
Konstantin Avrachenkov
Paweł Prałat
Nan Ye (Eds.)

LN
CS

 1
16

31

16th International Workshop, WAW 2019
Brisbane, QLD, Australia, July 6–7, 2019
Proceedings

Algorithms and Models
for the Web Graph

Lecture Notes in Computer Science 11631

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Konstantin Avrachenkov •

Paweł Prałat • Nan Ye (Eds.)

Algorithms and Models
for the Web Graph
16th International Workshop, WAW 2019
Brisbane, QLD, Australia, July 6–7, 2019
Proceedings

123

Editors
Konstantin Avrachenkov
Inria
Sophia Antipolis, France

Paweł Prałat
Ryerson University
Toronto, ON, Canada

Nan Ye
The University of Queensland
Brisbane, QLD, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-25069-0 ISBN 978-3-030-25070-6 (eBook)
https://doi.org/10.1007/978-3-030-25070-6

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-25070-6

Preface

The 16th Workshop on Algorithms and Models for the Web Graph (WAW 2019) took
place at the University of Queensland, Brisbane, Australia, July 6–7, 2019. This is an
annual meeting, which is traditionally co-located with another, related, conference.
WAW 2019 was co-located with the 20th INFORMS Applied Probability Society
Conference. Co-location of the two workshops provided opportunities for researchers
in two different but interrelated areas to interact and to exchange research ideas. It was
an effective venue for the dissemination of new results and for fostering research
collaborations.

The World Wide Web has become part of our everyday life, and information
retrieval and data mining on the Web are now of enormous practical interest. The
algorithms supporting these activities combine the view of the Web as a text repository
and as a graph, induced in various ways by links among pages, hosts, and users. The
aim of the workshop was to further the understanding of graphs that arise from the Web
and various user activities on the Web, and stimulate the development of
high-performance algorithms and applications that exploit these graphs. The workshop
gathered the researchers who are working on graph-theoretic and algorithmic aspects of
related complex networks, including social networks, citation networks, biological
networks, molecular networks, and other networks arising from the Internet.

This volume contains the papers presented during the workshop. Each submission
was reviewed by Program Committee members. Papers were submitted and reviewed
using the EasyChair online system. The committee members decided to accept nine
papers.

July 2019 Konstantin Avrachenkov
Paweł Prałat

Nan Ye

Organization

General Chairs

Andrei Z. Broder Google Research, USA
Fan Chung Graham University of California San Diego, USA

Organizing Committee

Konstantin Avrachenkov Sophia Antipolis Inria, France
Paweł Prałat Ryerson University, Canada
Nan Ye The University of Queensland, Australia

Sponsoring Institutions

The University of Queensland
ACEMS (Australian Research Council Center of Excellence for Mathematical
and Statistical Frontiers)
Sophia Antipolis Inria
Google
Moscow Institute of Physics and Technology
Internet Mathematics

Program Committee

Konstantin Avratchenkov Inria, France
Paolo Boldi University of Milan, Italy
Anthony Bonato Ryerson University, Canada
Milan Bradonjic Bell Laboratories, USA
Fan Chung Graham UC San Diego, USA
Collin Cooper King’s College London, UK
Andrzej Dudek Western Michigan University, USA
Alan Frieze Carnegie Mellon University, USA
David Gleich Purdue University, USA
Jeannette Janssen Dalhousie University, Canada
Bogumil Kaminski Warsaw School of Economics, Poland
Ravi Kumar Google, USA
Marc Lelarge Inria, France
Stefano Leonardi Sapienza University of Rome, Italy
Nelly Litvak University of Twente, The Netherlands
Michael Mahoney UC Berkeley, USA
Oliver Mason NUI Maynooth, Ireland

Dieter Mitsche University of Nice Sophia-Antipolis, France
Peter Morters University of Bath, UK
Tobias Mueller Utrecht University, The Netherlands
Liudmila Ostroumova Yandex, Russia
Pan Peng TU Dortmund, Germany
Xavier Perez-Gimenez University of Nebraska-Lincoln, USA
Pawel Pralat Ryerson University, Canada
Vittorio Scarano University of Salerno, Italy
Przemyslaw Szufel SGH Warsaw School of Economics, Poland
Yana Volkovich AppNexus, USA
Nan Ye The University of Queensland, Australia
Stephen Young Pacific Northwest National Laboratory, USA

viii Organization

Contents

Using Synthetic Networks for Parameter Tuning in Community Detection . . . 1
Liudmila Prokhorenkova

Efficiency of Transformations of Proximity Measures
for Graph Clustering . 16

Rinat Aynulin

Almost Exact Recovery in Label Spreading . 30
Konstantin Avrachenkov and Maximilien Dreveton

Strongly n-e.c. Graphs and Independent Distinguishing Labellings 44
Christopher Duffy and Jeannette Janssen

The Robot Crawler Model on Complete k-Partite and Erdős-Rényi
Random Graphs . 57

A. Davidson and A. Ganesh

Estimating the Parameters of the Waxman Random Graph 71
Matthew Roughan, Jonathan Tuke, and Eric Parsonage

Understanding the Effectiveness of Data Reduction in Public
Transportation Networks . 87

Thomas Bläsius, Philipp Fischbeck, Tobias Friedrich,
and Martin Schirneck

A Spatial Small-World Graph Arising from Activity-Based Reinforcement . . . 102
Markus Heydenreich and Christian Hirsch

SimpleHypergraphs.jl—Novel Software Framework for Modelling
and Analysis of Hypergraphs . 115

Alessia Antelmi, Gennaro Cordasco, Bogumił Kamiński, Paweł Prałat,
Vittorio Scarano, Carmine Spagnuolo, and Przemyslaw Szufel

Author Index . 131

Using Synthetic Networks for Parameter
Tuning in Community Detection

Liudmila Prokhorenkova1,2(B)

1 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
2 Yandex, Moscow, Russia
ostroumova-la@yandex.ru

Abstract. Community detection is one of the most important and chal-
lenging problems in network analysis. However, real-world networks may
have very different structural properties and communities of various
nature. As a result, it is hard (or even impossible) to develop one algo-
rithm suitable for all datasets. A standard machine learning tool is to
consider a parametric algorithm and choose its parameters based on the
dataset at hand. However, this approach is not applicable to community
detection since usually no labeled data is available for such parameter
tuning. In this paper, we propose a simple and effective procedure allow-
ing to tune hyperparameters of any given community detection algorithm
without requiring any labeled data. The core idea is to generate a syn-
thetic network with properties similar to a given real-world one, but with
known communities. It turns out that tuning parameters on such syn-
thetic graph also improves the quality for a given real-world network. To
illustrate the effectiveness of the proposed algorithm, we show significant
improvements obtained for several well-known parametric community
detection algorithms on a variety of synthetic and real-world datasets.

Keywords: Community detection · Parameter tuning ·
Hyperparameters · LFR benchmark

1 Introduction

Community structure, which is one of the most important properties of complex
networks, is characterized by the presence of groups of vertices (called commu-
nities or clusters) that are better connected to each other than to the rest of the
network. In social networks, communities are formed based on common inter-
ests or on geographical location; on the Web, pages are clustered based on their
topics; in protein-protein interaction networks, clusters are formed by proteins
having the same specific function within the cell, and so on. Being able to iden-
tify communities is important for many applications: recommendations in social
networks, graph compression, graph visualization, etc.

The problem of community detection has several peculiarities making it hard
to formalize and, consequently, hard to develop a good solution for. First, as
c© Springer Nature Switzerland AG 2019
K. Avrachenkov et al. (Eds.): WAW 2019, LNCS 11631, pp. 1–15, 2019.
https://doi.org/10.1007/978-3-030-25070-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25070-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-25070-6_1

2 L. Prokhorenkova

pointed out in several papers, there is no universal definition of communities [9].
As a result, there are no standard procedures for comparing the performance of
different algorithms. Second, real-world networks may have very different struc-
tural properties and communities of various nature. Hence, it is impossible to
develop one algorithm suitable for all datasets, as discussed in, e.g., [23]. A
standard machine learning tool applied in such cases is to consider a paramet-
ric algorithm and tune its parameters based on the given dataset. Parameters
which have to be chosen by the user based on the observed data are usually
called hyperparameters and are often tuned via cross-validation, but this proce-
dure requires a training part of the datasets with available ground truth labels.
However, the problem of community detection is unsupervised, i.e., no ground
truth community assignments are given, so standard tuning approaches are not
applicable and community detection algorithms are often non-parametric.

We present a surprisingly simple and effective method for tuning hyperpa-
rameters of any community detection algorithm which requires no labeled data
and chooses suitable parameters based only on the structural properties of a
given graph. The core idea is to generate a synthetic network with properties
similar to a given real-world one, but with known community assignments, hence
we can optimize the hyperparameters on this synthetic graph and then apply
the obtained algorithm to the original real-world network. It turns out that such
a trick significantly improves the performance of the initial algorithm.

To demonstrate the effectiveness and the generalization ability of the pro-
posed approach, we applied it to three different algorithms on various synthetic
and real-world networks. In all cases, we obtained substantial improvements com-
pared to the algorithms with default parameters. However, since communities in
real-world networks cannot be formally defined, it is impossible to provide any
theoretical guarantees for those parameter tuning strategies which do not use
labeled data. As a result, the quality of any parameter tuning algorithm can be
demonstrated only empirically. Based on the excellent empirical results obtained,
we believe that the proposed approach captures some intrinsic properties of real-
world communities and would generalize to other datasets and algorithms.

2 Background and Related Work

During the past few years, many community detection algorithms have been
proposed, see [6,7,9,17] for an overview. In this section, we take a closer look at
the algorithms and concepts used in the current research.

2.1 Modularity

Let us start with some notation. We are given a graph G = (V,E), V is a set
of n vertices, E is a set of m undirected edges. Denote by C a partition of V
into several disjoint communities: C = {C1, . . . , Ck}. Also, let min and mout be
the number of intra- and inter-cluster edges in a graph G partitioned according
C. Finally, d(i) denotes the degree of a vertex i and D(C) =

∑
i∈C d(i) is the

overall degree of a community C ∈ C.

Using Synthetic Networks for Parameter Tuning in Community Detection 3

Modularity is a widely used measure optimized by many community detection
algorithms. It was first proposed in [21] and is defined as follows

Q(C, G, γ) =
min

m
− γ

4m2

∑

C∈C
D(C)2, (1)

where γ is a resolution parameter [13]. The intuition behind modularity is the
following: the first term in (1) is the fraction of intra-cluster edges, which is
expected to be relatively high for good partitions, while the second term penalizes
this value for having too large communities. Namely, the value

∑
C∈C D(C)2

4m2 is the
expected fraction of intra-cluster edges if we preserve the degree sequence but
connect all vertices randomly, i.e., if we assume that our graph is constructed
according to the configuration model [19].

Modularity was originally introduced with γ = 1 and many community detec-
tion algorithms maximizing this measure were proposed. However, it was shown
in [8] that modularity has a resolution limit, i.e., algorithms based on modularity
maximization are unable to detect communities smaller than some size. Adding
a resolution parameter allows to overcome this problem: larger values of γ in
general lead to smaller communities. However, tuning γ is a challenging task. In
this paper, we propose a solution to this problem.

2.2 Modularity Optimization and Louvain Algorithm

Many community detection algorithms are based on modularity optimization.
In this paper, as one of our base algorithms, we choose arguably the most well-
known and widely used greedy algorithm called Louvain [4]. It starts with each
vertex forming its own community and works in several phases. To create the
first level of a partition, we iterate through all vertices and for each vertex v we
compute the gain in modularity coming from removing v from its community
and putting it to each of its neighboring communities; then we move v to the
community with the largest gain, if it is positive. When we cannot improve
modularity by such local moves, the first level is formed. After that, we replace
the obtained communities by supervertices connected by weighted edges; the
weight between two supervertices is equal to the number of edges between the
vertices of the corresponding communities. Then we repeat the process described
above with the supervertices and form the second level of a partition. After that,
we merge the supervertices again, and so on, as long as modularity increases.
The Louvain algorithm is quite popular since it is fast and was shown to provide
partitions of good quality. However, by default, it optimizes modularity with
γ = 1, therefore, it suffers from a resolution limit.

2.3 Likelihood Optimization Methods

Likelihood optimization algorithms are also widely used in community detection.
Such methods are mathematically sound and have theoretical guarantees under
some model assumptions [3]. The main idea is to assume some underlying random

4 L. Prokhorenkova

graph model parameterized by community assignments and find a partition C
that maximizes the likelihood P (G|C), which is the probability that a graph
generated according to the model with communities C exactly equals G.

The standard random graph model assumed by likelihood maximization
methods is the stochastic block model (SBM) or its simplified version—planted
partition model (PPM). In these models, the probability that two vertices are
connected by an edge depends only on their community assignments. Recently,
the degree-corrected stochastic block model (DCSBM) together with the degree-
corrected planted partition model (DCPPM) were proposed [12]. These models
take into account the observed degree sequence of a graph, and, as a result, they
are more realistic. It was also noticed that if we fix the parameters of DCPPM,
then likelihood maximization based on this model is equivalent to modularity
optimization with some γ [22]. Finally, in a recent paper [24] the independent
LFR model (ILFR) was proposed and analyzed. It was shown that ILFR gives a
better fit for a variety of real-world networks [24]. In this paper, to illustrate the
generalization ability of the proposed hyperparameter tuning strategy, in addi-
tion to the Louvain algorithm, we also use parametric likelihood maximization
methods based on PPM and ILFR.

2.4 LFR Model

Our parameter tuning strategy is based on constructing a synthetic graph struc-
turally similar to the observed network. To do this, we use the LFR model [14]
which is the well-known synthetic benchmark usually used for comparison of
community detection algorithms. LFR generates a graph with power-law distri-
butions of both degrees and community sizes in the following way. First, we gen-
erate the degrees of vertices by sampling them independently from the power-law
distribution with exponent γd, mean d̄ and with maximum degree dmax. Then,
using a mixing parameter μ̂, 0 < μ̂ < 1, we obtain internal and external degrees
of vertices: we expect each vertex to share a fraction 1 − μ̂ of its edges with the
vertices of its community and a fraction μ̂ with the other vertices of the network.
After that, the sizes of the communities are sampled from a power-law distri-
bution with exponent γC and minimum and maximum community sizes Cmin

and Cmax, respectively. Then, vertices are assigned to communities such that
the internal degree of any vertex is less than the size of its community. Finally,
the configuration model [19] with rewiring steps is used to construct a graph
with a given degree sequence and with the required fraction of internal edges.
The detailed description of this procedure can be found in [14].

3 Tuning Parameters

Assume that we are given a graph G and our aim is to find a partition C
of its vertex set into disjoint communities. To do this, we have a community
detection algorithm Aθ, where θ ∈ Θ is a set of hyperparameters. Let θ0 be

Using Synthetic Networks for Parameter Tuning in Community Detection 5

the default hyperparameters. Assume that we are also given a quality func-
tion Q(CAθ

, CGT) allowing to measure goodness of a partition CAθ
obtained by

Aθ compared to the ground truth partition CGT . Ideally, we would like to find
θ̄ = arg maxθ Q(CAθ

, CGT). However, we cannot do this since CGT is not available.
Therefore, we propose to construct a synthetic graph G′ which has structural
properties similar to G and also has known community assignments. For this pur-
pose, we use the LFR model described in Sect. 2.4. To apply this model, we have
to define its parameters, which can be divided into graph-based (n, γd, d̄, dmax)
and community-based (γC , Cmin, Cmax, μ̂).

Graph-based parameters are easy to estimate:

– n = |V (G)| is the number of vertices in the observed network;
– d̄ = 2|E(G)|

n is the average degree;
– dmax is the maximum degree in G;
– γd is the exponent of the power-law degree distribution; we estimate this

parameter by fitting the power-law distribution to the cumulative degree dis-
tribution (we minimize the sum of the squared residuals in log-log scale).

Community-based parameters contain some information about the commu-
nity structure, which is not known for the graph G. However, we can try
to approximate these parameters by applying the algorithm Aθ0 with default
parameters to G. This would give us some partition C0 which can be used to
estimate the remaining parameters:

– μ̂ = mout

m is the mixing parameter, i.e., the fraction of inter-community edges
in G partitioned according to C0;

– γC is the exponent of the power-law community size distribution; we esti-
mate this parameter by fitting the power-law distribution to the cumulative
community size distribution obtained from C0 (we minimize the sum of the
squared residuals in log-log scale);

– Cmin and Cmax are the minimum and maximum community sizes in C0.

We generate a graph G′ according to the LFR model with parameters spec-
ified above. Using G′ we can tune the parameters to get a better value of θ:

θopt = arg max
θ

Q(C′
Aθ

, C′
GT), (2)

where C′
GT is known ground truth partition for G′ and C′

Aθ
is a partition of G′

obtained by Aθ. It turns out that this simple idea leads to a universal method
for tuning θ, which successfully improves the results of several algorithms Aθ on
a variety of synthetic and real-world datasets, as we show in Sect. 4.

The detailed description of the proposed procedure is given in Algorithm1.
Note that in addition to the general idea described above we also propose two
modifications improving the robustness of the algorithm. The first one reduces
the effect of randomness in the LFR benchmark: if the number of vertices in
G is small, then a network generated by the LFR model can be noisy and the
optimal parameters θopt computed according to Eq. (2) may vary from sample to

6 L. Prokhorenkova

Algorithm 1. Hyperparameter tuning
input : graph G, algorithm Aθ, default hyperparameters θ0, candidate

parameters {θi}l
i=1, quality function Q, ngraphs, nruns

n, d̄, dmax, γd ← EstimateGraphParams(G);
C0 ← Aθ0(G);
μ̂, γC , Cmin, Cmax ← EstimateCommunityParams(G, C0);
ParamsList ← ∅;
for i ← 1 to ngraphs do

G′, C′
GT ← GenerateLFR(n, d̄, dmax, γd, μ̂, γC , Cmin, Cmax);

QualityList ← ∅;

for θ ∈ {θi}l
i=1 do

Qualities ← ∅;
for j ← 1 to nruns do

Cθ ← Aθ(G
′);

Add Q(Cθ, C′
GT) to Qualities;

MeanQuality ← mean(Qualities);
Add MeanQuality to QualityList;

index ← arg max(QualityList);
Add θindex to ParamsList;

θ = median(ParamsList);
return θ

sample. Hence, we propose to generate ngraphs synthetic networks and take the
median of the obtained parameters. The value ngraphs depends on computational
resources: larger values, obviously, lead to more stable results. Fortunately, as
we discuss in Sect. 4.5, this effect of randomness is critical only for small graphs,
so we do not have to increase computational complexity much for large datasets.

The second improvement accounts for a possible randomness of the algorithm
Aθ. If Aθ includes some random steps, then we can increase the robustness of
our procedure by running Aθ several times and averaging the obtained qualities.
The corresponding parameter is called nruns in Algorithm 1. Formally, in this
case Eq. (2) should be replaced by

θopt = arg max
θ

1
nruns

nruns∑

i=1

Q(C′
Aθ,i, C′

GT), (3)

where C′
Aθ,i is a (random) partition obtained by Aθ on G′. If Aθ is deterministic,

then it is sufficient to take nruns = 1.
Note that for the sake of simplicity in Algorithm1 we use grid search to

approximately find θopt defined in (3). However, any other method of black-box
optimization can be used instead, e.g., random search [2], Bayesian optimiza-
tion [25], Gaussian processes [10], sequential model-based optimization [11], and
so on. More advanced black-box optimization methods can significantly speed
up the algorithm.

Using Synthetic Networks for Parameter Tuning in Community Detection 7

Let us discuss the time complexity of the proposed algorithm. If complexity of
Aθ is f(G), then complexity of Algorithm1 is O (f(G) · l · nruns · ngraphs), where
l is the number of steps made by the black-box optimization (the complexity of
generating G′ is usually negligible compared with community detection). In other
words, the complexity is nruns · ngraphs times larger than the complexity of any
black-box parameter optimization algorithm. However, as we discuss in Sect. 4.5,
nruns and ngraphs can be equal to one for large datasets.

Finally, note that it can be tempting to make several iterations of Algorithm1
to further improve θopt. Namely, in Algorithm 1 we estimate community-based
parameters of LFR using the partition C0 obtained with Aθ0 . Then, we obtain
better parameters θopt. These parameters can be further used to get a better par-
tition using Aθopt

and this partition is expected to give even better community-
based parameters. However, in our preliminary experiments, we did not notice
significant improvements from using several iterations, therefore we propose to
use Algorithm 1 as it is without increasing its computational complexity.

4 Experiments

4.1 Parametric Algorithms

We use the following algorithms to illustrate the effectiveness of the proposed
hyperparameter tuning strategy.

Louvain. This algorithm is described in Sect. 2.2, it has the resolution parameter
γ with default value γ0 = 1. We take the publicly available implementation
from [24],1 where the algorithm is called DCPPM since modularity maximization
is equivalent to the likelihood optimization for the DCPPM random graph model.

PPM. This algorithms is based on likelihood optimization for PPM (see
Sect. 2.3). We use the publicly available implementation proposed in [24], where
the Louvain algorithm is used as a basis to optimize the likelihood for several
models. Since likelihood optimization for PPM is equivalent to maximizing a
simplified version of modularity based on the Erdős–Rényi model instead of the
configuration model [22], PPM algorithm also has a resolution parameter γ with
the default value γ0 = 1.

ILFR. This is a likelihood optimization algorithm based on the ILFR model (see
Sect. 2.3). Again, we use the publicly available implementation from [24]. ILFR
algorithm has one parameter μ called mixing parameter and no default value
for this parameter is proposed in the literature. In this paper, we take μ0 =
0.3, which is close to the average mixing parameter in the real-world datasets
under consideration (see Sect. 4.2). Our experiments confirm that μ0 = 0.3 is a
reasonable default value for this algorithm.

Let us stress that in this paper we are not aiming to develop the best commu-
nity detection algorithm or to analyze all existing methods. Our main goal is to

1 https://github.com/altsoph/community loglike.

https://github.com/altsoph/community_loglike

8 L. Prokhorenkova

Table 1. Real-world datasets

Dataset n m Num. clusters Mixing parameter

Karate club [27] 34 78 2 0.128

Dolphin network [16] 62 159 2 0.038

College football [21] 115 613 11 0.325

Political books [20] 105 441 3 0.159

Political blogs [1] 1224 16715 2 0.094

email-Eu-core [15] 986 16064 42 0.664

Cora citation [26] 24166 89157 70 0.458

AS [5] 23752 58416 176 0.561

show that hyperparameter tuning is possible in the field of community detection.
We use several base algorithms described above to illustrate the generalization
ability of the proposed approach. For each algorithm, our aim is to improve its
default parameter by our parameter tuning strategy.

4.2 Datasets

Synthetic Networks. We generated several synthetic graphs according to the LFR
benchmark described in Sect. 2.4 with n = 104, γd = 2.5, d̄ = 20, dmax = 200,
γC = 1.5, Cmin = 50, Cmax = 500, μ̂ ∈ {0.4, 0.5, 0.6, 0.7}.2 On the one hand, one
would expect results obtained on such synthetic datasets to be optimistic, since
the same LFR model is used both to tune the parameters and to validate the
performance of the algorithms. On the other hand, recall that the most important
ingredient of the model, i.e., the distribution of community sizes, is not known
and has to be estimated using the initial community detection algorithm, and
incorrect estimates may negatively affect the final performance.

Real-World Networks. We follow the work [24], where the authors collected and
shared 8 real-world datasets publicly available in different sources.3 For all these
datasets, the ground truth community assignments are available and the com-
munities are non-overlapping. These networks are of various sizes and structural
properties, see the description in Table 1.

4.3 Evaluation Metrics

In the literature, there is no universally accepted metric for evaluating the perfor-
mance of community detection algorithms. Therefore, we analyze several stan-
dard ones [7]. Namely, we use two widely used similarity measures based on
2 Note that μ̂ > 0.5 does not mean the absence of community structure since usually

a community is much smaller than the rest of the network and even if more than
a half of the edges for each vertex go outside the community, the density of edges
inside the community is still large.

3 https://github.com/altsoph/community loglike/tree/master/datasets.

https://github.com/altsoph/community_loglike/tree/master/datasets

Using Synthetic Networks for Parameter Tuning in Community Detection 9

counting correctly and incorrectly classified pairs of vertices: Rand and Jaccard
indices. We also consider the Normalized Mutual Information (NMI) of two par-
titions: if NMI is close to 1, one needs a small amount of information to infer the
ground truth partition from the obtained one, i.e., two partitions are similar.

4.4 Experimental Setup

We apply the proposed strategy to the algorithms described in Sect. 4.1. We use
the grid search to find the parameter θopt (we do this to make our results easier
to reproduce and we also need this for the analysis of stability in Sect. 4.5). For
ILFR we try μ in the range [0, 1] with step size 0.05 and for Louvain and PPM
on real-world datasets we take γ in the range [0, 2] with step size 0.1. Although
we noticed that in some cases the optimal γ for PPM and Louvain can be larger
than 2, such cases rarely occur on real-world datasets. On synthetic graphs, we
take γ in the range [0, 4] (with step size 0.2) to demonstrate the behavior of γopt

depending on μ̂.
To guarantee stability and reproducibility of the obtained results, we choose

a sufficiently large parameter nruns, although we noticed similar improvements
with much smaller values. Namely, for Karate, Dolphins, Football, and Political
books we take nruns = 103, for Political blogs and Eu-core nruns = 100, for
Cora, AS, and synthetic networks nruns = 2. We take ngraphs = 103 for four
smallest datasets and ngraphs = 100 for the other ones (we choose such large
values to plot the histograms on Fig. 1).

Finally, note that it is impossible to measure the statistical significance of
obtained improvements on real-world datasets since we have only one copy for
each graph. However, we can account for the randomness included in the algo-
rithms. Namely, Louvain, PPM, and ILFR are randomized, since at each itera-
tion they order the vertices randomly. Therefore, to measure if θopt is significantly
better or worse than θ0, we can run each algorithm several times and then apply
the unpaired t-test (we use 100 runs in all cases).

4.5 Results

In this section, we first discuss the improvements obtained for each algorithm
and then analyze the stability of the parameter tuning strategy and the effect
of the parameter ngraphs.

Louvain Algorithm. In Table 2, for each similarity measure we present the
value for the baseline algorithm (with γ = 1), the value for the tuned algorithm,
and the obtained parameter γopt. Since Louvain is randomized, we provide the
mean value together with an estimate of the standard deviation, which is given
in brackets. The number of runs used to compute these values depends on the
size of the dataset and on the available computational resources: 104 for Karate,
Dolphins, Football and Political books, 103 for Political blogs and Eu-core, 100
for Cora, AS and synthetic datasets.

10 L. Prokhorenkova

Table 2. Louvain algorithm, default value is γ0 = 1, standard deviation is given in the
brackets

Rand Jaccard NMI

Dataset Default Tuned γopt Default Tuned γopt Default Tuned γopt

Karate 0.76 (0.02) 0.95 (0.02) 0.6 0.52 (0.04) 0.89 (0.03) 0.5 0.63 (0.05) 0.74 (0.07) 0.7

Dolphins 0.65 (0.02) 0.87 (0.07) 0.5 0.37 (0.04) 0.61 (0.13) 0.1 0.52 (0.04) 0.52 (0.04) 1.0

Football 0.97 (0.01) 0.99 (0.00) 1.7 0.72 (0.06) 0.90 (0.04) 1.7 0.92 (0.02) 0.97 (0.01) 1.7

Pol. books 0.83 (0.02) 0.85 (0.00) 0.8 0.61 (0.06) 0.65 (0.01) 0.8 0.54 (0.02) 0.56 (0.01) 0.8

Pol. blogs 0.88 (0.00) 0.90 (0.00) 0.7 0.78 (0.01) 0.82 (0.00) 0.7 0.64 (0.01) 0.68 (0.01) 0.8

Eu-core 0.86 (0.02) 0.93 (0.00) 1.4 0.22 (0.02) 0.35 (0.01) 1.4 0.58 (0.02) 0.66 (0.01) 1.4

Cora 0.94 (0.00) 0.96 (0.00) 2.0 0.13 (0.00) 0.15 (0.00) 2.0 0.46 (0.01) 0.49 (0.00) 2.0

AS 0.82 (0.00) 0.82 (0.00) 1.8 0.19 (0.03) 0.26 (0.01) 0.6 0.49 (0.01) 0.49 (0.01) 0.8

LFR-0.4 1.00 (0.00) 1.00 (0.00) 2.8 0.96 (0.04) 1.00 (0.00) 2.8 0.99 (0.00) 1.00 (0.00) 2.8

LFR-0.5 1.00 (0.00) 1.00 (0.00) 3.0 0.86 (0.08) 1.00 (0.01) 3.0 0.98 (0.01) 1.00 (0.00) 3.0

LFR-0.6 0.98 (0.01) 1.00 (0.00) 3.6 0.61 (0.12) 0.97 (0.01) 3.6 0.94 (0.02) 0.99 (0.00) 3.6

LFR-0.7 0.91 (0.01) 0.98 (0.00) 3.8 0.09 (0.02) 0.32 (0.03) 3.6 0.39 (0.05) 0.68 (0.02) 3.8

One can see that our tuning strategy improves (or does not change) the
results in all cases and the obtained improvements can be huge. For example, on
Karate we obtain remarkable improvements from 0.761 to 0.945 (relative change
is 24%) according to Rand and from 0.52 to 0.892 (72%) according to Jaccard;
on Dolphins we get 35% improvement for Rand and 63% for Jaccard; on Football
we obtain plus 25% for Jaccard; and so on. As discussed in Sect. 4.4, we measured
the statistical significance of the obtained improvements. The results which are
significantly better are marked in bold in Table 2. On real-world datasets all
improvements are statistically significant (p-value � 0.01).4 Let us note that in
many cases the results of the tuned algorithm are much better than the best
results reported in [24], where the authors used other strategies for choosing the
hyperparameter values.5

For synthetic datasets, we also observe huge improvements and all of them
are statistically significant. While for μ̂ ∈ {0.4, 0.5} the default algorithm can be
considered as good enough, for large values of μ̂, μ̂ ∈ {0.6, 0.7}, the tuned one is
much better. For example, for LFR-0.7 the tuned parameter gives Jaccard index
almost 4 times larger than the default one.

We noticed that for most of the datasets the values of γopt computed using
different similarity measures are the same or close to each other. However, there
are some exceptions. The first one is Dolphins, where for Jaccard γopt = 0.1, for
Rand γopt = 0.5, for NMI γopt = 1.0. We checked that if we take the median value
γopt = 0.5, then for all measures we obtain statistically significant improvements,

4 The results in Tables 2, 3 and 4 are rounded to two decimals, so there may be a
statistically significant improvement even when the numbers in the table are equal.
Also, standard deviation less than 0.005 is rounded to zero.

5 For small datasets, our results for the default Louvain algorithm may differ from
the ones reported in [24]. The reason is the high values of standard deviation. The
authors of [24] averaged the results over 5 runs of the algorithm, while we use more
runs, i.e., our average values are more stable.

Using Synthetic Networks for Parameter Tuning in Community Detection 11

Table 3. PPM algorithm, default value γ0 = 1, standard deviation is given in the
brackets

Rand Jaccard NMI

Dataset Default Tuned γopt Default Tuned γopt Default Tuned γopt

Karate 0.76 (0.02) 0.78 (0.04) 0.8 0.51 (0.04) 0.49 (0.00) 0.1 0.63 (0.05) 0.63 (0.05) 1.0

Dolphins 0.62 (0.03) 0.76 (0.04) 0.7 0.33 (0.04) 0.82 (0.19) 0.1 0.47 (0.04) 0.41 (0.02) 1.6

Football 0.97 (0.01) 0.99 (0.00) 1.6 0.72 (0.04) 0.90 (0.04) 1.6 0.92 (0.01) 0.97 (0.01) 1.6

Pol. books 0.78 (0.02) 0.85 (0.01) 0.7 0.48 (0.04) 0.65 (0.02) 0.7 0.50 (0.02) 0.57 (0.01) 0.7

Pol. blogs 0.65 (0.02) 0.72 (0.04) 0.4 0.32 (0.02) 0.47 (0.04) 0.4 0.29 (0.02) 0.33 (0.04) 0.5

Eu-core 0.80 (0.02) 0.77 (0.02) 0.9 0.10 (0.01) 0.09 (0.01) 0.9 0.53 (0.02) 0.49 (0.02) 0.8

Cora 0.94 (0.00) 0.96 (0.00) 2.0 0.11 (0.00) 0.13 (0.00) 2.0 0.47 (0.00) 0.50 (0.00) 2.0

AS 0.79 (0.01) 0.81 (0.00) 1.8 0.11 (0.01) 0.15 (0.03) 0.8 0.46 (0.02) 0.46 (0.02) 1.2

LFR-0.4 1.00 (0.00) 1.00 (0.00) 2.8 0.99 (0.02) 1.00 (0.02) 2.8 1.00 (0.00) 1.00 (0.00) 2.8

LFR-0.5 1.00 (0.01) 1.00 (0.00) 3.0 0.88 (0.13) 0.96 (0.05) 3.0 0.99 (0.01) 0.99 (0.01) 3.0

LFR-0.6 0.97 (0.02) 0.99 (0.00) 3.2 0.44 (0.20) 0.67 (0.09) 3.2 0.85 (0.11) 0.91 (0.04) 3.0

LFR-0.7 0.80 (0.03) 0.97 (0.01) 2.8 0.03 (0.02) 0.15 (0.07) 2.8 0.18 (0.11) 0.51 (0.11) 2.8

which seems to be another way to increase the stability of our strategy. The most
notable case, where γopt significantly differs for different similarity measures, is
AS dataset, where γopt = 1.8 > γ0 for Rand, γopt = 0.6 < γ0 for Jaccard, and
γopt = 0.8 < γ0 for NMI. We will further make similar observations for other
algorithms on this dataset. Such instability may mean that this dataset does
not have a clear community structure (which can sometimes be the case for
real-world networks [18]).

PPM Algorithm. For PPM (Table 3), our strategy improves the original algo-
rithm for all real-world datasets but Eu-core (for all similarity measures), Karate
(only for Jaccard), and Dolphins (only for NMI). Note that Karate and Dolphins
are the only datasets (except for AS, which will be discussed further in this
section), where the obtained values for γopt are quite different for different sim-
ilarity measures. We checked that if for these two datasets we take the median
value of γopt, (0.8 for Karate and 0.7 for Dolphins), then we obtain improvements
in all six cases, five of them, except NMI on Karate, are statistically significant
(p-value � 0.01). On Eu-core the quality of PPM with γ0 = 1 is worse than the
quality of Louvain with γ = 1. This seems to be the reason why PPM chooses
a suboptimal parameter γopt: a partition obtained by PPM does not allow for
a good estimate of the community-based parameters. As for Louvain, in many
cases the obtained improvements are huge: e.g., the relative improvement for the
Jaccard index is 147% on Dolphins, 26% on Football, 35% on Political books,
50% on Political blogs, an so on. All improvements are statistically significant.

We also improve the default algorithm on all synthetic datasets and for all
similarity measures. As for the Louvain algorithm, the improvements are espe-
cially huge for large μ̂, μ̂ ∈ {0.6, 0.7}. All improvements are statistically signifi-
cant.

ILFR Algorithm. For real-world datasets, in almost all cases, we obtain sig-
nificant improvements (see Table 4). One exception is Dolphins for NMI. This,
again, can be fixed by taking a median of the values μopt obtained for all sim-

12 L. Prokhorenkova

Table 4. ILFR algorithm, default value μ0 = 0.3, standard deviation is given in the
brackets

Rand Jaccard NMI

Dataset Default Tuned μopt Default Tuned μopt Default Tuned μopt

Karate 0.75 (0.03) 0.85 (0.04) 0.15 0.51 (0.04) 0.74 (0.07) 0.05 0.63 (0.06) 0.63 (0.06) 0.30

Dolphins 0.58 (0.01) 0.62 (0.03) 0.15 0.25 (0.02) 0.56 (0.00) 0.00 0.45 (0.02) 0.26 (0.00) 1.00

Football 0.99 (0.00) 0.99 (0.00) 0.45 0.91 (0.03) 0.91 (0.02) 0.45 0.97 (0.01) 0.97 (0.00) 0.45

Pol. books 0.73 (0.02) 0.82 (0.01) 0.15 0.35 (0.04) 0.59 (0.03) 0.15 0.45 (0.01) 0.53 (0.02) 0.15

Pol. blogs 0.77 (0.02) 0.85 (0.04) 0.15 0.57 (0.05) 0.73 (0.04) 0.15 0.44 (0.01) 0.53 (0.03) 0.20

Eu-core 0.89 (0.02) 0.94 (0.01) 0.50 0.23 (0.03) 0.37 (0.02) 0.50 0.64 (0.02) 0.71 (0.01) 0.50

Cora 0.98 (0.00) 0.98 (0.00) 0.05 0.06 (0.00) 0.10 (0.00) 0.05 0.55 (0.00) 0.43 (0.01) 0.00

AS 0.83 (0.00) 0.83 (0.00) 1.00 0.02 (0.00) 0.18 (0.00) 0.00 0.44 (0.00) 0.42 (0.00) 1.00

LFR-0.4 1.00 (0.00) 1.00 (0.00) 0.40 1.00 (0.00) 1.00 (0.00) 0.40 1.00 (0.00) 1.00 (0.00) 0.40

LFR-0.5 1.00 (0.00) 1.00 (0.00) 0.35 1.00 (0.01) 1.00 (0.01) 0.35 1.00 (0.00) 1.00 (0.00) 0.35

LFR-0.6 1.00 (0.00) 1.00 (0.00) 0.25 0.96 (0.08) 0.97 (0.06) 0.25 0.99 (0.01) 1.00 (0.00) 0.25

LFR-0.7 0.97 (0.02) 0.98 (0.01) 0.35 0.35 (0.13) 0.34 (0.12) 0.30 0.74 (0.06) 0.74 (0.06) 0.30

ilarity measures on this dataset: μopt = 0.15 improves the results compared to
μ0 = 0.3 for all three measures. Other bad examples are Cora and AS, where
Rand and NMI decrease, while Jaccard increases. For all other datasets, we
obtain improvements. In many cases, the difference is huge and statistically sig-
nificant. On synthetic datasets, the default ILFR algorithm is the best among
the considered ones. In some cases, however, the default algorithm is further
improved by our hyperparameter tuning strategy, while in others the difference
is not statistically significant. Surprisingly, for large values of μ̂ the tuned value
μopt is much smaller than μ̂. For example, for μ̂ = 0.6 we get μopt = 0.25,
although we checked that the estimated parameter used for generating synthetic
graphs is very close to 0.6.

For real-world and synthetic networks, the obtained value μopt can be both
larger and smaller than μ0 = 0.3. Also, for synthetic networks, μ0 is close to the
obtained μopt. We conclude that the chosen default value is reasonable.

In rare cases, μopt for a dataset can be quite different for different similarity
measures. On AS, μopt = 0 for Jaccard and μopt = 1 for Rand and NMI. Note
that if μ = 0, then the obtained algorithm tends to group all vertices in one
cluster, while for μ = 1 all vertices form their own clusters. Interestingly, for
the Jaccard index, such a trivial partition outperforms the default algorithm.
Moreover, the algorithm putting each vertex in its own cluster has close to
the best performance according to the Rand index compared to all algorithms
discussed in this section (both default and tuned). We conclude that AS does
not have a clear community structure.

Stability of Generated Graphs. As discussed in Sect. 3, there are two sources
of possible noise in the proposed parameter tuning procedure: (1) for small
graphs the generated LFR network can be noisy, which may lead to unstable
predictions of θopt, (2) the randomness of A may also affect the estimate of θopt

in Eq. (3). The effect of the second problem can be understood using Tables 2, 3
and 4, where the standard deviations for θ0 and θopt are presented.

Using Synthetic Networks for Parameter Tuning in Community Detection 13

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

fr
eq

ue
nc

y

parameter

(a) Karate

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

fr
eq

ue
nc

y

parameter

(b) Dolphins

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

fr
eq

ue
nc

y

parameter

(c) Football

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

fr
eq

ue
nc

y

parameter

(d) Political books

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.6 0.7 0.8 0.9 1 1.1

fr
eq

ue
nc

y

parameter

(e) Political blogs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

fr
eq

ue
nc

y

parameter

(f) Eu-core

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.7 1.8 1.9 2 2.1

fr
eq

ue
nc

y

parameter

(g) Cora

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

fr
eq

ue
nc

y

parameter

(h) AS

Fig. 1. The distribution of γopt for the Louvain algorithm, NMI similarity measure

14 L. Prokhorenkova

To analyze the effect of noise caused by the randomness in LFR graphs and to
show that it is more pronounced for small datasets, we looked at the distribution
of the parameters θopt obtained for different samples of generated graphs. We
demonstrate this effect using the Louvain algorithm and NMI similarity measure
(see Fig. 1), we take ngraphs = 103 for four smallest datasets and ngraphs = 100
for the other ones. Except for the AS dataset, which is noisy according to all
our experiments, one can clearly see that the variance of γopt decreases when n
increases. As a result, we see that for large datasets even ngraphs = 1 already
provides a good estimate for γopt.

