendations are
made in Sect. 6.

2 The Shewhart SN Chart “Without Ties”

Let X be a quality characteristic following an unknown continuous distribution with
cumulative distribution function (c.d.f.) FX (x |θ) where θ is the location parameter
to be monitored. If θ = θ0 the process is declared as in-control and, if θ = θ1, the
process is declared as out-of-control. In this paper, without loss of generality, we
consider med(X) = θ as being the median of the distribution FX (x |θ) (but other
quantiles can also be considered).

Let us suppose that, at time t = 1, 2, . . ., we observe subgroup {Xt,1, Xt,2, . . . ,

Xt,n} of size n ≥ 1. Let St,k = sign(Xt,k − θ0), k = 1, 2, . . . , n, where sign(x) =
−1, 0 or+1 if x < 0, x = 0 or x > 0, respectively. At this step of the study, following
past literature about the Shewhart SN control chart, we assume a perfect calibration of
themeasurement system, which eliminates bias and linearity errors; furthermore, the
precision error is sufficiently small to be neglected. Definitions of these errors can be
found in Montgomery (2013). Finally, the gauge resolution is such that the rounding
error is eliminated. By definition, the plotting statistic SNt , at time t = 1, 2, . . ., of
the Shewhart SN control chart is

SNt =
n∑

k=1

St,k . (1)

Let π−1, π0, and π+1 be the following probabilities:
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π−1 = Pr(St,k = −1) = Pr(Xt,k < θ0) = FX (θ0|θ),

π0 = Pr(St,k = 0) = Pr(Xt,k = θ0),

π+1 = Pr(St,k = +1) = Pr(Xt,k > θ0) = 1 − FX (θ0|θ).

where θ can be either θ0 or θ1. As X is assumed to be a continuous random vari-
able, no matter the value of θ (θ0 or θ1), we always have π0 = 0 (see Fig. 1a, b)
and, consequently, each St,k can only take values −1 or +1. Therefore, the random
variable SNt is defined on {−n,−n + 2, . . . , n − 2, n} and its distribution can be eas-
ily obtained by considering the relationship SNt = 2Dt − n, where Dt = #{Xt,k >

θ0, k = 1, . . . , n}, i.e., Dt is the number of observations {Xt,1, Xt,2, . . . , Xt,n} larger
than θ0. As Pr(Xt,k > θ0) = π+1, we have Dt ∼ Bin(n, π+1), i.e., a binomial random
variable of parameters n and π+1 and the c.d.f. FSN(s|n) of SNt is equal to

FSN(s|n) = FBin

(
n + s

2
|n, π+1

)
,

where FBin(. . . |n, π+1) is the c.d.f. of the binomial distributionwith parameters n and
π+1. Moreover, if the process is in-control (θ = θ0), we also have π−1 = π+1 = 0.5
(see Fig. 1a) and the c.d.f. of SNt reduces to

FSN(s|n) = FBin

(
n + s

2
|n, 0.5

)
.

Because the in-control distribution of SN only depends on n and π+1, which is a
constant, (and not on FX (x |θ)), the Shewhart SN control chart “without ties” is a
distribution-free control chart. The control limits (LCL,UCL) and the centerline CL
of the Shewhart SN control chart are equal to LCL = −C , CL = 0, and UCL = C
where C ∈ {2, 4, . . . , n} (if n is an even integer) or C ∈ {1, 3, . . . , n} (if n is an
odd integer) is a constant to be fixed. The process is declared to be in-control if
−C < SNt < C and out-of-control otherwise. The type II probability error β of the
Shewhart SN control chart “without ties” is equal to

β = Pr(−C < SNt < C |θ = θ1) = Pr(−C < SNt ≤ C − 2|θ = θ1),

which can be rewritten in terms of the binomial distribution as

β = FBin

(
n + C

2
− 1|n, π+1

)
− FBin

(
n − C

2
|n, π+1

)
,

with π+1 = 1 − FX (θ0|θ1). As the distribution of the Run Length (RL) of the She-
whart SN control chart follows a geometric distribution with parameter 1 − β, its
probability mass function (p.m.f.) and c.d.f. are equal to fRL(�) = Pr(RL = �) =
(1 − β)β�−1 and FRL(�) = Pr(RL ≤ �) = 1 − β� for � = 1, 2, . . ., respectively, its
mean ARL = E(RL) = 1

1−β
and its standard-deviation SDRL = σ(RL) =

√
β

1−β
.
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θ0

π−1 = 0.5

π0 = 0

π+1 = 0.5

θ = θ0

· · · θ0 − 2ρ θ0 − ρ θ0 θ0 + ρ θ0 + 2ρ · · ·

π−1 π+1

θ = θ0

lortnoc-ni)c(lortnoc-ni)a(

θ0

π−1
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π+1

θ = θ1

· · · θ0 − 2ρ θ0 − ρ θ0 θ0 + ρ θ0 + 2ρ · · ·

π−1 π0 π+1

θ = θ1

(b) out-of-control (d) out-of-control

π0

Fig. 1 Definition of π−1, π0, and π+1. Subfigures a and b correspond to the “without ties” case,
while subfigures c and d correspond to the “with ties” case

3 The Shewhart SN Chart “With Ties”

In practice, due to the imperfection of the measurement system, the real values
Xt,k of the observations are never observed. Instead, we observe a measured value
X ′
t,k �= Xt,k . Many sources of error can be identified in a measurement system. A

model to account for three well-known sources of error is

X ′
t,k =

⌊
A + BXt,k + εt,k

ρ
+ 1

2

⌋
ρ, (2)

where 	. . . 
 is the floor function, the constants (A, B) account for the bias-linearity
error, the precision error is quantified through the noise εt,k and ρ is a parameter
quantifying the device resolution, which introduces a rounding-off error. Equation (2)
refers to the linear measurement error model, see Linna and Woodall (2001), who
discuss the measurement error effect on the performance of a Shewhart control chart
formonitoring themeanwithout considering the rounding-off error. The resolution of
a measuring device is defined as the smallest amount of change in the quality charac-
teristic that the measurement system can faithfully indicate: it is reported as a unit of
measure. For example, the resolution of a scale can be equal to 0.01gr; the parameter
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ρ is equal to the resolution value: then, for the scale we get ρ = 0.01. More specifi-
cally, if ρ is the resolution of the measurement system then, by definition, we have
X ′
t,k = x if Xt,k ∈ (x − ρ

2 , x + ρ

2 ]. For instance, if ρ = 0.1 and θ0 = 100 then pos-
sible measured values X ′

t,k are {. . . , 99.7, 99.8, 99.9, 100, 100.1, 100.2, 100.3, . . .}
and, if the real value is Xt,k = 100.038, then themeasured observation is X ′

t,k = 100,
thus generating a tie. It is evident that the rounding-off error introduced by the device
resolution in the measurement of the true value of a quality characteristic results in a
discretization of the observed quality characteristic, if this is a continuous variable,
thus increasing the probability of having ties. Here, we are only interested to inves-
tigate the effect of the tool resolution on the SN control chart performance: that is,
we still maintain the assumption of a perfect tool calibration, (A, B) = (0, 1) and
we intentionally overlook the precision error. This last source of error is the sum
of the repeatability and reproducibility errors. They are estimated by means of a
Gauge R&R study, which is usually based on a dataset of multiple measurements
on a sample of m =20–30 parts collected by different appraisers, see Montgomery
(2013). Conversely, the resolution is an intrinsic device characteristic and a source
of error that cannot be eliminated. Under the assumption of the measurement error
only depending on the rounding-off error, the error model above reduces to

X ′
t,k =

⌊
Xt,k

ρ
+ 1

2

⌋
ρ. (3)

In the case of rounding-off errors of the measurement system, the statistic St,k used
in (1) must be replaced by St,k = sign(X ′

t,k − θ0) and the probabilities π−1, π0 and
π+1 must be redefined as

π−1 = Pr(X ′
t,k < θ0) = Pr(Xt,k ≤ θ0 − ρ

2 ) = FX (θ0 − ρ

2 |θ),

π0 = Pr(X ′
t,k = θ0) = Pr(θ0 − ρ

2 < Xt,k ≤ θ0 + ρ

2 )

= FX (θ0 + ρ

2 |θ) − FX (θ0 − ρ

2 |θ),

π+1 = Pr(X ′
t,k > θ0) = Pr(Xt,k > θ0 + ρ

2 ) = 1 − FX (θ0 + ρ

2 |θ).

In the previous Section, we claimed that because X is a continuous random variable,
no matter the value of θ , we always have π0 = Pr(Xt,k = θ0) = 0. But now, with the
new definition of π0, we actually have π0 �= 0 (see Fig. 1c, d) and, consequently, St,k
will not only take values−1 or+1 but it will also take the value 0. As a consequence,
the statistical properties of the SNt statistic change as follows:

• the random variable SNt is no longer defined on {−n,−n + 2, . . . , n − 2, n} but
it is rather defined on {−n,−n + 1, . . . , n − 1, n},

• the p.m.f. fSN(s|n, π−1, π0, π+1) of SNt is no longer related to the binomial dis-
tribution as for the “without ties” case. As far as we know, fSN(s|n, π−1, π0, π+1)

does not correspond to a well-known distribution. For this reason, we provide in
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Appendix three different ways for evaluating it. From now on, for simplicity, we
denote it as fSN(s|n) instead of fSN(s|n, π−1, π0, π+1), (but still having in mind
that, in the “with ties” case, the in- and out-of-control distribution of SNt actually
depends on π−1, π0 and π+1). The c.d.f. FSN(s|n) of SNt is simply obtained by
summing the p.m.f. terms, i.e.,

FSN(s|n) = fSN(−n|n) + fSN(−n + 1|n) + · · · + fSN(s|n).

• Because the in-control distribution of SN depends on FX (x |θ) (through π−1, π0

and π+1), the Shewhart SN control chart “with ties” is no longer a distribution-free
control chart.

• The type II probability error β of the Shewhart SN control chart “with ties” is
equal to

β = Pr(−C < SNt < C |θ = θ1) = Pr(−C < SNt ≤ C − 1|θ = θ1),

which can be rewritten in terms of the SN distribution as

β = FSN(C − 1|n) − FSN(−C |n).

The formulas for the p.m.f., c.d.f., ARL, and SDRL of the RL of the Shewhart SN
control chart “with ties” are the same as the ones for the “without ties” case.

Now, without loss of generality, we will assume that (i) FX (x |θ) belongs to a
location-scale family of distributions and it can be rewritten FX (x |θ) = FZ ( x−θ

σ
)

where σ is the standard-deviation of X and (ii) θ1 = θ0 + δσ , where δ is the stan-
dardized distribution shift. It is not difficult to prove that

π−1 = FZ (− κ
2 − δ),

π0 = FZ ( κ
2 − δ) − FZ (− κ

2 − δ),

π+1 = 1 − FZ ( κ
2 − δ),

where κ = ρ

σ
is the standardized resolution. Replacing δ = 0 in the previous equa-

tions allows to obtain the in-control values for π−1, π0, and π+1 as

π−1 = FZ (− κ
2 ),

π0 = FZ ( κ
2 ) − F(− κ

2 ),

π+1 = 1 − FZ ( κ
2 ).



114 P. Castagliola et al.

As an illustration, Fig. 2 depicts the p.m.f. fSN(s|n) of SNt for n = 20 (left side),
n = 50 (right side), and κ ∈ {0, 0.05, 0.1, 0.2}. These plots assume a normal (0, 1)
c.d.f. for Fz(z). As it can be seen, when κ = 0, SNt is only defined for {−n,−n +
2, . . . , n − 2, n} (as expected) and, when κ > 0, SNt becomes also defined for
“intermediate values” {−n + 1,−n + 3, . . . , n − 3, n − 1}. The larger is κ the larger
are the probabilities associated with these intermediate values and the smaller are
the probabilities associated with the initial ones {−n,−n + 2, . . . , n − 2, n}.

-20 -10 0 10 20 -50 -40 -30 -20 -10 0 10 20 30 40 50

n = 20 κ = 0 n = 50 κ = 0

-20 -10 0 10 20 -50 -40 -30 -20 -10 0 10 20 30 40 50

n = 20 κ = 0.05 n = 50 κ = 0.05

-20 -10 0 10 20 -50 -40 -30 -20 -10 0 10 20 30 40 50

n = 20 κ = 0.1 n = 50 κ = 0.1

-20 -10 0 10 20 -50 -40 -30 -20 -10 0 10 20 30 40 50

n = 20 κ = 0.2 n = 50 κ = 0.2

Fig. 2 Examples of p.m.f. fSN(s|n) of SNt for n = 20 (left side), n = 50 (right side), and κ ∈
{0, 0.05, 0.1, 0.2}
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4 Effect of the Measurement System Resolution on the
Shewhart SN Chart

In order to evaluate the effect of the measurement system resolution and the related
probability to have observations tied to the monitored population quantile θ0, we
have chosen a benchmark of 18 Johnson’s type distributions covering a wide range
of skewness γ3 = μ3

σ 3 ∈ {0, 2, 5} and kurtosis γ4 = μ4

σ 4 − 3, see Fig. 3 (remark: all the
plots are on the same scale). A Johnson’s distribution depends on four parameters a,
b > 0, c and d > 0 and it is either

• defined on [c, c + d] (bounded, denoted as B in Table1) and its c.d.f. FZ (x) is
equal to

FZ (x) = �

(
a + b ln

(
x − c

c + d − x

))
,

• or defined on (−∞,+∞) (unbounded, denoted asU in Table1) and its c.d.f. FZ (x)
is equal to

FZ (x) = �

(
a + b sinh−1

(
x − c

d

))
,

where �(. . . ) is the c.d.f. of the normal (0, 1) distribution. The values of parame-
ters a, b, c, and d in Table1 have been computed in order to fulfill the following
constraints: (i) the median med(Z) = θ0 = 0, i.e FZ (0) = 0.5, (ii) the standard-
deviation σ(Z) = 1, (iii) the skewness γ3(Z) and kurtosis γ4(Z) coincide with the
values γ3 and γ4 as in Table1, respectively. In terms of skewness and kurtosis, cases
#1–#6 correspond (without being exactly identical) to some remarkable symmetric
distributions: case #1 corresponds to the uniform distribution, case #2 corresponds
to the triangular distribution, case #3 corresponds to the normal distribution (here
the approximation b = d = 100 has been used), and cases #4–#6 correspond to the
Student t distribution with 10, 6, and 5 degrees of freedom, respectively.

For the 18 Johnson’s distributions listed in Table1, Table2 (for n 20) and Table3
(for n = 50) show the ARL values of the Shewhart SN control chart for shifts δ ∈
{−1, −0.5, −0.2, −0.1, 0, 0.1, 0.2, 0.5, 1} and for standardized resolution κ = 0
(i.e., “without ties”) and κ ∈ {0.05, 0.1, 0.2} (i.e., “with ties”). The chart parameter
C has been selected assuming a perfect measurement device, (i.e., κ = 0), and an
in-control ARL value as close as possible to 370.4 (i.e., the resulting values can
be either smaller or larger than 370.4). For the considered sample sizes, we have
(C = 14,ARL0 = 388.1) when n = 20 and (C = 22,ARL0 = 384.3) when n =
50. Tables2 and 3 also provide the values π̄0, π̄+1, and ARL corresponding to the
average of values π0, π+1 and ARL for the 18 cases under consideration. From
Tables2 and 3, we can draw the following conclusions:

• if δ = 0 and κ = 0 then all the in-control ARL values are the same, no matter
which distribution has been considered among the 18 available ones. For example,
we have ARL = 388.1 when n = 20 and ARL = 384.3 when n = 50, (see values



116 P. Castagliola et al.

0 0 0
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0 0 0
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0 0 0
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0 0 0

Case #16 Case #17 Case #18

Fig. 3 Benchmark of 18 Johnson’s type distributions
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Table 1 Benchmark of 18 Johnson’s type distributions

Case γ3 γ4 Type a b c d

1 0 −1.2 B 0.0000e+00 6.4646e-01 −1.8153e+00 3.6306e+00

2 0 −0.6 B 0.0000e+00 1.3983e+00 −3.1097e+00 6.2195e+00

3 0 0.0 U 0.0000e+00 1.0000e+02 0.0000e+00 1.0000e+02

4 0 1.0 U 0.0000e+00 2.3212e+00 0.0000e+00 2.1094e+00

5 0 3.0 U 0.0000e+00 1.6104e+00 0.0000e+00 1.3118e+00

6 0 6.0 U 0.0000e+00 1.3493e+00 0.0000e+00 1.0000e+00

7 2 4.3 B 1.7464e+00 6.9076e–01 −4.8932e–01 6.6213e+00

8 2 6.1 B 3.3279e+00 1.2270e+00 −1.0016e+00 1.6088e+01

9 2 7.9 U −4.8560e+00 1.8044e+00 −1.4190e+00 1.9332e–01

10 2 10.8 U −1.0444e+00 1.4320e+00 −6.5538e–01 8.2361e–01

11 2 16.7 U −5.2977e–01 1.2093e+00 −3.3154e–01 7.3314e–01

12 2 25.5 U −3.4371e–01 1.0892e+00 −2.0230e–01 6.3054e–01

13 5 39.9 B 3.3715e+00 7.4593e–01 −2.7094e–01 2.5150e+01

14 5 52.6 B 5.2193e+00 9.8134e–01 −4.7316e–01 9.7043e+01

15 5 65.3 U −4.0187e+00 1.0864e+00 −5.6652e–01 2.8059e–02

16 5 86.4 U −7.5701e–01 9.8744e–01 −3.2033e–01 3.7954e–01

17 5 128.7 U −4.3187e–01 9.0797e–01 −1.8538e–01 3.7543e–01

18 5 192.1 U −2.9868e–01 8.5558e–01 −1.2122e–01 3.4029e–01

in bold in Tables2 and 3). On the other hand, if κ > 0, then the in-control ARL
values are no longer equal, (they actually depend on the specific distribution), and
they tend to become larger as γ4 increase. For instance, in Table2, for κ = 0.2
and δ = 0, we have ARL = 722.2 for case #1 for which γ4 = −1.2 while we have
ARL = 2274.8 for case #13 for which γ4 = 39.9.

• if γ3 = 0 (cases #1–#6) then, nomatter the value of κ , the ARL values are symmet-
ric, i.e., they are the same for shifts δ and −δ. On the other hand, if γ3 �= 0 (cases
#7–#18) then the ARL values are asymmetric. More specifically, negative shifts
−δ give larger ARL values than positive ones. For instance, for n = 20, κ = 0.1,
case #14, we have ARL = 197.3 when δ = −0.1 while we have ARL = 137.0
when δ = 0.1. This asymmetry also holds for the ARL values.

• for each distribution and shift size δ, the larger is κ the larger are the ARL values.
For instance, in Table2, for case #9 and shift δ = −0.2, we have ARL = 72.5 for
κ = 0, ARL = 89.5 for κ = 0.05, ARL = 105.8 for κ = 0.1 and ARL = 138.9
for κ = 0.2. The same happens to the ARL values. This clearly highlights the fact
that an increasing value of κ not only affects the distribution-free property of the
Shewhart SN control chart when the process runs in-control, but also deteriorates
its detection efficiency.
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As the SN control chart is a Shewhart-type one, we simply have SDRL =√
ARL(ARL − 1) � ARL. This means that the SDRL of the SN control chart (with

or without ties) varies the same way as its ARL does, i.e., when the ARL increases
(decreases) the SDRL increases (decreases). Therefore, all the conclusions stated
above concerning the ARL also holds for the SDRL.

We only presented the results for n = 20 and n = 50, but all the conclusions
above remain nevertheless valid for any value of n. Now a question arises: are there
suitable procedures to handle the occurrence of tied observations to θ0 and to restore
the statistical properties of the SN control chart? Throughout the lines of the next
section we tackle this problem.

5 Procedures to Tackle the Occurrence of Rounding-Off
Errors

The selection of a suitable procedure to reduce or, possibly, eliminate the effect of
the rounding-off error is essential to avoid the limitation of the SN statistic imple-
mentation for statistical process monitoring purposes. Some reference to how it is
possible to handle the occurrence of ties can be found in the pioneer paper about
the SN control charts by Amin et al. (1995), who suggested to maintain the val-
ues St,k = 0 in the computation of the SNt statistic and to use the control limits
(LCL,UCL) = (−C,C): this approach totally overlooks the effect of the rounding-
off error, which changes the distributional properties of the SNt statistic, and must be
avoided. In their survey paper about nonparametric control charts Chakraborti et al.
(2001) suggested to remove ties from the sample and to update the sample size n,
if their probability of occurrence is small. This approach makes harder to define a
priori the statistical performance of the SN control chart because varying n requires
to redefine the parameter C ; in fact, a control chart with randomly variable control
limits should be set up. Furthermore, the same authors state that when the probability
of occurrence of values St,k = 0 is high, a more sophisticated analysis is needed. In
the following, we suggest and test two different procedures to tackle the problem.

5.1 Procedure 1: Computing New Chart Control Limits C ′

In order to make the Shewhart SN control chart less sensitive to departures from
the κ = 0 case, we suggest defining dedicated chart parameters C ′ depending on the
actual value of the standardized resolution κ and offering an in-control ARL value
as close as possible to its nominal value. The selection of these values requires to
have reliable estimates about the type of distribution of the observed measures and
its parameters. For the 18 distributions displayed in Table1, Table4 (for n = 20)
and Table5 (for n = 50) provide these alternative chart parameters C ′ as well as the
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corresponding ARL values for shifts δ ∈ {−1, −0.5, −0.2, −0.1, 0, 0.1, 0.2, 0.5,
1} and for standardized resolutions κ ∈ {0.05, 0.1, 0.2}. Results for κ = 0 are also
provided as information, (in this case, we have C ′ = C). As for Tables2 and 3, the
average value ARL is also given. From the results displayed in Tables4 and 5, we
can conclude that with these alternative chart parameters C ′, no matter the value of
κ or the considered distributions #1–#18:

• the in-control ARL values are much closer to 370.4 than the ones obtained with
the same chart parameter C . For example, if n = 20 and κ = 0.2, the in-control
(δ = 0) ARL values obtained with the same chart parameter C = 14 range from
722.2 to 2274.8 with an average value ARL = 1268.3 (i.e., very far from 370.4),
see Table2. On the other hand, using the alternative chart parameters C ′ in Table4
(they are all equal to either 13 or 12) allows obtaining in-control ARL values
ranging from 232.1 to 494.9 with an average value ARL = 365.4 (i.e., much
closer to 370.4).

• the out-of-control ARL values are smaller than the ones obtained with the same
chart parameter C . This can be verified by comparing the individual ARL values
(for each case) as well as the overall ARL values in Tables 2 and 3 to those shown
in Tables 4 and 5. For example, if n = 50 and κ = 0.1, then the average ARL
values are equal to 1.0, 2.1, 25.5, 120.8, 106.9, 21.0, 1.7, 1.0 with the same chart
parameterC = 22 when δ ∈ {−1,−0.5,−0.2,−0.1, 0.1, 0.2, 0.5, 1} (see Table3)
while, if we use the alternative chart parameters C ′ in Table5 (they are all equal
to 21), we obtain 1.0, 1.8, 17.9, 75.1, 67.5, 14.8, 1.6, 1.0.

5.2 Procedure 2: Bernoulli Trial Approach

A second possible strategy consists in randomly reassigning to each value St,k = 0
either the value St,k = −1 or St,k = +1 using a simple “flip-a-coin” scheme, (i.e., if
St,k = 0 at a first place then transform it into St,k = 2Dt,k − 1where Dt,k ∼ Ber(0.5)
is a Bernoulli random variable with probability p = 0.5. Applying this strategy is
equivalent to consider the Shewhart SN control chart in the “without ties” case with
probabilities

π ′
−1 = π−1 + π0

2
π ′
0 = 0

π ′
+1 = π+1 + π0

2

i.e., the probability π0 is equally allocated on both sides for values St,k = −1 and
St,k = +1. We suggest using this “flip-a-coin” strategy whether the underlying
unknown distribution is symmetric or not. In order to evaluate the effect of this
strategy on the statistical performance of the Shewhart SN control chart, we have
first computed in Table6 the in-control (δ = 0) values of π0, π+1, and π ′+1 for the 18
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distributions in Table1 and for κ ∈ {0, 0.05, 0.1, 0.2}. From the results in Table6,
we can conclude that

• when κ = 0, we have π0 = 0, π+1 = π ′+1 = 0.5, no matter the considered distri-
bution. This is, of course, an expected result.

• For the symmetric cases #1–#6, the values of π0 and π+1 vary from one case to
another but we always have π ′+1 = 0.5. This is also an expected result.

• For the asymmetric cases #7–#18, all the values of π0, π+1, and π ′+1 vary but, quite
surprisingly, the value of π ′+1 remains very close to 0.5 (and so is π ′−1 = 1 − π ′+1).
In the most extreme case (distribution #13 and κ = 0.2), we have π ′+1 = 0.5209
but, in all the other cases we always have |π ′+1 − 0.5| < 0.01.

This allows us to conclude that, in the “with ties” case, when the underlying
distribution is symmetric implementing the “flip-a-coin” strategy allows theShewhart
SN control chart to be a distribution-free control chart, as in the “without ties” case. In
general, unless the skewness of the underlying distribution or the value of κ are very
large, it allows the Shewhart SN control chart to be approximately distribution-free.

For the 18 distributions in Table1, Table7 (for n = 20), and Table8 (for n = 50)
show theARLvalues of theShewhart SNcontrol chart using the “flip-a-coin” strategy
for shifts δ ∈ {−1.0, −0.5, −0.2, −0.1, 0, 0.1, 0.2, 0.5, 1.0} and for standardized
resolution κ = 0 (i.e., “without ties”) and κ ∈ {0.05, 0.1, 0.2} (i.e., “with ties”). The
chart parameter C is the one corresponding to the Shewhart SN control chart in
the “without ties” case, i.e., C = 14 when n = 20 and C = 22 when n = 50. From
Tables7 and 8, we can draw the following conclusions:

• Concerning the in-control situation, except for the extreme case #13, all the ARL
values are now similar, no matter the value of κ , (the situation was totally different
in the “with ties” case in Tables2 and 3). The in-control ARL values in terms of
κ lead to the conclusion that this Procedure gives much better in-control results
than Procedure 1 since the effect of the rounding error is almost eliminated. Con-
sequently, we may state that using this Procedure the in-control distribution-free
property of the SN control chart is preserved.

• Concerning the out-of-control situation, still excluding the extreme case #13, for a
specific case and shift value δ, the ARL values are very similar, no matter the value
of κ . For instance, in Table7, for case #9 and shift δ = −0.2, we have ARL = 72.5
for κ = 0, ARL = 72.6 for κ = 0.05, ARL = 73.2 for κ = 0.1 and ARL = 75.5
for κ = 0.2 (these values were ARL = 89.5 for κ = 0.05, ARL = 105.8 for κ =
0.1 and ARL = 138.9 for κ = 0.2 in Table2 without the use of the “flip-a-coin”
strategy).

Based on these findings, we suggest implementing this second strategy when
facing the problem of ties during the implementation of the Shewhart SN control
chart. Finally, it is worth noting that this conclusion can be extended to any control
chart implementing the SN statistic.
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6 Conclusions

Statistical process monitoring tools work by measuring at scheduled sampling
instants observations of the quality characteristic to be controlled. The role of the
measurement device and the sources of error associated with the measure collection
are of primary importance. Too often, the bad effects related to the measurement
system imprecision are overlooked and the monitoring process is not reliable. In this
paper, we have shown the delicate role played by the device resolution when mea-
sures of a quality characteristic are collected to run a Shewhart SN control chart. In
particular, the rounding-off error changes the statistical distribution of the SN statis-
tic and any control chart based on the SN statistic loses the distribution-free property.
We have quantified for a comprehensive set of distributions how the control chart’s
performance changes for both the in- and out-of-control conditions. To propose a
solution to this problem, we have discussed two procedures to cope with ties. We
have found that one of these procedures, based on a Bernoulli trial approach, is very
efficient to maintain the distribution-free property for the SN control charts and it is
immediately applicable to any situation.

Finally, we want to highlight the need to study the effect of measurement error
to the already established nonparametric control charts in the literature. Such stud-
ies will help practitioners to implement on-line nonparametric control charts while
improving the reliability of the results at the same time.

Appendix

In this Appendix, we provide three different ways for evaluating fSN(s|n) in the
“with ties” case.

The first way to compute fSN(s|n) is a recursive one. The probability to have
SNt = St,1 + · · · + St,n = s is equal to the probability to have either

• (St,1 + · · · + St,n−1 = s + 1) ∩ (St,n = −1), or
• (St,1 + · · · + St,n−1 = s) ∩ (St,n = 0), or
• (St,1 + · · · + St,n−1 = s − 1) ∩ (St,n = +1).

Therefore, we have

fSN(s|n) = π−1 fSN(s + 1|n − 1) + π0 fSN(s|n − 1) + π+1 fSN(s − 1|n − 1),

if s ∈ {−n,−n + 1, . . . , n} and fSN(s|n) = 0, otherwise, with fSN(s|1) = πs for
s ∈ {−1, 0,+1}.

The second approach consists in considering the possible values of SNt as the
states {−n,−n + 1, . . . , n} of a discrete-time Markov chain with transition proba-
bility matrix
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P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

States −n −n + 1 −n + 2 · · · n − 2 n − 1 n ∗
−n π0 π+1 0 · · · · · · · · · 0 π−1

−n + 1 π−1 π0 π+1
. . . 0

−n + 2 0 π−1 π0 π+1
. . .

...
...

...
. . .

. . .
. . .

. . .
. . .

...

n − 2
...

. . . π−1 π0 π+1
. . .

...

n − 1
...

. . . π−1 π0 π+1 0

n
...

. . . π−1 π0 π+1

∗ 0 · · · · · · · · · · · · 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The state “∗” is an extra absorbing state. If we start with the initial probability
vector π = (0, . . . , 0, 1, 0, . . . , 0)ᵀ, then the p.m.f. vector

f = ( fSN(−n|n), fSN(−n + 1|n), . . . , fSN(n|n))ᵀ

containing all the values fSN(s|n) for s ∈ {−n,−n + 1, . . . , n} can simply be
obtained using the classical formula f = πPn .

The third way to compute fSN(s|n) consists in summing all the possible com-
binations, like for the binomial distribution. If n−1 is the number of occurrences
of St,k = −1 in {St,1, St,2, . . . , St,n} then SNt is necessarily within −n−1 and
−n−1 + n − n−1 = n − 2n−1. Consequently, if SNt = s we have −s ≤ n−1 ≤ n−s

2
and, as n−1 is a positive integer, we have max(0,−s) ≤ n−1 ≤ 	 n−s

2 
. Therefore, for
each integer value i ∈ {max(0,−s), . . . , 	 n−s

2 
} we have to count all the combina-
tions of

• i occurrences of St,k = −1,
• n − s − 2i occurrences of St,k = 0,
• s + i occurrences of St,k = 1,

leading to the following formula:

fSN(s|n) =
	 n−s

2 
∑

i=max(0,−s)

(
n

i

)(
n − i

s + i

)
π i

−1π
n−s−2i
0 π s+i

+1 .

The three methods presented above have been tested and, no matter the values of
n, π−1, π0 and π+1, they always give the same results.
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Statistical Process Monitoring
and the Issue of Assumptions in Practice:
Normality and Independence

S. Chakraborti and R. S. Sparks

Abstract Most statistical process monitoring begins with an assumed model
(implicitly or otherwise) and further assumptions about the components of themodel.
These assumptions all play important roles in practice, in the solution that is pro-
posed for the problem at hand. Since the proposal is based on these assumptions,
it is important that they are thoroughly investigated and properly validated, so that
the results can be depended on. In this paper, we examine two of the important and
common assumptions, namely, normality and independence.We provide some exam-
ples with real data and illustrate the consequences. It is seen that the nonparametric
(distribution-free) approach may be a safer option in many applications in practice.

1 Introduction

In the modern age, large amounts of data are often available from a variety of sources
and in a variety of environments that need to be studied and analyzed. This means
one needs to make sense of the volume of data and then be able to make efficient
decisions based on the data. The study may consist of one time or cross-sectional
analysis at a given point in time or a longer term ongoingmonitoring of a process. The
analysis involves both descriptive and inferential statistics. The descriptive analysis
involves visualization and numerical summaries to help understand what is going on.
The decision making via prediction, estimation, etc., which is statistical inference,
is often based on a confidence interval or a test of hypothesis. While availability of
modern software has made this type of work routine and seemingly trivial, one must
not forget the assumptions behind the methods that must be satisfied to validate and
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justify the end results. Although each statistical inference method requires its own
assumptions, some of the most common ones are about randomness, independence
and underlying distribution of the data. Violations of one or more of the assumptions
might render the decisions invalid and hence useless even though there would seem
nothing wrong in terms of crunching the numbers. Much has been written about
the importance of checking assumptions during an analysis using statistical methods
before decisions are made. In this brief paper, we revisit some of these issues via
an example and illustrate some of the challenges associated with data analysis and
analytics in general, in practice.

Wefirst consider the assumption about the underlying distribution thatmaybe nec-
essary before a statistical method is applied. This may be necessary simply because
the theoretical derivation of the methodology requires such an assumption. How-
ever, it is fair to say that assuming (picking) a probability distribution for the data
is a daunting task. Whether acknowledged or not, this is one of the most important
and challenging aspects of data analysis since the validity of the inference drawn
from the application of the method often hinges upon this crucial assumption. The
distributions come in all sorts of shapes; the most commonly assumed distribution in
the application of statistical methods is the normal distribution which is symmetric
and bell-shaped. However, depending on the context, other distributions may also
be used, such as the exponential distribution, the uniform distribution, the Weibull
distribution, the gammadistribution, to name a few,within the class of continuous dis-
tributions. Graphs of some probability density functions of some of the well-known
continuous distributions are shown in Fig. 1. The collection includes symmetric and
skewed distributions. Note that as shown, even among the symmetric distributions,
shapes can vary and this can lead to differences in probability based assessments.
The same is true for skewed distributions.

This challenge of making and meeting the distributional assumption is faced by
practitioners and data analysts from all areas on a day to day basis. Although it
may be possible to use the law of averages and the central limit theorem to by-pass
(avoid) the distributional assumption in certain cases (like for large sample sizes)
while making statistical inference, it is somewhat of a dicey strategy, particularly in
quality control andmonitoring applicationswhere the sample sizes are often small. In
manufacturing, the typically recommended subgroup size is around five, whereas in
real time, individual monitoring of data, the subgroup size is one. Note that in many
monitoring settings, data are collected from sensors in a nearly continuous stream and
thus it is often more meaningful (and required) to monitor the individual data. Thus
applying the central limit theorem to such problems can be risky if not impossible. At
times data are aggregated into hourly, four-hourly- or six-hourly intervals to improve
the accuracy of measures but such aggregations still will not necessarily allow the
central limit to apply.

Statistical process control and monitoring methods originally arose in the context
of industrial/manufacturing applications, developed during and afterWorldWar Two,
in order to produce high quality (and high reliability) items (at a lower cost). This
regime involves designing studies (i.e., Design of Experiments), collecting (Sam-
pling), and analyzing data (Analytics). Among the many statistical tools used in
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Fig. 1 Some continuous probability distributions

statistical process monitoring the control chart is perhaps the most well-known. This
graphic provides a simple and effective visualization of “what’s going on” in a pro-
cess at a given point in time and also over time, in order for the user tomake a decision
about the quality of the process, including indicating what might not be working and
where (andwhen) so that necessary adjustmentsmay bemade. Here the term “quality
of the process” is used in a general sense, which is context-dependent. If the process
is a manufacturing process producing say copper tubing, the quality of the process
may be reflected in the diameter of the tubes (or the average and standard deviation
of the diameter of a sample of tubes) and a control chart can describe whether or
not the machine (or the process) is producing these tubes that are “in-control” that
is meeting specifications for what is expected out of these tubes, so that they can be
sold in the market. On the other hand if the context refers to a situation other than
in manufacturing, say about the level of pollution in the environment of a certain
city, measured in terms of the concentration level of certain matters or chemicals,
the quality of the process (whether or not it is in-control) may correspond to what
may be dictated by the safety and health considerations.

In any event, if the variables of interest in the outputs of the process aremeasurable
and are monitored with a control chart, over time, and the concept of significance
is to be attached to the results, such as, for example, whether or not the process
is producing significantly more defectives, or, whether or not the pollution level is
significantly higher than expected, relative to what is “in-control”, an assumption
about the probability distribution of the variable being measured and monitored
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may be needed. When this information is available, it is possible to calculate the
probability (or the chance) of observing what has been observed, and decide whether
or not the observed results are significant, or extreme, compared to some nominal
threshold.

In a vast majority of the applications of statistical process monitoring and control,
as inmany applications of statistics inmany other areas, it is fairly common to assume
that the underlying probability distribution is of a (given) known form (based on
knowledge and experience), but some aspects of the distribution are unknown, say
the mean and/or the standard deviation, which are called parameters. This clearly
lessens the burden of making the distributional assumption somewhat and provides
a bit of flexibility in the choice. For example, one may assume that the diameters
of the copper tubes follow a normal distribution with an unknown mean and an
unknown standard deviation. Then standard statistical theory and methods may be
used with this knowledge of the form of the distribution, to estimate the parameters,
and to set up inference procedures. This is the pathway to setting up Shewhart control
charts to monitor the mean of the process. Control charts (and statistical methods)
developed under the assumption of a known parametric distribution are referred to
as parametric control charts (Chakraborti and Graham 2019a, b). Since the normal
distribution is among themost commonly assumeddistribution sometimes parametric
charts are almost synonymous with normal-theory control charts, but we emphasize
that many other distributions can be and are used in process monitoring, in a variety
of interesting applications.

2 Consequences of the Distributional Assumption

It is clear that if the diameters of the tubes do not follow a normal distribution,
but, some other distribution, say a gamma distribution (which is typically skewed
to the right) one can set up parametric control charts for the mean taking advantage
of that information. This control chart, including the control limits, will not be the
same as the one based on the normal distribution. Thus, one may get a different
set of results, such as whether or not the process is in control, from an application
of each chart. In other words, the statistical inference may be dependent on the
assumed distribution for the observed variable(s). Put another way, there is a practical
consequence to making the distributional assumption and that consequence, in terms
of the probability and the eventual decision, may be slight to severe, depending on
howmuch of the distributional assumptionmay be violated by the data and howmuch
each decision may end up costing. For example, assuming that the IC distribution
of the diameters of copper tubes is exponential with mean 20, the UCL = 20 + 3
× 20 = 80 and LCL = 20 − 3 × 20 = −40, so that the LCL is rounded up to
0. Hence the false alarm rate for the chart is P(X > 80) = e−80/20 = 0.0183. Thus,
where under the normal distribution assumption, for 3-sigma limits, there would
be a false alarm, on the average, once in every 1/0.0027 = 370 samples, under the
exponential distribution, there would be a false alarm, on the average, once in every
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54.59 (=1/0.0183) samples. This could mean that the manufacturer may soon be out
of business because of stopping the process so frequently and looking for a reason
that does not exist. Although the example may be somewhat extreme, the point is
that there will be a consequence of using the wrong distribution, on the inference or
the decision, which can be anywhere, from mild (bearable) to catastrophic.

The issue is that there is usually no way to fully guarantee that the assumed
distribution is the correct distribution for the data, or that the data fit the assumed
distribution perfectly, since there is always at least a 5% chance of getting it wrong
(say based on a goodness of fit test). The bottom line may be that the manufactured
copper tubes all pass the quality control check based on the control charts but may
be useless in the marketplace or, alternatively, that the tubes do not pass the check
and yet may be acceptable.

In the “classical” statistical literature, such consequences are of course well-
known and have been examined for some time in terms of what is called robustness.
In practice however, the analyst faces a dilemma. The issue is that in practice the
consequences of the violations of the assumptions are not always known, advertised,
articulated or even appreciated. Or, even if the consequences may be understood, the
implementation is not affected or may be delayed, due to lack of training, availability
of software, carelessness, …, just to mention a few reasons. In order to address this
dilemma, the area of nonparametric statistics has been developed within statistics.
Nonparametric statistical methods provide robust inferential tools (confidence inter-
vals, hypotheses tests) which can be used to make valid statistical inference without
assuming a specific parametric form of the underlying distribution. Note that these
are not “too good to be true” methods peddled by some suspicious characters at the
street corners, but have the backing of a solid theoretical basis. For instance, for the
copper tubing example, one can construct a valid 95% nonparametric confidence
interval for the median diameter, which does not require the assumption of any par-
ticular parametric form of the distribution, except continuity. This is a remarkable
result available for many years and should be utilized whenever possible. In short,
nonparametric methods apply to a larger class of probability distributions (which
may include the one that may have been most commonly used, say the normal). It
is true that being applicable to a much broader range of distributions, nonparametric
methods may lose some efficiency against parametric methods, for some specific
distribution. So if one is sure about the assumption of the distribution, it is perfectly
reasonable to proceed along that parametric path. However, it seems fair to say that
in most situations, such knowledge is all but nonexistent and one is better off using
a nonparametric method.

The same recommendation applies to the area of statistical processmonitoring and
control. Most of this literature is about parametric charts that are set up assuming
a normal (or some other) distribution. However, in the last twenty years, several
nonparametric control charts have been proposed in parallel. This area of research
has grown rapidly and now a number of software packages are available. In fact, the
proliferation of R programming has now reached a state of maturity where it is not
entirely unexpected that a user can program a newly proposed chart in a journal article
and apply it, even if a packaged solution is not yet available. This is an encouraging
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development. Several review papers are now available (see for example, Chakraborti,
van der Laan and Bakir 2001 and Chakraborti and Graham 2019a, b) and at least two
recent books (Qiu 2014 and Chakraborti and Graham 2019a, b) have been written on
the subject. A lot of research is currently underway in these areas, both theory and
applications.

In this paper our goal is to illustrate the issues with making some of the basic
assumptions for a valid statistical analysiswith a real dataset arising in a real situation.
We focus on this type of a dataset asmost datasets used for illustration in the literature,
although may be appropriate to illustrate a particular proposed methodology, do not
seem to conform to many applications of statistical process monitoring and control
in practice. It will be seen that the analysis of real data is hard and our example will
show the imperfections in the practical setting, but that is precisely the point. With
this is mind, various ways of monitoring such data are considered and a case is made
in favor of nonparametric statistical process monitoring.

3 Other Assumptions and Considerations When Designing
a Control Chart

The second important issue we consider here is the assumption of independence. In
a manufacturing type process monitoring context, it may be reasonable to have data
that may be presumed to be independent since it is usually possible to control the
monitoring environment quite tightly. However, while monitoring individual data or
data monitored over time, it is more often the case that the data are not stochasti-
cally independent, that is, one data point, in a sequence of data points, influences
another, positively or otherwise, that needs to be accounted for in the analysis. A
typical scenario involves data collected over time, where the time difference between
the successive observations may be small. This could lead to the data being auto-
correlated (or serially correlated). Here we consider monitoring applications where
the data stream become available (are collected) in near real-time and this could be
in the context of a continuous process in manufacturing, social media data streaming
in, or pollution data. Given the very nature of these data, there is a high likelihood
that the observations are not independent.

The first step in this setting is to define the “common cause” (what is in-control)
and “special cause” variation (what is out-of-control) that need to be flagged by the
monitoring strategy. This involves understanding the sources of variation by deciding
on, for example, what, if any, seasonal adjustments need to be made (should be
removed) or what within day influences are to be treated as common cause variation
(and should be removed). This would help define common causes of variation that
do not need to be signaled (which defines the in-control state). Also, having a clear
understanding of what special causes of variation need to be flagged (what is out-of-
control) is vital at this design phase. These decisions would have to be made before
deciding on the distributional assumptions. These considerations are to be handled
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before deciding what time series model is going to be fitted and then monitoring the
forecast residuals from that model. Deciding on the appropriate rational subgroup
also requires some thought.

In parts manufacturing type applications, the basic in-control model is generally
taken as

yt = μ + et

where μ is the mean process value or the target and the random error is given by
et ∼ n

(
0, σ 2

)
. However, in monitoring applications outside of manufacturing, this

is often defined as

yt = μt + et

where et ∼ n
(
0, σt

2
)
and the exact form ofμt and σt

2 depend on how common cause
variation is defined over time t. A visual example of μt and σt

2 that are influenced
by the seasons is presented in Fig. 1. Notice that in this case, both the mean and the
variance of the process are higher in Spring and Summer.Wemaywish to remove this
variation as nothing can be done about it. In such cases we need to be certain about
what we wish to control. In addition, the temperature, wind and humidity within a
day vary and these influences can be removed if they influence the ozone. However
before doing this we need to decide of the purpose of monitoring. If it is to discover
what is unusual process behavior, removing all potential influences is recommended,
but if the purpose is just to flag high values then no corrections should be made.

4 Applications

The practical example we consider is monitoring the level of ozone in the atmosphere
at Chullora, a suburb of the local government areas the Canterbury-BankstownCoun-
cil and in theMunicipality of Strathfield. It is located 15 kmwest of the Sydney central
business district, in the state of New South Wales, Australia. It is part of the Greater
Western Sydney region. The data, plotted in Fig. 2, involve hourly average ozone
measures for six years, from June 5, 2013 to June 5, 2019 (inclusive). Monitoring
the ozone level is important from a public health perspective since the ozone in the
air we breathe can harm our health, especially on hot sunny days when ozone can
reach unhealthy levels. Even relatively low levels of ozone can cause health effects.
People most at risk from breathing air containing ozone include people with asthma,
children, older adults, and people who are active outdoors, especially outdoor work-
ers. In addition, people with certain genetic characteristics, and people with reduced
intake of certain nutrients, such as vitamins C and E, are at greater risk from ozone
exposure.
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Fig. 2 Hourly ozone measure at Chullora, Sydney, Australia

The first phase in the analysis is to explore the sources of variation in order
to understand and define the in- and out-of-control status of the process and the
underlying distribution, among other matters. This exploratory phase is called Phase
I. We would expect ozone to have a seasonal influence, and Figs. 2 and 3 confirm
this influence. It is also evident that the data are not normally distributed given the
skewness of the boxplots particularly for months with low values.

There is little we can do about this seasonal influence and so we may wish to
remove this variation as common cause. We also assess the hourly influence of
ozone measures in Fig. 4. There is a clear influence of hour of the day on the ozone
measures. Note that on average lower ozone values are recorded in the afternoon
than during other times in the day. It appears as if the hourly average trend could be
fitted using a within day harmonic. There is little we can do about this influence and
so we may also wish to remove this variation as common cause.

