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Preface

This volume contains the papers presented at the 22nd International Symposium on
Fundamentals of Computation Theory (FCT 2019), held in Copenhagen, Denmark,
during August 12–14, 2019.

FCT is a biennial conference that circulates between various European countries on
a regular basis. The first FCT conference took place in Poznan-Kórnik, Poland in 1977,
and the most recent ones in Liverpool, UK (FCT 2013), Gdańsk, Poland (FCT 2015),
and Bordeaux, France (FCT 2017). FCT focuses on theoretical computer science; in
particular, algorithms, complexity, and formal methods.

FCT 2019 received 45 submissions. Each submission was reviewed by at least three
Program Committee members, in many cases with the assistance of external expert
reviewers. After a thorough review process followed by a discussion phase, 21 of the
submitted papers were accepted for presentation at the conference.

Invited talks were given at FCT 2019 by Libor Barto (Charles University), Bernard
Chazelle (Princeton University), Kousha Etessami (University of Edinburgh), and
Torben Hagerup (University of Augsburg). The papers describing the invited talks are
included in these proceedings.

The Program Committee selected the following paper for the best paper award, as
well as the best student paper award:

• Bireswar Das, Shivdutt Sharma, and P. R. Vaidyanathan: “Succinct Representation
of Finite Groups”

To be eligible for the best student paper award, at least one of the authors had to be a
full-time student at the time of the submission, and the student(s) were required to have
made a significant contribution to the paper.

We would like to thank the FCT Steering Committee, the FCT 2019 Organizing
Committee, the invited speakers, all authors who submitted their work, the FCT 2019
Program Committee members, and the external reviewers. We also thank Jyrki
Katajainen for all his help with practical matters when, due to unforeseen circum-
stances, he became unable to act as the Program Committee chair and Organizing
Committee chair, and we were asked by the Steering Committee to step in. Further-
more, we would like to thank Springer for publishing the proceedings, and the Easy-
Chair conference management system for simplifying the entire process of reviewing
the submitted papers and generating the proceedings. Finally, we acknowledge the
support of the Department of Computer Science at the University of Copenhagen
(DIKU) and the European Association for Theoretical Computer Science (EATCS).

August 2019 Leszek Gąsieniec
Jesper Jansson

Christos Levcopoulos
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Algorithms for Some Classes of Infinite-State
MDPs and Stochastic Games
(Abstract of Invited Talk)

Kousha Etessami

School of Informatics, University of Edinburgh, Edinburgh, UK
kousha@inf.ed.ac.uk

Abstract. I will survey a body of work developed over the past 15 years or so,
on algorithms for, and the computational complexity of, analyzing and model
checking some important families of countably infinite state Markov chains,
Markov decision processes (MDPs), and stochastic games. I will also highlight
some of the open questions remaining in this area, including some algorithmic
questions regarding arithmetic circuits.
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Algebraic Theory of Promise Constraint
Satisfaction Problems, First Steps

Libor Barto(B)

Department of Algebra, Faculty of Mathematics and Physics, Charles University,
Sokolovská 83, 18675 Praha 8, Czechia

libor.barto@gmail.com

http://www.karlin.mff.cuni.cz/~barto

Abstract. What makes a computational problem easy (e.g., in P, that
is, solvable in polynomial time) or hard (e.g., NP-hard)? This funda-
mental question now has a satisfactory answer for a quite broad class of
computational problems, so called fixed-template constraint satisfaction
problems (CSPs) – it has turned out that their complexity is captured
by a certain specific form of symmetry. This paper explains an exten-
sion of this theory to a much broader class of computational problems,
the promise CSPs, which includes relaxed versions of CSPs such as the
problem of finding a 137-coloring of a 3-colorable graph.

Keywords: Computational complexity ·
Promise constraint satisfaction · Polymorphism

1 Introduction

In Computational Complexity we often try to place a given computational prob-
lem into some familiar complexity class, such as P, NP-complete, etc. In other
words, we try to determine the image of a computational problem under the
following mapping Φ.

Φ : computational problems → complexity classes
problem �→ its complexity class

When we try to achieve this goal for a whole class of computational problems, say
S , it is a natural idea to look for some intermediate collection I of “invariants”
and a decomposition of Φ through I:

S
Ψ→ I → complexity classes

Members of I are then objects that exactly capture the computational complex-
ity of problems in S . The larger S is and the more objects Ψ glues together,
the better such a decomposition is.

Libor Barto has received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovation programme (grant agreement
No 771005).

c© Springer Nature Switzerland AG 2019
L. A. G ↪asieniec et al. (Eds.): FCT 2019, LNCS 11651, pp. 3–17, 2019.
https://doi.org/10.1007/978-3-030-25027-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25027-0_1&domain=pdf
http://orcid.org/0000-0002-8481-6458
https://doi.org/10.1007/978-3-030-25027-0_1
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This idea proved greatly useful for an interesting class of problems, so called
fixed-template constraint satisfaction problems (CSPs), and eventually led to a
full complexity classification result [17,30]. In a decomposition, suggested in [20]
and proved in [24], Ψ assigns to a CSP a certain algebraic object that describes,
informally, the high dimensional symmetries of the CSP. This basic insight of
the so called algebraic approach to CSPs was later twice improved [7,16], giving
us a chain

CSPs Ψ→ I1→I2→I3 → complexity classes.