5 Conclusion

We proposed and analyzed a surprisingly simple yet effective algorithm for hyper-
parameter tuning in community detection. The core idea is to generate a syn-
thetic graph structurally similar to the observed network but with known com-
munity assignments. Using this graph, we can apply any standard black-box
optimization strategy to approximately find the optimal hyperparameters and
use them to cluster the original network. We empirically demonstrated that such
a trick applied to several algorithms leads to significant improvements on both
synthetic and real-world datasets. Now, being able to tune parameters of any
community detection algorithm, one can develop and successfully apply para-
metric community detection algorithms, which was not previously possible.

Acknowledgements. This study was funded by the Russian Foundation for Basic
Research according to the research project 18-31-00207 and Russian President grant
supporting leading scientific schools of the Russian Federation NSh-6760.2018.1.

References

1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election:
divided they blog. In: Proceedings of the 3rd International Workshop on Link
Discovery, pp. 36–43. ACM (2005)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(Feb), 281–305 (2012)

3. Bickel, P.J., Chen, A.: A nonparametric view of network models and newman-
girvan and other modularities. Proc. Natl. Acad. Sci. 106(50), 21068–21073 (2009)

4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008
(2008)

5. Boguná, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyper-
bolic mapping. Nat. Commun. 1, 62 (2010)

6. Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery
methods in complex networks. Stat. Anal. Data Min.: ASA Data Sci. J. 4(5),
512–546 (2011)

7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
8. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc.

Natl. Acad. Sci. 104(1), 36–41 (2007)

Using Synthetic Networks for Parameter Tuning in Community Detection 15

9. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep.
659, 1–44 (2016)

10. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google
vizier: a service for black-box optimization. In: International Conference on Knowl-
edge Discovery and Data Mining, pp. 1487–1495. ACM (2017)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

12. Karrer, B., Newman, M.E.: Stochastic blockmodels and community structure in
networks. Phys. Rev. E 83(1), 016107 (2011)

13. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community
detection. Phys. Rev. E 84(6), 066122 (2011)

14. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

15. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 2 (2007)

16. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.:
The bottlenose dolphin community of doubtful sound features a large proportion
of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

17. Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection in directed
networks: a survey. Phys. Rep. 533(4), 95–142 (2013)

18. Miasnikof, P., Prokhorenkova, L., Shestopaloff, A.Y., Raigorodskii, A.: A statistical
test of heterogeneous subgraph densities to assess clusterability. In: 13th LION
Learning and Intelligent OptimizatioN Conference. Springer (2019)

19. Molloy, M., Reed, B.: A critical point for random graphs with a given degree
sequence. Random Struct. Algorithms 6(2–3), 161–180 (1995)

20. Newman, M.E.: Modularity and community structure in networks. Proc. Natl.
Acad. Sci. 103(23), 8577–8582 (2006)

21. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

22. Newman, M.: Community detection in networks: modularity optimization and
maximum likelihood are equivalent. arXiv preprint arXiv:1606.02319 (2016)

23. Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata and
community detection in networks. Sci. Adv. 3(5), e1602548 (2017)

24. Prokhorenkova, L., Tikhonov, A.: Community detection through likelihood opti-
mization: in search of a sound model. In: The World Wide Web Conference, pp.
1498–1508. ACM (2019)

25. Snoek, J., et al.: Scalable Bayesian optimization using deep neural networks. In:
International Conference on Machine Learning, pp. 2171–2180 (2015)

26. Šubelj, L., Bajec, M.: Model of complex networks based on citation dynamics.
In: Proceedings of the 22nd International Conference on World Wide Web, pp.
527–530. ACM (2013)

27. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33(4), 452–473 (1977)

https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
http://arxiv.org/abs/1606.02319

Efficiency of Transformations
of Proximity Measures
for Graph Clustering

Rinat Aynulin1,2(B)

1 Kotel’nikov Institute of Radio-engineering and Electronics (IRE) of Russian
Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

2 Moscow Institute of Physics and Technology, 9 Inststitutskii per., Dolgoprudny,
Moscow Region 141700, Russia
rinat.aynulin@phystech.edu

Abstract. Choice of proximity measure for the nodes greatly affects the
results of graph clustering. In this paper, we consider several proximity
measures transformed with a number of functions including the loga-
rithmic function, the power function, and a family of activation func-
tions. Transformations are tested in experiments in which several clas-
sical datasets are clustered using the k-Means, Ward, and the spectral
method. The analysis of experimental results with statistical methods
shows that a number of transformed proximity measures outperform
their non-transformed versions. The top-performing transformed mea-
sures are the Heat measure transformed with the power function, the
Forest measure transformed with the power function, and the Forest
measure transformed with the logarithmic function.

1 Introduction

Research in such areas as bioinformatics, chemistry, social networks, Web search,
etc. often involves work with objects which are connected to each other. Graphs
are a natural way of representing structured data: nodes represent objects while
edges represent connections between them. If we need to detect groups (clusters)
of similar objects in the graph taking into account connections between them,
clustering methods are used.

Regardless of the clustering method used, for its implementation, it is intro-
duced, either explicitly or implicitly, a distance on the set of graph nodes. Some
common metrics are the shortest path metric and the commute time metric, how-
ever, there are also more complex metrics [9, Chapter 15], for example, those
based on the Heat, Communicability, Forest, and other proximity measures. The
selected distance directly affects the quality of clustering, and the choice of the
most suitable distance is an indispensable task of the researcher.

Considering the increase in computer processing power and the current trend
for the huge growth in the volume and variety of processed data, among which
there is a lot of data that needs to be clustered, graph clustering has many
c© Springer Nature Switzerland AG 2019
K. Avrachenkov et al. (Eds.): WAW 2019, LNCS 11631, pp. 16–29, 2019.
https://doi.org/10.1007/978-3-030-25070-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25070-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-25070-6_2

Efficiency of Transformations of Proximity Measures for Graph Clustering 17

applications [23]. Due to the importance of graph clustering, a lot of methods
for improving the quality of clustering have been suggested in recent years. This
can be achieved by adjusting the clustering method. For example, the k-Means
method can be improved using the local search method [17]. Another way to
improve the quality of clustering is to change the metric used. In this study, we
explore the potential for improvement of the quality of clustering by transforming
metrics.

Previously, it was shown that the use of logarithmic measures (measures
obtained by taking the logarithm of each element of the kernel matrix) positively
affects the quality of clustering [1,16]. These results are discussed in more detail
in Sect. 2. In the subsequent sections, we investigate the efficiency of various
metric transformations for graph clustering.

The main result is that certain transformations improve the results of cluster-
ing in comparison with the non-transformed metrics. The set of efficient trans-
formations depends on the transformed metric and the clustering method used,
however, for most metrics and algorithms, the best quality is shown by such
transformations as the logarithmic function and the power function with certain
exponents.

2 Related Work

The problem of finding the most suitable metrics for graph clustering already
attracted the interest of researchers. In this section, we provide a brief overview of
previous studies in which different metrics have been introduced and compared.

For a long time, the attention of the researchers was focused on the shortest
path distance [13]. [3] provides a short survey of various graph metrics and rela-
tionships between them. The papers [10] and [11] propose the Communicability
metric and explore some of its properties; [7] introduces the Forest metric and
shows its relation to the Resistance metric. The Heat metric is introduced in
[19]. In [2], the Walk metric is analyzed.

As for comparing the efficiency of different metrics for graph clustering, the
metrics abbreviated as MCS, WGU, UGU, MMCS, and MMCSN are introduced
in [24] and their efficiency in document clustering is studied.

In [25], metrics Corrected Commute Time, Free Energy, Logarithmic For-
est, Randomized shortest-path, Sigmoid commute time and Shortest-path are
compared in experiments with real data. The most efficient measures were Free
Energy and Randomized shortest-path.

In [28], Euclidean Commute Time is compared with the standard Euclidean
Distance, and Euclidean Commute Time wins.

[1] provides comparison of various similarity measures in the context of spec-
tral clustering on the stochastic block model, and the top-performing measures
were the normalized heat-type measures with the logarithmic transformation.

In [16], the logarithmic transformation is applied to different metrics, and the
best in the experiments was the metric named logarithmic Communicability: the
Communicability metric transformed with the logarithmic function.

18 R. Aynulin

In the present paper, we examine a number of measures obtained by several
transformations from the known measures.

3 Preliminaries

3.1 Definitions

Let G = (V,E) be an undirected graph with a non-empty node set V and a set
of edges E (i.e., 2-element subsets of V). Given the adjacency matrix A and the
diagonal degree matrix D = diag(A · 1) (where 1 = (1, ..., 1)T), the Laplacian
matrix L is defined as L = D − A.

A measure on a graph G is a function k : V (G)×V (G) → IR that shows prox-
imity or similarity between nodes of G. A kernel on a graph is a graph similarity
measure that can be represented as a symmetric positive semidefinite matrix
K, or Gram matrix [1]. The conditions to be met by a proximity measure are
listed in [5,6]. The distances used in this paper are defined via the corresponding
kernels. In [5], a duality between proximity measures and metrics is studied.

The distance dij = kii + kjj − kij − kji, where K = (kij) is the matrix
corresponding to a proximity measure, satisfies the axioms of metric. In a matrix
notation, the relationship between the metric and the proximity measure can be
written as D = (dij) = diag(K) · 1T + 1 · diag(K)T − KT .

3.2 Kernels

Through this paper, we consider the following kernels:

– Walk: K =
∑∞

n=0 αnAn = (I − αA)−1, α ∈ (0, q−1), where q is the spectral
radius of the adjacency matrix of a graph [2,18]

– Communicability: K =
∑∞

n=0
αnAn

n! = exp(αA), α > 0 [10,11]
– Forest: K =

∑∞
n=0 αn(−L)n = (I + αL)−1, α > 0 [4]

– Heat: K =
∑∞

n=0
αn(−L)n

n! = exp(−αL), α > 0 [19]

3.3 Transformations

By a transformation of a metric we mean the application of some mathematical
function to each element of the corresponding kernel. The transformations that
we use in this paper are:

– Logarithmic function (Log): f(x) = log(x)
– Power function: f(x) = xp; we consider various values of p < 1
– Hyperbolic tangent (TanH): f(x) = tanh(x)
– Sigmoid: f(x) = σ(x) = 1/(1 + e−x)
– Arctangent (ArcTan): f(x) = tan−1(x)
– Softsign: f(x) = x/(1 + |x|)
– Inverse Square Root Unit (ISRU): f(x) = x/(

√
1 + x2)

– Sigmoid-weighted Linear Unit (SiLU): f(x) = x · σ(x)

Efficiency of Transformations of Proximity Measures for Graph Clustering 19

4 Experiments and Results

4.1 Experimental Methodology

In this section, we compare the efficiency of metrics and their transformed ver-
sions in experiments on several classical datasets with the number of nodes
ranging from 34 to 999:

– Zachary: the social network of members of the University Karate Club,
described by Wayne Zachary. The nodes represent the members of the club,
the edges indicate friendship relationships between them. The classes in this
dataset are two groups of participants, formed as a result of a conflict in the
leadership of the club. The number of nodes in the graph n = 34, the number
of links between them m = 78.

– Football: the graph of teams of the US University football league in 2000.
The nodes represent the teams, the edges are games between them, and the
classes are athletic conferences. n = 115, m = 613.

– Polbooks: the graph of American political books purchased on Amazon. Infor-
mation was collected in the run-up to the 2008 elections. The nodes represent
the books, an edge means the fact that two books are often purchased by buy-
ers together, and classes are the political ideology of the books. The number
of the classes c = 3. n = 105, m = 441.

– Newsgroups: a collection of 20000 documents taken from 20 newsgroups of
Usernet. In this paper, we use 6 graphs extracted from this dataset with
c = 2 (n = 400, n = 398, n = 399) and c = 3 (n = 600, n = 598, n = 595).
The nodes represents the documents, and the classes are the topics of the
documents. The weight of an edge between two nodes indicates the level of
commonness between them [27].

For each dataset, we consider 4 proximity measures (Walk, Communicabil-
ity, Forest, and Heat) transformed with each of the 10 transformations under
research, including all the transformations from Sect. 3.3 (the power function
is used with exponents = 1/3 and = 1/2) and the Identity Transformation (the
original measure is returned). Then the transformed proximity measure is used
to cluster the graph using 3 clustering methods: the k-Means method [14], the
spectral clustering method [22], and the Ward method [26]. So, each dataset is
clustered using 4·10·3 = 120 algorithms. The algorithm here refers to the triplet:
a clustering method, a proximity measure, and a transformation.

The quality of clustering is evaluated with the ARI quality index. ARI is
introduced in [15], and [20] provides justifications for choosing it. According to
the definition of this quality index, the larger the value, the better. If the value
of ARI is 1, then it is the perfect match; 0 refers to random labeling.

Since each of the measures used depends on its parameter, the search for the
optimal parameter was carried out in the experiments.

20 R. Aynulin

4.2 Analysis

We analyze the results of experiments in order to determine the best transfor-
mations for the proximity measures, as well as the best algorithms (triplets)
overall.

In Table 1, the top 10 results after ranking of the algorithms by the average
ARI over 9 datasets are presented. When ranking this way, the top algorithm
that uses a non-transformed proximity measure (spectral, Walk, Identity)1 is
ranked only 33nd out of 120 and its average ARI is 0.65. For the top algorithm
that uses a transformed measure (k-Means, Heat, Power function with p = 1/2),
the average ARI is 0.782.

Table 1. The best algorithms by the average ARI on the datasets

№ Method Measure Transformation Average ARI

1 k-Means Heat Power function, p = 1/2 0.782

2 k-Means Forest Power function, p = 1/2 0.781

3 k-Means Forest Power function, p = 1/3 0.780

4 Spectral Forest Log 0.764

5 Spectral Heat Log 0.764

6 Spectral Heat Power function, p = 1/3 0.755

7 Spectral Forest Power function, p = 1/3 0.755

8 k-Means Heat Power function, p = 1/3 0.745

9 Spectral Communicability Log 0.744

10 Spectral Heat Power function, p = 1/2 0.740

We can also rank (the ranks of tied algorithms are averaged) all the 120
algorithms by the ARI on each dataset, and then find the average value of the
rank for each algorithm.

The ranking of the algorithms by the average rank shows similar results
(Table 2) to the ranking by the average ARI. The leading algorithms that
use transformed proximity measures still outperform algorithms that use non-
transformed proximity measures. The top algorithm with a non-transformed
proximity measure (spectral, Heat measure, Identity) is ranked 30th out of 120
and its average rank is 40.25 (versus the average rank 18.46 for the top algorithm
with a transformed measure (k-Means, Heat, Power function with p = 1/2)).

So, an overall comparison of the algorithms demonstrates that the algorithms
that use transformed proximity measures outperform algorithms that use the
non-transformed proximity measures.

1 Hereinafter, a clustering algorithm is denoted by such a triplet. The first element in
a triplet is a clustering method, the second is a proximity measure, and the third is
a transformation.

Efficiency of Transformations of Proximity Measures for Graph Clustering 21

Table 2. The best algorithms by the average rank on the datasets

№ Method Measure Transformation Average rank

1 k-Means Heat Power function, p = 1/2 18.46

2 k-Means Forest Power function, p = 1/2 20.37

3 k-Means Forest Power function, p = 1/3 21.71

4 Spectral Heat Log 22.25

5 k-Means Heat Power function, p = 1/3 22.96

6 Spectral Forest Log 26.17

7 Spectral Communicability Softsign 27.58

8 Spectral Communicability ArcTan 28.33

9 Spectral Communicability Log 28.91

10 Spectral Heat Sigmoid 30.17

Further conclusions will be based on the ranking by the average ARI.
The best clustering quality is shown by the logarithmic function and the

power function with exponents = 1/3 and 1/2: 16 leading algorithms use these
transformations. In Table 3, one can find the best result for each of the transfor-
mations under research among all the algorithms.

Some transformations turned out to be useless and only worsen the results
in comparison with non-transformed proximity measures. For example, this is
the Sigmoid-weighted linear unit (SiLU) activation function. Note that this is
the fastest growing function of all the transformations studied (except for the
Identity Transformation).

Table 3. The best results shown by each of the transformation among all the algorithms

Transformation Highest average ARI Highest position Method

Power function, p = 1/2 0.782 1 k-Means

Power function, p = 1/3 0.780 3 k-Means

Log 0.764 4 Spectral

ArcTan 0.716 17 Spectral

Softsign 0.709 22 Spectral

TanH 0.697 23 Spectral

ISRU 0.686 24 Spectral

Sigmoid 0.662 29 Spectral

Identity Transformation 0.650 33 Spectral

SiLU 0.633 43 Spectral

In Table 4, for each method and proximity measure, the best transformation
is presented. As can be seen, the top transformations are the logarithmic function

22 R. Aynulin

and the power function with exponents 1/2 and 1/3. The Identity Transforma-
tion (i.e., the non-transformed measure) is not the best for any combination of
a clustering method and a proximity measure.

Table 4. The best transformation by the average ARI for each combination of the
clustering methods and proximity measures

Method Measure Transformation Average ARI

1 k-Means Heat Power function, p = 1/2 0.782

2 k-Means Forest Power function, p = 1/2 0.781

4 Spectral Forest Log 0.764

5 Spectral Heat Log 0.764

9 Spectral Communicability Log 0.744

11 Spectral Walk Log 0.740

18 Ward Forest Log 0.715

21 Ward Heat Power function, p = 1/3 0.710

34 Ward Walk Power function, p = 1/3 0.649

39 Ward Communicability Power function, p = 1/3 0.637

51 k-Means Walk Power function, p = 1/2 0.608

58 k-Means Communicability Power function, p = 1/3 0.575

The main purpose of this paper is to find the best transformations, but from
these results, we can also make some conclusions about proximity measures and
clustering methods. As for proximity measures, the leaders here are the Heat and
the Forest measures. Remarkably, these measures, in contrast to the Walk and
the Communicability proximity measures, are based on the Laplacian matrix.

Regarding clustering methods, the best quality is shown by the k-Means
method. The spectral method also demonstrates a good performance. The best
algorithm based on the Ward method is ranked only 18th out of 120.

4.3 Examining the Results by Friedman and Nemenyi Tests

In the previous section, we compared 120 clustering algorithms2 and made some
conclusions about the efficiency of transformations of proximity measures based
on averaging of the quality index over all datasets.

However, this approach has several limitations. Say, averaging is susceptible
to outliers. Excellent performance of an algorithm on one dataset can compensate
for poor performance on the other datasets and vice versa. In general, such a
behavior is not desirable, since we prefer algorithms to perform well on as many
datasets as possible.
2 Recall that an algorithm here refers to a triplet: a clustering method, a proximity

measure, and a transformation.

Efficiency of Transformations of Proximity Measures for Graph Clustering 23

Although we can draw some conclusions based on averaging over all datasets,
a more reliable way to compare the algorithms is desirable to be sure that trans-
formations really improve the results of graph clustering in comparison with the
non-transformed measures.

In [8], the authors study the methods for statistical estimation of the quality
of graph clustering on multiple datasets. Among the tests considered are the
paired testing of algorithms, the ANOVA test, the Friedman test, and others.
The authors have concluded that the Friedman test in combination with the
post-hoc Nemenyi test shows the best results.

Following the same lines, we conduct the Friedman test [12] and the Nemenyi
test [21] and look for the best transformation for each specific clustering method
and proximity measure.

The statistical tests are performed at significance level α = 0.05.
The null hypothesis in the Friedman test is that all transformations for a

given metric and a clustering method show the same quality. If this hypothesis is
rejected, then we run the Nemenyi test and compare all transformations pairwise.

In Table 5, one can find the values of the Friedman statistic, as well as the
p-value (3 significant digits) for all combinations of a proximity measure and a
clustering method. If the p-value is less or equal to the statistical significance
α = 0.05, then the null hypothesis is rejected. It means that there is a statistically
significant difference in the quality of different transformation for the clustering
algorithms that use these measure and method.

Table 5. The Friedman test results

Method Measure F p-value

Ward Walk 44.878 0.000

Ward Communicability 36.327 0.000

Ward Heat 66.677 0.000

Ward Forest 63.530 0.000

k-Means Walk 49.598 0.000

k-Means Communicability 45.719 0.000

k-Means Forest 53.190 0.000

k-Means Heat 48.959 0.000

Spectral Walk 25.658 0.002

Spectral Communicability 19.615 0.020

Spectral Forest 26.003 0.002

Spectral Heat 18.079 0.034

For all the measures and methods, we obtained the p-value less than the sig-
nificance level. Thus, after the Friedman test based on the results of experiments
on the datasets, the null hypothesis is rejected in all cases. Therefore, the quality
of clustering has a significant difference for different transformations.

24 R. Aynulin

The next step is a post-hoc analysis in order to find the results for which the
transformations are significantly different. In the Nemenyi test, two algorithms
are significantly different if the difference between their average ranks is more
than CD (critical difference) [8].

In Table 6, for each combination of a measure and a method, transformations
are presented which significantly improve the result of clustering as compared
to the non-transformed measures.

Table 6. The Nemenyi test result: transformations that are significantly better than
the Identity Transformation for each method and proximity measure

Method Measure Transformations that are significantly better
than the Identity Transformation

Ward Walk Power function (p = 1/3)

Ward Communicability Power function (p = 1/3 and p = 1/2)

Ward Heat Power function (p = 1/3 and p = 1/2), Log,
Softsign

Ward Forest Power function (p = 1/3 and p = 1/2), Log,
Softsign

k-Means Walk Power function (p = 1/3 and p = 1/2)

k-Means Communicability Power function (p = 1/3 and p = 1/2)

k-Means Forest Power function (p = 1/3 and p = 1/2)

k-Means Heat Power function (p = 1/3 and p = 1/2)

Spectral Walk -

Spectral Communicability -

Spectral Forest -

Spectral Heat -

As can be seen, there are no transformations that are significantly better than
the Identity Transformation for the spectral method used with all the proximity
measures. This can be explained by the fact that when using the spectral method,
even the non-transformed measures showed good quality. Although a number
of transformations result in some quality improvement (e.g., for the spectral
method and the Heat measure, the Logarithmic transformation gives the average
ARI of 0.764 versus 0.623 for the non-transformed measure), this improvement
is less than the critical difference.

In [8], a method of visual representation of the differences in quality for
several clustering algorithms on several datasets was proposed. It is called the
Critical Difference diagram (CD-diagram). These diagrams can give more insight
into the efficiency of transformations.

The CD-diagrams for the algorithms based on the Ward method are shown
in Figs. 1, 2, 3 and 4. The set of CD-diagrams for the remaining combinations
of proximity measures and clustering methods can be found in Figs. 5 and 6 in
AppendixA.

Efficiency of Transformations of Proximity Measures for Graph Clustering 25

Fig. 1. The CD-diagram for the algorithms based on the Ward method and the Walk
measure

Fig. 2. The CD-diagram for the algorithms based on the Ward method and the Com-
municability measure

Fig. 3. The CD-diagram for the algorithms based on the Ward method and the Forest
measure

Fig. 4. The CD-diagram for the algorithms based on the Ward method and the Heat
measure

26 R. Aynulin

The x-axis shows the values of the average rank for each transformation. The
transformations that are in the left part of the diagram show the best quality
in the experiments. A horizontal line connecting two or more transformations
indicates that there is no statistically significant difference in the quality of
clustering between them.

The results of statistical tests confirm the superiority of transformed mea-
sures over the non-transformed ones. We can identify a group of transformations
that significantly improve the quality of clustering for the algorithms based on
the Ward and the k-Means method. For the algorithms based on the spectral
method, we cannot identify any transformations as “significantly” improving the
clustering results. However, according to the previous section and the obtained
CD-diagrams, the transformed measures still outperform their non-transformed
versions for the spectral method.

5 Conclusion

In this paper, we studied how applying transformations to graph proximity mea-
sures such as Walk, Communicability, Heat, and Forest affects the quality of
clustering. To test the efficiency of the transformations, a number of experi-
ments were performed, where several classical datasets were clustered using the
k-Means, Ward, and the spectral method. The results of the experiments were
processed with the methods of non-parametric analysis of variance: the Friedman
test and the Nemenyi test.

As a result, we can conclude that transformations of proximity measures
significantly improve the quality of graph clustering. A set of the most efficient
transformations depends on the proximity measure and the clustering method
used. However, we can recommend a number of transformations that showed
a good performance in all the cases: the logarithmic function and the power
function with certain exponents.

We can also recommend a number of top-performing algorithms—
combinations of a clustering method, a proximity measure, and a
transformation—for graph vertex clustering. They are listed in Table 1.

Thus, the efficiency of a number of proximity measures that are already
actively used in practice can be improved by applying simple transformations.

Efficiency of Transformations of Proximity Measures for Graph Clustering 27

Appendix A

CD-diagrams

(a) Walk (b) Communicability

(c) Forest (d) Heat

Fig. 5. The CD-diagrams for the algorithms based on the k-Means method

(a) Walk (b) Communicability

(c) Forest (d) Heat

Fig. 6. The CD-diagrams for the algorithms based on the spectral method

28 R. Aynulin

References

1. Avrachenkov, K., Chebotarev, P., Rubanov, D.: Kernels on graphs as proximity
measures. In: Bonato, A., Chung Graham, F., Pra�lat, P. (eds.) WAW 2017. LNCS,
vol. 10519, pp. 27–41. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67810-8 3

2. Chebotarev, P.: The walk distances in graphs. Discrete Appl. Math. 160, 1484–
1500 (2012)

3. Chebotarev, P.: Studying new classes of graph metrics. In: Nielsen, F., Barbaresco,
F. (eds.) GSI 2013. LNCS, vol. 8085, pp. 207–214. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40020-9 21

4. Chebotarev, P., Shamis, E.: On the proximity measure for graph vertices provided
by the inverse Laplacian characteristic matrix. In: Abstracts of the Conference
“Linear Algebra and its Application”, 10–12 June 1995, pp. 6–7 (1995)

5. Chebotarev, P., Shamis, E.: On a duality between metrics and Σ-proximities.
Autom. Remote Control. 59, 608–612 (1998)

6. Chebotarev, P., Shamis, E.: On proximity measures for graph vertices. Autom.
Remote Control. 59, 1443–1459 (1998)

7. Chebotarev, P., Shamis, E.: The forest metrics for graph vertices. Electron. Notes
Discret. Math. 11, 98–107 (2002)

8. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

9. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin (2016). https://
doi.org/10.1007/978-3-662-52844-0

10. Estrada, E.: The communicability distance in graphs. Linear Algebr. Its Appl. 436,
4317–4328 (2012)

11. Fouss, F., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of graph
kernels on a collaborative recommendation task. In: Proceedings of the Sixth Inter-
national Conference on Data Mining (ICDM 2006), pp. 863–868 (2006)

12. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)

13. Goddard, W., Oellermann, O.R.: Distance in graphs. In: Dehmer, M. (ed.) Struc-
tural Analysis of Complex Networks, pp. 49–72. Birkhäuser, Boston (2010).
https://doi.org/10.1007/978-0-8176-4789-6 3

14. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J.
R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

15. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
16. Ivashkin, V., Chebotarev, P.: Do logarithmic proximity measures outperform plain

ones in graph clustering? In: Kalyagin, V., Nikolaev, A., Pardalos, P., Prokopyev,
O. (eds.) NET 2016. PROMS, vol. 197, pp. 87–105. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-56829-4 8

17. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silvermank, R., Wu,
A.Y.: A local search approximation algorithm for k-means clustering. Comput.
Geom. 28(2–3), 89–112 (2004)

18. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
18(1), 39–43 (1953)

19. Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input
spaces. In: Proceedings of ICML, pp. 315–322 (2002)

20. Milligan, G., Cooper, M.: A study of the comparability of external criteria for
hierarchical cluster-analysis. Multivar. Behav. Res. 21, 441–458 (1986)

https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-319-67810-8_3
https://doi.org/10.1007/978-3-642-40020-9_21
https://doi.org/10.1007/978-3-662-52844-0
https://doi.org/10.1007/978-3-662-52844-0
https://doi.org/10.1007/978-0-8176-4789-6_3
https://doi.org/10.1007/978-3-319-56829-4_8
https://doi.org/10.1007/978-3-319-56829-4_8

Efficiency of Transformations of Proximity Measures for Graph Clustering 29

21. Nemenyi, P.: Distribution-free multiple comparisons. Biometrics 18(2), 263 (1962)
22. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algo-

rithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)
23. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1, 27–64 (2007)
24. Schenker, A., Last, M., Bunke, H., Kandel, A.: Comparison of distance measures

for graph-based clustering of documents. In: Hancock, E., Vento, M. (eds.) GbRPR
2003. LNCS, vol. 2726, pp. 202–213. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-45028-9 18

25. Sommer, F., Fouss, F., Saerens, M.: Comparison of graph node distances on clus-
tering tasks. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016.
LNCS, vol. 9886, pp. 192–201. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44778-0 23

26. Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat.
Assoc. 58, 236–244 (1963)

27. Yen, L., Fouss, F., Decaestecker, C., Francq, P., Saerens, M.: Graph nodes cluster-
ing based on the commute-time kernel. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.)
PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 1037–1045. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71701-0 117

28. Yen, L., Vanvyve, D., Wouters, F.: Clustering using a random walk based distance
measure. In: Proceedings of the 13th European Symposium on Artificial Neural
Networks, ESAAN-2005, pp. 317–324 (2005)

https://doi.org/10.1007/3-540-45028-9_18
https://doi.org/10.1007/3-540-45028-9_18
https://doi.org/10.1007/978-3-319-44778-0_23
https://doi.org/10.1007/978-3-319-44778-0_23
https://doi.org/10.1007/978-3-540-71701-0_117

Almost Exact Recovery in Label
Spreading

Konstantin Avrachenkov and Maximilien Dreveton(B)

Inria Sophia Antipolis, 2004 Route des Lucioles, 06902 Valbonne, France
{k.avrachenkov,maximilien.dreveton}@inria.fr

Abstract. In semi-supervised graph clustering setting, an expert pro-
vides cluster membership of few nodes. This little amount of information
allows one to achieve high accuracy clustering using efficient computa-
tional procedures. Our main goal is to provide a theoretical justification
why the graph-based semi-supervised learning works very well. Specifi-
cally, for the Stochastic Block Model in the moderately sparse regime,
we prove that popular semi-supervised clustering methods like Label
Spreading achieve asymptotically almost exact recovery as long as the
fraction of labeled nodes does not go to zero and the average degree goes
to infinity.

Keywords: Semi-supervised clustering · Community detection ·
Label spreading · Random graphs · Stochastic Block Model

1 Introduction and Previous Work

Graph clustering consists of partitioning a graph into communities (or clusters)
so that nodes in the same cluster are, in some sense, more densely connected than
nodes belonging to different clusters. Graph clustering (or community detection)
is a fundamental problem in machine learning. Many scientific disciplines rely
on graphs to model a large number of interacting agents: atoms or interact-
ing particles in statistical physics, proteins interactions in molecular biology,
social networks in sociology, the Internet’s webgraph in computer science, etc.
Such complex networks typically have clustering structure, whose detection and
description is very important for network analysis.

To model complex networks, we can interpret them as random graphs. The
simplest random graph model with clustering structure is the Stochastic Block
Model (SBM), introduced independently in [6] and [9]. SBM is a generalization of
the Erdős-Rényi (ER) random graph [7,8]. In its easiest form, an SBM graph has
two communities of equal size, and edges between nodes of the same community
are drawn with probability p, and edges between nodes of different communities
have a probability q, where p �= q. Of course, this is a very basic model of a graph
with clustering structure. Despite its simplicity, the basic SBM poses a number
of theoretical challenges for community detection problem and highlights various
intuitions and trade-offs.
c© Springer Nature Switzerland AG 2019
K. Avrachenkov et al. (Eds.): WAW 2019, LNCS 11631, pp. 30–43, 2019.
https://doi.org/10.1007/978-3-030-25070-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25070-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-25070-6_3

Almost Exact Recovery in Label Spreading 31

Community detection in SBM is still a very active topic, and one can find
a recent and complete review in [1], mentioning the up to date unsupervised
clustering results. In this paper, we will consider a semi-supervised situation,
where an oracle reveals the community belonging of a fraction of nodes. In prac-
tice, labeling nodes according to their community requires human intervention,
thus is expensive (could be months of experiments in a case of protein study),
and the fraction of pre-labeled nodes is expected to be the smallest possible. As
was noted in the previous publications on graph-based semi-supervised learning
(see e.g., [2,5,14–16]), it is a very powerful technique allowing to achieve high
accuracy with only a small number of labeled data points. Moreover, as those
methods are naturally distributed, they can efficiently cluster large graphs.

A popular graph based semi-supervised method is Label Spreading [14]. The
main goal of the present work is to provide a theoretical justification why Label
Spreading works well, by showing that it achieves almost exact recovery on SBM
graphs, in the moderately sparse regime (when the average degree d is of the
order of log n), as long as the fraction of labeled points r does not go to zero.

Note that the recovery is said to be exact if all nodes are correctly labeled
(almost surely, in the limit as n goes to infinity), and almost exact if the fraction
of misclassified nodes goes to 0 (almost surely, when n goes to infinity) [1].

The paper is structured as follows: in Sect. 2, we describe the minimization
procedure we used for semi-supervised graph clustering (Label Spreading) and
provide more background references on the semi-supervised learning. In Sect. 3
we study the case of SBM graphs, using a mean field analysis. We derive the exact
expression for the semi-supervised solution of the mean field SBM and explain
why exact recovery is possible for the mean field. Then, we show concentration
of the limit towards its mean field value and conclude with the recovery result.
Section 4 provides discussion and directions for future research.

2 Semi-supervised Graph Clustering with the Normalized
Laplacian Matrix (Label Spreading)

Let G = (V,E) be a graph, where V is the set of n nodes, and E is the set of m
edges. In the following, we will consider weighted undirected networks: each edge
(ij) ∈ E holds a positive weight wij . Thus, the graph can be fully represented by
a symmetric matrix W , where the entry (ij) of W is the weight wij of an edge
between nodes i and j (a weight of zero corresponds to the absence of edge).
When the weights are binary, the weight matrix is called the adjacency matrix
and is traditionally denoted by A. The degree di of a node i ∈ V is defined as the
sum of the weights of all edges going from i, that is di =

∑
j wij . The diagonal

matrix D with entries di is called the degree matrix.
We will consider a graph exhibiting a community structure: hence, the set

of nodes can be partitioned into K non overlapping communities (or clusters).
By observing only V and E, and supposing K known, we aim to recover the
underlying partition in a semi-supervised manner. This means some nodes are
already labeled: we know to which community they belong. Let � and u be

32 K. Avrachenkov and M. Dreveton

respectively the set of labeled node and the set of unlabeled nodes. Without loss
of generality, we can suppose that the first |�| nodes are labeled, and we define r
the ratio of labeled nodes with respect to the total number of nodes (|�| = r|V |).

Our strategy is to find a matrix X of size n×K from which we could predict
the node’s labels. We will refer to the columns X.k as classification functions,
and node i will be classified in cluster k(i) if:

k(i) = arg max
k′∈{1,...,K}

Xik′ . (1)

To make use of the semi-supervised setting, we shall fix the values of X on the
labeled data. More precisely, we introduce the n×K ground-truth matrix Y as:

Yik =
{

1 if node i is in community k
0 otherwise.

Since Y�. is known, where Y�. denotes the first |�| rows of the matrix Y (corre-
sponding to the labeled nodes), we will enforce X�. = Y�.. The other rows of X,
denoted Xu., will be chosen to minimize the energy function:

E(X) := tr
(
XT LX

)
(2)

such that X�. = Y�. (3)

where L := In − D− 1
2 WD− 1

2 is the normalized Laplacian of the graph.
The choice to minimize an energy function to solve a semi-supervised learning

problem can be traced back to [16]. In that paper, the authors chose a standard
Laplacian-based energy function. In later works (see e.g., [2,11,14]) it has been
shown that one can achieve a better accuracy with the use of the normalized
Laplacian. There is another important argument why we have chosen to focus
on the normalized Laplacian method: as it will be clear from the ensuing devel-
opment, the normalized Laplacian’s spectral norm concentrates sufficiently well
around its expectation [12].

The minimization problem (2)–(3) can be solved using Lagrange multiplier:

L(X) := E(X) + λ tr
(
(X�. − Y�.)T (X�. − Y�.)

)
. (4)

To compute the solution explicitly in a matrix form, we split the weight matrix

W (and other matrices like D) into four blocks
(

W�� W�u

Wu� Wuu

)

, where W�� is a

sub-matrix corresponding to the first |�| rows and columns of matrix W . The

solution X =
(

X�

Xu

)

of the optimization problem (2)–(3) can be derived by

letting the partial derivatives of the convex function L with respect to Xik (for
i �∈ � and k ∈ {1, . . . , K}) being zero, and writing the solution in a matrix form.
More precisely, let us rewrite the Lagrangian given in Eq. (4) as follows:

Almost Exact Recovery in Label Spreading 33

L(X) =
K∑

k=1

(
XT

.k L X.k + λ(X�k − Y.k)T (X�k − Y�k)
)

=
1
2

K∑

k=1

n∑

i,j=1

wij

(
Xik√

di

− Xjk√
dj

)2

+ λ

K∑

k=1

�∑

i=1

(
Xik − Yik

)2
.

Thus, for all k ∈ {1, . . . , K}, the first order condition
∂L

∂X.k
(X) = 0 gives

LX + λS(X − Y) = 0,

where S =
(

I|�| 0
0 0

)

is an n × n matrix. Using the block notation introduced

earlier leads to the following equations:

∀k ∈ {1, . . . , K} : LuuXuk + Lu�X�k = 0.

By recalling the condition X�. = Y�., the last equation can be rewritten as

Xu. = −L−1
uu Lu� Y�. (5)

Note that Luu is an extracted block from the normalized Laplacian, hence is
invertible, and the expression (5) is well defined as soon as each connected com-
ponent of the graph has at least one labeled node. The expression (5) depends
only on the value of the labeled nodes and on the topology of the graph.

3 Analysis on Random SBM Graphs

Let us set up the notations for SBM. Each node i ∈ {1, . . . , n} will belong
to a cluster Ci. Then, an edge is created between a pair of nodes (ij) with a
probability that depends only on nodes’ clusters:

Pr
(
(ij) ∈ E

)
= PCiCj

.

The adjacency matrix A is thus a random matrix, whose expected value is

EAij = PCiCj
. (6)

The weighted graph formed by the expected adjacency matrix of an SBM graph,
given by (6), will be called mean field model.

It is common to call pi = PCiCi
the intra-cluster edge probabilities and q =

PCiCj
, i �= j the inter-cluster edge probability (we assume that the inter-cluster

edge probabilities are all equal to each other). We will denote by ni the number
of nodes in community i, with n =

∑K
i=1 ni. Finally, di will be the average degree

of nodes in cluster i.
We will mostly focus on the symmetric SBM with two communities, and

will make use of the following assumptions; nonetheless, for each result, we will

34 K. Avrachenkov and M. Dreveton

clearly state which assumption is needed. We think our results stand for more
than two communities as well as in the non symmetric case (incorporating so-
called Class Prior Knowledge, see for example [5] Section 10.8), to the price of
harder and longer computations.

Assumption 1 (Symmetric SBM). We consider an SBM graph with two
communities of equal size n1 = n2 =

n

2
and p1 = p2 =: p.

Assumption 2 (Growing degrees). The average degree d goes to infinity.

Assumption 3 (Fixed fraction of labelled nodes). The fraction of labeled
nodes r remains constant as n grows to +∞.

Assumption 4 (Labeled nodes uniformly distributed). Each community
has the same fraction of labeled nodes (with respect to the community size), and
they are chosen uniformly at random. Moreover, we assume that there is at least
one labeled node in each connected component of the graph.

The second part of Assumption 4 is needed to ensure that the extracted
Laplacian Luu is invertible. We can now state the main result of this paper.

Theorem 1 (Asymptotically almost exact recovery). Label Spreading
algorithm, defined by the minimization scheme (2)–(3), enables asymptotically
almost exact recovery for an SBM graph under Assumptions 1–4.

We will prove Theorem 1 in two steps. First, by doing exact calculation of the
mean field solution XMF , we will show that exact (even nonasymptotic) recovery
is possible for the mean field model. Then, we will show that the solution of the
minimization problem (2)–(3) is asymptotically concentrated sufficiently well
around its mean field value. Those two results put together will give the proof
of Theorem 1.

3.1 Exact Expression for Mean Field SBM

Recall that by mean field, we are referring to the situation where the random
quantities are replaced by their means. In particular, we call mean field model
the weighted graph formed by the expected adjacency matrix of an SBM graph.

In all the following, the subscript MF will be added to all quantities referring
to the the mean field model. For simplicity of notations and computations, we
will assume there is only two communities, but the analysis can be extended to
K communities.

