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Abstract. In this paper we consider the digraph width measures
directed feedback vertex set number, cycle rank, DAG-depth, DAG-width
and Kelly-width. While the minimization problem for these width mea-
sures is generally NP-hard, we prove that it is computable in linear
time for all these parameters, except for Kelly-width, when restricted
to directed co-graphs. As an important combinatorial tool, we show how
these measures can be computed for the disjoint union, series composi-
tion, and order composition of two directed graphs, which further leads
to some similarities and a good comparison between the width measures.
This generalizes and expands our former results for computing directed
path-width and directed tree-width of directed co-graphs.
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1 Introduction

Undirected width parameters are well-known and frequently used in computa-
tions. Many NP-hard graph problems admit polynomial-time solutions when
restricted to graphs of bounded width, like for example bounded tree-width
or bounded path-width. Computing both parameters is hard even for bipartite
graphs and complements of bipartite graphs [2], while for co-graphs it has been
shown [7] that the path-width equals the tree-width and how to compute this
value in linear time.

During the last years, width parameters for directed graphs have received
a lot of attention [18]. Among these are directed tree-width and directed path-
width. In our paper [21] we proved that for directed co-graphs both parameters
are equal and computable in linear time. But directed tree-width and directed
path-width are not the only attempts to generalize undirected tree-width and
path-width for directed graphs. Furthermore, there are the parameters directed
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feedback vertex set number, cycle rank, DAG-depth, DAG-width and Kelly-
width, which have also been considered in [17]. In this paper, we extend our
results from [21] and give linear time solutions to compute these width param-
eters for the disjoint union, series composition and, except for Kelly-width, as
well for the order composition of two directed graphs. This leads to a construc-
tive linear-time-algorithm to get the width and the according decompositions
of directed co-graphs. For most of the parameters, we could even expand this
algorithm to extended directed co-graphs, which are an extension of the directed
co-graphs defined in [12] by an additional operation considered in [24].

Our algorithms lead to some tightened bounds for directed path-width,
directed tree-width, directed feedback vertex set number, cycle rank, DAG-
depth, DAG-width and Kelly-width of extended directed co-graphs and for some
of the parameters, they even lead to equalities.

2 Preliminaries

We use the notations of Bang-Jensen and Gutin [3] for graphs and digraphs.
When talking about digraphs, we always mean directed graphs with neither
multi-edges nor loops. A digraph is a tournament if for all vertices u �= v, there
is exactly one of the edges (u, v) and (v, u). It is completely bidirectional if both
of these edges are in the edge set.

Orientations. An orientation of an undirected graph G is a digraph, where all
edges {u, v} of G are replaced by either (u, v) or (v, u). For a biorientation,
every edge {u, v} is replaced by either (u, v) or (v, u) or both. For a complete
biorientation, every edge {u, v} is replaced by (u, v) and (v, u). The complete
biorientation of an undirected graph G is denoted by

←→
G .

Special Directed Graphs. We recall some special directed graphs. Let

←→
Kn = ({v1, . . . , vn}, {(vi, vj) | 1 ≤ i �= j ≤ n})

be a bidirectional complete digraph on n vertices. For n ≥ 2 we denote by

−→
Pn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn)})

a directed path on n vertices and for n ≥ 2 we denote by

−→
Cn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn), (vn, v1)})

a directed cycle on n vertices. A directed acyclic digraph (DAG for short) is a
digraph without any

−→
Cn, n ≥ 2 as subdigraph. By

−→
Tn we denote the transitive

tournament on n vertices.



294 F. Gurski et al.

2.1 Recursively Defined Digraphs

Co-graphs have been introduced in the 1970s by a number of authors under
different notations. We recall the definition of directed co-graphs from [12]. The
following operations have already been considered by Bechet in [4].

– The disjoint union of G1, . . . , Gk, denoted by G1 ⊕ . . . ⊕ Gk, is the digraph
with vertex set V1 ∪ . . . ∪ Vk and arc set E1 ∪ . . . ∪ Ek.

