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Abstract. Unification and matching algorithms are essential compo-
nents of logic and functional programming languages and theorem
provers. Nominal extensions have been developed to deal with syntax
involving binding operators: nominal unification takes into account α-
equivalence; however, it does not take into account non-capturing sub-
stitutions, which are not primitive in nominal syntax. We consider an
extension of nominal syntax with non-capturing substitutions and show
that matching is decidable and finitary but unification is undecidable.
We provide a matching algorithm and characterise problems for which
matching is unitary, giving rise to expressive and efficient rewriting
systems.
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1 Introduction

Nominal syntax is a generalisation of first-order syntax that deals with variable
binding using atom permutations and freshness constraints (see [17,28]). Nom-
inal syntax uses two kinds of variables: atoms a, b, . . ., which can be abstracted
but not substituted ([a]t means that a is abstracted in t), and meta-variables
X,Y, . . ., called simply variables, which may be decorated with atom permuta-
tions. Unification of nominal terms (i.e., modulo α-equivalence) is decidable and
unitary [28]. Efficient algorithms exist that solve nominal unification problems
in polynomial time [5,7,21]. Nominal matching (a form of unification where only
one of the terms can be instantiated) can be solved in linear time [6].

Nominal unification and matching have applications in logic and functional
languages [2,8,25,26] and automated reasoning [10,11,13,16,23,27] among oth-
ers. However, nominal terms do not provide a built-in form of substitution for
atoms that would permit direct definitions of systems such as the λ-calculus.
Instead, atom substitution has to be defined explicitly, by rewrite rules or equa-
tions [14,15], as in the following system, where (explicit) substitutions are sug-
ared to t{a �→ t′} and a # t means that a is not free in t.
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(Beta) app(λ[a]X,X ′) → X{a �→ X ′}
(σvar) a{a �→ X} → X
(σε) a # Y � Y {a �→ X} → Y

(σapp) app(X,X ′){a �→ Y } → app(X{a �→ Y },X ′{a �→ Y })
(σlam) b # Y � (λ[b]X){a �→ Y } → λ[b](X{a �→ Y })

An extension of nominal syntax with a primitive capture-avoiding atom sub-
stitution, which avoids the need to introduce explicit substitution rules, was
presented in [12]; however, its rewriting theory was not developed. Here we show
that unification in this extended syntax is undecidable in general but matching
remains decidable (albeit no longer unitary) and the rewriting relation can be
effectively computed. The undecidability result is obtained by reducing Hilbert’s
tenth problem to extended nominal unification, inspired by Goldfarb’s proof of
undecidability of second-order unification [18]. Our main contributions are an
algorithm that computes complete sets of solutions for solvable matching prob-
lems, and a characterisation of a wide class of problems for which matching
is unitary, inducing a well-behaved rewriting relation. This class includes the
Beta and Eta reduction rules of the λ-calculus (we give details in Sect. 5). These
results open the way for the development of expressive reasoning frameworks
based on nominal syntax.

Related Work. Our syntax for extended nominal terms is inspired by [12], where
a dependent type system for extended terms is presented. Matching was used
in [12] to type-check terms given a set of declarations for function symbols. It
was noted that restrictions were needed to ensure unitary matching, however,
no matching algorithm was provided. Capture-avoiding atom substitution was
previously studied in the context of nominal algebra by Gabbay and Mathi-
jssen [15,16], but its unification theory was not considered.

In [13], a nominal reduction system for the λ-calculus is given, with an explicit
atom-substitution operation defined by a set of rewrite rules. The extended nom-
inal syntax proposed here reduces the verbosity of such systems by internalising
capture-avoiding substitutions.

Efficient nominal unification algorithms were developed by Calvès and
Fernández [4,5] and Levy and Villaret [21]. Both approaches were later unified
by Calvès [3]. Kumar and Norrish [19] also studied efficient forms of nominal uni-
fication. Cheney [9] proved that a more general version of nominal unification,
called equivariant unification, is NP-complete.

We followed Goldfarb’s methodology [18] to prove the undecidability of nom-
inal unification extended with atom substitutions. Goldfarb [18] proved that
second-order unification is undecidable by reducing Hilbert’s tenth problem to a
second-order unification problem. An alternative undecidability proof for second-
order unification by a direct encoding of the Halting problem is given by Levy
and Veanes [20], which could also be adapted to our language.



66 J. Domı́nguez and M. Fernández

2 Background

Fix countably infinite, pairwise disjoint sets of atoms, a, b, c, . . . ∈ A; variables,
X,Y,Z, . . . ∈ X ; and term-formers f, g, . . . ∈ F . A permutation π is a
bijection on a finite subset of A called support of π, Support(π). A swapping
(a b) is a particular case where a maps to b, b maps to a and all other atoms c map
to themselves. We follow the permutative convention [15, Convention 2.3] for
atoms throughout the paper, i.e., atoms a, b, c range permutatively over A so that
they are always distinct unless stated otherwise. Atom substitutions φ, or just
a-substitutions, are mappings with finite domain from atoms to terms, i.e.,
the set of atoms such that φ(a) �= a, written Dom(φ), is finite. Permutations π, a-
substitutions φ, and terms with atom substitutions s, t, or just (extended)
terms, are generated by the following grammar.

Definition 1 (Syntax).