These two sources of variation, the seasonality and the hour of the day (or within
day), should be included in the model for the ozone level that can be used to pro-
vide one hour-ahead forecasts values. This can be handled as follows. The seasonal
influence could be removed by taking first order seasonal differences of the data
with season defined as the month (12). The influence of the hour of the day may
be removed by fitting an ARIMA(1,1,1) model with “seasonal influence” being 24
hourly values. However, this model failed to remove all the significant autocorre-
lations and even more complicated ARIMA models failed to fit adequately. As an
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Fig. 3 Monthly boxplots of hourly ozone measures at Chullora

Fig. 4 Boxplots of the hourly ozone measures at Chullora

alternative, the simplest model tried was seasonal harmonics, with day harmonics
and up to three lag autoregressive parameters.

Step 1: Transform the data so as to achieve approximate normality.

The transformation that proved closest to normality was (CHUL-
LORA.OZONE.1h.average..pphm. + 0.101)ˆ0.77

which was obtained using the boxcox in function in R MASS library given as
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Fig. 5 Box-cox transformation to normality

boxcox((CHULLORA.OZONE.1h.average..pphm. + 0.101)ˆ0.77 ~ day + cos(2 *
pi * day/365.25) + sin(2 * pi * day/365.25) + dw * (Time + cos(2 * pi * Time/24)
+ sin(2 * pi * Time/24)) + Lag1 + Lag1day + Lag2 + Lag3,data = OZONE.C)
(Fig. 5).

Step 2: Fit a model to the transformed data

The fitted model was as follows:

Call:

lm(formula = (CHULLORA.OZONE.1h.average..pphm. + 0.001)ˆ0.77 ~ day +
cos(2 * pi * day/365.25) + sin(2 * pi * day/365.25) + dw * (Time + cos(2 * pi *
Time/24)+ sin(2 * pi *Time/24))+Lag1+Lag1day+Lag2+Lag3+Temperature
+ WindSpeed + Humidity, data = OZONE.C)

The output from this is as follows (Fig. 6).

The autocorrelations of the residuals from this model are shown in Fig. 7 which
indicate that there is significant autocorrelation up to 24 h but thereafter this autocor-
relation is largely small to non-significant. The partial autocorrelations are significant
for the first 24 h but the values are low (less than 0.11). Thus there is some evidence
that the model does not do a great job at correcting within day variation, and may be
improved. Nevertheless, for illustration, we decided to use this model to define the
one hour-ahead forecasts, and then use a rational sub-group of hourly average ozone
measures in a day. Given that measures were not recorded at 2 a.m. each day and
that we are using 3 lagged autoregressive terms in the model this results in mostly
21 measures in a day.

Even though the fitted model does not seem to remove all the influences of the
hour of the day since the ACF values are significant for the first 24 h, this model is a
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Residuals: 
     Min       1Q   Median       3Q      Max  
-2.27094 -0.14918 -0.01683  0.14246  2.23760  

Call: 
lm(formula = (CHULLORA.OZONE.1h.average..pphm. + 0.001)^0.77 ~  
    day + cos(2 * pi * day/365.25) + sin(2 * pi * day/365.25) +  
        dw * (Time + cos(2 * pi * Time/24) + sin(2 * pi * Time/24)) +  
        Lag1 + Lag1day + Lag2 + Lag3 + Temperature + WindSpeed +  
        Humidity, data = OZONE) 

Residuals: 
     Min       1Q   Median       3Q      Max  
-2.29465 -0.14918 -0.01399  0.14412  2.21179  

Coefficients: 
                                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)                       -5.953e-02  3.852e-02  -1.545 0.122280     
day                                1.988e-05  2.005e-06   9.914  < 2e-16 *** 
cos(2 * pi * day/365.25)          -8.899e-03  3.112e-03  -2.860 0.004244 **  
sin(2 * pi * day/365.25)          -5.037e-02  2.066e-03 -24.374  < 2e-16 *** 
dwMonday                           3.484e-02  1.684e-02   2.069 0.038594 *   
dwSaturday                         4.373e-02  1.690e-02   2.587 0.009673 **  
dwSunday                           1.109e-01  1.685e-02   6.580 4.75e-11 *** 
dwThursday                         2.862e-03  1.688e-02   0.170 0.865390     
dwTuesday                         -4.222e-03  1.685e-02  -0.251 0.802133     
dwWednesday                        1.664e-02  1.686e-02   0.987 0.323844     
Time                               2.874e-03  8.365e-04   3.435 0.000592 *** 
cos(2 * pi * Time/24)             -7.426e-02  5.462e-03 -13.597  < 2e-16 *** 
sin(2 * pi * Time/24)              3.534e-02  7.344e-03   4.812 1.50e-06 *** 
Lag1                               7.398e-01  3.921e-03 188.675  < 2e-16 *** 
Lag1day                            5.470e-03  2.305e-03   2.373 0.017661 *   
Lag2                              -2.444e-01  5.065e-03 -48.250  < 2e-16 *** 
Lag3                              -1.091e-02  3.252e-03  -3.355 0.000794 *** 
Temperature                        1.783e-02  4.696e-04  37.974  < 2e-16 *** 
WindSpeed                          7.052e-02  1.226e-03  57.524  < 2e-16 *** 
Humidity                          -3.346e-03  9.357e-05 -35.763  < 2e-16 *** 
dwMonday:Time                     -1.768e-03  1.177e-03  -1.502 0.133004     
dwSaturday:Time                    1.299e-03  1.180e-03   1.101 0.270949     
dwSunday:Time                     -1.349e-03  1.177e-03  -1.146 0.251812     
dwThursday:Time                   -2.306e-04  1.180e-03  -0.195 0.845025     
dwTuesday:Time                    -1.691e-04  1.177e-03  -0.144 0.885793     
dwWednesday:Time                  -1.038e-03  1.178e-03  -0.881 0.378071     
dwMonday:cos(2 * pi * Time/24)     3.939e-03  7.329e-03   0.537 0.590930     
dwSaturday:cos(2 * pi * Time/24)  -1.329e-02  7.343e-03  -1.809 0.070399 .   
dwSunday:cos(2 * pi * Time/24)    -1.052e-02  7.321e-03  -1.437 0.150848     
dwThursday:cos(2 * pi * Time/24)  -2.575e-03  7.369e-03  -0.349 0.726778     
dwTuesday:cos(2 * pi * Time/24)    5.561e-03  7.346e-03   0.757 0.449036     
dwWednesday:cos(2 * pi * Time/24) -2.508e-03  7.354e-03  -0.341 0.733086     
dwMonday:sin(2 * pi * Time/24)    -6.434e-03  9.919e-03  -0.649 0.516547     
dwSaturday:sin(2 * pi * Time/24)   2.069e-02  9.927e-03   2.084 0.037161 *   

dwSunday:sin(2 * pi * Time/24)     4.507e-02  9.902e-03   4.551 5.34e-06 *** 
dwThursday:sin(2 * pi * Time/24)  -9.118e-03  9.980e-03  -0.914 0.360916     
dwTuesday:sin(2 * pi * Time/24)   -4.839e-04  9.947e-03  -0.049 0.961199     
dwWednesday:sin(2 * pi * Time/24) -7.039e-03  9.960e-03  -0.707 0.479706     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.2537 on 41983 degrees of freedom 
  (10035 observations deleted due to missingness) 
Multiple R-squared:  0.9119,    Adjusted R-squared:  0.9118  
F-statistic: 1.175e+04 on 37 and 41983 DF,  p-value: < 2.2e-16 

Fig. 6 Output from model fitting
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Fig. 7 Autocorrelation of the residuals of the fitted model

reasonably adequate description of in-control data, particularly if we use a rational
subgroup of daily measures. However, the other assumption in the model is that the
variance of the error term is homogeneouswhich needs to be checked. In fact, looking
at the time series in Fig. 2, there seems to be some questions about the validity of
this homoscedasticity assumption. We use the gamlss library in R to assess whether
the variance can be assumed homogeneous over time.

The R code is as follows:

Family: c(“NO”, “Normal”)
Call: gamlss(formula = (CHULLORA.OZONE.1 h.average..pphm. +

0.001)ˆ0.77 ~ day + cos(2 * pi * day/365.25) + sin(2 * pi * day/365.25) +
dw * (Time + cos(2 * pi * Time/24) + sin(2 * pi * Time/24)) + Lag1 + Lag1day
+ Lag2 + Lag3 + Temperature + WindSpeed + Humidity, sigma.formula = ~ day
+ cos(2 * pi * day/365.25) + sin(2 * pi * day/365.25) + ((dw == “Wednesday”)
+ (dw == “Sunday”) + (dw == “Saturday”)) * (Time + cos(2 * pi * Time/24)
+ sin(2 * pi * Time/24)) + Temperature + WindSpeed + Humidity, data =
na.omit(OZONE.C)).

The output is shown in Fig. 8.
Clearly the variances for this process are not homogeneous within days with the

variance increasing with the hour of the day and there is a significant harmonic
change in variances within the day.
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Fitting method: RS()  

****************************************************************** 

Family:  c("NO", "Normal")  

Call:  gamlss(formula = (CHULLORA.OZONE.1h.average..pphm. + 0.001)^0.77 ~ day + cos(2 * 

pi * day/365.25) + sin(2 * pi * day/365.25) + dw * (Time + cos(2 * pi * Time/24) + sin(2 * pi * 

Time/24)) +  Lag1 + Lag1day + Lag2 + Lag3 + Temperature + WindSpeed +          Humidity, 

sigma.formula = ~day + cos(2 * pi * day/365.25) + sin(2 * pi * day/365.25) + ((dw == "Wednesday") 

+ (dw ==  "Sunday") + (dw == "Saturday")) * (Time + cos(2 * pi * Time/24) +      sin(2 * pi * 

Time/24)) + Temperature + WindSpeed + Humidity, data = na.omit(OZONE))  

Fitting method: RS()  

------------------------------------------------------------------ 

Mu link function:  identity 

Mu Coefficients: 

                                    Estimate Std. Error t value Pr(>|t|)     

(Intercept)                       -1.425e-01  3.565e-02  -3.998 6.40e-05 *** 

day                                1.916e-05  1.828e-06  10.481  < 2e-16 *** 

cos(2 * pi * day/365.25)          -3.318e-02  2.913e-03 -11.389  < 2e-16 *** 

sin(2 * pi * day/365.25)          -5.933e-02  1.927e-03 -30.794  < 2e-16 *** 

dwMonday                           2.588e-02  1.741e-02   1.487 0.137030     

dwSaturday                         3.880e-02  1.796e-02   2.160 0.030779 *   

dwSunday                           1.130e-01  1.751e-02   6.453 1.11e-10 *** 

dwThursday                        -5.704e-03  1.752e-02  -0.326 0.744781     

dwTuesday                         -2.926e-03  1.748e-02  -0.167 0.867069     

dwWednesday                        8.781e-03  1.773e-02   0.495 0.620444     

Time                               3.820e-03  8.700e-04   4.390 1.13e-05 *** 

cos(2 * pi * Time/24)             -7.222e-02  5.329e-03 -13.554  < 2e-16 *** 

sin(2 * pi * Time/24)              3.534e-02  6.961e-03   5.077 3.85e-07 *** 

Lag1                               7.506e-01  3.958e-03 189.630  < 2e-16 *** 

Lag1day                            7.535e-03  2.188e-03   3.444 0.000573 *** 

Lag2                              -2.532e-01  5.102e-03 -49.626  < 2e-16 *** 

Lag3                              -2.297e-03  3.264e-03  -0.704 0.481558     

Temperature                        2.160e-02  4.529e-04  47.688  < 2e-16 *** 

WindSpeed                          6.797e-02  1.103e-03  61.642  < 2e-16 *** 

Humidity                          -3.370e-03  8.389e-05 -40.174  < 2e-16 *** 

dwMonday:Time                     -1.272e-03  1.219e-03  -1.044 0.296707     

dwSaturday:Time                    1.564e-03  1.254e-03   1.248 0.212136     

dwSunday:Time                     -1.274e-03  1.229e-03  -1.036 0.300266     

dwThursday:Time                    4.396e-04  1.226e-03   0.359 0.719913     

dwTuesday:Time                    -9.983e-05  1.225e-03  -0.082 0.935033     

dwWednesday:Time                  -3.803e-04  1.236e-03  -0.308 0.758215     

dwMonday:cos(2 * pi * Time/24)     5.138e-03  7.152e-03   0.718 0.472480     

dwSaturday:cos(2 * pi * Time/24)  -1.118e-02  7.368e-03  -1.517 0.129307     

dwSunday:cos(2 * pi * Time/24)    -3.288e-03  7.106e-03  -0.463 0.643583     

dwThursday:cos(2 * pi * Time/24)  -2.260e-03  7.219e-03  -0.313 0.754240     

dwTuesday:cos(2 * pi * Time/24)    5.812e-03  7.200e-03   0.807 0.419511     

dwWednesday:cos(2 * pi * Time/24) -5.290e-03  7.271e-03  -0.728 0.466859     

dwMonday:sin(2 * pi * Time/24)    -4.399e-03  9.362e-03  -0.470 0.638469     

dwSaturday:sin(2 * pi * Time/24)   2.754e-02  9.557e-03   2.882 0.003954 **  

dwSunday:sin(2 * pi * Time/24)     6.082e-02  9.299e-03   6.541 6.17e-11 *** 

Fig. 8 Model fitting results for the location and variance using gamlss library in R
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dwThursday:sin(2 * pi * Time/24)  -5.461e-03  9.454e-03  -0.578 0.563501     

dwTuesday:sin(2 * pi * Time/24)   -3.383e-03  9.443e-03  -0.358 0.720134     

dwWednesday:sin(2 * pi * Time/24) -4.631e-03  9.441e-03  -0.490 0.623799     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

------------------------------------------------------------------ 

Sigma link function:  log 

Sigma Coefficients: 

                                              Estimate Std. Error t value Pr(>|t|)     

(Intercept)                                 -2.448e+00  1.033e-01 -23.704  < 2e-16 *** 

day                                          7.008e-06  5.573e-06   1.257 0.208626     

cos(2 * pi * day/365.25)                    -2.625e-01  8.548e-03 -30.712  < 2e-16 *** 

sin(2 * pi * day/365.25)                    -1.363e-01  5.557e-03 -24.519  < 2e-16 *** 

dw == "Wednesday"TRUE                        4.484e-02  3.704e-02   1.210 0.226099     

dw == "Sunday"TRUE                          -6.864e-02  3.698e-02  -1.856 0.063459 .   

dw == "Saturday"TRUE                         4.393e-02  3.719e-02   1.181 0.237424     

Time                                        -4.318e-03  1.159e-03  -3.726 0.000195 *** 

cos(2 * pi * Time/24)                        2.478e-01  8.231e-03  30.111  < 2e-16 *** 

sin(2 * pi * Time/24)                        3.532e-02  1.048e-02   3.371 0.000751 *** 

Temperature                                  5.746e-02  1.208e-03  47.555  < 2e-16 *** 

WindSpeed                                   -9.834e-03  3.301e-03  -2.979 0.002894 **  

Humidity                                    -1.011e-03  2.553e-04  -3.961 7.47e-05 *** 

dw == "Wednesday"TRUE:Time                  -3.716e-03  2.589e-03  -1.435 0.151217     

dw == "Wednesday"TRUE:cos(2 * pi * Time/24)  3.139e-03  1.614e-02   0.195 0.845773     

dw == "Wednesday"TRUE:sin(2 * pi * Time/24) -1.430e-02  2.186e-02  -0.654 0.512879     

dw == "Sunday"TRUE:Time                      4.493e-03  2.585e-03   1.738 0.082161 .   

dw == "Sunday"TRUE:cos(2 * pi * Time/24)     3.886e-02  1.600e-02   2.428 0.015173 *   

dw == "Sunday"TRUE:sin(2 * pi * Time/24)     1.180e-01  2.165e-02   5.451 5.04e-08 *** 

dw == "Saturday"TRUE:Time                   -6.809e-04  2.597e-03  -0.262 0.793143     

dw == "Saturday"TRUE:cos(2 * pi * Time/24)  -1.302e-04  1.609e-02  -0.008 0.993546     

dw == "Saturday"TRUE:sin(2 * pi * Time/24)   4.744e-02  2.175e-02   2.181 0.029186 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

------------------------------------------------------------------ 

No. of observations in the fit:  42021  

Degrees of Freedom for the fit:  60 

      Residual Deg. of Freedom:  41961  

                      at cycle:  7  

Global Deviance:     -580.6214  

            AIC:     -460.6214  

            SBC:     58.13409  

Fig. 8 (continued)

Time                                 1.301e-02  2.797e-03   4.651 3.31e-06 *** 

cos(2 * pi * Time/24)                3.776e-01  2.636e-02  14.322  < 2e-16 *** 

sin(2 * pi * Time/24)                2.475e-01  4.220e-02   5.866 4.50e-09 *** 

The source of variation in the variances includes seasonal variation but no sig-
nificant increase in variance over time. The changes in variances are also seasonally
influenced but the variances are not significantly increasing with each day, this was
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anticipated as we observed that variance changes significantly with season in Figs. 2
and 3.

day                                  7.008e-06  5.573e-06   1.257 0.208626

cos(2 * pi * day/365.25)            -2.625e-01  8.548e-03 -30.712  < 2e-16 *** 

sin(2 * pi * day/365.25)            -1.363e-01  5.557e-03 -24.519  < 2e-16 *** 

Indicating that the ozone values are increasing as the day number increases and
the seasonal harmonics for the mean are both statistically significant. During the day
the ozone values increase to a maximum at about noon and then decreases thereafter.

Time                               3.820e-03  8.700e-04   4.390 1.13e-05 *** 

cos(2 * pi * Time/24)             -7.222e-02  5.329e-03 -13.554  < 2e-16 *** 

sin(2 * pi * Time/24)              3.534e-02  6.961e-03   5.077 3.85e-07 *** 

Note that there is a significant and different Sunday and Saturday influence for day
of the week. This model was selected because it delivered the smallest AIC value.

In setting up a Phase II monitoring strategy, we use this model to compute the
hour-ahead forecasts for each hour of the day for the last 366 days of data. The data
used to provide these forecasts uses a moving window of 5 years of data for each
forecast so that the accuracy of the forecast are expected to be the same. The model
is used to forecast both the mean and variance of the normally distributed data for a
month ahead, and then we calculate the usual month ahead ozone value minus this
forecasted value, all divided by the forecast standard deviation. This result is assumed
to be approximately normally distributed with mean zero and standard deviation 1
and a three-sigma control chart is used to monitor these standardized residuals. Note,
generally speaking, even when the normal distribution fits the training data quite well
(in Phase I) it does not guarantee that the forecast errors will be normally distributed
(in Phase II—see qqplot in Fig. 9). However we recognize that this may contain
out-of-control data and so such judgements are difficult to make. For example, the
ozone values could increase significantly to a new steady state, and this new steady
state distribution may be different from the normal.

The hour-ahead forecasts and the forecast errors are calculated and used to (Phase
II) monitoring changes in the ozone level at Chullora. The assumptionwhen applying
the classical x-bar Shewhart chart to the forecast errors using all 23 hourly measures
during a day (so the hourly measures within a day is viewed as a subgroup) is
likely to be adequate in approximating the normal distribution because of the central
limit theorem is likely to apply. Note however, that averaging as many as 23 values is
unlikely in the application of most classical x-bar Shewhart Charts in manufacturing.

The x-bar chart with 3-sigma control limits is given for the standardized forecast
errors in Fig. 10. It is clear that ozone level is mostly out-of-control on the high side
at Chullora with an occasional signal for low ozone measures. This indicates that
the ozone measures have been mostly higher than expected during this monitoring
period.
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Fig. 9 qq-plot of the one hour-ahead standardized forecasts errors

Fig. 10 The x-bar chart or the one hour-ahead standardized forecast errors with 3-sigma control
limits
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Fig. 11 Wilcoxon signed-rank chart for the negative ranked values for the one hour-ahead
standardized forecast errors

Although the x-bar chart in Fig. 10may be appropriate for this application because
it used a relatively large rational subgroup of 23 observations and the Box-Cox trans-
formation is applied to improve the normality assumption. It is likely to provide
earlier flags of ozone measures of a health concern. The x-bar chart flags 12 out-of-
control high sided ozone days and 14 low sided ozone days. It is unclear whether
the transformation to normality will be appropriate in the long-term, while the non-
parametric Wilcoxon Signed Rank Control chart is always valid. So it may be a
safer option if the planned monitoring strategy is going to run for several years. The
Wilcoxon Signed Rank Control chart is presented in Fig. 11 and this chart flags four
out-of-control high-sided ozone days and 20 low sided ozone days.

LetN be the number of standardized hour-ahead forecast errors in a day. The value
of N varies from day to day which explains why the control limits vary according to
the number of reported values in the day. Let the rank total for positive standardized
forecast errors be T+, this is the classical Wilcoxon signed-rank statistic. The control
limits, the UCL and the LCL are defined by

UCL = N (N + 1)

4
+ 0.5 + 3

√
N (N + 1)(2n + 1)/24

and

UCL = N (N + 1)

4
− 0.5 − 3

√
N (N + 1)(2n + 1)/24
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Fig. 12 Sign chart for the number of positive values for the hour-ahead standardized forecast errors

where the mean and the variance of are obtained from, for example, Gibbons and
Chakraborti (2010), page 196. Note that sinceN is not the same every day, the control
limits change, and hence the jagged appearance of the control chart.

A required assumption for the signed-rank chart is symmetry which may or may
not be satisfied in general. On the other hand, an alternative, namely the sign chart is
more general and requires only the assumption of continuity of the data. The control
limits for the sign chart can be easily found along the lines for the signed-rank chart
using the mean and the variance of the sign statistic, which are available, also in
Gibbons and Chakraborti (2010). This chart, shown in Fig. 12, does not seem to lose
much power compared to the Wilcoxon Signed Rank control chart.

The sign control chart flags 4–5 out-of-control high sided ozone days and 12
low sided ozone days. Thus, simple nonparametric charts can do the job adequately
and one does not need to use a parametric chart and worry about the underlying
assumption(s).

5 Concluding Remarks

We have demonstrated the application of some nonparametric control charts in a
real monitoring application, using an air pollution data example involving ozone
measurements at Chullora, a suburb in Sydney, Australia. The example illustrates
how these charts can be applied for monitoring in non-traditional settings, outside
of the usual manufacturing situations. It reinforces that there are many facets to
monitoring data observed over time in practice and one size fits all recipes using the
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classical assumptions about independence and normal distribution do not work in
many situations. It also shows that in this example very little is lost in applying a
nonparametric control chart to the forecast errors (residuals) and it may be a longer
term safer option as the distribution of the variables are likely to change over time
as the ozone concentrations change. In other words, we can not assume that the plan
best at a given point in time is going to remain the best in the future. For this reason,
the nonparametric approach may be a safer option unless the parametric chart is
periodically reviewed and updated at least annually.
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Abstract One of the most common challenges in nonmanufacturing control chart
Phase I applications is that the underlying process distribution of many of the non-
manufacturing quality characteristics is not normal and usually unknown, hence,
statistical properties of the most commonly used charts are highly affected. Given
these concerns, nonparametric or even distribution-free control charts appear to be
ideal candidates for such Phase I applications. However, most of the existing non-
parametric control charts are designed for Phase II monitoring, and most Phase I
statistical methods can only be applied with subgrouped observations. Nevertheless,
nonmanufacturing process-quality characteristics are often observed and recorded as
individual observations, and little has been done in developing nonparametric Phase I
control charts especially for individual observations that are prevalent in nonmanufac-
turing applications. Toward this end, in this chapter, existing nonparametric control
charts (either for Phase I or Phase II) are briefly discussed and change-point analysis-
based distribution-free control charts, designed for Phase I applications especially
for individual observations, are constructed for retrospectively detecting single or
multiple changes in location and dispersion of univariate variables. A real example
is included to unfold the capabilities of the developed methodologies.
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1 Introduction

Control charts form the core of Statistical Process Control (SPC) and are the main
tools of SPC for monitoring the characteristics of a process over time (Montgomery
2013). The application of control charts is usually implemented in two phases, i.e.,
Phase I and Phase II. In Phase I, process historical data are analyzed retrospectively
for characterizing the “in-control” (IC) state (in SPC terminology). In particular, one
essentially checks whether the process historically was stable and consistent and a
set of “trial” control limits are iteratively revised until nomore “out-of-control” (OC)
points (in SPC terminology) can be found (Capizzi and Masarotto 2013). Phase II
consists of ongoing prospective monitoring with data samples taken successively
over time and an assumed underlying probability distribution which is appropriate
to the process.

In the past several decades, SPC chart applications can be found predominantly in
manufacturing industries for monitoring production lines. Over the past two decades,
control chart applications have begun to spread to nonmanufacturing industries and
found many applications in areas such as healthcare monitoring, infectious disease
surveillance, environment monitoring, banking, and insurance, among others (Ning
et al. 2015). One of the most common challenges in nonmanufacturing control chart
Phase I applications is that the underlying process distribution of many of the non-
manufacturing quality characteristics is not normal and usually unknown, hence,
statistical properties of the most commonly used charts are highly affected. In SPC,
it is often reasonable to assume that the IC distribution is (or can reasonably be
assumed to be) stationary; observations can be drawn from the process so they are
assumed to be independent (or nearly so); monitoring the process mean and standard
deviation is usually sufficient; the asymptotic distributions of the statistics being
monitored are known and thus can be used to design appropriate control charts;
shifts (when they occur) remain until they are detected and corrective action is taken;
temporal (as opposed to spatial) detection is the critical problem (Fricker 2011).
Although there are manufacturing processes that have characteristics similar to those
of the nonmanufacturing industries (e.g., continuous monitoring of processes), for
the implementation of quality tools into the nonmanufacturing monitoring problem,
in exactly the same fashion as in industrial quality control, many assumptions fail
to be satisfied. For example, the distribution of many nonmanufacturing process-
quality characteristics is nonstationary; observations are sometimes autocorrelated,
and the need for quick detection works against the idea of taking measurements far
apart to achieve (near) independence; in some applications there is little information
about what types of statistics are useful for monitoring, and one is often looking for
anything that seems unusual; individual observations are usually being monitored,
thus the idea of asymptotic sampling distributions does not apply and the data often
contain significant systematic effects that must be accounted for; processes are sub-
ject to step, transient, and even isolated shifts; identifying both spatial and temporal
deviations are often critical.
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Given these concerns, nonparametric control charts (or even distribution-free con-
trol charts in the sense that distributions of their charting statistics do not depend on
the true process distribution) appear to be ideal candidates for such Phase I applica-
tions. However, most of the existing nonparametric control charts are designed for
Phase II monitoring, and most Phase I statistical methods can only be applied with
subgrouped observations. Nevertheless, nonmanufacturing process-quality charac-
teristics are often observed and recorded as individual observations, and little has
been done in developing nonparametric Phase I control charts especially for indi-
vidual observations that are prevalent in nonmanufacturing applications. This gap
between existing SPC methods and the nonmanufacturing control chart applications
provides an area ripe for new research, since as these nonmanufacturing applications
continue to spread, new challenges will inevitably arise, which will require develop-
ing more effective control charts. Therefore, it is important to develop control charts
that are either more robust or do not require normality or any parametric assumption
of the quality characteristic being monitored, in order to continue to expand con-
trol chart applications into broader sectors. Several authors, for example, Woodall
and Montgomery in (1999), Woodall in (2000), and Ning et al. in (2015) have also
pointed out the need to develop nonparametric control charts. The interested reader
may refer to McCracken and Chakraborti in (2013), Qiu in (2014), and Chakraborti
and Graham in (2019) for some comprehensive reviews of both univariate and mul-
tivariate nonparametric control charts and for some of the latest developments in this
area.

Thus, in this chapter, existing nonparametric control charts (either for Phase I
or Phase II) are briefly discussed, and change-point analysis-based distribution-free
control charts, designed for Phase I applications especially for individual obser-
vations, are constructed for retrospectively detecting single or multiple changes in
location and dispersion of univariate variables. A nonmanufacturing real example
is included, especially aiming to adequately serve epidemiological surveillance and
healthcare monitoring purposes, in which the few recently developed competing
charts are applied and compared, and their ability to detect the true and correct
amount of change points is evaluated in terms of several performance evaluation
metrics.

The rest of the chapter is organized as follows. In Sect. 2, existing nonparametric
control charts, andmajor issues and developments in Phase I and Phase II analysis are
discussed. In Sect. 3, the statistical reference framework is introduced, and technical
details for Phase I distribution-free control charts for individual observations are pro-
vided. In Sect. 4, an application to nonmanufacturing real data is illustrated. Within
this framework, several distribution-free control charting methods are constructed
(with emphasis on change-point analysis-based methods), and the output of Phase I
analysis is interpreted (from both a statistical and an epidemiological perspective).
In Sect. 5, the performance of the developed competing charts is compared and eval-
uated in terms of retrospectively (Phase I) detecting change points (outbreaks) with
scientific andmethodological adequacy. Finally, in Sect. 6, some concluding remarks
are made.
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2 Background and Literature Review

The successful performance of SPC applications in Phase II mostly depends on
the correct characterization of the IC state attained in Phase I (Jensen et al. 2006).
However, despite its crucial importance, the vast majority of research on process
monitoring has considered the development and performance of Phase II control
charting methods. Mukherjee in (2016) gave an overview of Phase II monitoring
of the probability distributions of univariate continuous processes. Further, most of
the currently available nonparametric control charts are for Phase II applications
(with the vast majority of them focusing on monitoring the location parameter). The
interested reader may refer to, among others, Chakraborti et al. in (2008), Chatterjee
and Qiu in (2009), Capizzi and Masarotto in (2012), Qiu and Zhang in (2015), Qiu
in (2018) and (2019), Malela-Majika et al. in (2019), and Triantafyllou in (2019) and
(2019) for some perspectives on nonparametric control charts with main focus on
Phase II. Moreover, some nonparametric control charts are based on a change-point
model, such as those studied by Zou and Tsung in (2010), Qiu and Li in (2011), and
Ross and Adams in (2012), and are capable of detecting changes in the distribution
function that could be a result of changes in the location parameter or scale parameter
or both. Further, almost all of the existing charts are designed for Phase IImonitoring.
As such, they typically assume that the IC value of the parameter to be monitored is
either known or can be reasonably estimated based on Phase I data that were collected
when the process was IC (Ning et al. 2015). It should be noted though that in those
cases that such an assumption is not made, they assume instead either the existence
of an IC Phase I sample or that the process was IC (Ning et al. 2015). Note that any of
these assumptions makes most of the aforementioned nonparametric Phase II control
charts (see Zhou et al. in (2009), Hawkins and Deng in (2010), Zou and Tsung in
(2010), Qiu and Li in (2011), and Liu et al. in (2013)) not suitable for retrospective
analysis in Phase I control.

The past decade, Phase I analysis (with emphasis on distribution-free techniques)
has received increasing attention. Chakraborti et al. in (2009) gave an overview
of the available literature on the retrospective use of univariate control charts in
Phase I, providing also important technical details about performance measures and
comparisons of various control charts, and Jones-Farmer et al. in (2014) discussed
some of the important aspects of univariate Phase I analysis and reviewed some of the
recent developments in this field. The aforementioned reviews show thatmost Phase I
control charts are based on the assumption of normally distributed observations
or that the underlying process follows some parametric distribution. The statistical
properties of commonly employed Phase I control charts, such as the Shewhart-
type (Shewhart 1939) and the CUSUM-type (Page 1955) control charts or the charts
based on binary and multiple segmentation (see Sullivan and Woodall in (1996) and
Sullivan in (2002)), are exact only if the normality assumption is satisfied.

Moreover, the ability of parametric Phase I control charts to correctly distin-
guish between IC and OC observations is directly connected to the correct spec-
ification of the IC probability model. However, during Phase I, little information
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on IC distribution is available to practitioners. When distributional assumptions
underlying a parametric control chart are not satisfied, or cannot be verified, the
performance and sensitivity of parametric Phase I methods deteriorate, as pointed
out by Capizzi and Masarotto in (2017). It is worth to be noted that due to the
fact that the underlying distributional form cannot be checked (because the process
may not be stable) further complications arise in Phase I, as discussed by Woodall
in (2000). Thus, several researchers (see, for example, Chakraborti et al. in (2009)
and Jones-Farmer et al. in (2014)) recommended verifying the form of the underly-
ing IC distribution only after process stability has been established using a suitable
distribution-free control chart. Further, in Phase I, it is very common for practitioners
to face the objective difficulty in distinguishing points coming from an OC distri-
bution from those coming from either skewed or heavy-tailed IC distributions, as
emphasized by Capizzi and Masarotto in (2013).

Conclusively, most SPC applications assume that the quality of a process can
be adequately represented by the distribution of a quality characteristic, and the IC
and OC distributions are the same with only differing parameters. However, in many
nonmanufacturing applications, the underlying process distribution is not normal and
usually unknown, hence, statistical properties of the most commonly used charts are
violated. It is also important to note that most Phase I statistical methods can only
be applied with subgrouped observations. However, process-quality characteristics
are often observed and recorded as individual observations (n = 1). There is little
guidance in the literature on the benefits or drawbacks analyzing Phase I data as
individuals (Jones-Farmer et al. 2014). When individual data are used, the central
limit theorem cannot be invoked, and as a result the statistical properties of such
charts are highly affected (even for slight deviations from the specified parametric
model) (Capizzi and Masarotto 2013).

Given all the aforementioned concerns, nonparametric control charts appear to
be ideal candidates for such Phase I applications. Some of them could even be
distribution-free in the sense that distributions of their charting statistics do not
depend on the true process distribution. Qiu in (2018) pointed out that the terminolo-
gies “nonparametric control charts” and “distribution-free control charts” are both
referred to charts that can be used when the process distribution does not have a para-
metric form. In order to make a clear distinction between these two terminologies, it
is worth to be noted that “nonparametric control charts” may not be distribution-free,
in the sense that their design may still depend on the process distribution (although
a parametric form for the process distribution is not required). Jones-Farmer et al.
in (2009), Jones-Farmer and Champ in (2010), and Graham et al. in (2010), among
others, presented nonparametric Shewhart-type control charts for Phase I applica-
tions. In particular, these Phase I univariate nonparametric control charts have been
developed for monitoring either the location (see Jones-Farmer et al. 2009; Graham
et al. 2010) or the scale of a continuous variable (see Jones-Farmer andChamp 2010).
Further, these nonparametric Shewhart-type control charts cannot be implemented
in practical situations where only individual observations can be gathered in Phase I.



162 C. Parpoula and A. Karagrigoriou

Little has been done in developing nonparametric Phase I control charts especially
for individual observations that are prevalent in nonmanufacturing applications (Ning
et al. 2015). Recently, Ning et al. in (2015) developed a new nonparametric Phase
I control chart (for individual observations) whose construction is essentially based
on the empirical likelihood ratio test. However, the proposed approach is designed
for monitoring only the location parameter. Nonparametric Phase I control charts for
monitoring both location and scale have been introduced by Capizzi and Masarotto
(see Capizzi and Masarotto 2013; Capizzi and Masarotto 2018) and implemented
in practical situations where either individual or subgrouped observations are gath-
ered in Phase I. More specifically Capizzi and Masarotto in (2013) they introduced
a new distribution-free strategy based on a recursive segmentation and permuta-
tion approach (RS/P) for detecting shifts in process location and/or scale during
Phase I. The RS/P procedure is advantageous since it easily implementable with
individual (or subgrouped) observations and assuming no prior knowledge of the
underlying process. Further, the idea of using a permutation approach to hypothesis
testing seems to be unexplored for Phase I analysis in SPC. According to Capizzi’s
and Masarotto’s derived simulation results, the RS/P approach leads to an effective
Phase I distribution-free procedure. However, Schmid in (2015) discusses that the
RS/P approach of Capizzi and Masarotto illustrates the importance of change-point
analysis, however, it also reflects its limits. Schmid in (2015) points out that it would
be very interesting to know how well it really identifies the positions of the change
points. Therefore, in this chapter, the ability of RS/P method to detect the true (and
correct amount of) change points is tested through benchmarking (by conducting a
retrospective analysis of real epidemiological time series), and the RS/P approach is
compared in terms of its performance with some competitors.

3 Change-Point Analysis-Based Distribution-Free Control
Charts

Let x1, x2, …, xm , bem independent observations collected from the distribution of a
characteristic X , either continuous or discrete. When the process is IC, these obser-
vations are assumed to be independent with an unknown but common cumulative
distribution function (c.d.f.), F0(x), whereas the OC state can be described by the
following multiple change-point model:

xi ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F0(x) if 0 < i ≤ τ1,

F1(x) if τ1 < i ≤ τ2,
...

...

Fk(x) if τk < i ≤ m,

(1)
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where 0 < τ1 < τ2 < · · · < τk < m denote k change points, Fr (·), r = 0, . . . , k, are
unknown c.d.f. which, at one or several times, may shift in position and the shift
times are also assumed to be unknown. Model (1) includes a variety of OC situations
and can describe processes subject to step, and even transient shifts. This Phase I
analysis procedure provides a statistical test for verifying the hypothesis system

{
H0 : the process was IC (k = 0)

H1 : the process was OC (k > 0),
(2)

and some graphical diagnostic aids useful for identifying the time and the type of the
changes when the hypothesis of an IC process is rejected. It is worth to be noted here
that the aforementioned hypothesis testing system (performed in Phase I) requires
the specification of a nominal False Alarm Probability (FAP). Here, the typical dif-
ference between parametric and nonparametric tests takes place. A parametric test
can guarantee a prescribed FAP only if F0(·) belongs to a particular family of proba-
bility distribution, whereas a distribution-free or a nonparametric procedure enables
controlling the FAP without knowing the specific distribution from which individual
observations (or samples) are drawn. Following the RS/P approach of Capizzi and
Masarotto in (2013), choosing an acceptable FAP value, say α (that is, a probability
of false alarm equals α), then p-values are computed using a permutation approach
and can be used to test the stability over time of the level and scale parameters. In
applications, it is important to check the stability of the level and the scale of the qual-
ity characteristic under study. This corresponds to the traditional practice of using
two Shewhart-type control charts, with one chart designed to detect mean changes
and the other designed to detect scale changes. Capizzi and Masarotto in (2013) also
designed two control charts to detect separately location and scale shifts and the
FAP is “balanced” between the separate control charts. In particular, if either one or
both p-values are less than α, an alarm is signaled. Indeed, Capizzi and Masarotto
in (2013) adjusted p-values so that comparing both p-values with the same thresh-
old α results in an overall FAP ≤ α. Following the RS/P approach of Capizzi and
Masarotto in (2013), three distinct steps need to be executed for combined level-and
scale-changes detection, i.e., 1. Detection of single or multiple level shifts; 2. Detec-
tion of scale changes; 3. Adjustment of the p-values obtained during the previous
two steps.

3.1 Detection of Single or Multiple Level Shifts

Let us consider the problem of testing the null hypothesis that the process was IC
against the alternative hypothesis that the process mean experienced an unknown
number of step shifts. In such a case, a set of test (control) statistics is needed
for detecting 1, 2, . . . , K step shifts. Here, K denotes the maximum number of
hypothetical change points. The test statistics Tk , k = 1, . . . , K are designed for
testing H0 against the alternatives
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H1,k : E(xi ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ0 if 0 < i ≤ τ1,

μ1 if τ1 < i ≤ τ2,
...

...

μk if τk < i ≤ m.

(3)

The mean values μ0, . . . ,μk , and the change points 0 < τ1 < · · · < τk < m are
assumed to be unknown. Further, defining τ0 = 0 and τk+1 = m, it is also assumed
that τr − τr−1 ≥ lM I N , r = 1, . . . , k + 1, where lM I N is a (user prespecified) con-
stant giving the minimum number of successive observations allowed between two
change points. Implementing the approach of Capizzi and Masarotto in (2013) for
a sequence of individual observations, the control statistic and the possible change
points are computed using a simple forward recursive segmentation approach. The
algorithm starts with k = 0 and then proceeds in K successive stages. At the begin-
ning of stage k, the interval [1,m] is partitioned into k subintervals, each having a
length greater or equal to lM I N . At stage k, one of these subintervals is split, adding
a new potential change point. The new change point is selected maximizing

k+1∑

i=1

(τ̂i − τ̂i−1)(x̄(τ̂i−1, τ̂i ) − x̄om)
2, (4)

conditionally on the results of the previous stages. Here x̄om represents the over-
all mean (om) of observations, x̄(α, b) = 1

b−α

∑b
i=α+1 xi , and 0 = τ̂0 < τ̂1 < · · · <

τ̂k < τ̂k+1 = m are the boundaries of the new partition. The control statistic Tk ,
k = 1, . . . , K is equal to the attained maximum value of Eq. (4). The number of
elementary test statistics for the case of individual observations equals K . The IC
probability distribution function of T1, . . . , TK depends on the unknown distribution
F0(·), and thus is unknown as well. Let X(·) = (x(1), . . . , x(N )) be the order statistic
associated with N (= m) Phase I observations. Then, it is well known (see Lehmann
and Romano in (2005)) that under the null (IC) hypothesis

P{X = (α1, . . . ,αN ) | X(·)} =
{

1
N ! if (α1, . . . ,αN ) is a permutation ofX(·),
0 otherwise.

(5)

Observe that Eq. (5) does not depend on F0(·). Therefore, given a test statistic, its
p-value can be calculated, conditionally on X(·), as the proportion of permutations
under which the statistic value exceeds or is equal to the statistic computed from
the original sample of observations. It is worth to be noted here that taking into
account that the number of permutations, N , can be extremely large and that, in our
case, we have K elementary test statistics, we followed the permutation procedure
as described by Capizzi and Masarotto in (2013) analogously treated for our case
since we deal with a sequence of individual observations (n = 1). From now and on,
the mean estimates are denoted by μ̂i , i = 1, . . . ,m. Let now assume that choos-
ing an acceptable FAP, say α, then, two possible cases can be distinguished here.
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If p-value ≥ α, the hypothesis of a constant mean is accepted and the overall mean
is used to estimate the level, i.e., we set μ̂i = x̄om for i = 1, . . . ,m, whereas if p-
value< α the null hypothesis that the process was IC is rejected and the test signals an
OC condition that can be attributed to the presence of k∗ step shifts for 0 < k∗ ≤ K .

3.2 Detection of Scale Changes

A modified version of the aforementioned procedure is applied for detecting scale
changes in the centered observations xi − μ̂i . In this case, the objective function of
Eq. (4) used for the recursive segmentation is replaced by

k+1∑

i=1

(τ̂i − τ̂i−1)log

(
s2

s2(τ̂i−1, τ̂i )

)

, (6)

where s2 = 1
m

∑m
i=1 s

2
i , s

2(α, b) = 1
b−α

∑b
i=α+1 s

2
i , and si = xi − μ̂i . The other steps

of the procedure remain unchanged.

3.3 Adjustment of the p-Values Obtained During the Previous
Two Steps

Since we execute a combined level-and scale-changes detection we need to adjust
the p-values obtained during the previous two steps (following the Holm-Bonferroni
methods in Holm (1979) and the suggestions of Capizzi and Masarotto in (2013)).
Let p∗

level and p∗
scale be the original p-values and p̄ = min

(
1, 2min(p∗

level , p
∗
scale)

)
,

then the adjusted p-values are

(plevel , pscale) =
{(

p̄,max( p̄, p∗
scale)

)
if p∗

level ≤ p∗
scale,(

max( p̄, p∗
level), p̄

)
if p∗

level > p∗
scale.

(7)

The adjusted p-values in Eq. (7) are advantageous since they are directly comparable
with the desired FAP, as pointed out by Capizzi and Masarotto in (2013).

4 Empirical Study

In the modern world, the timely and accurate detection of epidemics has been rec-
ognized as an extremely important problem of epidemiological surveillance, as also
evidenced by the implementation of statistical routine methods to detect outbreaks
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in epidemiological surveillance systems in several European countries (European
Centre for Disease Prevention and Control-ECDC) and in U.S.A. (Centers for Dis-
ease Control and Prevention-CDC). In particular, the study of the evolution of the
Influenza-Like Illness (ILI) syndrome is a major public health concern, since despite
the fact that it belongs to the epidemiological surveillance priorities in the Euro-
pean region, it is also high in terms of international interest due to its potential for
widespread transmission (with ILI also representing a potential pandemic risk) as
discussed by Parpoula et al. in (2017). The past decades, public health practitioners
have turned their attention to the field of SPC. Indeed, several proposed approaches
for the detection of outbreaks of infectious diseases not only are inspired by, or related
to, methods of SPC, but also quality tools are sometimes applied and adapted directly
to epidemiological surveillance. However, the general epidemiological surveillance
problem violates many of the assumptions that are reasonable to assume in SPC. For
example, there is little to no control over disease incidence and thus the distribu-
tion of disease incidence is usually nonstationary, observations are autocorrelated,
individual observations are usually being monitored, and outbreaks are sometimes
transient, with disease incidence returning to its original state once an outbreak has
run its course (Fricker 2011).

An effective approach to overcome these difficulties and limitations is to consider
nonparametric or even distribution-free control charts which offer the benefits of not
depending on the shape of the distribution and the amount of available data. Toward
this end, in this empirical study, the previously described control charts (especially
for individual observations) are constructed for retrospectively (Phase I) detecting
single or multiple changes in location and dispersion of univariate variables (espe-
cially aiming at the detection of ILI outbreaks, and in this way adequately serving
epidemiological surveillance and healthcare monitoring purposes). In particular, we
perform the RS/P approach in the case of a sequence of individual observations, i.e.,
weekly ILI rate data, between September 29, 2014 (week40/2014) and October 2,
2016 (week39/2016). Therefore, we conduct a retrospective (Phase I) analysis for the
period from 2014 to 2016, based on these two seasons’ historical data. It is important
to note that in correspondence with the epidemiological surveillance terminology,
the retrospective analysis of historical data is referred to as Phase I, whereas the
prospective monitoring of future data is referred to as Phase II.

Data values are assumed to be independent, are individual (one observation at
each instant of time), and Phase I control limits are computed, so that a prescribed
FAP is guaranteed without making any parametric assumptions on the stable (IC)
distribution. Further, the ability of RS/Pmethod to detect the true (and correct amount
of) change points is compared, in terms of several performance evaluation metrics,
with some competitors suggested in the literature, appropriately adjusted for our
study, that is the use of distribution-free control limits is emphasized. Firstly, we
construct control charts for which the control statistic is based on a Generalized
Likelihood Ratio Test (GLRT) computed under a Gaussian assumption (see Sullivan
and Woodall in (1996)); however, the control limits are computed by permutation
following the suggestions of Cappizi and Masarotto in (2018), thus the resulting
control charts are indeed distribution-free. Then, we construct analogous control
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charts based on a rank transformation of the original observations, i.e., rank-based
GLRT control charts. This rank transformation is applied to possibly improve the
performance of control charts in the case of nonnormal data. In the latter case, the
control limits are also computed by permutation and the resulting control charts
are also distribution-free. It is important to note here that the decomposition of
the likelihood ratio test statistic suggested by Sullivan and Woodall in (1996) for
diagnostic purposes is also computed and plotted in both cases (with and without a
rank transformation).