Let 1n1 denote the column vector of size n1 × 1 with all entries equal to one,
and by Jn1;n2 := 1n11

T
n2

the matrix of size n1 × n2 with all entries equal to one.
Furthermore, we will use a shorten notation Jn1 for Jn1;n1 .

Without loss of generality and for the purpose of performance analysis, we
implicitly assume that the first n1 nodes are in cluster 1, whereas the last n2

nodes are in cluster 2. Thus,

AMF := EA =
(

p1 Jn1 q Jn1n2

q Jn2n1 p2 Jn2

)

.

Almost Exact Recovery in Label Spreading 35

In order for derivations to be more transparent, we also consider the case where
diagonal elements of AMF are not zero. This corresponds to a non-standard
definition of SBM, where we could have edges (i; i), with probability p1 or p2
depending on the community to whom i belongs to. Nonetheless, we could set
the diagonals elements of AMF to zero and our results would still hold.

Also without loss of generality and for the convenience of analysis, we will
assume that the first rn1 and the last rn2 nodes are labeled. Note that if the
quantities rni are not integers, we take their integer part, but we shall omit it
to simplify the notations. Lastly, we introduce ñi = (1 − r)ni the number of
unlabeled nodes in cluster i.

Theorem 2 (Exact expression for XMF). Let a =
p1
d1

, b = c =
q√
d1d2

,

d =
p2
d2

and F :=
(
1 − p1ñ1

d1

)(
1 − p2ñ2

d2

) − ñ1ñ2
q2

d1d2
. Then

XMF
u. =

(
xMF
11 J(1−r)n1 xMF

12 J(1−r)n1

xMF
21 J(1−r)n2 xMF

22 J(1−r)n2

)

,

where:

– xMF
11 = rn1

(
a − n1

(1 − r)a
F

(− a + ñ2(ad − bc)
)

+
(1 − r)bc

F
n2

)
;

– xMF
12 = rn2

(
b − (1 − r)b

F
n1(−a + ñ2(ad − bc)

)
+ d

(1 − r)b
F

n2

)
;

– xMF
21 = rn1

(
c + rn1

(1 − r)ac

F
n1 − n2

(1 − r)c
F

(− d + ñ1(ad − bc)
))

;

– xMF
22 = rn2

(
d +

(1 − r)bc
F

n1 − n2
(1 − r)d

F
(−d + ñ1(ad − bc))

)
.

Proof. Recall from Eq. (5) that XMF
u. = −(LMF

uu

)−1 LMF
u� Y�..

First, let us notice that
(
D− 1

2 WD− 1
2

)MF

uu
=

(
aJñ1 bJñ1ñ2

cJñ2ñ1 dJñ2

)

, where the

quantities a, b, c and d are defined in the statement of the theorem. It follows
from Proposition 2 in the Appendix that

(
LMF

uu

)−1

= Iñ − 1
F

((− a + ñ2(ad − bc)
)
Jñ1 −bJñ1ñ2

−cJñ2ñ1

(− d + ñ1(ad − bc)
)
Jñ2

)

.

Moreover, −LMF
u� =

(
aJñ1;rn1 bJñ1;rn2

cJñ2;rn1 dJñ2;rn2

)

and X�. =
(

1rn1 0rn1

0rn2 1rn2

)

, thus

−LMF
u� X�. =

(
rn1a 1ñ1 rn2b 1ñ1

rn1c 1ñ2 rn2d 1ñ2

)

,

and the product of
(LMF

uu

)−1 by −LMF
u� X�. gives the stated result. ��

Proposition 1 (Exact recovery in mean field model). The minimization
procedure (2)–(3) achieves exact recovery in the mean field model of an SBM
graph with two clusters of equal size, with p1 = p2 (Assumption 1), p > q (asso-
ciative communities) and with the same fraction r > 0 of labeled nodes in each
cluster.

36 K. Avrachenkov and M. Dreveton

Proof. Recall that the detection rule is given in Eq. (1). In the two communities
case, recovery will be possible (and 100% correct) if and only if x11 > x12 and
x22 > x21. By symmetry of the problem, it is enough to consider the condition
x11 > x12.

In the symmetric case, with two clusters of equal size (n1 = n2) and p1 = p2
(Assumption 1), it is then straightforward to see that

xMF
11 = r

p

p + q
+

r(1 − r)
F

p

(p + q)2
(rp + (1 − r)q) +

r(1 − r)
F

q2

(p + q)2
,

xMF
12 = r

q

p + q
+

r(1 − r)
F

q

(p + q)2
(rp + (1 − r)q) +

r(1 − r)
F

pq

(p + q)2
.

By subtracting those two lines, a little of algebra shows that

xMF
11 − xMF

12 = r
p − q

2q + r(p − q)
.

This last quantity is positive as soon as p > q, and this ends the proof. ��
We can make two remarks:

– First, note that we have not made any assumptions on the scaling of pi and
q with n, except that p1 and p2 are equal. In particular, the result holds in
the case of logarithmic degree, which will be our main focus later on.

– Second, in the case of the mean field model, the result holds for finite n, thus
it is exact (even non-asymptotic) recovery in the mean field model. It is not
surprising, since recovery in the mean field model is obvious.

3.2 Concentration Towards Mean Field

Similarly to the concentration result in [3], we establish the concentration of X
around its mean field value XMF in terms of the Euclidean norm. For the sake of
better readability, we omit the subscripts from X.k and XMF

.k (k ∈ {1, . . . , K})
in the next theorem and the two following proofs. Similarly, we will shorten Xuk

(respectively Y�k) to Xu (respectively Y�).

Theorem 3. Under the same assumptions as Theorem1, for each class, the
relative Euclidean distance between the solution X given by Label Spreading and
its mean field value XMF converges in probability to zero. More precisely, with
high probability, we can find a constant C > 0 such that:

||X − XMF ||
||XMF || ≤ C√

d
. (7)

Proof. Let us rewrite Eq. (5) as a perturbation of a system of linear equations
corresponding to the mean field solution:

(
EL + ΔL)

uu

(
XMF

u + ΔXu

)
= −

(
EL + ΔL

)

u�
Y�,

Almost Exact Recovery in Label Spreading 37

where ΔX := X − XMF and ΔL := L − EL.
Recall that a perturbation of a system of linear equations (A + ΔA)

(x+Δx) = b+Δb leads to the following sensitivity inequality (see e.g., Section 5.8
in [10]):

||Δx||
||x|| ≤ κ(A)

1 − κ(A)
||ΔA||
||A||

(
||Δb||
||b|| +

||ΔA||
||A||

)

where ||.|| is a matrix norm associated to a vector norm ||.|| (we used the same
notations for simplicity) and κ(A) := ||A−1||.||A|| the conditioning number. In
our case, using spectral norm, this gives:

||X − XMF ||
||XMF || ≤ ||E Luu||.||(E Luu)−1||

1 − ||(E Luu)−1||.||Δ Luu||
(|| − Δ Lu�.Y�||

|| − E Lu�.Y�|| +
||Δ Luu||
||E Luu||

)

.

Let us first deal with all the non random quantities. The spectral study of
E Luu is done in the Appendix (Proposition 3). In particular, we have:

∣
∣
∣
∣E Luu

∣
∣
∣
∣ = max

{|λ| : λ ∈ Sp
(
E Luu

)}
= 1,

∣
∣
∣
∣
∣
∣
(
E Luu

)−1
∣
∣
∣
∣
∣
∣ =

1
min

{|λ| : λ ∈ Sp
(
E Luu

)} =
1
r

p + q

p − q
.

Note that since p and q have the same dependency in n (from the assump-

tions, p = a
log n

n
and q = b

log n

n
), the ratio

p + q

p − q
does not depend on n, and

∣
∣
∣
∣
∣
∣
(
ELuu

)−1
∣
∣
∣
∣
∣
∣ is equal to a constant C ′. We are left with the following inequality:

||X − XMF ||
||XMF || ≤ C ′ 1

1 − C ′ ||ΔLuu||
(||ΔLu�.Y�||

||E Lu�.Y�|| + ||ΔLuu||
)

.

Moreover E Lu�.Y� = (1 − r)Yu, thus ||E Lu�.Y�|| = (1 − r)
√

(1 − r)n. So

||X − XMF ||
||XMF || ≤ C ′

1 − C ′ ||Δ Luu||
(||Δ Lu�||

1 − r
+ ||Δ Luu||

)

, (8)

where we used ||Y�|| =
√

rn (since Y� is a vector of size rn with entries equal to

1 or −1) and
√

r

1 − r
≤ 1.

The concentration of the normalized Laplacian towards its mean field value
has been established in [12]. In particular, the authors showed that w.h.p.

∣
∣
∣
∣
∣
∣L − E L

∣
∣
∣
∣
∣
∣ = O

(1√
d

)
, (9)

where d is the average degree, when d = Ω(log n). However, the result of Eq. (9) is
a concentration of the full normalized Laplacian (an n×n matrix), while here we
are interested in concentration of an extracted matrix. Fortunately, concentration

38 K. Avrachenkov and M. Dreveton

still holds, see Proposition 4 in the Appendix. Therefore, the terms ||ΔLuu|| and

||Δ Lu�|| in Eq. (8) can be bounded by
K√
d
.

Last, C ′ being constant and ||Δ Luu|| going to zero, we can lower bound the

term
C ′

1 − C ′ ||Δ Luu|| by 2C ′ for n large enough, leaving us only with

||X − XMF ||
||XMF || ≤ C√

d

for a constant C. This ends the proof. ��
Inequality (7) indicates a slow convergence. For example, in the moderately

sparse regime where p(n) and q(n) grows as a constant times
log(n)

n
(an interest-

ing regime to study for SBM), we have established a bound on the convergence

rate in the order of
1√

log n
.

3.3 Asymptotically Almost Exact Recovery for SBM

Proof of Theorem 1. We just established a concentration inequality for X
towards XMF . In order to correctly classify a node i, one should hope that the
node’s value Xi is close enough to its mean field value XMF

i . To be more precise,
|Xi − XMF

i | should be smaller than half the community gap. Recall that in the
symmetric case, we showed in Proposition 1 that the community gap is equal to

r
p − q

2q + r(p − q)
, independent of n when p and q have the same dependency on n.

This leads us to define the notion of ‘ε-bad nodes’. A node i ∈ {1, . . . , n} is
said to be ε-bad if |Xi − XMF

i | > ε. Let us denote by Bε the set of ε-bad nodes.
The nodes that are not ε-bad, for an ε constant strictly smaller than half the
community gap, are almost surely correctly classified.

From ||X − XMF ||2 ≥ ∑

i∈Bε

|Xi − XMF
i |2, it comes that ||X − XMF ||2 ≥

|Bε| × ε2. Thus, using Theorem 3, we have w.h.p.:

|Bε| ≤ C

ε2
n

d
. (10)

If we take for ε a constant strictly smaller than half the community gap
(recall that the community gap does not depend on n), then all nodes that are
not in Bε will be correctly classified. Since by (10) we have |Bε| = o(n), the
fraction of misclassified nodes is at most of order o(1). This establishes almost
exact recovery, and the proof of Theorem1 is completed. ��

4 Discussion and Future Works

In this paper, we explicitly showed that Label Spreading can achieve good result,
in the sense of almost exact recovery, for community detection on SBM graphs.

Almost Exact Recovery in Label Spreading 39

Our result stands in the case of two symmetric communities, but extension could
be done for more than two non-symmetric communities, as well as labeled nodes
non uniformly distributed across communities.

The case of sub-linear number of labeled nodes is worthy of further inves-
tigation. As was noted in [13], semi-supervised methods like Label Spreading
tend to fail in the limit of small labeled data. Indeed, the minimization scheme
(2)–(3) rely too heavily on the condition X� = Y� and not enough on the graph
structure. For example, in the extreme case where r is equal to zero, then the
solution X have all entries equal, and recovery is not possible. But in that case,
we should aim to recover the solution given by unsupervised Spectral Cluster-
ing method. Such modified versions of Label Spreading could be part of future
research, and should greatly improve the results (at least in the limit of r going
to zero).

In particular, we could see if such improved methods could achieve exact
recovery under weaker conditions than unsupervised methods. It was shown that
unsupervised methods can recover the exact community structure of SBM when

p = a
log n

n
and q = b

log n

n
if and only if

a + b

2
> 1 +

√
ab. Since

a + b

2
> 1 is

the connectivity requirement for a symmetric SBM, we can see that connectivity
is required (as expected), but not sufficient. Lowering this bound in the semi-
supervised scenario, and be able to remove this

√
ab oversampling factor, would

be an interesting result, as we would have exact recovery with semi-supervised
setting if and only if the SBM graph is connected.

Acknowledgements. This work has been done within the project of Inria – Nokia
Bell Labs “Distributed Learning and Control for Network Analysis”.

A Background Results on Matrix Analysis

A.1 Inversion of the Identity Matrix Minus a Rank 2 Matrix

Lemma 1 (Sherman-Morrison-Woodbury formula). Let A be an invert-

ible n×n matrix, and B,C,D matrices of correct sizes. Then:
(
A+BCD

)−1

=

A−1 − A−1B
(
I + CDA−1B

)−1

CDA−1. In particular, if u, v are two column

vectors of size n × 1, we have:
(
A + uvT

)−1

= A−1 − A−1uvT A−1

1 + vT A−1u
.

Proof. See for example [10], section 0.7.4. ��

Lemma 2. Let M =
(

aJn1 bJn1n2

cJn2n1 dJn2

)

for some values a, b, c, d. Let n = n1+n2.

If In − M is invertible, we have:

(I − M)−1 = In − 1
K

((− a + n2(ad − bc)
)
Jn1 −bJn1n2

−cJn2n1

(− d + n1(ad − bc)
)
Jn2

)

where K = (1 − n1a)(1 − n2d) − n1n2bc.

40 K. Avrachenkov and M. Dreveton

Proof. We will use the Sherman-Morrison-Woodbury matrix identity (Lemma1)

with A = In, D =
(

1 . . . 1; 0 . . . 0
0 . . . 0; 1 . . . 1

)

(on the first line, there are n1 ones and n2

zeros), B = DT and C =
(−a −b

−c −d

)

. We can easily verify that BCD = −M .

(I − M)−1 = In − B(I + CDB)−1CD

= In − B

(
1 − n1a −n2b
−n1c 1 − n2d

)−1

CD

= In − B
1

(1 − n1a)(1 − n2d) − n1n2bc

(
1 − n2d n2b

n1c 1 − n1a

)

CD

= In − 1
K

B

(−a + n2(ad − bc) −b
−c −d + n1(ad − bc)

)

D

= In − 1
K

((− a + n2(ad − bc)
)
Jn1 −bJn1n2

−cJn2n1

(− d + n1(ad − bc)
)
Jn2

)

.

��

A.2 Spectral Study of a Rank 2 Matrix

Lemma 3 (Schur’s determinant identity, [10]). Let A,D and
(

A B
C D

)

be

squared matrices. If A is invertible, we have:

det
(

A B
C D

)

= det(A) det(D − CA−1B).

Proof. Follows from the formula
(

A B
C D

)

=
(

A 0
C Iq

)(
Ip A−1B
0 D − CA−1B

)

. ��

Lemma 4 (Matrix determinant lemma, [10]). For an invertible matrix A
and two column vectors u and v, we have det(A + uvT) = (1 + vT A−1u) det(A).

Lemma 5. Let α and β be two constants. When M = αIn + βJ where J is the
n × n matrix with all entries equal to one, we have det M = αn−1(α + βn).

Proof. Suppose that α �= 0. Then with vT = (1, . . . , 1) and u = β(1, . . . , 1)
vectors of size 1 × n, Lemma 4 gives us

det M = det(αIn)
(
1 + vT (αIn)−1u

)

= αn
(
1 +

βn

α

)

= αn−1(α + βn),

which proves the lemma for α �= 0. To treat the case α = 0, see that the function
α ∈ R �→ det(αIn + βJ) is continuous (even analytic) [4], thus by continuous
prolongation in α = 0, the expression αn−1(α + βn) holds for any α ∈ R. ��

Almost Exact Recovery in Label Spreading 41

Proposition 2. Let M =
(

aJn1 bJn1n2

cJn2n1 dJn2

)

for some values a, b, c, d. The eigen-

values of M are:

– 0 with multiplicity n1 + n2 − 2;

– λ± =
1
2
(
n1a + n2d ± √

Δ
)

where Δ = (n1a − n2d)2 + 4n1n2bc.

Proof. The matrix being of rank 2 (except for some degenerate cases), the fact
that 0 is an eigenvalue of multiplicity n1 +n2 −2 is obvious. By an explicit com-
putation of the characteristic polynomial of M , the two remaining eigenvalues
will be given as roots of a polynomial of degree 2.

Let λ ∈ R and A := λIn1 − aJn1 . If λ �∈ {0; an1}, then A is invertible and by
the Schur’s determinant identity (Lemma 3) we have

det(λIn − M) = det A det
(
λIn2 − dJn2 − cJn2n1A

−1bJn1n2

)

= det A det B.

From Lemma 5, it follows that detA = λn1−1
(
λ − n1a).

Let us now compute det B. First, we show that A−1 =
1
λ

(
In1 +

a

λ − an1
Jn1

)
.

Indeed, from the Sherman-Morrison-Woodbury formula (Lemma1) with u =
−a1n1 and v = 1n1 , it follows that

(
λIn1 − aJn1

)−1

=
1
λ

In1 − 1
λ2

−aJn1

1 +
−an1

λ

=
1
λ

In1 +
1
λ

a

λ − an1
Jn1 ,

which gives the desired expression. Thus,

B = λIn2 − dJn2 − bc

λ
Jn2n1

(
In1 +

a

λ − an1
Jn1

)
Jn1n2

= λIn2 − dJn2 − bc

λ

(
n1 +

a n2
1

λ − an1

)
Jn2

= λIn2 +
(

− d − bcn1

λ − an1

)
Jn2 .

Again, this matrix is of the form λIn + βJn, and we can use Lemma 5 to show
that

det B = λn2−1
(
λ + n2β

)
.

Now we can finish the computation of det(λIn − M)

det(λIn − M) = λn1+n2−2
(
λ − n1a

)(
λ − n2d − bcn1n2

λ − an1

)

= λn1+n2−2
(
λ2 + λ(−n1a − n2d) + n1n2(ad − bc)

)
.

42 K. Avrachenkov and M. Dreveton

The discriminant of this second degree polynomial expression is given by

Δ = (n1a + n2d)2 − 4n1n2(ad − bc)

= (n1a − n2d)2 + 4n1n2bc.

Thus Δ ≥ 0 and the two remaining eigenvalues are given by

λ± =
1
2
(
n1a + n2d ±

√
Δ

)
.

��

A.3 Spectral Study of EL
Proposition 3 (Eigenvalues of ELuu, symmetric case). Assume two com-
munities of equal size, with p1 = p2(= p). The two smallest eigenvalues of ELuu

are:
λ1 = r

p − q

p + q
and λ2 = r.

Note that the other eigenvalue of ELuu is one (with multiplicity
(1− r)n�− 2).

Proof. The matrix ELuu can be written as I − M , where M = D−1/2AD−1/2

has a block form like in Proposition 2, with coefficients a =
p1
d1

, b = c =
q√
d1d2

and d =
p2
d2

. Note that the blocks sizes are now
(1 − r)ni� and not ni. Under

the symmetric assumption, we have d1 = d2 =
n

2
(p + q).

Moreover, λM is an eigenvalue of M if and only if 1 − λM is eigenvalue of

ELuu. Using the notations of Proposition 2, we have Δ = 4(1− r)2
q2

(p + q)2
, and

the two non-zero eigenvalues of M are given by:

λ± =
1
2

(
2(1 − r)

p

p + q
± 2(1 − r)

q

p + q

)

= 1 − r
p ± q

p + q
.

��

B Spectral Norm of an Extracted Matrix

Proposition 4. Let A be a matrix and B an extracted matrix (non necessarily
squared: we can remove rows and columns with different indices, and potentially
more rows than columns, or vice versa) from A, then: ||B||2 ≤ ||A||2.
Proof. For two subsets I and J of {1, . . . , n}, let B = AIJ the matrix obtained
from A by keeping only the rows (resp. columns) in I (resp. in J). Then B =
M1AM2 where M1 and M2 are two appropriately chosen permutation matrices.
Thus their spectral norm is equal to one, and the result ||B||2 ≤ ||A||2 follows
from the inequality ||B||2 ≤ ||M1||2||A||2||M2||2. ��

Almost Exact Recovery in Label Spreading 43

References

1. Abbe, E.: Community detection and stochastic block models. Found. Trends R©
Commun. Inf. Theory 14(1–2), 1–162 (2018)

2. Avrachenkov, K., Gonçalves, P., Mishenin, A., Sokol, M.: Generalized optimiza-
tion framework for graph-based semi-supervised learning. In: SIAM International
Conference on Data Mining (SDM 2012) (2012)

3. Avrachenkov, K., Kadavankandy, A., Litvak, N.: Mean field analysis of personalized
pagerank with implications for local graph clustering. J. Stat. Phys. 173(3–4), 895–
916 (2018)

4. Avrachenkov, K.E., Filar, J.A., Howlett, P.G.: Analytic Perturbation Theory and
Its Applications, vol. 135. SIAM, Philadelphia (2013)

5. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised Learning. Adaptive Com-
putation and Machine Learning. MIT Press, Cambridge (2006)

6. Condon, A., Karp, R.M.: Algorithms for graph partitioning on the planted par-
tition model. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.)
APPROX/RANDOM-1999. LNCS, vol. 1671, pp. 221–232. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-3-540-48413-4 23

7. Erdős, P., Rényi, A.: On random graphs. Publ. Math. (Debr.) 6, 290–297 (1959)
8. Gilbert, E.N.: Random graphs. Ann. Math. Statist. 30(4), 1141–1144 (1959)
9. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps.

Soc. Netw. 5(2), 109–137 (1983)
10. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press,

Cambridge (2012)
11. Johnson, R., Zhang, T.: On the effectiveness of Laplacian normalization for graph

semi-supervised learning. J. Mach. Learn. Res. 8(Jul), 1489–1517 (2007)
12. Le, C.M., Levina, E., Vershynin, R.: Concentration and regularization of random

graphs. Random Struct. Algorithms 51(3), 538–561 (2017)
13. Mai, X., Couillet, R.: A random matrix analysis and improvement of semi-

supervised learning for large dimensional data. J. Mach. Learn. Res. 19(1), 3074–
3100 (2018)

14. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local
and global consistency. In: Advances in Neural Information Processing Systems,
pp. 321–328 (2004)

15. Zhu, X.: Semi-supervised learning literature survey. Technical report, Computer
Science Department, University of Wisconsin-Madison (2006)

16. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian
fields and harmonic functions. In: ICML (2003)

https://doi.org/10.1007/978-3-540-48413-4_23

Strongly n-e.c. Graphs and Independent
Distinguishing Labellings

Christopher Duffy1(B) and Jeannette Janssen2

1 Department of Mathematics and Statistics, University of Saskatchewan,
Saskatoon, Canada

christopher.duffy@usask.ca
2 Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada

Abstract. A countable graph G is n-ordered if its vertices can be enu-
merated so each vertex has no more than n neighbours appearing earlier
in the enumeration. Here we consider both deterministic and probabilistic
methods to produce n-ordered countable graphs with universal adjacency
properties. In the countably infinite case, we show that such universal
adjacency properties imply the existence an independent 2-distinguishing
labelling.

Keywords: Graph evolution · n-ordered graphs · Graph distinguishing

1 Introduction

Complex networks are set apart within the class of graphs by features that
are representative of real-world networks but do not generally appear within
Erdős-Rényi random graphs [16]. For example many real-world networks are
small-world [24]. That is, they exhibit relatively small average shortest path
lengths, but higher clustering coefficients than are seen in Erdős-Rényi graphs
with similar average shortest path length. Real-world networks also often differ
from Erdős-Rényi graphs in the distribution of vertex degree [6]. Erdős-Rényi
graphs have a relatively uniform degree distribution, whereas many real-world
networks have power-law distributed degree distribution. That is, complex net-
works are often scale-free. As a consequence of such differences, a number of
graph construction models (both deterministic and stochastic) have been devel-
oped so that the resulting graphs are better representative of real-world networks
[15,18,25,26].

One well-studied class of complex network models are Preferential Attach-
ment models [1,2,21,22]. At each step in an online process, new vertices are
added so that they are more likely to be adjacent to existing vertices of high
degree than existing vertices of low degree. One particular application of Prefer-
ential Attachment models is modelling the growth of the World Wide Web [5].

Complex networks generated with a online process often proceed through
many phases where stopping the process at any point within a particular phase
c© Springer Nature Switzerland AG 2019
K. Avrachenkov et al. (Eds.): WAW 2019, LNCS 11631, pp. 44–56, 2019.
https://doi.org/10.1007/978-3-030-25070-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25070-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-25070-6_4

Strongly n-e.c. Graphs and Independent Distinguishing Labellings 45

will produce a graph whose parameters are expected to be contained within
a particular range. And so such generation processes may be used to generate
complex networks whose features can be finely tuned by both the initial param-
eters and the length of the process. For example the Watts-Strogatz small-world
graph model [26] can be used to generate random graphs whose expected clus-
tering coefficient can be varied as a function of an input parameter, but whose
expected average path length scales linearly with the length of the process. In
recent years the limiting behaviour of such models have received attention from
both pure and applied researchers [7,9].

Consider the graph formed by the following online process. The graph G0

consists of a single vertex. For all i > 0, the finite graph Gi is formed from
Gi−1 by adding a dominating vertex to each of the subsets of V (Gi−1). Surpris-
ingly, the graph formed as i → ∞ is isomorphic the infinite random, or Rado,
graph [11]. That is, it is isomorphic to the graph with a countably infinite set
of vertices, where each pair of vertices is adjacent with some fixed probability
p ∈ (0, 1).

For a graph G and a pair of disjoint of subsets A,B ⊂ V (G) a vertex of
V (G) \ (A ∪ B) is correctly joined to A and B if it adjacent to every vertex in
A and no vertex in B. A graph is n-existentially closed (n-e.c.) if for every pair
of disjoint subsets A,B ⊂ V (G) so that |A ∪ B| ≤ n there is a vertex correctly
joined to A and B. Though for any fixed n, nearly every graph is n-e.c. [16],
constructing explicit examples of n-e.c. graphs and graph families it a difficult
task utilizing a wide variety of combinatorial tools. We direct the reader to a
survey of construction techniques for n-e.c. graphs and graph families [8]. The
infinite random graph R is characterized as being the unique infinite graph that
is n-e.c. for all n. We direct the reader to a comprehensive resource on various
aspects of R [11].

In this paper we study the limiting behaviour of the process above when we
vary the input graph and put a fixed upper bound on the size of the subsets
that are dominated. As this process proceeds through discrete time-steps the
generated graphs seemingly display features of both scale-free and small-world
networks. We fully classify the limiting behaviour of these processes and show
that these deterministic processes can be modelled by a stochastic process. We
conclude with an application of our work in the study of graph distinguishing.

In [9] the authors consider a variation of the deterministic construction of R
by letting G0 = Kn (for some fixed n) and forming Gi−1 from Gi by adding a
dominating vertex to every subset of vertices of order exactly n in V (Gi−1). The
resulting infinite graph formed as t → ∞ is denoted R(n). The infinite graph
R(n) satisfies a stronger existential closure property: A graph G is strongly n-
existentially closed if every pair of finite disjoint subsets A,B ⊂ V (G) so that
|A| ≤ n there is a vertex correctly joined to A and B. That there is no restriction
on the order of B implies directly that for every n, every strongly n-existentially
closed graph is infinite.

Along with the deterministic construction of R(n) akin to that of R in [9], the
authors present a probabilistic construction. They further introduce the graph

46 C. Duffy and J. Janssen

R(H,n), the graph formed in the same manner as R(n) modified so that G0 = H,
a fixed graph on n vertices, but leave open the question of when R(G,n) ∼= R(H,n).
In this article we answer this question, and show that the tools and techniques
used in [9] may be used to study a wider class of strongly n-e.c. graphs.

Let G and H be graphs. A homomorphism of G to H is a vertex mapping
that preserves adjacency. That is, φ : V (G) → V (H) is a homomorphism when
for all uv ∈ E(G) we have φ(u)φ(v) ∈ E(H). If φ is such a mapping, then
we write φ : G → H. For a homomorphism φ : G → H and X ⊆ V (G), let
φ(X) = {y : φ(x) = y, x ∈ X}. If X = V (G), denote φ(X) by Im(φ). A bijec-
tive homomorphism is an isomorphism. A homomorphism φ : G → G is an
automorphism when Im(φ) = V (G).

For S ⊆ V (G), we denote by G[S] the subgraph of G induced by the vertices
of S. When there is no possibility for confusion, we write [S] rather than G[S].
If H is a subgraph of G, we write H ≤ G and we let G − H = G[V (G) \ V (H)].
If H is a countably infinite graph with vertex set u1, u2, . . . , then let H�

i =
H[{u1, u2, . . . , ui}]. That is, H�

i is the subgraph induced by the first i vertices
of the enumeration.

Following [9], we define n-ordered. For fixed n, G is n-ordered if there exists
a well-ordering of its vertices (xi : i ∈ I), where |I| is finite or I has the order-
type IN so that each xj has at most n neighbours xi with i < j. The ordering
(xi, i ∈ I) is an n-ordering of V (G).

Let nG = |V (G)| and eG = |E(G)|. Herein we assume that all graphs are
countable and simple. For all other definitions and notations we refer the reader
to [10].

Denote by R(H,n) the graph formed from the limit as t → ∞ of the following
process. Let H0 = H be a finite graph on at least n vertices. The graph Hi is
constructed from Hi−1 as follows: For each S ⊆ V (Hi−1) such that |S| = n we
add a vertex xS with neighbourhood S. We say that xS (n)-extends S and that
xS is an (n)-extension of S. Let Xi be the set of vertices contained in Hi −Hi−1.
Observe that Xi is an independent set in Hi and each vertex of Xi has degree
exactly n in Hi. The vertices of R(H,n) may be enumerated using the sequence
V (H),X1,X2, Given some fixed ordering of the vertices of H, order the
vertices of X1 in dictionary order based on the indices of their neighbours in H0.
Repeating this process inductively for each Xi yields a vertex ordering of R(H,n)

so that the first nH vertices of the ordering induce a copy and H, and each of
the subsequent vertices has exactly n vertices earlier in the ordering. This vertex
ordering is fully determined by the choice of the ordering chosen for H. We call
such an ordering a natural (n)-enumeration. When there is no possibility for
confusion we call such an ordering a natural enumeration. Observe that if H is
n-ordered and the vertices of H are fixed in an n-ordering, then natural (n)-
enumeration of the vertices of R(H,n) is an n-ordering of the vertices of R(H,n).

Denote by R(H,≤n) the countably infinite graph formed from the limit as
t → ∞ of the following process. Let H0 = H be a graph. The graph Hi is
constructed from Hi−1 as follows: For each S ⊆ V (Hi−1) such that |S| ≤ n add
a vertex xS with neighbourhood S. We say that xS (≤ n)-extends S and that xS

Strongly n-e.c. Graphs and Independent Distinguishing Labellings 47

is an (≤ n)-extension of S. Let Xi be the set of vertices contained in Hi −Hi−1.
Observe that Xi is an independent set in Hi and each vertex of Xi has degree
at most n in Hi. The vertices of R(H,≤n) may be enumerated using the sequence
V (H),X1,X2, Given some fixed ordering of the vertices of H, order the
vertices of X1 in dictionary order based on the indices of their neighbours in
H0. Repeating this process inductively for each Xi yields a vertex ordering of
R(H,≤n) so that the first nH vertices of the ordering induce a copy and H, and
each of the subsequent vertices has at most n vertices earlier in the ordering.
This vertex ordering is fully determined by the choice of the ordering chosen
for H. We call such an ordering a natural (≤ n)-enumeration of the vertices
of R(H,≤n). When there is no possibility for confusion we call such an ordering
a natural enumeration. Observe that if H is n-ordered and the vertices of H
are fixed in an n-ordering, then a natural (≤ n)-enumeration of the vertices of
R(H,≤n) is an n-ordering of the vertices of R(H,≤n).

For a fixed finite graph H, let u1, u2, . . . be a natural enumeration of the
vertices of R(H,n) or of R(H,≤n) given by the sequence V (H),X1,X2, . . . as
described above. For a pair of vertices ui, uj with j > nH0 we say that ui is
an ancestor of xj and uj is a descendant of ui when there is a finite path
uiuk1uk2 . . . uk�

uj such that i < k1 < k2 < · · · < k� < j. We denote by age(ui)
the index t such that ui ∈ Xt when i > nH . Otherwise age(ui) = 0. For a finite
subset of vertices A, let age(A) = maxv∈A{age(v)}. Observe that if ui is an
ancestor of uj , then necessarily age(ui) < age(uj).

In this work we show how the tools and methods used in [9] to study R(n)

may be extended and modified to study R(H,n) and R(H,≤n). In particular, we
show that though R(G,n)
∼= R(H,≤n) for any pair of finite graphs G and H,
countably infinite graphs of the form R(G,n) and R(H,≤n) exhibit many of the
same properties as R(n), including a probabilistic construction. We fully answer
the question posed in [9] of necessary and sufficient conditions such that R(n) ∼=
R(H,n). In the main result of this work we further extend these conditions to
give necessary and sufficient conditions for when R(G,n) ∼= R(H,n) and when
R(G,≤n) ∼= R(H,≤n).

To study graphs formed by these two processes, we require the following
relations. For a pair of countable graphs H0 and H we write H0 ≺n H if H
can be formed from H0 by iteratively adding vertices of degree n. We write
H0 ≺≤n H, if H can be formed from H0 by iteratively adding vertices of degree
at most n. Note that by definition we have H ≺n R(H,n) and H ≺≤n R(H,≤n).

Theorem 1. The relations ≺n and ≺≤n are transitive on countable graphs.

The proof of Theorem1 is given in [9] for ≺n. The proof that ≺≤n is transitive
proceeds similarly to that of ≺n, and thus is omitted.

2 Constructing Infinite Graphs by (n)-extensions

In [9] the authors give the following two results for R(n):

48 C. Duffy and J. Janssen

Theorem 2 ([9]). Let Γ be a countably infinite graph. We have Γ ∼= R(n) if
and only if Γ is strongly n-e.c. and Kn ≺n Γ .

Theorem 3 ([9]). R(n) is strongly n-e.c., but not strongly n + 1-e.c.

The proofs of each of these results easily extend to R(H,n).

Theorem 4. Let H be a finite graph with atleast n vertices. Let Γ be a countably
infinite graph. We have Γ ∼= R(H,n) if and only if Γ is strongly n-e.c. and
H ≺n Γ .

Theorem 5. R(H,n) is strongly n-e.c., but not strongly n + 1-e.c.

Together these conditions give a sufficient condition for a countably infinite
graph to be strongly n-e.c., but not strongly n + 1-e.c..

Corollary 1. Let Γ be a strongly n-e.c. graph. If there exists a finite graph H
such that H ≺n Γ , then Γ is not strongly n + 1-e.c..

Using these theorems, we provide necessary results to study the question of
when R(G,n) ∼= R(H,n).

Lemma 1. Let G be a graph on at least n vertices. Let S ⊆ V (G) such that
|S| = n. If G′ is the graph formed from G by adding a single vertex x adjacent
to each vertex in S, then R(G,n) ∼= R(G′,n).

The proof of Lemma 1 proceeds via a back and forth argument to construct
a sequence of partial isomorphisms φi : R(G,n) → R(G′,n). The limit of this
sequence is an isomorphism φ : R(G,n) → R(G′,n).

Theorem 6. If H and G are finite graphs so that H ≺n G, then R(H,n) ∼=
R(G,n).

Proof. Let H0 = H and G0 = G. If H0 ≺n G0, then there exist a sequence of
finite graphs: H0 < H1 < H2 < · · · < Ht

∼= G0 such that for each pair Hi,Hi−1

there exists S ⊆ V (Hi−1) and a vertex x ∈ V (Hi) so that Hi is formed from
Hi−1 by adding x and edges between x and every vertex of S. By Lemma 1 we
have R(Hi,n) ∼= R(Hi−1,n) for all 1 ≤ i ≤ t. The result follows from the transitivity
of isomorphism and the transitivity of ≺n. �

Using Theorem 6, we give necessary and sufficient conditions such that
R(G,n) ∼= R(H,n).

Theorem 7. Let G and H be finite graphs. We have R(G,n) ∼= R(H,n) if and
only if there exists a finite graph K such that G ≺n K and H ≺n K.

Proof. Assume there exists a finite graph K such that G ≺n K and H ≺n K. By
Theorem 6 and the transitivity of isomorphism it follows directly that R(G,n) ∼=
R(H,n).

Strongly n-e.c. Graphs and Independent Distinguishing Labellings 49

Assume R(G,n) ∼= R(H,n). Note that we may assume nG = nH , as if nG < nH ,
then we can construct G′ so that G ≺n G′ and nG′ = nH . Let H0 = H and G0 =
G. Let ΓH = R(H0,n) and ΓG = R(G0,n). Let y1, y2, . . . be a natural enumeration
of the vertices of ΓH . Similarly, let z1, z2, . . . be a natural enumeration of the
vertices of ΓG. Let φ : ΓH → ΓG be an isomorphism. Since φ is an isomorphism
there exists A ⊂ V (ΓG) such that φ−1(A) = {y1, y2, . . . , ynH

}. Let A0 = A. For
k > 0 let Ak be the union of Ak−1 and those vertices zj that have a neighbour
zi ∈ Ak−1 such that i > j. Observe that since only vertices with an index smaller
than the maximum of those in Ak−1 are added to form Ak, there exists some
smallest t such that At = At+1.

Let KG be the subgraph induced by the vertices of At ∪{z1, . . . , znG
}. Notice

that by construction we have G0 ≺n KG. Let X = At \ (
A0 ∪ {z1, . . . , znG0

})
.

That is, X is the set of vertices of A contained neither in the initial copy of G0

in ΓG nor in the image of H0 under φ. Observe eKG
= eG0 +n(|X|+nH0). Since

nG0 = nH0 , we have eKG
= eG0 + n(|X| + nG0).

Consider φ−1(V (KG)). Let KH = [φ−1(V (KG))]. If H0 ≺n KH , then the
proof is complete as φ is an isomorphism and KH

∼= KG. And so assume
H0
≺n KH . Observe KH is a subgraph of ΓH and H0 is an induced subgraph
of KH . Therefore there is an ordering of the vertices of KH , u1, u2, . . . , so that
[u1, u2, . . . , unH0

] ∼= H0 and for each i > nH0 the vertex ui has no more than n
neighbours appearing earlier in the ordering. Since H0
≺n KH there is a vertex
uj with j > nH0 so that uj has strictly fewer than n neighbours appearing earlier
in the ordering. Therefore eKH

< eH0 + n(|X| + nG0).
Since eKH

= eKG
we have eH0 + n(|X| + nG0) < eG0 + n(|X| + nG0) and

so eH0 < eG0 . However, one may construct a similar argument using an iso-
morphism φ′ : ΓG → ΓH to show eG0 < eH0 . This is a contradiction. And so
if R(G0,n) ∼= R(H0,n), then there exists a finite graph K so that G0 ≺n K and
H0 ≺n K. �

Corollary 2. Let G and H be finite graphs on at least n vertices. If R(G,n) ∼=
R(H,n), then there exists a constant c so that eG − eH = cn

Corollary 3. For every n ≥ 1, there exist finite graphs G,H such that R(H,n)
∼=
R(G,n).

We leave open the question of necessary and sufficient conditions for the
existence of a finite graph K so that G ≺n K and H ≺n K for finite graphs G
and H.

3 Constructing Infinite Graphs by (≤ n)-extensions

We turn our attention now the the study of R(G,≤n). Using the tools and methods
of the previous section, we show that the behaviour of R(G,≤n) closely mimics
that of R(G,n). We also show that for any pair of finite graphs G and H, we
have R(G,≤n)
∼= R(H,n). This suggests that infinite graphs of the form R(G,≤n)

50 C. Duffy and J. Janssen

represent a new class of infinite n-ordered graphs that are strongly n-existentially
closed.

We begin with preliminary results for R(H,≤n). The proofs of these results
follow similarly to work in [9] and in the previous section.

Theorem 8. Let H be a finite non-trivial graph. The graph R(H,≤n) is strongly
n-e.c. but not strongly n + 1-e.c..

Corollary 4. Let G be a strongly n-e.c. graph. If there exists a finite graph H
such that H ≺≤n G then G is not strongly n + 1.e.c..

Theorem 9. Let G and H be finite graphs. If H ≤ G, then R(H,≤n) ≤ R(G,≤n).

Corollary 5. For every non-trivial finite graph H, we have that every n-ordered
graph is an induced subgraph of R(H,≤n).