π ::=Id | π(a b) φ ::=Id | [a �→ s]φ s, t ::=a | φˆπ·X | [a]s | fs | (s1, . . . , sn)

The final Id is usually omitted from permutations and a-substitutions. Write π-1

for the inverse of π, e.g., if π = (a b)(b c) then π(c) = a and c = π-1(a). A-
substitutions are simultaneous bindings, abbreviated as [a1 �→ s1; . . . ; an �→ sn]
where atoms ai are pairwise distinct. Write φ−a1,...,an for the a-substitution φ
with domain restricted to Dom(φ) \ {a1, . . . , an}. Img(φ) denotes the set of
terms {φ(a) | a ∈ Dom(φ)}. Term constructors as given in Definition 1 are
called respectively atoms, moderated variables, abstractions, function
applications (where f() is denoted as f) and tuples (n ≥ 0). A moderated
variable φˆπ·X comprises a variable X, and suspended permutation π and a-
substitution φ. As in first-order syntax, variables denote unknown parts of the
term, but here they are decorated with permutations and atom-substitutions,
that will act when the variable is instantiated, as shown below. We abbrevi-
ate Id̂ π·X (resp. φ Îd·X) as π·X (resp. φ·X) and Id̂ Id·X as X if there is no
ambiguity.

Permutations act on terms and a-substitutions; ◦ denotes composition:

π·a � π(a) π·[a]t � [π(a)]π·t π·ft � fπ·t π·(t1, . . . , tn) � (π·t1, . . . , π·tn)

π·(φˆπ′·X) � (π·φ)̂ (π ◦ π′)·X where π·Id � Id, π·([a �→ t]φ) � [π(a) �→ π·t](π·φ)

Write V (t) for the set of variable symbols appearing in a term t and A(t)
for the set of atoms in t; this includes atoms in the domain and image of a-
substitutions and atoms in the support of permutations.

A position p, q is a string of positive integers denoting a path in the abstract
syntax tree of a term. The set of positions of a term s, Pos(s), is defined
inductively as usual [1] with an additional case for a moderated variable:

Pos([a1 �→ t1; · · · ; an �→ tn ]̂ π·X) � {ε} ∪
n⋃

i=1

{i · p | p ∈ Pos(ti)}.
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An arbitrary ordering (e.g., lexicographic) is chosen when defining the position-
ing of the terms in the image of suspended a-substitutions. Since we are dealing
with simultaneous a-substitutions, the choice of ordering does not matter. The
size of a term t, |t|, is the cardinality of Pos(t). Call t|p the subterm of t at
position p. If p ∈ Pos(t), then t[s]p denotes the term obtained from t by replacing
its subterm at position p by the term s and (· · · (s[t1]p1) · · · )[tn]pn

is abbreviated
as s[t1 · · · tn]p1···pn

.

Example 1. Let map, cons and nil be term-formers; map([a]F, cons(H, nil)) is a
term and so is t defined as cons([a �→ H]·F, map([b]F, nil)). A(t) = {a, b}, V (t) =
{F,H}. Pos(t) = {ε, 1, 11, 111, 12, 121, 1211, 12111, 1212} so that, t|111 = H and
t|1212 = nil, for instance. See [12,13,28] for more examples.

Call a # t a freshness constraint. Let Δ,∇, . . . range over finite sets of
primitive constraints of the form a # X; call such sets freshness contexts.
Call s≈α t an α-equivalence constraint. Write ∇ � a#t and ∇ � s≈α t, called
freshness and α-equivalence judgements respectively, when a derivation
exists using the syntax-directed rules from Definition 2 where, for a-substitutions
φ, φ′ and permutations π, π′, Dom(φ) ∪ Dom(φ′) is abbreviated as DomP (φ, φ′)
and Support(π)∪Support(π′) as SupportP (π, π′). We write a, b#t (resp. a#s, t)
instead of a # t, b # t (resp. a # s, a # t), and abbreviate ∅ � s ≈α t as s ≈α t.

Definition 2 (Freshness and α-equivalence judgements).

(#ab)∇ � a # b
(#[a])∇ � a # [a]s

∇ � a # s
(#[b])∇ � a # [b]s

∇ � a # s
(#f)∇ � a # fs

∧

b∈Dom(φ)∪{a}
(∇ � a # φ(b)∨(π-1(b) # X ∈ ∇))

(#X)∇ � a # φˆπ·X

∇ � a # s1 · · · ∇ � a # sn
(#tupl)∇ � a # (s1, . . . , sn)

(≈αa)∇ � a ≈α a

∇ � s ≈α t
(≈α[a])∇ � [a]s ≈α [a]t

∇ � (b a)·s ≈α t ∇ � b # s
(≈α[b])∇ � [a]s ≈α [b]t

∇ � s ≈α t
(≈αf)∇ � fs ≈α ft

∇ � s1 ≈α t1 · · · ∇ � sn ≈α tn
(≈αtupl)∇ � (s1, . . . , sn) ≈α (t1, . . . , tn)

∧

a∈(DomP (φ,φ′)∪SupportP (π,π′))

(∇ � φ(π(a)) ≈α φ′(π′(a)) ∨ (a # X ∈ ∇))

(≈αX)∇ � φˆπ·X ≈α φ′ˆπ′·X
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The most interesting rules are (#X) and (≈αX). The first one specifies that a
is fresh in φˆπ·X if it is fresh in the image by φ of any atom that could occur
in an instance of π·X. The second ensures that the atom actions produce the
same effect for any valid instance of X, in other words, any atom that could be
affected by the atom actions suspended in X is either affected in the same way
on both sides of the equality constraint, or it must be fresh in X. The relation
≈α is indeed an equivalence relation [12].