4.1 RS/P-Based Phase I Analysis

Capizzi and Masarotto in (2013) suggest that L = 1000 random permutations of the
data are sufficient to get stable and accurate enough estimates of the p-value to be
used for hypothesis testing when the usual significance levels (e.g., α = 0.01, 0.05,
and 0.1) are used. In this study, L = 100,000 permutations are adapted allowing us
to maintain a relatively low complexity of the algorithm due to the relatively small
dimension of our data (a total of 105 observations). Following the Capizzi’s and
Masarotto’s suggestions in Capizzi and Masarotto (2013), the maximum number of
hypothetical change points K = max

(
3,min

(
50,

[
m
15

]))
, and the minimum number

of successive observations allowed between two change points lM I N = 5, since this
constant value was found to reduce the IC variability of the test statistics without
hindering the power to detect short, transient OC phases (Capizzi and Masarotto
2013). Figure1 illustrates the application of the R/SP-based Phase I analysis to each
influenza period under study (first period: week40/2014–week39/2015 and second
period: week40/2015–week39/2016). Assuming that a probability of false alarm

Fig. 1 RS/P-based Phase I analysis of ILI rate data (week40/2014–week39/2016)
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equal to α = 0.05 is acceptable, our procedure signals both a possible change of the
mean (p-value < 0.001 for a change in level) and of scale (p-value < 0.001 for a
change in scale). Here, graphics can be used for diagnostic purposes. The solid line
in the upper panels shows the observed ILI rate values, whereas the solid line in the
lower panels represents the si of the process, for each influenza period under study.

The behavior of the dashed line in the upper panels representing an estimate, μ̂i , of
the time-varying processmean, suggests an increase in ILI rate after the first 13weeks
and a decrease after the 27th week, for the first period under study (a case of “two-
steps” level change); it also suggests an increase in ILI rate after the first 14 weeks, a
partial decrease after the 22ndweek aswell a significant decrease after the 28thweek,
for the second period under study (a case of “three-steps” level change). Note here
that in the latter case, from an epidemiological perspective, the RS/P approach also
succeeded to identify short, transient shifts (τ̂23: week09/2016 to τ̂28: week14/2016)
since the number of successive observations between these change points is almost
equal to the minimum number of observations allowed between two change points.
In the lower panels, the behavior of the dashed line representing an estimate, ŝi , of
the time-varying process scale, suggests a dispersion shift starting on week 13, and
no additional shift is detected after week 31, for the first period under study; it also
suggests that no scale changes are signaled for the first 32 weeks, and a dispersion
shift is detected from week 33, for the second period under study. Conclusively, for
the first period, the hypothesis of a stable process is not rejected from week40/2014
to week52/2014 and from week15/2015 to week39/2015, whereas location or/and
dispersion shifts are detected from week01/2015 to week14/2015, whereas for the
second period, the hypothesis of a stable process is not rejected from week40/2015
to week53/2015 and from week09/2016 to week39/2016, whereas location or/and
dispersion shifts are detected from week01/2016 to week08/2016.

4.2 Adjusted GLRT-Based Phase I Analysis

Sullivan andWoodall in (1996) and Sullivan in (2002) introduced preliminary control
charts based on individual observations, for detecting a shift either in the mean or
variance, or both, developed from a Likelihood Ratio Test (LRT), and developed a
preliminary analysis based on a time-ordered segmentation of the original data. These
LRT-based control charts offer the advantage of improved detection of OC conditions
compared to combined X andmoving range control charts, aswell as CUSUMcharts.
However, these LRT-based control charts are exact only if the normality assumption
is satisfied. In such cases, a normal transformation of the observations is certainly
feasible; however, it will be done at the expense of the interpretability of the analysis
that is particularly important to control chart users in nonmanufacturing applications.

For these reasons, in this empirical study, adjusted GLRT-based distribution-free
control charts are developed for detecting a step shift either in the mean or variance
(or both) of a sequence of individual observations. In particular, we adopt a change-
point approach by constructing preliminary control charts based on individual obser-
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vations, developed from a LRT, for verifying whether the mean and dispersion are
the same before and after τ , with permutation-based limits. Further, we compute the
LRT statistics, with or without a rank transformation, for τ = 2, . . . ,m, and control
limits proportional to the in-control mean of the LRT statistics are used, as sug-
gested by Sullivan and Woodall in (1996). Further, the control statistics divided by
the time-varying control limits are plotted with a “pseudo-limit” equal to one, and
the decomposition of the LRT statistics (i.e., decomposition of the control statistics
in the two parts due to changes in the mean and dispersion, respectively) for diag-
nostic purposes is also computed and plotted. It is worth to be noted that following
the approach of Capizzi and Masarotto in (2018), the control limits are computed by
permutation so that the desired FAP is guaranteed. In particular, the adjusted GLRT-
based distribution-free control charts have been designed evenly balancing the FAP
values of the location- and scale-control schemes, i.e., the single schemes have the
same probability of giving a false alarm and the probability that at least one of the
charts signal is equal to the specified FAP. Thus, the resulting adjusted GLRT-based
control charts (with permutation-based control limits) are distribution-free.

4.2.1 GLRT Approach

Figure2 illustrates the application of the adjustedGLRT-based Phase I analysis (with-
out transformation) to each influenza period under study. The control statistics are
based on a GLRT computed under a Gaussian assumption; however, the control
limits are computed by permutation (L = 100,000), and an alarm is signaled if the
statistics are greater than a positive control limit. Assuming that a probability of false
alarm equal toα = 0.05 is acceptable, the upper panels show the control statistics for
verifying the presence of a shift either in the location or dispersion. Since for many
weeks (in both periods), the values are greater than the permutation-based control

Fig. 2 GLRT-based Phase I analysis of ILI rate data (week40/2014–week39/2016)
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Fig. 3 First round of recursive GLRT approach (First period)

limit, the hypothesis of a stable process is rejected, and, in particular, the graph points
to a possible shift on week 34 (week21/2015) and on week 33 (week19/2016), for
the first and second period under study, respectively. The middle and lower panels
show the decomposition of the control statistics in the two parts due to changes in
the location and dispersion, respectively. These diagnostic graphs clearly point to a
shift in the dispersion for the employed ILI rate data in this study (Fig. 2).

Having divided the observations into two subperiods, that is, before and after
week 34 (week21/2015) for the first period, as well as before and after week 33
(week19/2016) for the second period, it is also useful to see if there is evidence of
other shifts within these periods. First round (see Fig. 3) of recursive application of
GLRT approach for the first period, suggests that another dispersion shift was prob-
ably present starting on week 13 (week52/2014), and no additional shift is detected
after week 33 (week20/2015), whereas second round (see Fig. 4) suggests that the
process was stable up toweek 12 (week51/2014), but another location shift was prob-
ably present starting onweek 14 (week13/2015).Conclusively, for thefirst period, the
hypothesis of a stable process cannot be rejected fromweek 40/2014 to week51/2014
and from week13/2015 to week39/2015, whereas location or/and dispersion shifts
are detected from week52/2014 to week12/2015. First round (see Fig. 5) of recursive
application ofGLRT approach for the second period, suggests that another dispersion
shift was probably present starting on week 13 (week52/2015), and no additional
shift is detected after week 32 (week18/2016), whereas second round (see Fig. 6) sug-
gests that the process was stable up to week 12 (week51/2015), but another location
shift was probably present starting on week 11 (week09/2016). Conclusively, for the
second period, the hypothesis of a stable process is not rejected from week40/2015
to week51/2015 and from week 09/2016 to week39/2016, whereas location or/and
dispersion shifts are detected from week52/2015 to week08/2016.
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Fig. 4 Second round of recursive GLRT approach (First period)

Fig. 5 First round of recursive GLRT approach (Second period)

4.2.2 Rank-Based GLRT Approach

A rank transformation of the original data is now used to possibly improve the per-
formance of GLRT-based control charts (as in our case of nonnormal data). Figure7
illustrates the application of the adjusted rank-based GLRT-based Phase I analysis
(with transformation) to each influenza period under study. The upper panels show
the control statistics for verifying the presence of a shift either in the location or
dispersion. Since for many weeks (in both periods) the values are greater than the
permutation rank-based control limit, the hypothesis of a stable process is rejected,
and, in particular, the graph points to a possible shift on week 30 (week17/2015) and
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Fig. 6 Second round of recursive GLRT approach (Second period)

Fig. 7 Rank-based GLRT-based Phase I analysis of ILI rate data (week40/2014–week39/2016)

on week 32 (week18/2016), for the first and second period under study, respectively.
The middle and lower panels show the decomposition of the control statistics in the
two parts due to changes in the location and dispersion, respectively. The rank-based
diagnostic graphs clearly point to a shift in the location for the employed ILI rate
data in this study (Fig. 7).

Having divided the observations into two subperiods, that is, before and after
week 30 (week17/2015) for the first period, as well as before and after week 32
(week18/2016) for the second period, it is also useful to see if there is evidence
of other shifts within these periods. First round (see Fig. 8) of recursive appli-
cation of rank-based GLRT approach for the first period, suggests that another
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Fig. 8 First round of recursive rank-based GLRT approach (First period)

location shift was probably present starting on week 12 (week51/2014) and on
week 6 (week22/2015), whereas second round (see Fig. 9) suggests that the pro-
cess was stable up to week 11 (week2014/50), but another location shift was prob-
ably present starting on week 16 (week14/2015), and no other shift was detected
from week22/2015 and onwards. Conclusively, for the first period, the hypothe-
sis of a stable process is not rejected from week40/2014 to week50/2014 and from
week14/2015 to week39/2015, whereas location or/and dispersion shifts are detected
from week51/2014 to week13/2015. First round (see Fig. 10) of recursive applica-
tion of rank-based GLRT change point method for the second period, suggests that
another location shift was probably present starting on week 11 (week50/2015), and
no additional shift is detected after week 31 (week17/2016), whereas second round
(see Fig. 11) suggests the process was stable up to week 10 (week49/2015), but
another location shift was probably present starting on 17 (week13/2016). Conclu-
sively, for the second period, the hypothesis of a stable process is not rejected from
week40/2015 to week49/2015 and from week13/2016 to week39/2016, whereas
location or/and dispersion shifts are detected from week50/2015 to week12/2016.

5 Comparative Performance Evaluation

In this section we proceed with a comparative study, in order to evaluate the
performance of the developed change-point analysis-based control charting meth-
ods in terms of retrospectively (Phase I) detecting outbreaks with scientific and
methodological adequacy (from both a statistical and an epidemiological perspec-
tive). As discussed earlier, Schmid in (2015) pointed out that the RS/P approach of
Capizzi and Masarotto in (2013) illustrates the importance of change-point analysis,
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Fig. 9 Second round of recursive rank-based GLRT approach (First period)

Fig. 10 First round of recursive rank-based GLRT approach (Second period)

Fig. 11 Second round of recursive rank-based GLRT approach (Second period)
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however, it also reflects its limits since it would be very interesting to know how
well it really identifies the positions of the change points. Therefore, in this compar-
ative analysis, the ability of RS/P method to detect the true (and correct amount of)
change points is tested through benchmarking. The RS/P approach is compared, in
terms of several performance evaluation metrics, with its competitors, i.e., the GLRT
as well as the rank-based GLRT approaches. More specifically, the derived change
points from RS/P, GLRT and rank-based GLRT approaches are compared with those
derived after executing the “gold standard” approach to influenza surveillance (CDC
and ECDC flu detection algorithm, that is, Serfling’s model).

The current approach to influenza surveillance is based on Serfling’s method
(Serfling 1963), i.e., a commonly used fully parametric regressionmodel for outbreak
detection (based on a trigonometric function with linear trend, assuming Gaussian
white noise errors in order to model historical baselines) that can be described by

X (t) = α0 + α1t + γ1 cos

(
2πt

m

)

+ δ1 sin

(
2πt

m

)

+ ε(t), (8)

where X (t) are the observed time-series values (weekly ILI rate), ε(t) are centered
zero-mean random variables with variance σ2,m denotes the number of observations
within one year, and model coefficients are estimated by least squares regression.
Parpoula et al. in (2017) developed extended Serfling-type periodic regressions mod-
els, and then compared their performance to typical forecasting models (including
Serfling’s method). The aforementioned procedure allowed Parpoula et al. in (2017)
to extract the signaled start weeks (sw) and End Weeks (ew) of the epidemics, i.e.,
sw01-ew13/2015 and sw01-ew08/2016 for the first and second period under study,
respectively. It is important to note that these signaled start and end weeks of the epi-
demics were extracted considering either Serfling’s model or an extended Serfling’s
model (identified as the optimal one). The interested reader may refer to Parpoula et
al. in (2017) for more details.

Therefore, we then examine the ability of the RS/P, GLRT and rank-based GLRT
approaches to detect the true change points, using Receiver Operating Characteristic
(ROC) curve analysis and its related metric, namely the Area under the ROC curve
(AUC). The ROC curve is a visual illustration of the success and error observed in a
classification model. The AUC is a measure of predictive accuracy of a classification
model and its score can be interpreted as either the average value of sensitivity for
all possible values of specificity or as the average value of specificity for all possible
values of sensitivity, and is always bounded between zero and one (there is no realistic
classifier with an AUC lower than 0.5). For more detailed discussions on the theory
and practice of ROC curves, the interested reader may refer to, among others, Pepe
in (2003) and Zhou et al. in (2011). Here, we present only some discussion of the
details of calculation of the ROC curves and its related statistics/metrics particular to
our problem. In our study, we performed pairwise comparison of ROC curves for all
approaches examined, that is, RS/P, GLRT, and rank-based GLRT. In particular, we
implemented the method of DeLong et al. in (1988), as well as of Hanley andMcNeil
in (1982) and (1983), for the calculation of the Standard Error (SE) of the estimated
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AUCs, and we also estimated the exact binomial Confidence Interval (CI) for each
derived AUC. Table 1 presents the estimated AUCs, the SEs, and the 95% CIs.
Tables 2 and 3 present the pairwise comparison of ROC curves, and Fig. 12 displays
the ROC curves that summarize the accuracy of the RS/P, GLRT and rank-based
GLRT approaches for detection of outbreaks. Note here that the aforementioned
calculations and ROC graphs are obtained for each employed method as well as for
both periods under study.

Table 1 Estimated AUC, SE, 95% CI for RS/P, GLRT and rank-based GLRT approaches

Period1 Method AUC2 AUC3 SE2 SE3 95% CI2 95% CI3

First RS/P 0.987 0.987 0.0128 0.0151 0.908–1.000 0.908–1.000

First GLRT 0.949 0.949 0.0405 0.0457 0.849–0.991 0.849–0.991

First Rank-based GLRT 0.974 0.974 0.0179 0.0213 0.887–0.999 0.887–0.999

Second RS/P 0.989 0.989 0.0111 0.0133 0,.912–1.000 0.912–1.000

Second GLRT 0.978 0.978 0.0155 0.0189 0.894–0.999 0.894–0.999

Second Rank-based GLRT 0.911 0.911 0.0288 0.0393 0.800–0.972 0.800–0.972
1First period: week40/2014–week39/2015, Second period: week40/2015–week39/2016
2DeLong et al. (1988)
3Hanley and McNeil (1982)

Table 2 Pairwise comparison of ROC curves (First period: week40/2014–week39/2015)

RS/P ∼ GLRT DeLong et al. (1988) Hanley and McNeil (1983)

Difference between AUCs 0.0385 0.0385

SE 0.0426 0.0480

95% CI −0.0451 to 0.122 −0.0557 to 0.133

Z-statistic 0.902 0.801

Significance level P = 0.3669 P = 0.4233

RS/P ∼ Rank-based GLRT DeLong et al. (1988) Hanley and McNeil (1983)

Difference between AUCs 0.0128 0.0128

SE 0.0224 0.0261

95% CI −0.0311 to 0.0567 −0.0383 to 0.0639

Z-statistic 0.572 0.491

Significance level P = 0.5671 P = 0.6231

GLRT ∼ Rank-based GLRT DeLong et al. (1988) Hanley and McNeil (1983)

Difference between AUCs 0.0256 0.0256

SE 0.0405 0.0460

95% CI −0.0538 to 0.105 −0.0646 to 0.116

Z-statistic 0.632 0.557

Significance level P = 0.5271 P = 0.5775
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Table 3 Pairwise comparison of ROC curves (Second period: week40/2015-week39/2016)

RS/P ∼ GLRT DeLong et al. (1988) Hanley and McNeil (1983)

Difference between AUCs 0.0111 0.0111

SE 0.0194 0.0231

95% CI −0.0269 to 0.0491 −0.0342 to 0.0564

Z-statistic 0.573 0.480

Significance level P = 0.5666 P = 0.6310

RS/P ∼ Rank-based GLRT DeLong et al. (1988) Hanley and McNeil (1983)

Difference between AUCs 0.0778 0.0778

SE 0.0273 0.0403

95% CI 0.0242 to 0.131 −0.00126 to 0.157

Z-statistic 2.847 1.929

Significance level P = 0.0044 P = 0.0538

GLRT ∼ Rank-based GLRT DeLong et al. (1988) Hanley and McNeil (1983)

Difference between AUCs 0.0667 0.0667

SE 0.0256 0.0410

95% CI 0.0164 to 0.117 −0.0137 to 0.147

Z-statistic 2.602 1.626

Significance level P = 0.0093 P = 0.1040

Fig. 12 Comparative ROC curve analysis
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Table 1 and Fig. 12 indicate that RS/P approach was found to be superior, for
both periods under study, compared to GLRT and rank-based GLRT approaches,
in terms of higher AUC and smaller SE values. However, Tables 2 and 3 indicate
that statistically significant differences between AUCs were identified as regards the
RS/P and rank-based GLRT approaches (p-value = 0.0044) as well as the GLRT
and rank-based GLRT approaches (p-value = 0.0093), only for the second period
under study. Therefore, in order to clarify if the RS/P approach does indeed com-
pare favorably with its competitors (GLRT and rank-based GLRT approaches), we
further executed an additional comparative analysis, taking now into account several
commonly accepted accuracy measures of a diagnostic test (Zhou et al. 2011), that
is, sensitivity, specificity, and accuracy. Sensitivity (SENS) is the probability that a
test result will be positive when the epidemic is present (true positive rate, larger-the-
better), specificity (SPEC) is the probability that a test result will be negative when
the epidemic is not present (true negative rate, larger-the-better), and accuracy (ACC)
is the overall probability that a case will be correctly classified (larger-the-better).We
estimated these metrics (expressed as percentages) along with their exact Clopper–
Pearson 95% CIs (see Clopper and Pearson in (1934)) for each method examined
as well as for both periods under study, as shown in Table 4. Further, we computed
the False Alarm Rate (FAR), that is, the probability of false detection, defined as
the number of negative events wrongly categorized as positive (false positives-false
alarms) per the total number of actual negative events regardless of classification
(smaller-the-better).

Table 4 indicates that RS/P approach was found to be superior compared to its
competitors, for both periods under study, in terms of all performance evaluation
metrics considered, that is, higher (or equal in some cases) ACC, SENS, and SPEC
values. Further, the RS/P approach was also found to be superior in terms of smaller
(or equal) FAR values compared to the GLRT and rank-based GLRT approaches, for
both periods under study. It is important to note here that only the RS/P approach
shows a quite robust and satisfactory performance for both periods under study,
thus it can be recommended to be used in Phase I applications in which there is no
prior information on the IC underlying distribution. The rank-based GLRT approach
seems to be dominated by theGLRT approach, especially for the second period under
study, despite the fact that the rank transformation was used to possibly improve
the performance in the case of nonnormal data. The FAR values of the rank-based
GLRT approach are much higher than those of the GLRT approach. In particular,
the FAR value of the rank-based GLRT approach, especially for the second period
under study, seems unacceptable for practical applications, whereas GLRT approach
seems to approximately guarantee an acceptable FAR value. The aforementioned
issues reveal that the “best” chart based on GLRT strongly depends on the different
shift patterns, and the GLRT-based approaches could be recommended to be used
only when the shape of the distribution is known.

Therefore, the derived results provide sufficient enough evidence that the RS/P
approach seems to detect successfully the “true” and “correct” amount of change
points (recall here that RS/P change points are compared with those derived after
executing the “gold standard” CDC and ECDC flu detection algorithm), was found
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Table 4 Metrics of RS/P, GLRT and rank-based GLRT approaches

First period: week40/2014–week39/2015

Metric RS/P GLRT Rank-based GLRT

SENS (95% CI) 100.0%
(75.29–100.0%)

92.31%
(63.97–99.81%)

100.0%
(75.29–100.0%)

SPEC (95% CI) 97.44%
(86.52–99.94%)

97.44%
(86.52–99.94%)

94.87%
(82.68–99.37%)

ACC (95% CI) 98.08%
(89.74–99.95%)

96.15%
(86.79–99.53%)

96.15%
(86.79–99.53%)

FAR 0.025 0.025 0.051

Second period: week40/2015–week39/2016

Metric RS/P GLRT Rank-based GLRT

SENS (95% CI) 100.0%
(63.06–100.0%)

100.0%
(63.06–100.0%)

100.0%
(63.06–100.0%)

SPEC (95% CI) 97.78%
(88.23–99.94%)

95.56%
(84.85–99.46%)

82.22%
(67.95–91.99%)

ACC (95% CI) 98.11%
(89.93–99.95%)

96.23%
(87.02–99.54%)

84.91%
(72.41–93.25%)

FAR 0.022 0.044 0.177

to be the “best” scheme in the presence of multiple change points, as in the case of
“two-” and “three-steps” patterns, and can be considered as an ideal retrospective
(Phase I) change-point analysis-based control charting method for outbreak detec-
tion. However, the most important feature of RS/P is that it is a distribution-free
approach; that is, it is able to guarantee a prescribed FAP without any knowledge
about the IC underlying distribution. This feature is particularly relevant and useful
for any Phase I application since it is well known that it is not possible to check a
distributional assumption before verifying the stability of a nonmanufacturing pro-
cess, and the use of a misspecified IC distribution can result in an unacceptably high
false alarm probability (Woodall 2000).

6 Concluding Remarks

TheSPC techniques have a longhistory of application to nonmanufacturing industries
such as healthcare monitoring, among others. One of the most common challenges
in nonmanufacturing control chart Phase I applications is that the underlying process
distribution of many of the nonmanufacturing quality characteristics is not normal
and usually unknown, hence, statistical properties of the most commonly used charts
are highly affected. Given these concerns, nonparametric or even distribution-free
control charts appear to be ideal candidates for such Phase I applications. How-
ever, most of the existing nonparametric control charts are designed for Phase II
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monitoring, and most Phase I statistical methods can only be applied with sub-
grouped observations. However, nonmanufacturing process-quality characteristics
are often observed and recorded as individual observations, and little has been done
in developing nonparametric Phase I control charts especially for individual obser-
vations that are prevalent in nonmanufacturing applications. Toward this end, in
this chapter, change-point analysis-based distribution-free control charts designed
for Phase I applications (especially for individual observations) were constructed
for retrospectively detecting single or multiple changes in location and dispersion
of univariate variables, and some of the statistical issues involved in the construc-
tion and evaluation of such control charts were discussed. A nonmanufacturing real
example was included to unfold the capabilities of the developedmethodologies. The
interpretation of these charts, from a statistical (and an epidemiological) perspective,
facilitated the better understanding of process variability and highlighted important
issues for an SPC practitioner (and a healthcare practitioner).

The empirical comparative study provided sufficient evidence that RS/P control
charting method was found to be superior compared to its competitors in terms of
several performance evaluation metrics considered, and seems to detect successfully
the true change points compared to a “gold standard” approach. The GLRT-based
approaches were found to strongly depend on different shift patterns, and could be
recommended to be used only when the shape of the distribution is known (since the
probability of false detection in some caseswas found to be unacceptable for practical
applications). It is important to note here that only the RS/P approach indicated a
quite robust and satisfactory performance, thus it could be recommended to be used
in Phase I applications in which there is no prior information on the IC underlying
distribution. However, despite these appealing properties, as its competitors, RS/P,
requires the independence of the observations (at least in the IC state). Hence, more
research is still needed to account for autocorrelation in historical process data.

Conclusively, the present chapter provided general recommendations to serve
critical needs of Phase I nonmanufacturing applications (especially for individual
observations). It is worth to be noted that the process knowledge and insights gained
fromPhase I data and analysis can be too important for one tomove quickly into Phase
II (even if this is possible in theory). A Phase I analysis should encompass more than
simply applying a control chart to data to determinewhich observations are in control,
such as including visualization of the process data as well as applying statistical
methods in data in order to gain richer insights into the process and determine the
appropriate model for process improvement and monitoring, and in this sense, the
current study, through benchmarking among competing change-point analysis-based
distribution-free control charts and conducting a retrospective analysis of real time-
series data, is filling up the gap in the relevant state-of-the-art literature.
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A Class of Distribution-Free
Exponentially Weighted Moving Average
Schemes for Joint Monitoring of
Location and Scale Parameters

Zhi Song, Amitava Mukherjee, Marco Marozzi and Jiujun Zhang

Abstract In this chapter, we investigate and compare six distribution-free exponen-
tially weighted moving average (EWMA) schemes for simultaneously monitoring
the location and scale parameters of a univariate continuous process. More precisely,
we consider a well-known distribution-free EWMA scheme based on the Lepage
statistic, and we propose five new EWMA schemes for the same purpose. One of the
five new schemes is based on themaximumof EWMAof two individual components,
one for the location parameter and the other for the scale parameter, of the Lepage
statistic. Such a component-wise combined EWMA is referred to as the cEWMA.
Further, we consider an EWMA scheme based on the Cucconi test statistic. We show
that it is possible to express the Cucconi statistic as a quadratic combination of two
orthogonal statistics, one of which is useful for monitoring the location parameter
and the other for monitoring the scale parameter. Such decomposition of the Cuc-
coni statistic is not unique, and one can split it into three different ways. Therefore,
we design three more cEWMA schemes corresponding to the decompositions of
the Cucconi statistic. We discuss the implementation steps along with an illustra-
tion. We perform a detailed comparative study based on Monte Carlo simulation.
We observe that the three cEWMA-Cucconi schemes perform very well for various
location–scale models.
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1 Introduction

Early evidence of researches in Nonparametric Statistical Process Monitoring
(NSPM) mainly capitalized the asymptotic theory of sequential analysis, see, for
example, Bhattacharya and Frierson Jr (1981), Park et al. (1987). About 20 years
ago, Woodall and Montgomery (1999) anticipated an increasing role of nonpara-
metric approaches in process monitoring in the twenty-first century. In the past two
decades, not only their vision came true, but also the application of nonparamet-
ric process control reached beyond the production line of manufacturing industries.
Frommonitoring healthcare system to service quality in a call center, various NSPM
schemes are playing a transformative role even in the Industry 4.0 era. For some
interesting applications of the NSPM schemes, see, for example, Stromberg (2005),
Mukherjee and Marozzi (2017b), and Mukherjee and Sen (2018), among others.

Bakir (2004, 2006), respectively, proposed some NSPM schemes based on the
signed ranks and some signed-rank type statistics. Among the most notable early
works on the distribution-free approaches of process monitoring, we recommend
Chakraborti et al. (2004) that introduced a class of NSPM schemes based on the
precedence statistic; Li et al. (2010) designed cumulative sum (CUSUM) and expo-
nentially weighted moving average (EWMA) schemes for Phase-II monitoring of
unknown location parameter of a process using the Wilcoxon statistic. Qiu and Li
(2011a, b) studied someNSPMschemes primarily focusing on the location parameter
of univariate processes. For the same purpose, Graham et al. (2012) and Mukher-
jee et al. (2013), respectively, designed EWMA and CUSUM schemes based on the
precedence statistic in the distribution-free setup. For some notable contributions
in the multivariate nonparametric setup, we recommend Qiu and Hawkins (2001,
2003). Chatterjee et al. (2009) proposed some distribution-free CUSUM schemes
using bootstrap-based control limits. From a statistical perspective, we often see
that the distributional assumption of various parametric approaches is unrealistic or
untenable in practice. Therefore,we strongly recommend practitioners to rely on non-
parametric and distribution-free procedures. While the book by Montgomery (2009)
provides a sound understanding of the fundamentals of statistical process control, Qiu
(2014) offers a systematic treatment of some NSPM schemes and is worth reading
to learn and understand the advantages of the NSPM schemes over traditional para-
metric approaches. For a recent review on various perspectives of NSPM schemes,
we recommend Qiu (2018) and the book by Chakraborti and Graham (2019b).

Statistical process monitoring is broadly based on two phases. In the first phase,
practitioners collect a sample from an in-control (IC) process, systematically analyze
and examine if there is any signal due to an assignable cause. Phase-I or retrospective
analysis is essential for establishing a reference sample. Such a reference sample is
used as a benchmark in the course of monitoring incoming series of observations in
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Phase-II. Establishment of Phase-I sample is itself an exciting area of research and is
addressed by several researchers in recent times. However, in the current chapter, we
focus on the Phase-II NSPM schemes only. Interested readers may see Jones-Farmer
et al. (2014), Capizzi and Masarotto (2018) and Li et al. (2019) for more details of
Phase-I analysis. We assume that a reference sample of fixed size is available a priori
from an IC process. For Phase-II analysis, most of the NSPM schemes discussed
before 2012–2013 are designed either for monitoring the location parameter of the
process or for the process range or variability separately. For example, Bakir (2004,
2006), Li et al. (2010), Qiu and Li (2011a, b), Graham et al. (2012), and Mukherjee
et al. (2013) are effective in monitoring the location parameter. On the other hand,
Stromberg (2005) is useful for monitoring the process range.

Nevertheless, several researchers recommend using a combined charting scheme
that can simultaneously monitor both location and scale parameters of a process.
Under parametric setup, researches on joint monitoring started during the last decade
of the twentieth century, whereas there was no NSPM scheme for joint monitoring
for a long time. Mukherjee and Chakraborti (2012) first addressed nonparametric
joint monitoring of location and scale parameters using a single plotting statistic,
and, more precisely, developed a Shewhart-type NSPM scheme based on the Lepage
statistic, introduced by Lepage (1971), in connection to the classical two-sample
location–scale problem of testing of hypothesis.

The Lepage statistic is a rank-based statistic defined as a quadratic combination
of the standardized Wilcoxon statistic for location and the standardized Ansari–
Bradley statistic for scale. Eventually, a large number of rank statistics have been
proposed for the two-sample location–scale problem. Most of these statistics are of
the Lepage-type, that is, a combination of a location test statistic and a scale test
statistic. However, there was a different test statistic designed by Cucconi (1968) in
connection to a similar problem in an Italian national journal, remained unnoticed by
the scientific community outside Italy before Marozzi (2009) provided new results
about it. Marozzi (2013) reviewed and compared the performance of several two-
sample location–scale tests of the Lepage-type as well as the Cucconi statistics.
Chowdhury et al. (2014) used this statistic to construct a Shewhart-type NSPM
scheme for joint monitoring of location and scale parameters.

Bonnini et al. (2014) and Marozzi (2014) emphasized that the Cucconi test is of
historical interest as it was proposed some years before the Lepage test. Moreover,
the genesis of the Cucconi statistic is not through a combination of a test statistic for
location and a test statistic for scale as the various other Lepage-type location–scale
tests. In this chapter, we show that even the Cucconi statistic can be decomposed as a
quadratic combination of a location statistic and a scale statistic. Interestingly, such
decomposition is not unique, and here we present three different decompositions.
Nevertheless, one should note that the original Cucconi statistic was not proposed as
a combination of a location statistic and a scale statistic. Marozzi (2013) showed that
the Cucconi statistic compares favorably with Lepage-type statistic in connection
to two-sample testing in terms of power and type one error probability. Likewise,
Chowdhury et al. (2014) established that the Shewhart-type NSPM scheme based
on the Cucconi statistic competes well with the Shewhart–Lepage scheme as in
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Mukherjee andChakraborti (2012) in termsof run length characteristics. TheCucconi
statistic is slightly more straightforward and faster as far as computational time
and complexity are concerned, because it uses only the ranks of one sample in the
combined sample, whereas the other statistics also require scores of various types.
In some cases, one needs to estimate the mean and variance of test statistics via
permutation as their analytic formulae are not available.

After Mukherjee and Chakraborti (2012) and Chowdhury et al. (2014), a large
volume of literature has been introduced for joint monitoring of location and scale
parameters. Chowdhury et al. (2015) and Mukherjee and Marozzi (2017b) designed
two CUSUM-type NSPM schemes using the Lepage and Cucconi statistics, respec-
tively. Further, Mukherjee (2017a) discussed various EWMA schemes based on the
Lepage statistic. Chong et al. (2017) designed a newNSPM scheme, referred to as the
premier monitoring scheme, using the Lepage statistic and both the maximum and
distance metrics. Mukherjee and Marozzi (2017a) introduced the circular-grid ver-
sion of the Shewhart–Lepage scheme. Noting that the Lepage statistic is by default
designed for two-sided shifts in location or scale parameters, Chong et al. (2018)
proposed several one-sided Shewhart-type Lepage schemes with appropriate modi-
fication of the Lepage statistic. Song et al. (2019) introduced a new distribution-free
adaptive Shewhart–Lepage-type scheme for simultaneous monitoring using infor-
mation about symmetry and tail weights of the process distribution. Among other
notable works, Celano et al. (2016) proposed joint monitoring schemes for finite
horizon processes; Mahmood et al. (2017) studied the performance of some joint
monitoring schemes, and Zafar et al. (2018) introduced some progressive approaches
of joint monitoring.

Roberts (1959) first introduced the notion of EWMA schemes. Various EWMA
schemes are widely used in industry and are very popular among practitioners as they
are very efficient in detecting small to moderate shifts. In fact, in the context of joint
monitoring, Mukherjee (2017a) established that if the smoothing parameter is appro-
priately tuned, the EWMA Lepage scheme will be as good as the Shewhart scheme
even for significant shifts in location or scale parameters. However, discussion of
the EWMA type schemes for joint monitoring of location and scale is somewhat
limited. Apart from Mukherjee (2017a), a recent work by Li et al. (2018) consid-
ered an EWMA scheme based on ranks. Moreover, Mukherjee (2017b) presented the
EWMA scheme based on the Cucconi statistic. Nevertheless, researchers have never
explored the max-type combination of individual EWMAs based on the location and
scale components of the Lepage and Cucconi statistics. We refer to these new types
of EWMA schemes as cEWMA schemes. The notion of distribution-free cEWMA
is one of the pivotal contributions of this chapter.

The rest of the chapter is organized as follows. In Sect. 2, we describe the six
distribution-free EWMA schemes for joint monitoring based on the Lepage and
Cucconi statistics. InSect. 3,weoutline the implementation design of variousEWMA
and cEWMA schemes. In Sect. 4, we investigate and compare the performance of
the six schemes. Their application is illustrated with real data in Sect. 5. We offer
concluding remarks and some directions for further research in Sect. 6.
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2 Distribution-Free EWMA Schemes

Consider a stable univariate and continuous process that is unaffected by any
assignable or special causes of variation. In connection to statistical process mon-
itoring, such a process is called IC process. An IC process is subjected to random
variation only. In the present chapter, we assume the availability of a reference
sample of size m from the IC process. To be precise, we consider that a reference
sample U1,U2, . . . ,Um is collected from an IC process with a continuous cumula-
tive distribution function (cdf) F(x). We also assume that Ui

′
s are independently

and identically distributed (i.i.d) random variables each having cdf F . As mentioned
earlier, one must establish a reference sample through appropriate Phase-I analysis.
We omit details on this to save space. We assume that the functional form of F is
unknown. At each stage of Phase-II monitoring, we collect a test sample of size n. Let
V1, V2, . . . , Vn , be the test sample from an unknown continuous distribution with cdf
G(x). The test sample is mutually independent of the reference sample. We further
assume that Vi

′
s are i.i.d for every i , (1 ≤ i ≤ n). Ideally, two distribution functions

F and G should be identical in all respect when the process is in IC. Nevertheless,
when there is a shift in process location or scale or both at Phase-II, we often see that
G(x) = F( x−θ

δ
), θ ∈ �, δ > 0, where the constants θ and δ represent the unknown

shift in the location and scale parameters, respectively. In classical statistical litera-
ture, such a framework is referred to as the general location–scale model. See, for
example, Hájek et al. (1999). When θ = 0 and δ = 1, we observe an IC setup. Note
that θ �= 0 but δ = 1, representing a pure location shift, while θ = 0 and δ �= 1 indi-
cate a pure scale shift. Finally, if both θ �= 0 and δ �= 1, we observe a shift in both
the location and scale parameters.

2.1 Lepage-Type Monitoring Schemes

The well-known Lepage statistic is the sum of squares of the standardized Wilcoxon
rank-sum (WRS) statistic for location and the standardized Ansari–Bradley (AB)
statistic for scale. Introduce an indicator variable Ik = 0 or 1 accordingly as the kth
order statistic of the combined N (= m + n) sample is a U observation or V . The
WRS statistic for testing the equality of two location parameters is the sum of ranks
of Vi

′
s in the combined sample of size N and is given by

T1 =
N∑

k=1

k Ik .

The AB test is a nonparametric test for the two-sample scale problem based on the
statistic T2, defined as
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T2 =
N∑

k=1

∣∣∣∣k − 1

2
(N + 1)

∣∣∣∣ Ik .

The combination of the standardized WRS and AB statistics is the Lepage statistic
and is given by

L =
(
T1 − E(T1)√

Var(T1)

)2

+
(
T2 − E(T2)√

Var(T2)

)2

. (1)

It is well known (see Mukherjee and Chakraborti (2012)) that

E(T1) = 1

2
n(N + 1),

Var(T1) = 1

12
mn(N + 1).

Further,

E(T2) =
{

n(N 2−1)
4N when N is odd

nN
4 when N is even,

Var(T2) =
{

mn(N+1)(N 2+3)
48N 2 when N is odd

mn(N 2−4)
48(N−1) when N is even.

Mukherjee and Chakraborti (2012) recommended using this statistic for joint mon-
itoring of location and scale parameters of an unknown but continuous univariate
process. They designed a Phase-II Shewhart-type scheme. Interested readers may
see Chowdhury et al. (2015) for the Phase-II CUSUM Lepage scheme. A Phase-
I Lepage-type scheme is also available in literature. See Li et al. (2019) for more
details.

2.1.1 The EWMA Lepage Scheme

The EWMA schemes are usually more effective in detecting persistent shifts than
Shewhart schemes. Mukherjee (2017a) proposed some distribution-free EWMA
schemes based on the Lepage statistic for jointly monitoring the location and the
scale parameters. These schemes are referred to as the EL procedures. Let L j denote
the Lepage statistic L computed by using m Phase-I observations from the j th test
sample. Note that E(L j |IC) = 2. Then the EL scheme is given by

R∗
EL, j = max{2,λL j + (1 − λ)REL, j−1}, j = 1, 2, . . . ,

with the starting value REL,0 = 2. Here, 0 < λ ≤ 1 is the smoothing parameter. Note
that we get the Shewhart-type scheme when λ = 1. This type of EWMA structure
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helps in reducing inertia effect of the EWMA. We refer p. 423. of Montgomery
(2009) for better understanding of the inertia effect of an EWMA scheme. Here, we
consider standard (traditional) EWMA structure. We consider

REL, j = λL j + (1 − λ)REL, j−1, j = 1, 2, . . . ,

with the starting value REL,0 = 2.Chakraborti and Graham (2019a) mentioned about
this type of traditional ways of designing the EL scheme. The EWMA Schemes
considered in this chapter, are all based on the traditional design. We recommend
future study of the EWMA design with correction of inertia effect.

2.1.2 The cEWMA Lepage Scheme

Unlike, the traditional EL schemes discussed in Mukherjee (2017a), practitioners
mayfindamax-typevariant of theELschememore interesting.The idea is to combine
two individual EWMA statistics, one based on the location component of the Lepage
statistic and the other based on the scale component. We refer to this new scheme
as the cEWMA Lepage (cEL) scheme. Let T1, j and T2, j denote the WRS statistic T1
and the AB statistic T2, respectively, computed by using m Phase-I observations and
the j th test sample. Writing S1, j = T1, j−E(T1, j )√

Var(T1, j )
and S2, j = T2, j−E(T2, j )√

Var(T2, j )
,we may define

the following EWMA statistics:

R1, j = λS21, j + (1 − λ)R1, j−1,

R2, j = λS22, j + (1 − λ)R2, j−1, j = 1, 2, . . . ,
(2)

with R1,0 = R2,0 = 1, as it is easy to see that E
(
S21, j

)
= E

(
S22, j

)
= 1.The plotting

statistic of the cEL scheme is defined by

RcEL, j = max{R1, j , R2, j } for j = 1, 2, . . .

2.2 Cucconi-Type Monitoring Schemes

TheCucconi (1968) statistic is another important statistic for the classical distribution-
free two-sample location–scale problems. Marozzi (2009, 2013) popularized this
statistic and established that the test based on the Cucconi statistic is preferable to
the familiar Lepage test and several other tests for various distributions and different
sizes of shifts. Now, we shall briefly discuss the Cucconi statistic. Consider the sum
of the squares of the ranks of Vi

′
s in the combined sample of size N as
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S1 =
N∑

k=1

k2 Ik .

Further, let the sum of squares of anti-ranks (alias contrary ranks) of Vi
′
s in the

combined sample be S2. Cucconi (1968) showed that

S2 =
N∑

k=1

(N + 1 − k)2 Ik = n(N + 1)2 − 2(N + 1)T1 + S1,

and that

E(Sl |IC) = n(N + 1)(2N + 1)

6
,

and

Var(Sl |IC) = mn(N + 1)(2N + 1)(8N + 11)

180
, l = 1, 2.

Consider the standardized Sl statistics for l = 1, 2 as W = S1−E(S1|IC)√
Var(S1|IC) and Z =

S2−E(S2|IC)√
Var(S2|IC) where

Sl − E(Sl |IC)√
Var(Sl |IC) = 6Sl − n(N + 1)(2N + 1)√

1
5 (mn(N + 1)(2N + 1)(8N + 11))

, l = 1, 2,

so that E(W |IC) = E(Z |IC) = 0 and Var(W |IC) = Var(Z |IC) = 1. Moreover, W
and Z are negatively correlated with correlation coefficient ρ ∈ (−1,− 7

8

)
. Explic-

itly,

Corr(W, Z) = ρ = 2(N 2 − 4)

(2N + 1)(8N + 11)
− 1.

The minimum −1 occurs in the trivial situation where N = 2, while the supremum
is reached when N diverges to infinity with lim

N→∞ ρ = −7/8.

The process is out-of-control (OOC) if either of the following three situations
arises in course of Phase-II monitoring: (i) when θ �= 0 and δ = 1, (ii) when θ = 0
and δ �= 1, and (iii) when θ �= 0 and δ �= 1. In these situations, one or both of E(W )

and E(Z) are nonzero; the various scenarios are reported in details by Marozzi
(2009). In order to combine the information provided by both W and Z regarding
the presence of a difference in location as well as in scale, Cucconi (1968) proposed
the following rank-based statistic:

C = W 2 + Z2 − 2ρWZ

2(1 − ρ2)
. (3)
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The higher the deviation of θ from 0 and/or δ from 1, the larger is the value of C , and
therefore C plays an important role in detecting any possible shifts in θ and/or δ.

Chowdhury et al. (2014) developed a Phase-II Shewhart-type joint monitoring
schemes using theCucconi statistic as an alternative to the Shewhart–Lepage scheme.
Further, Mukherjee and Marozzi (2017b) designed the Phase-II CUSUM Cucconi
scheme.

2.2.1 The EWMA Cucconi Scheme

Mukherjee (2017b) proposed a single distribution-free EWMA scheme for jointly
monitoring the location and the scale parameters, which is based on the Cucconi
statistic and referred to as the EC procedure. Let C j denote the Cucconi statistic
C computed by using m Phase-I observations from the j th test sample. Note that
E(C j |IC) = 1. Then the EC scheme is given by

E j = λC j + (1 − λ)E j−1, j = 1, 2, . . . ,

with the starting value E0 = 1.

2.2.2 The cEWMA-Cucconi Schemes

In the literature, nonparametric tests for jointly detecting location and scale changes
are based on the combination of two tests, one for location and another for scale.
Generally, the combination is achieved through the sum of the squared standardized
test statistics, and this is just the case of the Lepage test. The traditional viewpoint
is that the Cucconi statistic is not based on a combination of a test statistic for
location and a test statistic for scale as the other location–scale tests. However,
in this chapter, we show that even the Cucconi statistic can be decomposed as a
quadratic combination of a location statistic and a scale statistic. Interestingly, such
decomposition is not unique, and here we present three different decompositions. It
is easy to see that

Case 1: C = W 2

2
+ (Z − ρW )2

2(1 − ρ2)
;

Case 2: C = (W − ρZ)2

2(1 − ρ2)
+ Z2

2
;

Case 3: C = (W − Z)2

4(1 − ρ)
+ (W + Z)2

4(1 + ρ)
.

Therefore, we can construct three cEWMA-Cucconi (abbreviated by cEC) schemes
as follows:
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cEC-Case 1(cEC1): Suppose T 2
11 = W 2 and T 2

12 = (Z−ρW )2

1−ρ2
. Note that E(T 2

11|IC) =
E(T 2

12|IC) = 1. We consider

E11, j = λT 2
11, j + (1 − λ)E11, j−1,

E12, j = λT 2
12, j + (1 − λ)E12, j−1,

with the starting value E11,0 = E12,0 = 1. The plotting statistic is given by

E1, j = max{E11, j , E12, j } for j = 1, 2, . . .

cEC-Case 2(cEC2): Suppose T 2
21 = (W−ρZ)2

1−ρ2
and T 2

22 = Z2.We consider the EWMA
statistics:

E21, j = λT 2
21, j + (1 − λ)E21, j−1,

E22, j = λT 2
22, j + (1 − λ)E22, j−1,

with the starting value E21,0 = E22,0 = 1, as E(T 2
21|IC) = E(T 2

22|IC) = 1. The plot-
ting statistic is given by

E2, j = max{E21, j , E22, j } for j = 1, 2, . . .

cEC-Case 3(cEC3): Suppose T 2
31 = (W−Z)2

2(1−ρ)
and T 2

32 = (W+Z)2

2(1+ρ)
. We consider

E31, j = λT 2
31, j + (1 − λ)E31, j−1,

E32, j = λT 2
32, j + (1 − λ)E32, j−1,

with the starting value E31,0 = E32,0 = 1, as E(T 2
31|IC) = E(T 2

32|IC) = 1. The plot-
ting statistic is defined by

E3, j = max{E31, j , E32, j } for j = 1, 2, . . .