Recall that the n-core of a countable graph Γ is the unique (up to isomor-
phism) maximum finite induced subgraph of minimum degree n + 1 contained
in Γ . If Γ has no such subgraph, then the n-core of Γ is defined to be K1. In
this case we say that Γ has a trivial n-core. Notice that a countable graph Γ is
n-ordered if and only if Γ has a trivial n-core. Observe that if K is the smallest
induced subgraph of Γ such that K ≺≤n Γ , then K is the n-core of Γ . The
concept of n-core plays an important role in the study of infinite graphs of the
form R(H,≤n).

Theorem 10. The finite graph H has a trivial n-core if and only if R(H,≤n) is
n-ordered.

Corollary 6. Every subgraph of R(H,≤n) is n-ordered if and only if H has a
trivial n-core.

To find necessary and sufficient conditions such that R(H,≤n) ∼= R(G,≤n) we
require results similar to Lemma 1 and Theorem 6.

Lemma 2. Let G be a graph. Let S ⊆ V (G) such that |S| ≤ n. If G′ is the
graph formed from G by adding a single vertex x adjacent to each vertex in S,
then R(G,≤n) ∼= R(G′,≤n).

Theorem 11. If H and G are finite graphs so that H ≺≤n G, then R(H,≤n) ∼=
R(G,≤n).

Observe that if G is a non-trivial n-core, then the n-core of R(G,≤n) is exactly
G. To see this, consider any induced subgraph of R(G,≤n). If such a subgraph
contains a vertex not contained in a G, then such a subgraph necessarily has a
vertex of degree at most n. Such a vertex can be found by considering the vertex
with the largest index in such a subgraph (with respect to a natural enumeration
of R(G,≤n)). This fact gives rise to the following result.

Theorem 12. Finite graphs G and H have the same n-core if and only if
R(G,≤n) ∼= R(H,≤n).

Strongly n-e.c. Graphs and Independent Distinguishing Labellings 51

Proof. Assume G and H have the same n-core, K. Observe K ≺≤n G and
K ≺≤n H. It follows from Corollary 11 that R(K,≤n) ∼= R(G,≤n) and R(K,≤n) ∼=
R(H,≤n). The result follows by transitivity of isomorphism.

Assume now that G and H do not have the same n-core. Let G′ be the
n-core of G and H ′ be the n-core of H. By Theorem 11 it suffices to show
R(G′,≤n)
∼= R(H′,≤n). Assume an isomorphism, φ : R(G′,≤n) → R(H′,≤n) exists.
The existence of such an isomorphism implies R(G′,≤n) and R(H′,≤n) have the
same n-core, as the n-core of a countable graph is unique up to isomorphism.
Since G′ is the n-core of R(G,≤n) and since H ′ is the n-core of R(H,≤n) we have
directly that G′ ∼= H ′, a contradiction. �

Corollary 7. If G and H are finite n-ordered graphs, then R(G,≤n) ∼= R(H,≤n).

Theorem 12 gives a full classification of infinite graphs of the form R(G,≤n).
Every unique n-core, that is, every graph G with minimum degree n+1, generates
a unique infinite graph R(G,n).

The characterizations and methods above can be used to show the class of
the form R(H,≤n) represent a class of infinite graphs distinct from those studied
in [9].

Theorem 13. If H and G are finite graphs then R(H,n)
∼= R(G,≤n).

The result in Theorem 5 closely mirrors one in [9] for R(n). However, by The-
orem 13 we see the class of infinite graphs of the form R(H,n) where H is finite
and n-ordered are not the only countable graphs for which every induced sub-
graph is n-ordered and every n-ordered graph appears as a subgraph. Classifying
these universal countable infinite graphs is an interesting open area for research.

We conclude our study of R(H,≤n) with a probabilistic construction generaliz-
ing the probabilistic construction of R(n) in [9]. The construction in [9] iteratively
constructs an n-ordered graph so that at each step a single set of cardinality n
is extended. In the construction below we modify this process so that at each
step a collection of subsets {Si}, 1 ≤ i ≤ n, where |Si| = i, are each extended.

Consider the following process which we name Model (≤ n). Let n ≥ 1 and let
H ′

0 be a non-trivial finite graph, with vertex set u0
1, u

0
2, . . . , u

0
nH

. We form H ′
t from

H ′
t−1 by adding new vertices {xt

1, x
t
2, . . . , x

t
n(t)} where n(t) = min{n, V (H ′

t−1)}.
We add these vertices so that xt

i is adjacent to exactly i vertices of H ′
t−1 (1 ≤ i ≤

n(t)), and each vertex of xj
k (0 ≤ j ≤ t − 1, 1 ≤ k ≤ n(j)) of H ′

t−1 is adjacent to
xt

i with a probability exponentially proportional to j. Formally, for fixed i ≥ 1,
and each S = {xj1

k1
, xj2

k2
, . . . , xji

ki
} ⊂ V (H ′

t−1), let μ(S) = 2−(j1+j2+···+ji).
Let

Ct
i =

∑

S⊆V (Ht−1),|S|=i

μ(S)

and let

IP(NHt
(xt

i) = S) =
μ(S)
Ct

i

.

52 C. Duffy and J. Janssen

That is, for each xt
i we choose Si ⊂ V (H ′

t−1) so that |S| = i. To form H ′
t−1

we add vertices {xt
1, x

t
2, . . . , x

t
n(t)} and edges from xt

i to all vertices in S for all

1 ≤ i ≤ n(t). A particular subset Si ⊂ V (H ′
t−1) is chosen with probability μ(Si)

Ct
i

.

Theorem 14. Let H ′ = limt→∞ H ′
t, where H ′

t was generated with Model (≤ n).
With probability 1, H ′ is strongly n-e.c..

Theorem 15. Let H0 = H ′
0 be a finite non-trivial graph. Let H ′ = limt→∞ H ′

t,
where H ′

t was generated with Model (≤ n). With probability 1, H ′ ∼= R(H0,n).

The proof of Theorem15 uses the same general method of back and forth
construction of partial isomorphisms used in the proof of Lemma1. This proof
directly applies the results of Theorems 7 and 14.

We note that the analogous probabilistic construction of R(G,n), named Model
(n) appears in [9] for the case G = K1. The proofs of the following theorems
follow directly from corresponding results in [9] for R(n).

Theorem 16. Let H ′ = limt→∞ H ′
t, where H ′

t was generated with Model (n).
With probability 1, H ′ is strongly n-e.c..

Theorem 17. Let H0 = H ′
0 be a finite non-trivial graph. Let H ′ = limt→∞ H ′

t,
where H ′

t was generated with Model (n). With probability 1, H ′ ∼= R(H0,n).

4 An Application of the Strong e.c. Property to Graph
Distinguishing

The e.c. property allows us to exactly compare subsets of vertices to see how their
roles within a network are similar and dissimilar. In this section we exploit the
strong e.c property to show that for a class of infinite graphs one may distinguish
similar vertices from one another by their relationship to independent sets.

Let G be a graph and c : V (G) → {1, 2, 3, . . . , k}. Let autc(G) be the set
of automorphisms f of G with the property that for all v ∈ V (G) we have
c(f(v)) = c(v). That is, autc(G) is the set of automorphisms of G that preserve
the mapping c. We say that c is k-distinguishing if autc(G) = {ε}, where ε
denotes the trivial automorphism. In other words, a labelling is distinguishing if
it “breaks” all of the non-trivial automorphisms of G. The distinguishing number
of G, denoted D(G), is the least integer k such that G has a k-distinguishing
labelling.

Distinguishing was first introduced by Albertson and Collins [3]. Since then
authors have considered the distinguishing number of graph families [4,13], the
complexity of the associated decision problems [17,23], generalizations with chro-
matic number [12,14], and even the distinguishing number of infinite graphs [19].
Of particular note is a conjecture regarding the distinguishing number of primi-
tive countable homogeneous relational structures. In [20] the authors generalize
distinguishing number for finite and countable homogeneous structures. They
show that in most cases the distinguishing number is either 2 or infinite. They

Strongly n-e.c. Graphs and Independent Distinguishing Labellings 53

conjecture in fact that, other than a small number of exceptions, all primitive
countable homogeneous relational structures with finite distinguishing number
have distinguishing number 2.

In this section we introduce a new distinguishing distinguishing parameter –
independent distinguishing. We call a k-distinguishing labelling independent if
the pre-image of some label t, 1 ≤ t ≤ k is non-empty and induces an independent
set in G. Let Di(G) be the independent distinguishing number of G.

We provide a sketch of the proof of the following result.

Theorem 18. If G is strongly 1-e.c. and has countably many vertices, then
Di(G) = 2.

We modify the technique used to show that the distinguishing number of the
Rado graph is 2 [19]. We require the following notation: for G a countable graph,
k a positive integer, c : V (G) → {1, 2, . . . , k} and 1 ≤ t ≤ k, let Gc[t] be the
set of vertices v of G so that c(v) = t. The key ingredients in the proof are the
following two lemmas.

Lemma 3. If G is strongly 1-e.c., then for all x ∈ V (G), all finite Y ⊂ V (G)\x
and for all k > 0 there exists an independent set Ik ⊂ V (G) \ ({x} ∪ Y) of
cardinality k such that each vertex of Ik is correctly joined to x and Y .

Proof. Let G be a strongly 1-e.c., graph. Consider x ∈ V (G) and some finite
Y0 ⊂ V (G)\x. Since G is strongly 1-e.c. there exists z1 ∈ V (G)\ ({x} ∪ Y0) such
that z1 is correctly joined to x and Y0. Let Y1 = Y0 ∪ {z1}. Since G is strongly
1-e.c. there exists z2 ∈ V (G) \ ({x} ∪ Y1) such that z2 is correctly joined to
x and Y1. Proceeding in this manner constructs the requisite independent set
z1, z2, . . . , zk for any k > 0. �

Lemma 4. Let G be a strongly 1-e.c. infinite graph and c : V (G) → {1, 2}. If
1. Gc[2] is an independent set; and
2. each v ∈ Gc[1] has a unique number of neighbours in Gc[2],

then c is independent 2-distinguishing labelling.

Proof. Let G be a strongly 1-e.c. infinite graph and let c : V (G) → {1, 2}
satisfy 1 and 2. Consider φ ∈ autc(G). By 2, we have that φ(u) = u for each
u ∈ Gc[1], as otherwise there exists w ∈ Gc[i] such that c(φ(w))
= i. Assume
there exists v1
= v2 ∈ V (G) so that φ(v1) = v2. By the previous argument
we have v1 ∈ Gc[2]. Since G is strongly 1-e.c. there exists z ∈ V (G) \ {v1, v2}
that is correctly joined to v1 and v2. Since Gc[2] is an independent set, we
have that z ∈ Gc[1]. Since φ is an automorphism we have zv1 ∈ E(G) implies
φ(z)φ(v1) = zv2 ∈ V (G). This contradicts that z is correctly joined to v1 and
v2. Thus no such z exists and we see that φ(v) = v for each v ∈ Gc[2]. Therefore
autc(G) contains only the identity automorphism. �

54 C. Duffy and J. Janssen

We proceed now to outline the proof of Theorem18. Let G be strongly 1-e.c.
with countably many vertices. Let v1, v2, . . . be an enumeration of the vertices.
Let n1, n2, . . . be a sequence of positive integers such that

∑k
t=1 nt < nk+1 for

all k > 1. We construct a sequence of mappings ci : V (G) → {1, 2, 3} such that
for all i ≥ 1 we have

– if i′ ≤ i and ci(vi′) = 1, then vi′ has exactly ni′ neighbours in Gci
[2]; and

– Gci
[2] is an independent set.

Let c0(v) = 3 for all v ∈ V (G). Proceeding inductively, we construct ci+1

from ci as follows: If ci(vi+1) = 2, then we let ci+1 = ci. Otherwise we let
ci+1(vi+1) = 1. By construction, vi+1 has fewer than ni+1 neighbours x such
that ci(x) = 2. By applying Lemma 3, we can construct an independent set I
such that ci(y) = 3 for all y ∈ I. Relabeling each vertex in I to have label 2 will
give vi+1 exactly ni+1 neighbours with label 2 with respect to the labelling ci.
This relabelling defines ci+1.

Let Yi = Gci
[2] ∪ Gci

[1] for all i ≥ 1. Notice now that as n → ∞ we have
|Yi| → ∞ as vi ∈ Yi for all i ≥ 1. Taking the limit of this sequence of labellings
yields a labelling in which no vertex is assigned label 3. To complete the proof
one must verify that such a labelling satisfies the hypothesis of Lemma 4.

Corollary 8. Let G be a finite graph and let n ≥ 1. The following graphs have
independent distinguishing number 2: R, R(G,n) and R(G,≤n).

5 Conclusion

Throughout our construction of R(G,n) and R(H,≤n) we have assumed that both
G and H are finite and simple. Though much of the analysis would remain
unchanged if we drop the assumption of finiteness, proofs of theorems that
depend on the finiteness of G and H no longer hold. As both ≺n and ≺≤n

remain transitive for infinite graphs, the study of R(G,n) and R(H,≤n) when G
and H are countably infinite may yield further insight in to graphs that are
strongly n-e.c.. To consider graphs with parallel edges we can consider modify-
ing the construction of R(G,n) to allow S to be a multi-set. In this case it can
seen that the simple graph underlying R(G,n) is precisely R(G,≤n).

In the context of online graph construction models, this limits of this work
are clear – in the real world graphs are finite; there are no strongly n-e.c. graphs.
It is possible that the graphs generated after finitely many steps by Model n and
Model (≤ n) have adjacency properties similar to n-e.c. property and strong n-
e.c. property. Future work in this area should consider finite variants of Model n
and Model (≤ n), as well as how the finite versions of these models compare with
standard online random graph models. As a first comparison, one might compare
these models to Degree Preferential Attachment models. In a sense both Model
(≤ n) and Model (n) are preferential attachment models: as we proceed older
vertices have higher degree than younger vertices and these higher degree vertices
are more likely to be chosen for attachment in subsequent rounds. However in

Strongly n-e.c. Graphs and Independent Distinguishing Labellings 55

this case the preference for a vertex to be chosen is caused by its age rather
than its degree. Regardless, it seems possible that the finite versions of these
constructions will produce scale-free and possibly small world graphs.

References

1. Abbasi, A., Hossain, L., Leydesdorff, L.: Betweenness centrality as a driver of
preferential attachment in the evolution of research collaboration networks. J. Inf.
6(3), 403–412 (2012)

2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74(1), 47 (2002)

3. Albertson, M.O., Collins, K.L.: Symmetry breaking in graphs. Electron. J. Comb.
3(1), 18 (1996)

4. Balachandran, N., Padinhatteeri, S.: Distinguishing chromatic number of random
Cayley graphs. Discrete Math. 340(10), 2447–2455 (2017)

5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

6. Barabási, A.L., Bonabeau, E.: Scale-free networks. Sci. Am. 288(5), 60–69 (2003)
7. Benzi, M., Klymko, C.: On the limiting behavior of parameter-dependent network

centrality measures. SIAM J. Matrix Anal. Appl. 36(2), 686–706 (2015)
8. Bonato, A.: The search for n-e.c. graphs. Contrib. Discret. Math. 4(1), 40–53

(2009)
9. Bonato, A., Janssen, J., Wang, C.: The n-ordered graphs: a new graph class. J.

Graph Theory 60(3), 204–218 (2009)
10. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008). https://doi.

org/10.1007/978-1-84628-970-5
11. Cameron, P.J.: The random graph revisited. Eur. Congr. Math. 1, 267–274 (2000)
12. Cheng, C.T.: On computing the distinguishing and distinguishing chromatic num-

bers of interval graphs and other results. Discrete Math. 309(16), 5169–5182 (2009)
13. Choi, J.O., Hartke, S.G., Kaul, H.: Distinguishing chromatic number of Cartesian

products of graphs. SIAM J. Discret. Math. 24(1), 82–100 (2010)
14. Collins, K.L., Trenk, A.N.: The distinguishing chromatic number. Electron. J.

Comb. 13(1), 16 (2006)
15. Deijfen, M., Van Den Esker, H., Van Der Hofstad, R., Hooghiemstra, G.: A prefer-

ential attachment model with random initial degrees. Arkiv för Matematik 47(1),
41–72 (2009)

16. Erdős, P., Rényi, A.: Asymmetric graphs. Acta Math. Hung. 14(3–4), 295–315
(1963)

17. Eschen, E.M., Hoàng, C.T., Sritharan, R., Stewart, L.: On the complexity of decid-
ing whether the distinguishing chromatic number of a graph is at most two. Discrete
Math. 311(6), 431–434 (2011)

18. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model
of networks. Internet Math. 3(2), 187–205 (2006)

19. Imrich, W., Klavžar, S., Trofimov, V.: Distinguishing infinite graphs. Electron. J.
Comb. 14(1), R36 (2007)

20. Laflamme, C., Sauer, N., et al.: Distinguishing number of countable homogeneous
relational structures. Electron. J. Comb. 17(1), R20 (2010)

21. De Solla Price, D.: A general theory of bibliometric and other cumulative advantage
processes. J. Am. Soc. Inf. Sci. 27(5), 292–306 (1976)

https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1007/978-1-84628-970-5

56 C. Duffy and J. Janssen

22. Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Phys.
Rev. E 67(2), 026112 (2003)

23. Russell, A., Sundaram, R.: A note on the asymptotics and computational com-
plexity of graph distinguishability. Electron. J. Comb. 5(1), 23 (1998)

24. Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H., Laurienti, P.J.: The
ubiquity of small-world networks. Brain Connect. 1(5), 367–375 (2011)

25. Wang, Z., Scaglione, A., Thomas, R.J.: Generating statistically correct random
topologies for testing smart grid communication and control networks. IEEE Trans.
Smart Grid 1(1), 28–39 (2010)

26. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393(6684), 440 (1998)

The Robot Crawler Model on Complete
k-Partite and Erdős-Rényi Random

Graphs

A. Davidson(B) and A. Ganesh

School of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, UK
angus.davidson@cantab.net, a.ganesh@bristol.ac.uk

Abstract. Web crawlers are used by internet search engines to gather
information about the web graph. In this paper we investigate a simple
process which models such software by walking around the vertices of a
graph. Once initial random vertex weights have been assigned, the robot
crawler traverses the graph deterministically following a greedy algo-
rithm, always visiting the neighbour of least weight and then updating
this weight to be the highest overall. We consider the maximum, min-
imum and average number of steps taken by the crawler to visit every
vertex of firstly, sparse Erdős-Rényi random graphs and secondly, com-
plete k-partite graphs. Our work is closely related to a paper of Bonato
et al. who introduced the model.

MSC2010 Subject Classification. 60C05 · 05C80 · 05C81 · 05C85 ·
90B15

1 Introduction

Using an analogy introduced by Messinger and Nowakowski [8], heuristically the
robot crawler model can be viewed as a robot cleaning the nodes of a graph
according to a greedy algorithm. Upon arriving at a given vertex the robot
“cleans” the vertex, and then moves to its “dirtiest” neighbour to continue the
process. Crawlers are of practical use in gathering information used by internet
search engines, [4,7,10]. This particular version of the model was introduced by
Bonato et al. [3] and we direct the reader to their paper for further insight into the
problem’s motivation and previous work done. There they considered the robot
crawler performed on trees, complete k-partite graphs (with equal sized vertex
classes), Erdős-Rényi random graphs and the preferential attachment model. The
purpose of this paper is to offer an answer to open problems 1 and 2 posed there
which relate to generalising their work concerning complete k-partite graphs and
Erdős-Rényi random graphs.

The model introduced by Messinger and Nowakowski [8] is analogous to the
robot crawler model, but the robot cleans edges, (which are weighted), rather
than vertices. Models similar to those studied by Messinger and Nowakowski
[8] were investigated by Berenbrink, Cooper and Friedetzky [1] and Orenshtein
c© Springer Nature Switzerland AG 2019
K. Avrachenkov et al. (Eds.): WAW 2019, LNCS 11631, pp. 57–70, 2019.
https://doi.org/10.1007/978-3-030-25070-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25070-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-25070-6_5

58 A. Davidson and A. Ganesh

and Shinkar [11] who considered a class of random walks on graphs which prefer
unused edges, although in their models the walker chooses independently among
adjacent edges when they have all previously been traversed.

Given a finite connected undirected simple graph G = G(V,E) we fix from
outset an initial weighting; a bijective function w0 : V → {−n,−n + 1...,−1}
indicating the initial ranking of how dirty the vertices are. Here and henceforth
“dirtiest”/“cleanest” refers to the vertex with the lowest/highest weight in a
given set. At time 1 the robot visits the “dirtiest” node in V , i.e. w−1

0 (−n).
At time t ∈ N the robot updates the weight of the vertex visited to t. So if the
robot visits vertex v at time t then wt(v) = t and wt(v′) = wt−1(v′)∀v′ ∈ V, v′ �=
v, t ∈ N. If all vertices then have positive weight, i.e. miny∈V (wt(y)) > 0 then
the algorithm terminates and we output RC(G,w0) = t; the number of steps
taken to clean all vertices. Otherwise at time t + 1 the robot moves to vertex
argmin{wt(u) : (u, v) ∈ E} i.e. the dirtiest neighbour of v at time t, and the
process continues. As proved in [3], this algorithm will always terminate after a
finite number of steps.

Using Ωn to denote the set of (n!) initial weightings we define

rc(G) = min
w0∈Ωn

(RC(G,w0)) and

RC(G) = max
w0∈Ωn

(RC(G,w0)),

the minimum and maximum number of steps needed to clean all vertices of G.
Now supposing w0 is a uniformly chosen element of Ωn we define the average

number of steps needed to clean all vertices of G; rc(G) = E(RC(G,w0)).
We first consider the robot crawler number of sparse Erdős-Rényi random

graphs in Sect. 2 before moving on to some results concerning the robot crawler
on complete k-partite graphs in Sect. 3.

2 Erdős-Rényi Random Graph

We turn our attention to the main result of this paper: open problem 2 in [3].
In their paper Bonato et al. considered the robot crawler performed on G(n, p)
with np ≥ √

n log n. We will prove the 2 results in Theorem 1 below which are
similar to Corollary 2 and Theorem 8 in their work, but for much sparser graphs:

Theorem 1. Let p = f(n) log n/n for some non-decreasing function f > 28.

(i) RC(G(n, p)) ≤ n2+o(1) a.a.s.
(ii) W.l.o.g. for 1 ≤ i ≤ n fix w0(vi) = −i. Then

RC(G(n, p), w0)(
n + n

f(n)

) p−→ 1 as n → ∞

In particular we note that if f(n) → ∞ as n → ∞, however slowly, then
RC(G(n,p),w0)

n

p−→ 1 as n → ∞.

The Robot Crawler Model 59

Proof (of Theorem 1 (i)). We will use Lemma 1(5) from [3] which states that for
any graph G, RC(G) ≤ n(Δ + 1)d where Δ is the maximum degree of a vertex
in G, and d is the diameter of G.

The number of neighbours of v, a typical vertex of G(n, p), is distributed
Bin(n − 1, p). Hence,

P(v has ≥ 2np neighbours) = P(Bin(n − 1, p) ≥ 2np)
= (1 + O(1))P(N ((n − 1)p, (n − 1)p(1 − p)) ≥ 2np)

≤ (1 + O(1))Φ

(
−np√

(n − 1)p(1 − p)

)

≤ (1 + O(1))Φ (−√
np)

≤ (1 + O(1))
e−np/2

√
2πnp

≤ (1 + O(1))n−f(n)/2 ≤ (1 + O(1))n−14

Hence by the union bound, P(Δ ≥ 2np) ≤ (1 + O(1))n−13

In a 2004 paper [5], (which extends the work of Bollobás [2]), Chung and
Lu showed that a.a.s., d = (1 + o(1)) log n

log(np) for np → ∞. Putting these bounds
together, a.a.s;

n(Δ + 1)d ≤ n(2np)(1+o(1)) log n
log np

= n exp((1 + o(1))
log n

log np
log 2np)

= n2+o(1)

To prove part (ii), we will have use for the following lemma:

Lemma 1. Let Y =
∑n/7

i=1 Xi where Xi ∼ Geom(1− (1− p)i) independently for
each 1 ≤ i ≤ n/7. For all ε > 0,

P

(
(1 − ε)

(
n

7
+

n

f(n)

)
< Y < (1 + ε)

(
n

7
+

n

f(n)

))
n→∞−→ 1

Proof. To prove the upper bound we will use the following stochastic domination:
For Z1 ∼ Geom(q) and Z2 ∼ Exp(− log(1 − q)), Z1 � 1 + Z2. That is

P(Z1 ≥ x) ≤ P(Z2 + 1 ≥ x) for all x ≥ 0, or Z1 stochastically dominates Z2 + 1.
Indeed, for x ≥ 1, P(Z2 + 1 ≥ x) = e(x−1) log 1−q = (1 − q)x−1.
Also, P(Z1 ≥ x) = (1 − q)�x−1� ≤ P(Z2 + 1 ≥ x).
Defining Ei ∼ Exp(i) for 1 ≤ i ≤ n

7 ,

Y � 1
− log(1 − p)

n/7∑
i=1

Ei +
n

7

60 A. Davidson and A. Ganesh

Hence,

P

(
Y > (1 + ε)

(
n

7
+

n

f(n)

))
≤ P

⎛
⎝ 1

− log(1 − p)

n/7∑
i=1

Ei >
(1 + ε)n

f(n)
+

εn

7

⎞
⎠

≤ P

⎛
⎝ 1

− log(1 − p)

n/7∑
i=1

Ei > (1 + ε)
n

f(n)

⎞
⎠

≤ P

⎛
⎝

n/7∑
i=1

Ei > (1 + ε) log n

⎞
⎠

since − log(1 − p) ≥ p = f(n) log n
n . It is an elegant fact that

∑n/7
i=1 Ei ∼

max1≤i≤n/7{Ei
1} where Ei

1 ∼ Exp(1) i.i.d..
Indeed suppose Mi, 1 ≤ i ≤ n/7 are the ordered values in the array

{Ei
1}1≤i≤n/7. That is M1 = min({Ei

1}1≤i≤n/7), M2 = min({Ei
1}1≤i≤n/7 \ M1)

etc. Then M1 ∼ En/7 since M1 is the minimum of n/7 Exp(1) random vari-
ables. If M1 = Ej

1 say, then Ei
1 − M1 ∼ Exp(1) for all 1 ≤ i ≤ n/7, i �= j by

the memoryless property of the Exponential distribution. Therefore M2 − M1 =
min({Ei

1 −M1}1≤i≤n/7,i
=j) ∼ En/7−1 since M2 −M1 is the minimum of n/7− 1
Exp(1) random variables and so on. Hence if we further define M0 = 0 then

max
1≤i≤n/7

{Ei
1} = Mn/7 =

n/7∑
i=1

(Mi − Mi−1) ∼
n/7∑
i=1

En/7+1−i =
n/7∑
i=1

Ei.

We apply the union bound to deduce

P

(
Y > (1 + ε)

(
n

7
+

n

f(n)

))
≤ ne−(1+ε) log n = n−ε n→∞−→ 0

In proving the lower bound, we will use an even simpler stochastic domina-
tion:

For T i
1 ∼ Geom(1− (1−p)i) and T i

2 ∼ Geom(ip) with i ≥ 1, ip < 1, T i
1 � T i

2.
This follows from the simple inequality 1− (1− p)i ≤ ip which holds ∀i ≥ 1. Let
T =

∑n/f(n) log n
i=1 T i

2. We find

P

(
Y < (1 − ε)

(
n

7
+

n

f(n)

))

≤ P

⎛
⎝T +

n/7∑
i=1+n/f(n) log n

1 < (1 − ε)
(

n

7
+

n

f(n)

)⎞
⎠

≤ P

(
T <

n

f(n)
− εn

7
+

n

f(n) log n

)

The Robot Crawler Model 61

We recognise the relation between T and the coupon collector problem, (see
for example [9]). Now,

E (T) =
n/f(n) log n∑

i=1

1
ip

=
log n − log (f(n) log n) + O(1)

p

=
n

f(n)
− log(f(n) log n) − O(1)

f(n) log n

Var (T) =
n/f(n) log n∑

i=1

1 − ip

(ip)2
≤ 1

p2

∞∑
i=1

1
(i)2

=
π2

6p2

We use Chebyshev’s inequality to conclude

P

(
Y < (1 − ε)

(
n

7
+

n

f(n)

))

≤ P

(
T <

n

f(n)
− εn

7
+

n

f(n) log n

)

≤ P

(
|T − E (T)| > E (T) − n

f(n)
+

εn

7
− n

f(n) log n

)

≤ P

(
|T − E (T)| >

εn

7
− n(log(f(n) log n) + O(1))

f(n) log n

)

≤ P

(
|T − E (T)| >

εn

14

)
(for large enough n)

≤
(εn

14

)−2

Var (T) =
196π2

6(εf(n) log n)2
n→∞−→ 0

We will prove Theorem 1 (ii) by showing high probability lower/upper bounds
on RC(G(n, p), w0). This is achieved by showing that with high probability this
robot crawler number dominates/is dominated by a particular sum of geometrics.
We will then use Lemma 1 to reach the final conclusion.

Fix the order of the vertices of G(n, p) by initial weighting before we realise
the edges of the random graph. So w.l.o.g. w0(vi) = −i∀1 ≤ i ≤ n.

In what follows we describe an exploration of the graph by the crawler which
is “minimalistic” in its exposure of edges: Initially the presence or absence of
every edge is unknown and undiscovered. Given any particular position of the
crawler (which starts at vertex vn at time 1), it proceeds to “check” the presence
or absence of potential edges one by one starting with the dirtiest potential
neighbour (at time 1 this will be vertex vn−1), and then the next dirtiest and
so on until an edge is found. Only those potential edges which were “checked”
in this search for an edge are uncovered in this step. For example, supposing
initially the dirtiest neighbour of vn is vi, then once the crawler has moved to
vi in step 2, the absence of edges between vn and vj for all n − 1 ≤ j ≤ i + 1
will have been established, the presence of the edge between vn and vi will have
been discovered and no other information regarding presence/absence of edges
will have been uncovered.

62 A. Davidson and A. Ganesh

Proof (of Theorem 1 (ii)).
Lower Bound

We begin by showing P

(
RC(G(n, p), w0) ≤ (1 − ε)

(
n + f(n)

n

))
n→∞−→ 0, the

lower bound. The crawler begins at time 1 at vertex vn, initially the dirtiest
node. Suppose that the crawler is positioned at vertex v, and that there are i
vertices yet to be visited.

– If this is the crawler’s first visit to v, no information is known about the
presence of potential edges between v and yet unvisited vertices, hence the
probability that v is connected to an unvisited vertex is 1 − (1 − p)i indepen-
dently of all previous steps of the algorithm.

Otherwise, suppose that w was the vertex visited immediately after the
crawler was last at vertex v.

– If w had already been cleaned, then necessarily, it is cleaner than any yet
unvisited vertex which implies there are no edges between v and yet uncleaned
vertices.

– If w had not already been cleaned, there are no edges between v and any
uncleaned vertices which were initially dirtier than w, but presence of edges
between v and uncleaned vertices initially cleaner than w is independent of
all previous steps of the algorithm.

In any case, the probability v is connected to an unvisited vertex is 1−(1−p)j

for some 0 ≤ j ≤ i. Hence, independently of all previous steps of the process,
the probability v is connected to an unvisited vertex is less than 1 − (1 − p)i.
This implies the number of steps needed before reaching the next yet uncleaned
vertex dominates a Geom(1 − (1 − p)i) random variable, and ∀ε > 0

P

(
RC(G(n, p), w0) ≤ (1 − ε)

(
n +

f(n)
n

))

≤ P

(
n−1∑
i=1

Geom(1 − (1 − p)i) ≤ (1 − ε)
(

n +
f(n)

n

))

≤ P

(
Y ≤ (1 − ε)

(
n

7
+

f(n)
n

))
n→∞−→ 0

by Lemma 1. For n
7 +1 ≤ i ≤ n−1 we use the simple fact that Geom(1−(1−p)i) ≥

1 in the second inequality.
Upper Bound

It remains to show that ∀ε > 0

P

(
RC(G(n, p), w0) ≥ (1 + ε)

(
n +

f(n)
n

))
n→∞−→ 0.

As in [3] we will consider 3 different phases of the crawling process. The 3
phases are required to control the dependence of the latter stages of the process

The Robot Crawler Model 63

on earlier movements of the robot crawler. The verticies are divided into 3 groups:
“sets 1 to 3” say where vertices in set 1 are dirtier than those in set 2, and vertices
in set 2 are dirtier than those in set 3. Phase 1 is designed so that all vertices
in set 1 are cleaned and only vertices in sets 1 and 2 are visited. Phase 2 is
designed so that all vertices in set 2 are cleaned and only vertices in sets 2 and 3
are visited. By Phase 3 the construction ensures that nothing has been revealed
about the existence or otherwise of edges between vertices in set 1 and vertices
in set 3. During Phase 1 the crawler may reveal missing edges between pairs of
vertices in set 1, and similarly missing edges between pairs of vertices in set 3
during Phase 2, however with high probability the number of missing edges can
be bounded. During Phase 3 all vertices in set 3 are cleaned and only vertices
in sets 1 and 3 are visited. The independence of the existence/absense of edges
between sets 1 and 3 together with the bound on missing edges is enough to
ensure (with high probability) that the crawler will visit every vertex in set 3
within a specified number of steps.

Phase 1: As with the lower bound, the process will start from vn, initially
the dirtiest node and proceed to clean vertices of the graph. This phase ends
when either of the following occur:

(a) 4n
7 vertices have been cleaned.

(b) The crawler is not adjacent to any of the n/7 dirtiest (and as yet uncleaned)
vertices, which are necessarily contained in {vi,

2n
7 < i ≤ n}.

We define the jump number J(vi), (1 ≤ i ≤ n) of a vertex vi as the number
of times any cleaner node was visited (potentially including repeated visits to
the same node) before vi was first cleaned itself. Intuitively it is the number of
potential edges connected to vi which were explored before one was first found,
since each occurrence of a cleaner vertex being chosen by the crawler before
vertex vi implies a missing edge between the crawler’s position at that time and
vi. If Phase 1 ends due to (a), and also the condition “J(v) ≤ n/7 for all vertices”
at the end of Phase 1 holds we will say that property P1 holds.

During each step of the crawling process in Phase 1, potential edges between
the crawler’s position and dirty nodes have not yet been exposed in previous
steps. At each step, event (b) occurs if n/7 unexplored edges are not present in
G(n, p). This occurs with probability at most

(1 − p)n/7 = (1 − f(n) log n/n)n/7 ≤ n−f(n)/7 = o(n−3)

Hence by the union bound, with probability 1 − o(n−2) Phase 1 ends due
to (a).

Further, as argued above “J(vi) ≥ n/7” implies that the first n/7 unexplored
potential edges to vi were not present. Again this has probability at most (1 −
p)n/7 = o(n−3), and hence by another application of the union bound, property
P1 holds with probability 1 − o(n−2).

An important point to note is that only edges between vertices in {vi,
2n
7 <

i ≤ n} have been explored. Crucially for Phase 3, property P1 implies that each
vertex v cleaned in this phase has had at most 2n/7 potential edges exposed by

64 A. Davidson and A. Ganesh

the crawler (at most n/7 before the v was cleaned since J(v) ≤ n/7 and at most
n/7 in the step after v was cleaned since (b) does not occur).

Phase 2: We continue to clean vertices until any one of the following occurs:

(a) The crawler is not adjacent to any as yet uncleaned vertex.
(b) There are n/7 uncleaned vertices remaining in G(n, p).

If Phase 2 ends due to (b), and all vertices in {vi,
2n
7 < i ≤ n} have been

cleaned by the end of the phase, then we say property P2 holds. As in Phase 1,
Phase 2 ends due to (a) at each step if (at least) n/7 unexplored edges are not
present in G(n, p). Again we can conclude using the union bound that Phase 2
ends due to (b) with probability 1 − o(n−2).

Suppose now that ∃v ∈ {vi,
2n
7 < i ≤ n} such that v has not been cleaned

by the crawler by the end of Phase 2. This would imply that J(v) ≥ n
7 which

as previously calculated has probability o(n−3). Using this observation we again
use the union bound to deduce:

P({P2 holds}|{Phase 2 ends due to (b)} ∩ {P1 holds})

= 1 − o(n−2)

Hence, summarising what has been done so far,

P({P1 holds} ∩ {P2 holds}) = 1 − o(n−2)

Phase 3: During this phase the crawler will continue to visit yet uncleaned
vertices of G(n, p) as well as revisiting some of the vertices which were cleaned
during Phase 1. These vertices will have the smallest weight at this stage. This
phase ends when any of the following occur:

(a) The crawler is not adjacent to any yet uncleaned vertex nor to any vertex
which was cleaned during Phase 1 and has not yet been revisited in Phase 3.

(b) The phase takes longer than 2n/7 steps.
(c) All vertices are cleaned.

If Phase 3 ends due to (c) then we say property P3 holds. In the explanation
that follows, we condition on the event that P1 and P2 hold.

At each step of this phase, in total there are at least 3n/7 “target” vertices
which are yet to be visited at all or were cleaned in Phase 1 and have yet to be
revisited in this phase. The reason for this is there are 4n/7 vertices cleaned in
Phase 1, n/7 vertices yet to be visited at all and this phase takes at most 2n/7
steps. If the crawler has just revisited a vertex cleaned in Phase 1, P1 implies at
most 2n/7 potential edges adjacent to the vertex will have been explored earlier
in the process, so at least 3n

7 − 2n
7 = n

7 potential edges to “target” vertices are still
unexplored. Otherwise, if the crawler has just visited a vertex for the first time in
the process then all (≥ 3n/7) potential edges to “target” vertices are unexplored.
This is because crucially: no edges between {vi,

2n
7 < i ≤ n} and {vi, 1 ≤ i ≤ 2n

7 }
are explored in Phase 1; P2 implies the uncleaned vertices at the beginning of
Phase 3 are contained within {vi, 1 ≤ i ≤ 2n

7 } and as in earlier phases, the

The Robot Crawler Model 65

presence of potential edges between any possible current location of the crawler
and yet unvisited vertices is still undetermined, and independent of previous
steps of the process. Once again, the union bound tells us the probability we
have (at least) n/7 unexplored edges not present in G(n, p) during one of these
steps, and hence that Phase 3 ends due to (a), is o(n−2).

We now argue that with probability o(n−2) Phase 3 ends due to (b). This
is essentially a repeat of the argument in Phase 2. If Phase 3 ends due to (b)
then ≥ n

7 vertices cleaned in Phase 1 will have been revisited during Phase 3. If
v ∈ {vi, 1 ≤ i ≤ 2n

7 } is still uncleaned at the end of the phase, then J(v) ≥ n
7 ,

since all vertices cleaned in Phase 1 will be cleaner than v before it is itself
cleaned. Once again, this has probability o(n−3) and applying the union bound:

P(P3 holds}|{Phase 3 ends due to (b) or (c)} ∩ {P2 holds} ∩ {P1 holds})

= 1 − o(n−2)

We can now conclude that:

P({P3 holds}|{P1 holds} ∩ {P2 holds}) = 1 − o(n−2)

and hence bringing together earlier calculations

P({P1, P2, P3 hold}) = 1 − o(n−2)

If Ŷ := (Y |Y ≤ 2n/7) then conditional on P1, P2 and P3, Phases 1 and 2
will take n−n/7 steps and Phase 3 will take a number of steps distributed as Ŷ .
Indeed, during Phase 3 when there are x yet uncleaned vertices in {vi, 1 ≤ i ≤
2n
7 }, (and hence x unexplored edges from the crawler’s current position and these

vertices), the probability the crawler will be adjacent to at least one of them is
given by 1 − (1 − p)x. If the crawler continues to visit vertices with unexplored
edges to all x yet uncleaned vertices then the probability the crawler will reach
one of these x vertices in the next y steps is given by P(Geom(1− (1−p)x) ≤ y).
And so

P

(
RC(G(n, p), w0) ≥ (1 + ε)

(
n +

f(n)
n

))

≤ P

(
RC(G(n, p), w0) ≥ (1 + ε)

(
n +

f(n)
n

) ∣∣∣{P1, P2, P3 hold}
)

+ P
({P1, P2, P3 hold}C

)

≤ P

(
Ŷ +

6n

7
≥ (1 + ε)

(
n +

f(n)
n

))
+ o(n−2)

≤ P

(
Ŷ ≥ (1 + ε)

(
n

7
+

f(n)
n

))
+ o(n−2)

≤ P

(
Y ≥ (1 + ε)

(
n

7
+

f(n)
n

))
+ o(n−2) n→∞−→ 0

again, by Lemma 1.

66 A. Davidson and A. Ganesh

3 Complete k-Partite Graphs

We now consider a number of results concerning the robot crawler on complete
k-partite graphs.