Example 2. We can derive a#[b �→ Y ]̂ (a c)·X from ∇1 = {a#Y, c#X} or from
∇2 = {b # X, c # X} using rule (#X), and [c �→ (a b)·Y ]·X≈α [b �→ Y ]·(b c)·X
from ∇1 = {b # X, a # Y, b # Y } or ∇2 = {b # X, c # X} using rule (≈αX).
In contrast, using standard (non-extended) nominal syntax, for each derivable
constraint there exists a unique least freshness context entailing it [28].

The action of an a-substitution φ on a term t relies on a freshness context ∇
and therefore is defined over terms-in-context, written ∇ � t, or simply � t if
∇ = ∅. Below we abbreviate (∇ � t)φ as ∇ � tφ.

Definition 3 (A-substitution action).

∇ � aφ � ∇ � φ(a) ∇ � (ft)φ � ∇ � ftφ

∇ � (t1, . . . , tn)φ � ∇ � (t1φ, . . . , tnφ)

∇ � (φ′ˆπ·X)φ � ∇ � (φ′ • φ)̂ π·X where • denotes composition

∇ � ([a]t)φ � ∇ � [b]((a b)·t)φ−b where ∇ � b # t, Img(φ)

A-substitutions work uniformly on α-equivalence classes of terms, that is,
the choice of b in Definition 3 is irrelevant [12]. Capture-avoidance is guaran-
teed by selecting an α-equivalent representative of ∇ � [a]t, i.e., ∇ � [b](a b)·t,
with fresh b. There exists always some b ∈ (A \ (A(t) ∪ A(Img(φ)))) such that
∇ � b # t, Img(φ), assuming primitive constraints b # X in ∇ for each X in
(V (t) ∪ V (Img(φ))), since variables have finite support [24]. We assume ∇ is
large enough (in practice, it can be augmented whenever required). This app-
roach is also taken in [8,12,13] and tacitly assumed in the rest of the paper.

Variable substitutions σ, θ, . . ., or just v-substitutions, are mappings
from variables to terms, with finite domain Dom(σ). They are generated by
the grammar: σ, θ :: = Id | [X �→ s]σ where Id is commonly omitted, and inter-
preted as simultaneous bindings, abbreviated [X1 �→ s1; . . . ;Xn �→ sn] where
variables Xi are pairwise distinct. The application of a v-substitution θ to a
moderated variable φˆπ·X induces the action of φ on the term π·θ(X). The
action of v-substitutions, σ, on terms, t, written tσ, is also parameterised by
freshness contexts but left implicit in Definition 4. Given v-substitution σ and
freshness contexts ∇,Δ, we write Δ � ∇σ to denote Δ � a # σ(X) for each
a # X ∈ ∇.

Definition 4 (V-substitution action).

aσ � a ([a]t)σ � [a]tσ (ft)σ � ftσ (t1, . . . , tn)σ � (t1σ, . . . , tnσ)

(φˆπ·X)σ � (π·σ(X))(φσ) where Idσ � Id and ([a �→ s]φ)σ � [a �→ sσ](φσ)
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Permutations and a-substitutions commute: ∇ � π·(sφ) ≈α (π·s)(π·φ) and
∇ � (π·s)φ ≈α π·(s(π-1·φ)). Also, v-substitutions commute with permutations,
∇ � π·(sσ) ≈α (π·s)σ, and a-substitutions, ∇ � (sσ)φσ ≈α (sφ)σ.

3 Unification, Matching and Rewriting

Definition 5. Let C range over freshness and α-equality constraints. A unifi-
cation problem P is a finite set of such constraints, where α-equivalence con-
straints are written as unification constraints s ?≈? t. A solution to P is a
pair (F, σ) of a non-empty collection F of freshness contexts and a v-substitution
σ such that Δ � Cσ for each Δ ∈ F and C ∈ P.

Write U(P) for the set of all solutions of P. (F, σ) ∈ U(P) is more
general than (F′, σ′) ∈ U(P), written (F, σ) ≤ (F′, σ′), if for each Δ′ ∈ F′

there exists Δ ∈ F and a v-substitution θ such that Δ′ � X(σ • θ) ≈α Xσ′ for all
X and Δ′ � Δθ. If there is no (F′, σ′) ∈ U(P) such that (F′, σ′) < (F, σ) then
(F, σ) is a principal or most general solution.

The unification problem {[a �→ c]·X ?≈?c} has principal solutions ({∅}, [X �→
a]) and ({∅}, [X �→ c]). In fact, the unification theory of extended nominal terms
is infinitary. We give an example after defining complete sets of solutions. Note
that solutions of unification problems use collections of contexts, since there may
be several independent contexts that solve a constraint, as shown in Example 2.

Definition 6. Call W a complete set of solutions for P if W ⊆ U(P);
∀(F, θ) ∈ W , Dom(θ) ⊆ V (P); and ∀(F, σ) ∈ U(P),∃(F′, θ) ∈ W : (F′, θ) ≤
(F, σ). W is a complete set of most general solutions if each element is
principal.

The unification problem {[c �→ f(a, b)]·X ?≈? f(a, [c �→ b]·X)} has an infi-
nite number of principal solutions of the form ({∅}, σn) where σn = [X �→
f(a, f(a, . . . , f(a, c) · · · ))] and n is the number of occurrences of function symbol
f and atom a in σn(X). In particular, σ0 = [X �→ c], σ1 = [X �→ f(a, c)] and
σ2 = [X �→ f(a, f(a, c))].

A matching constraint is a unification constraint s ?≈? t where only vari-
ables in s may be instantiated; occurrences of variables in t are seen as constants.
We sometimes write s ?≈ t to emphasise that we are dealing with matching, and
refer to s as the pattern and t as the matched term. Matching plays an
important role in rewriting: given a set of rewriting rules, the nominal rewriting
relation is generated by solving pattern-matching problems as defined below.