3 Implementation of the Proposed Monitoring Procedures

For various practical purposes, it is essential to follow specific implementation steps
for various schemes discussed in Sect. 2. Note that, irrespective of type and direction
of the shift, either in location or in scale or in both, the statistic of each scheme is
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expected to be larger when the process in OOC. Thus, each of the six monitoring
schemes requires only an upper control limit (UCL).

3.1 Implementation of the EL and cEL Schemes

The EL and cEL schemes may be implemented in practice via the following steps:

Step 1: Collect the reference sample from IC process, Xm = (X1, X2, . . . , Xm).
Step 2: Let Y j = (Y j1,Y j2, . . . ,Y jn) be the j th test sample of size n, j = 1, 2, . . .
Step 3: Identify the U

′
s with the X

′
s and the V

′
s with the Y

′
s, respectively. Cal-

culate T1, j and T2, j between the reference sample and the j th test sample,
and obtain their means and variances according to whether N = m + n is
even or odd.

Step 4: (i) For the EL scheme, calculate the Lepage statistic L j using the reference
sample and the j th test sample as in (1). Then compute the plotting statistic
REL, j = λL j + (1 − λ)REL, j−1, j = 1, 2, . . . , sequentially for the j th test
sample of the EL scheme starting with REL,0 = 2.
(ii) For the cEL scheme, calculate the EWMA statistics R1, j and R2, j

for the j th subgroup ( j = 1, 2, . . .) as in (2). Then compute the plotting
statistic RcEL , j = max{R1, j , R2, j }, j = 1, 2, . . ., sequentially for the j th
test sample of the cEL scheme.

Step 5: Let HEL and HcEL be theUCLof the EL and cEL schemes, respectively. For
j = 1, 2, . . . , compare the plotting statistic R[S], j with the corresponding
UCL, H[S], where [S] = EL or cEL , as the case may be.

Step 6: Obtain an OOC signal at the j th stage of inspection if R[S], j exceeds H[S],
[S] = EL or cEL, and a search for assignable cause begins. Otherwise,
the process is thought to be IC, and monitoring continues to the next test
sample.

3.2 Implementation of the EC, cEC1, cEC2, and cEC3
Schemes

The EC, cEC1, cEC2, and cEC3 monitoring schemes may be constructed as follows:

Step 1: Same as in Sect. 3.1.
Step 2: Same as in Sect. 3.1.
Step 3: Identify the U

′
s with the X

′
s and the V

′
s with the Y

′
s, respectively. Cal-

culate the Cucconi statistic C j between the reference sample and the j th
test sample as in (3).
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Step 4: (i) For the EC scheme, calculate the plotting statistic E j = λC j + (1 −
λ)E j−1, sequentially for the j th test sample of the EC scheme starting with
E0 = 1.
(ii) For the cEC[I ] schemes, calculate the EWMA statistics E[I ]1, j and
E[I ]2, j for the j th subgroup ( j = 1, 2, . . .), where [I ] = 1, 2, 3, using the
formulae presented in Sect. 2.2.2. Then compute the plotting statistic E[I ], j ,
[I ] = 1, 2, 3, sequentially for the j th test sample of the cEL[I ] scheme,
respectively.

Step 5: Let HEC and HcEC[I ] be the UCL of the EC and cEC[I ] ([I ] = 1, 2, 3)
schemes, respectively. For j = 1, 2, . . . , compare the plotting statistic E j

with the UCL, HEC, and similarly, the plotting statistic E[I ], j with the
corresponding UCL HcEC[I ], where [I ] = 1, 2, 3.

Step 6: Obtain an OOC signal at the j th stage of inspection if E j exceeds HEC,
or E[I ], j exceeds HcEC[I ], [I ] = 1, 2, 3, and a search for assignable cause
begins. Otherwise, the process is thought to be IC, and monitoring contin-
ues to the next test sample.

4 Numerical Results and Comparisons

We analyze IC and OOC performance of various schemes discussed in Sect. 2 via
Monte Carlo simulation. The average run length (ARL) and the standard deviation of
the run length (SDRL) are popular performance indicators, but since the run length
distribution is right-skewed, it is also worthwhile to study the 5th, 25th, 50th, 75th,
and the 95th percentiles of the run length.

4.1 Determination of Control Limits

For the implementation of the aforementioned schemes, we need to determine the
UCL that provides certain target IC ARL (ARL0). We perform a Monte Carlo sim-
ulation study in FORTRAN to determine the UCL values on the basis of 50,000
replications. Because of the distribution-free nature of the proposed class of moni-
toring schemes, without loss of generality, we generate m observations from a stan-
dard normal distribution for the Phase-I sample and n observations from the same
distribution for each test sample. In Table1, we provide the UCL values for some
selected (m, n,λ) and nominal ARL0 values. We select m = 50, 100, 300, and 500,
to cover small to moderate reference sample sizes. Further, we select n = 5, 10 and
15 as test sample size. Finally, we consider the values of λ as 0.05 and 0.1 and the
nominal ARL0 as 250, 370, and 500.



A Class of Distribution-Free Exponentially Weighted Moving Average Schemes … 195
Ta

bl
e
1

T
he

U
C
L
va
lu
es

of
si
x
sc
he
m
es

fo
r
so
m
e
st
an
da
rd

(t
ar
ge
t)
va
lu
es

of
A
R
L
0

C
ha
rt
pa
ra
m
et
er

E
L
sc
he
m
e

cE
L
sc
he
m
e

E
C
sc
he
m
e

cE
C
1
sc
he
m
e

cE
C
2
sc
he
m
e

cE
C
3
sc
he
m
e

A
R
L
0

A
R
L
0

A
R
L
0

A
R
L
0

A
R
L
0

A
R
L
0

λ
m

n
25

0
37

0
50

0
25

0
37

0
50

0
25

0
37

0
50

0
25

0
37

0
50

0
25

0
37

0
50

0
25

0
37

0
50

0

0.
05

50
5

2.
39

3
2.
46

5
2.
53

0
1.
47

3
1.
52

3
1.
56

5
1.
18

5
1.
21

7
1.
24

5
1.
45

9
1.
50

9
1.
54

7
1.
45

9
1.
50

9
1.
54

6
1.
45

3
1.
50

0
1.
53

9

50
10

2.
32

9
2.
39

6
2.
45

8
1.
44

5
1.
49

4
1.
53

8
1.
16

4
1.
19

7
1.
22

4
1.
44

3
1.
49

4
1.
53

3
1.
44

2
1.
49

4
1.
53

2
1.
44

3
1.
49

0
1.
53

4

50
15

2.
24

8
2.
30

9
2.
36

2
1.
38

3
1.
43

8
1.
48

1
1.
12

5
1.
15

8
1.
18

2
1.
39

5
1.
44

4
1.
48

6
1.
39

6
1.
44

4
1.
48

5
1.
39

4
1.
44

3
1.
48

3

10
0

5
2.
50

5
2.
58

7
2.
64

1
1.
51

8
1.
57

0
1.
60

9
1.
24

5
1.
27

8
1.
30

8
1.
50

9
1.
56

1
1.
60

3
1.
50

9
1.
56

0
1.
60

3
1.
50

1
1.
54

8
1.
58

5

10
0

10
2.
49

6
2.
56

5
2.
62

2
1.
52

1
1.
57

5
1.
61

8
1.
23

9
1.
27

5
1.
30

1
1.
51

4
1.
56

8
1.
60

9
1.
51

7
1.
56

9
1.
61

1
1.
51

3
1.
56

6
1.
60

7

10
0

15
2.
43

9
2.
51

7
2.
57

5
1.
49

9
1.
55

1
1.
59

7
1.
22

4
1.
25

6
1.
28

2
1.
49

7
1.
55

1
1.
59

3
1.
50

1
1.
55

2
1.
59

2
1.
50

0
1.
55

0
1.
59

3

30
0

5
2.
60

0
2.
67

8
2.
73

6
1.
54

7
1.
60

0
1.
63

9
1.
30

2
1.
34

0
1.
37

1
1.
55

8
1.
61

6
1.
66

1
1.
56

0
1.
61

6
1.
66

2
1.
54

1
1.
59

4
1.
63

3

30
0

10
2.
61

2
2.
68

9
2.
74

6
1.
56

9
1.
63

0
1.
67

0
1.
29

9
1.
34

1
1.
37

0
1.
57

0
1.
62

8
1.
67

0
1.
57

0
1.
62

8
1.
67

2
1.
56

4
1.
62

0
1.
66

1

30
0

15
2.
60

5
2.
68

2
2.
74

1
1.
57

5
1.
63

2
1.
67

4
1.
29

7
1.
33

6
1.
36

8
1.
57

2
1.
62

9
1.
67

2
1.
57

2
1.
62

9
1.
67

3
1.
56

9
1.
62

5
1.
66

8

50
0

5
2.
61

9
2.
69

8
2.
75

8
1.
55

2
1.
60

7
1.
64

5
1.
31

6
1.
35

6
1.
38

7
1.
62

8
1.
63

0
1.
67

6
1.
57

0
1.
63

1
1.
67

5
1.
55

2
1.
60

6
1.
64

6

50
0

10
2.
63

1
2.
71

5
2.
77

3
1.
58

0
1.
63

8
1.
67

9
1.
31

7
1.
35

8
1.
38

7
1.
58

0
1.
64

0
1.
68

5
1.
57

9
1.
63

9
1.
68

4
1.
57

5
1.
62

9
1.
67

4

50
0

15
2.
63

2
2.
71

8
2.
77

6
1.
58

5
1.
64

5
1.
68

8
1.
31

2
1.
35

4
1.
38

5
1.
58

1
1.
64

2
1.
68

6
1.
58

3
1.
64

4
1.
68

8
1.
57

9
1.
63

9
1.
68

3

0.
1

50
5

2.
84

3
2.
94

7
3.
02

8
1.
86

0
1.
93

8
1.
99

8
1.
39

9
1.
44

7
1.
48

9
1.
84

0
1.
91

2
1.
97

4
1.
84

0
1.
91

1
1.
97

4
1.
83

3
1.
90

1
1.
95

6

50
10

2.
78

6
2.
88

1
2.
95

8
1.
85

1
1.
92

7
1.
99

1
1.
38

2
1.
42

8
1.
46

7
1.
83

9
1.
91

0
1.
97

3
1.
83

9
1.
91

0
1.
97

3
1.
83

8
1.
91

5
1.
97

4

50
15

2.
77

8
2.
85

2
2.
85

7
1.
78

5
1.
86

2
1.
92

5
1.
33

9
1.
38

5
1.
42

3
1.
79

1
1.
86

2
1.
92

3
1.
79

2
1.
86

2
1.
92

4
1.
79

0
1.
86

4
1.
92

6

10
0

5
2.
99

1
3.
09

3
3.
17

3
1.
91

9
1.
99

6
2.
05

0
1.
47

9
1.
53

7
1.
58

0
1.
91

6
2.
00

1
2.
06

6
1.
91

6
2.
00

2
2.
06

6
1.
89

2
1.
96

5
2.
02

4

10
0

10
2.
97

5
2.
97

7
3.
15

7
1.
94

3
2.
02

9
2.
09

1
1.
47

1
1.
52

4
1.
56

3
1.
93

2
2.
01

4
2.
07

7
1.
93

2
2.
01

4
2.
07

7
1.
93

1
2.
00

9
2.
07

0

10
0

15
2.
92

5
3.
03

0
3.
11

1
1.
92

9
2.
00

8
2.
07

5
1.
45

5
1.
50

5
1.
54

5
1.
91

8
1.
99

7
2.
06

1
1.
91

8
1.
99

6
2.
06

2
1.
91

9
1.
99

7
2.
05

9

30
0

5
3.
08

7
3.
21

0
3.
29

5
1.
95

3
2.
03

0
2.
08

8
1.
55

8
1.
62

1
1.
66

9
1.
99

7
2.
08

8
2.
15

9
1.
99

7
2.
08

8
2.
15

9
1.
95

0
2.
03

3
2.
09

5

30
0

10
3.
11

0
3.
22

5
3.
31

7
2.
00

9
2.
09

3
2.
15

8
1.
55

2
1.
61

2
1.
65

5
2.
00

9
2.
09

6
2.
16

6
2.
00

9
2.
09

5
2.
16

6
1.
99

3
2.
08

0
2.
14

5

30
0

15
3.
10

8
3.
22

0
3.
31

0
2.
01

9
2.
10

7
2.
17

3
1.
54

7
1.
60

8
1.
64

9
2.
01

1
2.
10

2
2.
17

2
2.
01

1
2.
10

2
2.
17

3
2.
00

4
2.
09

3
2.
15

9

50
0

5
3.
11

8
3.
23

6
3.
32

1
1.
95

8
2.
03

5
2.
09

5
1.
57

9
1.
64

2
1.
69

1
2.
01

7
2.
11

3
2.
18

7
2.
01

7
2.
11

3
2.
18

7
1.
96

7
2.
04

9
2.
11

4

50
0

10
3.
14

4
3.
25

3
3.
34

9
2.
01

4
2.
10

3
2.
16

9
1.
57

3
1.
63

3
1.
68

0
2.
02

6
2.
12

0
2.
19

2
2.
02

6
2.
12

1
2.
19

2
2.
01

0
2.
09

9
2.
16

3

50
0

15
3.
13

3
3.
25

7
3.
46

8
2.
03

2
2.
12

1
2.
18

9
1.
56

8
1.
62

9
1.
67

4
2.
03

4
2.
12

5
2.
19

6
2.
03

4
2.
12

5
2.
19

7
2.
02

8
2.
11

4
2.
18

2



196 Z. Song et al.

4.2 Performance of the Proposed Procedures at Microlevel

We conduct a detailed Monte Carlo simulation to evaluate the IC and OOC perfor-
mance of the proposed class of schemes. As the competitive schemes, we also include
two EWMA schemes based on two well-known distribution-free statistics, namely,
the Cramér–Von Mises (CvM) statistic and the Kolmogorov–Smirnov (KS) statistic,
which are widely used to detect a general shift in the process distribution. We con-
sider three well-known symmetric distributions and two asymmetric distributions
from the class of the general location–scale family. Among symmetric distributions,
we consider

i. Thin-tailed Uniform distribution over support (θ − δ, θ + δ), denoted by
Uniform(θ, δ).

ii. Medium-tailed normal distribution with mean θ and standard deviation δ,
denoted by N (θ, δ).

iii. Heavy-tailed Laplace distribution with mean θ and standard deviation δ
√
2,

denoted by Laplace(θ, δ).

Among asymmetric distributions, we consider the following:

i. The Rayleigh distribution, denoted by Rayleigh(θ, δ) and having probability
density function (pdf)

f (x) = 1

δ

(
x − θ

δ

)
e− 1

2 (
x−θ
δ )

2

, x ∈ [θ,∞).

ii. The shifted exponential distribution abbreviated as SE(θ, δ) and having pdf

f (x) = 1

δ
e− 1

δ (x−θ), x ∈ [θ,∞).

To examine the effect of shifts in location and scale parameters, we consider three
shift scenarios:

i. A pure location shift case, where only θ changes, δ = 1, with θ = 0,±0.5,±1,
±1.5, and ±2.

ii. A pure scale shift case, where only δ changes, θ = 0, with δ = 0.5, 1, 1.25, 1.5,
1.75, and 2.

iii. Three mixed location–scale shift cases. First, we consider (θ, δ = eθ), θ = 0,
±0.5, ±1, ±1.5, and ±2. Further, we consider (θ, δ = eθ/2), θ = 0,±0.5,±1,
±1.5, and ±2. Finally, we consider (θ, δ = e2θ), θ = 0, ±0.25, ±0.5, and ±1.

Note that the situation θ = 0 and δ = 1 corresponds to the IC situation and the
remain cases correspond to the OOC situations. For brevity, we only tabulate the
results for m = 100, n = 5, λ = 0.05, and ARL0 = 500. We display the run length
properties for different distributions with various parameter settings in Tables2, 3,
4, 5, and 6. The first row of each cell in Tables2, 3, 4, 5, and 6 shows the ARL
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followed by the corresponding SDRL in parentheses, whereas the second row shows
the values of the 5th, 25th, 50th, 75th, and95th percentiles (in this order).Wehighlight
the schemes with the best OOC performance in the sense that the least OOC-ARL
(ARL1) is observed for a given shift with a dark gray shade.

From Tables2, 3, 4, 5, and 6, we may reach at the following conclusions:

i. When the underlying process distribution is Uniform, the EC and cEC2 schemes
perform well for detecting downward shifts in location under scale invariance,
whereas the EC and cEC1 schemes are better for upward shifts in location
with no shift in scale. When only the scale shift takes place and the location
parameter remains invariant, cEC3 andECperformbetter than their competitors,
respectively, for downward and upward scale shifts. Formixed location and scale
shifts, EC has overall better performance. Interestingly, for θ = −0.5, we see an
interesting feature. Here, for a small tomoderate downward scale shift, the cEC3
is superior and for a moderate to large downward scale shift, the EWMA-CvM
is better.

ii. When the process follows the normal distribution, the general pattern for a
pure location shift is somewhat similar to that of the Uniform distribution. The
advantage of cEC2 for small downward location shift and cEC1 for small upward
location shift is more prominent. The cEL scheme is the best when only a pure
downward scale shift takes place. The EC scheme performs well for an upward
scale shift. For mixed location and scale shifts, EC performs well for an upward
location and scale shift. For a downward location and scale shift, there is no clear
winner.Nevertheless, for θ = −1 alongwith some small to large downward scale
shifts, EWMA-CvM offers better result, whereas for θ = −0.5 accompanied by
downward shift in scale, EWMA-KS is preferable. For θ = −0.25, and δ = e2θ,
EWMA-CvM displays ARL bias, whereas performance of cEL is exceptionally
good. Overall, for a downward location and scale shift, cEL is very effective.

iii. For the Laplace distribution, again, there is no clear winner. The EC and cEC2
schemes are good in detecting large downward pure location shifts (θ ≤ −1).
However, for a small pure downward location shift (θ = −0.5), EWMA-CvM
is the best. For small upward pure location shifts (0 < θ ≤ 1), EWMA-CvM
is again better. When the magnitude of θ increases, the EC and cEC1 perform
better. Further, for the pure downward scale shift, cELoffers the best resultwhere
EWMA-CvM and EWMA-KS have significant ARL bias. When there is a pure
upward scale shift, EC performs better than its competitors. For mixed upward
location and scale shifts, EC displays better OOC performance. For moderate to
large downward location shifts (θ ≤ −1) along with some downward scale shift,
EWMA-CvM is the best, while for a small downward location shift (θ = −0.5)
accompanied by some downward scale shift, EWMA-KS is the best.

iv. For the Rayleigh distribution and the shifted exponential distribution, overall
EC is the scheme of choice. The cEC1 scheme is also very competitive. Apart
from that, for the Rayleigh distribution, EWMA-CvM is the best in detecting a
small upward pure location shift (θ = 0.5). Similarly, EWMA-CvM also detects
a pure downward scale shift (δ = 0.5) faster than its competitors. Further, for



198 Z. Song et al.

Ta
bl
e
2

C
om

pa
ri
so
n
of

th
e
ei
gh
ts
ch
em

es
un
de
r
U
ni
fo
rm

(θ
,
δ)

di
st
ri
bu
tio

n
fo
r
m

=
10
0,

n
=

5,
λ

=
0.
05
,a
nd

A
R
L
0

=
50
0

θ
δ

E
C

cE
C
1

cE
C
2

cE
C
3

E
L

cE
L

E
W

M
A
-C

v
M

E
W

M
A
-K

S
0

1
5
0
1
.9
0
(
8
8
2
.5
3
)

5
0
3
.4
4
(
8
1
9
.3
4
)

4
9
8
.1
2
(
8
1
7
.9
2
)

5
0
1
.9
1
(
8
0
5
.3
1
)

5
0
2
.4
3
(
8
3
7
.5
9
)

5
0
2
.0
0
(
7
6
2
.8
9
)

5
0
0
.0
1
(
7
6
8
.1
6
)

5
1
1
.7
0
(7

1
1
.1
6
)

1
2
,
5
6
,
1
7
2
,
5
0
7
,
2
2
4
7

1
6
,
7
2
,
2
0
1
,
5
4
9
,
2
0
9
3

1
6
,
7
0
,
1
9
9
,
5
3
5
,
2
0
7
9

1
7
,
7
3
,
2
0
6
,
5
5
1
,
2
0
4
9

1
5
,
6
9
,
1
9
8
,
5
3
1
,
2
1
1
8

2
1
,
8
8
,
2
3
2
,
5
7
1
,
1
9
2
6

1
8
,
8
2
,
2
2
7
,
5
6
6
,
1
9
9
6

2
3
,9
8
,2
5
7
,6
1
7
,1
8
8
8

P
u
re

lo
ca

ti
o
n

sh
if
ts

-2
1

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
. 0
0
(
0
.0
0
)

1
.0
0
(
0
.2
0
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

- 1
.5

1
1
.0
3
(
0
.1
7
)

1
. 1
2
(
0
.3
3
)

1
.0
5
(
0
.2
2
)

1
.3
7
(
0
.4
8
)

1
.0
6
(
0
.2
3
)

1
.6
0
(
0
.4
9
)

1
.1
7
(
0
.3
7
)

2
.0
4
(0

.1
9
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
1
,
2

2
,2
,2
,2
,2

-1
1

1
.7
2
(
0
.8
0
)

2
.2
2
(
1
.1
5
)

1
. 7
7
(
0
.7
3
)

2
.2
2
(
0
.7
2
)

1
.9
6
(
0
.9
0
)

2
.3
2
(
0
.7
0
)

2
.0
8
(
0
.7
4
)

3
.0
6
(0

.7
7
)

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
3
,
4

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
3
,
3

1
,
1
,
2
,
2
,
4

1
,
2
,
2
,
3
,
4

1
,
2
,
2
,
2
,
3

2
,3
,3
,3
,4

-0
.5

1
5
.5
9
(
3
.8
9
)

8
.0
4
(
5
.2
8
)

5
.3
3
(
3
.3
2
)

6
.7
5
(
4
.0
7
)

6
.6
1
(
4
.4
6
)

7
.1
1
(
4
.2
4
)

6
.6
7
(
4
.3
1
)

8
.9
5
(5

.1
1
)

1
,
3
,
5
,
7
,
1
3

2
,
4
,
7
,
1
0
,
1
8

2
,
3
,
5
,
7
,
1
2

2
,
4
,
6
,
8
,
1
4

2
,
4
,
6
,
8
,
1
5

2
,
4
,
6
,
9
,
1
5

2
,
4
,
6
,
8
,
1
5

4
,6
,8
,1
1
,1
8

0
.5

1
5
.5
7
(
3
.8
6
)

5
.3
6
(
3
.3
4
)

8
.0
3
(
5
.3
1
)

6
.7
2
(
4
.0
0
)

6
.5
4
(
4
.4
4
)

7
. 0
8
(
4
.2
3
)

6
. 6
9
(
4
.3
6
)

8
.9
3
(5

.0
3
)

1
,
3
,
5
,
7
,
1
3

2
,
3
,
5
,
7
,
1
2

2
,
4
,
7
,
1
1
,
1
8

2
,
4
,
6
,
8
,
1
4

2
,
3
,
6
,
8
,
1
5

2
,
4
,
6
,
9
,
1
5

2
,
4
,
6
,
8
,
1
5

4
,6
,8
,1
1
,1
8

1
1

1
.7
2
(
0
.8
0
)

1
.7
8
(
0
.7
4
)

2
.2
3
(
1
.1
5
)

2
.2
2
(
0
.7
2
)

1
.9
6
(
0
.9
0
)

2
.3
2
(
0
.7
0
)

2
.0
7
(
0
.7
4
)

3
.0
6
(0

.7
8
)

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
3
,
4

1
,
2
,
2
,
3
,
3

1
,
1
,
2
,
2
,
4

1
,
2
,
2
,
3
,
4

1
,
2
,
2
,
2
,
3

2
,3
,3
,3
,4

1
.5

1
1
.0
3
(
0
.1
7
)

1
.0
5
(
0
.2
2
)

1
.1
2
(
0
.3
3
)

1
.3
7
(
0
.4
8
)

1
.0
6
(
0
.2
3
)

1
.6
0
(
0
.4
9
)

1
. 1
7
(
0
.3
7
)

2
. 0
4
(0

.1
9
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
1
,
2

2
,2
,2
,2
,2

2
1

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
. 0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

2
. 0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

P
u
re

sc
a
le

sh
if
ts

0
0
. 5

1
1
.4
3
(
4
0
.6
9
)

7
.7
5
(
5
.0
8
)

7
.8
3
(
2
2
.7
9
)

6
.6
6
(
3
.8
5
)

1
4
. 0
4
(
1
0
0
.5
6
)

6
.7
6
(
7
.2
9
)

1
3
0
3
.7
4
(
1
7
5
6
.0
2
)

2
6
1
.8
8
(5

7
0
.4
7
)

6
,
7
,
9
,
1
2
,
2
1

4
,
5
,
7
,
9
,
1
4

4
,
5
,
7
,
9
,
1
4

4
,
5
,
6
,
7
,
1
2

4
,
6
,
8
,
1
2
,
2
7

3
,
4
,
6
,
8
,
1
4

2
5
,
8
5
,
3
5
7
,
1
8
4
0
,
5
0
0
0

1
5
,3
3
,7
5
,2
1
8
,1
1
3
6

0
1
.2
5

1
0
.7
7
(
8
.5
5
)

1
3
.0
3
(
1
0
.1
3
)

1
3
.0
8
(
1
0
.1
3
)

1
2
.5
3
(
9
.6
3
)

1
7
.7
6
(
1
5
.0
7
)

2
3
.1
9
(
1
9
.3
4
)

4
2
.4
7
(
4
0
.0
5
)

5
6
.2
2
(5

6
.2
)

2
,
5
,
8
,
1
4
,
2
7

2
,
6
,
1
0
,
1
7
,
3
2

2
,
6
,
1
1
,
1
7
,
3
2

2
,
6
,
1
0
,
1
6
,
3
1

3
,
8
,
1
4
,
2
3
,
4
7

5
,
1
0
,
1
8
,
3
0
,
6
0

6
,
1
6
,
3
0
,
5
5
,
1
2
1

9
,2
1
,3
9
,7
1
,1
6
2

0
1
. 5

4
.9
8
(
3
.2
4
)

5
.7
3
(
3
.6
5
)

5
.7
8
(
3
.6
9
)

5
.5
1
(
3
.4
8
)

7
.7
0
(
5
.1
4
)

9
.1
8
(
5
.8
6
)

1
8
.3
9
(
1
3
.4
8
)

2
1
.2
2
(1

4
.7
7
)

1
,
3
,
4
,
6
,
1
1

1
,
3
,
5
,
7
,
1
3

1
,
3
,
5
,
8
,
1
3

1
,
3
,
5
,
7
,
1
2

2
,
4
,
6
,
1
0
,
1
8

3
,
5
,
8
,
1
2
,
2
0

4
,
9
,
1
5
,
2
4
,
4
4

6
,1
1
,1
7
,2
7
,4
9

0
1
. 7
5

3
.4
4
(
2
.0
3
)

3
.8
7
(
2
.2
6
)

3
.8
7
(
2
.2
7
)

3
.6
9
(
2
.1
3
)

5
.1
5
(
3
.0
1
)

5
. 9
0
(
3
.3
7
)

1
2
.0
1
(
7
.6
7
)

1
3
. 2
5
(7

.4
9
)

1
,
2
,
3
,
4
,
7

1
,
2
,
3
,
5
,
8

1
,
2
,
3
,
5
,
8

1
,
2
,
3
,
5
,
8

2
,
3
,
4
,
7
,
1
1

2
,
3
,
5
,
8
,
1
2

3
,
7
,
1
0
,
1
6
,
2
7

5
,8
,1
2
,1
7
,2
8

0
2

2
.7
5
(
1
.5
0
)

3
.0
5
(
1
.6
8
)

3
.0
6
(
1
.7
0
)

2
.9
2
(
1
.5
7
)

4
.0
3
(
2
.2
1
)

4
.5
0
(
2
.4
2
)

9
.3
0
(
5
.4
8
)

1
0
. 0
9
(5

.0
4
)

1
,
2
,
2
,
3
,
6

1
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
6

1
,
2
,
4
,
5
,
8

2
,
3
,
4
,
6
,
9

3
,
5
,
8
,
1
2
,
1
9

4
, 6
,9
,1
3
,2
0

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
θ
)

-2
0
.1
4

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
2
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

-1
.5

0
.2
2

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

- 1
0
.3
7

1
.0
7
(
0
.2
5
)

1
.2
5
(
0
.4
6
)

1
.1
0
(
0
.3
0
)

1
. 6
0
(
0
.4
9
)

1
.1
0
(
0
.3
0
)

1
.8
4
(
0
.3
7
)

1
.2
7
(
0
.4
4
)

2
.0
1
(0

.1
1
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
1
,
2

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,2
,2
,2
,2

-0
.5

0
. 6
1

5
.9
3
(
3
.4
1
)

6
.9
9
(
3
.2
0
)

5
.8
5
(
3
.8
3
)

5
.8
6
(
3
.2
7
)

5
.9
6
(
2
.9
9
)

5
. 9
4
(
3
.0
9
)

4
.8
9
(
2
.6
5
)

5
.4
4
(2

.1
3
)

2
,
4
,
5
,
7
,
1
2

4
,
5
,
6
,
8
,
1
2

2
,
3
,
5
,
7
,
1
3

3
,
4
,
5
,
7
,
1
2

2
,
4
,
6
,
7
,
1
1

3
,
4
,
5
,
7
,
1
2

2
,
3
,
4
,
6
,
1
0

3
,4
,5
,6
,9

0
.5

1
.6
5

3
.4
4
(
2
.1
0
)

4
.4
5
(
2
.6
2
)

3
.6
4
(
2
.1
9
)

4
.2
2
(
2
.4
6
)

4
.6
3
(
2
.8
5
)

6
.2
0
(
3
.5
3
)

7
.4
5
(
4
.6
7
)

8
.9
7
(4

.7
6
)

1
,
2
,
3
,
4
,
7

1
,
3
,
4
,
6
,
9

1
,
2
,
3
,
5
,
8

1
,
2
,
4
,
5
,
9

1
,
3
,
4
,
6
,
1
0

2
,
4
,
5
,
8
,
1
3

2
,
4
,
6
,
1
0
,
1
6

3
,6
,8
,1
1
,1
8

(c
on
tin

ue
d)



A Class of Distribution-Free Exponentially Weighted Moving Average Schemes … 199

Ta
bl
e
2

(c
on
tin

ue
d)

θ
δ

E
C

cE
C
1

cE
C
2

cE
C
3

E
L

cE
L

E
W

M
A
-C

v
M

E
W

M
A
-K

S

1
2
.7
2

1
.8
4
(
0
.9
0
)

2
.2
4
(
1
.1
1
)

1
.8
8
(
0
.9
3
)

2
.0
8
(
0
.9
8
)

2
. 4
4
(
1
.2
1
)

2
.9
1
(
1
.4
1
)

4
.1
4
(
2
.2
1
)

4
.8
2
(1

.9
7
)

1
,
1
,
2
,
2
,
4

1
,
1
,
2
,
3
,
4

1
,
1
,
2
,
2
,
4

1
,
1
,
2
,
3
,
4

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
4
,
5

1
,
3
,
4
,
5
,
8

2
,3
,4
,6
,8

1
.5

4
.4
8

1
.4
4
(
0
.5
9
)

1
.6
4
(
0
.7
1
)

1
.4
4
(
0
.6
1
)

1
.5
4
(
0
.6
3
)

1
. 9
3
(
0
.7
9
)

2
.0
1
(
0
.9
2
)

3
.5
1
(
1
.6
4
)

3
.9
3
(1

.4
3
)

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
3

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
3
,
4

1
,
2
,
3
,
4
,
7

2
,3
,4
,5
,7

2
7
.3
9

1
.2
5
(
0
.4
6
)

1
.3
6
(
0
.5
4
)

1
.2
6
(
0
.4
6
)

1
.3
1
(
0
.4
9
)

1
. 7
5
(
0
.6
1
)

1
.5
9
(
0
.7
0
)

3
.3
1
(
1
.3
7
)

3
.5
8
(1

.1
7
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
3

1
,
2
,
3
,
4
,
6

2
,3
,3
,4
,6

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
θ 2
)

-2
0
.3
7

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
1
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

-1
.5

0
.4
7

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

2
. 0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

-1
0
.6
1

1
.3
0
(
0
.4
9
)

1
.6
4
(
0
.7
2
)

1
.3
6
(
0
.5
0
)

1
.8
2
(
0
.4
5
)

1
. 4
0
(
0
.5
3
)

1
.9
4
(
0
.3
6
)

1
.6
2
(
0
.5
0
)

2
. 3
6
(0

.4
9
)

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
2

1
,
1
,
2
,
2
,
2

2
, 2
,2
,3
,3

-0
.5

0
.7
8

5
.7
1
(
3
.7
1
)

7
.9
9
(
4
.5
2
)

5
.4
0
(
3
.4
0
)

6
.0
5
(
3
.4
4
)

6
.2
3
(
3
.7
9
)

6
.2
9
(
3
.5
3
)

5
.6
3
(
3
.3
3
)

7
.0
4
(3

.4
9
)

1
,
3
,
5
,
7
,
1
3

2
,
5
,
7
,
1
0
,
1
6

2
,
3
,
5
,
7
,
1
2

2
,
4
,
5
,
7
,
1
2

2
,
4
,
5
,
8
,
1
3

3
,
4
,
5
,
8
,
1
3

2
,
3
,
5
,
7
,
1
2

3
,5
,6
,8
,1
3

0
.5

1
.2
8

5
. 0
0
(
3
.4
7
)

5
.4
1
(
3
.4
0
)

6
.0
1
(
3
.9
8
)

6
.9
6
(
4
.2
6
)

6
.2
1
(
4
.2
5
)

8
.0
8
(
4
.9
4
)

7
.5
6
(
5
.0
9
)

9
.8
2
(5

.6
3
)

1
,
3
,
4
,
7
,
1
2

1
,
3
,
5
,
7
,
1
2

1
,
3
,
5
,
8
,
1
4

2
,
4
,
6
,
9
,
1
5

1
,
3
,
5
,
8
,
1
4

2
,
5
,
7
,
1
0
,
1
7

2
,
4
,
6
,
1
0
,
1
7

4
,6
,9
,1
2
,2
1

1
1
.6
5

2
.2
9
(
1
.3
1
)

2
.5
3
(
1
.2
8
)

2
.6
8
(
1
.5
7
)

3
.1
7
(
1
.5
4
)

2
. 7
4
(
1
.5
2
)

3
.5
1
(
1
.6
3
)

3
.1
7
(
1
.6
0
)

4
.2
9
(1

.7
0
)

1
,
1
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

1
,
2
,
2
,
3
,
6

1
,
2
,
3
,
4
,
6

1
,
2
,
2
,
4
,
6

1
,
2
,
3
,
4
,
7

1
,
2
,
3
,
4
,
6

2
,3
,4
,5
,7

1
.5

2
.1
2

1
.6
9
(
0
.8
5
)

1
.9
1
(
0
.8
7
)

1
.8
9
(
1
.0
1
)

2
.3
4
(
1
.0
1
)

2
.0
0
(
0
.9
9
)

2
.5
9
(
1
.0
9
)

2
.3
2
(
1
.0
6
)

3
.1
9
(1

.0
8
)

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
4

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
2
,
4

1
,
2
,
2
,
3
,
5

1
,
2
,
2
,
3
,
4

2
,2
,3
,4
,5

2
2
.7
2

1
.4
8
(
0
.6
9
)

1
.7
3
(
0
.7
6
)

1
.5
9
(
0
.7
9
)

2
.0
1
(
0
.8
6
)

1
.7
3
(
0
.8
2
)

2
.3
0
(
0
.9
6
)

2
.0
6
(
0
.9
2
)

2
.8
1
(0

.8
7
)

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
4

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
3
,
4

2
, 2
,3
,3
,4

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
2

θ
)

-1
0
.1
4

1
.0
0
(
0
.0
2
)

1
.0
1
(
0
.0
9
)

1
.0
0
(
0
.0
3
)

1
.1
2
(
0
.3
2
)

1
. 0
0
(
0
.0
2
)

1
.4
2
(
0
.4
9
)

1
.0
0
(
0
.0
4
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

-0
.5

0
.3
7

6
.6
4
(
2
.2
0
)

5
.7
6
(
1
.8
7
)

7
.7
4
(
4
.4
6
)

6
.2
3
(
3
.3
0
)

7
. 0
4
(
2
.5
6
)

6
.3
4
(
3
.1
0
)

3
.8
6
(
1
.5
0
)

3
.8
7
(0

.9
3
)

3
,
5
,
7
,
8
,
1
0

4
,
5
,
5
,
6
,
9

3
,
4
,
7
,
1
0
,
1
7

3
,
4
,
5
,
7
,
1
3

3
,
5
,
7
,
9
,
1
1

3
,
4
,
5
,
8
,
1
3

2
,
3
,
4
,
4
,
7

3
,3
,4
,4
,5

-0
.2
5

0
.6
1

3
2
.8
1
(
1
5
5
.9
7
)

3
2
.7
2
(
6
7
.7
5
)

2
1
. 9
8
(
6
6
.7
7
)

2
5
.1
3
(
5
8
.3
6
)

3
0
. 7
5
(
1
6
9
.1
4
)

2
2
.4
6
(
6
0
.8
8
)

1
4
4
.6
3
(
5
6
7
.4
6
)

4
8
.7
1
(2

1
5
.6
6
)

8
,
1
2
,
1
7
,
2
6
,
6
8

8
,
1
4
,
2
1
,
3
4
,
8
4

6
,
1
0
,
1
5
,
2
3
,
5
0

7
,
1
1
,
1
8
,
2
8
,
6
0

6
,
1
0
,
1
4
,
2
2
,
6
3

5
,
9
,
1
5
,
2
4
,
5
5

6
,
1
1
,
2
1
,
5
0
,
5
1
3

6
,1
0
,1
5
,2
8
,1
3
4

0
.2
5

1
.6
5

3
.7
7
(
2
.2
9
)

4
.6
7
(
2
.8
1
)

4
.0
2
(
2
.4
3
)

4
.2
4
(
2
.5
1
)

5
. 5
1
(
3
.4
0
)

6
.7
0
(
3
.9
1
)

1
1
.3
9
(
7
.5
9
)

1
3
.0
4
(7

.5
6
)

1
,
2
,
3
,
5
,
8

1
,
3
,
4
,
6
,
1
0

1
,
2
,
4
,
5
,
9

1
,
2
,
4
,
5
,
9

2
,
3
,
5
,
7
,
1
2

2
,
4
,
6
,
9
,
1
4

3
,
6
,
1
0
,
1
5
,
2
6

4
,8
,1
1
,1
6
,2
7

0
.5

2
.7
2

1
. 9
3
(
0
.9
3
)

2
.2
4
(
1
.1
0
)

2
.0
0
(
0
.9
9
)

2
.0
7
(
0
.9
8
)

2
. 7
1
(
1
.2
7
)

2
.9
7
(
1
.4
4
)

5
.5
8
(
2
.9
3
)

6
. 1
2
(2

.5
8
)

1
,
1
,
2
,
2
,
4

1
,
1
,
2
,
3
,
4

1
,
1
,
2
,
2
,
4

1
,
1
,
2
,
3
,
4

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
4
,
6

2
,
3
,
5
,
7
,
1
1

3
,4
,6
,8
,1
1

1
7
.3
9

1
.2
7
(
0
.4
7
)

1
.3
5
(
0
.5
3
)

1
.2
9
(
0
.4
9
)

1
.3
0
(
0
.4
8
)

1
. 8
2
(
0
.6
0
)

1
. 5
9
(
0
.7
0
)

3
. 6
5
(
1
.4
6
)

3
.8
5
(1

.2
5
)

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
3

1
,
3
,
3
,
5
,
6

2
,3
,4
,5
,6



200 Z. Song et al.

Ta
bl
e
3

C
om

pa
ri
so
n
of

th
e
ei
gh
ts
ch
em

es
un
de
r
N
(θ
,
δ)

di
st
ri
bu
tio

n
fo
r
m

=
10
0,

n
=

5,
λ

=
0.
05
,a
nd

A
R
L
0

=
50
0

θ
δ

E
C

cE
C
1

cE
C
2

cE
C
3

E
L

cE
L

E
W

M
A
-C

v
M

E
W

M
A
-K

S
0

1
5
0
3
. 2
2
(
8
9
0
.8
8
)

4
9
9
.9
5
(
8
1
8
.0
2
)

5
0
4
.9
9
(
8
2
3
.7
7
)

4
9
9
.2
6
(
7
9
8
.5
2
)

5
0
3
.6
9
(
8
4
9
.1
1
)

5
0
2
.5
4
(
7
6
2
.5
2
)

5
0
1
.5
4
(
7
6
9
.3
3
)

5
0
6
.9
2
(7

0
9
.1
6
)

1
2
,
5
7
,
1
7
2
,
5
0
3
,
2
2
5
4

1
7
,
7
0
,
1
9
7
,
5
4
1
,
2
0
6
2

1
6
,
7
2
,
2
0
3
,
5
4
9
,
2
0
9
5

1
8
,
7
5
,
2
0
8
,
5
5
0
,
2
0
2
7

1
5
,
6
9
,
1
9
6
,
5
2
4
,
2
1
3
0

2
1
,
8
7
,
2
3
0
,
5
7
1
,
1
9
3
6

1
7
,
8
1
,
2
2
4
,
5
7
3
,
1
9
4
0

2
2
,9
8
,2
6
3
,6
3
2
,1
8
9
3

P
u
re

lo
ca

ti
o
n

sh
if
ts

-2
1

1
.2
7
(
0
.4
8
)

1
.5
4
(
0
.6
6
)

1
.3
6
(
0
.5
1
)

1
.8
0
(
0
.5
3
)

1
.3
8
(
0
.5
4
)

1
.9
6
(
0
.4
4
)

1
.5
6
(
0
.6
0
)

2
.3
7
(0

.5
3
)

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
3

1
,
1
,
2
,
2
,
2

2
,2
,2
,3
,3

-1
.5

1
1
.9
0
(
0
.9
1
)

2
.5
8
(
1
.3
0
)

1
.9
6
(
0
.8
2
)

2
.4
5
(
0
.8
2
)

2
.0
8
(
0
.9
6
)

2
.5
6
(
0
.8
2
)

2
.2
1
(
0
.8
6
)

3
.1
5
(0

.9
1
)

1
,
1
,
2
,
2
,
4

1
,
2
,
2
,
3
,
5

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
3
,
4

2
,
2
,
2
,
3
,
4

1
,
2
,
2
,
3
,
4

2
,3
,3
,4
,5

-1
1

3
.9
9
(
2
.5
2
)

5
. 7
9
(
3
.2
7
)

3
.8
0
(
2
.1
0
)

4
.5
4
(
2
.2
3
)

4
.3
8
(
2
.6
7
)

4
.7
6
(
2
.3
3
)

4
.1
5
(
2
.2
0
)

5
.4
6
(2

.4
1
)

1
,
2
,
3
,
5
,
9

2
,
3
,
5
,
7
,
1
2

1
,
2
,
3
,
5
,
8

2
,
3
,
4
,
6
,
9

1
,
3
,
4
,
6
,
9

2
,
3
,
4
,
6
,
9

2
,
3
,
4
,
5
,
8

3
,4
,5
,6
,1
0

-0
.5

1
2
4
.1
0
(
4
4
.3
5
)

3
7
.1
7
(
7
3
.7
5
)

1
9
.1
4
(
3
7
.0
8
)

2
4
. 4
1
(
3
8
.9
5
)

2
5
.8
3
(
4
2
.9
3
)

2
6
.1
9
(
4
1
.4
6
)

2
1
.3
0
(
4
5
.8
9
)

2
6
.1
4
(3

9
.3
4
)

3
,
7
,
1
4
,
2
6
,
7
4

5
,
1
2
,
2
1
,
3
9
,
1
1
3

3
,
7
,
1
2
,
2
1
,
5
4

4
,
9
,
1
5
,
2
7
,
6
9

3
,
8
,
1
5
,
2
9
,
7
8

5
,
1
0
,
1
6
,
2
9
,
7
5

4
,
8
,
1
3
,
2
4
,
6
0

5
,1
0
,1
7
,2
9
,7
4

0
.5

1
2
3
.8
7
(
4
6
.6
3
)

1
9
.0
8
(
2
8
.0
6
)

3
7
.5
2
(
7
4
.4
9
)

2
4
. 7
3
(
4
1
.6
7
)

2
5
.8
2
(
4
6
.3
5
)

2
6
.4
6
(
4
3
.8
9
)

2
1
.1
6
(
3
1
.3
8
)

2
6
.2
1
(3

8
.7
4
)

3
,
7
,
1
4
,
2
6
,
7
3

3
,
7
,
1
2
,
2
1
,
5
4

5
,
1
2
,
2
1
,
3
9
,
1
1
2

4
,
9
,
1
5
,
2
7
,
7
1

3
,
8
,
1
5
,
2
9
,
7
9

5
,
1
0
,
1
6
,
2
9
,
7
7

4
,
8
,
1
3
,
2
4
,
6
0

5
,1
0
,1
7
,2
9
,7
4

1
1

4
.0
1
(
2
.5
4
)

3
.7
8
(
2
.0
9
)

5
.7
8
(
3
.2
7
)

4
.5
6
(
2
.2
6
)

4
. 3
9
(
2
.6
8
)

4
.7
8
(
2
.3
4
)

4
.1
5
(
2
.1
8
)

5
.4
6
(2

.4
1
)

1
,
2
,
3
,
5
,
9

1
,
2
,
3
,
5
,
8

2
,
3
,
5
,
7
,
1
2

2
,
3
,
4
,
6
,
9

1
,
3
,
4
,
6
,
9

2
,
3
,
4
,
6
,
9

2
,
3
,
4
,
5
,
8

3
,4
,5
,7
,1
0

1
.5

1
1
.8
9
(
0
.9
1
)

1
.9
6
(
0
.8
2
)

2
.5
8
(
1
.3
0
)

2
.4
5
(
0
.8
3
)