3.1 Results

Given some constants c1 ≥ c2...,≥ ck,
∑k

i=1 ci = 1, k ≥ 3 consider the robot
crawler model performed on the complete k-partite graph Gn induced by vertex
sets V1, V2, ..., Vk where |Vi| = cin ∀1 ≤ i ≤ k.

Theorem 2.

(i) For c1 ≤ 1
2 , rc(Gn) = n

(ii) For c1 > 1
2 , rc(Gn) = 2nc1 − 1

Theorem 3.

(i) For c2 ≤ 1
2 (1 − c1), RC(Gn) = n + c1n − 1

(ii) For c2 > 1
2 (1 − c1), RC(Gn) = 2(n − c2n)

Theorem 4.

(i) For c1 < 1
2 , rc(Gn) = n + O(1)

(ii) For c1 = 1
2 , rc(Gn) = n + O(n

1
2)

(iii) For c1 > 1
2 , rc(Gn) = 2nc1 + O(1)

In particular we note that for c1 �= 1
2 , rc(Gn) = rc(Gn) + O(1), which refines

Theorem 6 in [3] if we take Gn = Kk
n/k, the complete k-partite graph induced

by k vertex sets each of size n
k .

3.2 Proofs

We begin with the more straightforward proofs of Theorems 2 and 3 before
approaching the more complex treatment of Theorem 4.

Proof (of Theorem 2). It is easy to construct a Hamiltonian path to verify part
(i); for example, since the minimum vertex degree is at least n/2 we can apply
Dirac’s theorem on Hamiltonian cycles. With an appropriate choice of w0 we
can force the crawler to follow this Hamiltonian path which visits all nodes in n
steps. For part (ii) we note that once the crawler is in set V1 (which takes at least
1 step) it must return at least c1n−1 times. Whenever the crawler is in set V1 it
will take at least 2 steps of the algorithm before the crawler returns since there
are of course no edges between vertices in V1. Hence rc(Gn) ≥ 1 + 2(nc1 − 1).
Noting that |V1| > |V \V1|, the bound can be achieved if the crawler starts in V1

and oscillates between V1 and V \ V1, e.g. if w0(v) < w0(u) ∀v ∈ V1, u ∈ V \ V1.

The Robot Crawler Model 67

Given an initial weighting w0, for 1 ≤ i ≤ k define the surplus of vertex
set i (=: Sw0(i)) to be the number of uncleaned vertices remaining in Vi at the
moment all vertices in V \ Vi have been cleaned. Clearly Sw0(i) = 0 for all but
one value of i. Further define Sw0 =

∑k
i=1 Sw0(i) = max1≤i≤k(Sw0(i)). A crucial

observation is that RC(Gn, w0) = n + Sw0 − 1. Indeed suppose Sw0(i) > 0, then
immediately after the time step (t = n − Sw0(i)) when all vertices in V \ Vi

have been cleaned the crawler will alternate between Vi and V \ Vi until all
remaining Sw0(i) uncleaned vertices of Vi have been cleaned which will take a
further 2Sw0(i) − 1 steps.

Proof (of Theorem 3). Clearly Sw0 ≤ max1≤i≤k |Vi| = c1n. Part (i) now amounts
to showing that if c2 ≤ 1

2 (1 − c1) then ∃w0 such that Sw0 = c1n. This follows in
part since if k ≥ 4 it is possible to clean V \V1 in |V \V1| steps using Theorem 2
(i) on the complete (k − 1)-partite graph induced by vertex sets V2, ..., Vk, in
which case Sw0(1) = c1n. Finally, if k = 3 then necessarily c2 = c3 and again
it is of course possible to clean V \ V1 in |V \ V1| steps simply by alternating
between V2 and V3 for the first 2c2n steps.

Suppose now c2 > 1
2 (1 − c1). If Sw0(2) > 0, then Sw0(1) = 0. It takes at

least 2nc1 − 1 steps to clean all vertices of V1 at which point there are at most
n − 2nc1 + 1 vertices in V2 not yet visited by the crawler. It will then take at
most 2(n − 2nc1 + 1) − 1 steps to clean the remainder of the vertices, which
implies RC(Gn) ≤ 2(n − 2nc1 + 1) − 1 + 2nc1 − 1 = 2n(1 − c1), less than the
required upper bound.

If conversely Sw0(2) = 0, then when V2 is fully cleaned there are uncleaned
vertices elsewhere in V . We first note that it takes at least 2nc2−1 steps to clean
all vertices of V2 at which point there are at most n − 2nc2 + 1 vertices in V not
yet visited by the crawler. From this point it will take at most 2(n−2nc2+1)−1
steps to clean the remainder of the vertices, which gives the required upper bound
RC(Gn) ≤ 2n(1 − c2).

Consider w0 ∈ Ωn with set V2 being the |V2| dirtiest, and V1 the |V1| cleanest
vertices of V . That is

⋃c2n−1
j=0 w−1

0 (−n + j) = V2 and
⋃c1n

j=1 w−1
0 (−j) = V1, then

the part (ii) bound is attained.

We now turn our attention to Theorem4, the main result of the section. Let
mi = max(x : ∃y ≥ 0 s.t. y + x of the 2y + x cleanest vertices lie in set Vi).
That is, mi(= mi(w0)) = max(x : ∃y ≥ 0 s.t. |⋃2y+x

j=1 w−1
0 (−j) ∩ Vi| = y + x).

Stochastically mi is the record of an n step simple random walk on Z, conditioned
to be at a fixed position at time n. This random walk starts at the origin at time
0 and jumps up (down) by 1 at time t if w−1

0 (−t) ∈ Vi (w−1
0 (−t) ∈ V \ Vi), and

finishes at time n in position |Vi| − |V \ Vi| = 2nci − n. More on this shortly.

Lemma 2. Sw0(i) ≤ mi.

Proof. W.l.o.g. take i = 1. First note that if m1 = |V1| then Sw0(1) ≤ m1

trivially. We now assume m1 < |V1|. Consider x ∈ V1 defined to be the (m1+1)st

cleanest vertex in V1, and suppose it is also the (m1 + 1 + t)th cleanest vertex in
V overall, (so w0(x) = −(m1 + 1 + t)). So, there are m1 vertices cleaner than x

68 A. Davidson and A. Ganesh

in V1 and t cleaner than x in V \ V1. Clearly t ≥ 1 by the definition of m1. Let
v be the first vertex cleaned of the (m1 + 1 + t) cleanest of V . If v = x then we
are done. If v �= x then v ∈ V \ V1 and v must have been cleaned immediately
after some node u ∈ V1 where w0(u) = −(m1 + 1 + t + l) for some l > 0 and
∪l

i=1w
−1
0 (−m1 − 1 − t − i) ⊂ V1. By the definition of m1, necessarily l < t,

(and all other nodes must have already been cleaned by the crawler). It is clear
how the crawler will then proceed, alternating between V1 and V \ V1 until x is
cleaned at which point there will be t − l > 0 uncleaned vertices in V \ V1, and
hence Sw0(1) ≤ m1.

It is not difficult to construct a graph with some initial vertex weights such
that Sw0(1) < m1. As a simple example, consider the complete 3-partite graph
G induced by V1, V2, V3 with |V1| = 3, |V2| = 3, |V3| = 1 and V1 consisting of the
3 cleanest vertices of G. In this case m1 = 3 but Sw0(1) ≤ 2.

We now make the link between m1 and the record of a simple random
walk bridge, noting the start and end points of this bridge can be differ-
ent. Let (Z(t))t≥0 be a random walk on Z starting from Z(0) = 0 with
p = P(Z(t + 1) − Z(t) = 1) and q = P(Z(t + 1) − Z(t) = −1) = 1 − p ∀t ≥ 0.
Then (Z(t)|Z(n) = y)0≤t≤n is a random walk bridge. Necessarily, of the n steps
of this random walk bridge, n+y

2 are up and n−y
2 are down. The random walk

bridge can equivalently be defined as a uniformly random ordering of these up
and down steps.

For 0 ≤ t ≤ n define U(t) := |v ∈ V1, w0(v) ≥ −t|, the number of vertices in
V1 initially among the t cleanest of V , D(t) := |v ∈ V \V1, w0(v) ≥ −t| = t−U(t)
and X(t) := U(t)−D(t) = 2U(t)−t. Of course U(n) = |V1| and D(n) = |V \V1|,
and (X(t))0≤t≤n is generated by a uniformly random ordering of these |V1| up
steps and |V \ V1| down steps. (X(t))0≤t≤n is therefore a random walk bridge
starting at X(0) = 0 and finishing at X(n) = |V1| − |V \ V1|. With p = c1, q =
1− c1 and y = |V1|− |V \V1|; (X(t))0≤t≤n ∼ (Z(t)|Z(n) = |V1|− |V \V1|)0≤t≤n.

We could equally have defined m1 = max0≤t≤n{X(t)}.

Lemma 3. For ci < 0.5, E(mi) ≤ 2ci
1−2ci

.

Proof. Again, w.l.o.g. take i = 1. Let hj = P(maxt≥0(Z(t)) ≥ j). As a simple
consequence of the Markov property, for j ≥ 1:

hj = P(Z(1) = 1)P(max
t≥0

(Z(t)) ≥ j|Z(1) = 1)

+ P(Z(1) = −1)P(max
t≥0

(Z(t)) ≥ j|Z(1) = −1)

= c1hj−1 + (1 − c1)hj+1

The Robot Crawler Model 69

Using c1 < 1
2 together with the initial condition h0 = 1 we find that hj =

(c1
1−c1

)j ∀j ≥ 0. Now

P(m1 ≥ j) = P(max
0≤t≤n

(X(t)) ≥ j)

= P(max
0≤t≤n

(Z(t)) ≥ j|Z(n) = |V1| − |V \ V1|)
≤ P(max

0≤t≤n
(Z(t)) ≥ j|Z(n) ≥ |V1| − |V \ V1|)

≤ P(max0≤t≤n(Z(t)) ≥ j)
P(Z(n) ≥ |V1| − |V \ V1|)

≤ 2P(max
0≤t≤n

(Z(t)) ≥ j)

The last inequality follows since Z(n) is a Binomial random variable with
mean and median |V1| − |V \ V1|. The first inequality follows from a simple
coupling argument. If we are given a realisation of (X(t))1≤t≤n, and some
integer 0 ≤ C ≤ |V1|, we can define the random path (Z1(t))1≤t≤n by tak-
ing C of the down steps of X(t) chosen uniformly at random among all of
the

(|V1|
C

)
possibilities and flipping them to up steps. Clearly, Z1(t) ≥ X(t)

∀1 ≤ t ≤ n, and hence max0≤t≤n(Z1(t)) ≥ max0≤t≤n(X(t)). If we initially let
C ∼ 1

2 (Z(n) − (|V1| − |V \ V1|))|Z(n) ≥ |V1| − |V \ V1| then it is also clear that
Z1(t) ∼ Z(t)|Z(n) ≥ |V1| − |V \ V1|.

Concluding the argument:

E(m1) ≤ 2
∞∑

j=1

P(max
0≤t≤n

(Z(t)) ≥ j)

≤ 2
∞∑

j=1

P(max
0≤t

(Z(t)) ≥ j) = 2
∞∑

j=1

hj =
2c1

1 − 2c1

We can now conclude part (i) of Theorem4. For c1 < 0.5:

rc(Gn, w0) = E(n + Sw0 − 1) ≤ n + E

(
k∑

i=1

mi

)
≤ n +

k∑
i=1

2ci

1 − 2ci
= n + O(1)

In proving Lemma 3, we linked m1 to the maximum of a Random Walk Bridge
X(t) with the property that X(0) > X(n), and eventually used the expected
maximum level reached by a Random Walk with negative drift. Using a similar
strategy to conclude part (ii) of Theorem 4 where c1 > 0.5 wouldn’t work since of
course, the expected maximum reached by a Random Walk with positive drift is
unbounded. To navigate this problem we will reverse time on the Random Walk
Bridge.

Corollary 1. For c1 > 1
2 , E(m1) ≤ 2nc1 − n + 2(1−c1)

2c1−1

70 A. Davidson and A. Ganesh

Proof. For 1 ≤ t ≤ n define X̂(t) = X(n − t). X̂(t) is again a Random Walk
Bridge, but with X̂(0) = 2nc1 − n and X̂(n) = 0. The key point here is that(
X̂(t)|c1 = α

)
∼ (2nc1 − n + X(t)|c1 = 1 − α), so

E(m1) = E

(
max
0≤t≤n

{X(t)}
)

= E

(
max
0≤t≤n

{X̂(t)}
)

≤ 2nc1 − n +
2(1 − c1)
2c1 − 1

by Lemma 3.

We have now shown that for c1 > 0.5, rc(Gn) ≤ n +E(m1) ≤ 2nc1 + 2(1−c1)
2c1−1

which, together with part (ii) of Theorem2, completes the proof of part (iii) of
Theorem 4.

Finally, Godrèche et al. [6] prove that for c1 = 0.5, E(max0≤t≤n(X(t))) =√
πn
8 . Part (ii) of Theorem 4 follows.

References

1. Berenbrink, P., Cooper, C., Friedetzky, T.: Random walks which prefer unvisited
edges: exploring high girth even degree expanders in linear time. Random Struct.
Algorithms 46(1), 36–54 (2015)

2. Bollobás, B.: The diameter of random graphs. Trans. Am. Math. Soc. 267(1),
41–52 (1981)

3. Bonato, A., del Ŕıo-Chanona, R.M., MacRury, C., Nicolaidis, J., Pérez-Giménez,
X., Pra�lat, P., Ternovsky, K.: The robot Crawler number of a graph. In: Gleich,
D.F., Komjáthy, J., Litvak, N. (eds.) WAW 2015. LNCS, vol. 9479, pp. 132–147.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26784-5 11

4. Brin, S., Page, L.: Anatomy of a large-scale hypertextual web search engine. In:
7th International World Wide Web Conference (1998)

5. Chung, F., Linyuan, L.: The diameter of sparse random graphs. Adv. Appl. Math.
26(4), 257–279 (2001)

6. Godrèche, C., Majumdar, S.N., Schehr, G.: Record statistics for random walk
bridges. J. Stat. Mech.: Theory Exp. 2015(7), P07026 (2015)

7. Henzinger, M.R.: Algorithmic challenges in web search engines. Internet Math.
1(1), 115–123 (2004)

8. Messinger, M.-E., Nowakowski, R.J.: The robot cleans up. In: Yang, B., Du, D.-
Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 309–318. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85097-7 29

9. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

10. Olston, C., Najork, M.: Web crawling. Found. Trends Inf. Retr. 4(3), 175–246
(2010)

11. Orenshtein, T., Shinkar, I.: Greedy random walk. Comb. Probab. Comput. 23(02),
269–289 (2014)

https://doi.org/10.1007/978-3-319-26784-5_11
https://doi.org/10.1007/978-3-540-85097-7_29

Estimating the Parameters
of the Waxman Random Graph

Matthew Roughan(B), Jonathan Tuke, and Eric Parsonage

ARC Centre of Excellence for Mathematical and Statistical Frontiers,
University of Adelaide, Adelaide, Australia

{matthew.roughan,simon.tuke,eric.parsonage}@adelaide.edu.au

Abstract. The Waxman random graph is useful for modelling physi-
cal networks where the increased cost of longer links means they are
less likely to be built, and thus less numerous. The model has been in
continuous use for over three decades with many attempts to match
parameters to real networks, but only a few cases where a formal esti-
mator was used. Even then the performance of the estimator was not
evaluated. This paper presents both the first evaluation of formal esti-
mators for these graphs, and a new Maximum Likelihood Estimator with
O(e) computational complexity where e is the number of edges in the
graph, and requiring only link lengths as input, as compared to all other
algorithms which are Ω(n2).

1 Introduction

The study of random graphs provides insight into the formation of real networks
and allows synthesis of test networks for use in simulations. There are many
alternative approaches, but within these random graphs explicitly incorporat-
ing underlying geometry became popular with the introduction of the Waxman
random graph [1], proposed as an alternative to the Gilbert-Erdős-Rényi (GER)
random graph [2,3] as a more realistic setting for testing networking algorithms.
The Waxman graph has subsequently been used in applications as wide-ranging
as computer networks, transportation and biology (Waxman’s original paper is
listed by Google Scholar as having been cited well over 3000 times).

The GER random graph links every pair of vertices independently with a
fixed probability, whereas the Waxman graph reflects that in real networks longer
links are often more costly or difficult to construct, and their existence therefore
less likely. It links nodes i and j with a probability given by a function of their
distance dij . The form chosen by Waxman was the exponential, i.e.,

p(dij) = q exp (−sdij) , (1)

for parameters s ≥ 0 and q ∈ (0, 1]. A Waxman random graph is generated
by randomly choosing a set of points, and then linking these independently
according to the distance deterrence function (1).

Despite frequent use of the Waxman graph there is little formal literature on
how to estimate the parameters (q, s) from a given graph, or set of graphs. In
c© Springer Nature Switzerland AG 2019
K. Avrachenkov et al. (Eds.): WAW 2019, LNCS 11631, pp. 71–86, 2019.
https://doi.org/10.1007/978-3-030-25070-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25070-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-25070-6_6

72 M. Roughan et al.

many works the parameter values have been chosen arbitrarily with the authors
giving little justification for the values used. In other cases authors use the
parameter values given in earlier works without regard for their applicability. A
few works use more careful estimates, but do not evaluate estimator performance.

Within the statistical social network modelling community there has been
considerable work on graph estimation, however, the focus of this work has
only rarely touched on graphs with a spatial embedding. The work most closely
connected to ours considers the case where the underlying space and distances
are latent in the sense that they are not measured, and hence must be estimated
as part of the problem. For instance see [4]. This is both a harder, and easier
problem: harder algorithmically because one must estimate many more variables,
but easier because the latent parameters are free to adjust to the data.

This paper presents a comparison of estimators of the parameters of the
Waxman graph, including a new Maximum Likelihood Estimator (MLE). We
demonstrate that its performance is close to the Cramér-Rao lower bound. The
comparison shows its advantages in:

• accuracy;
• computational complexity (the MLE is O(e) as compared to Ω(n2) for alter-

natives); and
• reduced input (it uses only the lengths of observed links or just a sample of

such links).

Finally we use the MLE to estimate the distance dependence of an Internet
dataset. Additional datasets (and evaluations) are included in a pre-print of this
work available at [5].

2 Background and Related Work

A graph (or network) consists of a set of n vertices (synonymously referred to
as nodes) which without loss of generality we label V = {1, 2, . . . , n}, and a set
of edges (or links) E ⊂ V × V. We denote the number of edges by e = |E|. Here
we are primarily concerned with undirected graphs.

The GER random graph Gn,p of n vertices is constructed by assigning inde-
pendently and with a fixed probability p each pair of nodes (i, j) to be in E . The
Waxman random graph [1] generalises this by making the probability that each
pair of nodes is an edge dependent on the distance between the nodes. Some
examples indicating the scope and durability of the model include [6–19].

The Waxman graph was originally defined using Euclidean distances on a
rectangle or straight line with points on an integer grid, but most subsequent
work has considered graphs defined with points randomly placed in the unit
square. However, there is no impediment to choosing points in an arbitrary
convex region with an arbitrary distance metric. Even convexity is not strictly
required, except where there is the notion that the links are physical, and must
themselves lie in the region of interest. Hence, we define a Waxman graph by
placing n nodes uniformly at random within some defined region R of a metric
space Ω with a distance metric d(x, y) and each pair of nodes is made adjacent
independently with probability given by (1).

Estimating the Parameters of the Waxman Random Graph 73

The function (1) differs from Waxman’s original parameterisation [1] p(dij) =
β exp(−dij/Lα), where α ∈ (0, 1] and β > 0, and L is the greatest distance
possible between any two points in the region of interest. Unfortunately, previous
authors have confused this notation by reversing the roles of α and β with
almost equal regularity, to the point where parameters chosen in one paper have
been reversed in another purporting to compare results. Hence, we provide an
alternate parameterisation (1) chosen with the estimation problem in mind, using
a parameter s with units related to distance instead of the dimensionless α as
more meaningful for real problems.

Properties such as connectivity and path lengths in Waxman graphs have
been studied in several works [6,20–22]. There are works on estimation of param-
eters of other random graph models, for instance see [23], but few have considered
the estimation of the Waxman graph parameter. Indeed, some previous works
compared graphs merely by visual inspection.

Despite the presence of the exponential function, the Waxman graph is not in
the class of Exponential Random Graphs (ERG) [24,25], where the exponential
applies to the probability of a particular graph (not a particular link), as a
function of the overall graph properties, such as the number of triangles. Hence
the large literature on estimation of ERGs is not specifically applicable.

The first work we are aware of which attempted to estimate the parameters
of a Waxman graph from real data is that of [26]. Using a large set of real
Internet and geographic data the authors found that an exponential distance-
based probability was reasonable for physical links between routers. The authors
conducted the study with some care, comparing two sets of data and finding
consistent results by using a log-linear regression of the link distance function
against the link distances. However they made no effort to consider the efficiency
or accuracy of their estimator, which we shall do here.

Other related work considers estimation of graph parameters of models where
the nodes have some latent properties. The closest related work in that vein is
where the latent properties of the nodes are distances [4], to be estimated as
part of the overall problem. This is both a harder, and easier problem: harder
because one must estimate many more variables, but easier because there are so
many more degrees of freedom that almost any set of data should be possible to
fit against such a model. In any case, these estimation techniques do not apply
to these graphs, where the distances are not latent.

Estimation was used on the similar model [19] by determining the parameters
of a binary Generalised Linear Model (GLM). We adapt this approach to the
almost equivalent Waxman graphs, and compare it to alternatives: the method
is accurate, but computationally complex both in time, and memory.

The underlying assumption of [19,26] is that all of the distances are known,
even for links that do not exist. This is possible if all node locations are known,
but it is sometimes only possible to measure the length of a link that exists.
Consider also graphs for which the “distance” is not a physical quantity, but
rather a cost or an administratively configured link-weight, which is not defined
except where a link exists. We present here a MLE that can work with only
defined links.

74 M. Roughan et al.

Techniques that depend on existence tests of all edges have time complexity
at least O(n2), where n is the number of nodes in the graph, whereas our MLE is
O(e), where e is the number of edges. This can result in a dramatic improvement
in computation time as large real graphs are often very sparse, and we can achieve
fast computation even for dense graphs by sampling using this approach.

Waxman graphs are an example of the general class of SERNs (Spatially
Embedded Random Graphs) [27], and there are other related models such as
the geometric inhomogeneous random graph [28], and scale-free percolation [29].
One aim of this work is to develop intuition which can be extended to estimation
of the parameters of random graphs from the general class of spatial networks.
We will leave consideration of the general case to later work because complex
questions of existence and identifiability arise.

3 General Properties of Waxman Graphs

The starting point for the creation of a Waxman random graph is to generate a
set of n points uniformly at random in some region R of a metric space Ω. For
any given region we can derive a probability density function g(t) for the distance
between an arbitrary pair of random points. This is the Line-Picking-Problem:
common instances of regions for which analytic expressions exist include lines,
balls, spheres, cubes, and rectangles, e.g., see [30,31].

Given the distribution of distances between points, we can calculate the prob-
ability that an arbitrary link exists (prior to knowing the distances):

P{(i, j) ∈ E | q, s} = q

∫ ∞

0

exp(−st)g(t) dt = qG̃(s), (2)

for any i �= j, where G̃(s) is the Laplace transform of g(t) (or equivalently it
is the moment generating function w.r.t. to −s). We know that the Laplace
transform at s = 0 of a probability density is the normalisation constraint, so
G̃(0) = 1. Hence when s = 0 there is no distance dependence and the result is
the GER random graph.

From this probability we can also compute features of the graph such as the
average node degree

k̄ = (n − 1)qG̃(s), (3)

from which we can derive values of q that produce given average degree for
a given network size and s. From the Handshake Theorem we can derive the
average number of edges to be

ē = n(n − 1)qG̃(s)/2. (4)

We can then derive the distribution of the length d of a link in the Waxman
graph, and we denote this by f(d |q, s) = P{dij = d | (i, j) ∈ E} which is

f(d | q, s) =
P

{
(i, j) ∈ E | d(i,j) = d; q, s

}
P{dij = d}

P{(i, j) ∈ E | q, s} =
g(d) exp(−sd)

G̃(s)
. (5)

Estimating the Parameters of the Waxman Random Graph 75

Note that q is a thinning parameter, and thus should not change the link length
distribution, and we see that it vanishes from the distribution. Hence we generally
write f omitting q, i.e., f(d | s).

We can then derive the mean length of links in the Waxman graph

E[d | s] =
1

G̃(s)

∫ ∞

0

tg(t) exp(−st) dt = − G̃′(s)
G̃(s)

. (6)

We can also compute features such as the Kullback-Leibler distance between the
GER graph and a given Waxman model [5].

For small distances t, region-boundary effects are minimal, and so the func-
tion g(t) depends only on the dimension of the embedding space. For example
the square and disk both have g(t) ∼ 2πt for small t, which comes from the size
of the ring of radius t. Given a Euclidean distance metric on a k-dimensional
space the small t approximation is

g(t) � kπk/2

Γ (k/2 + 1)
tk−1, (7)

which is the surface area of the (k − 1)-sphere.
Note that the distribution varies as a power-law for small t, and hence we

can apply a so-called Tauberian theorem to derive the form of the tail of the
Laplace transform. From [32, Theorem 2, pp. 445-6], we obtain

G̃(s) s→∞∼ πk/2Γ (k + 1)
Γ (k/2 + 1)

s−k, (8)

G̃′(s) s→∞∼ −kπk/2Γ (k + 1)
Γ (k/2 + 1)

s−k−1, (9)

E[d | s] s→∞∼ k/s, (10)

providing some intuition regarding the average length of edges and the parame-
ters of the graph.

The likelihood function for a particular Waxman graph under the usual inde-
pendence assumption, given the lengths of the observed links d, is

L(s | d) =
∏

(i,j)∈E
f(di,j | s). (11)

We apply (11) below, though links in the Waxman graph are only condi-
tionally independent given the distances. The underlying distances are a metric
so three distances satisfy the triangle inequality and thus the three must be
correlated. Fortunately the correlation is largely local. For instance, if we con-
sider two distinct node pairs (i1, j1) and (i2, j2), then edges (i1, j1) and (i2, j2)
are independent. Thus correlations are mediated through common nodes. As a
result we should expect weaker correlations as the number of nodes n grows.

76 M. Roughan et al.

4 Estimation Techniques

4.1 Log-Linear Regression

The first method applied to this problem was introduced by [26], where is was
noted that

f(d | s)
g(d)

= c exp(−sd), (12)

where we can see from our calculations that c = 1/G̃. If we could form this ratio,
we might estimate s by log-linear regression against d. The observed lengths of
links in the graph yield implicit measurement of the numerator in (12) and we
could obtain estimates of g(d) either:

1. analytically: using the shape of the region to compute g(d); or
2. empirically: using the distances between all of the nodes to estimate g(d).

The former has the advantage of being fast. The latter exploits the data itself
in the case that the region is not regular, but computationally it is O(n2). The
latter approach was used by [26], but we shall evaluate both.

We also need to estimate f(d | s): [26] did so by forming a histogram. We
shall use this approach, so the estimator proceeds by counting the number of
edges in each length bin, and dividing by the expected number in that bin absent
the distance deterrence function.

Once we have computed ŝ, we estimate q by inverting (4) to get

q̂ =
2e

n(n − 1)G̃(ŝ)
, (13)

where n and e are the observed number of nodes and edges respectively. The
decoupling of estimation of s and q makes this sequential estimation possible,
and this will be exploited in other estimators described below.

Our evaluation of complexity focuses on the time to perform the regression,
i.e., we do not include the time to calculate distances, as this is not formally
a component of the estimation process. Thus the time complexity using the
analytical formulation of g(d) is O(e) but the empirical approach, which uses
the distances between all nodes is O(n2).

4.2 Generalised Linear Model (GLM)

Davis et al. [19] use a GLM [33, p. 591] to estimate the parameters of their
model. Waxman’s model is slightly different, but we can use a similar approach.
The response variables Y(i,j) are an indication of an edge so Y is the adjacency
matrix of the graph, i.e.,

Y(i,j) =
{

1, if (i, j) ∈ E ,
0, otherwise. (14)

The predictor variables X for links are the distances, and the model is

r(μ(i,j)) = β0 + β1X(i,j), (15)

Estimating the Parameters of the Waxman Random Graph 77

where μ(i,j) = E
[
Y(i,j)

]
= p(di,j), and r(·) is the link function. The GLM of

[19] used the link function r(p(i,j)) = log(− log(1 − p(i,j))). Here, because of
the slightly simpler model, we use r(μ) = log(μ), which facilitates the natural
identification that β0 = log(q) and β1 = −s. Estimation of the βm is usually
by maximum likelihood (note however, that we distinguish the GLM from our
MLE defined below), and we use Matlab’s glmfit to perform this task.

The GLM method uses all possible edges: those that exist and those that
do not. i.e., there are n(n − 1)/2 response variables, and so the computational
complexity is Ω(n2).

4.3 Sufficient Statistics

An obvious question arises as to what is a set of minimal sufficient statistics
for use in the estimation of Waxman random graph parameters. The following
theorem answers this.

Theorem 1. The number of edges e and their average length d̄ form minimal
sufficient statistics for the parameters of a Waxman random graph.

Proof. Theorem 6.2.13 of [33] states that given the PDF f(x | θ) of a sample X
and a function T (x) such that, for every two sample points x and y, the ratio
f(x | θ)/f(y | θ) is a constant function of θ if and only if T (x) = T (y). Then
T (X) is a minimal sufficient statistic for θ.

Take the sample to be the set of edge lengths d = (d1, . . . , de) where dk =
d(i,j) for (i, j) ∈ E . Under the independence assumption the PDF of a sample is∏e

i=1 f
(
di|s, q

)
, conditional on the number of edges e, where f is defined in (5),

and e is binomially distributed BN
p (e) where N = n(n − 1)/2 and p = qG̃(s).

Therefore for two samples: x and y, the ratio of PDFs is

BN
p (e1)

∏e1
i=1 f

(
xi|s, q

)
BN

p (e2)
∏e2

i=1 f
(
yi|s, q

) = m(x,y) exp
(
−s(e1d̄x − e2d̄y)

)
G̃(s)e2−e1

BN
p (e1)

BN
p (e2)

,

where d̄x and d̄y are the averages of the distances in datasets x and y respectively,
and m(x,y) is independent of the parameters (q, s).

The ratio above depends on the parameters s and q only through the statistics
d̄ and e. Hence if e1 = e2 and d̄x = d̄y, the ratio is a constant function of (q, s).
On the other hand, if either e1 �= e2 or d̄x �= d̄y, then the ratio is a non-constant
function of the parameters. Hence the conditions of Theorem 6.2.13 are satisfied
and (e, d̄) forms a minimal sufficient set of statistics. �	

Notably, these statistics can be constructed almost trivially in O(e) time,
and we will use that fact to construct a MLE.

78 M. Roughan et al.

4.4 Maximum Likelihood Estimator

Using (11), the log-likelihood function �(s | d) = lnL(s | d) can be shown to be

�(s | d) =
∑

(i,j)∈E
ln f(d(i,j) | s)

=
∑

(i,j)∈E

[
ln g(d(i,j)) − sd(i,j) − ln G̃(s)

]

= −e ln G̃(s) +
∑

(i,j)∈E
ln g(d(i,j)) − s

∑
(i,j)∈E

d(i,j).

Our goal is to find s such that the partial derivative of �(s | d) with respect to
s is zero, i.e.,

∂

∂s
�(s | d) = −e

G̃′(s)
G̃(s)

−
∑

(i,j)∈E
d(i,j) = 0, (16)

so we need to find s such that

G̃′(s)
G̃(s)

= −1
e

∑
(i,j)∈E

d(i,j) = −d̄, (17)

where d̄ is the observed mean link length.
From (6) we know −G̃′/G̃ is the expected length of line segments on the

Waxman graph, so the MLE of s is also the moment-matching estimator.

4.5 Existence and Uniqueness of the MLE

When will a unique solution to (17) exist? We know from the definitions of
G̃(s) and its derivative that G̃(s) > 0, and h(s) = −G̃′(s)/G̃(s) is a continuous,
positive function for all s, so if h(·) is monotonic there will be at most one
solution to (17) for any given d̄.

Consider the derivative

dh

ds
=

G̃′(s)2 − G̃′′(s)G̃(s)
G̃(s)2

. (18)

Now the numerator is positive, and from Schwarz’s Inequality

G̃′′(s)G̃(s) =
∫ ∣∣∣√t2g(t)e−st

∣∣∣2 dt ·
∫ ∣∣∣√g(t)e−st

∣∣∣2 dt

>

∣∣∣∣
∫

tg(t)e−st dt

∣∣∣∣
2

= G̃′(s)2,

and so the denominator is negative, and the function h(s) is monotonically
decreasing with s.

Estimating the Parameters of the Waxman Random Graph 79

When s = 0, the Laplace transform G̃(0) = 1 and hence h(0) =
∫

tg(t)dt =
ḡ, the average distance between pairs of nodes. When we remove longer links
preferentially, the average link distance must decrease, so it is intuitive that h(s)
is a decreasing function, starting at h(0) = ḡ = dmax, which is the maximum
expected edge distance over all possible parameters s.

In the limit as s → ∞ from (10) we have h(s) = E[d] � k/s, and so we know
that in the limit as s → ∞ that h(s) → 0, so for any measured d̄ ∈ (0, dmax]
there will be a unique solution to (17).

Unfortunately, it is possible for the sample mean of the edge distances d̄ >
dmax, i.e., for a particular graph to have an unlikely preponderance of longer
links. In this case (17) has no solution for s ∈ [0,∞). However, the obvious
interpretation of d̄ > dmax is that there is no evidence that long links have been
preferentially filtered from the graph, and so it is natural in this case to assume
the model should be the GER random graph, i.e., s = 0.

In formal terms, the MLE satisfies some but not all of the properties required
for it to be consistent. Standard asymptotic theory for MLEs requires the condi-
tion that the true parameter value lies away from the boundary to form consis-
tent estimates that converge to the true value as the amount of data increases.
Surprisingly, for cases near s = 0 this can induce a small bias leading to a
variance-bias tradeoff and an RMS error in the estimator that can be lower than
the Cramér-Rao (CR) bound. Apart from this case the MLE is asymptotically
normal, i.e., as the sample size increases, the distribution of the MLE tends to
the Gaussian distribution with mean given by the true parameter, and covari-
ance matrix equal to the inverse of the Fisher information matrix. For more
discussion and derivation of the CR bound see [5].

4.6 The MLE of q̂

As noted above, once we know ŝ, we can use this to estimate q̂ using (13). If we
know the exact value of s then q acts as a random filter of links, so estimation
of q is equivalent to estimating the parameter of a Bernoulli process. Thus (13)
would be the MLE of q given the true value of s. The question is whether it is
still a MLE when we derive it from the estimated value of ŝ.

To answer this question we draw on the property of functional invariance of
MLE, i.e., if parameters are related through a transformation a = g(s), then the
MLE of a is â = g(ŝ). This property allows the conversion back to the original
Waxman parameter α = 1/sL, for instance. More importantly it means that
q̂ = 2e/n(n − 1)G̃(ŝ) is the MLE of q, given a MLE of ŝ.

4.7 Numerical Calculation of the MLE

MLEs are often computed directly using techniques such as Newton’s method. In
this problem, each iteration would require numerical computation of a Laplace
transform and its derivative. However, we can improve this in several ways. First,
we rearrange (17) in a form that halves the required number of transforms

d̄G̃(s) + G̃′(s) = LT
[
(d̄ − t)g(t); s

]
= 0. (19)

80 M. Roughan et al.

Second, the estimation algorithm is a 1D search. Its speed can be improved
by providing reasonable bounds: here we use [0, k/d̄], where the upper bound is
given by the asymptotic form of the average distance (10).

Third, we can calculate transforms using adaptive numerical quadrature,
which is the most accurate approach. However, if we precalculate g(t) at a set
of fixed grid points, and reuse this in all of the Laplace transform calculations,
it is faster. We call this the MLE-N (Numerical).

The grid used in the MLE-N samples the distribution at uniformly spaced
probabilities, which also means that we can use an estimate of the inverse CDF
derived from data based on the complete set of distances between all nodes and
derive from this an empirical estimate of the inverse CDF to use in the MLE
calculations. We refer to this method as the MLE-E (Empirical).

5 Performance

In this section we examine the performance of the Waxman graph parameter
estimators on simulated data. We primarily focus on fairly sparse networks (k̄ =
3) because sparsity is the common case for many real networks, but we do
examine the effect of changes in these parameters.

The accuracy of the methods increase as the graphs become larger so we start
with parameter values that result in moderately sized (1000 node) graphs. This
ensures that errors are of a magnitude that allows us to compare and assess them.
However, we also examine the relationship between graph size and accuracy of
parameter estimates.

We simulate 1000 Waxman random graphs for each parameter setting for the
Waxman graph on the unit square with the Euclidean distance metric. Other
cases and estimator robustness are considered in more detail in [5].

5.1 Comparisons

We start by considering the RMS errors of the methods with respect to the
CR lower bound as a function of the parameter s. Figure 1 shows these errors.
The most obvious difference is between the log-linear and other approaches, the
log-linear estimator being much less accurate. Focusing on the group of “good”
approaches, the entire range the GLM tracks the CR bound, but for small values
of s there is some advantage in using the GLM and MLE-E. For very small s,
the MLE approaches can actually beat the CR bound. This can be explained by
the constraint s ≥ 0. This constraint leads to a small bias in the MLE estimators
for small s. When s is around 1, the bias leads to an increase in the RMS errors.
When s is very small the estimators have slightly more information than assumed
in our naive CR bound, and this can reduce the variance of the estimator [34].

For large values of s the MLE-E and MLE-N show a small increase in error
compared to the exact MLE, because for large s the grid size chosen is not small
enough for accurate integrals to be calculated. This effect could be mitigated by
choosing a finer grid or by choosing a non-uniform grid with more detail around
t = 0 (albeit at additional computational cost), but it is quite a small effect.

Estimating the Parameters of the Waxman Random Graph 81

0 2 4 6 8 10
0

0.5

1

1.5

s

R
M

S
 e

rr
or

 in
 s

MLE
GLM
log−linear−E
log−linear
MLE−E
MLE−N
Cramer−Rao

Fig. 1. RMS errors as a function of s (k̄ = 3, n = 1000).

For small values of s, the MLE-E estimator is slightly better than its exact
cousin. This is valuable, but remember that the MLE-E requires the informa-
tion on all distances, not just those of the existing edges, whereas the MLE and
MLE-N estimators need only the measurement of d̄. For large graphs d̄ could be
calculated from a sample of edges, so it is possible to achieve sub-O(e) perfor-
mance for such graphs.

We have examined a number of parameter settings and have observed the
same trends in the results – for other instances and more detailed plots see [5],
which also shows that the majority of error is in the form of bias.

In summary: the log-linear regression is the least accurate and that the GLM
and MLE estimators are all roughly equivalent in accuracy. The minor empirical
variants of the log-linear and MLE estimators have only small effects, typically
at extreme values.

We also estimate computation times using Matlab’s tic/toc timers to estimate
wall-clock time of execution, and take the median over our 1000 samples to
provide a robust estimate of the typical computation times, which are shown
in Fig. 2. We can see that the GLM takes quadratic time, asymptotically. The
log-linear-E method (not shown) is also quadratic, because a histogram must be
formed from all of the distances, but it is significantly faster than the GLM.

The other methods appear to have constant time with respect to the network
size n. Constant time is an illusion however: these methods are actually O(e),
which for the networks considered is also O(n). The constant time component
is obviously dominant for the network sizes considered – we would expect to see
the linearity only if we examine very large networks.

Memory requirements for the algorithms are

• GLM: O(n2);
• log-linear (and -E variant): O(b) where b is the number of histogram bins;
• MLE: O(1) (assuming the numerical quadrature is memory efficient); and
• MLE-E and MLE-N: O(c) where c is the number of grid points.

82 M. Roughan et al.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−2

10
0

10
2

n (number of nodes)

m
ed

ia
n

tim
e

(s
)

ov
er

 1
00

0
sa

m
pl

es

MLE
GLM
log−linear
MLE−E
quadratic

Fig. 2. Computation times (s = 4, k̄ = 3). Note that only the estimator time is
included, not the time to form the matrix of distances needed in the GLM and log-
linear methods.

All but the GLM use constant memory as a function of network size, as they are
based on summary statistics that can be computed via a streaming algorithm.

If accuracy is the prime consideration then the GLM is the best approach,
however, for large networks it is impractical. Extrapolating the computation
times for the GLM shown in Fig. 2, we can see that computation would take in
the order of 3 h for a graph with 100,000 nodes. And the GLM requires a large
amount of memory for larger networks, as compared with the almost trivial
amount required in the other algorithms. The log-linear approaches are poor on
all fronts. Variants of the MLE approach are faster, and more accurate.