– The series composition of G1, . . . , Gk, denoted by G1 ⊗ . . . ⊗ Gk, is defined
by their disjoint union plus all possible arcs between vertices of Gi and Gj

for all 1 ≤ i, j ≤ k, i �= j.
– The order composition of G1, . . . , Gk, denoted by G1 
 . . .
Gk, is defined by

their disjoint union plus all possible arcs from vertices of Gi to vertices of Gj

for all 1 ≤ i < j ≤ k.

The class of directed co-graphs can be defined recursively. The one-vertex-
digraph is a directed co-graph and every disjoint union, series composition and
order composition of directed co-graphs is a directed co-graph.

The following transformation has been considered by Johnson et al. in [24]
and generalizes the operations disjoint union and order composition.

– The directed union of G1, . . . , Gk, denoted by G1 � . . . � Gk, is a subdigraph
of the order composition G1 
 . . . 
 Gk and contains the disjoint union G1 ⊕
. . . ⊕ Gk as a subdigraph.

Including this operation to the definition of directed co-graphs, we obtain
the class of extended directed co-graphs.

For every (extended) directed co-graph, we can define a tree structure,
denoted as di-co-tree. The leaves of the di-co-tree represent the vertices of the
digraph and the inner nodes of the di-co-tree correspond to the operations
applied on the subexpressions defined by the subtrees. For every directed co-
graph one can construct a di-co-tree in linear time, see [12].

3 Digraph Width Measures

In Table 1 we summarize some examples for the value of digraph width measures
of special digraphs. Further examples can be found in [17, Table 1].

Table 1. The value of digraph width measures of special digraphs.

G d-tw(G) d-pw(G) dfn(G) cr(G) ddp(G) dagw(G) kw(G)
−→
Pn 0 0 0 0 �log(n)� +1 1 0−→
Cn 1 1 1 1 �log(n − 1)� +2 2 1−→
Tn 0 0 0 0 n 1 0←→
Pn 1 1 �n

2
� �log(n)� �log(n)� +1 2 1←→

Kn n − 1 n − 1 n − 1 n − 1 n n n − 1
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3.1 Directed Tree-Width

We will use the directed tree-width introduced by Johnson et al. [24].1

An out-tree is a tree with a distinguished root such that all arcs are directed
away from the root. For two vertices u, v of an out-tree T , the notation u ≤ v
means that there is a directed path on ≥ 0 arcs from u to v and u < v means
that there is a directed path on ≥ 1 arcs from u to v.

Let G = (V,E) be some digraph and Z ⊆ V . A vertex set S ⊆ V − Z is
Z-normal if there is no directed path in G − Z with first and last vertices in S
that uses a vertex of G − (Z ∪ S).

Definition 1 (Directed tree-width, [24]). A (arboreal) tree-decomposition
of a digraph G = (VG, EG) is a triple (T,X ,W). Here T = (VT , ET ) is an out-
tree, X = {Xe | e ∈ ET } and W = {Wr | r ∈ VT } are sets of subsets of VG,
such that the following two conditions hold true.

(dtw-1) W = {Wr | r ∈ VT } is a partition of VG into non-empty subsets.2

(dtw-2) For every (u, v) ∈ ET the set
⋃{Wr | r ∈ VT , v ≤ r} is X(u,v)-normal.

The width of a (arboreal) tree-decomposition (T,X ,W) is

max
r∈VT

|Wr ∪
⋃

e∼r

Xe| − 1.

Here, e ∼ r means that r is one of the two vertices of arc e. The directed tree-
width of G, d-tw(G) for short, is the smallest integer k such that there is a
(arboreal) tree-decomposition (T,X ,W) for G of width k.

Determining whether the directed tree-width of some given digraph is at most
some given value w is NP-complete. On the other hand, determining whether
the directed tree-width of some given digraph is at most some given value w is
polynomial for directed co-graphs [21].

The results of [24] lead to an XP-algorithm3 for directed tree-width w.r.t. the
standard parameter which implies that for each constant w, it is decidable in
polynomial time whether a given digraph has directed tree-width at most w.