2
.0
8
(
0
.9
6
)

2
.5
7
(
0
.8
1
)

2
.2
1
(
0
.8
5
)

3
.1
5
(0

.9
)

1
,
1
,
2
,
2
,
4

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
3
,
5

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
3
,
4

2
,
2
,
2
,
3
,
4

1
,
2
,
2
,
3
,
4

2
,3
,3
,4
,5

2
1

1
.2
7
(
0
.4
8
)

1
.3
5
(
0
.5
1
)

1
.5
4
(
0
.6
6
)

1
.7
9
(
0
.5
3
)

1
.3
9
(
0
.5
4
)

1
.9
6
(
0
.4
4
)

1
.5
5
(
0
.5
6
)

2
.3
7
(0

.5
3
)

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
3

1
,
1
,
2
,
2
,
2

2
,2
,2
,3
,3

P
u
re

sc
a
le

sh
if
ts

0
0
.5

4
7
. 7
6
(
2
3
1
.6
5
)

1
7
.6
7
(
6
7
.1
7
)

1
7
.3
9
(
6
1
.4
1
)

1
3
.4
1
(
4
0
.4
9
)

3
6
.4
0
(
1
9
6
.4
1
)

1
2
.8
7
(
4
7
.9
8
)

3
0
3
4
.8
8
(
2
1
0
7
.6
2
)

5
3
3
.6
(9

1
5
.3
6
)

8
,
1
2
,
1
8
,
3
1
,
1
0
5

6
,
8
,
1
1
,
1
7
,
3
9

6
,
8
,
1
1
,
1
7
,
3
9

5
,
7
,
1
0
,
1
4
,
2
9

5
,
8
,
1
4
,
2
4
,
8
1

3
,
6
,
9
,
1
3
,
3
0

5
3
,
6
0
7
,
4
1
9
4
,
5
0
0
0
,
5
0
0
0

2
0
,6
1
,1
7
2
,5
4
0
,2
4
5
2

0
1
.2
5

3
1
.8
5
(
4
6
.9
9
)

4
1
.0
3
(
5
8
.2
0
)

4
1
.0
3
(
5
7
.8
9
)

4
1
. 5
6
(
6
3
.6
0
)

4
7
.1
5
(
6
6
.8
5
)

6
8
.7
1
(
9
9
.9
6
)

8
6
.5
5
(
1
0
7
.6
2
)

1
0
7
.4
3
(1

4
1
.9
4
)

4
,
1
0
,
1
9
,
3
6
,
1
0
1

5
,
1
3
,
2
4
,
4
7
,
1
2
9

5
,
1
3
,
2
4
,
4
7
,
1
2
9

5
,
1
3
,
2
4
,
4
7
,
1
3
1

5
,
1
4
,
2
7
,
5
5
,
1
5
1

8
,
2
0
,
3
9
,
7
8
,
2
2
7

8
,
2
5
,
5
2
,
1
0
7
,
2
7
9

1
1
,3
0
,6
2
,1
2
9
,3
5
4

0
1
.5

1
0
.0
7
(
8
.5
1
)

1
2
.3
3
(
1
0
.3
0
)

1
2
.2
8
(
1
0
.2
1
)

1
1
.9
3
(
1
0
.1
2
)

1
4
.8
1
(
1
2
.9
1
)

1
9
.2
4
(
1
6
.9
5
)

3
4
.0
4
(
3
2
.9
3
)

3
9
.1
6
(3

8
.7
4
)

2
,
5
,
8
,
1
3
,
2
6

2
,
6
,
1
0
,
1
6
,
3
1

2
,
6
,
1
0
,
1
6
,
3
1

2
,
6
,
9
,
1
5
,
3
0

3
,
7
,
1
1
,
1
9
,
3
9

4
,
9
,
1
5
,
2
4
,
5
0

5
,
1
3
,
2
4
,
4
3
,
9
6

8
,1
6
,2
8
,4
8
,1
0
7

0
1
.7
5

5
.8
5
(
4
.0
2
)

6
.8
2
(
4
.5
8
)

6
.9
0
(
4
.6
3
)

6
.5
6
(
4
.3
4
)

8
.3
2
(
5
.7
4
)

1
0
.0
9
(
6
.7
8
)

2
0
.0
3
(
1
5
.7
9
)

2
1
.7
3
(1

6
.1
)

1
,
3
,
5
,
7
,
1
3

2
,
4
,
6
,
9
,
1
6

2
,
4
,
6
,
9
,
1
6

2
,
4
,
6
,
8
,
1
5

2
,
4
,
7
,
1
1
,
1
9

3
,
5
,
8
,
1
3
,
2
3

4
,
9
,
1
6
,
2
6
,
5
0

6
,1
1
,1
7
,2
7
,5
2

0
2

4
.2
0
(
2
.5
8
)

4
.8
2
(
2
.9
3
)

4
.8
0
(
2
.9
3
)

4
.6
1
(
2
.7
6
)

5
.9
3
(
3
.6
3
)

6
.9
1
(
4
.0
3
)

1
4
.1
6
(
9
.8
0
)

1
5
.2
1
(9

.5
3
)

1
,
2
,
4
,
5
,
9

1
,
3
,
4
,
6
,
1
0

1
,
3
,
4
,
6
,
1
0

1
,
3
,
4
,
6
,
1
0

2
,
3
,
5
,
8
,
1
3

2
,
4
,
6
,
9
,
1
5

3
,
7
,
1
2
,
1
8
,
3
3

5
,9
,1
3
,1
9
,3
3

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
θ
)

-2
0
.1
4

1
.0
0
(
0
.0
2
)

1
.0
2
(
0
.1
3
)

1
.0
0
(
0
.0
3
)

1
.2
7
(
0
.4
5
)

1
.0
0
(
0
.0
2
)

1
.6
5
(
0
.4
8
)

1
.0
0
(
0
.0
3
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

-1
.5

0
.2
2

1
.2
4
(
0
.4
4
)

1
.7
9
(
0
.6
6
)

1
.3
1
(
0
.4
7
)

1
.9
5
(
0
.2
3
)

1
.2
7
(
0
.4
5
)

2
.0
0
(
0
.1
1
)

1
.3
6
(
0
.4
8
)

2
(0

.0
6
)

1
,
1
,
1
,
1
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,2
,2
,2
,2

-1
0
.3
7

3
.3
6
(
1
.4
5
)

3
.8
4
(
0
.7
8
)

3
.0
0
(
1
.3
8
)

3
.0
3
(
0
.9
6
)

3
.3
5
(
1
.5
7
)

3
.1
5
(
1
.0
0
)

2
.3
5
(
0
.6
0
)

2
.9
4
(0

.6
)

2
,
2
,
3
,
4
,
6

3
,
3
,
4
,
4
,
5

2
,
2
,
3
,
3
,
5

2
,
2
,
3
,
3
,
5

2
,
2
,
3
,
4
,
6

2
,
3
,
3
,
4
,
5

2
,
2
,
2
,
3
,
3

2
,3
,3
,3
,4

-0
.5

0
.6
1

2
3
.8
1
(
4
4
.6
8
)

2
2
.9
6
(
4
1
.2
4
)

2
5
.1
3
(
3
4
.6
9
)

2
3
. 1
6
(
3
6
.5
9
)

2
2
. 3
8
(
4
6
.7
8
)

2
1
.7
0
(
2
7
.8
5
)

2
0
. 2
1
(
9
7
.5
5
)

1
4
. 6
6
(3

8
.5
3
)

5
,
1
1
,
1
6
,
2
6
,
6
0

6
,
1
0
,
1
4
,
2
3
,
6
2

5
,
1
0
,
1
8
,
3
0
,
6
7

5
,
9
,
1
5
,
2
6
,
6
4

5
,
1
0
,
1
6
,
2
5
,
5
4

5
,
9
,
1
5
,
2
5
,
5
8

4
,
6
,
1
0
,
1
7
,
4
7

4
,7
,1
0
,1
5
,3
5

0
.5

1
.6
5

5
.4
1
(
3
.7
0
)

7
.0
7
(
4
.6
8
)

6
.0
0
(
4
.0
4
)

6
.6
8
(
4
.3
9
)

7
.2
8
(
5
.0
4
)

9
.6
6
(
6
.3
5
)

1
2
.8
6
(
9
.7
5
)

1
5
.1
5
(1

0
.4
3
)

1
,
3
,
5
,
7
,
1
2

2
,
4
,
6
,
9
,
1
6

2
,
3
,
5
,
8
,
1
4

2
,
4
,
6
,
9
,
1
5

2
,
4
,
6
,
9
,
1
7

3
,
5
,
8
,
1
2
,
2
2

3
,
6
,
1
0
,
1
7
,
3
1

5
,8
,1
2
,1
9
,3
5

(c
on
tin

ue
d)



A Class of Distribution-Free Exponentially Weighted Moving Average Schemes … 201

Ta
bl
e
3

(c
on
tin

ue
d)

T
a
b
le

3
(C

o
n
ti
n
u
e)

θ
δ

E
C

cE
C
1

cE
C
2

cE
C
3

E
L

cE
L

E
W

M
A
-C

v
M

E
W

M
A
-K

S

1
2
.7
2

2
.2
3
(
1
.1
5
)

2
.7
6
(
1
.3
9
)

2
.3
2
(
1
.1
8
)

2
.5
0
(
1
.2
5
)

2
.9
9
(
1
.4
9
)

3
.5
7
(
1
.6
7
)

5
.5
7
(
3
.1
4
)

6
.4
2
(2

.8
3
)

1
,
1
,
2
,
3
,
4

1
,
2
,
3
,
3
,
5

1
,
1
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
4
,
6

2
,
2
,
3
,
4
,
7

2
,
3
,
5
,
7
,
1
1

3
,4
,6
,8
,1
2

1
. 5

4
.4
8

1
.5
8
(
0
.7
0
)

1
. 8
3
(
0
.8
1
)

1
.6
2
(
0
.7
1
)

1
.6
8
(
0
.7
3
)

2
.1
5
(
0
.8
8
)

2
. 3
2
(
0
.9
6
)

4
.2
4
(
2
.0
6
)

4
. 7
0
(1

.7
4
)

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
3
,
4

1
,
2
,
2
,
3
,
4

1
,
3
,
4
,
5
,
8

2
, 3
,4
,6
,8

2
7
.3
9

1
.3
2
(
0
.5
1
)

1
.4
5
(
0
.5
9
)

1
.3
5
(
0
.5
3
)

1
.3
7
(
0
.5
3
)

1
.8
5
(
0
.6
4
)

1
. 8
0
(
0
.7
2
)

3
.7
1
(
1
.5
8
)

4
.0
1
(1

.3
3
)

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
3
,
4
,
5
,
6

2
,3
,4
,5
,6

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
θ 2
)

- 2
0
. 3
7

1
.0
0
(
0
.0
6
)

1
. 0
6
(
0
.2
5
)

1
.0
1
(
0
.0
9
)

1
.4
1
(
0
.4
9
)

1
.0
1
(
0
.0
9
)

1
.7
5
(
0
.4
3
)

1
.0
3
(
0
.1
7
)

2
. 0
0
(0

.0
1
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

- 1
.5

0
. 4
7

1
.4
3
(
0
.5
5
)

2
. 0
0
(
0
.7
9
)

1
.4
9
(
0
.5
3
)

1
.9
8
(
0
.3
0
)

1
.4
8
(
0
.5
5
)

2
. 0
4
(
0
.2
4
)

1
.6
4
(
0
.4
9
)

2
. 2
3
(0

.4
2
)

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,
2
,
2
,
2
,
3

1
,
1
,
2
,
2
,
2

2
, 2
,2
,2
,3

- 1
0
.6
1

3
.6
5
(
1
.9
2
)

4
.5
6
(
1
.4
1
)

3
.2
8
(
1
.6
5
)

3
.4
9
(
1
.3
3
)

3
.7
6
(
1
.9
6
)

3
.6
1
(
1
.3
8
)

2
.9
4
(
1
.1
2
)

3
.7
5
(1

.1
0
)

1
,
2
,
3
,
5
,
7

2
,
4
,
4
,
5
,
7

2
,
2
,
3
,
4
,
6

2
,
3
,
3
,
4
,
6

1
,
2
,
3
,
5
,
7

2
,
3
,
3
,
4
,
6

2
,
2
,
3
,
3
,
5

2
,3
,4
,4
,6

- 0
.5

0
. 7
8

3
9
.1
9
(
1
0
9
.8
6
)

4
5
.5
2
(
1
4
2
.8
8
)

3
3
. 9
1
(
8
8
.6
5
)

3
2
.4
8
(
8
4
.7
5
)

3
5
.4
8
(
9
1
.0
2
)

2
9
.9
5
(
6
6
.9
7
)

2
3
.4
1
(
8
8
.8
6
)

2
2
.4
8
(5

1
.5
8
)

4
,
1
0
,
1
9
,
3
7
,
1
2
1

7
,
1
3
,
2
0
,
3
7
,
1
3
3

4
,
9
,
1
6
,
3
2
,
1
0
9

5
,
9
,
1
6
,
3
0
,
9
9

5
,
1
0
,
1
8
,
3
5
,
1
0
4

5
,
1
0
,
1
6
,
3
0
,
8
8

4
,
7
,
1
2
,
2
2
,
6
3

5
,9
,1
3
,2
3
,6
2

0
.5

1
. 2
8

1
0
.3
1
(
9
.5
8
)

1
1
. 8
9
(
1
0
.3
5
)

1
3
.2
9
(
1
2
.8
2
)

1
3
.8
6
(
1
2
.1
8
)

1
3
.0
5
(
1
2
.0
5
)

1
7
.6
8
(
1
5
.5
7
)

1
6
.8
8
(
1
5
.6
4
)

2
1
.6
6
(2

0
.6
7
)

2
,
4
,
8
,
1
3
,
2
7

2
,
6
,
9
,
1
5
,
3
0

2
,
6
,
1
0
,
1
7
,
3
5

3
,
6
,
1
1
,
1
7
,
3
5

3
,
6
,
1
0
,
1
6
,
3
4

4
,
8
,
1
3
,
2
2
,
4
5

3
,
7
,
1
2
,
2
1
,
4
5

5
,1
0
,1
6
,2
6
,5
6

1
1
.6
5

3
.3
3
(
2
.0
3
)

4
.0
9
(
2
.3
6
)

3
.8
5
(
2
.3
3
)

4
.4
3
(
2
.4
9
)

4
.1
2
(
2
.4
6
)

5
.6
1
(
3
.0
1
)

5
.5
8
(
3
.3
5
)

7
. 0
6
(3

.5
5
)

1
,
2
,
3
,
4
,
7

1
,
2
,
4
,
5
,
8

1
,
2
,
3
,
5
,
8

1
,
3
,
4
,
6
,
9

1
,
2
,
4
,
5
,
9

2
,
3
,
5
,
7
,
1
1

2
,
3
,
5
,
7
,
1
2

3
,5
,6
,9
,1
4

1
.5

2
.1
2

2
.1
3
(
1
.1
2
)

2
.6
8
(
1
.3
7
)

2
.3
2
(
1
.2
1
)

2
.7
2
(
1
.3
4
)

2
.6
1
(
1
.3
5
)

3
. 5
5
(
1
.6
4
)

3
.6
8
(
1
.9
7
)

4
.7
4
(1

.9
4
)

1
,
1
,
2
,
3
,
4

1
,
2
,
2
,
3
,
5

1
,
1
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

2
,
2
,
3
,
4
,
7

1
,
2
,
3
,
5
,
7

2
,3
,4
,6
,8

2
2
.7
2

1
.7
1
(
0
.8
2
)

2
.1
3
(
1
.0
0
)

1
.8
1
(
0
.8
5
)

2
.0
9
(
0
.9
5
)

2
.1
2
(
1
.0
1
)

2
.7
7
(
1
.1
8
)

3
.0
8
(
1
.5
8
)

3
.9
3
(1

.4
7
)

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
3
,
4

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
3
,
4

1
,
1
,
2
,
3
,
4

1
,
2
,
3
,
3
,
5

1
,
2
,
3
,
4
,
6

2
, 3
,4
,5
,7

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
2

θ
)

- 1
0
. 1
4

3
.2
4
(
1
.2
8
)

3
. 4
2
(
0
.6
0
)

2
.8
7
(
1
.3
5
)

2
.8
0
(
0
.8
2
)

3
.1
5
(
1
.5
6
)

2
.9
1
(
0
.8
5
)

2
.0
3
(
0
.2
6
)

2
. 2
9
(0

.4
5
)

2
,
2
,
3
,
4
,
6

3
,
3
,
3
,
4
,
4

2
,
2
,
3
,
3
,
5

2
,
2
,
3
,
3
,
4

2
,
2
,
3
,
4
,
6

2
,
2
,
3
,
3
,
4

2
,
2
,
2
,
2
,
2

2
,2
,2
,3
,3

- 0
.5

0
. 3
7

9
.6
6
(
2
.7
5
)

1
0
. 3
9
(
4
.8
9
)

1
1
.5
4
(
5
.5
9
)

1
1
.8
4
(
5
.7
3
)

1
0
.6
0
(
3
.8
6
)

1
2
. 0
7
(
6
.5
6
)

8
.1
1
(
8
.6
7
)

6
.4
7
(3

.6
9
)

6
,
8
,
9
,
1
1
,
1
5

5
,
7
,
9
,
1
3
,
2
0

5
,
7
,
1
0
,
1
5
,
2
2

5
,
8
,
1
1
,
1
5
,
2
2

5
,
8
,
1
0
,
1
3
,
1
7

4
,
7
,
1
1
,
1
5
,
2
4

3
,
5
,
6
,
9
,
1
8

3
,5
,6
,7
,1
2

- 0
.2
5

0
.6
1

1
7
8
. 2
3
(
5
4
8
.0
6
)

1
3
5
.0
0
(
3
9
2
.8
0
)

6
3
.3
4
(
2
2
3
.5
5
)

7
2
. 1
8
(
2
1
7
.0
9
)

1
2
1
.0
1
(
4
3
7
.9
8
)

6
1
.3
2
(
2
0
8
.7
9
)

8
1
6
.1
0
(
1
5
3
2
.9
4
)

2
5
0
.2
0
(6

5
3
.7
0
)

1
2
,
2
4
,
4
5
,
1
0
6
,
6
3
6

1
2
,
2
4
,
4
4
,
1
0
0
,
4
5
2

8
,
1
5
,
2
5
,
4
9
,
1
8
1

9
,
1
7
,
3
0
,
6
0
,
2
2
3

8
,
1
7
,
3
2
,
7
0
,
3
7
6

6
,
1
3
,
2
4
,
4
9
,
1
8
1

1
0
,
2
9
,
9
0
,
5
5
9
,
5
0
0
0

9
,2
0
,4
6
,1
5
0
,1
2
2
4

0
.2
5

1
.6
5

6
.5
3
(
4
.6
8
)

8
.3
2
(
5
.8
9
)

7
.3
5
(
5
.2
2
)

7
.6
9
(
5
.4
3
)

9
.1
9
(
6
.7
4
)

1
1
.7
1
(
8
.3
8
)

1
9
.6
4
(
1
6
.1
2
)

2
2
.4
(1

7
.4
7
)

2
,
3
,
5
,
8
,
1
5

2
,
4
,
7
,
1
1
,
1
9

2
,
4
,
6
,
9
,
1
7

2
,
4
,
6
,
1
0
,
1
8

2
,
5
,
7
,
1
2
,
2
2

3
,
6
,
1
0
,
1
5
,
2
7

4
,
9
,
1
5
,
2
5
,
5
1

6
,1
1
,1
8
,2
8
,5
5

0
. 5

2
. 7
2

2
.4
6
(
1
.2
8
)

2
.9
0
(
1
.5
1
)

2
.6
1
(
1
.3
6
)

2
.6
5
(
1
.3
5
)

3
.3
9
(
1
.7
1
)

3
.8
5
(
1
.8
4
)

7
.4
3
(
4
.2
3
)

8
. 0
8
(3

.7
8
)

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
4
,
6

1
,
2
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
4
,
7

2
,
2
,
3
,
5
,
7

2
,
4
,
7
,
1
0
,
1
5

3
,5
,7
,1
0
,1
5

1
7
.3
9

1
.3
4
(
0
.5
3
)

1
.4
5
(
0
.5
9
)

1
.3
9
(
0
.5
6
)

1
.3
8
(
0
.5
4
)

1
.9
1
(
0
.6
4
)

1
. 8
2
(
0
.7
3
)

3
.9
7
(
1
.6
5
)

4
. 2
7
(1

.4
)

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

2
,
3
,
4
,
5
,
7

2
,3
,4
,5
,7



202 Z. Song et al.

Ta
bl
e
4

C
om

pa
ri
so
n
of

th
e
ei
gh
ts
ch
em

es
un
de
r
L
ap
la
ce
(θ
,
δ)

di
st
ri
bu
tio

n
fo
r
m

=
10
0,

n
=

5,
λ

=
0.
05
,a
nd

A
R
L
0

=
50
0

θ
δ

E
C

cE
C
1

cE
C
2

cE
C
3

E
L

cE
L

E
W

M
A
-C

v
M

E
W

M
A
-K

S
0

1
5
0
6
.3
9
(
8
9
2
.2
9
)

4
9
8
.3
5
(
8
0
7
.6
9
)

4
9
9
.1
0
(
8
1
2
.7
8
)

4
9
6
.5
0
(
7
9
1
.9
8
)

5
1
2
.0
4
(
8
6
1
.0
3
)

5
0
5
.6
6
(
7
7
9
.2
2
)

4
9
3
.4
4
(
7
6
0
.4
5
)

5
0
6
. 8
6
(7

1
0
.0
7
)

1
2
,
5
6
,
1
7
3
,
5
0
9
,
2
2
6
9

1
6
,
7
2
,
2
0
3
,
5
4
2
,
2
0
5
5

1
6
,
7
1
,
2
0
0
,
5
3
8
,
2
0
8
2

1
7
,
7
4
,
2
0
6
,
5
4
9
,
2
0
0
9

1
5
,
6
9
,
1
9
8
,
5
3
5
,
2
1
7
7

2
1
,
8
7
,
2
2
8
,
5
7
1
,
1
9
5
9

1
7
,
8
2
,
2
2
2
,
5
5
9
,
1
9
3
9

2
2
,9
5
,2
5
9
,6
2
6
,1
8
7
4

P
u
re

lo
ca

ti
o
n

sh
if
ts

-2
1

1
.7
0
(
0
.7
6
)

2
.2
7
(
1
.0
7
)

1
.8
0
(
0
.7
5
)

2
.3
2
(
0
.7
2
)

1
. 8
1
(
0
.7
9
)

2
.4
5
(
0
.7
2
)

1
. 9
7
(
0
.7
9
)

2
.7
3
(0

.7
3
)

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
2
,
3

2
,
2
,
2
,
3
,
4

1
,
1
,
2
,
2
,
3

2
,2
,3
,3
,4

-1
.5

1
2
. 6
6
(
1
.4
4
)

3
. 7
9
(
1
.9
2
)

2
.6
5
(
1
.2
5
)

3
. 2
4
(
1
.3
3
)

2
.7
7
(
1
.4
2
)

3
.3
9
(
1
.3
7
)

2
.7
9
(
1
.2
0
)

3
.5
9
(1

.2
)

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
5
,
7

1
,
2
,
2
,
3
,
5

2
,
2
,
3
,
4
,
6

1
,
2
,
2
,
3
,
5

2
,
2
,
3
,
4
,
6

1
,
2
,
3
,
3
,
5

2
,3
,3
,4
,6

-1
1

6
. 0
8
(
5
.0
2
)

8
.3
2
(
5
.2
8
)

5
.4
1
(
3
.8
1
)

6
. 2
7
(
3
.9
1
)

6
.2
9
(
5
.1
5
)

6
.6
0
(
4
.1
6
)

5
.2
1
(
3
.1
4
)

6
.1
3
(3

.0
5
)

2
,
3
,
5
,
7
,
1
5

2
,
5
,
7
,
1
0
,
1
8

2
,
3
,
5
,
7
,
1
2

2
,
4
,
5
,
8
,
1
3

2
,
3
,
5
,
8
,
1
5

2
,
4
,
6
,
8
,
1
4

2
,
3
,
4
,
6
,
1
1

3
,4
,5
,7
,1
2

-0
.5

1
5
2
. 9
4
(
1
5
2
.9
1
)

6
4
.5
6
(
1
5
4
.8
1
)

4
1
.8
9
(
1
1
4
.6
0
)

4
4
.4
4
(
1
1
0
.2
8
)

5
9
.0
2
(
1
6
4
.0
7
)

4
7
. 7
6
(
1
1
5
.4
2
)

2
8
.8
6
(
6
8
.0
4
)

3
0
.1
3
(5

6
.8
9
)

4
,
1
0
,
2
0
,
4
5
,
1
8
3

7
,
1
6
,
2
9
,
6
0
,
2
1
3

4
,
9
,
1
7
,
3
6
,
1
3
9

5
,
1
1
,
2
0
,
4
0
,
1
4
4

4
,
1
1
,
2
3
,
5
0
,
2
0
6

6
,
1
2
,
2
2
,
4
3
,
1
5
5

4
,
9
,
1
6
,
2
9
,
8
6

5
,1
0
,1
7
,3
2
,9
0

0
.5

1
5
1
. 8
1
(
1
3
9
.2
5
)

4
1
.7
1
(
1
1
5
.3
8
)

6
4
.2
1
(
1
5
1
.2
6
)

4
4
.6
7
(
1
1
7
.8
0
)

5
9
.2
8
(
1
6
1
.9
0
)

4
8
.1
7
(
1
2
0
.1
2
)

2
9
.3
1
(
6
5
.4
7
)

2
9
.8
8
(5

5
.6
)

4
,
1
0
,
2
0
,
4
6
,
1
8
2

4
,
9
,
1
7
,
3
5
,
1
3
8

6
,
1
6
,
2
9
,
6
0
,
2
1
6

5
,
1
1
,
2
0
,
4
0
,
1
4
1

4
,
1
1
,
2
3
,
5
1
,
2
0
7

6
,
1
2
,
2
2
,
4
4
,
1
5
8

4
,
9
,
1
6
,
2
9
,
8
7

5
,1
0
,1
7
,3
1
,8
9

1
1

6
. 1
0
(
5
.0
6
)

5
. 4
3
(
4
.0
3
)

8
. 2
8
(
5
.1
8
)

6
. 2
6
(
3
.8
2
)

6
.3
1
(
5
.3
3
)

6
.6
2
(
3
.9
6
)

5
.1
4
(
3
.0
0
)

6
.1
3
(3

.0
6
)

2
,
3
,
5
,
8
,
1
4

2
,
3
,
5
,
7
,
1
2

2
,
5
,
7
,
1
0
,
1
8

2
,
4
,
5
,
8
,
1
3

2
,
3
,
5
,
8
,
1
5

2
,
4
,
6
,
8
,
1
4

2
,
3
,
4
,
6
,
1
1

3
,4
,5
,7
,1
2

1
.5

1
2
.6
6
(
1
.4
5
)

2
. 6
6
(
1
.2
6
)

3
. 7
9
(
1
.9
2
)

3
.2
4
(
1
.3
4
)

2
.7
8
(
1
.4
3
)

3
.3
8
(
1
.3
7
)

2
.8
0
(
1
.2
2
)

3
.5
9
(1

.2
)

1
,
2
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
5
,
7

2
,
2
,
3
,
4
,
6

1
,
2
,
2
,
3
,
5

2
,
2
,
3
,
4
,
6

1
,
2
,
3
,
3
,
5

2
,3
,3
,4
,6

2
1

1
.7
0
(
0
.7
7
)

1
.8
0
(
0
.7
4
)

2
.2
7
(
1
.0
7
)

2
.3
2
(
0
.7
2
)

1
.8
1
(
0
.7
9
)

2
.4
5
(
0
.7
1
)

1
. 9
7
(
0
.7
7
)

2
.7
4
(0

.7
4
)

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
3
,
4

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
2
,
3

2
,
2
,
2
,
3
,
4

1
,
1
,
2
,
2
,
3

2
,2
,3
,3
,4

P
u
re

sc
a
le

sh
if
ts

0
0
.5

2
3
5
.1
4
(
6
8
8
.9
1
)

6
1
.9
3
(
2
6
3
.1
8
)

5
8
.4
2
(
2
3
7
.7
9
)

3
9
.6
1
(
1
6
7
.6
1
)

1
0
9
.8
5
(
4
3
4
.8
0
)

3
0
.0
2
(
1
3
0
.3
5
)

3
4
6
4
.5
1
(
1
9
8
0
.8
0
)

9
0
3
.5
9
(1

2
3
9
.9
)

1
2
,
2
4
,
4
8
,
1
2
4
,
9
8
6

8
,
1
3
,
2
1
,
3
9
,
1
6
3

8
,
1
3
,
2
1
,
3
9
,
1
5
5

7
,
1
1
,
1
8
,
3
1
,
9
8

6
,
1
3
,
2
5
,
5
7
,
3
3
4

4
,
8
,
1
4
,
2
5
,
7
6

9
1
,
1
2
9
9
,
5
0
0
0
,
5
0
0
0
,
5
0
0
0

2
7
,1
1
2
,3
7
0
,1
1
2
6
,4
1
7
7

0
1
.2
5

6
0
.6
0
(
1
2
6
.2
2
)

7
6
.8
5
(
1
3
8
.5
5
)

7
8
.3
0
(
1
4
7
.5
5
)

8
0
.0
9
(
1
4
1
.4
7
)

8
6
.2
2
(
1
6
0
.6
0
)

1
2
2
.4
6
(
2
0
8
.1
3
)

1
2
3
. 5
8
(
1
7
3
.3
3
)

1
5
4
. 5
9
(2

2
1
.5
8
)

5
,
1
3
,
2
9
,
6
3
,
2
0
7

6
,
1
8
,
3
7
,
8
2
,
2
7
0

6
,
1
8
,
3
8
,
8
3
,
2
6
7

6
,
1
8
,
3
8
,
8
6
,
2
8
1

6
,
1
9
,
4
1
,
9
2
,
2
9
9

1
0
,
2
8
,
6
0
,
1
3
4
,
4
2
4

9
,
3
1
,
6
9
,
1
4
8
,
4
1
8

1
3
,3
8
,8
4
,1
8
1
,5
2
4

0
1
.5

1
7
.9
8
(
2
0
.8
5
)

2
3
.2
6
(
2
7
.4
8
)

2
3
.1
0
(
2
7
.1
0
)

2
2
. 9
2
(
2
7
.6
3
)

2
5
. 7
0
(
3
0
.5
0
)

3
7
.1
8
(
4
9
.5
8
)

5
2
.5
0
(
5
8
.5
1
)

6
2
. 1
6
(7

4
.2
2
)

3
,
7
,
1
2
,
2
2
,
5
2

4
,
9
,
1
6
,
2
8
,
6
7

3
,
9
,
1
6
,
2
8
,
6
7

4
,
9
,
1
5
,
2
7
,
6
6

4
,
9
,
1
7
,
3
1
,
7
6

6
,
1
3
,
2
4
,
4
4
,
1
1
1

6
,
1
8
,
3
5
,
6
6
,
1
5
7

9
,2
1
,3
9
,7
5
,1
8
8

0
1
.7
5

9
.6
0
(
8
.3
2
)

1
1
.7
9
(
9
.9
8
)

1
1
.8
1
(
1
0
.1
0
)

1
1
. 4
2
(
9
.4
2
)

1
3
.4
8
(
1
1
.5
1
)

1
7
.4
1
(
1
5
.0
6
)

3
0
.5
3
(
2
8
.1
4
)

3
3
. 6
1
(3

1
.6
1
)

2
,
4
,
7
,
1
2
,
2
4

2
,
5
,
9
,
1
5
,
3
0

2
,
5
,
9
,
1
5
,
3
0

2
,
5
,
9
,
1
4
,
2
9

3
,
6
,
1
0
,
1
7
,
3
4

4
,
8
,
1
3
,
2
2
,
4
4

5
,
1
2
,
2
2
,
3
9
,
8
5

7
,1
4
,2
4
,4
2
,9
0

0
2

6
.5
6
(
4
.7
6
)

7
.8
3
(
5
.6
0
)

7
. 8
3
(
5
.7
0
)

7
.5
3
(
5
.4
1
)

9
.1
5
(
6
.7
3
)

1
1
.1
3
(
7
.8
8
)

2
1
.4
7
(
1
7
.5
0
)

2
2
.8
5
(1

7
.7
7
)

2
,
3
,
5
,
8
,
1
5

2
,
4
,
6
,
1
0
,
1
8

2
,
4
,
6
,
1
0
,
1
8

2
,
4
,
6
,
1
0
,
1
8

2
,
5
,
7
,
1
2
,
2
2

3
,
6
,
9
,
1
4
,
2
6

4
,
1
0
,
1
7
,
2
8
,
5
4

6
,1
1
,1
8
,2
9
,5
6

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

( θ
,
δ
=

e
θ
)

-2
0
.1
4

1
.2
2
(
0
.4
2
)

1
.7
7
(
0
.6
6
)

1
.2
7
(
0
.4
5
)

1
. 9
5
(
0
.2
3
)

1
. 2
2
(
0
.4
2
)

2
.0
0
(
0
.1
1
)

1
.2
1
(
0
.4
1
)

2
.0
0
(0

.0
1
)

1
,
1
,
1
,
1
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
1
,
2

2
,
2
,
2
,
2
,
2

1
,
1
,
1
,
1
,
2

2
,2
,2
,2
,2

-1
.5

0
.2
2

2
.0
2
(
0
.7
6
)

2
.7
6
(
0
.6
5
)

1
.9
6
(
0
.5
6
)

2
. 1
7
(
0
.4
0
)

1
.9
8
(
0
.6
7
)

2
.2
2
(
0
.4
4
)

1
.8
4
(
0
.3
8
)

2
.1
1
(0

.3
2
)

1
,
2
,
2
,
2
,
3

2
,
2
,
3
,
3
,
4

1
,
2
,
2
,
2
,
3

2
,
2
,
2
,
2
,
3

1
,
2
,
2
,
2
,
3

2
,
2
,
2
,
2
,
3

1
,
2
,
2
,
2
,
2

2
,2
,2
,2
,3

-1
0
.3
7

4
.8
3
(
2
.2
1
)

4
. 5
5
(
1
.1
1
)

4
.3
9
(
2
.8
1
)

3
.9
6
(
1
.6
9
)

5
.0
4
(
2
.9
2
)

4
.1
4
(
1
.8
4
)

2
.7
9
(
0
.9
1
)

3
.2
9
(0

.8
2
)

2
,
3
,
4
,
6
,
9

3
,
4
,
4
,
5
,
7

2
,
3
,
4
,
5
,
1
0

2
,
3
,
4
,
5
,
7

2
,
3
,
4
,
6
,
1
1

2
,
3
,
4
,
5
,
7

2
,
2
,
3
,
3
,
4

2
,3
,3
,4
,5

-0
.5

0
.6
1

4
9
.4
2
(
1
0
5
.3
9
)

3
8
.1
3
(
9
3
.6
7
)

4
4
.9
8
(
7
5
.4
8
)

4
1
.0
1
(
8
0
.6
2
)

6
2
.8
5
(
1
5
4
.1
5
)

4
3
.4
6
(
9
7
.4
4
)

2
8
.7
5
(
1
5
3
.5
8
)

1
7
.1
2
(3

4
.2
)

7
,
1
5
,
2
7
,
5
0
,
1
5
2

7
,
1
2
,
1
9
,
3
4
,
1
1
2

5
,
1
3
,
2
4
,
4
9
,
1
4
6

6
,
1
1
,
2
0
,
4
1
,
1
3
7

7
,
1
6
,
2
9
,
6
0
,
2
0
2

6
,
1
2
,
2
1
,
4
2
,
1
4
2

4
,
7
,
1
2
,
2
1
,
6
5

4
,7
,1
1
,1
8
,4
4

0
.5

1
.6
5

8
.2
9
(
6
.9
5
)

1
0
.6
9
(
8
.6
5
)

9
.9
7
(
8
.5
6
)

1
0
. 6
4
(
8
.9
0
)

1
0
.6
6
(
9
.3
1
)

1
4
.6
0
(
1
2
.6
3
)

1
6
.9
3
(
1
4
.7
3
)

1
9
. 3
4
(1

6
.6
6
)

2
,
4
,
6
,
1
0
,
2
1

2
,
5
,
8
,
1
3
,
2
6

2
,
5
,
8
,
1
2
,
2
5

2
,
5
,
8
,
1
3
,
2
6

2
,
5
,
8
,
1
3
,
2
7

4
,
7
,
1
1
,
1
8
,
3
6

3
,
8
,
1
3
,
2
1
,
4
4

5
,9
,1
5
,2
4
,4
8

C
o
n
ti
n
u
e

(c
on
tin

ue
d)



A Class of Distribution-Free Exponentially Weighted Moving Average Schemes … 203

Ta
bl
e
4

(c
on
tin

ue
d)

T
a
b
le

4
(C

o
n
ti
n
u
e)

θ
δ

E
C

cE
C
1

cE
C
2

cE
C
3

E
L

cE
L

E
W

M
A
-C

v
M

E
W

M
A
-K

S

1
2
.7
2

2
.8
0
(
1
.5
2
)

3
.5
3
(
1
.9
2
)

2
. 9
8
(
1
.6
1
)

3
.2
5
(
1
.7
4
)

3
.5
5
(
1
.8
6
)

4
.4
1
(
2
.1
4
)

6
.5
8
(
3
.8
8
)

7
.4
4
(3

.5
7
)

1
,
2
,
2
,
4
,
6

1
,
2
,
3
,
5
,
7

1
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
7

2
,
3
,
4
,
5
,
8

2
,
4
,
6
,
8
,
1
4

3
,5
,7
,9
,1
4

1
. 5

4
.4
8

1
.8
0
(
0
.8
2
)

2
.1
6
(
0
.9
9
)

1
.8
7
(
0
.8
5
)

1
.9
5
(
0
.8
8
)

2
.3
7
(
1
.0
1
)

2
.7
1
(
1
.0
5
)

4
.6
7
(
2
.3
8
)

5
.2
6
(2

.0
4
)

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
3
,
4

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
4

1
,
2
,
2
,
3
,
4

1
,
2
,
2
,
3
,
5

1
,
3
,
4
,
6
,
9

3
,4
,5
,6
,9

2
7
.3
9

1
.4
3
(
0
.5
8
)

1
.6
4
(
0
.6
8
)

1
.4
7
(
0
.6
0
)

1
.5
0
(
0
.6
1
)

1
. 9
6
(
0
.7
1
)

2
.0
7
(
0
.7
4
)

3
.9
8
(
1
.8
1
)

4
.4
0
(1

.5
1
)

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
3

1
,
2
,
2
,
2
,
3

1
,
2
,
2
,
2
,
3

1
,
3
,
4
,
5
,
7

2
,3
,4
,5
,7

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
θ 2
)

- 2
0
.3
7

1
.3
2
(
0
.4
9
)

1
. 8
8
(
0
.7
1
)

1
.3
8
(
0
.4
9
)

1
.9
7
(
0
.2
4
)

1
.3
5
(
0
.4
9
)

2
.0
1
(
0
.1
6
)

1
. 4
3
(
0
.5
0
)

2
.0
5
(0

.2
2
)

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

2
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,2
,2
,2
,3

- 1
.5

0
.4
7

2
.2
3
(
0
.9
6
)

3
.1
2
(
0
.9
5
)

2
.1
2
(
0
.7
3
)

2
.4
1
(
0
.6
2
)

2
.2
2
(
0
.8
9
)

2
.4
8
(
0
.6
5
)

2
.0
3
(
0
.5
2
)

2
.5
8
(0

.6
)

1
,
2
,
2
,
3
,
4

2
,
2
,
3
,
4
,
5

1
,
2
,
2
,
2
,
3

2
,
2
,
2
,
3
,
3

1
,
2
,
2
,
3
,
4

2
,
2
,
2
,
3
,
4

1
,
2
,
2
,
2
,
3

2
,2
,3
,3
,3

- 1
0
.6
1

5
. 7
9
(
3
.7
5
)

5
.9
7
(
2
.2
5
)

4
.9
2
(
3
.6
0
)

4
.8
1
(
2
.4
5
)

5
.8
4
(
4
.1
7
)

5
.0
2
(
2
.7
0
)

3
.6
5
(
1
.6
7
)

4
.3
(1

.5
7
)

2
,
3
,
5
,
7
,
1
3

3
,
4
,
6
,
7
,
1
0

2
,
3
,
4
,
6
,
1
1

2
,
3
,
4
,
6
,
9

2
,
3
,
5
,
7
,
1
3

2
,
3
,
4
,
6
,
9

2
,
2
,
3
,
4
,
7

3
,3
,4
,5
,7

-0
.5

0
.7
8

9
1
.4
5
(
2
5
1
.6
7
)

7
2
.5
9
(
2
2
6
.6
3
)

6
7
.8
9
(
1
7
4
.9
3
)

6
0
.8
4
(
1
8
1
.8
8
)

9
6
. 6
4
(
2
7
3
.7
0
)

5
8
.1
7
(
1
5
6
.1
7
)

3
1
.3
2
(
1
1
8
.1
6
)

2
5
.6
(6

8
.0
7
)

6
,
1
5
,
3
1
,
7
5
,
3
3
8

8
,
1
6
,
2
7
,
5
4
,
2
3
0

5
,
1
1
,
2
3
,
5
6
,
2
6
0

5
,
1
2
,
2
1
,
4
6
,
2
1
6

6
,
1
5
,
3
2
,
7
8
,
3
4
9

6
,
1
2
,
2
3
,
4
8
,
2
0
6

4
,
8
,
1
4
,
2
6
,
8
7

5
,9
,1
4
,2
5
,7
0

0
. 5

1
.2
8

1
7
. 9
1
(
2
8
.1
8
)

1
9
.3
3
(
2
6
.1
2
)

2
5
.9
1
(
3
9
.3
8
)

2
2
.3
8
(
3
1
.4
3
)

2
1
.9
6
(
3
1
.9
9
)

2
7
. 7
9
(
3
6
.8
5
)

2
2
.5
4
(
2
8
.0
3
)

2
6
.1
3
(3

4
.7
2
)

3
,
6
,
1
1
,
2
0
,
5
2

3
,
7
,
1
3
,
2
2
,
5
5

3
,
9
,
1
6
,
2
9
,
7
9

4
,
9
,
1
5
,
2
6
,
6
4

3
,
8
,
1
3
,
2
5
,
6
6

5
,
1
1
,
1
8
,
3
2
,
8
0

4
,
8
,
1
5
,
2
6
,
6
6

5
,1
0
,1
7
,3
0
,7
3

1
1
.6
5

4
.3
9
(
2
.9
4
)

5
.3
1
(
3
.3
5
)

5
. 4
4
(
3
.7
7
)

5
.8
5
(
3
.7
1
)

5
.1
0
(
3
.3
1
)

7
.0
1
(
4
.2
3
)

6
.6
2
(
4
.2
8
)

7
.8
3
(4

.2
4
)

1
,
2
,
4
,
6
,
1
0

2
,
3
,
5
,
7
,
1
2

2
,
3
,
5
,
7
,
1
2

2
,
3
,
5
,
7
,
1
3

2
,
3
,
4
,
6
,
1
1

2
,
4
,
6
,
9
,
1
5

2
,
4
,
6
,
8
,
1
5

3
,5
,7
,1
0
,1
6

1
. 5

2
.1
2

2
.5
1
(
1
.3
5
)

3
.1
6
(
1
.6
7
)

2
.8
3
(
1
.5
3
)

3
.2
4
(
1
.6
4
)

2
.9
7
(
1
.5
2
)

4
.0
2
(
1
.8
7
)

4
.1
9
(
2
.3
2
)

5
.1
6
(2

.1
9
)

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
6

2
,
3
,
4
,
5
,
8

1
,
3
,
4
,
5
,
9

3
,4
,5
,6
,9

2
2
.7
2

1
.8
8
(
0
.9
0
)

2
.3
7
(
1
.1
3
)

2
.0
2
(
0
.9
5
)

2
.3
1
(
1
.0
5
)

2
.2
8
(
1
.0
5
)

2
.9
9
(
1
.2
0
)

3
.4
4
(
1
.7
9
)

4
.2
4
(1

.6
)

1
,
1
,
2
,
2
,
4

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
2
,
4

1
,
2
,
2
,
3
,
4

1
,
2
,
2
,
3
,
4

2
,
2
,
3
,
4
,
5

1
,
2
,
3
,
4
,
7

2
,3
,4
,5
,7

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
2

θ
)

-1
0
.1
4

4
.2
4
(
1
.5
4
)

3
.8
3
(
0
.6
7
)

3
.9
6
(
2
.3
3
)

3
.4
5
(
1
.2
6
)

4
.4
9
(
2
.5
9
)

3
.6
0
(
1
.4
0
)

2
.1
7
(
0
.4
0
)

2
.5
4
(0

.5
1
)

2
,
3
,
4
,
5
,
7

3
,
3
,
4
,
4
,
5

2
,
3
,
3
,
4
,
9

2
,
3
,
3
,
4
,
6

2
,
3
,
4
,
5
,
1
0

2
,
3
,
3
,
4
,
6

2
,
2
,
2
,
2
,
3

2
,2
,3
,3
,3

-0
.5

0
.3
7

1
3
. 1
9
(
5
.7
1
)

1
3
. 1
3
(
7
.9
6
)

1
5
.3
8
(
9
.6
0
)

1
5
.4
7
(
9
.9
7
)

1
8
. 0
5
(
1
1
.5
5
)

1
8
.3
2
(
1
5
.4
8
)

1
0
.0
7
(
1
8
.8
6
)

7
.8
(5

.2
3
)

7
,
1
0
,
1
2
,
1
5
,
2
3

6
,
8
,
1
1
,
1
6
,
2
8

5
,
9
,
1
3
,
1
9
,
3
3

5
,
9
,
1
3
,
2
0
,
3
4

6
,
1
1
,
1
5
,
2
2
,
3
8

5
,
9
,
1
4
,
2
3
,
4
6

3
,
5
,
7
,
1
1
,
2
3

4
,5
,7
,9
,1
6

-0
.2
5

0
.6
1

4
3
3
.2
4
(
9
0
4
.6
7
)

3
4
8
.6
0
(
7
4
5
.3
9
)

1
4
4
.5
9
(
3
7
0
.7
4
)

1
8
9
.4
8
(
4
5
4
.9
1
)

3
1
8
. 2
6
(
7
6
3
.4
6
)

1
6
3
.2
3
(
4
2
7
.0
5
)

8
0
4
. 0
5
(
1
4
9
0
.6
4
)