Definition 7. A matching problem P is a set of matching constraints si ?≈ti
such that (

⋃
i V (si)) ∩ (

⋃
i V (ti)) = ∅. We denote

⋃
i V (si) by VLHS(P) and⋃

i V (ti) by VRHS(P). A pattern matching problem consists of a pair of
terms-in-context, written (∇ � l) ?≈ (Δ � t) such that V (∇ � l)∩V (Δ � t) = ∅.

A solution to a pattern matching problem (∇ � l)?≈(Δ � s) is a v-substitution
σ, such that there exists F such that (F, σ) is a solution to {l ?≈ s} ∪ ∇, and
Δ � ∇i for some ∇i ∈ F.
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Definition 8. An extended nominal rewrite rule, or just rewrite rule, is
a tuple, written R = (∇ � l → r), where ∇ is a freshness context, and l, r are
extended nominal terms such that V (∇, r) ⊆ V (l). We write l → r for ∅ � l → r.

Example 3. – par(out(a, b), in(a, [c]P)) → [c �→ b]·P is a rewrite rule , repre-
senting communication in the π calculus.

– a # X � X → lam([a]app(X, a)) is the η-expansion rule of the λ-calculus. The
β and η reduction rules are:

(β) app(lam([a]X), Y) → [a �→ Y]·X
(η) a # X � lam([a]app(X, a)) → X

Using standard nominal rules, four additional rules are needed to define
explicit substitution (see the Introduction and [13]).

– The higher-order function map (see Example 1) is defined by rules:

map([a]F, nil) → nil
map([a]F, cons(H, T)) → cons([a �→ H]·F, map([a]F, T))

To generate the rewrite relation, terms in rewrite rules are considered up to
renaming of variables and atoms (metalevel equivariance [13,24]), denoted tπ.

Definition 9. A rewrite system R induces a rewrite step Δ � s
R−→ t if there

exists (∇ � l → r) ∈ R, p ∈ Pos(s) and a permutation π such that the pattern-
matching problem (∇π � lπ) ?≈ (Δ � s|p) has solution θ, and Δ � s[rπθ]p ≈α t:

Δ � {∇πθ, lπθ ≈α s|p, s[rπθ]p ≈α t}
(→Rew)

Δ � s
R−→ t

The (multi-step) rewrite relation Δ �R s → t is the reflexive, transitive
closure of the one-step rewrite relation.

Example 4. The term-in-context � app(lam([a]lam([b]app(a, b))), b) rewrites to
a normal form in one step with the rule (β) (see Example 3), at position ε with
permutation Id and v-substitution θ = [X �→ lam([b]app(a, b)); Y �→ b] as follows,

� app(lam([a]lam([b]app(a, b))), b) →〈(β),ε,Id,θ〉 lam([c]app(b, c))

Capture of the unabstracted atom b has been avoided by the internal machinery
of the extended nominal framework implementing a-substitution. By relegating
the semantics of capture-avoiding substitution to the metal-level, where they are
managed by our formalism, we have reduced the set of rewrite rules necessary
to provide a nominal representation of the rewrite system at hand. The same
reduction requires several steps using explicit substitution rules [13].
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4 Solving Matching Problems

A sound and complete matching algorithm can be built by converting the set
of derivation rules given in Definition 2 into a simplification system. This algo-
rithm can then be used to implement rewriting, and also to check closedness of
terms and rewrite rules (see [13]). Principal solutions are not unique in general
but matching is unitary for a restricted but practically useful class of problems
(cf. Theorem 2).

In a matching problem P = s1 ?≈ t, . . . , sn ?≈ tn, variables on the right-hand
side of matching constraints are treated as constants. Hence, without loss of
generality, we assume a # X for any X ∈ VRHS(P) and a ∈ A.

Although, initially, the sets of variables in left- and right-hand sides of match-
ing constraints are disjoint, this property is not preserved during the process of
solving matching problems (due to variable instantiations). Thus, given a match-
ing problem P0 to solve, we start by computing the set VRHS(P0) of variables
that should not be instantiated.

The following auxiliary functions Cap and Ψ are used in the matching algo-
rithm to handle constraints where the pattern is a moderated variable: To solve
a constraint of the form φˆπ·X ?≈? t where t �= φ′ˆπ′·X, one checks if some
subterm t|p of t is contained in the image of φ, that is, [π(a) �→ t|p] ∈ φ. In
order to find such position p and subterm t|p, the matching algorithm generates
cap constraints of the form (t[a1 · · · an]p1···pn

)φ ?≈? t, where pi ∈ Pos(t) and
ai ∈ Dom(φ), using the function Cap defined below.

Definition 10 (Cap terms). Let t be a term, A a finite set of atoms.
Cap(t, A) = {t[a1 · · · an]p1···pn

| n ∈ Nat, ai ∈ A, pi ∈ Pos(t), 1 ≤ i ≤ n}.

Thus, Cap(t, A) returns the set of all the terms obtained by replacing sub-
terms of t with atoms from A. Note that Cap(t, A) also includes the term t.

Example 5. Cap(cons([a �→ H]·F, T ), {b, c}) = {b, c, cons b, cons c, cons(b, b),
cons(b, c), cons(c, b), cons(c, c), cons(b, T ), cons(c, T ), cons([a �→ b]·F, b),
cons([a �→ c]·F, b), cons([a �→ b]·F, c), cons([a �→ c]·F, c), cons([a �→ b]·F, T ),
cons([a �→ c]·F, T ), cons([a �→ H]·F, b), ([a �→ H]·F, c), cons([a �→ H]·F, T )}.