Lemma 1 ([20,21]). Let G = (VG, EG) and H = (VH , EH) be two vertex-
disjoint digraphs, then the following properties hold.

1 There are also further directed tree-width definitions such as allowing empty sets
Wr in [23], using sets Wr of size one only for the leaves of T in [29] and using
strong components within (dtw-2) in [13, Chap. 6]. Further in works of Courcelle
et al. [9–11] the directed tree-width of a digraph G is defined by the tree-width
of the underlying undirected graph. One reason for this could be the algorithmic
advantages of the undirected tree-width.

2 A remarkable difference to the undirected tree-width from [30] is that the sets Wr

have to be disjoint and non-empty.
3 XP is the class of all parameterized problems that can be solved in a certain time,

see [14] for a definition.
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1. d-tw(G ⊕ H) = max{d-tw(G), d-tw(H)}
2. d-tw(G 
 H) = max{d-tw(G), d-tw(H)}
3. d-tw(G � H) = max{d-tw(G), d-tw(H)}
4. d-tw(G ⊗ H) = min{d-tw(G) + |VH |, d-tw(H) + |VG|}

3.2 Directed Path-Width

The notation of directed path-width was introduced by Reed, Seymour, and
Thomas around 1995 and relates to directed tree-width introduced by Johnson,
Robertson, Seymour, and Thomas in [24].

Definition 2 (Directed path-width). A directed path-decomposition of
some digraph G = (V,E) is a sequence (X1, . . . , Xr) of subsets of V , called
bags, such that the following three conditions hold true.

(dpw-1) X1 ∪ . . . ∪ Xr = V .
(dpw-2) For each (u, v) ∈ E there is a pair i ≤ j such that u ∈ Xi and v ∈ Xj.
(dpw-3) If u ∈ Xi and u ∈ Xj for some u ∈ V and two indices i, j with i ≤ j,

then u ∈ X� for all indices � with i ≤ � ≤ j.

The width of a directed path-decomposition X = (X1, . . . , Xr) is

max
1≤i≤r

|Xi| − 1.

The directed path-width of G, d-pw(G) for short, is the smallest integer w such
that there is a directed path-decomposition of G of width w.

Determining whether the directed path-width of some given digraph with
maximum semi-degree Δ0(G) = max{Δ−(D),Δ+(D)} ≤ 3 is at most some
given value w is NP-complete by a reduction from undirected path-width for
planar graphs with maximum vertex degree 3 [26].

Lemma 2 ([20,21]). Let G = (VG, EG) and H = (VH , EH) be two vertex-
disjoint digraphs, then the following properties hold.

1. d-pw(G ⊕ H) = max{d-pw(G), d-pw(H)}
1. d-pw(G 
 H) = max{d-pw(G), d-pw(H)}
1. d-pw(G � H) = max{d-pw(G), d-pw(H)}
1. d-pw(G ⊗ H) = min{d-pw(G) + |VH |, d-pw(H) + |VG|}

3.3 Directed Feedback Vertex Set (DFVS) Number

Definition 3 (DFVS-number). The directed feedback vertex set number of
a digraph G = (V,E), denoted by dfn(G), is the minimum cardinality of a set
S ⊂ V such that G − S is a DAG.

Theorem 1 (�4). Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.
4 The proofs of the results marked with a � are omitted due to space restrictions.
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1. dfn(G ⊕ H) = dfn(G) + dfn(H)
2. dfn(G 
 H) = dfn(G) + dfn(H)
3. dfn(G � H) = dfn(G) + dfn(H)
4. dfn(G ⊗ H) = min{dfn(G) + |VH |, dfn(H) + |VG|}

3.4 Cycle Rank

Cycle rank was introduced in [15] and also appeared in [8] and [25].

Definition 4 (Cycle rank). The cycle rank of a digraph G = (V,E), denoted
by cr(G), is defined as follows.

– If G is acyclic, cr(G) = 0.
– If G is strongly connected, then cr(G) = 1 + minv∈V cr(G − {v}).
– Otherwise the cycle rank of G is the maximum cycle rank of any strongly

connected component of G.