2
6
1
.1
9
(6

3
6
.7
1
)

1
7
,
4
6
,
1
1
5
,
3
4
2
,
2
1
5
3

1
5
,
3
9
,
9
4
,
2
8
4
,
1
5
9
1

1
1
,
2
4
,
4
8
,
1
1
5
,
5
3
1

1
1
,
2
7
,
5
9
,
1
5
3
,
7
5
7

1
2
,
3
3
,
7
9
,
2
2
6
,
1
4
1
3

9
,
2
2
,
4
8
,
1
2
6
,
6
2
6

1
0
,
3
2
,
1
0
5
,
5
8
8
,
5
0
0
0

9
,2
3
,5
7
,1
8
1
,1
2
4
3

0
.2
5

1
.6
5

1
0
. 6
9
(
9
.9
4
)

1
3
.8
7
(
1
2
.4
0
)

1
2
.8
9
(
1
2
.1
2
)

1
3
.2
8
(
1
2
.2
1
)

1
4
.7
2
(
1
4
.2
1
)

2
0
.0
1
(
1
9
.4
8
)

2
9
.2
6
(
2
9
.9
9
)

3
2
.9
1
(3

2
.7
7
)

2
,
5
,
8
,
1
3
,
2
8

3
,
6
,
1
1
,
1
7
,
3
6

2
,
6
,
1
0
,
1
6
,
3
3

3
,
6
,
1
0
,
1
7
,
3
5

3
,
6
,
1
1
,
1
8
,
3
9

4
,
9
,
1
5
,
2
4
,
5
3

5
,
1
2
,
2
1
,
3
6
,
8
2

7
,1
4
,2
3
,4
0
,9
1

0
. 5

2
.7
2

3
.3
5
(
1
.9
2
)

4
.0
8
(
2
.3
2
)

3
.6
3
(
2
.0
5
)

3
.7
3
(
2
.0
8
)

4
.4
6
(
2
.4
6
)

5
.2
5
(
2
.7
4
)

9
.7
2
(
6
.1
6
)

1
0
.4
3
(5

.6
)

1
,
2
,
3
,
4
,
7

1
,
2
,
4
,
5
,
8

1
,
2
,
3
,
5
,
7

1
,
2
,
3
,
5
,
8

2
,
3
,
4
,
6
,
9

2
,
3
,
5
,
7
,
1
0

3
,
5
,
8
,
1
3
,
2
1

4
,7
,9
,1
3
,2
1

1
7
.3
9

1
.5
1
(
0
.6
3
)

1
.6
9
(
0
.7
2
)

1
.5
8
(
0
.6
7
)

1
.5
7
(
0
.6
6
)

2
.0
9
(
0
.7
6
)

2
.1
8
(
0
.8
0
)

4
.5
4
(
2
.0
3
)

4
.9
2
(1

.7
2
)

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
3

1
,
1
,
1
,
2
,
3

1
,
2
,
2
,
2
,
3

1
,
2
,
2
,
3
,
4

2
,
3
,
4
,
6
,
8

3
,4
,5
,6
,8



204 Z. Song et al.

Ta
bl
e
5

C
om

pa
ri
so
n
of

th
e
ei
gh
ts
ch
em

es
un
de
r
R
ay
le
ig
h(

θ,
δ)

di
st
ri
bu
tio

n
fo
r
m

=
10
0,

n
=

5,
λ

=
0.
05
,a
nd

A
R
L
0

=
50
0

θ
δ

E
C

cE
C
1

cE
C
2

cE
C
3

E
L

cE
L

E
W

M
A
-C

v
M

E
W

M
A
-K

S
0

1
4
9
9
.8
8
(
8
8
5
.6
7
)

4
9
8
.3
1
(
8
1
1
.8
7
)

4
9
6
.9
4
(
8
0
9
.2
3
)

5
0
0
.2
1
(
8
0
0
.4
4
)

5
0
3
.1
3
(
8
4
7
.3
9
)

5
0
3
.1
1
(
7
6
6
.7
2
)

5
0
3
.7
7
(
7
7
4
.7
0
)

5
1
0
.8
6
(7

1
2
.2
0
)

1
2
,
5
5
,
1
7
0
,
5
0
2
,
2
2
5
4

1
6
,
7
0
,
2
0
1
,
5
4
2
,
2
0
8
1

1
6
,
7
0
,
2
0
0
,
5
4
0
,
2
0
6
2

1
7
,
7
5
,
2
0
8
,
5
5
1
,
2
0
3
3

1
5
,
7
0
,
1
9
6
,
5
2
6
,
2
1
0
7

2
1
,
8
6
,
2
3
0
,
5
7
1
,
1
9
3
7

1
8
,
8
2
,
2
2
5
,
5
6
3
,
1
9
9
5

2
2
,9
7
,2
5
8
,6
2
7
,1
8
8
1

P
u
re

lo
ca

ti
o
n

sh
if
ts

-2
1

1
.0
1
(
0
.1
0
)

1
.0
2
(
0
.1
5
)

1
. 0
4
(
0
.1
9
)

1
.1
5
(
0
.3
6
)

1
.0
5
(
0
.2
1
)

1
.2
5
(
0
.4
3
)

1
.1
0
(
0
.3
6
)

2
.0
1
(0

.1
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

2
,2
,2
,2
,2

-1
.5

1
1
.1
1
(
0
.3
1
)

1
.1
9
(
0
.4
2
)

1
.2
0
(
0
.4
1
)

1
.4
6
(
0
.5
3
)

1
.2
2
(
0
.4
3
)

1
.6
2
(
0
.5
4
)

1
.3
6
(
0
.5
1
)

2
.1
7
(0

.3
9
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,2
,2
,2
,3

-1
1

1
.6
2
(
0
.7
6
)

1
.9
3
(
0
.9
6
)

1
.7
8
(
0
.7
7
)

2
.2
1
(
0
.8
7
)

1
.8
5
(
0
.8
5
)

2
.4
1
(
0
.8
6
)

2
. 1
2
(
0
.9
1
)

3
.0
7
(0

.9
2
)

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
4

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
3
,
4

1
,
2
,
2
,
3
,
4

2
,2
,3
,4
,5

-0
.5

1
4
.8
3
(
3
.3
0
)

6
.5
5
(
4
.3
8
)

5
.0
4
(
3
.1
1
)

6
.2
7
(
3
.7
3
)

5
.7
0
(
3
.8
1
)

6
.9
6
(
4
.0
5
)

6
.3
6
(
4
.0
2
)

8
.3
4
(4

.6
6
)

1
,
3
,
4
,
6
,
1
1

2
,
3
,
6
,
9
,
1
5

1
,
3
,
4
,
6
,
1
1

2
,
4
,
5
,
8
,
1
3

1
,
3
,
5
,
7
,
1
3

2
,
4
,
6
,
9
,
1
5

2
,
4
,
5
,
8
,
1
4

3
,5
,7
,1
0
,1
7

0
.5

1
9
.3
0
(
8
.5
4
)

7
.9
1
(
6
.8
7
)

1
1
. 7
6
(
9
.9
7
)

8
.4
4
(
6
.3
6
)

9
.7
5
(
8
.5
7
)

8
.8
1
(
6
.4
5
)

7
.5
2
(
5
.7
8
)

9
.1
7
(6

.5
3
)

2
,
4
,
7
,
1
2
,
2
3

2
,
4
,
6
,
1
0
,
1
9

4
,
7
,
1
0
,
1
4
,
2
6

3
,
5
,
7
,
1
0
,
1
9

2
,
5
,
8
,
1
2
,
2
4

3
,
5
,
7
,
1
1
,
2
0

2
,
4
,
6
,
9
,
1
7

4
,5
,8
,1
1
,2
0

1
1

2
.0
4
(
0
.9
3
)

2
.0
2
(
0
.7
8
)

2
.9
1
(
1
.2
1
)

2
.4
1
(
0
.6
7
)

2
.1
9
(
0
.9
5
)

2
.4
9
(
0
.6
8
)

2
.1
5
(
0
.6
6
)

3
.0
1
(0

.7
2
)

1
,
1
,
2
,
3
,
4

1
,
2
,
2
,
2
,
3

1
,
2
,
3
,
4
,
5

2
,
2
,
2
,
3
,
4

1
,
2
,
2
,
3
,
4

2
,
2
,
2
,
3
,
4

1
,
2
,
2
,
2
,
3

2
,3
,3
,3
,4

1
.5

1
1
.1
0
(
0
.3
1
)

1
.1
4
(
0
.3
5
)

1
.3
4
(
0
.5
2
)

1
.6
9
(
0
.4
6
)

1
.1
4
(
0
.3
5
)

1
.8
9
(
0
.3
2
)

1
.3
2
(
0
.4
7
)

2
.0
6
(0

.2
4
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
1
,
2

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,2
,2
,2
,3

2
1

1
.0
0
(
0
.0
2
)

1
.0
0
(
0
.0
2
)

1
.0
1
(
0
.0
9
)

1
.1
1
(
0
.3
2
)

1
.0
0
(
0
.0
2
)

1
.4
0
(
0
.4
9
)

1
.0
0
(
0
.0
7
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

P
u
re

sc
a
le

sh
if
ts

0
0
.5

3
.6
2
(
1
.9
6
)

4
.6
9
(
1
.6
3
)

3
.2
7
(
1
.6
3
)

3
.5
6
(
1
.3
9
)

3
.7
8
(
1
.9
8
)

3
.6
9
(
1
.4
4
)

3
.0
9
(
1
.2
4
)

3
.9
8
(1

.2
4
)

1
,
2
,
3
,
5
,
7

2
,
4
,
5
,
6
,
7

1
,
2
,
3
,
4
,
6

2
,
3
,
3
,
4
,
6

1
,
2
,
3
,
5
,
7

2
,
3
,
3
,
4
,
6

2
,
2
,
3
,
4
,
5

2
,3
,4
,5
,6

0
1
.2
5

2
0
.2
0
(
2
7
.9
1
)

1
9
.9
9
(
2
3
.9
4
)

2
8
.8
6
(
4
2
.7
2
)

2
6
.0
0
(
3
3
.1
1
)

2
4
.8
0
(
3
3
.3
5
)

3
1
.4
6
(
4
0
.3
1
)

2
8
.2
2
(
3
6
.6
8
)

3
5
.9
6
(4

9
.2
9
)

3
,
7
,
1
3
,
2
4
,
6
0

3
,
8
,
1
4
,
2
4
,
5
6

4
,
1
0
,
1
8
,
3
3
,
8
7

4
,
1
0
,
1
7
,
3
0
,
7
4

3
,
8
,
1
5
,
2
9
,
7
4

5
,
1
2
,
2
0
,
3
6
,
9
3

4
,
1
0
,
1
8
,
3
3
,
8
4

6
,1
3
,2
2
,4
1
,1
0
6

0
1
.5

5
.3
0
(
3
.7
7
)

5
.6
6
(
3
.6
3
)

7
.0
4
(
5
.0
5
)

6
.9
8
(
4
.3
6
)

6
.2
8
(
4
.4
2
)

7
.8
8
(
4
.8
7
)

7
.1
5
(
4
.8
3
)

9
.2
0
(5

.4
4
)

1
,
3
,
4
,
7
,
1
2

2
,
3
,
5
,
7
,
1
2

2
,
4
,
6
,
9
,
1
6

2
,
4
,
6
,
9
,
1
5

2
,
3
,
5
,
8
,
1
5

3
,
5
,
7
,
1
0
,
1
7

2
,
4
,
6
,
9
,
1
6

3
,6
,8
,1
1
,2
0

0
1
.7
5

2
.9
7
(
1
.7
7
)

3
.2
8
(
1
.7
7
)

3
.7
8
(
2
.2
6
)

4
.0
2
(
2
.0
5
)

3
. 4
8
(
2
.0
1
)

4
.5
0
(
2
.2
1
)

4
.0
2
(
2
.2
0
)

5
.3
8
(2

.3
8
)

1
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
7

1
,
2
,
3
,
5
,
8

2
,
3
,
4
,
5
,
8

1
,
2
,
3
,
4
,
7

2
,
3
,
4
,
6
,
9

1
,
2
,
4
,
5
,
8

3
,4
,5
,7
,1
0

0
2

2
.1
4
(
1
.1
4
)

2
.4
2
(
1
.1
9
)

2
.6
1
(
1
.4
3
)

2
.9
1
(
1
.3
2
)

2
.4
9
(
1
.2
9
)

3
.2
9
(
1
.4
3
)

2
.9
2
(
1
.4
3
)

4
.0
1
(1

.4
8
)

1
,
1
,
2
,
3
,
4

1
,
2
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
4
,
5

1
,
2
,
2
,
3
,
5

2
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
6

2
,3
,4
,5
,7

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

( θ
,
δ
=

e
θ
)

-2
0
.1
4

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
1
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

-1
.5

0
.2
2

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

-1
0
.3
7

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
2
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
6
)

1
.0
0
(
0
.0
0
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

-0
.5

0
.6
1

1
.3
4
(
0
.5
4
)

1
.6
6
(
0
.7
5
)

1
.4
2
(
0
.5
4
)

1
.8
6
(
0
.5
4
)

1
.4
8
(
0
.6
0
)

2
.0
1
(
0
.4
7
)

1
.6
6
(
0
.5
8
)

2
.5
0
(0

.5
9
)

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

2
,2
,2
,3
,3

0
. 5

1
.6
5

1
.8
3
(
0
.8
9
)

1
. 9
3
(
0
.8
3
)

2
.3
8
(
1
.2
3
)

2
.4
3
(
0
.8
7
)

2
.0
6
(
0
.9
7
)

2
.5
5
(
0
.8
5
)

2
.2
3
(
0
.9
2
)

3
.2
2
(0

.9
6
)

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
3
,
5

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
3
,
4

2
,
2
,
2
,
3
,
4

1
,
2
,
2
,
3
,
4

2
,3
,3
,4
,5

(c
on
tin

ue
d)



A Class of Distribution-Free Exponentially Weighted Moving Average Schemes … 205

Ta
bl
e
5

(c
on
tin

ue
d)

θ
δ

E
C

cE
C
1

cE
C
2

cE
C
3

E
L

cE
L

E
W

M
A
-C

v
M

E
W

M
A
-K

S

1
2
.7
2

1
.0
3
(
0
.1
6
)

1
.0
5
(
0
.2
1
)

1
.0
8
(
0
.2
7
)

1
. 2
7
(
0
.4
5
)

1
.0
7
(
0
.2
5
)

1
.4
4
(
0
.5
0
)

1
.1
6
(
0
.3
7
)

2
.0
4
(0

.1
9
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
2

2
, 2
,2
,2
,2

1
. 5

4
. 4
8

1
. 0
0
(
0
.0
1
)

1
. 0
0
(
0
.0
1
)

1
.0
0
(
0
.0
2
)

1
.0
2
(
0
.1
3
)

1
.0
0
(
0
.0
1
)

1
.0
7
(
0
.2
6
)

1
.0
0
(
0
.0
6
)

2
.0
0
(0

.0
1
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

2
7
.3
9

1
.0
0
(
0
.0
0
)

1
. 0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
1
)

1
.0
0
(
0
.0
0
)

1
. 0
0
(
0
.0
6
)

1
.0
0
(
0
.0
0
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
, 2
,2
,2
,2

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
θ 2
)

- 2
0
. 3
7

1
. 0
0
(
0
.0
0
)

1
. 0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
, 2
,2
,2
,2

- 1
.5

0
.4
7

1
.0
0
(
0
.0
0
)

1
. 0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
1
)

1
.0
0
(
0
.0
0
)

1
. 0
0
(
0
.0
4
)

1
.0
0
(
0
.0
1
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
, 2
,2
,2
,2

- 1
0
. 6
1

1
.0
1
(
0
.0
9
)

1
.0
3
(
0
.1
7
)

1
. 0
2
(
0
.1
4
)

1
.1
6
(
0
.3
7
)

1
.0
3
(
0
.1
7
)

1
.3
1
(
0
.4
6
)

1
.0
8
(
0
.2
7
)

2
.0
1
(0

.1
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
2

2
,2
,2
,2
,2

- 0
.5

0
. 7
8

2
.1
9
(
1
.1
4
)

2
.9
7
(
1
.5
9
)

2
. 2
6
(
1
.0
2
)

2
. 8
0
(
1
.0
9
)

2
.4
7
(
1
.2
3
)

2
.9
7
(
1
.1
0
)

2
.6
1
(
1
.1
2
)

3
.6
9
(1

.2
1
)

1
,
1
,
2
,
3
,
4

1
,
2
,
3
,
4
,
6

1
,
2
,
2
,
3
,
4

1
,
2
,
3
,
3
,
5

1
,
2
,
2
,
3
,
5

2
,
2
,
3
,
4
,
5

1
,
2
,
2
,
3
,
5

2
,3
,3
,4
,6

0
.5

1
.2
8

3
.1
8
(
1
.8
6
)

3
. 0
5
(
1
.5
5
)

4
.5
9
(
2
.4
1
)

3
. 6
7
(
1
.5
9
)

3
.5
0
(
1
.9
5
)

3
.8
3
(
1
.6
3
)

3
.3
9
(
1
.6
1
)

4
.6
3
(1

.7
7
)

1
,
2
,
3
,
4
,
7

1
,
2
,
3
,
4
,
6

1
,
3
,
4
,
6
,
9

2
,
3
,
3
,
4
,
7

1
,
2
,
3
,
4
,
7

2
,
3
,
4
,
5
,
7

1
,
2
,
3
,
4
,
6

3
,3
,4
,5
,8

1
1
.6
5

1
.1
9
(
0
.4
1
)

1
.2
6
(
0
.4
5
)

1
.4
2
(
0
.5
9
)

1
.6
9
(
0
.5
0
)

1
. 2
9
(
0
.4
8
)

1
.8
6
(
0
.4
2
)

1
.4
7
(
0
.5
2
)

2
.2
8
(0

.4
7
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,2
,2
,3
,3

1
.5

2
. 1
2

1
.0
0
(
0
.0
5
)

1
.0
0
(
0
.0
7
)

1
. 0
2
(
0
.1
3
)

1
.1
3
(
0
.3
4
)

1
.0
1
(
0
.0
7
)

1
.3
2
(
0
.4
7
)

1
.0
3
(
0
.1
8
)

2
.0
0
(0

.0
5
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

2
2
.7
2

1
. 0
0
(
0
.0
0
)

1
. 0
0
(
0
.0
0

)
1
.0
0
(
0
.0
0
)

1
. 0
0
(
0
.0
5
)

1
.0
0
(
0
.0
0
)

1
.0
3
(
0
.1
8
)

1
.0
0
(
0
.0
0
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
, 2
,2
,2
,2

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
2

θ
)

-1
0
.1
4

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

-0
.5

0
.3
7

1
.0
0
(
0
.0
4
)

1
. 0
1
(
0
.1
0
)

1
.0
0
(
0
.0
5
)

1
.1
0
(
0
.2
9
)

1
.0
0
(
0
.0
6
)

1
.2
7
(
0
.4
5
)

1
.0
2
(
0
.1
6
)

2
.0
0
(0

.0
3
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
1

2
, 2
,2
,2
,2

-0
.2
5

0
. 6
1

2
. 3
0
(
1
.1
6
)

3
.2
9
(
1
.5
5
)

2
.2
8
(
0
.9
8
)

2
. 7
4
(
0
.9
5
)

2
.5
2
(
1
.2
2
)

2
.8
5
(
0
.9
5
)

2
.5
0
(
0
.9
5
)

3
.4
9
(1

.0
3
)

1
,
1
,
2
,
3
,
4

1
,
2
,
3
,
4
,
6

1
,
2
,
2
,
3
,
4

2
,
2
,
3
,
3
,
4

1
,
2
,
2
,
3
,
5

2
,
2
,
3
,
3
,
5

1
,
2
,
2
,
3
,
4

2
, 3
,3
,4
,5

0
. 2
5

1
.6
5

2
. 5
1
(
1
.3
9
)

2
.6
1
(
1
.2
9
)

3
.3
3
(
1
.8
9
)

3
.2
7
(
1
.4
5
)

2
. 8
4
(
1
.5
2
)

3
.4
9
(
1
.4
7
)

3
.0
9
(
1
.5
0
)

4
.2
7
(1

.6
1
)

1
,
2
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
4
,
7

2
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
6

2
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
6

2
,3
,4
,5
,7

0
.5

2
.7
2

1
.1
5
(
0
.3
7
)

1
. 2
5
(
0
.4
4
)

1
.2
7
(
0
.4
8
)

1
. 5
5
(
0
.5
5
)

1
.2
8
(
0
.4
7
)

1
.7
2
(
0
.5
4
)

1
.4
2
(
0
.5
4
)

2
.2
4
(0

.4
5
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,2
,2
,2
,3

1
7
.3
9

1
.0
0
(
0
.0
2
)

1
.0
0
(
0
.0
4
)

1
.0
0
(
0
.0
4
)

1
.0
3
(
0
.1
7
)

1
.0
1
(
0
.0
7
)

1
.0
7
(
0
.2
5
)

1
.0
2
(
0
.1
3
)

2
.0
0
(0

.0
1
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2



206 Z. Song et al.

Ta
bl
e
6

C
om

pa
ri
so
n
of

th
e
ei
gh
ts
ch
em

es
un
de
r
SE

(θ
,
δ)

di
st
ri
bu
tio

n
fo
r
m

=
10
0,

n
=
5,

λ
=

0.
05
,a
nd

A
R
L
0
=
50
0

θ
δ

E
C

cE
C
1

cE
C
2

cE
C
3

E
L

cE
L

E
W

M
A
-C

v
M

E
W

M
A
-K

S
0

1
5
0
5
.6
1
(
8
8
7
.8
7
)

4
9
8
.6
0
(
8
1
5
.1
2
)

4
9
9
.4
4
(
8
1
9
.0
4
)

4
9
5
.5
1
(
7
9
7
.2
2
)

5
0
1
.6
4
(
8
4
0
.6
8
)

5
0
3
.3
7
(
7
7
2
.4
8
)

5
0
0
.8
4
(
7
6
9
.1
5
)

5
1
1
.2
7
(7

3
4
.1
6
)

1
2
,
5
8
,
1
7
3
,
5
1
0
,
2
2
9
3

1
7
,
7
1
,
2
0
0
,
5
4
3
,
2
0
5
7

1
7
,
7
1
,
1
9
8
,
5
3
9
,
2
0
5
7

1
8
,
7
5
,
2
0
5
,
5
4
2
,
2
0
1
9

1
5
,
7
0
,
1
9
7
,
5
2
8
,
2
0
8
7

2
1
,
8
7
,
2
3
1
,
5
6
6
,
1
9
5
6

1
8
,
8
3
,
2
2
5
,
5
7
5
,
1
9
3
0

2
2
,9
6
,2
5
7
,6
1
7
,1
9
3
1

P
u
re

lo
ca

ti
o
n

sh
if
ts

-2
1

1
.1
0
(
0
.3
1
)

1
.1
1
(
0
.3
3
)

1
.2
8
(
0
.4
7
)

1
.3
6
(
0
.5
1
)

1
.2
1
(
0
.4
3
)

1
.5
2
(
0
.6
0
)

1
.4
5
(
0
.6
1
)

2
.1
3
(0

.3
5
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,2
,2
,2
,3

-1
.5

1
1
.2
4
(
0
.4
8
)

1
.2
8
(
0
.5
1
)

1
.4
9
(
0
.6
1
)

1
.5
9
(
0
.6
3
)

1
.4
2
(
0
.5
9
)

1
.8
7
(
0
.7
7
)

1
.7
6
(
0
.7
6
)

2
.4
0
(0

.6
1
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

2
,2
,2
,3
,4

-1
1

1
.6
3
(
0
.7
9
)

1
.7
1
(
0
.8
5
)

1
.9
9
(
0
.9
4
)

2
.1
1
(
0
.9
5
)

1
.9
3
(
0
.9
6
)

2
.6
1
(
1
.1
6
)

2
.4
9
(
1
.2
1
)

3
.2
3
(1

.1
4
)

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
4

1
,
1
,
2
,
3
,
4

1
,
1
,
2
,
2
,
4

1
,
2
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

2
,2
,3
,4
,5

-0
.5

1
3
.1
8
(
1
.9
5
)

3
.4
5
(
2
.0
5
)

3
.9
8
(
2
.3
1
)

4
.1
6
(
2
.3
6
)

4
.0
4
(
2
.4
5
)

5
.5
7
(
3
.0
5
)

5
.6
4
(
3
.4
1
)

7
. 0
5
(3

.4
8
)

1
,
2
,
3
,
4
,
7

1
,
2
,
3
,
4
,
7

1
,
2
,
4
,
5
,
8

1
,
2
,
4
,
5
,
9

1
,
2
,
4
,
5
,
9

2
,
3
,
5
,
7
,
1
1

2
,
3
,
5
,
7
,
1
2

3
,5
,6
,9
,1
4

0
. 5

1
1
1
.1
7
(
8
.3
8
)

1
2
. 9
6
(
1
0
.7
0
)

1
2
.4
2
(
1
1
.0
6
)

1
1
.9
4
(
9
.8
0
)

9
.9
9
(
1
9
.9
0
)

1
1
.0
8
(
8
.6
0
)

9
.4
0
(
1
5
.7
9
)

8
.6
6
(1

1
.6
3
)

4
,
7
,
1
0
,
1
3
,
2
3

3
,
6
,
1
0
,
1
6
,
3
1

5
,
7
,
1
0
,
1
4
,
2
8

4
,
6
,
9
,
1
4
,
2
9

4
,
6
,
9
,
1
2
,
2
0

4
,
6
,
9
,
1
3
,
2
4

3
,
5
,
7
,
1
1
,
2
2

4
,5
,7
,1
0
,1
7

1
1

3
.4
7
(
1
.5
5
)

3
.2
1
(
1
.5
6
)

4
.0
6
(
0
.9
1
)

3
.2
4
(
1
.1
0
)

3
.6
0
(
1
.6
4
)

3
.3
6
(
1
.1
4
)

2
.5
8
(
0
.7
3
)

3
.1
1
(0

.5
4
)

1
,
2
,
3
,
4
,
6

2
,
2
,
3
,
4
,
6

3
,
4
,
4
,
4
,
5

2
,
3
,
3
,
4
,
5

2
,
2
,
3
,
4
,
7

2
,
3
,
3
,
4
,
5

2
,
2
,
2
,
3
,
4

2
,3
,3
,3
,4

1
. 5

1
1
.8
2
(
0
.7
0
)

1
.8
2
(
0
.5
7
)

2
.5
7
(
0
.7
9
)

2
.1
3
(
0
.3
7
)

1
.8
5
(
0
.6
5
)

2
.1
7
(
0
.4
0
)

1
.8
7
(
0
.3
6
)

2
.1
9
(0

.3
9
)

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

1
,
2
,
3
,
3
,
4

2
,
2
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

2
,
2
,
2
,
2
,
3

1
,
2
,
2
,
2
,
2

2
,2
,2
,2
,3

2
1

1
.2
0
(
0
.4
1
)

1
.2
6
(
0
.4
4
)

1
.6
6
(
0
.6
4
)

1
.9
2
(
0
.2
8
)

1
.2
3
(
0
.4
2
)

1
.9
9
(
0
.1
3
)

1
.3
7
(
0
.4
8
)

2
.0
0
(0

.0
4
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
1
,
2

2
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,2
,2
,2
,2

P
u
re

sc
a
le

sh
if
ts

0
0
.5

2
2
.6
1
(
4
1
.2
8
)

2
8
. 1
6
(
6
7
.1
0
)

1
9
. 3
9
(
4
4
.6
3
)

1
9
.7
0
(
4
7
.5
3
)

2
2
.1
1
(
4
2
.3
9
)

2
0
.0
7
(
3
4
.9
2
)

1
5
.2
0
(
2
4
.9
7
)

1
6
.7
6
(2

4
.2
3
)

3
,
8
,
1
4
,
2
5
,
6
6

6
,
1
1
,
1
6
,
2
8
,
7
5

3
,
7
,
1
1
,
2
0
,
5
7

4
,
7
,
1
2
,
2
1
,
5
3

4
,
8
,
1
4
,
2
4
,
6
2

4
,
8
,
1
3
,
2
1
,
5
5

3
,
6
,
1
0
,
1
7
,
4
0

4
, 8
,1
2
,1
9
,4
2

0
1
.2
5

1
0
8
.5
9
(
2
4
8
.6
5
)

1
0
6
. 1
2
(
2
2
2
.0
1
)

1
4
8
.3
6
(
3
0
0
.8
5
)

1
3
0
.6
2
(
2
6
1
.0
3
)

1
3
5
.0
8
(
2
9
2
.4
6
)

1
6
1
.7
5
(
2
8
5
.8
7
)

1
4
2
. 9
8
(
2
6
0
.0
5
)

1
7
3
. 7
0
(2

9
6
.2
)

5
,
1
8
,
4
2
,
1
0
3
,
4
0
4

7
,
2
0
,
4
4
,
1
0
4
,
3
9
0

8
,
2
6
,
5
9
,
1
4
6
,
5
6
3

8
,
2
5
,
5
6
,
1
3
1
,
4
7
4

7
,
2
3
,
5
4
,
1
3
2
,
4
9
6

1
1
,
3
2
,
7
3
,
1
7
2
,
5
9
4

9
,
2
7
,
6
1
,
1
5
2
,
5
2
4

1
2
,3
4
,7
9
,1
8
6
,6
4
7

0
1
.5

2
6
.0
0
(
4
1
.9
9
)

2
5
.2
4
(
3
5
.5
0
)

3
7
.7
4
(
6
2
.1
7
)

3
3
.0
9
(
4
7
.7
2
)

3
2
.3
3
(
5
0
.4
8
)

4
1
.0
8
(
6
0
.5
7
)

3
5
. 4
9
(
4
7
.6
7
)

4
7
.2
3
(7

6
.8
)

3
,
8
,
1
5
,
2
9
,
8
0

4
,
9
,
1
6
,
2
9
,
7
4

4
,
1
1
,
2
1
,
4
2
,
1
1
8

5
,
1
1
,
2
0
,
3
8
,
9
9

4
,
1
0
,
1
9
,
3
6
,
1
0
3

6
,
1
4
,
2
5
,
4
6
,
1
2
5

5
,
1
1
,
2
1
,
4
1
,
1
1
2

7
,1
5
,2
7
,5
2
,1
4
6

0
1
.7
5

1
1
. 6
6
(
1
1
.4
5
)

1
1
. 8
2
(
1
0
.3
9
)

1
6
.1
1
(
1
6
.3
5
)

1
5
.0
0
(
1
3
.5
4
)

1
3
.9
7
(
1
3
.8
1
)

1
7
.5
8
(
1
6
.7
4
)

1
5
. 9
8
(
1
5
.6
6
)

2
0
. 3
4
(2

0
.6
9
)

2
,
5
,
8
,
1
4
,
3
1

2
,
5
,
9
,
1
5
,
3
0

3
,
7
,
1
2
,
2
0
,
4
3

3
,
7
,
1
1
,
1
9
,
3
8

3
,
6
,
1
0
,
1
7
,
3
8

4
,
8
,
1
3
,
2
1
,
4
5

3
,
7
,
1
2
,
2
0
,
4
3

5
,9
,1
5
,2
4
,5
4

0
2

7
.2
2
(
5
.7
2
)

7
. 5
6
(
5
.3
8
)

9
.8
5
(
7
.8
3
)

9
.5
1
(
6
.8
1
)

8
.6
5
(
6
.8
4
)

1
0
. 8
2
(
7
.8
4
)

9
.8
5
(
7
.8
2
)

1
2
.5
8
(9

.0
3
)

2
,
3
,
6
,
9
,
1
8

2
,
4
,
6
,
1
0
,
1
8

2
,
5
,
8
,
1
3
,
2
4

3
,
5
,
8
,
1
2
,
2
2

2
,
4
,
7
,
1
1
,
2
1

3
,
6
,
9
,
1
4
,
2
5

2
,
5
,
8
,
1
2
,
2
4

4
,7
,1
0
,1
5
,2
9

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
θ
)

-2
0
.1
4

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
2
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

- 1
.5

0
.2
2

1
.0
0
(
0
.0
0
)

1
. 0
0
(
0
.0
0
)

1
.0
0
(
0
.0
2
)

1
.0
0
(
0
.0
4
)

1
. 0
0
(
0
.0
2
)

1
.0
0
(
0
.0
6
)

1
.0
0
(
0
.0
4
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

- 1
0
.3
7

1
.0
1
(
0
.1
2
)

1
. 0
2
(
0
.1
5
)

1
. 0
5
(
0
.2
2
)

1
.1
7
(
0
.3
8
)

1
.0
6
(
0
.2
4
)

1
.2
4
(
0
.4
3
)

1
.1
3
(
0
.3
4
)

2
.0
1
(0

.1
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

2
,2
,2
,2
,2

-0
.5

0
.6
1

1
.7
7
(
0
.9
0
)

2
.0
2
(
1
.0
7
)

2
.0
1
(
0
.9
3
)

2
.4
2
(
1
.0
6
)

2
.0
8
(
1
.0
4
)

2
.7
2
(
1
.1
4
)

2
.4
3
(
1
.1
2
)

3
.4
1
(1

.1
6
)

1
,
1
,
2
,
2
,
3

1
,
1
,
2
,
3
,
4

1
,
1
,
2
,
2
,
4

1
,
2
,
2
,
3
,
4

1
,
1
,
2
,
3
,
4

1
,
2
,
3
,
3
,
5

1
,
2
,
2
,
3
,
4

2
,3
,3
,4
,6

0
. 5

1
.6
5

4
.5
0
(
2
.6
5
)

4
.1
4
(
2
.3
5
)

5
.8
9
(
2
.4
8
)

4
.4
8
(
2
.0
7
)

4
.8
1
(
2
.6
4
)

4
.6
7
(
2
.1
5
)

4
.0
0
(
1
.9
1
)

5
.1
0
(1

.9
1
)

1
,
3
,
4
,
6
,
9

2
,
3
,
4
,
5
,
9

2
,
4
,
6
,
7
,
1
0

2
,
3
,
4
,
5
,
8

2
,
3
,
4
,
6
,
1
0

2
,
3
,
4
,
6
,
9

2
,
3
,
4
,
5
,
7

3
,4
,5
,6
,9

(c
on
tin

ue
d)



A Class of Distribution-Free Exponentially Weighted Moving Average Schemes … 207

Ta
bl
e
6

(c
on
tin

ue
d)

θ
δ

E
C

cE
C
1

cE
C
2

cE
C
3

E
L

cE
L

E
W

M
A
-C

v
M

E
W

M
A
-K

S

1
2
.7
2

1
.5
2
(
0
.6
3
)

1
.5
8
(
0
.5
8
)

2
.0
8
(
0
.9
3
)

2
.0
1
(
0
.4
5
)

1
.6
4
(
0
.6
5
)

2
.1
0
(
0
.4
0
)

1
.7
9
(
0
.5
0
)

2
.5
6
(0

.5
4
)

1
,
1
,
1
,
2
,
3

1
,
1
,
2
,
2
,
2

1
,
1
,
2
,
3
,
4

1
,
2
,
2
,
2
,
3

1
,
1
,
2
,
2
,
3

2
,
2
,
2
,
2
,
3

1
,
1
,
2
,
2
,
2

2
,2
,3
,3
,3

1
.5

4
.4
8

1
.0
5
(
0
.2
2
)

1
.0
7
(
0
.2
6
)

1
.1
9
(
0
.4
1
)

1
.5
2
(
0
.5
0
)

1
.0
7
(
0
.2
6
)

1
.7
7
(
0
.4
2
)

1
.2
1
(
0
.4
1
)

2
.0
3
(0

.1
6
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
1
,
2

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
1
,
2

2
,2
,2
,2
,2

2
7
.3
9

1
.0
0
(
0
.0
3
)

1
.0
0
(
0
.0
4
)

1
.0
1
(
0
.1
1
)

1
.1
2
(
0
.3
3
)

1
.0
0
(
0
.0
4
)

1
.3
9
(
0
.4
9
)

1
.0
1
(
0
.1
1
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
θ 2
)

-2
0
.3
7

1
.0
0
(
0
.0
1
)

1
.0
0
(
0
.0
1
)

1
.0
0
(
0
.0
5
)

1
.0
1
(
0
.1
0
)

1
.0
0
(
0
.0
6
)

1
.0
2
(
0
.1
3
)

1
.0
1
(
0
.1
0
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

- 1
.5

0
.4
7

1
.0
1
(
0
.0
8
)

1
.0
1
(
0
.1
0
)

1
.0
4
(
0
.2
0
)

1
.1
2
(
0
.3
2
)

1
.0
5
(
0
.2
1
)

1
.1
7
(
0
.3
7
)

1
.1
0
(
0
.3
0
)

2
.0
0
(0

.0
7
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

2
,2
,2
,2
,2

- 1
0
.6
1

1
.1
6
(
0
.3
8
)

1
.2
1
(
0
.4
5
)

1
.3
2
(
0
.5
0
)

1
.5
2
(
0
.5
8
)

1
.3
1
(
0
.5
0
)

1
.6
8
(
0
.6
4
)

1
.5
2
(
0
.6
0
)

2
.2
3
(0

.4
6
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
3

2
,2
,2
,2
,3

- 0
.5

0
.7
8

2
.3
4
(
1
.3
2
)

2
. 6
4
(
1
.5
1
)

2
.7
5
(
1
.4
3
)

3
.1
7
(
1
.6
1
)

2
.8
3
(
1
.5
8
)

3
.8
0
(
1
.8
4
)

3
.4
9
(
1
.8
7
)

4
.6
5
(1

.9
2
)

1
,
1
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

1
,
2
,
2
,
3
,
5

1
,
2
,
3
,
4
,
6

1
,
2
,
3
,
4
,
6

2
,
2
,
3
,
5
,
7

1
,
2
,
3
,
4
,
7

2
,3
,4
,6
,8

0
.5

1
.2
8

7
.1
7
(
4
.6
5
)

6
.9
6
(
5
.2
2
)

8
.1
3
(
4
.5
5
)

6
.7
6
(
4
.3
8
)

7
.1
3
(
4
.3
5
)

6
.9
4
(
4
.3
9
)

5
.7
1
(
4
.1
9
)

6
.3
9
(3

.0
7
)

2
,
4
,
6
,
9
,
1
5

2
,
4
,
6
,
9
,
1
6

4
,
6
,
7
,
9
,
1
5

3
,
4
,
6
,
8
,
1
4

2
,
4
,
6
,
9
,
1
4

3
,
4
,
6
,
8
,
1
4

2
,
4
,
5
,
7
,
1
2

3
, 5
,6
,7
,1
2

1
1
.6
5

2
.1
7
(
0
.9
5
)

2
.1
0
(
0
.7
7
)

3
.0
8
(
1
.0
7
)

2
.4
2
(
0
.6
4
)

2
.2
7
(
0
.9
5
)

2
.5
0
(
0
.6
6
)

2
.1
2
(
0
.5
4
)

2
.8
5
(0

.5
3
)

1
,
2
,
2
,
3
,
4

1
,
2
,
2
,
2
,
3

1
,
2
,
3
,
4
,
4

2
,
2
,
2
,
3
,
4

1
,
2
,
2
,
3
,
4

2
,
2
,
2
,
3
,
4

1
,
2
,
2
,
2
,
3

2
,3
,3
,3
,4

1
.5

2
.1
2

1
.2
5
(
0
.4
5
)

1
.3
1
(
0
.4
7
)

1
.6
6
(
0
.6
8
)

1
.8
8
(
0
.3
5
)

1
.3
1
(
0
.4
8
)

1
.9
8
(
0
.2
2
)

1
.5
4
(
0
.5
0
)

2
.0
9
(0

.2
8
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,
2
,
2
,
2
,
2

1
,
1
,
2
,
2
,
2

2
,2
,2
,2
,3

2
2
.7
2

1
.0
2
(
0
.1
3
)

1
.0
3
(
0
.1
7
)

1
.1
3
(
0
.3
4
)

1
.5
0
(
0
.5
0
)

1
.0
3
(
0
.1
6
)

1
.8
0
(
0
.4
0
)

1
.0
9
(
0
.2
9
)

2
.0
0
(0

.0
2
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
1
,
1

1
,
2
,
2
,
2
,
2

1
,
1
,
1
,
1
,
2

2
,2
,2
,2
,2

M
ix
ed

lo
ca

ti
o
n

a
n
d

sc
a
le

sh
if
ts

(θ
,
δ
=

e
2

θ
)

-1
0
.1
4

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
0
)

1
. 0
0
(0

.0
3
)

1
.0
0
(
0
.0
0
)

1
.0
0
(
0
.0
4
)

1
.0
0
(
0
.0
2
)

2
.0
0
(0

.0
0
)

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,1
,1
,1
,1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

1
,
1
,
1
,
1
,
1

2
,2
,2
,2
,2

-0
.5

0
.3
7

1
.1
9
(
0
.4
1
)

1
.2
9
(
0
.5
2
)

1
.2
9
(
0
.4
8
)

1
.6
0
(0

.5
8
)

1
.3
4
(
0
.5
2
)

1
.7
5
(
0
.5
8
)

1
.5
1
(
0
.5
7
)

2
.3
1
(0

.5
1
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
2
,
2

1
,
1
,
1
,
2
,
2

1
,1
,2
,2
,2

1
,
1
,
1
,
2
,
2

1
,
1
,
2
,
2
,
3

1
,
1
,
1
,
2
,
2

2
,2
,2
,3
,3

-0
.2
5

0
.6
1

3
.2
8
(
2
.0
1
)

4
.1
7
(
2
.6
0
)

3
.5
0
(
1
.9
4
)

4
.3
8
(2

.3
1
)

3
.9
1
(
2
.3
5
)

4
.8
4
(
2
.4
6
)

4
.4
2
(
2
.4
5
)

6
.0
1
(2

.7
5
)

1
,
2
,
3
,
4
,
7

1
,
2
,
4
,
5
,
9

1
,
2
,
3
,
4
,
7

2
,3
,4
,5
,9

1
,
2
,
3
,
5
,
8

2
,
3
,
4
,
6
,
9

2
,
3
,
4
,
6
,
9

3
,4
,5
,7
,1
1

0
.2
5

1
.6
5

8
.5
7
(
7
.3
1
)

7
.3
3
(
5
.5
1
)

1
2
.2
0
(
9
.9
7
)

8
.5
6
(6

.2
0
)

9
.3
3
(
7
.7
0
)

8
.8
7
(
6
.3
1
)

7
.9
8
(
6
.0
3
)

1
0
.1
2
(6

.9
6
)

2
,
4
,
7
,
1
1
,
2
1

2
,
4
,
6
,
9
,
1
7

3
,
7
,
1
0
,
1
5
,
2
8

3
,5
,7
,1
0
,1
9

2
,
5
,
7
,
1
2
,
2
3

3
,
5
,
7
,
1
1
,
2
0

2
,
4
,
6
,
1
0
,
1
8

4
,6
,8
,1
2
,2
2

0
.5

2
.7
2

2
.2
9
(
1
.1
6
)

2
.2
8
(
1
.0
0
)

3
.2
7
(
1
.5
9
)

2
.7
5
(0

.9
6
)

2
.5
6
(
1
.2
4
)

2
.8
5
(
0
.9
7
)

2
.5
2
(
1
.0
0
)

3
.6
0
(1

.0
6
)

1
,
1
,
2
,
3
,
4

1
,
2
,
2
,
3
,
4

1
,
2
,
3
,
4
,
6

2
,2
,3
,3
,4

1
,
2
,
2
,
3
,
5

2
,
2
,
3
,
3
,
5

1
,
2
,
2
,
3
,
4

2
,3
,3
,4
,5

1
7
.3
9

1
.0
8
(
0
.2
8
)

1
.1
2
(
0
.3
2
)

1
.2
2
(
0
.4
3
)

1
.5
0
(0

.5
0
)

1
.1
4
(
0
.3
5
)

1
.6
9
(
0
.4
7
)

1
.3
1
(
0
.4
7
)

2
.1
3
(0

.3
4
)

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,
1
,
1
,
1
,
2

1
,1
,1
,2
,2

1
,
1
,
1
,
1
,
2

1
,
1
,
2
,
2
,
2

1
,
1
,
1
,
2
,
2

2
,2
,2
,2
,3



208 Z. Song et al.

the shifted exponential distribution, when a small upward pure location shift
(θ = 0.5) occurs, EWMA-KS is the best while for θ = 0.5 along with some
small to moderate scale shift, EWMA-CvM is the best. For a pure downward
scale shift (δ = 0.5), EWMA-CvM also performs better than the other schemes.

Finally, we also see the IC robustness of various schemes from Tables2, 3, 4, 5, and
6. In particular, the cEL and EWMA-KS have slightly higher IC values of the 5th
percentile of corresponding run length distributions. That indicates, they could be
more effective in preventing early false alarms.