The function Ψ is used to handle constraints of the form φˆπ·X ?≈? φ′ˆπ′·X
or a # φˆπ·X, i.e., Ψ deals with the premises of rules (≈αX) and (#X) (see Defi-
nition 2).

Definition 11 (Function Ψ). Let s and t be either two moderated variables
φˆπ·X and φ′ˆπ′·X, or an atom a and a moderated variable φˆπ·X. Let P be a
matching problem, A a finite set of atoms and b an atom in A. Then, Ψ(s, t)A =
Ψ ′(s, t, ∅)A where Ψ ′ computes a set of problems (i.e., a collection of sets of
constraints) as follows: Ψ ′(s, t,P)A �
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

• {P} if A = ∅

• Ψ ′(s, t,P ∪ {s # φ(b)})A\{b} ∪ Ψ ′(s, t,P ∪ {π-1(b) # X})A\{b} if s = a, t = φˆπ·X
• Ψ ′(s, t,P ∪ {φ(π(b)) ?≈? φ′(π′(b))})A\{b} ∪ Ψ ′(s, t,P ∪ {b # X})A\{b}

if s = φˆπ·X, t = φ′ˆπ′·X
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Ψ ′ deals with one atom from the given finite set A in each recursive call
(thus ensuring termination); the order in which elements of A are considered is
irrelevant since Ψ ′(s, t,P)A is a collection of sets. Hence Ψ ′ is indeed a function.

Freshness constraints of form a#a are inconsistent. A matching constraint
s?≈? t is clashing when s, t have different term constructors at the root except if
s is a moderated variable φˆπ·X and X �∈ VRHS(P). For example, if VRHS(P) =
{Y } then a ?≈? (a b)·Y , f a ?≈? g a and [a �→ b]·Y ?≈? [b]a are clashing but [a �→
b]·X ?≈? f(c, b) and [a �→ b]·Y ?≈? [b �→ a]·Y are not. Clashing and inconsistent
constraints are not derivable; failure rules (⊥) will be specified to deal with them.

Definition 12 (Matching steps). Let P0 be a matching problem and X =
VRHS(P0). P,Q denote sets of pairs (P, θ), where P is a unification problem
and θ a v-substitution. Write P X=⇒

?≈ Q (resp. P =⇒# Q), if Q is obtained
from P by application of one matching (resp. freshness) reduction rule below. As
usual, =⇒∗

?≈ (resp. =⇒∗
#) denotes reflexive transitive closure; arrow subindices

are omitted if there is no ambiguity.

(?≈⊥)1 ({s ?≈? t} ∪ P, θ)
X

=⇒
?≈ ∅ if clashing

(?≈≡) ({t ?≈? t} ∪ P, θ)
X

=⇒
?≈ (P, θ)

(?≈f) ({fs ?≈? ft} ∪ P, θ)
X

=⇒
?≈ ({s ?≈? t} ∪ P, θ)

(?≈[a]) ({[a]s ?≈? [a]t} ∪ P, θ)
X

=⇒
?≈ ({s ?≈? t} ∪ P, θ)

(?≈[b]) ({[a]s ?≈? [b]t} ∪ P, θ)
X

=⇒
?≈ ({(b a)·s ?≈? t, b # s} ∪ P, θ)

(?≈tupl) ({(s1, . . . , sn) ?≈? (t1, . . . , tn)} ∪ P, θ)
X

=⇒
?≈ ({s1 ?≈? t1, . . . , sn ?≈? tn} ∪ P, θ)

(?≈X)1 ({φˆπ·X ?≈? φ′ˆπ′·X} ∪ P, θ)
X

=⇒
?≈

⋃

P′∈Ψ(φˆπ·X,φ′ˆπ′·X)A
{(P′ ∪ P, θ)}

where A = (SupportP (π, π′) ∪ DomP (φ, φ′))
(?≈Inst)1 ({φˆπ·X ?≈? t} ∪ P, θ)

X
=⇒

?≈
⋃

s∈Cap(t,Dom(φ))

{({s(φθ′) ?≈? t} ∪ Pθ′, θ • θ′)}
if t �= φ′ˆπ′·Y (Y ∈ X ), (X �∈ X), θ′ = [X �→ π-1·s]

(?≈XY)1 ({φˆπ·X ?≈? φ′ˆπ′·Y } ∪ P, θ)
X

=⇒
?≈

⋃

s∈(Cap(φ′ˆπ′·Y,Dom(φ))∪{π′·Y })
{({s(φθ′) ?≈? φ′ˆπ′·Y } ∪ Pθ′, θ • θ′)}

if (X �∈ X) and θ′ = [X �→ π-1·s]
(#⊥) {a # a} ∪ P =⇒# ⊥
(#ab) {a # b} ∪ P =⇒# P

(#[a]) {a # [a]s} ∪ P =⇒# P
(#[b]) {a # [b]s} ∪ P =⇒# {a # s} ∪ P

(#f) {a # fs} ∪ P =⇒# {a # s} ∪ P

(#tupl) {a # (s1, . . . , sn)} ∪ P =⇒# {a # s1, . . . , a # sn} ∪ P

(#X)1 {a # φˆπ·X} ∪ P =⇒#
⋃

P′∈Ψ(a,φˆπ·X)A
{P′ ∪ P} (where A = Dom(φ) ∪ {a})

if φ �= Id ∧ π �= Id

Rule (?≈≡) has priority; it is an optimisation to reduce trivial matching con-
straints in one step, subsuming rule (≈αa) (Definition 2). The right-hand side of
rule (?≈⊥) is the empty set since this pair cannot produce solutions (but other
pairs in the problem could, so we do not use ⊥). Rules (?≈Inst) and (?≈XY)

1 In this rule, the right-hand side is a set; we assume a flattening step is performed
after each application of the rule (to avoid nested sets).
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are instantiating rules. Note that the matching steps in Definition 12 provide
an algorithmic presentation of Definition 2, where instantiating rules have been
added and the symbol ≈α has been replaced by ?≈? to represent the constraints
to be solved.