Results on the cycle rank can be found in [19]. In this papers Gruber proved
the hardness of computing cycle rank, even for sparse digraphs of maximum
outdegree at most 2.

Proposition 1 ([19]). For every digraph G, we have d-pw(G) ≤ cr(G).

The cycle rank can be much larger than the directed path-width, which can
be shown by a complete biorientation of a path graph

←→
Pn which has directed

path-width 1 but arbitrary large cycle rank �log(n)�, see [25].

Proposition 2 ([17]). For every digraph G, we have cr(G) ≤ dfn(G).

The DFVS-number can be much larger than the cycle rank, which can be
shown by the disjoint union of n

3 directed cycles
−→
C3 which has cycle rank 1 but

arbitrary large DFVS-number n
3 .

Theorem 2 (�). Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.

1. cr(G ⊕ H) = max{cr(G), cr(H)}
2. cr(G 
 H) = max{cr(G), cr(H)}
3. cr(G � H) = max{cr(G), cr(H)}
4. cr(G ⊗ H) = min{cr(G) + |VH |, cr(H) + |VG|}

3.5 DAG-depth

The DAG-depth of a digraph was introduced in [16] motivated by tree-depth for
undirected graphs, given in [27].

For a digraph G = (V,E) and v ∈ V , let Gv denote the subdigraph of G
induced by the vertices which are reachable from v. The maximal elements in
the partially ordered set {Gv | v ∈ V } w.r.t. the graph inclusion order are the
reachable fragments of G and will be denoted by R(G).5

5 In the undirected case, reachable fragments coincide with connected components.
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Definition 5 (DAG-depth). Let G = (V,E) be a digraph. The DAG-depth of
G, denoted by ddp(G), is defined as follows.

– If |V | = 1, then ddp(G) = 1.
– If G has a single reachable fragment, then ddp(G) = 1+min{ddp(G−v) | v ∈

V }.
– Otherwise, ddp(G) equals the maximum over the DAG-depth of the reachable

fragments of G.

Proposition 3 ([17]). For every complete bioriented directed G, we have
ddp(G) = cr(G) + 1.

Theorem 3. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.

1. ddp(G ⊕ H) = max{ddp(G), ddp(H)}
2. ddp(G 
 H) = ddp(G) + ddp(H)
3. ddp(G � H) ≤ ddp(G) + ddp(H)
4. ddp(G ⊗ H) = min{ddp(G) + |VH |, ddp(H) + |VG|}
Proof. 1. Since there is no edge in G⊕H between a vertex from VG and a vertex

from VH , every reachable fragment is a subset of VG or a subset of VH .
2. First, we observe that the set of reachable fragments for G
H can be obtained

by R(G 
 H) = {f ∪ VH | f ∈ R(G)}.
ddp(G 
 H) ≤ ddp(G) + ddp(H)
First, we remove the vertices of G from G 
 H in the same order as from G
when verifying the depth of ddp(G) using Definition 5. Afterwards, we remove
the vertices of H from G 
 H in the same order as from H when verifying
the depth of ddp(H) using Definition 5. The observation above allows to use
this ordering.
ddp(G 
 H) ≥ ddp(G) + ddp(H)
First suppose that it is optimal to begin removing vertices from VG of G
H.
Then it is no drawback to remove all vertices from VG of G 
 H first and all
vertices from VH afterwards, since every vertex of VH is reachable from every
vertex of VG. Since none of the vertices of VG is reachable from a vertex of VH

the vertices of VH do not effect the number of fragments, reachable from VG.
Next, suppose that it is optimal to begin removing vertices from VH of G
H.
Then it is no drawback to remove all vertices from VH of G 
 H first and
all vertices from VG afterwards, since none of the vertices of VG is reachable
from a vertex of VH and thus the vertices of VG do not effect the number of
fragments, reachable from VH .