4.3 OOC Performance of the Proposed Procedures at
Macrolevel

In practice, the size of possible shifts is usually unknown and therefore, practitioners
prefer a monitoring scheme that has overall good performance irrespective of the
exact size of shift. To this end, Ryu et al. (2010) considered an expected value
of weighted run length used to evaluate the overall performance. In the present
case, we are monitoring two parameters simultaneously. Therefore, we use a simple
uniform weighting scheme in the line of Ryu et al. (2010), Mukherjee and Marozzi
(2017b), andMukherjee and Sen (2018). This simplified index for measuring overall
performance of a monitoring scheme is known as Expected Average Run Length
(EARL) and is given by

EARL =
∞∫

−∞

∞∫

0

ω(θ, δ)ARL(θ, δ|F)dF1(θ)dF2(δ), (4)

where ω(θ, δ) is a suitable weight and F1 and F2 are the cdf of θ and δ, respectively.
ARL(θ, δ|F) is the OOC-ARL value for a shift (θ, δ) under process distribution F.
Usually, in manufacturing and operation context, reduction of the scale parameter is
considered as process improvement and does not act as an assignable cause. There-
fore, we restrict ourselves to the upward shifts of the location and scale parameters.
Note that the EWMA schemes are usually designed to detect small to moderate
shifts in the process parameters. The Shewhart-type schemes are usually preferable
over the EWMA schemes when larger shifts are of interest. Therefore, we consider
0 ≤ θ ≤ 2 and 1 ≤ δ ≤ 2 in the present case for all the symmetric distributions. For
asymmetric distributions, we consider 0.25 ≤ θ ≤ 2 and 1 ≤ δ ≤ 2, as very small
positive θ values, in these cases sometimes lead to ARL bias which in turn makes
EARL practically unusable. For larger shifts in either parameter, the six schemes
considered are almost equally efficient for the selected IC distribution. Thus, in a
non-informative situation regarding F1(θ) and F2(δ) and takingω(θ, δ) = 1, wemay
approximate (4) using the functions “smooth.2d” and “sintegral”, inbuilt in “fields”
and “Bolstad” packages of R software, respectively. We provide the computational
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Table 7 EARL values of the six schemes when ARL0 = 500 and λ = 0.05
m=100, n=5, λ = 0.05 m=300, n=5, λ = 0.05 m=500, n=5, λ = 0.05

Distributions EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL
Uniform 15.8 16.0 17.1 18.7 19.1 22.7 15.8 15.3 16.1 17.9 18.8 21.4 15.8 15.2 15.8 17.8 18.8 21.0
Normal 33.3 33.6 39.3 36.4 37.0 42.4 30.4 29.9 35.1 32.7 34.0 37.7 29.8 29.2 33.7 32.0 33.4 36.8
Laplace 43.6 44.1 51.5 46.8 49.0 55.0 39.2 38.9 46.4 41.6 44.2 48.4 38.3 38.0 44.8 40.6 43.1 47.1
Rayleigh 4.4 3.5 6.3 4.5 4.3 4.6 3.7 2.9 5.3 3.7 3.7 3.8 3.6 2.8 5.1 3.5 3.6 3.7
shifted 8.0 6.9 10.3 7.8 7.7 7.3 6.7 6.0 9.1 6.5 6.0 5.9 6.6 5.9 8.8 6.3 5.9 5.8

exponential
m=100, n=10, λ = 0.05 m=300, n=10, λ = 0.05 m=500, n=10, λ = 0.05

Distributions EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL
Uniform 14.1 14.4 15.8 16.3 16.4 18.7 13.2 12.7 14.2 14.4 15.1 16.5 13.0 12.3 13.8 14.0 14.8 16.0
Normal 30.0 30.7 34.7 33.0 32.5 36.4 24.9 24.5 28.3 26.5 27.1 29.9 23.9 23.3 26.7 25.2 26.1 28.5
Laplace 39.0 40.4 44.3 42.9 42.3 46.7 31.8 31.7 36.1 33.8 34.6 38.0 30.2 30.0 34.0 31.9 33.1 36.1
Rayleigh 2.2 2.1 2.6 2.2 2.2 2.2 1.9 1.8 2.2 1.9 1.9 1.9 1.9 1.7 2.1 1.8 1.9 1.9
shifted 2.6 2.7 3.1 2.7 2.8 2.8 2.5 2.5 2.7 2.5 2.5 2.5 2.5 2.5 2.7 2.5 2.5 2.4

exponential
m=100, n=15, λ = 0.05 m=300, n=15, λ = 0.05 m=500, n=15, λ = 0.05

Distributions EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL
Uniform 13.3 13.5 14.7 15.1 15.0 16.8 11.9 11.6 12.8 12.8 13.3 14.3 11.5 11.0 12.4 12.3 12.9 13.7
Normal 28.5 29.8 31.9 31.4 30.5 33.4 22.4 22.1 24.7 23.6 24.0 25.9 20.8 20.4 23.1 21.9 22.5 24.3
Laplace 37.1 39.2 40.9 40.9 39.2 43.1 28.5 28.5 31.4 30.0 30.4 32.9 26.2 26.1 29.0 27.7 28.5 30.6
Rayleigh 1.6 1.6 1.8 1.6 1.7 1.7 1.5 1.4 1.6 1.5 1.5 1.5 1.5 1.4 1.6 1.4 1.5 1.4
shifted 1.7 1.9 1.9 1.8 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.7 1.7 1.8 1.9 1.7 1.8 1.7

exponential

Table 8 EARL values of the six schemes when ARL0 = 500 and λ = 0.1
m=100, n=5, λ = 0.1 m=300, n=5, λ = 0.1 m=500, n=5, λ = 0.1

Distributions EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL
Uniform 16.2 16.4 17.7 19.2 19.8 23.5 16.2 15.8 16.6 18.5 19.3 22.1 16.2 15.8 16.5 18.4 19.2 21.7
Normal 34.9 34.3 42.0 37.8 39.0 44.4 32.1 31.2 37.1 34.3 35.8 39.9 31.6 30.9 36.4 33.6 35.1 38.9
Laplace 46.3 45.6 55.9 49.3 52.1 58.3 42.0 40.7 50.0 44.0 47.1 51.8 41.2 40.5 49.4 43.0 45.7 50.3
Rayleigh 4.9 3.7 8.0 4.9 4.7 4.7 4.1 3.0 6.6 3.9 3.9 3.8 3.9 2.9 6.5 3.7 3.8 3.6
shifted 10.6 8.3 15.6 9.5 8.9 7.8 8.9 7.1 14.9 8.0 7.0 6.3 8.6 6.9 15.2 7.8 6.8 6.1

exponential
m=100, n=10, λ = 0.1 m=300, n=10, λ = 0.1 m=500, n=10, λ = 0.1

Distributions EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL
Uniform 14.5 14.7 16.6 16.7 17.0 19.6 13.3 13.0 14.8 14.8 15.6 17.3 13.1 12.6 14.4 14.5 15.2 16.8
Normal 30.8 31.3 36.1 33.9 33.9 38.1 25.8 25.2 30.1 27.6 28.8 31.8 25.0 24.2 28.9 26.3 27.6 30.4
Laplace 40.5 41.5 46.7 44.1 44.1 49.3 33.1 32.7 38.5 35.2 37.0 40.9 31.9 31.3 37.0 33.4 35.2 38.8
Rayleigh 2.3 2.1 2.9 2.3 2.4 2.3 2.0 1.7 2.3 1.9 2.0 1.9 1.9 1.7 2.2 1.8 1.9 1.8
shifted 2.8 2.8 3.3 2.8 3.0 2.9 2.5 2.5 2.8 2.4 2.5 2.4 2.5 2.5 2.7 2.4 2.4 2.3

exponential
m=100, n=15, λ = 0.1 m=300, n=15, λ = 0.1 m=500, n=15, λ = 0.1

Distributions EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL EC cEC1 cEC2 cEC3 EL cEL
Uniform 13.7 13.8 15.5 15.4 15.7 17.7 12.1 11.8 13.5 13.1 13.7 14.9 11.7 11.3 13.0 12.7 13.2 14.2
Normal 29.7 30.3 33.4 31.7 31.9 35.1 23.0 22.9 26.4 24.4 25.2 27.6 21.6 21.2 24.8 22.8 23.5 25.9
Laplace 38.8 39.8 42.8 41.5 41.3 45.3 29.4 29.5 33.6 31.2 32.1 35.4 27.4 27.3 31.4 29.1 29.8 32.9
Rayleigh 1.7 1.7 1.9 1.7 1.7 1.7 1.5 1.4 1.6 1.4 1.5 1.4 1.5 1.4 1.5 1.4 1.5 1.4
shifted 1.8 1.9 1.9 1.8 1.9 1.9 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.6 1.7 1.6

exponential

results of EARL for overall comparison. Our study considers the nominal ARL0 of
500 and the five distributions listed in the previous subsection.

To investigate the effect of the reference and test sample sizes on the perfor-
mance of the proposed monitoring schemes, we consider m as 100, 300, and 500
and n = 5, 10, and 15. The results for λ = 0.05 and 0.1 are shown in Tables7 and
8, respectively. We highlight the schemes with the best OOC overall performance in
the sense that the least EARL is observed with a dark gray shade. From Tables7 and
8, we find that either EC or cEC1 scheme has the minimum of EARL in most of the
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situations. Further, we see that the reference sample size (m) and test sample size
(n) exhibit significant effect on the performance of the six schemes. In general, for
fixed n, increasing m produces a decreasing trend in EARL of each scheme under
all environments. Similarly, for fixed m, the EARL decreases as the test sample size
n increases in all cases. These findings indicate that the OOC performance of these
schemes improves as the size of the reference sample or the test sample increases.
We also observe that whenm = 100, the EC scheme is, in general, a good choice for
detecting upward shifts of the location and scale parameters. Interestingly, for asym-
metric distributions, and symmetric distributions with m ≥ 300, the cEC1 appears
to be better than its competitors.

5 Illustration and Data Monitoring

Fuze 117 is an important product mass-produced at a manufacturing industry. Fuze
117 is a direct action and gaze fuze that is mainly used with howitzers and field
guns (high explosive type) for low-angle impact. There are more than 30 individual
components in a fuze 117MK20 like guide bush, striker head, striker pin, shutter, and
arming sleeve. Here, we discuss the process monitoring of a guide bush component.
The raw material for bush guide is in form of brass rod procured from some relevant
supplier. Guide bush holds in place the striker pin which under impact force over the
striker head compresses the striker spring. This leads to the pin head piercing through
the detonator. This detonation impulse is then carried to the explosive pellet in the
magazine and ultimately to the explosive charge in the shell. Critical monitoring
of the guide bush inner and outer diameters is an important aspect of fuze 117
MK 20, as nominal increment in diameter can lead to insufficient force conveyed
during impact and the shell will not detonate. Reduction in this diameter can play
similar role only with friction to the striker pin during its movement leaving it with
insufficient forces to pierce through the detonator. Owing to such complexities and
critical dimensional nature of guide bushmost of themanufacturers go for 100percent
inspection. Rod section is machined in a Computer Numerically Controlled (CNC)
machine. The successive parts are loaded and unloaded from the CNC manually.
Regular monitoring of the machined component in the form of online inspection is
done by the quality control department. Gauging of all the major dimensions is done
in this stage. Any sort of anomaly detected in inspection is conveyed immediately
to the CNC department and corrected as early as possible. The data collected is for
the outer diameter of the bush guide. The target diameter for bush guide is 27.03mm
and the tolerance limit is ±0.05 mm. Individual units are examined using gauges
and vernier. Any unit exceeding the tolerance limit on the higher side is considered
to further machining; however, units falling below the lower limit are rejected as
scrape. Since Fuze 117 MK 20 is an assembly comprised of several units, strict
quality control on each unit becomes extremely important to ensure uncompromised
functioning.
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Table 9 Outer diameter of the bush guide data set
SERIAL NO Phase-I samples

1 27.02, 27.05, 27.06, 27.09, 27.02, 27.05, 27.01, 26.82, 26.85, 27.02
2 27.05, 27.01, 27.04, 27.03, 27.02, 27.02, 27.05, 27.02, 27.05, 27.06
3 27.03, 27.06, 27.05, 27.04, 27.02, 27.03, 27.02, 27.05, 27.06, 27.02
4 27.07, 26.99, 27.02, 27.06, 27.05, 27.05, 27.03, 27.06, 27.02, 27.04
5 27.05, 27.02, 27.04, 27.06, 27.05, 27.04, 27.08, 27.03, 26.98, 27.02
6 26.97, 27.01, 27.05, 27.08, 27.11, 27.03, 27.04, 27.06, 27.04, 27.01
7 26.99, 27.11, 27.13, 27.18, 27.02, 27.06, 27.05, 27.04, 27.01, 27.05
8 27.03, 26.99, 26.99, 27.01, 27.06, 27.08, 27.07, 27.01, 27.06, 27.05
9 27.07, 27.09, 27.11, 27.00, 27.03, 27.02, 26.97, 27.04, 27.06, 27.07
10 27.09, 27.01, 27.00, 27.09, 27.04, 27.02, 27.01, 27.00, 27.05, 27.06
11 27.04, 27.07, 27.09, 27.02, 27.11, 27.04, 27.00, 27.00, 27.02, 27.04
12 26.98, 27.00, 27.03, 27.00, 27.03, 27.01, 27.06, 26.99, 26.98, 27.00
13 27.03, 27.01, 27.00, 27.03, 27.02, 27.01, 27.04, 27.02, 27.02, 27.05
14 27.01, 27.03, 27.01, 26.98, 26.97, 27.05, 27.08, 27.03, 27.02, 27.06
15 27.04, 27.04, 27.07, 27.02, 27.03, 27.06, 27.05, 27.08, 27.00, 27.06
16 27.07, 27.05, 27.05, 27.07, 27.08, 27.02, 27.06, 27.05, 27.00, 27.03
17 27.06, 27.02, 27.06, 27.07, 27.05, 27.08, 27.00, 27.02, 27.05, 27.05
18 27.09, 27.02, 27.06, 26.99, 27.03, 27.05, 26.98, 26.96, 27.05, 27.10
19 26.98, 26.92, 26.99, 26.96, 27.00, 27.01, 26.97, 27.03, 27.06, 27.01
20 27.05, 27.04, 27.00, 27.02, 27.03, 26.98, 27.03, 27.04, 27.01, 27.04
21 27.02, 26.97, 26.98, 27.03, 27.04, 27.01, 27.04, 27.02, 26.97, 27.17

SERIAL NO Phase-II samples
1 26.98, 26.98, 26.99, 26.98, 27.02, 27.03, 27.00, 27.03, 27.01, 27.05
2 27.04, 27.02, 26.98, 27.03, 27.01, 27.04, 27.01, 27.02, 26.99, 26.99
3 27.03, 27.05, 27.02, 27.01, 27.04, 27.03, 27.03, 27.02, 27.03, 27.05
4 27.03, 27.06, 27.06, 27.09, 27.08, 27.11, 27.09, 27.08, 27.06, 27.00
5 27.01, 27.02, 26.99, 26.98, 26.99, 26.99, 27.03, 27.03, 27.08, 27.05
6 27.02, 27.05, 27.06, 27.04, 26.93, 27.01, 27.03, 27.06, 27.08, 26.98
7 26.98, 26.96, 27.03, 27.02, 27.00, 27.05, 27.03, 27.05, 27.01, 27.06
8 27.05, 27.03, 27.08, 26.99, 27.05, 27.06, 27.05, 27.03, 27.08, 27.04
9 27.03, 27.00, 26.98, 27.03, 27.06, 27.02, 27.05, 27.01, 26.96, 26.95
10 27.05, 27.01, 27.03, 27.05, 27.06, 26.98, 27.03, 27.05, 27.06, 26.98
11 27.03, 27.05, 27.06, 26.98, 27.03, 27.05, 27.01, 27.06, 27.05, 27.03
12 27.01, 27.02, 26.99, 26.95, 26.98, 27.04, 27.01, 27.06, 27.02, 27.03
13 27.02, 27.05, 27.06, 27.01, 27.05, 27.02, 26.96, 26.99, 26.98, 26.95
14 27.03, 27.01, 27.06, 27.02, 27.00, 27.05, 27.04, 27.01, 26.96, 27.00
15 26.98, 27.04, 27.03, 27.01, 26.95, 27.01, 26.95, 26.98, 27.03, 27.04
16 27.01, 27.06, 27.02, 27.00, 27.05, 27.03, 26.98, 27.04, 27.01, 27.06
17 27.02, 27.02, 27.05, 27.08, 26.98, 27.03, 27.01, 27.05, 27.03, 27.05
18 26.98, 27.05, 27.00, 27.04, 27.01, 27.04, 27.02, 26.98, 27.03, 27.01
19 26.95, 27.05, 27.02, 27.00, 26.98, 27.05, 27.08, 27.03, 27.06, 27.04
20 27.08, 27.04, 26.98, 26.95, 27.03, 27.06, 27.01, 27.03, 27.02, 27.00
21 27.05, 27.03, 27.00, 27.05, 27.06, 27.09, 27.01, 27.05, 27.03, 27.02
22 27.03, 26.99, 27.01, 27.00, 27.03, 27.06, 27.01, 27.05, 27.13, 27.02
23 27.06, 26.95, 26.98, 26.93, 27.07, 27.03, 27.01, 27.00, 27.03, 27.00
24 27.03, 27.05, 27.03, 27.06, 27.07, 27.05, 27.06, 27.07, 27.07, 27.09
25 27.08, 27.09, 27.07, 27.07, 27.09, 27.07, 27.08, 27.06, 27.08, 27.10
26 27.11, 27.09, 27.05, 27.01, 26.98, 27.08, 27.08, 27.07, 27.10, 27.05
27 27.13, 27.12, 27.05, 27.07, 27.11, 27.05, 27.08, 27.03, 27.06, 27.08
28 27.01, 26.99, 26.98, 27.00, 27.01, 27.01, 27.03, 27.00, 27.03, 27.01
29 27.05, 27.01, 27.02, 26.98, 26.95, 27.01, 27.05, 27.03, 27.05, 27.08
30 27.09, 27.03, 27.05, 27.01, 26.98, 26.98, 27.03, 27.00, 27.05, 27.08



212 Z. Song et al.

In this section, we use the proposed schemes to monitor the outer diameter data of
the bush guide. The data set consists of 510 observations of the outer diameters, see
Table9. In practice, the Phase-I collection and analysis of data form the basis for the
statistical process monitoring and are crucial to the success of Phase-II monitoring.
In this context, we consider the first 210 observations for Phase-I analysis. First, we
use one of the most popular existing distribution-free monitoring schemes for Phase-
I analysis of location and scale, namely, the RS/P method, proposed by Capizzi
and Masarotto (2013). The RS/P method is based on recursive segmentation and

Fig. 1 Six monitoring schemes for the outer diameter data of the bush guide



A Class of Distribution-Free Exponentially Weighted Moving Average Schemes … 213

permutation. This can be implemented via “dfphase1” R package. The results show
that the 210 observations all fall within the IC region. Recently, Li et al. (2019)
proposed a distribution-free Phase-I monitoring scheme based on the multi-sample
Lepage statistic. We further employ this Phase-I Lepage scheme to check the process
stability. The results provide no indication of an OOC signal. Therefore, we may
consider the first 210 outer diameters as the reference sample. Consequently, m =
210. Examining the data set,wefind that the underlying data distribution appears to be
non-normal. The p-value of the Shapiro test for normality is very low and is almost
0. In this case, we strongly recommend the proposed distribution-free monitoring
schemes. The following 300 observations of the outer diameters may be regarded as
the Phase-II data that consists of 30 subgroups each of size n = 10.

To implement six monitoring schemes discussed in Sects. 2 and 3, we first
compute the UCLs of these schemes for m = 210, n = 10,λ = 0.05, and a target
ARL0 = 500. The values of UCL for each scheme are computed by Monte Carlo
simulation and given in Table10. In the sameTable, we also present 30 plotting statis-
tics for each scheme as well as the OOC signals indicated with dark gray shades. We
further display the observed values of 30 plotting statistics for the EC, cEC1, cEC2,

Table 10 Plotting statistics for the outer diameter data of the bush guide
SERIAL EC cEC1 cEC2 cEC3 EL cEL

NO UCL = 1.351 UCL = 1.655 UCL = 1.655 UCL = 1.648 UCL = 2.723 UCL = 1.659
1 1.054 1.146 1.144 1.158 2.108 1.158
2 1.094 1.254 1.168 1.227 2.187 1.227
3 1.217 1.238 1.271 1.260 2.535 1.362
4 1.604 1.877 1.787 1.656 3.237 1.656
5 1.560 1.842 1.698 1.642 3.145 1.642
6 1.494 1.763 1.637 1.567 3.007 1.567
7 1.430 1.695 1.559 1.508 2.879 1.508
8 1.450 1.783 1.494 1.614 2.917 1.614
9 1.435 1.771 1.450 1.635 2.877 1.635
10 1.370 1.695 1.390 1.567 2.747 1.567
11 1.338 1.642 1.385 1.538 2.687 1.538
12 1.326 1.668 1.410 1.569 2.666 1.569
13 1.332 1.640 1.462 1.582 2.675 1.582
14 1.292 1.609 1.419 1.545 2.589 1.545
15 1.337 1.714 1.564 1.682 2.673 1.682
16 1.278 1.632 1.486 1.599 2.546 1.599
17 1.240 1.554 1.436 1.531 2.480 1.531
18 1.235 1.573 1.409 1.528 2.456 1.528
19 1.181 1.499 1.339 1.453 2.345 1.453
20 1.132 1.438 1.292 1.398 2.246 1.398
21 1.115 1.407 1.300 1.387 2.210 1.387
22 1.061 1.337 1.235 1.318 2.105 1.318
23 1.109 1.335 1.335 1.367 2.175 1.367
24 1.320 1.801 1.669 1.794 2.586 1.794
25 2.120 3.142 2.200 2.749 4.131 2.749
26 2.398 3.546 2.516 2.986 4.676 2.986
27 2.807 4.320 2.960 3.583 5.419 3.583
28 2.822 4.414 2.900 3.686 5.443 3.686
29 2.683 4.194 2.756 3.504 5.177 3.504
30 2.562 3.988 2.645 3.329 4.938 3.329
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cEC3, EL, and cEL schemes in Fig. 1. From Table10 and Fig. 1, we observe that all
the monitoring schemes considered in this context detect no change in the process
distribution for the first three test samples. These NSPM schemes further indicate
that the process is OOC from sample 25 onward until sample 30. Apart from that,
the EL and EC schemes produce OOC signals from sample number 4 until sample
number 10. The cEC1 scheme signals from the 4th test sample until the 10th test
sample and the 12th, 15th, and 24th test samples.We findOOC signals at the 4th, 5th,
and 24th test samples from the cEC2 scheme. The cEC3 scheme signals at the 4th,
15th, and 24th test samples. The cEL scheme produces only two additional signals
at sample numbers 15 and 24. Almost all charts are working efficiently but the cEC1
scheme produces more signals compared to the others for this data set.

6 Concluding Remarks

In this chapter, we showed that theCucconi statistic can be decomposed as a quadratic
combination of a location statistic and a scale statistic as the well-known Lepage
statistic. Moreover, such decomposition is not unique and we presented three differ-
ent decompositions. Motivated by this, we introduced six distribution-free EWMA
monitoring schemes for joint monitoring of location and scale parameters. Two of the
six schemes are the traditional EL and EC schemes. The other new schemes are based
on a maximum of EWMA of two individual components of the Lepage statistic and
the Cucconi statistic, referred to as the cEL, cEC1, cEC2, and cEC3 schemes, respec-
tively. We discussed the implementation procedures, IC and OOC performance of
the proposed schemes. The comparative study reveals that no individual monitoring
scheme is the best in all cases. Nevertheless, the overall performance of the three
cEWMAschemes based on the decompositions of the Cucconi statistic, cEC1, cEC2,
and cEC3, is very good for a broad class of location–scale models. Especially for
the upward shifts of process parameters, we recommend cEC1 scheme when there
is no information related to process distribution.

Mukherjee and Marozzi (2017a) introduced a new graphical device, the circular-
grid scheme, for simultaneous monitoring of process location and process scale,
based on Lepage-type statistics. Now, we have succeeded to identify the orthogonal
location and scale components of the Cucconi statistic and therefore, the develop-
ment of the circular-grid Cucconi schemes will be feasible in near future. Further, the
majority of the existing distribution-free schemes on joint monitoring are intended
for two-sided shifts in location–scale. However, more often, only one-sided shifts are
important. Chong et al. (2018) proposed a class of Shewhart–Lepage-type schemes
for monitoring one-sided shifts. As a future research problem, we may also con-
sider one-sided Cucconi schemes based on the three different decompositions of the
Cucconi statistic discussed in this chapter.
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Distribution-Free Phase II Control
Charts Based on Order Statistics
with Runs-Rules

Ioannis S. Triantafyllou and Nikolaos I. Panayiotou

Abstract In this article, we introduce two nonparametric Shewhart-type control
charts based on order statistics with signaling runs-type rules. The proposed moni-
toring schemes enhance the control charts established by Triantafyllou (2018). Exact
formulae for the alarm rate, the variance of the run length distribution and the average
run length (ARL) for both charts are all derived. Tables are provided for the imple-
mentation of the proposed schemes for some typical ARL-values. In addition, sev-
eral numerical comparisons against competitive nonparametric control charts reveal
that the new monitoring schemes, under different out-of-control situations, are quite
efficient in detecting the shift of the underlying distribution.

Keywords Average run length · Distribution-free control charts · Lehmann
alternatives · Nonparametric methods · Runs-type rules · Statistical process control

1 Introduction

Statistical process control is widely used to monitor the quality of a production
process, where regardless of how carefully it is maintained, a natural variability
always occurs. Control charts help the practitioners to identify assignable causes
so that the state of statistical control can be achieved. Tentatively, in the event of
observing an undesirable shift in the process, a control chart should detect it as
quickly as possible and produce an out-of-control signal.

In control charting practice, two distinct phases have been used in the literature:
Phase I and Phase II; see, for example, Woodall (2000). In Phase I, the basic aim
is to test historical data for identifying whether they were sampled from an in-
control process or not, while Phase II focuses on testing future data for identifying
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whether the process is in-control or has shifted to an out-of-control state. It is often
that the practitioner may be interested in determining both whether the past data
came from a process that was in-control and whether future (test) samples from this
process indicate statistical control. In the literature, several types of control charts
have been introduced, such as the Shewhart-type, the Cumulative (CUSUM), the
ExponentiallyWeightedMoving Average (EWMA) or control charts based on change-
point detection. Shewhart-type control charts were introduced in the early work of
Shewhart (1926) and since then several modifications have been established and
studied in detail. The main difference between the Shewhart-type and the CUSUM
or EWMA chart is that the former one takes advantage only on the data observed
at the current time point for detecting possible shift of the underlying distribution,
while the latter charts utilize all available data being observed either currently or
at earlier time points. Compared to the Shewhart-type, CUSUM, or EWMA control
charts, monitoring schemes based on change-point detection allow the estimation of
the occurrence time of a special cause deviation directly when a signal of the special
cause deviation is delivered. For a thorough study on Statistical Process Control, the
interested reader is referred to the classical textbooks of Montgomery (2009) or Qiu
(2014).

Most of the monitoring schemes are distribution-based procedures, even though
this presumption is not always realized in practice. To overcome this obstacle and yet
keep on the primary formation of the traditional control charts, several nonparametric
(or distribution-free) monitoring schemes have been proposed in the literature. The
plotting statistics which are often utilized for constructing such kind of control charts
are related to well-known nonparametric testing procedures. Among others, a variety
of distribution-free control charts appeared already in the literature are based on order
statistics; see, e.g., Chakraborti et al. (2004), Balakrishnan et al. (2010), Triantafyllou
(2018, 2019a, b). For an up-to-date account on nonparametric Statistical Process
Control, the reader is referred to the recent monograph of Chakraborti and Graham
(2019) or Qiu (2018, 2019).

In the present chapter, we introduce two distribution-free Shewhart-type moni-
toring schemes based on order statistics. More specifically, we apply the framework
established by Triantafyllou (2018) and the resulting chart is empowered by adding
two well-known runs-rules. In Sects. 2 and 3, the setup of the proposed monitoring
schemes is presented in detail, while explicit formulae for calculating the false alarm
rate, the average and the variance of the corresponding run length are also derived. In
Sect. 4, several numerical results reveal the efficacy of the proposed charts in com-
parison to the competitive nonparametric control scheme introduced by Triantafyllou
(2018).
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2 The 3-of-3 DR Control Chart Based on Order Statistics

In this section, we establish a new monitoring scheme based on order statistics
which utilizes thewell-known runs-type rule introduced byDerman andRoss (1997).
Three different monitoring statistics are plotted in separate control charts, while the
control limits are based on reference data drawn from the in-control process. The
proposed scheme is constructed by following the general framework introduced by
Triantafyllou (2018) and enhancing its performance with the aid of runs-rules.

Let us denote by X1, X2, . . . , Xm a random sample of size m from the process
with distribution F when it is supposed to be in-control, while two specific order
statistics, say Xa:m, Xb:m , are appropriately determined and utilized as control limits
(1 ≤ a < b ≤ m). Suppose next that test samples are picked out independently of
each other (and also of the reference sample) and that we are interested in checking
whether the process is still in-control or not. In statistical terms, if Y1,Y2, . . . ,Yn
denote the test sample of size n with cumulative distribution function G, our aim is
to detect a possible shift in the underlying distribution from F to G. After the test
sample is collected, the j-th and the k-th order statistic Y j :n, Yk:n are chosen and
made use of along with the statistic

R = R(Y1,Y2, . . . ,Yn; Xa:m, Xb:m) = |{i ∈ {1, 2, . . . , n} : Xa:m ≤ Yi ≤ Xb:m}|,

where R is simply the number of test observations between the control limits
LCL ,UCL . According to the monitoring scheme introduced by Triantafyllou
(2018), the process is declared to be in-control, if the following conditions hold
true

LCL ≤ Y j :n ≤ Yk:n ≤ UCL and R ≥ r,

where r is a positive integer. Formore details about the general setup of the abovemen-
tioned monitoring scheme, the interested reader is referred to Triantafyllou (2018)
and Sect. 2 therein.

In order to improve the performance of the aforementioned nonparametric control
chart, we activate the 3-of-3 runs-rule proposed by Derman and Ross (1997). Under
this scenario, an out-of-control signal is produced from the new monitoring scheme
(3-of-3 DR chart, hereafter) whenever three consecutive plotting points: (a) fall all
of them on or above theUCL , (b) fall all of them on or below the LCL , (c) one falls
on or above the UCL and the other two fall on or below the LCL , (d) two of them
fall on or above the UCL and the other one falls on or below the LCL .

The signaling indicator for the h-th test sample is defined as

Zh =
{
0, if Y h

j :n,Y
h
k:n ∈ (LCL ,UCL)

1, otherwise
, h = 1, 2, 3, . . . (1)
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If we denote by T3 the run length of the proposed monitoring scheme, namely the
waiting time until the first signal, the following ensues

T3 = min{t : Zt−2 = 1, Zt−1 = 1, Zt = 1} ormin

{
t :

t∑
i=t−2

Zi = 3

}
. (2)

Employing analogous arguments than those implemented by Chakraborti et al.
(2009), we next deduce the unconditional distribution of the positive random variable
T3. More specifically, we examine the distribution of the random variable T3 by
conditioning on the total number of successes Sn = ∑n

i=1 Zi in the sequence of
exchangeable binary random variables Z1, Z2, . . ..

Proposition 1 The probability mass function of the unconditional distribution of T3
is given by

P(T3 = x) =
{
0, if 0 ≤ x < 3
λ3, if x = 3

and for x ≥ 4

P(T3 = x) =
x−3∑
y=1

min
[
y,

[
x−y−3

3

]]
∑
j=0

y∑
i=0

(−1)i+ j

(
y
j

)(
y
i

)(
x − 3( j + 1) − 1

y − 1

)
λx−y+i ,

(3)

where

λw = P(Z1 = 1, Z2 = 1, . . . , Zw = 1),w = 1, 2, . . . , n.

Proof For 0 ≤ x < 3, the proposed monitoring scheme could not produce by
definition a signal, therefore we have that

P(T3 = x) = 0, for x ∈ [0, 3).

In addition, when x = 3 it is straightforward that the following holds true

P(T3 = 3) = P(Z1 = 1, Z2 = 1, Z3 = 1) = λ3.

In case of x ≥ 4, the unconditional distribution of the random variable T3 can be
written as

P(T3 = x) =
x−3∑
y=1

P(T3 = x |Sx = x − y) P(Sx = x − y). (4)
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Since (see, e.g., George and Bowman (1995))

P(Sn = d) =
(
n
d

) n−d∑
i=0

(−1)i
(
n − d
i

)
λd+i , d = 1, 2, . . . , n

we may write

P(Sx = x − y)=
(
x
y

) y∑
i=0

(−1)i
(
y
i

)
λx−y+i . (5)

In addition, it is well known that, given the number of successes, the conditional
distribution of T3 for the exchangeable case is the same as the one for a sequence of
independent and identically distributed binary variables (see, e.g. Kingman (1978)).
Hence, the conditional probability P(T3 = x |Sx = x − y) can be expressed as (see,
e.g., Balakrishnan and Koutras (2002))

P(T3 = x |Sx = x − y) =
(
x
y

)−1

[
x−y−3

3

]∑
j=0

(−1) j
(
y
j

)(
x − 3( j + 1) − 1

y − 1

)

=
(
x
y

)−1

N (x − y − 3, y, 2). (6)

Substituting (6) and (5) in (4) the proof is complete. �

The following proposition offers explicit expressions for two important charac-
teristics of the run length of the proposed 3-of-3 DR chart.

Proposition 2

(i) The unconditionalAverageRunLength of the proposed 3-of-3DR chart is given
by

ARLDR =
∫ 1

0

∫ t

0

1 − p3

(1 − p) · p3 fa,b(s, t)dsdt. (7)

(ii) The unconditional Variance of the Run Length of the proposed 3-of-3 DR chart
is given by

V ARDR =
∫ 1

0

∫ t

0

1 − 7(1 − p)p3 − p7

(1 − p)2 p6
fa,b(s, t)dsdt, (8)

where the probability p = 1 − q(GF−1(s),GF−1(t); r) is expressed as
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q(v,w; r) =
n−2∑
c1=0

n−c1−c2−2∑
c3=(0,r−c1−c2)

n!
( j − c1 − 1)!(n − k − c3)!(c1 + c2 + c3 + 2)!

× v j−c1−1(u1 − v)c1(u2 − u1)
c2(w − u2)

c3(1 − w)n−k−c3

(9)

where 0 ≤ v < w < 1, c2 = k − j − 1.

Proof Given Xa:m = x1 and Xb:m = x2, the random variable T3, defined earlier as
the run length of the proposed 3-of-3 DR chart, has a geometric distribution of order
3. Therefore, the conditional expected value and variance of the run length T3 are
given in terms of the probability of producing a signal (p) as (see, e.g. Balakrishnan
and Koutras (2002))

E(T3|Xa:m = x1, Xb:m = x2 ) = 1 − p3

(1 − p)p3

and

V AR(T3|Xa:m = x1, Xb:m = x2 ) = 1 − 7(1 − p)p3 − p7

(1 − p)2 p6

respectively. Since the p = 1 − q(GF−1(s),GF−1(t); r) can be expressed via
formula (9) (for more details, see Triantafyllou (2018) and Proposition 1 therein),
the desired result is effortlessly derived by averaging over the distribution of
Xa:m and Xb:m . �

It is straightforward that the unconditional Average and Variance of the in-control
Run Length can be obtained by substituting F = G in the expressions proved in the
previous proposition. In Table 1, we present the in-control ARL of the proposed con-
trol chart for several designs corresponding to different values of a, b,m, n, j, k, r .
The calculations were carried out with the aid of Proposition 2. Table 1 can be used
to design a distribution-free control chart that attains a pre-specified in-control level
of performance (ARL0). The use of seven design parameters in this chart offers the
flexibility to fix some of them and then look for the optimal choice of the others,
or alternatively search for an acceptable combination of them that meets our special
needs.

For example, if we draw a reference sample of sizem = 50, an in-control Average
Run Length equal to 370 (approximately) can be achieved by

• utilizing the 3rd and the 44th ordered observation from the reference sample (a =
3, b = 44), working with test samples of size n= 5 and determining the remaining
parameters as j = 1, k = 3, r = 2 (with ARLin = 369.19) or

• utilizing the 13th and the 46th ordered observation from the reference sample
(a = 13, b = 46), working with test samples of size n = 11 and determining the
remaining parameters as j = 4, k = 8, r = 3 (with ARLin = 369.40) or



Distribution-Free Phase II Control Charts … 225

Ta
bl
e
1

In
-c
on
tr
ol

A
ve
ra
ge

R
un

L
en
gt
h

of
th
e
pr
op
os
ed

3-
of
-3

D
R

ch
ar
tf
or

a
gi
ve
n
de
si
gn

R
ef
er
en
ce

sa
m
pl
e
si
ze

m

50
10
0

20
0

50
0

A
R
L
o

n
(a
,
b,

j,
k,

r)
A
R
L
in

(a
,
b,

j,
k,

r)
A
R
L
in

(a
,
b,

j,
k,

r)
A
R
L
in

(a
,
b,

j,
k,

r)
A
R
L
in

37
0

5
(3
,4

4,
1,

3,
2)

36
9.
19

(5
,9

5,
1,

3,
2)

36
6.
10

(8
,1

88
,1

,3
,3

)
36
9.
37

(1
7,

46
3,

1,
3,

2)
37
0.
45

11
(1
3,

46
,4

,8
,3
)

36
9.
40

(8
,7

1,
2,

5,
3)

37
2.
87

(1
5,

17
9,

2,
7,

5)
37
0.
76

(3
4,

49
7,

2,
9,

6)
36
9.
80

25
(2
,3

9,
2,

20
,1

1)
37
3.
75

(6
,9

5,
3,

23
,1

2)
37
2.
46

(7
,1

93
,4

,2
4,

15
)

37
0.
55

(1
6,

38
5,

2,
14
,1

1)
37
0.
65

50
0

5
(3
,4

5,
1,

3,
2)

49
5.
27

(4
,9

6,
1,

5,
2)

49
9.
90

(2
9,

19
9,

2,
4,

3)
50
0.
37

(1
5,

45
5,

1,
3,

3)
50
1.
00

11
(3
,4

4,
1,

3,
3)

50
1.
14

(9
,9

3,
2,

6,
4)

50
1.
88

(2
6,

18
4,

3,
8,

5)
50
1.
33

(3
2,

46
5,

2,
7,

5)
49
9.
72

25
(1
4,

44
,1

4,
23
,7

)
49
4.
45

(7
,9

4,
3,

22
,1

5)
49
9.
67

(8
,1

75
,2

,1
7,

13
)

50
1.
93

(1
5,

45
3,

2,
19
,1

6)
50
1.
82



226 I. S. Triantafyllou and N. I. Panayiotou

• utilizing the 2nd and the 39th ordered observation from the reference sample
(a = 2, b = 39), working with test samples of size n = 25 and determining the
remaining parameters as j = 2, k = 20, r = 11 (with ARLin = 373.75).

The out-of-control performance could be evaluated via the corresponding ARL
that the control chart attains. If the process shifts out-of-control, Proposition 2 offers
an explicit expression for computing the out-of-control ARL of the proposed 3-of-3
DR chart. It is evident that this quantity depends on both the in-control and out-of-
control distributions F and G. Consequently, since the final result depends on the
form of the function G ◦ F−1, it will clearly be unreasonable to expect an explicit
expression for it in the general case. However, there is a wide class of alternatives, the
so-called Lehmann alternatives, for which the expression provided by Proposition 2
can be shown to simplify to a neat exact formula. The Lehmann alternatives (see
Lehmann (1953)) have been extensively used to assess the power of nonparametric
control charts, see, e.g., Triantafyllou (2019a, b) or Koutras and Triantafyllou (2018).
Under the Lehmann-type alternative, the out-of-control distribution function takes
on the form G = Fγ for some fixed, positive number γ > 0. If γ is a positive
integer, the Lehmann alternative states that the Y random variables are distributed as
the largest of γ of the X variables. Table 2 displays the out-of-control ARL-values
achieved by the new control chart under the Lehmann-type alternatives for γ = 0.5
and γ = 0.9. The designs which are implemented for producing the out-of-control
ARL-values in Table 2 are the same with the ones presented already in Table 1.

Onemay draw interesting conclusions based on the numerical results displayed in
Table 2. For example, let us consider the same case study mentioned earlier, namely
let us assume that the practitioner works with a reference sample of size m = 50 in
order to reach an in-control ARL equal to 370. Then, under the Lehmann alternatives
with parameter γ equal to 0.9 (0.5) the proposed 3-of-3DR chart achieves an out-of-
control ARL equal to 156.51 (7.06), 93.69 (4.14) and 107.76 (4.46) when test sample
of size n = 5, 11, 25 are drawn respectively.

Let us next denote by G j the cumulative distribution function of the j-th order
statistic in a random sample of size n from a continuous distribution with cumulative
distribution function G. It is evident that

G j (x) = IG(x)( j, n − j + 1),

where Ia(b, c) denotes the incomplete beta function. The following proposition pro-
vides an explicit formula for the computation of theFalse AlarmRate of the proposed
3-of-3 DR chart.
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Proposition 3 The False Alarm Rate of the proposed 3-of-3 DR chart is given by

FARDR

=
∫ 1

0
[Ix ( j, n − j + 1)]3 fa(x)dx + 3

∫ 1

0
[Ix ( j, n − j + 1)]2 Ix (k, n − k + 1) fa(x)dx

+ 3
∫ 1

0
Ix ( j, n − j + 1)[Ix (k, n − k + 1)]2 fa(x)dx +

∫ 1

0
[Ix (k, n − k + 1)]3 fa(x)dx

+
∫ 1

0
[1 − Iy(k, n − k + 1)]3 fb(y)dy + 3

∫ 1

0
[1 − Iy(k, n − k + 1)]2 Iy( j, n − j + 1) fb(y)dy

+ 3
∫ 1

0
(1 − Iy(k, n − k + 1))[1 − Iy( j, n − j + 1)]2 fb(y)dy +

∫ 1

0
[1 − Iy( j, n − j + 1)]3 fb(y)dy

+ 3
∫ 1

0

∫ y

0
[Ix ( j, n − j + 1)]2(2 − Iy(k, n − k + 1) − Iy( j, n − j + 1)) fa,b(x, y)dxdy

+ 6
∫ 1

0

∫ y

0
Ix ( j, n − j + 1)Ix (k, n − k + 1)(2 − Iy(k, n − k + 1) − Iy( j, n − j + 1)) fa,b(x, y)dxdy

+ 3
∫ 1

0

∫ y

0
[Ix (k, n − k + 1)]2(2 − Iy(k, n − k + 1) − Iy( j, n − j + 1)) fa,b(x, y)dxdy

+ 3
∫ 1

0

∫ y

0
[1 − Iy( j, n − j + 1)]2(Ix (k, n − k + 1) + Ix ( j, n − j + 1)) fa,b(x, y)dxdy

+ 6
∫ 1

0

∫ y

0
(1 − Iy( j, n − j + 1))(1 − Iy(k, n − k + 1))(Ix (k, n − k + 1) + Ix ( j, n − j + 1)) fa,b(x, y)dxdy

+ 3
∫ 1

0

∫ y

0
[1 − Iy(k, n − k + 1)]2(Ix (k, n − k + 1) + Ix ( j, n − j + 1)) fa,b(x, y)dxdy

where fa, fb denote the probability density functions of the beta (a,m − a + 1) and
(b,m−b+1) distribution respectively, while fa,b corresponds to the joint probability
density function of the a-th and the b-th order statistics of a random sample of size
m from the Uniform (0, 1) distribution.

Proof Theproposedmonitoring schemeproduces anout-of-control signal,whenever
three consecutive plotting points violate either the lower or the upper control limit.
Therefore, the False Alarm Rate of the 3-of-3 DR chart, namely the probability for
the chart to produce a signal under the assumption that the process is still in-control
can be simply expressed as

FARDR = P(3 plotting points below Xa:m |F = G ) + P(3 plotting points over Xb:m |F = G )

+ P(2 plotting points below Xa:m and 1 plotting point over Xb:m |F = G )

+ P(1 plotting point below Xa:m and 2 plotting points over Xb:m |F = G ) (10)

The first term of the above summation can be explicated as follows:

P(3 plotting points below Xa:m |F = G )

= P
(
Y h−2
j :n ,Y h−1

j :n ,Y h
j :n ≤ Xa:m |F = G

)
+ P

(
Y h−2
j :n ,Y h−1

j :n ,Y h
k:n ≤ Xa:m |F = G

)
+ P

(
Y h−2
j :n ,Y h−1

k:n ,Y h
k:n ≤ Xa:m |F = G

)
+ P

(
Y h−2
k:n ,Y h−1

k:n ,Y h
k:n ≤ Xa:m |F = G

)
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+ P
(
Y h−2
j :n ,Y h−1

k:n ,Y h
j :n ≤ Xa:m |F = G

)
+ P

(
Y h−2
k:n ,Y h−1

j :n ,Y h
j :n ≤ Xa:m |F = G

)
+ P

(
Y h−2
k:n ,Y h−1

j :n ,Y h
k:n ≤ Xa:m |F = G

)
+ P

(
Y h−2
k:n ,Y h−1

k:n ,Y h
j :n ≤ Xa:m |F = G

)
(11)

We next average on Xa:m = x1 and consequently each one of the above conditional
probabilities is expressed via the integral Ia(b, c) defined earlier. Indeed,we conclude
that

P
(
Yh−2
j :n , Yh−1

j :n , Yh
j :n ≤ Xa:m |F = G

)
=

∫ 1

0
[Ix ( j, n − j + 1)]3 fa(x)dx

P
(
Yh−2
j :n , Yh−1

j :n , Yh
k:n ≤ Xa:m |F = G

)
=

∫ 1

0
[Ix ( j, n − j + 1)]2 Ix (k, n − k + 1) fa(x)dx

P
(
Yh−2
j :n , Yh−1

k:n , Yh
k:n ≤ Xa:m |F = G

)
=

∫ 1

0
Ix ( j, n − j + 1)[Ix (k, n − k + 1)]2 fa(x)dx

P
(
Yh−2
k:n , Yh−1

k:n , Yh
k:n ≤ Xa:m |F = G

)
=

∫ 1

0
[Ix (k, n − k + 1)]3 fa(x)dx .

Substituting the above expressions in (11), the probability of observing three con-
secutive plotting points below the lower control limit Xa:m becomes quite convenient.
We next apply analogous arguments for the remaining terms of the summation in (10)
and the desired result for the False Alarm Rate of the proposed scheme is deduced
after some straightforward manipulations. �

3 The 3-of-3 KL Control Chart Based on Order Statistics

In this section, we establish a newmonitoring scheme based on order statistics which
utilizes the well-known runs-type rule introduced by Klein (2000). Three different
monitoring statistics are plotted in separate control charts, while the control limits are
based on reference data drawn from the in-control process. The proposed scheme is
constructed by following the general framework introduced by Triantafyllou (2018)
and enhancing its performance with the aid of runs-rules.

Let us denote once again by X1, X2, . . . , Xm a random sample of sizem from the
in-control distribution F, while test samples Y1,Y2, . . . ,Yn with cumulative distri-
bution function G are drawn independently. After each test sample is picked out, the
j-th and the k-th order statistic Y j :n, Yk:n are chosen and made use of along with the
statistic R defined earlier. According to the monitoring scheme introduced by Tri-
antafyllou (2018), the process is declared to be in-control, if the following conditions
hold true

LCL ≤ Y j :n ≤ Yk:n ≤ UCL and R ≥ r,
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where r is a positive integer (see also Triantafyllou (2018) and Sect. 2 therein).
In order to improve the performance of the aforementioned nonparametric control

chart, we activate the 3-of-3 runs-rule proposed by Klein (2000). Under this scenario,
an out-of-control signal is produced from the new monitoring scheme (3-of-3 KL
chart, hereafter) whenever three consecutive plotting points fall all of them either on
or above the UCL or all of them fall on or below the LCL .