We now consider the accuracy of the MLE as both a function of the network
size n in Fig. 3(a) and of the average node degree k̄ in Fig. 3(b). The accuracy
of the method is close to the CR bound, but suffers slightly for small networks,
and for higher average node degree. This variation is explained by deviations in
the independence assumption.

5.2 Estimating q

In most of the preceding work we have only considered the accuracy of the esti-
mates for s. The estimated accuracy of q is that of the binomial model parameter
estimate which is well understood. There is an additional source of error in that
errors in ŝ propagate into estimate q̂ through G̃(ŝ). This roughly doubles the
size of errors in q compared to estimates based on the correct value of s, but the
errors in q̂ are still small: i.e., of the order of 5% (see [5] for details).

Estimating the Parameters of the Waxman Random Graph 83

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

n (number of nodes)

R
M

S
 e

rr
or

 in
 s

error
CR bound

(a)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

k (average node degree)

R
M

S
 e

rr
or

 in
 s

error
CR bound

(b)

Fig. 3. Accuracy of the MLE as a function of other parameters of the network (default
parameters n = 1000, s = 3.0, and k̄ = 3).

6 Case Study

The previous section looked at accuracy on simulated data, where we know the
ground truth. This section applies the method to a real dataset from the Internet
examining the length of physical links between routers.

Lakhina et al. [26] undertook one of the first attempts to formally quantify
the exponential decrease of link likelihood as a function of distance. The authors
compared two sets of data and found consistent results between them. They pro-
vided one of these datasets (the Mercator data) to us for comparison. Lakhina et
al. separated the data into three regions (the USA, Europe and Japan), and anal-
ysed these separately, which we repeat here. These graphs are large, with up to
123,000 nodes, but very sparse, with average node degrees of around 2. It is not
feasible to use the GLM approach for this scale of problem.

We do not argue that this network is random in any real sense: in fact
the Internet networks are the result of design. However, fitting a Waxman-like
graph to these is instructive in that it shows how engineering constraints lead
to distance-sensitive link placement.

Lakhina et al. [26] applied log-linear regression to the question. We applied
the MLE and compared the results to those found in their work. Table 1 provides
a comparison between various estimates, including the original values reported in
[26] given in the second column under ŝLakhina. Units are per 1000 miles—we use
Imperial units to be consistent with the original paper. The third column pro-
vides our equivalent estimate. There are small differences, presumably because of
differences in the exact numerical procedures applied. The fourth column of the
table shows the MLE-E values estimated for the datasets. We use the Empirical
estimator because the region shapes are irregular (e.g., the USA), and we want
to avoid approximation errors arising from the region shape.

We see considerable discrepancies which are larger than can be explained by
errors in the log-linear regression approach. However, reading [26], we can see
that their estimates are over a truncated range of distances for two reasons:

84 M. Roughan et al.

Table 1. Estimates: ŝLakhina are the values from [26]; and ŝlog−linear are our corre-
sponding estimates. Units are per 1000 miles. The ŝMLE−E values are derived from
our Empirical MLE, and the ŝMLE−T values from a version of the MLE with distance
data truncated in the same manner as the original log-linear estimates of [26]

Region ŝLakhina ŝlog−linear ŝMLE−E ŝMLE−T

USA 6.91 6.38 2.75 6.63

EUROPE 12.80 12.81 30.92 10.09

JAPAN 6.89 6.71 45.91 7.30

• The node locations they use are artificially quantised by the Geolocation
procedure so some nodes appear to have exactly the same position, and hence
zero distance, when actually there is a positive distance between the nodes.

• They found that the exponential distance-deterrence function fit the data
only up to some threshold distance.

In their (and our comparison) log-linear regressions the range over which we
perform the regression is restricted to be between these bounds.

In order to provide a fair comparison we also modified the MLE-E by censor-
ing the potential edges used in forming the CDF and in computing the average
edges distance. Table 1 shows the results under sMLE−T to be closer to being
consistent with the log-linear regression.

The results point to one valuable feature of the log-linear regression, which
is that it comes with diagnostics. Examination of the fit indicates whether the
model is appropriate or not. The MLE requires additional effort to provide simi-
lar diagnostics. On the other hand, there are significant issues with the log-linear
regression. Apart from being less accurate, there is the question of bin size which
simple experiments seem to suggest is important.

Ultimately, all of the methods suggest strongly that a spatial component
should be part of any model for Internet linkages. This is entirely consistent
with the intuition of engineers who work on such networks: long links cost more,
and so are rarer.

7 Discussion and Conclusion

This paper presents the MLE for the parameters of the Waxman graph and
demonstrates its accuracy in comparison to alternative estimators. The MLE has
two advantages. Firstly it has O(e) computational time complexity and constant
memory usage by using only a sample of the edges that exist in a graph to
estimate s. Secondly it can be applied in domains where the coordinates of nodes
are unknown and/or edge lengths may be weights in some arbitrary process.

Acknowledgements. We would like to thank Lakhina et al. for providing the Internet
dataset.

Estimating the Parameters of the Waxman Random Graph 85

References

1. Waxman, B.: Routing of multipoint connections. IEEE J. Select. Areas Commun.
6(9), 1617–1622 (1988)

2. Gilbert, E.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)
3. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci. 5, 17–61 (1960)
4. Fosdick, B.K., Hoff, P.D.: Testing and modeling dependencies between a network

and nodal attributes. ArXiv e-prints (2013). http://arxiv.org/abs/1306.4708
5. Roughan, M., Tuke, J., Parsonage, E.: Estimating the parameters of the Waxman

random graph. ArXiv e-prints (2015). http://arxiv.org/abs/1506.07974
6. Zegura, E.W., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In:

IEEE INFOCOM, CA, San Francisco, pp. 594–602 (1996)
7. Salama, H.F., Reeves, D.S., Viniotis, Y.: Evaluation of multicast routing algorithms

for real-time communication on high-speed networks. IEEE J. Sel. Areas Commun.
15, 332–345 (1997)

8. Verma, S., Pankaj, R.K., Leon-Garcia, A.: QoS based multicast routing algorithms
for real time applications. Perform. Eval. 34, 273–294 (1998)

9. Shaikh, A., Rexford, J., Shin, K.G.: Load-sensitive routing of long-lived IP flows.
In: ACM SIGCOMM (1999)

10. Neve, H.D., Mieghem, P.V.: TAMCRA: a tunable accuracy multiple constraints
routing algorithm. Comput. Netw. 23, 667–679 (2000)

11. Wu, J.-J., Hwang, R.-H., Lu, H.-I.: Multicast routing with multiple QoS constraints
in ATM networks. Inf. Sci. 124(1–4), 29–57 (2000). http://www.sciencedirect.
com/science/article/pii/S0020025599001024

12. Guo, L., Matta, I.: Search space reduction in QoS routing. Comput. Netw. 41,
73–88 (2003)

13. Gunduz, C., Yener, B., Gultekin, S.H.: The cell graphs of cancer. Bioinformatics
20(1), 145–151 (2004)

14. Carzaniga, A., Rutherford, M.J., Wolf, A.L.: A routing scheme for content-based
networking. In: IEEE INFOCOM (2004)

15. Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining speed-up techniques
for shortest-path computations. J. Exp. Algorithmics 10, 2–5 (2005)

16. Malladi, S., Prasad, S., Navathe, S.: Improving secure communication policy agree-
ments by building coalitions. In: IEEE Parallel and Distributed Processing Sym-
posium, pp. 1–8, March 2007

17. Tran, D.A., Pham, C.: PUB-2-SUB: a content-based publish/subscribe framework
for cooperative P2P networks. In: Fratta, L., Schulzrinne, H., Takahashi, Y., Span-
iol, O. (eds.) NETWORKING 2009. LNCS, vol. 5550, pp. 770–781. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-01399-7 60

18. Fang, Y., Chu, F., Mammar, S., Che, A.: Iterative algorithm for lane reservation
problem on transportation network. In: 2011 IEEE International Conference on
Networking, Sensing and Control (ICNSC), pp. 305–310, April 2011

19. Davis, S., Abbasi, B., Shah, S., Telfer, S., Begon, M.: Spatial analyses of
wildlife contact networks. J. R. Soc. Interface 12(102) (2014). http://rsif.
royalsocietypublishing.org/content/12/102/20141004.short

20. Zegura, E.W., Calvert, K.L., Donahoo, M.J.: A quantitative comparison of graph-
based models for Internet topology. IEEE/ACM Trans. Netw. 5(6), 770–783 (1997)

21. Van Mieghem, P.: Paths in the simple random graph and the Waxman graph.
Probab. Eng. Inf. Sci. 15, 535–555 (2001). http://dl.acm.org/citation.cfm?id=
982639.982646

http://arxiv.org/abs/1306.4708
http://arxiv.org/abs/1506.07974
http://www.sciencedirect.com/science/article/pii/S0020025599001024
http://www.sciencedirect.com/science/article/pii/S0020025599001024
https://doi.org/10.1007/978-3-642-01399-7_60
http://rsif.royalsocietypublishing.org/content/12/102/20141004.short
http://rsif.royalsocietypublishing.org/content/12/102/20141004.short
http://dl.acm.org/citation.cfm?id=982639.982646
http://dl.acm.org/citation.cfm?id=982639.982646

86 M. Roughan et al.

22. Naldi, M.: Connectivity of Waxman graphs. Comput. Commun. 29, 24–31 (2005)
23. Snijders, T.A.B., Koskinen, J., Schweinberger, M.: Maximum likelihood estimation

for social network dynamics. Ann. Appl. Stat. 4(2), 567–588 (2010). https://doi.
org/10.1214/09-AOAS313

24. Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986)
25. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential

random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007).
http://www.sciencedirect.com/science/article/pii/S0378873306000372

26. Lakhina, A., Byers, J.W., Crovella, M., Matta, I.: On the geographic location
of Internet resources. In: ACM SIGCOMM Workshop on Internet Measurement
(IMW), pp. 249–250. ACM, New York (2002). https://doi.org/10.1145/637201.
637240

27. Kosmidis, K., Havlin, S., Bunde, A.: Structural properties of spatially embedded
networks. Europhys. Lett. 82(4) (2008). http://iopscience.iop.org/0295-5075/82/
4/48005

28. Bringmann, K., Keusch, R., Lengler, J.: Geometric inhomogeneous random graphs.
ArXiv e-prints, November 2015. https://arxiv.org/abs/1511.00576

29. Deijfen, M., van der Hofstad, R., Hooghiemstra, G.: Scale-free percolation. ArXiv
e-prints, March 2011. https://arxiv.org/abs/1103.0208

30. Ghosh, B.: Random distance within a rectangle and between two rectangles. Bull.
Calcutta Math. Soc. 43(1), 17–24 (1951)

31. Rosenberg, E.: The expected length of a random line segment in a rectangle.
Oper. Res. Lett. 32(2), 99–102 (2004). http://www.sciencedirect.com/science/
article/pii/S0167637703000725

32. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II,
2nd edn. Wiley, New York (1971)

33. Casella, G., Berger, R.L.: Statistical Inference, 2nd edn. Thomson Learning, Pacific
Grove (2002)

34. Gorman, J.D., Hero, A.O.: Lower bounds for parametric estimation with con-
straints. IEEE Trans. Inf. Theory 36(6), 1285–1301 (1990)

https://doi.org/10.1214/09-AOAS313
https://doi.org/10.1214/09-AOAS313
http://www.sciencedirect.com/science/article/pii/S0378873306000372
https://doi.org/10.1145/637201.637240
https://doi.org/10.1145/637201.637240
http://iopscience.iop.org/0295-5075/82/4/48005
http://iopscience.iop.org/0295-5075/82/4/48005
https://arxiv.org/abs/1511.00576
https://arxiv.org/abs/1103.0208
http://www.sciencedirect.com/science/article/pii/S0167637703000725
http://www.sciencedirect.com/science/article/pii/S0167637703000725

Understanding the Effectiveness of Data
Reduction in Public Transportation

Networks

Thomas Bläsius, Philipp Fischbeck(B), Tobias Friedrich, and Martin Schirneck

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
{thomas.blaesius,philipp.fischbeck,tobias.friedrich,

martin.schirneck}@hpi.de

Abstract. Given a public transportation network of stations and con-
nections, we want to find a minimum subset of stations such that each
connection runs through a selected station. Although this problem is
NP-hard in general, real-world instances are regularly solved almost com-
pletely by a set of simple reduction rules. To explain this behavior, we
view transportation networks as hitting set instances and identify two
characteristic properties, locality and heterogeneity. We then devise a
randomized model to generate hitting set instances with adjustable prop-
erties. While the heterogeneity does influence the effectiveness of the
reduction rules, the generated instances show that locality is the signifi-
cant factor. Beyond that, we prove that the effectiveness of the reduction
rules is independent of the underlying graph structure. Finally, we show
that high locality is also prevalent in instances from other domains, facil-
itating a fast computation of minimum hitting sets.

Keywords: Transportation networks · Hitting set ·
Graph algorithms · Random graph models

1 Introduction

A public transportation network is a collection of stations along with a set of
connections running through these stations. But beyond its literal definition, via
bus stops and train lines, it also carries some of the geographical, social, and
economical structure of the community it serves. Given such a network, we want
to select as few stations as possible to cover all connections, i.e., each connection
shall contain a selected station. This and similar covering problems arise from
practical needs, e.g., when choosing stations for car maintenance, but their solu-
tions also reveal some of the underlying structure of the network. Despite the fact
that minimizing the number of selected stations is NP-hard, there is a surpris-
ingly easy way to achieve just that on real-world instances: Weihe [20] showed for
the German railroad network that two straightforward reduction rules simplify
the network to a very small core which can then be solved by brute force. This

c© Springer Nature Switzerland AG 2019
K. Avrachenkov et al. (Eds.): WAW 2019, LNCS 11631, pp. 87–101, 2019.
https://doi.org/10.1007/978-3-030-25070-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25070-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-25070-6_7

88 T. Bläsius et al.

is not a mere coincidence. Experiments have shown the same behavior on sev-
eral other real-world transportation networks. Subsequently, the reduction rules
became the standard preprocessing routine for many different covering problems.
See the work of Niedermeier and Rossmanith [13], Abu-Khzam [1], or Davies and
Bacchus [6], to name just a few. This raises the question as to why these rules
are so effective. Answering this question would not only close the gap between
theory and practice for the specific problem at hand, but also has the potential
to lead to new insights into the networks’ structure and ultimately pave the way
for algorithmic advances in bordering areas.

Our methodology for approaching this question is as follows. We first identify
two characteristic properties of real-world transportation networks: heterogene-
ity and locality ; see Sect. 2.2 for more details. Then we propose a model that
generates random instances resembling real-world instances with respect to het-
erogeneity and locality. We validate our model by showing empirically that it
provides a good predictor for the effectiveness of the reduction rules on real-
world instances. Finally, we draw conclusions on why the reduction rules are so
effective by running experiments on generated instances of varying heterogeneity
and locality. Moreover, we show that our results extend beyond transportation
networks to related problems in other domains.

For our model, we regard transportation networks as instances of the hitting
set problem. From this perspective, connections are mere subsets of the universe
of stations and we need to select one station from each set. Note that this disre-
gards some of the structure inherent to transportation networks: A connection is
not just a set of stops but a sequence visiting the stops in a particular order. In
fact, the sequences formed by the connections are paths in an underlying graph,
which itself has rich structural properties inherited from the geography. Focusing
on these structural properties, we also consider the graph-theoretic perspective.
The working hypothesis for this perspective is that the underlying graphs of
real-world transportation networks have beneficial properties that render the
instances tractable. We disprove this hypothesis by showing that the underly-
ing graph is almost irrelevant. This validates the hitting set perspective, which
disregards the underlying graph.

In Sect. 2, we formally state our findings on the graph-theoretic as well as the
hitting set perspective. We study the hitting set instances of European trans-
portation networks in Sect. 3, identifying heterogeneity and locality as charac-
teristic features. In Sect. 4, we define and evaluate a model generating instances
with these features. Section 5 extends our findings to other domains and Sect. 6
concludes this work.

2 Preliminary Considerations

Before discussing the results regarding the two different perspectives, we fix
some notations and state the reduction rules introduced by Weihe [20]. A public
transportation network (or simply a network) N = (S,C) consists of a set S of
stations and a set C of connections which are sequences of stations. That is, each

Understanding the Effectiveness of Data Reduction 89

connection c ∈ C is a subset of S together with a linear ordering of its elements.
Two stations s1, s2 ∈ S are connected in N if there exists a sequence of stations
starting with s1 and ending in s2 such that each pair of consecutive stations
shares a connection. The subnetworks induced by this equivalence relation are
called the connected components of N . Given N = (S,C), the Station Cover
problem is to find a subset S′ ⊆ S of minimum cardinality such that each connec-
tion is covered, i.e., S′ ∩ c �= ∅ for every c ∈ C. The reduction rules by Weihe [20]
are based on notions of dominance, both between stations and connections. For
two different stations s1, s2 ∈ S, s1 dominates s2 if every connection containing
s2 also contains s1. If so, there is always an optimal station cover without s2,
so it is never worse to select s1 instead. Thus, removing s2 from S and from
every connection in C yields an equivalent instance. Similarly, for two different
connections c1, c2 ∈ C, c1 dominates c2 if c1 ⊆ c2. Every subset of S cover-
ing c1 then also covers c2. Removing c2 does not destroy any optimal solutions.
Weihe’s algorithm can thus be summarized as follows. Iteratively remove dom-
inated stations and connections until this is no longer possible. The remaining
instance, the core1, is solved using brute force. Each connected component can
be solved independently and the running time is exponential only in the number
of stations. Thus, the complexity of an instance denotes the maximum number
of stations in any of its connected components.

The proofs of this section can be found in the full version of this paper [4].

2.1 Graph-Theoretic Perspective

One way to represent a network N = (S,C) is via an undirected graph GN

defined as follows. The stations S are the vertices of GN ; for each connection
(s1, . . . , sk) ∈ C, GN contains the edges {si, si+1}1≤i<k. The basic hypothesis
of the graph-theoretic perspective is that certain properties of GN make the
real-world Station Cover instances easy.

Consider a leaf u in GN , i.e., a degree-1 vertex. If there is a connection that
contains only u, then this dominates all other connections containing u. Other-
wise, all connections that contain u also contain its unique neighbor. Thus, u is
dominated and removed by the reduction rules. We obtain the following propo-
sition. The 2-core is the subgraph obtained by iteratively removing leaves [16].

Proposition 1. The reduction rules reduce any Station Cover instance N
to an equivalent instance N ′ such that GN ′ is a subgraph of the 2-core of GN ,
with additional isolated vertices.

Proposition 1 identifies the number of vertices in the 2-core of GN as an upper
bound for the core complexity. The following theorem shows that this bound is
arbitrarily bad. Supporting this assessment, we will see in Sect. 3 that the 2-cores
of the graphs of real-world instances are rather large, while their core complexity
is significantly smaller.
1 We note that the core is unique up to automorphisms. In particular, its size is

independent of the removal order.

90 T. Bläsius et al.

Theorem 1. For every graph G, there exist two Station Cover instances N1

and N2 with G = GN1 = GN2 such that the core of N1 has complexity 1 while
the core of N2 corresponds to the 2-core of G.

Theorem 1 disproves the working hypothesis of the graph-theoretic perspective.
For any connected graph that has no leaves, there is a Station Cover instance
that is completely solved by the reduction rules, and another instance on the very
same graph that is not reduced at all. Furthermore, unless the 2-core is small,
the theorem shows that it is impossible to tell whether or not the reduction rules
are effective on a given instance by only looking at the graph.

So far, we have only focused on Weihe’s algorithm. While our main goal
is to explain the performance of this algorithm, one could argue that other
methods exploiting different graph-theoretic properties are better suited to solve
real-world instances. The next theorem, however, indicates that this is not the
case. Even on “tree-like” graph classes Station Cover remains NP-hard. The
reduction used to prove this theorem was originally given by Jansen [9].

Theorem 2 ([9], Theorem 5). Station Cover is NP-hard even if the corre-
sponding graph has treewidth 3 or feedback vertex number 2.

2.2 Hitting Set Perspective

Another way to represent a network N is by an instance of the Hitting Set
problem. Here, the connections C ⊆ 2S are regarded only as sets of stations
(ignoring their order). An optimal cover is a minimum-cardinality subset of S
that has a non-empty intersection with all members of C. This perspective turns
out to be much more fruitful. In the next section, we analyze the Hitting Set
instances stemming from 12 real-world networks. To summarize our results, we
observe that the instances are heterogeneous, i.e., the number of connections con-
taining a given station varies heavily. Moreover, the instances exhibit a certain
locality, which probably has its origin in the stations’ geographic positions.

In more detail, for a station s ∈ S, let the number of connections in C that
contain s be the degree of s. Conversely, for c ∈ C, |c| is its degree. The connection
degrees of the real-world instances are rather homogeneous, i.e., every connection
has roughly the same size. Although there are different types of connections they
appear to have a similar number of stops. The station degrees, on the other hand,
vary strongly. In fact, we observe that the station degree distributions roughly
follow a power law. This is in line with observations that, e.g., the sizes of cities
are power-law distributed [7]. To quantify the locality of an instance, we use a
variant of the so-called bipartite clustering coefficient [15].

We conjecture that heterogeneity of stations and locality of the network are
the crucial factors that make the reduction so effective. If the station degrees
vary strongly, chances are that some high-degree station exists that dominates
many low-degree ones. Moreover, if locality is high, there tend to be several
connections differing only in few stations and stations appearing in similar sets
of connections. This increases the likelihood of dominance among the elements

Understanding the Effectiveness of Data Reduction 91

Table 1. Transportation networks with atypical instances separated. Shown are the
number |S| of stations, the station-connection ratio |S|/|C|, average station degree
δS , estimated power-law exponent β, corresponding KS distance, bipartite clustering
coefficient κ, relative 2-core size, and the relative core complexity.

Data set |S| |S|
|C| δS β KS κ 2-core Core

sncf 1742 4.0 2.2 3.3 0.03 0.47 70% 0.3%

nl 4558 13.2 1.5 3.8 0.04 0.40 70% 2.8%

kvv 2115 8.0 2.1 3.5 0.03 0.48 72% 0.8%

vrs 5491 10.7 1.9 3.5 0.03 0.27 83% 0.1%

rnv 705 12.4 1.4 4.2 0.06 0.38 54% 0.1%

athens 5729 24.4 1.8 3.9 0.04 0.30 89% 4.7%

petersburg 4264 6.5 2.5 4.0 0.03 0.31 86% 8.3%

warsaw 3944 13.0 1.8 5.9 0.05 0.29 80% 5.9%

luxembourg 2484 7.3 2.7 2.9 0.02 0.25 84% 0.2%

switzerland 22535 5.6 2.0 4.5 0.02 0.33 71% 1.7%

vbb 3031 16.5 1.4 12.4 0.05 0.38 73% 1.8%

db 514 0.9 15.7 2.0 0.07 0.28 78% 0.2%

of both S and C. To verify this hypothesis empirically, we propose a model for
generating instances of varying heterogeneity and locality. Our findings suggest
that higher heterogeneity decreases the core complexity, but the deciding factor
is the locality. Finally, we observe that locality is also prevalent in other domains.
As predicted by our model, preprocessing also greatly reduces these instances.

3 Analysis of Real-World Networks

We examined several public transportation networks from different cities
(athens, petersburg, warsaw), rural areas (sncf, kvv, vrs, rnv, vbb), and
countries (nl, luxembourg, switzerland, db). The networks are taken from the
transitfeeds.com repository. The raw data has the General Transit Feed Speci-
fication (GTFS) format. It stores multiple connections for the same route, one
for each time a train actually drives that route. For each route, only one connec-
tion was used. Table 1 gives an overview of the relevant features of the resulting
networks.

We reduced each instance to its largest component. For most of them, only a
small fraction of stations and connections are disconnected from this component.
A notable exception is the vbb-instance, representing the public transportation
network of the city of Berlin, Germany. In total, it has 13 424 stations while its
largest component has only 3031. The reason is that different modes of transport
are separated in the raw data. As a result, vbb has rather uncommon features.
Another unusual case is the db-instance of the German railway network. Table 1

https://transitfeeds.com/

92 T. Bläsius et al.

100 101

10−2

100

station degree

ra
ti
o
of

st
at
io
ns

0 20 40 60
0

20

40

60

80

connection degree

co
nn

ec
ti
on

s

Fig. 1. (left) The blue line is the CCDF of station degrees for the data set kvv. The
red line is the estimated power-law distribution. (right) The histogram of connection
degrees for the data set kvv. (Color figure online)

shows that most instances have a station-connection ratio |S|/|C| of roughly 10.
For db, however, this ratio is at 0.9 much smaller.

Heterogeneity. The average station degree δS of the investigated networks
is a small constant around 2, independent of the instances’ complexity. The
only exception is the db-network. This can be explained by the atypical value
for |S|/|C|, and that each station is contained in much more connections. The
average connection degree δC = δS · |S|/|C| (not explicitly given in the table) is
roughly 20, due to the station-connection ratios all being of the same order.

Beyond small average degree, almost all instances exhibit strong heterogene-
ity among the degrees of different stations. We take a closer look at the kvv-
instance as a prototypical example, representing the public transportation net-
work of Karlsruhe, Germany. Figure 1 (left) shows the complementary cumulative
distribution function (CCDF) of the station degrees in a log-log plot. For a given
value x, the CCDF describes the share of stations that have degree at least x.
The CCDF closely resembles a straight line (in log-log scaling), indicating a
power-law distribution. That means, there exists a real number β, the power-
law exponent, such that the number of stations of degree x is roughly propor-
tional to x−β . We estimated the power-law exponents using the python package
powerlaw [2]. For kvv, the exponent β is approximately 3.5. The goodness of fit
is measured by the Kolmogorov–Smirnov distance (KS distance), which is the
maximum absolute difference between the CCDFs of the measurement and of the
assumed distribution. The KS distance for the kvv is 0.05. Table 1 reports both
the power-law exponents and the corresponding KS distances. The estimated
values of β, excluding the outlier vbb, indicate a high level of heterogeneity. As a
side note, the power-law exponent for vbb is 4.1 with a KS distance of 0.03 when
considering the whole network instead of the largest component. In contrast,
the connection degrees are rather homogeneous, cf. e.g. kvv in Fig. 1 (right). A
possible explanation is that long-distance trains stop less frequently.

Understanding the Effectiveness of Data Reduction 93

Locality. To measure locality, we adapt the bipartite clustering coefficient [15].
Intuitively, it states how likely it is that two stations which share a connection
are also contained together in a different connection, or that two connections
containing the same station also have another station in common. For a formal
definition, first note that we can interpret a Hitting Set instance (S,C) as a
bipartite graph with the two partitions S and C and an edge joining s ∈ S and
c ∈ C iff s ∈ c. Let #P3 denote the number of paths of length 3 and #C4 the
number of cycles of length 4 in this graph. The bipartite clustering coefficient κ
then is defined as κ = 4 · #C4/#P3 . It is the probability that a uniformly chosen
3-path is contained in a 4-cycle. Before computing κ, we normalize the bipartite
graph by reducing it to its 2-core, which removes any attached trees. In doing
so, the measure becomes more robust for our purpose, as attached trees do not
impact the difficulty of an instance (they get removed by the reduction rules)
while they decrease the clustering coefficient.

The clustering coefficients are reported in Table 1. All instances have a clus-
tering coefficient of at least 0.25, which indicates a high level of locality. A pos-
sible explanation are the underlying geographic positions of the stations, with
nearby stations likely appearing in the same connection.

Degree of Reduction. We measure the effectiveness of the reduction rules
using the relative core complexity. It is the percentage of stations that remain
after exhaustively applying the preprocessing. Table 1 shows that the resulting
relative core complexity is very low for all 12 instances. This is in line with the
original findings of Weihe [20], who applied the reduction rules on a few select
European train networks. Moreover, it generalizes these results to networks of
different scales, from urban to national. On the other hand, the 2-core is typically
not much smaller than the original instance. This shows that Proposition 1 can-
not explain the effectiveness of the reduction rules, which supports our previous
assessment that the graph-theoretic perspective is not sufficient.

Judging from Table 1, we believe that heterogeneity of the stations and
high locality are the crucial properties rendering the preprocessing so effective.
Notwithstanding, it is also worth noting that the reduction rules work well on all
instances, including vbb which is not very heterogeneous. The clustering on the
other hand is high for all instances, indicating that locality is more important.
Also, the db and vbb outliers seem to show that the influence of the station-
connection ratio and the average station degree is limited. Though looking at
these 12 networks can provide clues to what features are most important, it is not
sufficient to draw a clear picture. In the following, we thoroughly test the effect
of different properties on the effectiveness of the reduction rules by generating
instances with varying properties.

4 Analysis of Generated Instances

This section discusses the generation and analysis of artificial Hitting Set
instances. First, we present our model of generation which is based on the geo-
metric inhomogeneous random graphs [5]. It allows creating networks with vary-

94 T. Bläsius et al.

ing degree of heterogeneity and locality. We then analyze these instances with
respect to the degree of reduction.

4.1 The Generative Model

In the field of network science, it is generally accepted that vertex degrees in real-
istic networks are heterogeneous [18]. A power-law distribution can be explained,
inter alia, by the preferential attachment mechanism [3]. Beyond the generation
of heterogeneous instances, different models have been proposed to also account
for locality. The latter models typically use some kind of underlying geometry.
One of the earliest works in that direction is by Watts and Strogatz [19]. More
recently, and closer to our aim, Papadopoulos et al. [14] introduced the concept
of popularity vs. similarity, making the creation of edges more likely, the more
popular and similar the connected vertices are. They also observed that these two
dimensions are naturally covered by the hyperbolic geometry, leading to hyper-
bolic random graphs [11]. Bringmann, Keusch, and Lengler [5] generalized this
concept to geometric inhomogeneous random graphs (GIRGs). There, each ver-
tex has a geometric position and a weight. Vertices are then connected by edges
depending on their weights and distances. Despite a plethora of models for gen-
erating graphs, we are not aware of models generating heterogeneous Hitting
Set instances. The closest is arguably the work by Giráldez-Cru and Levy [8],
who generate SAT instances using the popularity vs. similarity paradigm.

To generate Hitting Set instances with varying heterogeneity and locality,
we formulate a randomized model based on GIRGs. Each station and connection
has a weight representing its importance. Moreover, stations and connections
are randomly placed in a geometric space. The distance between stations and
connections then provides a measure of similarity. In the Hitting Set instance,
some station s is a member of connection c with a probability proportional to the
combined weights of s and c and inverse proportional to the distance between the
vertices s and c. To make this more precise, let wS : S → R and wC : C → R be
two weight functions; we omit the subscript when no ambiguity arises. For s ∈ S
and c ∈ C, let dist(s, c) denote the geometric distance between the corresponding
vertices. Finally, fix two positive constants a, T > 0. Then, station s is contained
in connection c with probability

P (s, c) = min

{
1,

(
a · w(s)w(c)

dist(s, c)

)1/T
}

. (1)

The parameter a governs the expected degree. The temperature T controls the
influence of the geometry. For T → 0 the method converges to a step model, where
s is contained in c if and only if dist(s, c)≤ aw(s)w(c). Larger temperatures
soften this threshold, allowing s ∈ c for larger distances, and s /∈ c for smaller
distances, with a low probability. Thus, T influences the locality of the instance.

The remaining degrees of freedom are the choice of the underlying geometry
and the weights. For the geometry, we use the unit circle. Positions for stations
and connections are drawn uniformly at random from [0, 1] and the distance

Understanding the Effectiveness of Data Reduction 95

between x, y ∈ [0, 1] is min{|x− y|, 1− |x− y|}. This is arguably the simplest
possible symmetric geometry.

To choose the weights properly, it is important to note that the resulting
degrees are expected to be proportional to the weights [5]. Thus, we mimic the
real-world instances by choosing uniform weights for the connections and power-
law weights, with varying exponent β, for the stations. It is not hard to see
that for β → ∞, the latter converge to uniform weights as well. In summary,
adjusting β controls the heterogeneity.

4.2 Evaluation

We generate artificial networks and measure the dependence of their relative core
complexity on the heterogeneity and locality. The size of an instance has three
components: the (original) complexity |S|, the station-connection ratio |S|/|C|,
and the average station degree δS . Note that these values also determine the
number |C| of connections and average connection degree δC . From the model,
we have the two parameters we are most interested in, the power-law exponent
β and the temperature T . We also consider the limit case of uniform weights for
all vertices; slightly abusing notation, we denote this by β = ∞.

For the main part of the experiments, we used |S| = 2000, |S|/|C| = 10.0,
and δS = 2.0, leaning on the respective properties for the real-world instances.
We let T vary between 0 and 1 in increments of 0.05, and β between 2 and 5
in increments of 0.25. For each combination, we generated ten samples. In the
following, we first validate the data. Then we examine the influence of hetero-
geneity and locality. Afterwards we test whether our findings still hold true for
different station-connection ratios and station degrees.

Data Validation. There are two aspects to the data validation. First, the
instances should approximately exhibit the properties we explicitly put in, i.e.,
the values of |S|, |S|/|C|, δS , and the power-law behavior. Second, the implicit
properties should also be as expected. In our case, we have to verify that chang-
ing T actually has the desired effect on the bipartite clustering coefficient κ.

Concerning the complexity |S|, note that a sampled instance per se does
not need to be connected. If it is not, we again only use the largest component.
Thus, when generating an instance with 2000 stations, the resulting complexity is
actually a bit smaller. There are typically many isolated stations due to the small
average station degree, this is particularly true for small power-law exponents.
However, the complexity of the largest component never dropped below 1000
and usually was between 1400 and 1700 provided that β > 2.5. The transition
to the largest component mainly meant ignoring isolated stations. Thus, also
the station-connection ratio |S|/|C| decreases slightly. For β > 3 it was typically
around 8 and always at least 7. For smaller β, it is never below 5.

Recall that the average station degree δS is controlled by parameter a in
Eq. 1. It is a constant in the sense that it is independent of the considered
station-connection pair. However, it does depend on other parameters of the
model. As there is no closed formula to determine a from δS , we estimated it

96 T. Bläsius et al.

00.51

0.2

0.4

0.6

T

κ

β = 2.5
β = 3.5
β = 5.0
β = ∞

2345
0.3

0.6
0.90.2

0.4
0.6
0.8

β
Tre

l.
co
re

co
m
pl
ex
it
y

Fig. 2. (left) The clustering coefficient κ depending on the temperature T for different
β. (right) The relative core complexity depending on the power-law exponent β and
temperature T .

00.51

0

0.2

0.4

0.6

T

re
la
ti
ve

co
re

co
m
pl
ex
it
y

β = 2.5 β = 3.5
β = 5.0 β = ∞

2345

0

0.2

0.4

0.6

β

re
la
ti
ve

co
re

co
m
pl
ex
it
y

T = 0.1 T = 0.4
T = 0.7 T = 0.9

Fig. 3. The relative core complexity (left) depending on the temperature T (for differ-
ent power-law exponents β), and (right) depending on β (for different T).

numerically. This estimation incurred some loss in accuracy but yielded values
of δS between 1.9 and 2.1, very close to the desired δS = 2. Transitioning to the
largest component typically slightly increases δS , as the largest component is
more likely to contain stations of higher degree. Anyway, δS never went above 2.7.

As with the real-world instances, we estimated the exponent β of the gen-
erated instances. For small values, the estimates matched the specified values.
For larger exponents, the gap increases slightly, e.g., an estimated β = 5.7 for
an instance with predefined parameter 5.0.

Finally, we examined the dependency between the bipartite clustering coef-
ficient κ and the temperature T ; see Fig. 2 (left). As desired, the clustering
coefficient increases with falling temperatures. More precisely, κ ranges between
0 and some maximum attained at T = 0. The value of this maximum depends
on the power-law exponent β, with smaller β giving smaller maxima.

Heterogeneity and Locality. For each instance described above, we computed
the relative core complexity. To reduce noise, we look at the arithmetic mean of

Understanding the Effectiveness of Data Reduction 97

2345
0.3

0.6
0.90.2

0.4
0.6
0.8

β
Tre

l.
co
re

co
m
pl
ex
it
y

2345
0.3

0.6
0.90.2

0.4
0.6
0.8

β
Tre

l.
co
re

co
m
pl
ex
it
y

Fig. 4. The relative core complexity depending on the power-law exponent β and tem-
perature T under alternative model parameters. (left) The station-connection ratio is
|S|/|C| = 4.0 (instead of 10.0). (right) The average station degree is δS = 5.0 (instead
of 2.0).

ten samples for each parameter configuration. The measured core complexities
and clustering coefficients in fact showed only small variance, with almost all
values differing at most 5% from the respective mean. These measurements are
presented in Fig. 2 (right), showing the mean core complexity depending on the
temperature T and the power-law exponent β. For all parameter configurations,
the relative core complexity was at most 50%. This is due to the low average
station degree, which leads to dominant low-degree stations. More importantly,
the core complexity varies strongly for different values of T and β.

The complexity decreased both with lower temperatures and lower power-law
exponents. This further supports our claim that heterogeneity and locality both
have a positive impact on the effectiveness of the reduction rules. The locality,
however, seems to be more vital. To make this precise, low temperatures lead
to small cores, independent of β, as shown in Fig. 3 (left). Even under uniform
station weights (β = ∞), temperatures below 0.3 consistently produced instances
with empty core. In contrast, the power-law exponent has only a minor impact.
One can see in Fig. 3 (right) that for low temperatures, the core complexity
is (almost) independent of β. For higher temperatures, the core complexities
remain high over wide ranges of β, except for very low exponents.

In summary, high locality seems to be the most prominent feature that makes
Station Cover instances tractable, independent of their heterogeneity. Hetero-
geneity alone reduces the core complexity only slightly, except for extreme cases
(very low power-law exponents). It is thus not the crucial factor. In the follow-
ing, we verify this general behavior also for alternative model parameters such
as station-connection ratio or average station degree.

Station-Connection Ratio. Recall that we fixed a ratio of |S|/|C| = 10.0
for the main part of our experiments. To see whether our observations are still
valid for different settings, we additionally generated data sets with mostly the
same parameters as before, except for |S|/|C| = 4.0. The result are shown in
Fig. 4 (left). Comparing this to Fig. 2 (right), one can see that general depen-

98 T. Bläsius et al.

0 0.2 0.4 0.6

0

0.2

0.4

0.6

κ

re
la
ti
ve

co
re

co
m
pl
ex
it
y β = 2.5

β = 3.5
β = 5.0
β = ∞

0 0.2 0.4 0.6

0

0.2

0.4

0.6

κ

re
la
ti
ve

co
re

co
m
pl
ex
it
y sncf nl

kvv vrs
rnv athens

petersburg warsaw
luxembourg vbb
switzerland db

Fig. 5. The relative core complexity depending on the clustering coefficient κ (left) for
generated instances with different values of the power-law exponent β, and (right) for
the real-world instances.

dence on T and β is very similar. However, there are subtle differences. Under
the smaller station-connection ratio the instances are tractable even for larger
temperatures, up to T = 0.5 instead of the earlier 0.3, i.e., for lower locality. Also,
the maximum core complexity over all combinations of T and β is larger than
before, reaching almost 60%, compared to the 50% for |S|/|C| = 10.0. In sum-
mary, in the (more realistic) low-temperature regime, a lower station-connection
ratio seems to further improve the effectiveness of the reduction rules.

Average Degree. To examine the influence of the average station degree δS , we
generated another instance set with the same parameters as the main one, except
that we increased the δS from 2.0 to 5.0. The results are shown in Fig. 4 (right).
Again the general behavior is similar, but now lower temperatures are neces-
sary to render the instances tractable. Moreover, the maximum core complexity
increases significantly, reaching up to almost 100%. Generally, a smaller average
degree makes the reduction rules more effective. Intuitively speaking, the exis-
tence of stations with low degree increases the likelihood that the reduction rule
of station dominance can be applied.

Comparison with Real-World Instances. To compare generated and real-
world instances more directly, we investigate the dependence between the rel-
ative core complexity and the bipartite clustering coefficient κ, instead of the
model-specific temperature T . Figure 5 shows the results. Several of the real-
world networks are well covered by the model. For example, our findings from
the generated instances can be directly transferred to sncf and kvv. They have
power-law exponents of 3.3 and 3.5, respectively, as well as clustering coeffi-
cients of at least 0.47, which explains their small core complexity. Moreover, for
luxembourg, the model can explain the low complexity in spite of a small clus-
tering coefficient of 0.25. The network exhibits a small exponent β = 2.9, which
benefits the effectiveness of the preprocessing. On the other hand, petersburg

Understanding the Effectiveness of Data Reduction 99

has clustering κ = 0.31, but also a comparatively large core complexity of over
8%. Here, the main factor seems to be the high power-law exponent of 4.0.