3. ddp(G � H) ≤ ddp(G) + ddp(H) holds, since the equality of 2. does not
hold true in this case, since for a small number of edges ddp(G � H) is much
smaller than ddp(G) + ddp(H). Note that a lower bound is ddp(G � H) ≥
max{ddp(G),ddp(H)}, since G � H is equal to the disjoint union if no edges
emerge.
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4. ddp(G ⊗ H) ≤ min{ddp(G) + |VH |,ddp(H) + |VG|}
Since G ⊗ H has only one reachable fragment as long as it contains vertices
from VG and vertices from VH , we can apply the second case of Definition 5
to verify an upper bound of ddp(G) + |VH | by removing the vertices of H
one by one from G ⊗ H and to verify an upper bound of ddp(H) + |VG| by
removing the vertices of G one by one from G ⊗ H.
ddp(G ⊗ H) ≥ min{ddp(G) + |VH |,ddp(H) + |VG|}
Since in G ⊗ H every vertex of VG has an edge to and from every vertex of
VH , G ⊗ H has only one reachable fragment as long as it contains vertices
from VG and VH . Thus, we have to apply the second case of Definition 5 as
long we have vertices from VG and vertices from VH . This either leads to a
subdigraph induced by VG−V ′

G for some V ′
G ⊂ VG or to a subdigraph induced

by VH − V ′
H for some V ′

H ⊂ VH . Thus, we have

ddp(G ⊗ H) ≥ min{|VH | + |V ′
G| + ddp(G − V ′

G),
|VG| + |V ′

H | + ddp(H − V ′
H)}

≥ min{|VH | + ddp(G), |VG| + ddp(H)}.

This completes the proof. ��
Note that ddp(G � H) cannot be computed from ddp(G) and ddp(H) by

a simple formula, since the disjoint union and the order operation behave
differently.

3.6 DAG-width

The DAG-width is a graph parameter which describes how close a digraph is to
a directed acyclic graph (DAG). It has been defined in [5,6,28].

Let G = (VG, EG) be a acyclic digraph. The partial order �G on G is the
reflexive, transitive closure of EG. A source or root of a set X ⊆ VG is a �G-
minimal element of X, that is, r ∈ X is a root of X, if there is no y ∈ X,
such that y �G r and y �= x. Analogously, a sink or leaf of a set X ⊆ VG is a
�G-maximal element.

Let V ′ ⊆ VG, then a set W ⊆ VG guards V ′ if for all (u, v) ∈ EG it holds
that if u ∈ V ′ then v ∈ V ′ ∪ W .

Definition 6 (DAG-width). A DAG-decomposition of some digraph G =
(VG, EG) is a pair (D,X ) where D = (VD, ED) is a DAG and X = {Xu |
Xu ⊆ VG, u ∈ VD} is a family of subsets of VG such that:

(dagw-1)
⋃

u∈VD
Xu = VG.

(dagw-2) For all vertices u, v, w ∈ VD with u �D v �D w, it holds that Xu ∩
Xw ⊆ Xv.

(dagw-3) For all edges (u, v) ∈ ED it holds that Xu ∩ Xv guards X�v
\ Xu,

where X�v
= ∪v�DwXw. For any source u, X�u

is guarded by ∅.
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The width of a DAG-decomposition (D,X ) is the number

max
u∈VD

|Xu|.

The DAG-width of a digraph G, dagw(G) for short, is the smallest width of all
possible DAG-decompositions for G.

We use the restriction to nice DAG-decompositions from [6, Theorem 24].

Proposition 4 ([6]). For every graph G, we have dagw(
←→
G ) = tw(G) + 1.

Proposition 4 implies that the NP-hardness of tree-width carries over to DAG-
width.

There are even digraphs on n vertices whose optimal DAG-decompositions
have super-polynomial many bags w.r.t n [1]. Furthermore, it has been shown
that deciding whether the DAG-width of a given digraph is at most a given value
is PSPACE-complete [1].

Proposition 5 ([17]). For every digraph G, we have dagw(G) ≤ d-pw(G) + 1.

Proposition 6 ([6]). For every digraph G, we have d-tw(G) ≤ 3 · dagw(G) + 1.