The signaling indicator for the h-th test sample is defined as

Z ′
h =

⎧⎪⎨
⎪⎩
0, if Y h

j :n,Y
h
k:n ∈ (LCL ,UCL)

1, if at least one of Y h
j :n,Y

h
k:n ≥ UCL

2, if at least one of Y h
j :n,Y

h
k:n ≤ LCL

, h = 1, 2, 3, . . . (11)

If we denote by T ∗
3 the run length of the proposed monitoring scheme, namely

the waiting time for three consecutive 1’s or three consecutive 2’s in the sequence of
independent and identically distributed trials Z ′

1, Z
′
2, . . .. Thus is called a compound

pattern Λ = Λ1 ∪ Λ2, where Λ1 = {1 1 1} and Λ2 = {2 2 2}. We next denote by Iν
the ν × ν identity matrix while the quantities pL , pU are defined as

pL = (
at least one of Y j :n,Yk:n ≤ Xa:m |Xa:m = x1

)
and

pU = (
at least one of Y j :n,Yk:n ≥ Xb:m |Xb:m = x2

)
respectively. In other words, pL corresponds to the probability of a single plotting
point falling below or on the LCL , while pU expresses the probability of a single
plotting point falling above or on the UCL .

The following proposition offers an explicit formula for determining the proba-
bility mass function of the random variable T ∗

3 .

Proposition 4 The probability mass function of the unconditional distribution of T ∗
3

is given by

P(T ∗
3 = x) =

∫ +∞

−∞

∫ x2

−∞
ξ · Nx−1 · (I6 − N) · 1′ fa,b(x1, x2)dx1dx2, x ≥ 3 (12)

where

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 − pL − pU pU pL 0 0
0 1 − pL − pU pU pL 0 0
0 1 − pL − pU 0 pL pU 0
0 1 − pL − pU pU 0 0 pL
0 1 − pL − pU 0 pL 0 0
0 1 − pL − pU pU 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

ξ = [
1 0 0 0 0 0 0 0

]
, 1 = [

1 1 1 1 1 1 1 1
]
,
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while fa,b denotes the joint probability density function of the a-th and the b-th order
statistics of a random sample of size m from the Uniform (0, 1) distribution.

Proof In order to derive the probability mass function of the random variable T ∗
3 ,

we next implement the general approach established by Fu and Lou (2003) for
the distribution of the waiting time till the first occurrence of a compound pattern
in a sequence of independent and identically distributed or homogeneous Markov
dependent k-state trials. In our case, the parameter k equals to 8 and the imbedded
Markov chain is defined on the state space

� = {∅, {0}, {1}, {2}, (1 1), (2 2), a1, a2}

where a1 = (1 1 1) and a2 = (2 2 2) correspond to the absorbing states. The transi-

tion probability matrix of the Markov chain is denoted asM8×8 =
[
N C
O I2

]
, where

N is the essential transition probability sub-matrix defined above, while

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
pU 0
0 pL

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,O =
[
0 0 0 0 0 0
0 0 0 0 0 0

]
.

Appling the Theorem 5.2 of Fu and Lou (2003), the conditional distribution of
T ∗

3
is given by

P
(
T ∗
3 = x |Xa:m = x1, Xb:m = x2

) = ξ · Nx−1 · (I6 − N) · 1′, x ≥ 3. (13)

Consequently, the unconditional distribution of T ∗
3
is effortlessly derived by aver-

aging the conditional distribution of T ∗
3
over the joint probability density function of

the order statistics Xa:m and Xb:m

P(T ∗
3

= x) = EXa:m ,Xb:m
(
P

(
T ∗
3 = x |Xa:m = x1, Xb:m = x2

))
=

∫ +∞
−∞

∫ x2

−∞
P

(
T ∗
3 = x |Xa:m = x1, Xb:m = x2

)
fa,b(x1, x2)dx1dx2, x ≥ 3.

and the proof is complete by substituting the expression (13) in the last formula. �

The following proposition offers explicit expressions for two important charac-
teristics of the run length of the proposed 3-of-3 KL chart.
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Proposition 5

(i) The unconditionalAverage RunLength of the proposed 3-of-3KL chart is given
by

ARLK L =
∫ 1

0

∫ t

0

(p2L + pL + 1)(p2U + pU + 1)

p3L p
2
U + p3L pU + p3L + p2L p

3
U + pL p

3
U + p3U

fa,b(s, t)dsdt. (14)

(ii) The unconditional Variance of the Run Length of the proposed 3-of-3 KL chart
is given by

V ARKL

=
∫ 1

0

∫ t

0
−

(
p5L (p4U + 2p3U + 3p2U + 2pU + 1) + p4L (p5U + 5p4U + 9p3U + 6p2U + 4pU + 2)

(p3L (p2U + pU + 1) + p3U (p2L + pL + 1))2

− p3L (2p5U + 9p4U + 16p3U + 9p2U + 6pU + 3) + p2L (3p5U + 6p4U + 9p3U − 9p2U − 6pU − 3)

(p3L (p2U + pU + 1) + p3U (p2L + pL + 1))2

− −2pL (p5U + 4p4U + 6p3U − 6p2U − 4pU − 2) + (p5U + 2p4U + 3p3U − 3p2U − 2pU − 1)

(p3L (p2U + pU + 1) + p3U (p2L + pL + 1))2

)

× fa,b(s, t)dsdt. (15)

Proof

(i) Given Xa:m = x1 and Xb:m = x2, the conditional expected value of the wait-
ing time T ∗

3
is derived by applying Theorem 7.4 of Fu and Lou (2003). More

specifically, the conditional average value of the random variable T ∗
3
can be

expressed as

E(T ∗
3 |Xa:m , Xb:m) = ξ · (I − N)−1 · 1′,

where ξ,N are given in Proposition 4. As it has been already mentioned, the
above expected value coincides to the conditional Average Run Length of the
proposed 3-of-3KL chart. Consequently, the unconditionalAverage Run Length
of the proposed 3-of-3 KL chart is readily obtained by averaging the above
expression over the joint distribution of the order statistics Xa:m, Xb:m .

(ii) Given Xa:m = x1 and Xb:m = x2, the conditional variance of the waiting time
T ∗

3
is derived by applying Theorem 7.4 of Fu and Lou (2003) as

Var(T ∗
3 |Xa:m , Xb:m) = ξ(I + N)(I − N)−21′ − (E(T ∗

3 |Xa:m , Xb:m))2.

Since the matrices ξ,N are given in Proposition 4, the proof is complete by
substituting the expression (14) in the above formula. �

In Table 3, we present the in-control ARL of the proposed control chart for several
designs corresponding to different values of a, b,m, n, j, k, r . The calculations were
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carried out with the aid of Proposition 5. Table 3 can be used to design a distribution-
free control chart that attains a pre-specified in-control level of performance (ARL0).

For example, if we draw a reference sample of size m = 100, an in-control
Average Run Length equal to 500 (approximately) can be achieved by

• utilizing the 6th and the 78th ordered observation from the reference sample (a =
6, b = 78), working with test samples of size n= 5 and determining the remaining
parameters as j = 1, k = 2, r = 2 (with ARLin = 503.40) or

• utilizing the 10th and the 99th ordered observation from the reference sample
(a = 10, b = 99), working with test samples of size n = 11 and determining the
remaining parameters as j = 2, k = 10, r = 5 (with ARLin = 498.98) or

• utilizing the 22nd and the 94th ordered observation from the reference sample
(a = 22, b = 94), working with test samples of size n = 25 and determining the
remaining parameters as j = 7, k = 22, r = 12 (with ARLin = 500.10).

The out-of-control performance could be evaluated via the corresponding ARL
that the control chart attains. If the process shifts out-of-control, Proposition 5 offers
an explicit expression for computing the out-of-control ARL of the proposed 3-of-3
KL chart. Table 4 displays the out-of-control ARL-values achieved by the proposed
3-of-3 KL chart under the Lehmann-type alternatives for γ = 0.3 and γ = 0.8.
The designs which are implemented for producing the out-of-control ARL-values in
Table 4 are the same with the ones presented already in Table 3.

Onemay draw interesting conclusions based on the numerical results displayed in
Table 4. For example, let us consider the same case study mentioned earlier, namely
let us assume that the practitioner works with a reference sample of size m = 100 in
order to reach an in-control ARL equal to 500. Then, under the Lehmann alternatives
with parameter γ equal to 0.8 (0.3) the proposed 3-of-3 KL chart achieves an out-of-
control ARL equal to 105.33 (8.40), 57.50 (7.15) and 35.37 (7.00) when test sample
of size n = 5, 11, 25 are drawn respectively.

The following proposition provides an explicit formula for the computation of the
False Alarm Rate of the proposed 3-of-3 KL chart.

Proposition 6 The False Alarm Rate of the proposed 3-of-3 KL chart is given by

FARKL

=
∫ 1

0
[Ix ( j, n − j + 1)]3 fa(x)dx

+ 3
∫ 1

0
[Ix ( j, n − j + 1)]2 Ix (k, n − k + 1) fa(x)dx

+ 3
∫ 1

0
Ix ( j, n − j + 1)[Ix (k, n − k + 1)]2 fa(x)dx

+
∫ 1

0
[Ix (k, n − k + 1)]3 fa(x)dx +

∫ 1

0
[1 − Iy(k, n − k + 1)]3 fb(y)dy

+ 3
∫ 1

0
[1 − Iy(k, n − k + 1)]2 Iy( j, n − j + 1) fb(y)dy
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+ 3
∫ 1

0
(1 − Iy(k, n − k + 1))[1 − Iy( j, n − j + 1)]2 fb(y)dy

+
∫ 1

0
[1 − Iy( j, n − j + 1)]3 fb(y)dy

where fa, fb denote the probability density functions of the beta (a,m − a + 1) and
(b,m − b + 1) distribution respectively.

Proof Theproposedmonitoring schemeproduces anout-of-control signal,whenever
three consecutive plotting points violate either all of them the lower or all of them the
upper control limit. Therefore, the False Alarm Rate of the 3-of-3 KL chart, namely
the probability for the chart to produce a signal under the assumption that the process
is still in-control can be simply expressed as

FARKL = P(3 plotting points above Xb:m |F = G )

+ P(3 plotting points below Xa:m |F = G ) (16)

The first term of the above summation can be explicated as follows:

P(3 plotting points above Xb:m |F = G )

= P
(
Yh−2
j :n , Yh−1

j :n , Yh
j :n ≥ Xb:m |F = G

)
+ P

(
Yh−2
j :n , Yh−1

j :n , Yh
k:n ≥ Xb:m |F = G

)
+ P

(
Yh−2
j :n , Yh−1

k:n , Yh
k:n ≥ Xb:m |F = G

)
+ P

(
Yh−2
k:n , Yh−1

k:n , Yh
k:n ≥ Xb:m |F = G

)
+ P

(
Yh−2
j :n , Yh−1

k:n , Yh
j :n ≥ Xb:m |F = G

)
+ P

(
Yh−2
k:n , Yh−1

j :n , Yh
j :n ≥ Xb:m |F = G

)
+ P

(
Yh−2
k:n , Yh−1

j :n , Yh
k:n ≥ Xb:m |F = G

)
+ P

(
Yh−2
k:n , Yh−1

k:n , Yh
j :n ≥ Xb:m |F = G

)
(17)

We next average on Xb:m = x2 and consequently each one of the above conditional
probabilities is expressed via the integral Ia(b, c) defined earlier. Indeed,we conclude
that

P
(
Yh−2
j :n , Yh−1

j :n , Yh
j :n ≥ Xb:m |F = G

)
=

∫ 1

0
[1 − Ix ( j, n − j + 1)]3 fb(x)dx

P
(
Yh−2
j :n , Yh−1

j :n , Yh
k:n ≥ Xb:m |F = G

)
=

∫ 1

0
[1 − Ix ( j, n − j + 1)]2(1 − Ix (k, n − k + 1)) fb(x)dx

P
(
Yh−2
j :n , Yh−1

k:n , Yh
k:n ≥ Xb:m |F = G

)
=

∫ 1

0
(1 − Ix ( j, n − j + 1))[1 − Ix (k, n − k + 1)]2 fb(x)dx

P
(
Yh−2
k:n , Yh−1

k:n , Yh
k:n ≥ Xb:m |F = G

)
=

∫ 1

0
[1 − Ix (k, n − k + 1)]3 fb(x)dx .

Substituting the above expressions in (17), the probability of observing three con-
secutive plotting points over the upper control limit Xb:m becomes quite convenient.
We next apply analogous arguments for the other term of the summation in (16) and
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the desired result for the False Alarm Rate of the proposed scheme is deduced after
some straightforward manipulations. �

4 Numerical Comparisons

In this section, we carry out an extensive numerical experimentation to illustrate the
efficacy of the new control charts and their robustness features under both in-control
and out-of-control situations. The computations are accomplished with the aid of
theoretical results presented in previous sections. It is important to mention that the
proposed distribution-free chart is quite capable of identifying not only a location
shift but also shift through the variance and this is due to the incorporation into the
control chart of the additional condition based on the number of observations from
the test sample falling between the control limits.

A typical way of comparing two different control charts is to use a common in-
control average length (ARLin) and then to examine their out-control average lengths
(ARLout ’s). In what follows, we compare the performance of the proposed 3-of-3
DR chart to the one established by Triantafyllou (2018).

Table 5 offers some numerical comparisons between the proposed control scheme
and the nonparametric chart introduced byTriantafyllou (2018).We consider the case
of a process with underlying in-control Normal distribution with parameters 0 and
1, while as out-of-control distribution is assumed to be Normal distribution with
mean and standard deviation equal to θ and δ respectively. In Table 5, two different
ARLin levels have been considered. For each choice, Proposition 2was implemented
to determine the design parameters of the new control chart, viz., LCL = Xa:m ,
UCL = Xb:m , j, k and r , so that the exact ARLin of the resulting chart is as close
to the desired ARLin as possible. Then, the ARLout -values for the new chart are
evaluated numerically and the corresponding results are summarized in Table 5 under
the labelNewchart. Under the labelTriantafyllou chart (2018),we have presented the
respective results for his chart; since we have considered the same parameter choices
for m, n, ARL0 as those used there, this part of the table is simply reproduced from
their Table 5.

Table 5 clearly reveals that, under the same ARLin , the new control chart performs
better than the chart introduced by Triantafyllou (2018), in terms of ARLout values,
in some cases considered. For example, when a reference sample of size m = 100
is drawn and the practitioner decides to work with test samples of size n = 5
and pre-fixed ARLin = 500, the chart by Triantafyllou (2018) achieves ARLout

equal to 15.00 (9.80) for out-of-control Normal distribution with θ = 0.5, δ = 1.25
(θ = 1, δ = 1.25), while the corresponding ARLout -values for the 3-of-3 DR chart
are 12.37 (9.24) respectively.
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Table 5 ARL-values of
different control charts under
the N(θ , δ) distribution (m =
100, n = 5)

θ δ 3-of-3 DR chart Triantafyllou chart (2018)

0 1 456.52 446.6

0.25 1 360.99 163.9

0.5 1 145.81 51.64

1 1 14.78 7.4

1.5 1 4.66 2.1

2 1 3.27 1.2

0 1.25 45.19 61.4

0.25 1.25 33.58 35.7

0.5 1.25 9.24 17.9

1 1.25 7.03 5.0

1.5 1.25 4.02 2.1

2 1.25 3.23 1.3

0 1.5 15.15 20.2

0.25 1.5 12.37 15.0

0.5 1.5 9.24 9.8

1 1.5 5.28 4.1

1.5 1.5 3.75 2.1

2 1.5 3.22 1.4

0 1.75 8.55 10.0

0.25 1.75 7.50 8.5

0.5 1.75 6.32 6.5

1 1.75 4.52 3.5

1.5 1.75 3.60 2.1

2 1.75 3.20 1.5

0 2 6.16 6.2

0.25 2 5.65 5.7

0.5 2 5.07 4.8

1 2 4.10 3.1

1.5 2 3.50 2.0

2 2 3.20 1.5

Generally speaking, the nonparametric control charts are robust by definition; that
is, their in-control behavior remains the same for all continuous distributions. How-
ever, it is useful to examine their out-of-control performance for different underlying
distributions. We next compare the performance of 3-of-3 DR chart with the one
established by Triantafyllou (2018). Table 6 depicts the ARL-values not only of the
proposed control scheme but also of the abovementioned nonparametric chart under
Laplace distribution (θ , δ). The proposed distribution-free control scheme performs
better than the competitive chart established by Triantafyllou (2018) for almost all
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Table 6 ARL-values of
different control charts under
the Laplace (θ , δ)
distribution (m = 100, n = 5)

θ δ 3-of-3 DR chart Triantafyllou chart (2018)

0 1 456.52 446.6

0.25 1 266.31 276.9

0.5 1 120.70 159.2

1 1 15.98 45.7

1.5 1 4.46 12.2

2 1 3.29 3.6

0 1.25 81.74 107.5

0.25 1.25 61.27 75.9

0.5 1.25 38.52 50.4

1 1.25 11.15 19.6

1.5 1.25 4.66 7.2

2 1.25 3.46 2.9

0 1.5 30.17 43.1

0.25 1.5 25.76 33.2

0.5 1.5 19.47 24.3

1 1.5 8.80 11.7

1.5 1.5 4.72 5.3

2 1.5 3.60 2.6

0 1.75 16.22 22.8

0.25 1.75 14.82 18.7

0.5 1.75 12.44 14.7

1 1.75 7.35 8.2

1.5 1.75 4.66 4.4

2 1.75 3.69 2.4

0 2 10.77 14.3

0.25 2 10.21 12.2

0.5 2 9.12 10.0

1 2 6.36 6.3

1.5 2 4.54 3.8

2 2 3.73 2.3

the cases considered. More specifically, the in-control reference sample in each case
is drawn from the corresponding standard distribution with θ = 0 and δ = 1, while
several combinations of parameters θ , δ have been examined. When the underlying
distribution of the process is assumed to be Laplace, the new control scheme is supe-
rior compared to the other chart for shifts of the location parameter θ no greater than
1.5, while for the remaining cases both charts seem to be almost equivalent.
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5 Conclusions

In the present chapter, two nonparametric Shewhart-type control charts are intro-
duced and studied in some detail. The plotting statistics which are monitored, are
related to specified order statistics from successive test sampleswhich are drawn from
the underlying process. For the enhancement of the proposed charts, two different
well-known runs-rules are also activated. The main performance characteristics of
the new distribution-free monitoring schemes are studied, while several numerical
outcomes reveal the ability of the proposed charts for detecting possible shift of the
underlying distribution process. It is of some future research interest, to investigate
the performance of the aforementioned control chart under the presence of alternative
runs-rules.
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A Nonparametric Control Chart
for Dynamic Disease Risk Monitoring

Lu You and Peihua Qiu

Abstract Some deadly diseases can be treated or even prevented if they or some
of their symptoms are detected early. Disease early detection and prevention is thus
important for our health improvement. In this paper, we suggest a novel and effective
newmethod for disease early detection. By this method, a patient’s risk to the disease
is first quantified at each time point by survival data analysis of a training dataset that
contains patients’ survival information and longitudinally observed disease predic-
tors (e.g., disease risk factors and other covariates). To improve the effectiveness of
the proposed method, variable selection is used in the survival analysis to keep only
important disease predictors in disease risk quantification. Then, the longitudinal
pattern of the quantified risk is monitored sequentially over time by a nonparametric
control chart. A signal will be given by the chart once the cumulative difference
between the risk pattern of the patient under monitoring and the risk pattern of a
typical person without the disease in concern exceeds a control limit.

Keywords Disease screening · Disease early detection · Dynamic process ·
Longitudinal data · Statistical process control · Survival data

1 Introduction

One of the primary objectives of a disease screening program is to give early signals
to patients who have the disease in concern or who are at high risk of having the
disease, so that these patients can receive timely intervention and treatment (Qiu and
Xiang 2014). This paper aims to develop a novel and effective method for disease
screening.

Medical research has identified major predictors of many diseases. For instance,
the major predictors for cardiovascular diseases include high blood pressure, high
cholesterol level, obesity, tobacco use, lack of physical activity, diabetes, unhealthy
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diet, age, gender, family history, and some others (e.g., Mendis et al. 2011). For dis-
ease screening, patients often take scheduled disease screening examinations over
time to have theirmedical conditions evaluated. To identify high-risk patients through
the data collected during the screening examinations, an effective statistical tool is
needed. This type of research problem is called dynamic screening (DS) problem in
Qiu andXiang (2014), becausemedical data are collected sequentially over time from
patients, data distribution would change over time, and decisions about the disease
status need to be made sequentially as well during the process of data collection. Qiu
and Xiang (2014) proposed a dynamic screening system (DySS) to monitor a single
disease predictor over time for handling the DS problem. In their method, they first
model the regular longitudinal pattern of the disease predictor by a nonparametric
longitudinal model estimated from an in-control (IC) dataset that contains observed
data of the disease predictor of patients without the disease in concern. Then, to mon-
itor the disease predictor of a new individual, they constructed a statistical process
control (SPC) chart to detect undesirable deviations and/or changes in the longitu-
dinal pattern of the disease predictor of the individual under monitoring from the
estimated regular longitudinal pattern. By employing a cumulative sum (CUSUM)
control chart, this method makes use of the observed data at the current time point
and all history data efficiently, and it has been demonstrated to good performance in
many applications. In subsequent research, Qiu and Xiang (2015) further extended
the DySS method to multivariate cases where multiple disease predictors are con-
sidered. A multivariate control chart was proposed to jointly monitor all disease
predictors. Some other extensions of the DySS method include those discussed in
Li and Qiu (2016, 2017) and You and Qiu (2018) where serially correlated data
are considered, and the one discussed in Qiu et al. (2018) where unequally spaced
observation times were accommodated in the construction of the control chart. Qiu
et al. (2019) proposed a new metric for evaluating the numerical performance of DS
methods.

In practice, there could be many different disease predictors involved. Some of
themmight be more important than the others in predicting the occurrence of the dis-
ease in question. But, in the multivariate DySSmethods mentioned above, all disease
predictors are treated equally in constructing the related multivariate control charts,
which would make the charts less effective in predicting the disease. To overcome
this limitation, You and Qiu (2019) recently proposed a new method consisting of
the following two steps: (i) estimation of a survival model from a training dataset
and the estimated survival model is then used for quantifying the disease risk of a
person, where the quantified disease risk is a linear combination of all disease predic-
tors, and (ii) sequential monitoring of the quantified risks over time using a control
chart. In the estimated survival model, more important covariates will receive more
weights in the linear combination of the disease predictors. Thus, the effectiveness
of the control chart is improved. Nonetheless, the aforementioned method still uses
all disease predictors when defining disease risk. Intuitively, if certain disease pre-
dictors actually contain little useful information about the disease in concern, then
they should be removed from disease screening. Based on this intuition, we propose
a new method in this paper, in which variable selection by LASSO is incorporated in
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survival data modeling, so that the redundant disease predictors are deleted during
survival model estimation. It will be shown that this new method is more effective
than the original one by You and Qiu (2019) in various different cases.

The remaining part of the article is organized as follows. In Sect. 2, the proposed
model and its estimation for disease risk quantification will be introduced. In Sect. 3,
some simulation studieswill be presented to evaluate the performance of the proposed
method. The proposed method will be demonstrated in a real data example in Sect. 4.
Finally, Sect. 5 will conclude the article with some discussions about certain future
research topics.

2 Proposed Method

In this section, we describe the proposed disease screening method in detail. Our
proposed method consists of two main steps. In the first step, a survival model
is fitted from a training dataset that contains observations of the survival times and
disease predictors of certain individuals. The fittedmodel can then be used to quantify
people’s disease risk at a given time. In this step, we will also discuss how to select
important disease predictors by a LASSO variable selection method. In the second
step, the quantified disease risk of a specific individual is monitored sequentially
over time by a control chart. These two steps are discussed in detail in the following
two parts.

2.1 Risk Estimation and Variable Selection

Suppose that a training dataset containing observations of the longitudinal disease
predictors and survival times of n individuals. The survival outcomes of the i th
individual are described by (δi , Ti ), where Ti is the last follow-up time and δi is
the survival indicator with δi = 1 indicating the occurrence of an disease at the last
follow-up timeTi , and δi = 0otherwise. Following thenotations of survivalmodels in
the literature, we use Di to denote the true disease time andCi to denote the censoring
time. Then, the survival outcomes can be expressed as Ti = min{Di ,Ci } and δi =
I (Di ≤ Ci ). For simplicity of presentation, we will also use R(t) = {i : Ti ≥ t} to
denote the set of all individuals who are at risk of disease at a given time t (i.e., they
are still under monitoring in the study at time t). The q-dimensional longitudinal
disease predictor of the i th individual is denoted as xi (t), and it is repeatedly and
sequentially observed at times ti1, . . . , timi , where these observation times can be
unequally spaced and timi = Ti . Let λi (t) = limdt→0 P{Di ∈ [t, t + dt]|Di ≥ t}/dt
be the hazard function of the disease in question for the i th individual. Then, the
following Cox proportional hazard model is assumed (cf., Klein and Moeschberger
1997):

λi (t) = λ0(t) exp(β
′xi (t)), (1)
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where β is a q-dimensional vector of coefficients and λ0(t) is the baseline hazard
function. By using model (1), the linear combinationβ′xi (t) can measure the disease
risk of the i th individual at time t , and it is denoted as ri (t). Namely, we define

ri (t) = β′xi (t).

To estimate model (1), You and Qiu (2019) suggested using the following kernel-
smoothed likelihood:

L(β) =
∏

i :δi=1

exp(β′xi (Ti ))∑
l∈R(Ti )

∑ml
j=1 Kh(Ti − tl j ) exp(β

′xl(tl j ))
,

where Kh(s) = K (s/h)/h, K (s) is a density kernel function, and h > 0 is a band-
width. The use of kernel smoothing in Cox proportional hazards model is motivated
by some existing works on estimating time-varying coefficients model in the liter-
ature (e.g., Cai and Sun 2003; Tian et al. 2005). The corresponding log-likelihood
function is given by

l(β) =
∑

i :δi=1

⎡

⎣β′xi (Ti ) − log

⎧
⎨

⎩
∑

l∈R(Ti )

ml∑

j=1

Kh(Ti − tl j ) exp(β
′xl(tl j ))

⎫
⎬

⎭

⎤

⎦ . (2)

Then, β can be estimated by the maximizer of (2), denoted as β̃, which can be
obtained by using the Newton–Raphson algorithm.

So far, we assume that all disease predictors in xi (t) have substantial impact on
the disease risk. In reality, because we do not know which disease predictors are
important and which are not, we often include many potential disease predictors in
xi (t), to avoid important disease predictors being overlooked. Thus, some disease
predictors in xi (t) may not have much prediction power for the specific disease.
This will be reflected in the regression coefficients in β, which some of them could
be 0 or small. However, the estimate β̃ given by the partial log-likelihood function
in (2) usually would not contain elements that are exactly 0. Thus, it cannot serve
the purpose of variable selection. To properly select important disease predictors
and exclude unimportant ones, we need to identify zero elements in the regression
coefficientβ, which can be achieved by using the LASSOmethod (Tibshirani 1996).
The main idea of LASSO is to add a penalty term on the regression coefficients to
shrink the coefficients of unimportant disease predictors toward zero. In this paper,
we choose to use the following L1 adaptive LASSO penalty (cf., Zou 2006):

pγ(β) = γ

q∑

k=1

wk |βk |,

where γ is a nonnegative regularization parameter, andw = (w1, . . . ,wq)
′ is a vector

of adaptive weights. The adaptive weights {wk} can be simply chosen to be 1/|β̃k |,
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where β̃ = (β̃1, . . . , β̃k) is the estimate of β obtained from (2), as discussed above.
The LASSO penalized estimate of β is then defined to be the minimizer of the
following penalized log-likelihood function:

− l(β) + pγ(β). (3)

The above penalized log-likelihood function is not differentiable with respect to β
at 0, and thus β̂ cannot be obtained by the Newton-type optimization algorithms.
Here, we can use the coordinate optimization algorithm discussed in Friedman et al.
(2007) and Simon et al. (2011) to find the estimate, which is denoted as β̂.

Note that there are some components in β̂ that are exactly 0. These components
and the corresponding disease predictors can then be deleted from the subsequent
analysis. Without loss of generality, after these components and the corresponding
disease predictors are deleted, the estimated regression coefficient vector and the
disease predictor vector are still denoted as β̂ and xi (t). Then, the estimated disease
risk of the i th individual at time t is defined to be

r̂i (t) = β̂
′
xi (t).

Similar to the univariate DySS method discussed in Qiu and Xiang (2014), we can
characterize the regular pattern of the disease risk by a nonparametric longitudinal
model, with the mean to be μ(t) = E[ri (t)|Ti ≥ t] and the variance to be σ2(t) =
Var[ri (t)|Ti ≥ t]. Here, we only assume thatμ(t) and σ2(t) are two smooth functions
of time, and they can be estimated by the local linear kernel smoothing procedure,
as discussed in Qiu and Xiang (2014) and Xiang et al. (2013). The corresponding
local linear kernel estimates of μ(t) and σ2(t) are given by

μ̂(t) = R0(t)W2,hμ
(t) − R1(t)W1,hμ

(t)

W0,hμ
(t)W2,hμ

(t) − W1,hμ
(t)2

, (4)

σ̂2(t) = Q0(t)W2,hσ
(t) − Q1(t)W1,hσ

(t)

W0,hσ
(t)W2,hσ

(t) − W1,hσ
(t)2

, (5)

where hμ and hσ are two bandwidths that could be different from h used in (2),
ε̂i (ti j ) = r̂i (ti j ) − μ̂(ti j ), and

Wl,h(t) = 1

n

∑

i∈R(t)

mi∑

j=1

Kh(ti j − t)
( ti j − t

h

)l
,

Rl(t) = 1

n

∑

i∈R(t)

mi∑

j=1

Khμ
(ti j − t)

( ti j − t

hμ

)l
r̂i (ti j ),

Ql(t) = 1

n

∑

i∈R(t)

mi∑

j=1

Khσ
(ti j − t)

( ti j − t

hσ

)l
ε̂2i (ti j ).
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As a side note, in the above model, the regular disease risk pattern is characterized
by the first and second moments μ(t) and σ2(t). Alternatively, we can characterize
the regular disease risk pattern by the entire distribution of ri (t). To this end, let
F(y; t) = P(ri (t) ≤ y|Ti ≥ t) be the conditional distribution function of the disease
risk at time t . For given values of y and t , we can use the local linear kernel smoothing
method to estimate this conditional distribution, as discussed in Fan et al. (1996) and
Yu and Jones (1998). By following their ideas, we can consider minimizing the
following objective function:

∑

i∈R(t)

mi∑

j=1

[
�hψ

(
r̂i (ti j ) − y

) − α0 − α1(ti j − t)
]2
KhF (ti j − t),

where �(y) is a suitable kernel cumulative distribution function, hψ and hF are
two bandwidths, and �h(y) = �(y/h). Then, the estimate F̂(y; t) of F(y; t) can
be defined by the minimizer with respect to α0 in the above minimization problem,
which has the expression

F̂(y; t) = S0(y; t)W2,hF (t) − S1(y; t)W1,hF (t)

W0,hF (t)W2,hF (t) − W1,hF (t)2
, (6)

where for l = 0, 1,

Sl(y; t) = 1

n

∑

i∈R(t)

mi∑

j=1

KhF (ti j − t)
( ti j − t

hF

)l
�hψ

(
r̂i (ti j ) − y

)
.

This idea will not be further explored in this paper and will be studied in our future
research.

In (3)–(6), there are several bandwidths to use. To determine the bandwidth h used
in (3) for estimating β, we can use the leave-one-out cross-validation (CV) criterion
that is based on the martingale residuals (cf., Tian et al. 2005, You and Qiu 2019a, b).
The selected bandwidth can be calculated by minimizing the following function of
h:

CVβ(h) =
n∑

i=1

PEi (h),

where

PEi (h) =

⎡

⎢⎢⎣δi −
∑

k �=i, δk=1
Tk≤Ti

∑mi
j=1 Kh(Tk − ti j ) exp(β̃

′
−ixi (ti j ))

∑
d �=k,d∈R(Tk )

∑md
j=1 Kh(Tk − td j ) exp(β̃

′
−ixd(td j ))

⎤

⎥⎥⎦

2

,
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β−i is the estimate of β when the i th individual is excluded from model estimation,
and PEi is the square of some estimate of the integrated martingale residual. To
choose the regularization parameter γ in the LASSO penalty in (3), we propose
to use the Akaike information criterion (AIC) (cf., Akaike 1992; Tibshirani 1997).
Let c(β) be the number of nonzero elements of the vector β. Then, the AIC of the
modified Cox partial likelihood is defined as

AIC(γ) = −2l(β̂) + 2c(β̂)

where β̂ is the estimate of β with the regularization parameter being γ. The regular-
ization parameter γ is then chosen to be theminimizer ofAIC(γ). The bandwidths hμ

and hσ in (4) and (5) can be chosen using the leave-one-out CV procedure discussed
in Qiu and Xiang (2014). In this chapter, all kernel functions are chosen to be the
Epanechnikov kernel function (Epanechnikov 1969).

2.2 Online Disease Risk Monitoring

To monitor the quantified disease risk of a new individual, assume that the disease
predictors are sequentially observed at times t∗1 , t∗2 , . . ., and the corresponding obser-
vations are x(t∗1 ), x(t∗2 ), . . .. For simplicity of presentation, we further assume that
t∗1 , t∗2 , . . . are multiplications of a basic time ω. Thus, we can write t∗j = n∗

jω, for
j ≥ 1. When the disease risk pattern is characterized by the estimated mean and
variance function μ̂(t) and σ̂2(t), we can define the standardized value of the esti-
mated disease risk as

ê(t∗j ) = r̂(t∗j ) − μ̂(t∗j )
σ̂(t∗j )

, for j ≥ 1.

Tomonitor the quantified disease risks of the new individual and detect an undesirable
upward shift in the longitudinal pattern of the disease risk when observations are
sequentially obtained, SPC charts can be used. To this end, we consider using the
following upward EWMA chart, based on the exponential smoothing idea that was
discussed in Wright (1986) and Qiu et al. (2018) to account for irregularly spaced
observation times:

E1 = V1ê(t
∗
1 ), (7)

E j = (1 − Vj )E j−1 + Vj ê(t
∗
j ), (8)

where V1 = 1 − (1 − λ)�̄, Vj = Vj−1/[(1 − λ)n
∗
j−n∗

j−1 + Vj−1], λ is a weighting
parameter in [0, 1), and �̄ is an estimate of the mean of n∗

j − n∗
j−1 obtained from the

IC dataset. The chart gives a signal at time t∗j if

E j > ρ
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where ρ > 0 is a control limit. It should be pointed out that the upward chart is
considered here because we are mainly concerned about upward shifts in disease
risk in the current disease screening problem. In other problems, downward or two-
sided charts might be more appropriate. Also, the observation times t∗1 , t∗2 , . . . are
often unequally spaced in disease screening applications, and the above EWMA
chart can accommodate the unequally spaced observation times well. With other
types of control charts (e.g., CUSUM), we still do not know how to accommodate
this properly in their chart construction.

The performance of control charts is traditionally evaluated by the average run
length (ARL), which is the average number of collected observations before trigger-
ing a signal. When observation times are unequally spaced, a more sensible measure
is the average time to signal (ATS) (cf., Qiu and Xiang 2014). In disease monitoring
problems, there is also interest in the receiver operating characteristics (ROC) of
monitoring schemes in terms of sensitivity and specificity, which are for evaluating
whether the monitoring scheme can correctly identify patients who may or may not
have the disease in the future. Recently, Qiu et al. (2019) has proposed a newmeasure,
called process monitoring ROC curve, which attempts to combine the ATS measure
and the ROC measures.

The control limit ρ is usually chosen such that the nominal IC ATS value is
fixed at a given level when the monitoring schemes are applied to an IC dataset.
To accommodate the within-subject data correlation, the block bootstrap procedure
discussed in Qiu and Xiang (2014) can be used for searching for the control limit.
When there are enough training data, we can split them into two parts. The first part
can be used for estimatingmodel (1) to describe the regular pattern of the disease risk,
and the IC individuals in the second part can be used for determining the control limit
ρ. To expedite the searching algorithm, we can use the bisection method as discussed
in Qiu (2014, Sect. 4.2).

3 Simulation Study

Simulations were conducted to evaluate the numerical performance of the proposed
method. We used a simulated training dataset of n = 500 individuals to estimate the
regular disease risk pattern. The whole design interval [0, 1] is discretized in to 1000
basic time units.We considered three different cases with the dimension of covariates
being q = 10, 20, and 30. The processes of xik(t) are generated from the following
random process model:

xik (t) = − sin(πt + πuik1) + 0.5 cos(10πt + 10πuik2) + εik (t), for i = 1, . . . , n, k = 1, . . . , q,

(9)
where {uik1, uik2} are independent realizations from the uniform [0, 1] distribu-
tion, εik(t) are generated from the Ornstein–Uhlenbeck processes with dεik(t) =
−θ(mik − εik(t))dt + σdWik(t), Wik(t) are independent realizations from the
Wiener process, θ = 50, σ = 20, εik(0) ∼ N (0, 0.22), and the random mean vec-
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torsmi = (mi1, . . . ,miq)
′ are realizations from the multivariate normal distribution

with mean 0 and variance–covariance matrix being

⎛

⎜⎜⎜⎝

0.5 0.1 · · · 0.1
0.1 0.5 · · · 0.1
...

...
. . .

...

0.1 0.1 · · · 0.5

⎞

⎟⎟⎟⎠ .

The baseline hazard function in model (1) is chosen to be λ0(t) = 0.25. The true
regression coefficients β are sparse with the first three dimensions being 0.2 and
all the remaining dimensions being 0, i.e., β = (0.2, 0.2, 0.2, 0, . . . , 0)′. In each
simulation, we estimate the regular disease risk pattern using the simulated dataset
of n = 500 individuals, and then determine the control limit ρ from another simulated
dataset of 500 individuals. The control limit ρ here is chosen such that the nominal
IC ATS is 370. Then, the proposed monitoring scheme is applied to simulated data
of 10,000 new individuals to evaluate its performance. All the results presented in
this section are based on 1000 replicated simulations.

We first present some results about the variable selection method using LASSO.
In Table1, we displayed the mean squared errors of estimated regression coefficients
for different dimensions q = 10, 20, 30. From the table, we can see that when there
is a substantial percentage of zeros in the true regression coefficients, the LASSO
penalized estimate β̂ has a smaller mean squared error (MSE), compared to the
MSE of the ordinary estimate β̃ in this example. The relative efficiency of β̂ with
respect to β̃, defined as the ratio of their MSE values, decreases as the dimension q
increases. The implication is that when many covariates are unrelated to the disease
risk, applying the LASSO penalty can indeed improve the efficiency of parameter
estimates.

Next, we present some results about the proposed online monitoring scheme. To
examine whether the proposedmethod can effectively detect distributional shifts that
lead to an increased disease risks, we considered a shift of x(t) in the direction of β,
namely,

x∗(t) = x(t) + δβ,

Table 1 MSE of LASSO penalized estimate β̂ and unpenalized estimate β̃ of β and their cor-
responding standard errors (in parentheses). The relative efficiency of β̂ with respect to β̃ is the
ratio of the their MSE values, and the standard errors of relative efficiency are obtained by the delta
method

q = 10 q = 20 q = 30

MSE of β̃ 0.0140 (0.0002) 0.0283 (0.0003) 0.0424 (0.0004)

MSE of β̂ 0.0084 (0.0002) 0.0115 (0.0003) 0.0139 (0.0003)

Relative efficiency of
β̂

0.6000 (0.0072) 0.4077 (0.0061) 0.3265 (0.0051)
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Fig. 1 OC ATS values of different monitoring methods when λ = 0.02, 0.05 and q = 10, 20, 30.
NoSelection is the method by You and Qiu (2019) where β is estimated from (2) without using the
LASSO penalty. Selection is the proposed method in this paper. DySS is the multivariate DySS by
Qiu and Xiang (2015)

where x(t) is simulated from model (9). The out-of-control ATS values of three
different methods are presented in Fig. 1, where DySS denotes the multivariate DySS
by Qiu and Xiang (2015), NoSelection denotes the original risk monitoring method
by You and Qiu (2019) without using the LASSO variable selection, and Selection is
the proposed method in this paper. From the figure, we can see that (i) the proposed
method Selection has the best performance among all three methods, (ii) DySS
has the worst performance among all three methods, and (iii) the improvement from
NoSelection to Selection is more pronounced as the dimensionality of x(t) increases.

We then compare the three different methods when they are applied to individuals
in a simulated training dataset, using the metrics of true positive rate (TPR) and
false positive rates (FPR). Here, TPR is defined to be the percentage of individuals
receiving signals among all diseased people, and FPR is defined to be the percent-
age of individuals receiving signals among all non-diseased people. The results are
presented in Table2, from which we can see that i) DySS tends to have a high false
positive rate in all cases considered, and ii) Selection and NoSelection have similar
TPR values in most scenarios considered here, but the FPR values of NoSelection
are lower than those of Selection in all cases considered here.
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Table 2 TPR and FPR values of different monitoring methods when λ = 0.02, 0.05 and q =
10, 20, 30. Numbers in parentheses are the corresponding standard errors. NoSelection is the risk
monitoring method by You and Qiu (2019) whereβ is estimated from (1) without using the LASSO
penalty. Selection is the proposed risk monitoring method where β is estimated from (3). DySS is
the multivariate DySS by Qiu and Xiang (2015)

q = 10 q = 20 q = 30

TPR FPR TPR FPR TPR FPR

λ = 0.02

NoSelection 0.427
(0.002)

0.457
(0.003)

0.432
(0.002)

0.473
(0.003)

0.430
(0.002)

0.468
(0.002)

Selection 0.427
(0.002)

0.453
(0.003)

0.432
(0.002)

0.465
(0.003)

0.433
(0.002)

0.453
(0.003)

DySS 0.483
(0.002)

0.640
(0.002)

0.483
(0.002)

0.640
(0.002)

0.483
(0.002)

0.639
(0.002)

λ = 0.05

NoSelection 0.426
(0.003)

0.467
(0.003)

0.431
(0.003)

0.482
(0.003)

0.428
(0.003)

0.478
(0.003)

Selection 0.426
(0.002)

0.463
(0.003)

0.430
(0.003)

0.471
(0.003)

0.430
(0.003)

0.462
(0.003)

DySS 0.392
(0.003)

0.509
(0.003)

0.392
(0.003)

0.508
(0.003)

0.392
(0.003)

0.509
(0.003)

4 Real Data Example

In this section, we apply the proposed method to a real data example from the Fram-
ingham heart study. In this study, participants are regularly examined for risk factors
of cardiovascular diseases. The dataset contains observations of the cholesterol lev-
els, systolic blood pressures, and diastolic blood pressures of 1,055 participants.
Each participant was followed for 7 times at their different ages. Among the 1,055
participants, 27 of them had strokes at least once during the study. This dataset is
displayed in Fig. 2. To implement and evaluate the proposed method, we randomly
partition the original dataset into training and test datasets. The training dataset con-
tains approximately two-thirds of all the participants, among which 18 of them had
strokes during the study and 686 did not have any strokes. This training dataset is
then used for estimating the regular disease risk pattern using (2)–(5). The test dataset
contains approximately one-third of all the participants, among which 9 had strokes
and 342 did not have any strokes. The test dataset is then used for evaluating the
numerical performance of the proposed method. Its weighting parameter λ is chosen
to be 0.2, and the nominal IC ATS is set to be 10 years.

The estimate of β by (2) without the LASSO penalty is β̃ = (−0.0013, 0.0178,
0.0099)′, and the LASSO estimate of β is β̂ = (0.0000, 0.0169, 0.0092)′ where
the parameter γ is chosen to be 0.05. We can see that the first dimension of the
LASSO estimate has been shrunk to 0. We then compare the performance of the
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three monitoring methods: NoSelection, Selection, and DySS. A summary of the
results is presented in Table3. From the table, we can see that (i) all the threemethods
considered here correctly gave signals to 8 out of 9 stroke patients in the test dataset,
(ii)NoSelection gives 132 signals to 342 non-stroke patients, and Selection gives only
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Fig. 2 Cholesterol levels, systolic blood pressure readings, and diastolic blood pressure readings
of 1,055 participants of the Framingham heart study. Gray solid lines are longitudinal observations
of 1,028 non-stroke participants, while black dashed lines are longitudinal observations of 27 stroke
participants

Table 3 Number of signals when different methods are used to monitor patients in the test dataset

DySS NoSelection Selection

Signal No signal Signal No signal Signal No signal

Stroke patients 8 1 8 1 8 1

Non-stroke patients 167 175 132 210 123 219
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Fig. 3 Charting statistics of the three types of charts for monitoring the 9 stroke patients in the test
dataset. Horizontal dotted lines are the control limits
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9 less signals to the non-stroke patients, and (iii) DySS has the worst performance
because it gives more signals to the non-stroke patients than each of the other two
methods. The three types of charts for monitoring the 9 stroke patients in the test
dataset are shown in Fig. 3.

5 Concluding Remarks

In this chapter, we presented an improved version of the disease risk monitoring
method suggested by You and Qiu (2019). The major contribution of the improved
version is that variable selection is used when quantifying disease risks, in order to
reduce variability of the quantified disease risks. Variable selection is achieved by
using the LASSO penalty to reduce the dimensionality of the disease predictors in
the related survival model. Through numerical simulations and a real data example,
we have shown that whenmany disease predictors are included in the survival model,
implementing variable selection before monitoring the quantified disease risks can
often improve the performance of disease risk monitoring.

Our proposed method still has its own limitations, and there are many issues
to be addressed in the future research. For instance, in real-life disease screening
practice, it is quite common that patients may miss some medical tests or have some
incomplete medical examinations during a clinic visit. Future research is needed
to extend existing methods to allow for missing data of different types. Also, the
effect of disease predictors can be time-varying. Though You and Qiu (2019) has
provided a method for estimating time-varying regression coefficients, the variable
selection problems in a time-varying-effect model will be much more challenging
than the problem considered here, which has not properly discussed yet. Finally, the
proposed variable selectionmethod is based on the L1 adaptiveLASSOpenalty. In the
literature, there are a series of alternative penalized regression methods for variable
selection. For example, one may consider the alternative penalty functions like the
elastic net (Zou andHastie 2005) and the smoothly clipped absolute deviation penalty
(Fan andLi 2001) to reduce the bias of theLASSOestimates.Whendisease predictors
come from many different groups, one may consider using the group LASSO (Yuan
and Lin 2006) to select some groups of disease predictors for quantifying disease
risks. It is of interest to study all these variable selection methods in the dynamic
disease screening and monitoring problems in the future research.
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