Notwithstanding, there are also some real-world instances that have an unex-
pectedly low core complexity, which cannot be fully explained by the model. The
vrs-instance has a low clustering coefficient of κ = 0.27 and a high power-law
exponent of 3.5, but still a very low 0.1% core complexity. The reason seems to be
its low average station degree of δS = 1.9. The switzerland-instance also has a
low core complexity of 1.7%, despite its high power-law exponent of β = 4.5 and
a clustering coefficient of κ = 0.33. Especially the high value of β would point
to a much higher complexity, however, its station-connection ratio |S|/|C| = 5.6
is significantly lower than that of the generated instances. All in all, the net-
works generated by the model are not perfectly realistic. However, the model
does replicate properties that are crucial for the effectiveness of the reduction
rules on real-world instances. Furthermore, in the interplay of heterogeneity and
locality, it reveals locality as the more important property.

5 Impact on Other Domains

Although the focus of this paper is to understand which structural properties
of public transportation networks make Weihe’s reduction rules so effective, our
findings go beyond that. Our experiments on the random model predict that
Hitting Set instances in general can be solved efficiently if they exhibit high
locality. Moreover, if the instance is highly heterogeneous, a smaller clustering
coefficient suffices; see Fig. 5 (left). The element-set ratio and the average degree
have, within reasonable bounds, only a minor impact on the effectiveness. Our
experiments in Sect. 4.2 showed that instances are more difficult for a larger
average degree and if the difference between the number of elements and the
number of sets is high. Experiments not reported in this paper show that the
latter is also true, if there are more sets than elements (i.e., the ratio is below 1).

Data Sets. We consider Hitting Set instances from three different applica-
tions; see Table 2. The first set of instances are metabolic reaction networks
of Escherichia coli bacteria. The elements represent reactions and each set is
a so-called elementary mode. Analyzing the hitting sets of these instances has
applications in drug discovery. The corresponding data sets, labeled ec-*, were
generated with the Metatool [10]. In the second type of instance, the sets con-
sist of so-called elementary pathways that need to be hit by interventions that
suppress all signals, which is relevant, inter alia, for the treatment of cancer.
The data sets, EGFR.* and HER2.*, were obtained via the OCSANA tool [17]. The
instances country-cover and language-cover are based on a country-language
graph, taken from the network collection KONECT [12], with an edge between a
country and a language if the language is spoken in that country. The corre-
sponding Hitting Set instances ask for a minimum number of countries to
visit to hear all languages, and for a minimum number of languages necessary
to communicate with someone in every country, respectively.

100 T. Bläsius et al.

Table 2. Hitting Set instances from other domains. Listed are the number |S| of
elements, the element-set ratio |S|/|C|, the bipartite clustering coefficient κ, and the
relative core complexity.

Data set |S| |S|/|C| κ Core

ec-acetate 57 0.214 0.67 1.8%

ec-succinate 57 0.061 0.59 1.8%

ec-glycerol 60 0.028 0.66 1.7%

ec-glucose 58 0.009 0.66 36.2%

ec-combined 64 0.002 0.62 40.6%

EGFR.short 50 0.400 0.66 2.0%

EGFR.sub 56 0.239 0.57 1.8%

HER2.short 123 0.230 0.53 9.8%

HER2.sub 172 0.068 0.55 10.4%

country-cover 248 0.407 0.11 0.4%

language-cover 610 2.460 0.11 0.2%

Evaluation. The basic properties of the instances and the effectiveness of the
reduction rules are reported in Table 2. The results match the prediction of
our model: most instances have a high clustering coefficient and the reduction
rules are very effective. The only instances that stand out at first glance are
ec-glucose, ec-combined, HER2.short, and HER2.sub, which are not solved
completely by the reduction rules despite their high clustering coefficients, as well
as country-cover and language-cover, which are solved completely despite the
comparatively low clustering coefficient of κ = 0.11.

However, a more detailed consideration reveals that these instances also
match the predictions of the model. First, the two instances country-cover
and language-cover are very heterogeneous with power-law exponent β = 2.2.
As can be seen in Fig. 2 (left), a clustering coefficient of κ = 0.11 is already
rather high for this exponent, leading to a low core complexity; see Fig. 5 (left).

The instances ec-glucose and ec-combined have skewed element-set ratios
(more than 100 times as many sets as elements) and a high average degree (30
for the sets; 3k and 13k for the elements, respectively). Thus, these instances at
least qualitatively match the predictions of the model that the reduction rules
are less effective if the element-set ratio is skewed or the average degree is high.
One obtains a similar but less pronounced picture for HER2.short and HER2.sub.

6 Conclusion

We explored the effectiveness of data reduction for Station over on transporta-
tion networks. Our main finding is that real-world instances have high locality
and heterogeneity, and that these properties make the reduction rules effective,
with locality being the crucial factor. This directly transfers to general Hitting

Understanding the Effectiveness of Data Reduction 101

Set instances. For future work, it would be interesting to rigorously prove that
the reduction rules perform well on the model.

References

1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76, 524–531 (2010)

2. Alstott, J., Bullmore, E., Plenz, D.: powerlaw: a Python package for analysis of
heavy-tailed distributions. PloS One 9, e85777 (2014)

3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

4. Bläsius, T., Fischbeck, P., Friedrich, T., Schirneck, M.: Understanding the effective-
ness of data reduction in public transportation networks. arXiv:1905.12477 (2019)

5. Bringmann, K., Keusch, R., Lengler, J.: Sampling geometric inhomogeneous ran-
dom graphs in linear time. In: Proceedings of the 25th Annual European Sympo-
sium on Algorithms (ESA), pp. 20:1–20:15 (2017)

6. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-23786-7 19

7. Gabaix, X.: Zipf’s law for cities: an explanation. Q. J. Econ. 114, 739–767 (1999)
8. Giráldez-Cru, J., Levy, J.: Locality in random SAT instances. In: Proceedings of the

26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 638–644
(2017)

9. Jansen, B.M.P.: On structural parameterizations of hitting set: hitting paths in
graphs using 2-SAT. J. Graph Algorithms Appl. 21, 219–243 (2017)

10. von Kamp, A., Schuster, S.: Metatool 5.0: fast and flexible elementary modes anal-
ysis. Bioinformatics 22, 1930–1931 (2006)

11. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic
geometry of complex networks. Phys. Rev. E 82, 036106 (2010)

12. Kunegis, J.: KONECT - the Koblenz network collection. In: Proceedings of the
22nd International Conference on World Wide Web (WWW), pp. 1343–1350 (2013)

13. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-
hitting set. J. Discrete Algorithms 1, 89–102 (2003)

14. Papadopoulos, F., Kitsak, M., Serrano, M.Á., Boguñá, M., Krioukov, D.: Popular-
ity versus similarity in growing networks. Nature 489, 537–540 (2012)

15. Robins, G., Alexander, M.: Small worlds among interlocking directors: network
structure and distance in bipartite graphs. Comput. Math. Organ. Theory 10,
69–94 (2004)

16. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5, 269–287
(1983)

17. Vera-Licona, P., Bonnet, E., Barillot, E., Zinovyev, A.: OCSANA: optimal com-
binations of interventions from network analysis. Bioinformatics 29, 1571–1573
(2013)

18. Voitalov, I., van der Hoorn, P., van der Hofstad, R., Krioukov, D.V.: Scale-free
networks well done. arXiv:1811.02071 (2018)

19. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393, 440–442 (1998)

20. Weihe, K.: Covering trains by stations or the power of data reduction. In: Pro-
ceedings of the 1998 Algorithms and Experiments Conference (ALEX), pp. 1–8
(1998)

http://arxiv.org/abs/1905.12477
https://doi.org/10.1007/978-3-642-23786-7_19
http://arxiv.org/abs/1811.02071

A Spatial Small-World Graph Arising
from Activity-Based Reinforcement

Markus Heydenreich1 and Christian Hirsch2(B)

1 Mathematisches Institut, Ludwig-Maximilians-Universität München,
Theresienstraße 39, 80333 München, Germany

m.heydenreich@lmu.de
2 Institut für Mathematik, Universität Mannheim,

B6 26, 68161 Mannheim, Germany
hirsch@uni-mannheim.de

Abstract. In the classical preferential attachment model, links form
instantly to newly arriving nodes and do not change over time. We pro-
pose a hierarchical random graph model in a spatial setting, where such a
time-variability arises from an activity-based reinforcement mechanism.
We show that the reinforcement mechanism converges, and prove rigor-
ously that the resulting random graph exhibits the small-world property.
A further motivation for this random graph stems from modeling synap-
tic plasticity.

Keywords: Random tree · Reinforcement · Neural network ·
Small-world graph

1 Introduction

Network Formation Driven by Reinforcement. Since the introduction of
the preferential attachment model by Barabási and Albert [1], reinforcement
mechanisms are recognized as a versatile tool in network formation. Why are
preferential attachment models so popular? On the one hand, the resulting
graphs exhibit universal features that are ubiquitous in real networks e.g., scale-
free property, short distances [1,3]. In spatial versions of the preferential attach-
ment mechanism, there is even strong local clustering [13]. A second reason for
the popularity lies in the plausibility of the reinforcement scheme: When new
agents enter the system, then they are more likely to link with highly connected
agents than with those that have only few connections. The result is that a high
degree is reinforced, some authors coin this the “Matthew effect” [21]. Even
though the classical preferential attachment model is in principle a dynamical

This work is supported by The Danish Council for Independent Research—Natural
Sciences, grant DFF – 7014-00074 Statistics for point processes in space and beyond,
and by the Centre for Stochastic Geometry and Advanced Bioimaging, funded by grant
8721 from the Villum Foundation.

c© Springer Nature Switzerland AG 2019
K. Avrachenkov et al. (Eds.): WAW 2019, LNCS 11631, pp. 102–114, 2019.
https://doi.org/10.1007/978-3-030-25070-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25070-6_8&domain=pdf
http://orcid.org/0000-0002-3749-7431
http://orcid.org/0000-0003-4742-2633
https://doi.org/10.1007/978-3-030-25070-6_8

A Spatial Small-World Graph Arising from Activity-Based Reinforcement 103

model, the formation of edges occurs instantly, and is not changed with time,
except for the addition of edges from new vertices. Variability in the formation of
edges is thus not included in the classical preferential attachment model. Recent
variants address this issue for instance by starting from a fixed number of nodes
and then adding edges according to a preferential attachment mechanism [19].

Reinforcement effects are also typical for social sciences. Pemantle and
Skyrms [18,20] study a mathematical model for a group of agents interacting
with each other in such a way that every interaction makes the same interaction
in the future more probable. Of particular interest is the long-term behavior:
both on finite graphs [4] and on infinite networks [15] a nice characterization of
the equilibrium states can be given: The reinforcement in the model is so strong
that in the long run there is a formation of groups such that only the agents
inside the groups interact but not across the groups. More precisely, it is shown
that in an extremal equilibrium, the set of agents decomposes into finite sets,
each of which includes a “center” that is always chosen by the other agents in
that set.

Neural Networks. Reinforcement mechanisms are also typical for neural net-
works in the context of synaptic plasticity. To this end, we are considering a
fairly simplistic model of a neural network: There is a set of neurons, each of
them equipped with one axon and a number of dendrites which are connected to
axons of other neurons. Pairs of axons and dendrites may form synapses, which
are functional connections between neurons. However, not all geometric connec-
tions necessarily also form functional connections. The resulting network can be
interpreted as a directed graph with neurons as vertices and synapses as edges
(directed from dendrite to axon).

Experimental observation shows that the resulting neural network is rather
sparse and very well connected, that is, any pair of neurons is connected through
a short chain of neural connections reminiscent of the “small-world property”.
These features allow for very fast and efficient signal processing. The challenge
is to explain the mechanism behind the formation of such sophisticated neural
networks. Kalisman, Silberberg, and Markram [14] use experimental evidence to
advocate a tabula rasa approach to the formation of these networks: In an early
stage, there is a (theoretical) all-to-all geometrical connectivity. Stimulation and
transmission of signals enhance certain touches to ultimately form functional
connections, which results in a network with rather few actual synapses. This
describes the plasticity of the brain at an early stage of the development.

A Mathematical Model. In order to model these effects mathematically, we
consider a model of reinforced Pólya urns with graph-based competition. In this
Pólya urn interpretation, the “color” of the balls in the Pólya urn represents the
edges in a given graph (namely, the potential connections or touches).

This reinforcement scheme goes as follows: we start from a very large graph
(e.g. the complete graph or a suitable grid), and initially equip all edges with
weight one. The vertices are activated uniformly at random. If node v is activated
at time t ≥ 0, it queries the weight Wt−(v, w) of the edge (v, w) just before the
activation. Then, the node chooses a neighbor w proportional to

104 M. Heydenreich and C. Hirsch

Wt−(v, w)β β > 0,

and the weight of the chosen edge increases by one. High weight of an edge thus
means that this edge is chosen very often. We are interested in the subgraph
formed by those edges whose weight is increasing linearly in time (i.e., edges
that are chosen a positive fraction of time). Following the neural interpretation
of the previous paragraph, these are the edges forming actual synapses.

The parameter β > 0 controls the strength of the reinforcement. We distin-
guish between weak reinforcement when β < 1 and strong reinforcement when
β > 1. In the case of strong reinforcement, it is plausible that any stable equilib-
rium is concentrated on small “islands” which are not connected to each other;
similar behavior is obtained rigorously for related models in [9,10,12]. On the
other hand, if there is weak reinforcement, then all edges are contained in the
limiting distribution, and thus no interesting subgraph is formed in the limit [5].
In the bordercase β = 1, there is linear reinforcement, where the classical Pólya
urn (properly normalized) converges to a Dirichlet distribution. For our model
of graph based interaction, the situation is more delicate, as it seems that the
behavior for β = 1 resembles the subcritical regime [11].

We summarize that these conventional approaches yield interesting results,
but they are not versatile enough to support the tabula rasa approach from
a mathematical point of view: either the resulting functional connections form
small local islands, or the entire network is kept in the limit. One might argue
that our interpretation of neural interactions with reinforced Pólya urns is far too
simplified, as there are more realistic mathematical models for brain activities
(e.g. through a system of interacting Hawkes processes [6]). However, we do not
expect that the overall picture as described above is changing by working in
a more sophisticated setup. Instead, we are proposing a different route, where
we introduce layers of neurons with varying fitness, and this leads indeed to an
interesting network structure.

Mind that the reinforcement mechanism considered here models the plasticity
of neurons, and should not be mistaken with reinforcement learning in the spirit
of [16,22].

Our Contribution. In the present work, we are suggesting a new model for a
network arising from reinforcement dynamics that are typical for the brain. Our
model is built upon layers of spatial graphs, and the ability of neurons to form
long connections. More precisely, in the base network of possible links, neurons
at a higher layer have the potential of reaching further than neurons at lower
layers, and a random fitness of neurons leads to a rapid coalescence of functional
connections. We prove that the resulting graph is connected and cycle-free, and
that far-away vertices are linked through a few edges only (“small-world”). In
contrast to the preferential attachment model, which is based on reinforcement
of degrees, our model reinforces edge activities.

Our main interest lies in the understanding of a versatile mathematical model
for neural applications. It is clear that the actual formation of the brain involves
much more complex processes that are beyond the scope of a rigorous treatment.
Yet, we aim at clarifying which network characteristics can be explained by a
simple reinforcement scheme, and which cannot.

A Spatial Small-World Graph Arising from Activity-Based Reinforcement 105

The generality of our approach has the potential to be applied in a variety
of contexts with different interpretations. Indeed, networks based on layered
graphs are fundamental objects in machine learning, and therefore our model
could contribute towards enhancing the understanding of “biologically plausible
deep learning” in the spirit of [2].

Future Work. In the current model, the growing range of neurons at higher
layers is defined externally. It appears desirable to extend the model such that
this feature emerges from an intrinsic mechanism of self-organization. Addition-
ally, one could envision replacing the externally defined fitnesses by a mechanism
relying on the indegrees, thereby establishing a closer link to classical preferen-
tial attachment models. Even though in the present setting, we are deriving our
results for layers of one-dimensional graphs, we expect that the main results also
hold for higher-dimensional lattices. For example, when modelling the neurons
in the visual pathway, layers of two-dimensional graphs seems more appropriate.
Finally, it would be of interest to test the relevance of the proposed model with
measurements in real world networks.

2 Model and Results

In this work, we consider a stochastic process of dynamically evolving edge
weights {Wt(e)}t≥0,e∈E on the graph with nodes V = Z × Z≥0 and edges E
given by pairs ((k, h), (�, h + 1)) for |� − k| ≤ ah for some a > 1. Here, we think
of Z × Z≥0 as an infinite number of layers, each consisting of infinitely many
nodes. Additionally, the nodes feature iid heavy-tailed fitnesses {Fv}v∈V with
tail index γ < 1. More precisely, we assume that sγ

P(Fv > s) remains bounded
away from 0 and ∞ as s → ∞. The assumption that the fitnesses are heavy
tailed encourages that in higher layers we can observe nodes with outstandingly
high fitness featuring a large number of ingoing edges from the previous layer.

At time t = 0, all edge weights are constant equal to 1, i.e., W0(e) = 1 for
every e ∈ E. To describe the evolution of {Wt}t≥0, we equip the nodes of V with
independent Poisson clocks. When at node v = (k, h) the clock rings, then we
choose one of the adjacent nodes w in the set Nv = {(�, h + 1) : |� − k| ≤ ah}
of out-neighbors and increment the weight of the incident edge by 1. According
to the modeling paradigm described in Sect. 1, we prefer to choose fitter vertices
and higher edge weights. More precisely, the probability to select w = (�, h + 1)
is proportional to

FwWt−(v, w)β ,

where the parameter β > 1 describes the strength of the reinforcement bias.
Note that when disregarding the fitnesses, the weight-evolutions of the outgoing
edges at each node would form a classical Pólya urn with reinforcement parame-
ter β. Moreover, conditioned on the fitnesses, activations at different nodes occur
independently, so that one could also allow activation in bunches without influ-
encing the distribution of the resulting random graph. Figure 1 illustrates the
random graph model after a finite number of reinforcement steps. As will be
made precise below, the apparent tree structure is no coincidence.

106 M. Heydenreich and C. Hirsch

Having introduced the weight dynamics, we now extract the subgraph of
relevant edges. More precisely, we let

E = {e ∈ E : lim inf
t→∞ Wt(e)/t > 0}

denote the subgraph consisting of edges that are reinforced a positive proportion
of times. For the motivation from neutral networks, we may think of edges that
are reinforced only a vanishing proportion of time as those potentially possible
connections that after the self-organizing process of learning did not evolve into
actual synapses.

The main result of this work establishes that E is a small-world graph in the
sense that graph distances on E between layer-0 nodes grow logarithmically in
their horizontal distance. To be more precise, by translation-invariance in the
first coordinate, we may fix one of the vertices to be (0, 0) and therefore let HN

denote the graph distance on E between (0, 0) and (N, 0).

Theorem 1 (Typical distances; multiplicative version). Let a, β > 1 and
γ < 1. Then, asymptotically almost surely,

HN

loga(N)
N→∞−−−−→ 2.

Theorem 2 (Typical distances; additive version). Let a, β > 1 and γ < 1.
Then, there exists c > 0 such that for every N,x ≥ 1

P(HN ≥ 2 loga(N) + x) ≤ exp(−cx).

In particular, HN is almost surely finite for every N ≥ 1.

Fig. 1. Realization of the network model with parameters a = 3, β = 3/2 and γ = 1/5.
Node diameters represent log-fitness values. Grayscales correspond to edge weights
after 20 reinforcement steps.

A Spatial Small-World Graph Arising from Activity-Based Reinforcement 107

Our results show that the activity-based reinforcement mechanism considered in
our model is sufficient for constituting a sparse small-world graph. However, the
heavy-tailed fitnesses and (externally defined) layers of growing range are vital
ingredients.

The almost sure finiteness of HN for all N ≥ 1 means that all nodes at layer
0 are connected in E . In fact, all other nodes are connected as well. Since E does
not contain cycles (Lemma 1), it is therefore a tree.

Note that Theorems 1 and 2 can form the starting points for building a con-
sistent estimator for the model parameter a. Once a is estimated, the parameter
γ could be estimated from the indegree distribution. Finally, the precise choice
of the parameter β > 1 does not influence the distribution of E , so that its
estimation would only be feasible on the basis of snapshots after finite time.

3 Proofs

First, in Sect. 3.1, we establish the lower bound of Theorem1. The main step
is to show that the relevant edges E form a forest. That is, with probability 1,
every node has precisely one outgoing edge in E . The argument critically relies
on the assumption of strong reinforcement, where β > 1.

Next, the additive upper bound in Theorem2 is stronger than the multi-
plicative upper bound in Theorem1, so that it suffices to establish the former.
To achieve this goal, in Sect. 3.2, we first give a short and instructive proof for
a ≥ 3. The heavy-tailedness of the fitness distribution ensures that although the
number of possible connections from each node grows exponentially in the layer,
with positive probability, E contains the edge leading to the node with maxi-
mal fitness in the next layer. Then, in Sect. 3.3, we work out the more subtle
arguments for general a > 1.

3.1 Lower Bound

The main step in the lower bound is to prove that E is a forest. Essentially, this
follows from a variant of the celebrated Rubin’s theorem for Pólya urns in the
regime of strong reinforcement.

Lemma 1 (E is a forest). With probability 1, E is a forest.

Proof. The critical observation is that the outgoing edges adjacent to a node v
are only reinforced at Poisson clock rings at the vertex v. Hence, we may view
these edges as colors in a Pólya urn governed by a super-linear reinforcement
scheme. Then, by the celebrated Rubin’s theorem, almost surely all but one of
the edges are reinforced only finitely often. For two colors, this is shown in [17,
Theorem 3.6], and a generalization to an arbitrary finite number can be found
in [23, Theorem 3.3.1].

Hence, in each layer h ≥ 0, there exists almost surely a unique node (Lh, h)
such that (0, 0) connects to (Lh, h) by a directed path in E . Similarly, we write

108 M. Heydenreich and C. Hirsch

(Rh, h) for the unique node in layer h connected along a directed path to (N, 0).
In this notation, HN is twice the coalescence time of Lh and Rh, i.e.,

HN = 2 inf{h ≥ 1 : Lh = Rh}. (1)

Now, the lower bound becomes a consequence of the structure of the under-
lying deterministic graph (V,E). More precisely, we first establish an auxiliary
result on the growth of the difference Dh = Rh − Lh.

Lemma 2 (Growth of Dh). Let h, h′ ≥ 0. Then,

|Dh+h′ − Dh| ≤ 2
∑

h≤i<h+h′
ai ≤ 2ah+h′

a − 1
.

Proof. By definition, any node in layer i can connect to nodes in layer i + 1 at
horizontal distance at most ai, so that for every i ≥ 0,

max{|Li − Li+1|, |Ri − Ri+1|} ≤ ai.

In particular,

|Dh+h′ − Dh| ≤
∑

h≤i<h+h′
|Di+1 − Di| ≤ 2

∑

h≤i<h+h′
ai

The second inequality in the assertion follows from the geometric series repre-
sentation.

Now, we have all ingredients to prove the lower bound in Theorem1.

Proof (Proof of Theorem 1, lower bound). Since DHN/2 = 0 and D0 = N , an
application of Lemma 2 gives that

loga(2/(a − 1)) + HN/2 ≥ loga(N),

as asserted.

3.2 Theorem2; a ≥ 3

Lemma 1 produces for every node a unique outgoing edge that is reinforced
infinitely often. Leveraging the heavy-tailedness of the fitness distribution, a key
ingredient in the proof of the upper bound is that with a probability bounded
away from 0, this edge leads to the node with maximal fitness. To make this
precise, let vmax ∈ Nv be the out-neighbor of v ∈ V with maximal fitness. In
later parts of the manuscript, we also use vmax as a generic notation, when v ∈ V
is a specific node. We let

Fh = σ({Lh′ , Rh′}h′≤h, {Fv}v∈Z×{0,...,h})

denote the σ-algebra of the information gathered up to layer h and write

F∗
h = σ({Lh′ , Rh′}h′≤h, {Fv}v∈Z×{0,...,h+1})

for the σ-algebra that additionally contains the information on the fitnesses in
layer h + 1.

A Spatial Small-World Graph Arising from Activity-Based Reinforcement 109

Lemma 3 (Choice of the fittest). For every ε > 0 there exists qε > 0 such
that almost surely for every h ≥ 0 and v ∈ Z × {h},

P({v, vmax} ∈ E |F∗
h) ≥ qε1{Emax−fit

v },

where Emax−fit
v = {maxw∈Nv

Fw ≥ ε
∑

w∈Nv
Fw}.

Proof. Let τn denote the nth firing time at the node v and write

En
v =

{
Wτn({v, vmax}) = Wτn−({v, vmax}) + 1

}

for the event that at time τn the edge {v, vmax} is reinforced. In particular,
{{v, vmax} ∈ E} ⊃ ∩n≥1E

n
v and

P

(
En

v

∣∣∣F∗
h ,

⋂

k≤n−1

Ek
v

)
≥ Fvmaxnβ

Fvmaxnβ +
∑

w∈Nv\{vmax} Fw
.

Therefore, putting Mv = maxw∈Nv
Fw and Sv =

∑
w∈Nv

Fw, we obtain that
almost surely,

P({v, vmax} ∈ E |F∗
h) ≥

∏

n≥1

Mvnβ

Mvnβ + Sv
.

In particular,

P({v, vmax} ∈ E |F∗
h) ≥ 1{Mv ≥ εSv}

∏

n≥1

(1 − (1 + εnβ)−1).

Since the series
∑

n≥1(1 + εnβ)−1 converges, the product qε =
∏

n≥1(1 − (1 +
εnβ)−1) is strictly positive, as asserted.

To show that the sum and the maximum of the fitnesses appearing in
Lemma 3 are of the same order, we critically rely on the assumption that the
fitnesses are heavy-tailed. In order to be applicable both for the case a ≥ 3 as
well as for a < 3, we provide a slightly more refined result, where we compare
the second largest value of iid heavy-tailed Pareto random variables to the sum.
For this purpose, we write max(2)

i≤m xi for the second largest value among real
numbers x1, . . . , xm.

Lemma 4 (Sum vs. Second-largest value for Pareto random variables).
Let {Xi}i≥1 be iid Pareto random variables with parameter γ < 1. Let Sm =∑

i≤m Xi and let M
(2)
m = max(2)

i≤m Xi. Then, {Sm/M
(2)
m }m≥1 is tight.

Mind that Lemma 4 implies readily that {Sm/maxi≤m Xi}m≥1 is tight as well.

Proof. First, by the stable limit theorem, the scaled sum m−1/γSm converges to a
stable distribution [8, Theorem XVII.5.3]. Second, by extremal value theory, the
scaled maximum m−1/γ maxi≤m Xi converges to a Fréchet distribution, whereas
the ratio maxi≤m Xi/M

(2)
m converges to 1 [7, Theorem 3.3.7, Example 4.1.11].

This yields tightness of Sm/M
(2)
m .

110 M. Heydenreich and C. Hirsch

Now, we prove Theorem 2 for a ≥ 3. The key simplification in the case a ≥ 3
is that for every h ≥ 0, the set of possible coalescence nodes grows so quickly
that the conditional probability of coalescence in step h+1 given the information
in Fh is bounded away from 0 uniformly in h ≥ 0.

Proof. (Proof of Theorem 2, a ≥ 3). To prove the result, we first assert that there
exists δ > 0 such that

P(Lh+1 = Rh+1 | Fh) ≥ δ

holds for every h ≥ loga(N) + loga(2). Once this assertion is shown, we obtain
that for x ≥ 2 loga(2),

P(HN ≥ 2 loga(N) + x) ≤ P(Lh 	= Rh for all h ≤ loga(N) + x/2)

≤ (1 − δ)
x/2−loga(2)�,

which decays exponentially fast in x.
To prove the asserted lower bound, we first introduce

C+
h = N(Lh,h) ∪ N(Rh,h) and C−

h = N(Lh,h) ∩ N(Rh,h) (2)

as the union and intersection of the out-neighborhoods of (Lh, h) and (Rh, h),
respectively. Then,

{Lh+1 = Rh+1} ⊃ {Lmax
h = Rmax

h } ∩ Ah,

where
Ah = {Lh+1 = Lmax

h } ∩ {Rh+1 = Rmax
h }.

Therefore, by Lemma 3, for every ε > 0,

P(Lh+1 = Rh+1 | Fh)

≥ E
[
1{ELR

h }P(Ah | F∗
h)

∣∣ Fh

]

≥ q2εP
(
{Lmax

h = Rmax
h } ∩

{
max
w∈C+

h

Fw ≥ ε
∑

w∈C+
h

Fw

} ∣∣∣ Fh

)
,

where ELR
h = {Lmax

h = Rmax
h }. Since the positions Lmax

h , Rmax
h of the maximal

fitnesses are independent of the value of the sum and the value of the maximum
of the relevant fitnesses, we arrive at

P(Lh+1 = Rh+1 | Fh) ≥ q2εP(Lmax
h = Rmax

h | Fh)P
({

max
w∈C+

h

Fw ≥ ε
∑

w∈C+
h

Fw

} ∣∣∣ Fh

)
.

By Lemma 4, the second probability is bounded below by 1/2 for sufficiently
small ε > 0. Hence, it remains to provide a lower bound for P(Lmax

h = Rmax
h | Fh).

We write Ph ∈ Z×{h+1} for the position of the maximal fitness in C+
h , i.e.,

FPh
= max

w∈C+
h

Fw.

A Spatial Small-World Graph Arising from Activity-Based Reinforcement 111

Then, Ph is uniformly distributed in C+
h , so that

P(Lmax
h = Rmax

h | Fh) = P(Ph ∈ C−
h | Fh) =

#C−
h

#C+
h

≥ #C−
h

4�ah� + 2
.

Finally, to derive a lower bound on #C−
h , Lemma 2 gives that, for every h ≥

loga(N) + loga(2),

|Lh − Rh| ≤ N +
2ah

a − 1
≤ N + ah ≤ 3

2
ah.

Therefore,

#C−
h ≥ 2�ah� − 3

2
ah ≥ 1

4
ah,

which implies the required lower bound.

3.3 Theorem2; a < 3

After having developed the intuition behind the proof of Theorem2 for a ≥ 3, we
now assume that a < 3. The arguments in this case are more involved since it may
happen that Lh and Rh are so far away that the set C−

h of possible coalescence
points from (2) becomes empty. We deal with this problem by establishing that
Lh and Rh both do not move substantially for a finite number of steps, which
guarantees that the set of possible coalescence points becomes non-empty again.

We start by showing that coalescence occurs with positive probability after
a small number of steps if initially Lh and Rh are not too far apart.

Lemma 5 (HN is small with positive probability). There exists k ≥ 1
such that

inf
h,N≥0

z: |z|≤4ah/(a−1)

P(Lh′ = Rh′ for some h′ ∈ [h, h + k − 1] |Lh − Rh = z) > 0.

Proof. First, if |z| ≤ ah, then #C−
h ≥ ah/2 for large h ≥ 0, so that arguing as

in Sect. 3.2 yields that

P(Lh+1 = Rh+1 |Lh − Rh = z) ≥ δ0

for a sufficiently small value of δ0 > 0.
Hence, we may assume that |z| > ah and introduce the events

Eh′ = {Lh′+1 = Rh′+1} ∪ {max{|Lh′+1 − Lh′ |, |Rh′+1 − Rh′ |} ≤ ε1a
h′}, (3)

where ε1 = (a − 1)/8. We assert that there exists δ > 0 such that for every
h′ ≥ h

P(Eh′ | Fh′) ≥ δ. (4)

112 M. Heydenreich and C. Hirsch

Before proving (4), we show how to conclude the proof of the lemma. First, set

h1 = min
{
h′ ≥ h : |z| + 2ε1

∑

h≤i≤h′−1

ai ≤ 1
2
ah′ }

.

In particular,

|z| ≥ ah1−1

2
− 2ε1

∑

h≤i≤h1−2

ai =
ah1−1

2
− 2ε1(ah1−1 − ah)

a − 1
≥ ah1−1

4
.

Then, |z| ≤ 4ah/(a − 1) implies that h1 − h − 1 ≤ loga(16/(a − 1)). Note that if
Eh′ ∩ {Lh′ 	= Rh′} occurs for every h′ ∈ [h, . . . , h1 − 1], then

|Dh1 | ≤
∣∣∣|Dh1 | − |z|

∣∣∣ + |z| ≤ 2ε1a
h1

a − 1
+

ah1

2
≤ ah1 ,

where in the second inequality, we insert the definition of h1 to bound |z|. Hence,
by the case considered at the beginning of the proof, the conditional probability
that Lh1+1 = Rh1+1 given that ∩h≤h′<h1Eh′ is bounded below by δ0. Taking
everything together, we arrive at the asserted positive lower bound

P

(
{Lh1+1 = Rh1+1} ∩

⋂

h≤h′<h1

Eh′

∣∣∣ Lh − Rh = z
)

≥ δ0δ
h1−h ≥ δ0δ

loga(16/(a−1)).

It remains to establish (4). To that end, we first set as before

Ah′ = {Lh′+1 = Lmax
h′ } ∩ {Rh′+1 = Rmax

h′ }.

Then, we let Ph′ = (ph′ , h′ + 1) and P
(2)
h′ = (p(2)h′ , h′ + 1) denote the positions of

the largest and the second largest fitness in the union set C+
h′ as defined in (2).

That is,
FPh′ = max

w∈C+
h′

Fw and F
P

(2)
h′

= max
w∈C+

h′

(2)Fw.

Now, define

E′
h′ =

{
max{|ph′ − Lh′ |, |p(2)h′ − Rh′ |} ≤ ε1a

h′}

as the event that the distances between ph′ and Lh′ , as well as between p
(2)
h′ and

Rh′ are at most ε1a
h′

. Then, we claim that

Eh′ ⊃ E′
h′ ∩ Ah′ .

Indeed, assume that E′
h′ occurs, so that from ε1 < 1 we obtain that p

(2)
h′ ∈ NRh′ .

In that case, if Ph′ is contained in the intersection set C−
h′ , then Lmax

h′ = Rmax
h′ .

Otherwise, ph′ = Lmax
h′ and p

(2)
h′ = Rmax

h′ , so that max{|Lmax
h′ −Lh′ |, |Rmax

h′ −Rh′ |} ≤
ε1a

h′
. In particular,

{Lmax
h′ = Rmax

h′ } ∪ {max{|Lmax
h′ − Lh′ |, |Rmax

h′ − Rh′ |} ≤ ε1a
h′}

A Spatial Small-World Graph Arising from Activity-Based Reinforcement 113

occurs. Hence, under Ah′ the previous line becomes the defining equation for
Eh′ as in (3).

Now, arguing as in the case a ≥ 3, we derive that for every ε > 0,

P(Eh′ | Fh) ≥ q2εP(E′
h′ | Fh)P

({
max
w∈C+

h

(2)Fw ≥ ε
∑

w∈C+
h

Fw

} ∣∣∣ Fh

)
.

Note that here, we need to consider the second largest value in C+
h since under

E′
h′ the positions Lmax

h′ and Rmax
h′ could be distinct. By Lemma 4, it therefore

suffices to derive a lower bound on P(E′
h′ | Fh).

Finally, since ph and p
(2)
h′ are uniform in C+

h′ , we obtain that for large h ≥ 0

P

(
max{|ph′ − Lh′ |, |p(2)h′ − Rh′ |} ≤ ε1a

h′ | Fh′
)

≥
(ε1a

h′

4ah′ + 2

)2

,

which is bounded away from 0, thereby completing the proof of (4).

Proof (Proof of Theorem 2, a < 3). First, using 1 ≤ 2/(a−1) for a < 3, Lemma 2
implies that for every h ≥ h0 = loga(N),

|Dh| ≤ N +
2ah

a − 1
≤ 4ah

a − 1
,

so that we can apply Lemma 5. With k ≥ 1 as in that lemma, we let

Gi = {Rh 	= Lh for every h ∈ [ik, i(k + 1) − 1]}

denote the event that we do not see coalescence in the interval [ik, i(k + 1) − 1]
and put G′

i = ∩i′≤iGi′ . In particular, under the event {HN ≥ 2 loga(N)+x}, the
event G′

i1
occurs for i1 = �(loga(N) + x/2)/k�. Hence, by the Markov property

at time (i1 − 1) and Lemma 5, we have a constant ε > 0 such that

P(G′
i1) ≤ E

[
P
(
Lh 	= Rh for every h ∈ [(i1 − 1)k, i1k − 1]

∣∣ D(i1−1)k

)
1{G′

i1−1}
]

≤ (1 − ε)P(G′
i1−1).

Hence, putting i0 =
loga(N)/k�, we conclude that

P(HN ≥ 2 loga(N) + x) ≤ (1 − ε)i1−i0 ,

which decays exponentially fast in x.

Acknowledgments. The authors thank all anonymous referees. We also thank
C. Leibold for interesting discussions on the neuro-scientific background of synaptic
plasticity and comments on an earlier version of the manuscript.

114 M. Heydenreich and C. Hirsch

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

2. Bengio, Y., Lee, D., Bornschein, J., Lin, Z.: Towards biologically plausible deep
learning. CoRR abs/1502.04156 (2015). http://arxiv.org/abs/1502.04156

3. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combina-
torica 24(1), 5–34 (2004)

4. Bonacich, P., Liggett, T.M.: Asymptotics of a matrix valued Markov chain arising
in sociology. Stoch. Process. Appl. 104(1), 155–171 (2003)

5. Couzinié, Y., Hirsch, C.: Infinite WARM graphs I. Weak reinforcement regime (in
preparation)

6. Delattre, S., Fournier, N., Hoffmann, M.: Hawkes processes on large networks. Ann.
Appl. Probab. 26(1), 216–261 (2016)

7. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events. Springer,
Berlin (1997). https://doi.org/10.1007/978-3-642-33483-2

8. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II,
2nd edn. Wiley, New York (1971)

9. Hirsch, C., Holmes, M., Kleptsyn, V.: Absence of WARM percolation in the very
strong reinforcement regime, preprint available at https://christian-hirsch.github.
io/publications.html

10. Van Der Hofstad, R., Holmes, M., Kuznetsov, A., Ruszel, W.: Strongly reinforced
Pólya urns with graph-based competition. Ann. Appl. Probab. 26(4), 2494–2539
(2016)

11. Holmes, M., Kleptsyn, V.: Infinite WARM graphs. Critical regime (in preparation)
12. Holmes, M., Kleptsyn, V.: Proof of the WARM whisker conjecture for neuronal

connections. Chaos 27(4), 043104 (2017)
13. Jacob, E., Mörters, P.: A spatial preferential attachment model with local clus-

tering. In: Bonato, A., Mitzenmacher, M., Pra�lat, P. (eds.) WAW 2013. LNCS,
vol. 8305, pp. 14–25. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03536-9 2

14. Kalisman, N., Silberberg, G., Markram, H.: The neocortical microcircuit as a tab-
ula rasa. Proc. Natl. Acad. Sci. 102(3), 880–885 (2005)

15. Liggett, T.M., Rolles, S.W.W.: An infinite stochastic model of social network for-
mation. Stoch. Process. Appl. 113(1), 65–80 (2004)

16. Montague, P.R., Dayan, P., Sejnowski, T.J.: A framework for mesencephalic
dopamine systems based on predictive Hebbian learning. J. Neurosci. 16(5), 1936–
1947 (1996)

17. Pemantle, R.: A survey of random processes with reinforcement. Probab. Surv. 4,
1–79 (2007)

18. Pemantle, R., Skyrms, B.: Network formation by reinforcement learning: the long
and medium run. Math. Soc. Sci. 48(3), 315–327 (2004)

19. Pittel, B.: On a random graph evolving by degrees. Adv. Math. 223(2), 619–671
(2010)

20. Skyrms, B., Pemantle, R.: A dynamic model of social network formation. Proc.
Natl. Acad. Sci. USA 97(16), 9340–9346 (2000)

21. Stanovich, K.E.: Matthew effects in reading: some consequences of individual dif-
ferences in the acquisition of literacy. J. Educ. 189(1–2), 23–55 (2009)

22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press, Cambridge (2018)

23. Zhu, T.: Nonlinear Pólya urn models and self-organizing processes. Ph.D. thesis,
University of Pennsylvania (2009)

http://arxiv.org/abs/1502.04156
https://doi.org/10.1007/978-3-642-33483-2
https://christian-hirsch.github.io/publications.html
https://christian-hirsch.github.io/publications.html
https://doi.org/10.1007/978-3-319-03536-9_2
https://doi.org/10.1007/978-3-319-03536-9_2

SimpleHypergraphs.jl—Novel Software
Framework for Modelling and Analysis

of Hypergraphs

Alessia Antelmi1, Gennaro Cordasco2, Bogumi�l Kamiński3, Pawe�l Pra�lat4,
Vittorio Scarano1, Carmine Spagnuolo1, and Przemyslaw Szufel3(B)

1 Dipartimento di Informatica, Università degli Studi di Salerno, Fisciano, Italy
{aantelmi,vitsca,cspagnuolo}@unisa.it

2 Dipartimento di Psicologia, Università degli Studi della Campania
“Luigi Vanvitelli”, Caserta, Italy

gennaro.cordasco@unicampania.it
3 SGH Warsaw School of Economics, Warsaw, Poland

{bkamins,pszufe}@sgh.waw.pl
4 Department of Mathematics, Ryerson University, Toronto, ON, Canada

pralat@ryerson.ca

Abstract. Hypergraphs are natural generalization of graphs in which
a single (hyper)edge can connect any number of vertices. As a result,
hypergraphs are suitable and useful to model many important networks
and processes. Typical applications are related to social data analysis
and include situations such as exchanging emails with several recipients,
reviewing products on social platforms, or analyzing security vulnera-
bilities of information networks. In many situations, using hypergraphs
instead of classical graphs allows us to better capture and analyze depen-
dencies within the network. In this paper, we propose a new library,
named SimpleHypergraphs.jl, designed for efficient hypegraph analy-
sis. The library exploits the Julia language flexibility and direct support
for distributed computing in order to bring a new quality for simulating
and analyzing processes represented as hypergraphs. In order to show
how the library can be used we study two case studies based on the Yelp
dataset. Results are promising and confirm the ability of hypergraphs to
provide more insight than standard graph-based approaches.