Lemma 3 (�). Let G = (V,E) be a digraph of DAG-width at most k, such that
V1 ∪ V2 = V , V1 ∩ V2 = ∅, and {(u, v), (v, u) | u ∈ V1, v ∈ V2} ⊆ E. Then there
is a DAG-decomposition (D,X ), D = (VD, ED), of width at most k for G such
that for every v ∈ VD holds V1 ⊆ Xv or for every v ∈ VD holds V2 ⊆ Xv.

Obviously, this lemma also holds for a nice DAG-decomposition.

Theorem 4. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.

1. dagw(G ⊕ H) = max{dagw(G), dagw(H)}
2. dagw(G 
 H) = max{dagw(G), dagw(H)}
3. dagw(G � H) = max{dagw(G), dagw(H)}
4. dagw(G ⊗ H) = min{dagw(G) + |VH |, dagw(H) + |VG|}
Proof. Let G and H be two vertex-disjoint digraphs and let further (DG,XG)
and (DH ,XH) be their nice DAG-decompositions with minimum DAG-width.
Let rH be the root of DH and let lG be a leaf of DG.

1. For J = G⊕H, we first define a legit DAG-decomposition (DJ ,XJ ) for J and
show that it is of minimum width afterwards. Let DJ be the disjoint union
of DG and DH with an additional arc (lG, rH). Further, XJ = XG ∪ XH .
(DJ ,XJ ) is a valid DAG-decomposition because it satisfies the conditions as
follows. It holds that (dagw-1) is satisfied by (DG,XG) and (DH ,XH) it is
also satisfied by (DJ ,XJ) because all vertices of J are included. As we do not
add any vertices to the X-sets and G and H are vertex-disjoint, (dagw-2) is
satisfied for (DJ ,XJ ). Further, (dagw-3) is satisfied for all arcs in DG and
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DH . In DJ there is only one additional arc, (lG, rH). Since it holds that for
rH , X�rH

is guarded by ∅ and we do not add any outgoing vertices to H
and XlG ∩XrH

= ∅, (dagw-3) is satisfied for (DJ ,XJ ). Thus, the DAG-width
of the decomposition is limited by the larger width of G and H, such that
dagw(G ⊕ H) ≤ max{dagw(G),dagw(H)}.
The lower bound holds as G and H are both induced subdigraphs of J and a
graph cannot have lower DAG-width than its induced subdigraphs. Hence
dagw(J) ≥ max{dagw(G),dagw(H)} applies, which leads to dagw(J) =
max{dagw(G),dagw(H)}.

2. Holds by the same arguments as given in (1.).
3. Holds by the same arguments as given in (1.).
4. For J = G⊗H, set DJ = DG and XJ = {Xu∪VH | Xu ∈ XG}. Then (DJ ,XJ)

is a DAG-decomposition for J : Obviously, (dagw-1) is satisfied. (dagw-2) and
(dagw-3) are satisfied since they are satisfied for XG and we add VH to every
vertex set in XG. Further, it holds that the width of (DJ ,XJ) is dagw(G) +
|VH |. In the same way, we get a DAG-decomposition of width dagw(H)+|VG|,
so we have dagw(G ⊗ H) ≤ min{dagw(G) + |VH |,dagw(H) + |VG|}.
For the lower bound, we use Lemma 3. Assume that dagw(G ⊗ H) <
min{dagw(G) + |VH |,dagw(H) + |VG|}. Let (DJ ,XJ ) be a minimal DAG-
decomposition of J of size k < min{dagw(G) + |VH |,dagw(H) + |VG|}. By
Lemma 3 we have VH ⊆ Xv for all Xv ∈ XJ or VG ⊆ Xv for all Xv ∈ XJ .
Without loss of generality assume VH ⊆ Xv for all Xv ∈ XJ (because
VG ⊆ Xv for all Xv ∈ XJ , respectively). Then (D′

G,X ′
G) with D′

G = DJ ,
X ′

G = {Xu \ VH | Xu ∈ XJ} is a DAG-decomposition of size k − |VH | of G:
– (dagw-1) is satisfied since

⋃
u∈VD′

G

Xu =
⋃

u∈VDJ
(Xu \ VH) =

(⋃
u∈VDJ

Xu

)
\ VH

= VJ \ VH

= (VG ∪ VH) \ VH

= VG.