Termination of the simplification process follows from the fact that the
instantiating rules decrease the number of variables in the problem. For any
other rule, an interpretation based on the multiset of sizes of the constraints in
the problem can be shown to be strictly decreasing using the multiset exten-
sion of the standard ordering on natural numbers, ≤mul. Confluence under the
imposed strategy then follows by Newman’s Lemma, since there are only trivial
overlaps. Hence normal forms are unique.

Remark 1 (Matching algorithm). The algorithm has two phases.

Input: Assume P0 is the given matching problem, where X = VRHS(P0).

Phase 1 (=⇒
?≈-Normalisation): {(P0, Id)} X ∗=⇒

?≈ 〈P0〉nf
?≈ where 〈P0〉nf

?≈

is the normal form of {(P0, Id)} by application of =⇒
?≈.

Phase 2 (=⇒#-Normalisation): ∀(Pi, θi) ∈ 〈P0〉nf
?≈ , compute {Pi} =⇒∗

#

〈Pi〉nf# where 〈Pi〉nf# is the normal form of the set of freshness constraints Pi

by application of =⇒#.

Output: 〈P0〉out = {(〈Pi〉nf# \ ⊥, θi) | (Pi, θi) ∈ 〈P0〉nf
?≈ , 〈Pi〉nf# �= ⊥}.

Informally, Phase 1 reduces the matching problem until no matching con-
straints are left, resolving into a set of pairs ({Cij}, θi)(i, j ∈ Nat) where each
Cij is a (possibly empty) set of freshness constraints and θi a v-substitution.
Then, Phase 2 reduces each Cij into freshness contexts C ′

ij , discarding along
the way any set Cij containing inconsistent freshness constraints. Finally, the
remaining pairs (C ′

ij , θi) in the set are solutions to the initial matching problem
P0. If no pairs are left, i.e., all sets of freshness constraints have been discarded,
then the matching problem is unsolvable.

Example 6. The matching problem P = ({[a �→ Y ]·X ?≈ [a �→ b]·Z}) has prin-
cipal solutions ({a # Z}, [X �→ Z]), (∅, [X �→ Z;Y �→ b]), (∅, [X �→ [a �→ b]·Z]),
({a # Z}, [X �→ a;Y �→ Z]), (∅, [X �→ a;Y �→ [a �→ b]·Z]) computed by the algo-
rithm as follows. Below, the affected parts of each reduction are highlighted and
outer brackets in singleton collections of freshness contexts are omitted for read-
ability. Here VRHS(P) = {Z}.
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{ ({[a �→ Y ]·X ?≈? [a �→ b]·Z}, Id) }
X ∈{Z}
=⇒ (?≈XY) {({Y ?≈? [a �→ b]·Z}, Id • [X �→ a])}

∪{({[a �→ Y ]·Z ?≈? [a �→ b]·Z}, Id • [X �→ Z])}
∪{ ({[a �→ b]·Z ?≈? [a �→ b]·Z}, Id • [X �→ [a �→ b]·Z]) }
where Cap([a �→ b]·Z, {a}) = {a, Z, [a �→ b]·Z}

=⇒(?≈≡) { ({Y ?≈? [a �→ b]·Z}, [X �→ a]) }∪
{({[a �→ Y ]·Z ?≈? [a �→ b]·Z}, [X �→ Z])}∪{(∅, [X �→ [a �→ b]·Z])}

Y ∈{Z}
=⇒ (?≈XY) { ({[a �→ b]·Z ?≈? [a �→ b]·Z}, [X �→ a] • [Y �→ [a �→ b]·Z]) }

∪{({Z ?≈? [a �→ b]·Z}, [X �→ a] • [Y �→ Z])}∪
{({[a �→ Y ]·Z ?≈? [a �→ b]·Z}, [X �→ Z])}∪{(∅, [X �→ [a �→ b]·Z])}
where Cap([a �→ b]·Z, ∅) = {[a �→ b]·Z}

=⇒(?≈≡) {(∅, [X �→ a] • [Y �→ [a �→ b]·Z])}
∪{ ({Z ?≈? [a �→ b]·Z}, [X �→ a] • [Y �→ Z]) }∪
{({[a �→ Y ]·Z ?≈? [a �→ b]·Z}, [X �→ Z])}∪{(∅, [X �→ [a �→ b]·Z])}

=⇒(?≈X) {(∅, [X �→ a] • [Y �→ [a �→ b]·Z])}
∪{({a # Z}, [X �→ a] • [Y �→ Z])}
∪{ ({a ?≈? b}, [X �→ a] • [Y �→ Z]) }
∪{ ({[a �→ Y ]·Z ?≈? [a �→ b]·Z}, [X �→ Z]) }
∪{(∅, [X �→ [a �→ b]·Z])}
where Ψ(Z, [a �→ b]·Z){a} = {{a ?≈? b}, {a # Z}}

=⇒(?≈⊥) =⇒(?≈X) {(∅, [X �→ a] • [Y �→ [a �→ b]·Z])}
∪{({a # Z}, [X �→ a] • [Y �→ Z])} ∪ {({a # Z}, [X �→ Z])}
∪{ ({Y ?≈? b}, [X �→ Z]) } ∪ {(∅, [X �→ [a �→ b]·Z])}
where Ψ([a �→ Y ]·Z, [a �→ b]·Z){a} = {{a # Z}, {Y ?≈? b}}

Y ∈{Z}
=⇒ (?≈Inst) =⇒(?≈≡) {(∅, [X �→ a] • [Y �→ [a �→ b]·Z])}

∪{({a # Z}, [X �→ a] • [Y �→ Z])} ∪ {({a # Z}, [X �→ Z])}
∪{(∅, [X �→ Z] • [Y �→ b])} ∪ {(∅, [X �→ [a �→ b]·Z])}.