Keywords: Hypergraphs · Modelling hypergraphs · Software library ·
Julia programming language

1 Introduction

Many human-technology interaction situations generate data that can be viewed,
based on the type of interaction, as a self-organizing network. In these networks

The research is financed by NAWA—The Polish National Agency for Academic
Exchange.

c© Springer Nature Switzerland AG 2019
K. Avrachenkov et al. (Eds.): WAW 2019, LNCS 11631, pp. 115–129, 2019.
https://doi.org/10.1007/978-3-030-25070-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25070-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-25070-6_9

116 A. Antelmi et al.

(for example, the Yelp on-line social network) nodes not only contain some use-
ful information (such as user’s profile, photos, reviews) but are also internally
connected to other nodes (relations based on similar user’s behaviour, similar
taste, age, geographic location). Indeed, the proliferation of cellular usage has
given rise to massive amounts of data that, through data mining and analyt-
ics, promises to reveal a wealth of information on how users interact with one
another and shape the preferences of others.

Hypergraphs are of particular interest in the field of knowledge discovery
where most problems currently modelled as graphs would be more accurately
modelled as hypergraphs. Indeed, hypergraphs are natural generalization of
graphs where one edge consists of several vertices instead of just a pair of
vertices. This feature makes the hypergraphs particularly useful for modeling
real world systems in which many references occur simultaneously. Examples
include sending emails to many people, co-authorships of scientific publications,
or several parties participating in a crypto-currency transaction. All of these
complex real-world systems can be efficiently modelled with hypergraphs. More-
over, hypergraphs can also be extremely helpful, in computational social science,
for the development of computer simulations [18,19]. Indeed, hypergraphs can
be used to model any complex interaction among a group of simulated agents.
Despite this fact, the theory and tools are not sufficiently developed to allow
most problems to be tackled directly within this context.

The goal of this paper is to introduce a new library designed for effi-
cient hypergraph analysis in the Julia language named SimpleHypergraphs.jl.
The library makes an excessive use and is built on top of LightGraphs.jl,
which is an efficient high-performance engine for graph analytics. Combined
with language flexibility and direct support for distributed computing, the
SimpleHypergraphs.jl library can bring a new quality for simulating and ana-
lyzing processes represented as hypergraphs.

The paper is structured as follows. In Sect. 2, we start with a review of
the existing frameworks dealing with hypergraphs, describe the motivation and
introduce the SimpleHypergraphs.jl library and its functionality. In Sect. 3,
a use case with analysis of Yelp reviews is presented with the aim to show a
real-life application of the developed library. Finally, we sum up the paper in the
Conclusions section.

2 Modelling and Hypergraphs with SimpleHypergraphs.jl

In this section we start by introducing motivation for the hypegraph library and
next we move towards describing its functionality.

2.1 Motivation

Despite the fact that hypergraphs are natural representations of many real-world
systems, there are currently very few software frameworks that are suitable for
modelling and mining hypergraphs. In this Section, we give a brief overview of
several software libraries, focusing on their code availability and capability in
modelling and analyzing hypergraphs.

SimpleHypergraphs.jl—Novel Software Framework 117

– Chapel HyperGraph Library (CHGL) [3] that has been developed by the
Pacific Northwest National Laboratory since 2018 and is released under MIT
license. CHGL is a library for the emerging parallel language Chapel. The
library provides the AdjListHyperGraph module that allows to store hyper-
graphs on shared and distributed memory. The library is not well documented
and does not provide an easy mechanism for the 2-section and bipartite view
analyses. However, it is worth mentioning for its functionality for parallel and
distributed computing.

– HyperX [6] is a scalable framework for processing hypergraphs and learn-
ing algorithm built on top of Apache Spark. This library supports the same
design model of GraphX, the Apache Spark API for graphs and graph-parallel
computation written in Scala language. An interesting feature of this library
is that it provides native support for hypergraph elaboration. The standard
approach uses the bipartite or the 2-section representation of hypergraphs
and exploits GraphX library, while HyperX directly processes hypergraph
data obtaining significant speedup compared to the standard approach.

– Pygraph [11] is a pure Python library for graph manipulation released under
the MIT license. It has almost all basic functionalities on graphs implemented
but also supports hypergraphs by exposing the class hypergraph. This library
does not provide any specific optimization and functionalities for hypergraphs.

– Multihypergraph [9] is a Python package for graphs released under GPL
license. The library emphasizes the mathematical understanding of graphs
rather than the algorithmic efficiency and provides support for hyper-edges,
multi-edges, and looped-edges. This library provides only graph model mem-
ory definition and isomorphism functionalities without implementing any
other functionalities and algorithms for graphs and hypergraphs.

– HyperNetX [5] is a Python preliminary library released in 2018 under the
Battelle Memorial Institute licence1. The library generalizes traditional graph
metrics (such as vertex and edge degrees, diameter, distance, etc.) to hyper-
graphs, and provides good documentation and tutorials. The library supports
the bipartite representation of a hypergraph, along with the possibility to load
hypergraphs from their bipartite view. Furthermore, it provides some simple
visualization functionalities for hypergraph.

– Halp [2] is a Python software package providing both a directed and an undi-
rected hypergraph implementation as well as several important and classical
algorithms. The library is developed by Murali’s Research Group at Virginia
Tech released under GPL license. The library provides several statistics on
hypergraphs and model transformations in graphs supported by the Net-
workX Python library. In addition, several algorithms for hypergraphs, such
as k-shortest-hyperpaths, random walk, directed paths, are implemented.

– HyperGraphLib [4] is a C++ implementation of hypergraphs that exploits
the Boost Library, which also defines the library license. This library pro-
vides basic functionalities for hypergraphs and implements some simple met-
rics. Moreover, it also provides some isomorphisms functionalities and path-

1 https://github.com/pnnl/HyperNetX/blob/master/LICENSE.rst.

https://github.com/pnnl/HyperNetX/blob/master/LICENSE.rst

118 A. Antelmi et al.

finding algorithms. However, it does not implement any kind of hypergraph
representations (such as bipartite or 2-section) nor software integration with
other graph libraries.

– Iper [7] is a JavaScript library for hypergraphs released under MIT license.
The library provides the definitions of hypergraphs and allows the user to
define meta information for vertices. However, it does not include any kind of
hypergraph transformation/representations and integration with other graph
libraries for classical statistics and algorithms.

– NetworkR [10] is an R package with a set of functions for analyzing social
and economic networks including hypergraphs. It includes analyses such as
degree distribution, diameter, and density of the network, as well as micro-
scopic level analysis such as power, influence, and centrality of individual
nodes. The library does not provide support for meta information on vertices
and hyperedges and provides only hypergraphs projection into graphs.

– Gspbox [1] is an easy to use Matlab toolbox that performs a wide variety of
operations on a graph. It is based on spectral graph theory and many of the
implemented features can scale to very large graphs. Gspbox supports hyper-
graphs modeling, including ability for hyperedges to have weights assigned,
and for vertices to have coordinates in the space. The hypergraph manip-
ulation is obtained by representing the model as a graph. For this reason,
despite the fact that all graph functionalities are available, the library does
not provide any kind of specific solutions or optimization for hypergraphs.

Overall, all the considered libraries settles a compromise between effi-
ciency (which characterizes low level languages, such as C/C++) and easy-of-
use/expressiveness (which characterized interpreted and/or scripting languages
like Python and R).

In this work, we are proposing a library, which exploiting the Julia language
ensures both efficiency and expressiveness. Julia is a new programming lan-
guage developed at MIT [16]. The language uses a syntax similar to popular and
easy-to-use scientific computing languages like Python or R. This means that
experience in those languages can be directly applied in Julia by computational
scientists [21,29]. Moreover, a distinguishing feature of Julia is that while keep-
ing mathematics-oriented syntax it makes it possible to compile the code to a
binary form. In result it means that the observed performance of Julia programs
is very similar to that of C++, however with around 4 times less lines of code.

The library SimpleHypergraphs.jl is available on a GitHub public repos-
itory2, where the library documentation is also provided3. Additionally, sev-
eral tutorials are available in the form of Jupyter Notebooks4. This Section
describes the library design and motivations behind its implementation. Fur-
thermore, library functionalities of the 1.0 version will be discussed.

2 https://github.com/pszufe/SimpleHypergraphs.jl.
3 https://pszufe.github.io/SimpleHypergraphs.jl/latest/reference/.
4 https://tinyurl.com/y5btobdk.

https://github.com/pszufe/SimpleHypergraphs.jl
https://pszufe.github.io/SimpleHypergraphs.jl/latest/reference/
https://tinyurl.com/y5btobdk

SimpleHypergraphs.jl—Novel Software Framework 119

2.2 Definitions and Notation

Hypergraphs are natural generalization of well-known and widely used graphs.
Formally, a hypergraph is an ordered pair H = (V,E) where V is a set of vertices
and E is a set of edges. Each edge is a non-empty subset of vertices; that is,
E ⊆ 2V \ {∅}, where 2V is the power set of V . We will use n = |V | and m = |E|
for the size of the vertex set and, respectively, the edge set. Indeed, hypergraphs
are generalization of graphs in which each edge is a two element subset of V ;
that is, hypergraph G = (V,E) is a graph if E ⊆ (

V
2

) ⊆ 2V \ {∅}.

2.3 Library Design and Functionalities

SimpleHypergraphs.jl represents a hypergraph H = (V,E) as an n×k matrix,
where n is the number of vertices and k is the number of hyperedges. In other
words, each row of the matrix is associated with a vertex and indicates the hyper-
edges the vertex belongs to. The proposed library stores in-memory a hypergraph
using its matrix representation. Vertices and hyperedges are uniquely identi-
fied by progressive integer ids, corresponding to rows (1, . . . , n) and columns
(1, . . . , k), respectively. Each position (i, j) of the matrix denotes the weight of
vertex i within the hyperedge j. In addition, the library provides several con-
structors for defining meta information type and enables to attach meta-data
values of arbitrary type to both vertices and hyperedges.

The library APIs are designed in similar fashion of the popular library for
graph manipulation LightGraphs.jl, this provide to the programmers a familiar
environment.

Hypergraph Constructors. Based on the previous consideration, the Julia
hypergraph object is defined as:

Hypergraph{T, V, E} <: AbstractMatrix {Union{T, Nothing }}

where T represents the type of the weights stored in the structure while V and
E are the type of values stored in the vertices and edges of the hypergraph,
respectively.

Functions. SimpleHypergraphs.jl provides several accessing and manipulat-
ing functions:

– add vertex!, adds a vertex to a given hypergraph H. Optionally, the vertex
can be added to existing hyperedges. Additionally, a value can be stored with
the vertex using the vertex meta keyword parameter.

– set vertex meta!, sets a new meta value new value for vertex id in H.
– get vertex meta, returns a meta value stored at vertex id in H.
– get vertices, returns vertices from a H for a given hyperedge heid.

The same functionalities are provided for the hyperedges.

Hypergraph Transformations. The library provides two hypergraph trans-
formations into the corresponding graph representation:

120 A. Antelmi et al.

(a) G Bipartite View of H (b) G 2-section View of H

Fig. 1. (H)ypergraph transformations.

1. BipartiteView is a bipartite representation of a hypergraph H. As described
in Bretto [17], this representation is an incidence graph of hypergraph H =
(V,E); that is, a bipartite graph IG(H) with vertex set S = V ∪E, and where
v ∈ V and e ∈ E are adjacent if and only if v ∈ e. Figure 1a (on the left)
depicts a simple example of bipartite view.

2. TwoSectionView is a 2-section representation of a hypergraph H. As
described in Bretto [17], this representation of a hypergraph H = (V,E),
denoted by [H]2, is a graph whose vertices are the vertices of H and where
two distinct vertices form an edge if and only if they are in the same hyper-
edge of H. As a result, each hyperedge from H occurs as a complete graph
in G. The weight of an edge corresponds to the number of hyperedges that
contain both the endpoints of the edge.
Figure 1b (on the right) shows a simple example of the 2-section view.

Both Views are instances of the AbstractGraph graph object defined by
the LightGraphs.jl library [8]. When the view is materialized—according to
LightGraphs.jl specifics—the generated graph does not include any meta infor-
mation.

Hypergraph I/O. The library currently offers a basic mechanism to load/save a
hypergraph from/to a stream. Given hypergraph H is stored using the following
format. The first line consists of n and k, the number of vertices and, respectively,
the number of edges of H. The following k rows describe the actual structure of
H. Each row represents one hyperedge as a list of all vertex-weight pairs within
that hyperedge.

2.4 Hypergraph Modularity

One of the most important properties of complex networks is their community
structure, that is, the organization of vertices in clusters, with many edges joining
vertices of the same cluster and comparatively few edges joining vertices of dif-
ferent clusters. In social networks communities may represent groups by interest,
in citation networks they correspond to related papers, in the Web communities
are formed by pages on related topics, etc. Being able to identify communities in
a network could help us to exploit this network more effectively. In our example,
clusters in Yelp hypergraph may help to find similar restaurants, discovering
users with similar interests that is important for targeted advertisement.

SimpleHypergraphs.jl—Novel Software Framework 121

The key ingredient for many clustering algorithms is modularity, which is at
the same time a global criterion to define communities, a quality function of com-
munity detection algorithms, and a way to measure the presence of community
structure in a network. Modularity was introduced by Newman and Girvan [27]
and it is based on the comparison between the actual density of edges inside a
community and the density one would expect to have if the vertices of the graph
were attached at random, regardless of community structure. The modularity
function was recently generalized to hypergraphs [24] but no fast, heuristic algo-
rithms are developed yet for this hypergraph counterpart. Our goal is to propose
a number of potential solutions in the forthcoming paper and in this paper we
present applicability of this method that has been already implemented in the
SimpleHypergraphs.jl library.

3 Use Case—Yelp Dataset

In this section, we present a practical application of the SimpleHypergraphs.jl
library. We especially focus on and analyze Yelp dataset consisting of reviews of
restaurants. A natural representation of such data is a hypergraph in which
vertices are associated with restaurants and hyperedges are associated with
reviewers who reviewed various restaurants. The topology of this hypergraph
allows us to find clusters of restaurants that are commonly reviewed together.
As hypergraph clustering is an example of an unsupervised learning technique,
our goal is to learn if such clusters are related to some natural characteristics
of underlying restaurants. Such analysis allows us to better understand which
factors (ground-truth) influence the changes that two restaurants are reviewed
together. To that end we propose a methodology to measure and then to com-
pare the results of hypergraph clustering against various possible ground-truth
variables (here the main challenge is to develop a measure comparable across
different ground truths). Since the Yelp dataset is used only as an example,
the proposed approach can be used to identify ground-truths in other datasets
that are represented as a hypergraph. As side effect of this use case, we also
show that the hypegraph based approach conveys more information about the
ground-truth properties of a hypergraph than a standard graph analysis app-
roach. In particular, we compare the results obtained for hypergraphs with the
corresponding results for 2-section, and show that hypergraph clusters provide
uniformly more information than their graph counterpart. Additionally, when
analyzing the data we consider different sub-hypegraphs, namely, we examine
hypergraphs containing only reports with a given number of stars, from 1 to 5.
This approach sheds some light on how review linkages are formed; in particular,
we test how the mechanism behind those linkages differs across different review
classes.

An interesting property that is worth to investigate, typical to many such
networks, is the community structure, that is, the division of networks into
groups of vertices that are similar among themselves but dissimilar from the
rest of the network. The capability to detect the partitioning of a network into
communities can give important insights into the organization and behaviour of
the system that the network models.

122 A. Antelmi et al.

Table 1. Yelp entities contained in the dataset.

Data Instances Description

Business 192,609 Business data including location, attributes, and categories

User 1,637,138 User data including the user’s friend mapping and all the
metadata associated with the user

Review 6,685,900 Full review text including the user id that wrote the review
and the business id the review is written for

Picture 200,000 Photo data including caption and classification (one of
“food”, “drink”, “menu”, “inside” or “outside”)

Tip 1,223,094 Tips written by users on businesses. Tips are shorter than
reviews and tend to convey quick suggestions

Check-in 192,609 Aggregated check-ins over time for each business

3.1 The Yelp Open Dataset

Yelp is an online platform where customers can share their experiences about
local businesses by posting reviews, tips, photos, and videos. It allows businesses
and customers to engage and transact [12]. Every year, the Yelp Inc. Company
releases part of their data as an open dataset to grant the scientific commu-
nity to conduct research and analysis on them. Some interesting articles that
use the Yelp dataset for their analysis can be found in [22,23,25,26]. As a use
case, we analyzed the 2019 Yelp Challenge dataset [13], containing information
about businesses, reviews, and users. Table 1 describes all the accessible dataset
entities. A more detailed description can be found on the official page [14].

Figure 3 (on the left) presents business categories distribution, where a cate-
gory is a label describing the typology of the business such as Bars or Shopping
along with the number of reviews associated with each category. It highlights
the category distribution evaluated over all businesses. As clearly visible from
the plot, the most common business typology is Restaurant. For this reason, we
focused our analysis on this business subgroup. Figure 3 (on the right) shows
the category distribution evaluated only within the Restaurant macro-category.
Both Figures show top-20 most common categories.

3.2 The Yelp Hypergraph

We model Yelp dataset using a hypergraph H = (V,E), where V represents
businesses and E represents users of Yelp. In particular, each hyperedge repre-
senting user u contains businesses u has written at least one review for. Figure 2
shows an example hypergraph representing a Yelp data subset. As shown in the
figure, the hypergraph H is defined by four businesses (V = {b1, b2, b3, b4}) and
three users (E = {u1, u2, u3}). For instance, hyperedge u1 connects businesses
b1, b2, and b4, as the corresponding user have written reviews for each of the
listed business.

SimpleHypergraphs.jl—Novel Software Framework 123

Fig. 2. Yelp Hypergraph defined by the users reviews.

Since processing the entire Yelp dataset is a heavy computationally task, for
our purpose we have decided to explore only a subset of it. We have modelled
the Yelp hypergraph according to the following building strategies:

1. yelpdataset1 is a random selection of reviews of specific sizes. It is worth
mentioning that such selection of reviews defines also the number of businesses
involved. Indeed, our analysis are executed on connected hypergraphs that
are obtained by removing isolated vertices and small components.

2. yelpdataset2 is a subset of those businesses that belong to the category
“restaurant” (note that some businesses have more than one category; in
such cases we select one category from its categories set according to the
frequencies (highest) in the whole dataset).

Arts
&

En
ter

ta
inm

en
t

Hom
e &

Gar
de

n
Pi

zz
a

Hair
Sa

lon
s

Fa
st

Fo
od

Coff
ee

&
Te

a

Sa
nd

wich
es

Fa
sh

ion

Acti
ve

Li
fe

Ev
en

t Pl
an

nin
g &

Se
rv
ice

s
Bar

s

Nigh
tli

fe

Aut
om

ot
ive

Lo
ca

l S
erv

ice
s

Hea
lth

&
M
ed

ica
l

Bea
ut
y
&

Sp
as

Hom
e Se

rv
ice

s
Fo

od

Sh
op

pin
g

Res
ta
ur

an
ts

0

20,000

40,000

60,000

|B
u
si
n
es
se
s|

0

1,000,000

2,000,000

3,000,000

4,000,000

| R
ev

iew
s |

Businesses
Reviews

Caj
un

-C
reo

le

Haw
aii

an

Po
rtu

gu
es
e

La
tin

Ameri
ca

n
Gree

k

Car
ibb

ea
n

M
idd

leE
as
ter

n

Fr
en

ch

Kor
ea

n

Viet
na

mes
e
Tha

i

Can
ad

ian
(N

ew
)

Asia
nF

us
ion

In
dia

n

M
ed

ite
rra

ne
an

Ameri
ca

n(
New

)

Ita
lia

n

Chin
es
e

M
ex

ica
n

Ameri
ca

n(
Tr

ad
iti

on
al)

0

2,000

4,000

6,000

8,000

|R
es
ta
u
ra

n
ts
|

0

200,000

400,000

600,000

800,000

|R
ev

iew
s|

Restaurants
Reviews

Fig. 3. Businesses (left) and Restaurants (right) distribution and number of reviews
associated with each category.

3.3 Results

We are interested in the following two research questions. First of all, our goal
was to investigate whether modelling the Yelp dataset with hypergraphs gives
qualitatively more information than looking at the corresponding 2-section graph

124 A. Antelmi et al.

representation. Then we compared the information provided by the three hyper-
graphs consisting of positive, neutral and negative reviews. In this case, the
research question is: are the three hypergraphs similar or different? In order to
answer the two questions, we set up two experiments explained below.

Experiment I: “Forecasting stars”. This experiment tries to forecast the
number of stars of a given business v, based on the information available in
the local neighbourhood of v. Two different strategies have been developed,
one is based on the information provided by hypergraph H defined above, and
one is based on the information provided by the weighted 2-section of the same
hypergraph. Here, the weight of an edge (u, v) corresponds to the number of users
that reviewed both u and v, that is, the number of hyperedges that contain both
u and v.

For the first strategy (on hypergraph H), for each business u, we first compute
the average number of stars for all hyperedges containing u; in each hyperedge
e, the average is computed excluding u. This corresponds to the typical rating
given by the user associated with e. Then, the forecast for the number of stars
of u is obtained as the average over the values computed at the previous step.
In other words, the forecast of the number of stars of u is the average over the
averages in each hyperedge involving u. Formally,

s′
i(u) =

1
|E(u)|

∑

e∈E(u)

⎛

⎝ 1
|e| − 1

∑

v∈e,v �=u

s(v)

⎞

⎠ ,

where s(v) denotes the number of stars associated to v, E(v) denotes the set
of hyperedges that contains v, and s′

i(u) denotes the forecasted value for u for
strategy i.

The second strategy exploits the weighted 2-section graph. In this case, the
forecast of the number of stars of u is the weighted average over the neighborhood
of u. Formally,

s′
2(u) =

∑

e=(u,v)∈E

s(v)w(e)

∑

e=(u,v)∈E

w(e)
,

where w(e) denotes the weight of edge e.
In order to compare the two strategies, we computed their average error as

follows:

erri =

∑

u∈V

|s(u) − s′
i(u)|

|V | .

We performed our experiment on several instances of yelpdataset1, varying
the number of reviews used. The left side of Fig. 4 depicts the obtained results
for stars’ forecast experiment. The error value err2 using the weighted 2-section
graph is always greater than the error value err1 obtained for the hypergraph
representation.

SimpleHypergraphs.jl—Novel Software Framework 125

2.5 · 105 5 · 105 7.5 · 105 1 · 106
0

0.2

0.4

0.6

0.8

1

|Reviews|

err

Graphs
Hypergraphs

Fig. 4. Stars’ forecast varying the dimension of the reviews set on yelpdataset1.

We also experimented with forecasting on yelpdataset2, obtaining similar
results; the error for graphs is always close to 0.6 while the error for hypergraphs
is always close to 0.5. Both the results are promising since the average number
of stars obtained by businesses are around 0.5 and so it is important to be
able to accurately predict low rated instances. Our experiment shows that the
information provided by the hypergraph is more accurate than the information
provided by the corresponding weighted 2-section.

Experiment II: Positive, Neutral, and Negative Reviews. The second
experiment examines the amount of information given by different kind of
reviews, depending on the number of stars associated to them. We used yelp-
dataset2 but due to the performance issues, we restricted the set of businesses
to restaurants category, as described in Sect. 3.2. Five hypergraphs were built
after partitioning the reviews into five categories: 1 stars, 2 stars, . . . , 5 stars.

In the dataset we have 342,044 1-star reviews, 281,307 2-star reviews, 402,053
3-star reviews, 791,068 4-star reviews and 1,188,558 5-star reviews. Hence, we
decided to build five hypergraphs, one for each set of reviews. Henceforth, for
i = 1, 2, . . . , 5, we will denote by Hi, the hypergraph generated using the set of
reviews having i stars and by Gi the corresponding 2-section view graph.

Table 2. Graphs statistics.

Stars Hi (|V |; |E|) Gi (|V |; |E|) Gi modularity Gi triangles

1 (29479; 244671) (29479; 240412) 0.6210 1,158,341

2 (28055; 173140) (28055; 484527) 0.7173 6,491,497

3 (30369; 177792) (30369; 2636712) 0.6616 289,584,451

4 (32987; 301578) (32987; 4384044) 0.6857 404,709,664

5 (32558; 590320) (32558; 2187473) 0.6657 104,128,714

126 A. Antelmi et al.

Table 3. Hypergraph modularities for various number of stars and various ground
truth based partitioning conditioned on properties of restaurants.

Stars Hi (|V |; |E|) City State Alcohol Noise level Take Out Category

1 (29479; 244671) 0.8833 0.9562 0.8166 0.8104 0.8176 0.8163

2 (28055; 173140) 0.8582 0.9462 0.7744 0.7651 0.7731 0.7702

3 (30369; 177792) 0.8132 0.9226 0.7075 0.6940 0.6966 0.6965

4 (32987; 301578) 0.7812 0.9081 0.6573 0.6385 0.6419 0.6400

5 (32558; 590320) 0.8027 0.9145 0.6963 0.6797 0.6894 0.6841

ALL (35856; 950488) 0.7500 0.8985 0.6162 0.5919 0.6013 0.5967

First, we computed some statistics on the five hypergraphs and their corre-
sponding 2-section views. The collected information can be found in Table 2. This
preliminary analysis shows that the five hypergraphs/graphs are quite different.
For instance, for the 2-section graphs, the number of edges, and the number of
triangles exhibit a “bell-shaped” trend as a function of the number of stars. As a
result, we shift our attention to their ability to detect the community structure,
that is, the division of the vertex set into groups of restaurants that are similar
among themselves but dissimilar from the rest of the network. In order to eval-
uate this feature, we decided to run some community detection algorithms on
each graph/hypergraph. We then compared the obtained results with a ground
truth restaurant partitioning, based on the “type of cuisine” provided by the
system. This ground truth partitioning is composed of 55 categories of which
the largest (American Traditional) comprises 7,107 restaurants.

The Table 3 contains modularity values for various partitionings of the hype-
graph. In order to calculate modularities we used approach presented in [24] that
we have implemented as the modularity function in the SimpleHypergraphs.jl
library. One can see that the modularity is strongest when we uses city or state
to partition the hypergraph. This means that people doing reviews usually use
restaurants within the same city and if restaurants in different cities are reviewed
by a single person they are usually in the same state. It can be noted that reviews
with one star have the strongest modularity values across all partitionings. This
probably means that there is a group of people who have a stronger tendency to
submit negative scores on the base of some ground-truth property of a restaurant.

Several community detection algorithms have been proposed in the literature.
A review of the various methods available can be found, for example, in [15,20].
For graphs, we decided to opt for a label propagation (LP) strategy proposed
by Raghavan et al. [28]. This strategy can be summarized as follows: each node
is initially given a unique label (initialization); at each iteration, each node is
updated by choosing the label which is the most frequent among its neighbours
(propagation rule)—if multiple choices are possible (as, for example, at the very
beginning), one among the candidate labels is picked randomly. The algorithm
terminates at the first iteration that leaves the label configuration unchanged

SimpleHypergraphs.jl—Novel Software Framework 127

or after the predefined number of iterations (termination criteria). We exploited
the LP implementation provided by the Julia LightGraphs library [8].

For hypergraphs, we implemented an ad-hoc label propagation strategy which
generalizes the algorithm in [28] for hypergraphs. The proposed algorithm shares
the initialization phase as well as the termination criteria with the standard label
propagation algorithm. On the other hand the propagation rule is, in this case,
composed of two phases: hyperedge labelling and vertex labelling. During the
hyperedge labeling phase, labels of hyperedges are updated according to the
most frequent label among the vertices that belong to the edge. Then, during
the vertex labeling phase, label of each vertex is updated by choosing the label
that is the most frequent among the hyperedges it belongs to.

Both algorithms have been executed setting the maximum number of itera-
tions to 100. We compared the partitions obtained running the label propagation
strategies described above with the ground truth partition in order to learn how
much they are related. Several measures to evaluate the correlation between
the two partitions have been borrowed from information theory. In particular,
by considering a partition as a probability distribution, the Normalized Mutual
Information (NMI) is often used to measure their correlation. Several variants
of the NMI have been defined (see, for example, [30] for a detailed discussion).
In this paper we use the sum variant which is defined as follows:

NMI(X,Y) =
I(X,Y)

H(X) + H(Y)
, (1)

where I(X,Y) denotes the Mutual Information (that is, the shared information
between the two distributions X and Y) and H(X) denotes the Shannon Entropy
(that is, the information contained in the distribution) of X. NMI enjoys several
interesting properties: namely it is a metric and lies within a fixed range [0, 1].
Specifically it equals 1 if the partitions are identical whereas it has an expected
value of 0 if the two partitions are independent.

1 2 3 4 5
0

0.1

0.2

Stars

NMI

Graphs
Hypergraphs

Fig. 5. Then NMI between the ground truth partition and the 10 partitions obtained
running the label propagation algorithm on the five hypergraphs and on the corre-
sponding 2-section views.

128 A. Antelmi et al.

Results appear in Fig. 5. Although the correlation in general is not very high
(the best result is 0.23 for H5), the figure provides two interesting points. First, in
all the five considered cases, the quality of partitioning provided by hypergraphs
is always better than that provided by the corresponding 2-section view graph.
Moreover, also in this case, the results appear in the form of an “inverted bell
shape” (the best results in this case are given by the two external values). In
a sense, very good as well as very bad reviews are much better able to identify
restaurants genre.

4 Conclusion

In this work we have presented a novel library for the manipulation and analy-
sis of hypergraph structures. Hypergraphs have been shown to be much better
than standard graphs to model many natural phenomena, such as collaborative
activities, which involves group based interactions.

The library, named SimpleHypergraphs.jl, provides Hypergraph views
built exploiting the popular package LightGraphs.jl a Julia library for graphs
manipulation. Several functionalities for the I/O, the manipulation and the
transformation of hypergraphs have already been developed and are available
on a public GitHub repository. In addition, the library enables the user defining
meta information type as well as attaching meta-data values of arbitrary type
to both vertices and hyperedges. This approach enables for an efficient analysis
of structural properties of the network, combined to the possibility to perform
semantic analysis based on the attached meta-data. The Yelp dataset case stud-
ies show that it scales well when analyzing thousands of nodes connected by
millions of edges. We plan to expand the library by developing novel functional-
ities and a visualization engine which will enable the exploration of the hyper-
graph networks as well as of the enclosed meta-information. We have presented
also a case study based on the Yelp dataset showing some of the functionalities
available on SimpleHypergraphs.jl and, at the same time, that hypergraph
networks convey much information with respect to their corresponding graph
representation.

References

1. GSPBox, MATLAB (2019). https://github.com/epfl-lts2/gspbox
2. HALP, Python (2019). https://github.com/Murali-group/halp
3. HyperGaph, Chapel (2019). https://github.com/pnnl/chgl (2019)
4. HyperGraphLib, C++ (2019). https://github.com/alex-87/HyperGraphLib
5. HyperNetX, Python (2019). https://github.com/pnnl/HyperNetX
6. HyperX, Scala (2019). https://github.com/jinhuang/hyperx
7. IPER, JavaScript (2019). https://github.com/fibo/iper
8. LightGraphs.jl, Julia (2019). https://github.com/JuliaGraphs/LightGraphs.jl
9. Multihypergraph, Python (2019). https://github.com/vaibhavkarve/multihyperg

raph
10. networkR, R (2019). https://github.com/O1sims/networkR
11. PyGraph, Python (2019). https://github.com/jciskey/pygraph
12. Yelp (2019). https://www.reuters.com/finance/stocks/company-profile/YELP.N
13. Yelp-dataset (2019). https://www.yelp.com/dataset/challenge

https://github.com/epfl-lts2/gspbox
https://github.com/Murali-group/halp
https://github.com/pnnl/chgl
https://github.com/alex-87/HyperGraphLib
https://github.com/pnnl/HyperNetX
https://github.com/jinhuang/hyperx
https://github.com/fibo/iper
https://github.com/JuliaGraphs/LightGraphs.jl
https://github.com/vaibhavkarve/multihypergraph
https://github.com/vaibhavkarve/multihypergraph
https://github.com/O1sims/networkR
https://github.com/jciskey/pygraph
https://www.reuters.com/finance/stocks/company-profile/YELP.N
https://www.yelp.com/dataset/challenge

SimpleHypergraphs.jl—Novel Software Framework 129

14. Yelp-dataset-docs (2019). https://www.yelp.com/dataset/documentation/main
15. Antelmi, A., Cordasco, G., Spagnuolo, C., Vicidomini, L.: On evaluating graph

partitioning algorithms for distributed agent based models on networks. In: Hunold,
S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 367–378. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-27308-2 30

16. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to
numerical computing. SIAM Rev. 59(1), 65–98 (2017)

17. Bretto, A.: Hypergraph Theory: An Introduction. Springer, Cham (2013). https://
doi.org/10.1007/978-3-319-00080-0

18. Cordasco, G., Spagnuolo, C., Scarano, V.: Toward the new version of D-MASON:
efficiency, effectiveness and correctness in parallel and distributed agent-based sim-
ulations. In: 2016 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pp. 1803–1812 (2016)

19. Cordasco, G., De Chiara, R., Raia, F., Scarano, V., Spagnuolo, C., Vicidomini, L.:
Designing computational steering facilities for distributed agent based simulations.
In: Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation, pp. 385–390 (2013)

20. Danon, L., Dı́az-guilera, A., Duch, J.: Comparing community structure identifica-
tion. J. Stat. Mech. Theory Exp. (2005)

21. Edelman, A.: Julia: a fresh approach to technical computing and data processing.
Technical report, Massachusetts Institute of Technology, Cambridge (2019)

22. Gulati, A., Eirinaki, M.: Influence propagation for social graph-based recommen-
dations. In: 2018 IEEE International Conference on Big Data (Big Data), pp.
2180–2189 (2018)

23. Ji, Z., Pi, H., Wei, W., Xiong, B., Woźniak, M., Damasevicius, R.: Recommendation
based on review texts and social communities: a hybrid model. IEEE Access 7,
40416–40427 (2019)

24. Kaminski, B., Poulin, V., Pralat, P., Szufel, P., Theberge, F.: Clustering via hyper-
graph modularity. arXiv preprint arXiv:1810.04816 (2018)

25. Li, R., Jiang, J.Y., Ju, C.J.T., Wang, W.: CORALS: who are my potential new
customers? Tapping into the wisdom of customers’ decisions. In: Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining, WSDM
2019, pp. 69–77 (2019)

26. Lu, X., Qu, J., Jiang, Y., Zhao, Y.: Should i invest it?: predicting future success
of yelp restaurants. In: Proceedings of the Practice and Experience on Advanced
Research Computing, PEARC 2018, pp. 64:1–64:6 (2018)

27. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

28. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E Stat. Nonlinear Soft
Matter Phys. 76 (2007)

29. Regier, J., et al.: Cataloging the visible universe through Bayesian inference in
Julia at Petascale. J. Parallel Distrib. Comput. (2019)

30. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11, 2837–2854 (2010)

https://www.yelp.com/dataset/documentation/main
https://doi.org/10.1007/978-3-319-27308-2_30
https://doi.org/10.1007/978-3-319-00080-0
https://doi.org/10.1007/978-3-319-00080-0
http://arxiv.org/abs/1810.04816

Author Index

Antelmi, Alessia 115
Avrachenkov, Konstantin 30
Aynulin, Rinat 16

Bläsius, Thomas 87

Cordasco, Gennaro 115

Davidson, A. 57
Dreveton, Maximilien 30
Duffy, Christopher 44

Fischbeck, Philipp 87
Friedrich, Tobias 87

Ganesh, A. 57

Heydenreich, Markus 102
Hirsch, Christian 102

Janssen, Jeannette 44

Kamiński, Bogumił 115

Parsonage, Eric 71
Prałat, Paweł 115
Prokhorenkova, Liudmila 1

Roughan, Matthew 71

Scarano, Vittorio 115
Schirneck, Martin 87
Spagnuolo, Carmine 115
Szufel, Przemyslaw 115

Tuke, Jonathan 71

	Preface
	Organization
	Contents
	Using Synthetic Networks for Parameter Tuning in Community Detection
	1 Introduction
	2 Background and Related Work
	2.1 Modularity
	2.2 Modularity Optimization and Louvain Algorithm
	2.3 Likelihood Optimization Methods
	2.4 LFR Model

	3 Tuning Parameters
	4 Experiments
	4.1 Parametric Algorithms
	4.2 Datasets
	4.3 Evaluation Metrics
	4.4 Experimental Setup
	4.5 Results

	5 Conclusion
	References

	Efficiency of Transformations of Proximity Measures for Graph Clustering
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Definitions
	3.2 Kernels
	3.3 Transformations

	4 Experiments and Results
	4.1 Experimental Methodology
	4.2 Analysis
	4.3 Examining the Results by Friedman and Nemenyi Tests

	5 Conclusion
	References

	Almost Exact Recovery in Label Spreading
	1 Introduction and Previous Work
	2 Semi-supervised Graph Clustering with the Normalized Laplacian Matrix (Label Spreading)
	3 Analysis on Random SBM Graphs
	3.1 Exact Expression for Mean Field SBM
	3.2 Concentration Towards Mean Field
	3.3 Asymptotically Almost Exact Recovery for SBM

	4 Discussion and Future Works
	A Background Results on Matrix Analysis
	A.1 Inversion of the Identity Matrix Minus a Rank 2 Matrix
	A.2 Spectral Study of a Rank 2 Matrix
	A.3 Spectral Study of EL

	B Spectral Norm of an Extracted Matrix
	References

	Strongly n-e.c. Graphs and Independent Distinguishing Labellings
	1 Introduction
	2 Constructing Infinite Graphs by (n)-extensions
	3 Constructing Infinite Graphs by (n)-extensions
	4 An Application of the Strong e.c. Property to Graph Distinguishing
	5 Conclusion
	References

	The Robot Crawler Model on Complete k-Partite and Erdős-Rényi Random Graphs
	1 Introduction
	2 Erdős-Rényi Random Graph
	3 Complete k-Partite Graphs
	3.1 Results
	3.2 Proofs

	References

	Estimating the Parameters of the Waxman Random Graph
	1 Introduction
	2 Background and Related Work
	3 General Properties of Waxman Graphs
	4 Estimation Techniques
	4.1 Log-Linear Regression
	4.2 Generalised Linear Model (GLM)
	4.3 Sufficient Statistics
	4.4 Maximum Likelihood Estimator
	4.5 Existence and Uniqueness of the MLE
	4.6 The MLE of
	4.7 Numerical Calculation of the MLE

	5 Performance
	5.1 Comparisons
	5.2 Estimating q

	6 Case Study
	7 Discussion and Conclusion
	References

	Understanding the Effectiveness of Data Reduction in Public Transportation Networks
	1 Introduction
	2 Preliminary Considerations
	2.1 Graph-Theoretic Perspective
	2.2 Hitting Set Perspective

	3 Analysis of Real-World Networks
	4 Analysis of Generated Instances
	4.1 The Generative Model
	4.2 Evaluation

	5 Impact on Other Domains
	6 Conclusion
	References

	A Spatial Small-World Graph Arising from Activity-Based Reinforcement
	1 Introduction
	2 Model and Results
	3 Proofs
	3.1 Lower Bound
	3.2 Theorem2; a3
	3.3 Theorem2; a< 3

	References

	SimpleHypergraphs.jl—Novel Software Framework for Modelling and Analysis of Hypergraphs
	1 Introduction
	2 Modelling and Hypergraphs with SimpleHypergraphs.jl
	2.1 Motivation
	2.2 Definitions and Notation
	2.3 Library Design and Functionalities
	2.4 Hypergraph Modularity

	3 Use Case—Yelp Dataset
	3.1 The Yelp Open Dataset
	3.2 The Yelp Hypergraph
	3.3 Results

	4 Conclusion
	References

	Author Index