– (dagw-2) is satisfied since for all u, v, w ∈ VD′
G

with u �D′
G

v �D′
G

w

and XJ
u ,XJ

v and XJ
w the corresponding sets in (DJ ,XJ ) it holds that

Xu ∩ Xw =
(
XJ

u \ VH

) ∩ (
XJ

w \ VH

)
=

(
XJ

u ∩ XJ
w

) \ VH ⊆ XJ
v \ VH = Xv

as u �DJ
v �DJ

w.
– (dagw-3) is satisfied since for all edges (u, v) ∈ ED′

G
, we have (u, v) ∈ EDJ

and as Xu ∩Xv =
(
XJ

u ∩ XJ
v

)\VH which guards X�D′
G

v \Xu = X�DJ
v \

XJ
u . For the root, the condition is trivially satisfied.

But it holds that k − |VH | < min{dagw(G)+ |VH |,dagw(H)+ |VG|}− |VH | ≤
dagw(G)+|VH |−|VH | = dagw(G). This is a contradiction, as it is not possible
to create a DAG-decomposition of size smaller than dagw(G).
It follows that dagw(G ⊗ H) ≥ min{dagw(G) + |VH |,dagw(H) + |VG|} and
thus that dagw(G ⊗ H) = min{dagw(G) + |VH |,dagw(H) + |VG|}.

This completes the proof. ��
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3.7 Kelly-Width

The Kelly-width is also led from directed acyclic graphs, which leads to the idea
that it is very similar to the DAG-width. It has been defined in [22].

Definition 7. (Kelly-width). A Kelly decomposition of a digraph G =
(VG, EG) is a triple (W,X ,D) where D is a directed acyclic graph, X = {Xu |
Xu ⊆ VG, u ∈ VD} and W = {Wu | Wu ⊆ VG, u ∈ VD} are families of subsets of
VG such that:

1. W is a partition for VG.
2. For all vertices v ∈ VG, Xv guards W�v

.
3. For all vertices v ∈ VG, there is a linear order u1, . . . , us on the children of v

such that for every ui it holds that Xui
⊆ Wi∪Xi∪

⋃
j<i W�uj

. Similarly,there
is a linear order r1, r2, . . . on the roots of D such that for each root ri it holds
that Wri

⊆ ⋃
j<i W�rj

.

The width of a Kelly decomposition (W,X ,D) is the number

max
u∈VD

|Xu| + |Wu|.

The Kelly-width of a digraph G, denoted with kw(G), is the smallest width
of all possible Kelly decompositions for G.

Definition 8. (Directed elimination ordering). Let G = (V,E) be a
digraph. A directed elimination ordering � on G is a linear ordering on V .
For �= (v0, v1, . . . , vn−1) we define

– G�
0 = G

– G�
i+1 = (V �

i+1, E
�
i+1) with V �

i+1 = V �
i \ {vi} and

E�
i+1 = {(u, v) | (u, v) ∈ E�

i and u, v �= vi or (u, vi), (vi, v) ∈ E�
i , u �= v}

G�
i is the directed elimination graph at step i according to �.
The width of � is the maximum out-degree of vi in G�

i over all i.

Lemma 4 ([22]). Let G be a digraph. The following are equivalent:

1. G has Kelly-width at most k + 1
2. G has a directed elimination ordering of width ≤ k

Proposition 7 ([22]). For every digraph G, we have d-tw(G) ≤ 6 · kw(G) − 2.

Proposition 8 ([17]). For every digraph G, we have kw(G) ≤ d-pw(G) + 1.

Theorem 5. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.

1. kw(G ⊕ H) = max{kw(G), kw(H)}
2. kw(G 
 H) = max{kw(G), kw(H)}
3. kw(G � H) = max{kw(G), kw(H)}
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4. kw(G ⊗ H) ≤ min{kw(G) + |VH |, kw(H) + |VG|}
Proof. We use the fact that by Lemma 4, a digraph has Kelly-width k +1 if and
only if it has a directed elimination ordering of width k. Let G = (VG, EG) and
H = (VH , EH) be two vertex-disjoint digraphs with kw(G) = kG and kw(H) =
kH . Then, there exists a directed elimination ordering �G of G of width kG − 1
and a directed elimination ordering �H of H of width kH − 1.