Phase 2 is trivial and thus omitted.

As a consequence of the termination and confluence properties, the relation
=⇒ defines a function from matching problems to their unique normal form.
Write 〈P〉out for the normal form of {(P, Id)}. 〈P〉out may contain solutions
(F, σ), (F′, σ′) with α-equivalent substitutions but different collections of fresh-
ness contexts. For instance, (∅, [X �→ a;Y �→ [a �→ b]·Z]) and ({a # Z}, [X �→
a;Y �→ Z]) in Example 6 could be merged as (∅, [X �→ a;Y �→ [a �→ b]·Z]).

Definition 13 (Merging solutions). Let W be a set of solutions, such that
there are two different elements (F, σ) and (F′, σ′) in W satisfying ∀Δ ∈ F.Δ �
σ ≈α σ′. This pair of solutions can be replaced with a single solution as follows:

([W1]) (F, σ), (F′, σ′) =⇒[W ] (F′ ∪ F, σ′)
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Further, if (F, σ) contains the empty set as one of the freshness contexts in F,
then any other freshness context in F is redundant and can be discarded:

([W2]) (F, σ) =⇒[W ] ({∅}, σ) if F �= {∅}, ∅ ∈ F

Write [W ] for the normal form of W by the rules above. 〈P〉sol denotes the
normal form by ([W1]) and ([W2]) of 〈P〉out , that is: 〈P〉sol = [〈P〉out ].
Example 7 (Merging solutions). By application of rules [W1] and [W2] to the
solution set W from Example 6, solution (∅, [X �→ a;Y �→ [a �→ b]·Z]) replaces
in W the pair (∅, [X �→ a;Y �→ [a �→ b]·Z]), ({a # Z}, [X �→ a;Y �→ Z]). Simi-
larly, (∅, [X �→ [a �→ b]·Z]) replaces the pair (∅, [X �→ [a �→ b]·Z]),
({a # Z}, [X �→ Z]).

Theorem 1 (Soundness and completeness). 〈P〉sol ⊆ U(P) (soundness);
∀(F, σ) ∈ U(P), ∃(Fi, θi) ∈ 〈P〉sol such that (Fi, θi) ≤ (F, σ) (completeness).

5 Unitary Matching for Simple Problems

When using matching to generate, for instance, rewrite steps for a given nominal
rewriting rule, it is useful to have a unique most general matching solution. Below
we characterise a class of matching constraints, which we call simple, for which
matching is unitary. The idea is to require each variable symbol in a pattern to
have at least one occurrence with trivial suspended a-substitution (Id) and not
in a suspension (see below). Constraints whose pattern is a moderated variable
with non-trivial a-substitutions will be postponed.

Moderated variables occurring in suspended a-substitutions will be called
suspended (variable) occurrences, and the others will be called fixed (vari-
able) occurrences. For instance, in the term ([a �→ Z]·X, [a �→ b]·Y ), both
[a �→ Z]·X and [a �→ b]·Y , are fixed, but Z is a suspended occurrence since
it occurs in the image of the a-substitution suspended over X. Write Vf (t) for
the subset of V (t) such that each variable has at least one fixed occurrence with
trivial a-substitutions. The set Vf (t) will play an important role in the charac-
terisation of unitary matching problems.

Definition 14. A term s is simple if V (s) ⊆ Vf (s), that is, for each variable
X ∈ V (s) there is one or more fixed occurrences of the form Idˆπ·X.2

A simple matching constraint is a matching constraint s ?≈ t such that
s is a simple term and V (s) ∩ V (t) = ∅. A simple matching problem is a
problem as specified in Definition 7 where ( . . . , si, . . . )?≈( . . . , ti, . . . ) is simple.3

2 This means that each variable has an occurrence that does not involve a-substitution.
3 We use a constraint ( . . . , si, . . . ) ?≈ ( . . . , ti, . . . ) in order to ensure that all the vari-

ables that can be instantiated have an occurrence that does not involve a-substitution
somewhere in the problem.
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Example 8. The constraints cons([a �→ Y ]·X, map([b]X,Y ))?≈cons(H, nil) and
map([a]X, cons(Y, nil))?≈map([a �→ H]·F, cons(H, nil)) are simple but the con-
straint map([a �→ Y ]·X,X)?≈map([a �→ nil]·F, F ) is not; the latter does not have
a simple pattern term, there is no fixed occurrence of Y .

Given a simple matching problem P, postponed constraints (of the form
φˆπ·X ?≈ t where t �= φ′ˆπ′·X, φ �= Id and X �∈ {X | s ?≈ t ∈ P,X ∈ V (t)}) are
delayed until an instantiation for X is readily available. The definition of simple
constraint (Definition 14) ensures such instantiation exists. The matching rule
(?≈XY) is not included in the simple-matching algorithm and rule (?≈Inst) is
adapted following the standard instantiating rule (see [28, Fig. 3]) as follows.