1. For J = G⊕H, we obtain a linear ordering �J of J by adding first all vertices
from �H and from �G to �J afterwards. As no edges from H to G are inserted
to J , this is a directed elimination ordering of width max{kH −1, kG −1}. As
G and H are both induced subdigraphs of J , there cannot exist a directed
elimination ordering of smaller width. By Lemma4 it follows that kw(J) =
max{kH , kG}, such that kw(G ⊕ H) = max{kw(G), kw(H)}.

2. Holds by the same arguments as in (1.).
3. Holds by the same arguments as in (1.).
4. For J = G⊗H, we obtain a linear ordering �J of J by adding first all vertices

from �H and afterwards from �G to �J (first �G, then �H respectively).
As there are exactly VG (VH) more outgoing edges for every vertex in VH

(VG), this is a directed elimination ordering of J of width kH − 1 + |VG|
(kG − 1 + |VH |, respectively).

This completes the proof. ��
Remark 1 (�). The value min{kw(G)+|VH |, kw(H)+|VG|} is not a lower bound
for kw(G ⊗ H), even not if G and H are directed co-graphs.

3.8 Comparison

Theorem 6. For every extended directed co-graph G, we have

kw(G) ≤ d-pw(G) = d-tw(G) = cr(G) = dagw(G) − 1 ≤ ddp(G) − 1 ≤ dfn(G).

For DFVS-Number, DAG-depth and Kelly-width equality is not possible
by the following examples. For the disjoint union of two

←→
Kn, it holds that

d-pw(2
←→
Kn) = n − 1 < 2n − 2 = dfn(2

←→
Kn). For transitive tournaments

−→
Tn, it

holds that d-pw(
−→
Tn) = 0 < n = ddp(

−→
Tn). Further, let K ′

n be the 2n vertex graph
which is obtained by a complete graph Kn on n vertices and adding a pendant
vertex for every of the n vertices of Kn, then for the complete biorientation

←→
K ′

n

it holds that kw(
←→
K ′

n ⊗ ←→
K ′

n) = 2n − 1 < 3n − 1 = d-pw(
←→
K ′

n ⊗ ←→
K ′

n).
But by Theorem 5 Kelly-width is always smaller or equal to path-width and

its equal parameters and by Theorem3 DAG-depth is always greater or equal to
path-width and its equal parameters.

Theorem 7. For every extended directed co-graph G = (V,E) which is given by
a binary di-co-tree the directed path-width, directed tree-width, directed feedback
vertex set number, cycle rank, and DAG-width can be computed in time O(|V |).



304 F. Gurski et al.

4 Conclusion and Outlook

In this paper, we are able to give linear time algorithms for the directed feed-
back set number, cycle rank and DAG-width of extended directed co-graphs
and a linear-time algorithm for the DAG-depth of directed co-graphs. Further,
we provided a comparison of all considered parameters for extended directed
co-graphs and obtained equality for directed path-width, directed tree-width,
cycle rank and DAG width. Further, we showed for bounds for the class of
directed co-graphs for the directed vertex set number, DAG-depth and Kelly-
width. This widely extends our results for directed path-width and directed
tree-width from [21].

A further issue could be to find a linear or polynomial time algorithm to
compute Kelly-width on directed co-graphs. Furthermore, it would be interesting
for which superclasses of directed co-graphs it is still possible to find polynomial
algorithms to get the considered parameters and for which superclasses these
problems become NP-hard.

References

1. Amiri, S.A., Kreutzer, S., Rabinovich, R.: DAG-width is PSPACE-complete.
Theor. Comput. Sci. 655, 78–89 (2016)

2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebr. Discrete Methods 8(2), 277–284 (1987)

3. Bang-Jensen, J., Gutin, G.: Digraphs. Theory, Algorithms and Applications.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84800-998-1
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