Definition 15 (Simple-matching algorithm). Let P be a simple matching
problem, X = VRHS(P) and assume X �∈ X. Take the rule set of Definition 12,
discard rule (?≈XY) and replace rule (?≈Inst) with:

(?≈σ) ({π·X ?≈? t} ∪ P, θ) X=⇒
?≈ (P[X �→ π-1·t], θ • [X �→ π-1·t])

The simple-matching algorithm follows the two-phase reduction strategy
described in Remark 1, using the modified rule set where rule (?≈σ) has the highest
priority along with rule (?≈≡), rule (?≈X) has the lowest priority and all other
rules have equal priority. Let 〈P〉nf

?≈ be the normal form of P with respect to
the set of updated rules.

The priority imposed on rule (?≈σ) forces the generation of v-substitutions as
soon as possible, whilst by giving lowest precedence to the rule (?≈X), we ensure
it is simply checking α-equality (as specified by (≈αX)) since no variables are left
to be instantiated. As a result, each distinct solution (F, σ) from the solution set
W shares the same unifier, σ, and by application of the merging rule to W in
the final part of the algorithm, the solution set is reduced to [W ] = {(

⋃
F, σ)}.

We formalise this claim in Theorem 2. Write Match(P, VRHS(P)) for the normal
form of the matching problem P by the simple-matching algorithm (Defini-
tion 15). Then, 〈P〉sol

?≈ is the result of applying function [·] from Definition 13
to Match(P, VRHS(P)). The following theorem is the main result of this section.

Theorem 2 (Normal form of a simple problem). Given a simple matching
problem P, either 〈P〉sol

?≈ = [Match(P, VRHS(P))] = {(F, θ)} and (F, θ) is a
solution for P, or 〈P〉sol

?≈ = ∅ and P has no solution.

Example 9. The rewriting rules in Example 3 have simple terms as patterns and
the rewrite relation generated uses only simple matching: indeed, all the terms
used in left-hand sides of rewrite rules are standard nominal terms (without
atom substitutions), only the matched terms may have a-substitutions.

A-substitutions are used in the right-hand side of rules in Example 3 to
implement function application in a direct way (avoiding the introduction of an
additional set of rewrite rules to define non-capturing atom substitution as in
standard nominal rewriting systems).
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6 Undecidability of Extended Nominal Unification

To prove the undecidability of extended nominal unification, we encode Hilbert’s
tenth problem, proved undecidable in [22]. The main idea is to build unification
problems for which ground unifiers simulate addition or multiplication. Then,
one can represent Diophantine equations. To simplify the encoding, we consider
a restricted language.

Definition 16 (Terms in L). L-terms are generated from a triple (A,X ,FL)
of pairwise disjoint sets, where FL is empty and X ,A are countable sets of
variables and atoms respectively (as described in Sect. 2), using the grammar
given in Definition 1 without abstraction terms.

Our representation of natural numbers is inspired by Goldfarb numbers [18],
which are themselves inspired by Church numerals. In L, the natural number n is
written: nac = (a, (a, . . . (a, c))) with n occurrences of a and a single occurrence
of c, where a, c ∈ A. L-terms of this form, which we call L-Goldfarb numbers,
are exactly those that solve extended nominal unification problems of the form

{(a, [c �→ a]·F ) ?≈? [c �→ (a, a)]·F}. (1)

Example 10 (L-Goldfarb numbers). The number 0 is represented as 0ac, that
is, c; the number 1 is represented as 1ac = (a, c); 3 is represented as 3ac =
(a, (a, (a, c))). The term 2a(1aa) is in L but is not an L-Goldfarb number (it does
not solve Eq. 1). Note also that, 2a(1aa) = (a, (a, (a, a))) = 2 + 1aa.

To simulate addition, we adapt Church’s λ-term add = λn.λm.λx.n(m(x)):
we use a constraint [c �→ Xi]·Xj ?≈? Xk. To simulate multiplication we use
nested a-substitutions. Undecidability of extended nominal unification follows
from Lemmas 1 and 2.

Lemma 1 (Addition). For all m,n, p ≥ 0, there exists a ground unifier θ
for the unification problem {[c �→ Xi]·Xj ?≈? Xk} such that {[Xi �→ nac;Xj �→
mac;Xk �→ pac]} ⊆ θ if and only if p = m + n.

Lemma 2 (Multiplication). Let P× = {s1 ?≈? s2, s3 ?≈? s4} where
s1 = [c1 �→ a; c2 �→ b; c3 �→ (([c �→ a]·Xk, [c �→ b]·Xj), a)]·G,
s2 = ((a, b), [c1 �→ [c �→ a]·Xi; c2 �→ 1ab; c3 �→ a]·G),
s3 = [c1 �→ b; c2 �→ a; c3 �→ (([c �→ b]·Xk, [c �→ a]·Xj), b)]·G,
s4 = ((b, a), [c1 �→ [c �→ b]·Xi; c2 �→ 1aa; c3 �→ b]·G).

For all m,n, p ≥ 0, there is a ground unifier θ for P× such that σ = [Xi �→
mac;Xj �→ nac;Xk �→ pac] and σ ⊂ θ if and only if p = m × n.

Theorem 3. There is an effective reduction of Hilbert’s tenth problem to nomi-
nal unification of L-terms. Therefore unification of extended terms is undecidable.
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7 Conclusion

The matching algorithm provided in this paper induces a notion of rewriting that
avoids the need to introduce extra rules to encode non-capturing substitutions.
In future work, we will analyse the relationship between higher-order match-
ing/unification and the corresponding problems in our language. The study of
the complexity of the algorithms and the development of efficient implementa-
tions using graph representations of terms will also be subject of future research.
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