The basics of the algebraic theory can be adapted and applied in various
generalizations and variants of the fixed-template CSPs, see surveys in [26]. One
particularly exciting direction is a recently proposed significant generalization of
CSPs, so called promise CPSs (PCSPs) [3,14]. This framework is substantially
richer, both on the algorithmic and the hardness side, and a full complexity
classification is wide open even in very restricted subclasses. On the other hand,
the algebraic basics can be generalized from CSP to PCSP and, moreover, one
of the results in [18] not only gives such a generalization but also provides an
additional insight and simplifies the algebraic theory of CSPs.

The aim of this paper is to explain this result (here Theorem 6) and the
development in CSPs leading to it (Theorems 1, 2 and 3). The most recent
material comes from the conference papers [18] and [4], which will be merged and
expanded in [5]. Very little preliminary knowledge is assumed but an interested
reader may find an in depth introduction to the fixed-template CSP and its
variants in [26].

2 CSP

Fur the purposes of this paper, we define a finite relational structure as a tuple
A = (A;R1, . . . , Rn), where A is a finite set, called the domain of A, and each Ri

is a relation on A of some arity, that is, Ri ⊆ Aar(Ri) where ar(Ri) is a natural
number.

A primitive positive formula (pp-formula) over A is a formula that uses only
existential quantification, conjunction, relations in A, and the equality relation.
We will work only with formulas in a prenex normal form.

Definition 1. Fix a finite relational structure A. The CSP over A, written
CSP(A), is the problem of deciding whether a given pp-sentence over A is true.

In this context, A is called the template for CSP(A).

For example, if A = (A;R,S) and both R and S are binary, then an input
to CSP(A) is, e.g.,

(∃x1∃x2 . . . ∃x5) R(x1, x3) ∧ S(x5, x2) ∧ R(x3, x3).

This sentence is true if there exists a satisfying assignment, that is, a mapping
f : {x1, . . . , x5} → A such that (f(x1), f(x3)) ∈ R, (f(x5), f(x2)) ∈ S, and
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(f(x3), f(x3)) ∈ R. Each conjunct thus can be thought of as a constraint limit-
ing f and the goal is to decide whether there is an assignment satisfying each
constraint.

Clearly, CSP(A) is always in NP.
The CSP over A can be also defined as a search problem where the goal is

to find a satisfying assignment when it exists. It has turned out that the search
problem is no harder then the decision problem presented in Definition 1 [16].

2.1 Examples

Typical problems covered by the fixed-template CSP framework are satisfiability
problems, (hyper)graph coloring problems, and equation solvability problems.
Let us look at several examples. We use here the notation

Ek = {0, 1, . . . , k − 1}.

Example 1. Let 3SAT = (E2;R000, R001, . . . , R111), where

Rabc = E3
2 \ {(a, b, c)} for all a, b, c ∈ {0, 1}.

An input to CSP(3SAT) is, e.g.,

(∃x1∃x2 . . . ) S001(x1, x4, x2) ∧ S110(x2, x5, x5) ∧ S000(x2, x1, x3) ∧ . . . .

Observe that this sentence is true if and only if the propositional formula

(x1 ∨ x4 ∨ ¬x2) ∧ (¬x2 ∨ ¬x5 ∨ x5) ∧ (x2 ∨ x1 ∨ x3) ∧ . . .

is satisfiable. Therefore CSP(3SAT) is essentially the same as the 3SAT problem,
a well known NP-complete problem.

On the other hand, recall that the 2SAT problem, which is the CSP over
2SAT = (E2;R00, R01, R10, R11), where Rab = E2

2 \ {(a, b)}, is in P.

Example 2. Let K3 = (E3;N3), where N3 is the binary inequality relation, i.e.,

N3 = {(a, b) ∈ E2
3 : a 	= b}.

An input to CSP(K3) is, e.g.,

(∃x1 . . . ∃x5) N3(x1, x2) ∧ N3(x1, x3) ∧ N3(x1, x4) ∧ N3(x2, x3) ∧ N3(x2, x4).

Here an input can be drawn as a graph – its vertices are the variables and vertices
x, y are declared adjacent iff the input contains a conjunct N3(x, y) or N3(y, x).
For example, the graph associated to the input above is the five vertex graph
obtained by merging two triangles along an edge. Clearly, an input sentence is
true if and only if the vertices of the associated graph can be colored by colors
0, 1, and 2 so that adjacent vertices receive different colors. Therefore CSP(K3)
is essentially the same as the 3-coloring problem for graphs, another well known
NP-complete problem.

More generally, CSP(Kk) = (Ek, Nk), where Nk is the inequality relation on
Ek, is NP-complete for k ≥ 3 and in P for k = 2.
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Example 3. Let 3NAEk = (Ek; 3NAEk), where 3NAEk is the ternary not-all-
equal relation, i.e.,

3NAEk = E3
k \ {(a, a, a) : a ∈ Ek}.

Taking the viewpoint of Example 1, the CSP over 3NAE2 is the positive not-all-
equal 3SAT, where one is given a 3SAT formula without negations and the aim
is to decide whether there is an assignment such that, in every clause, not all
variables get the same value. This problem is NP-complete [29].

From the graph theoretical viewpoint, CSP(3NAEk) is the problem of decid-
ing whether a given 3-uniform hypergraph1 admits a coloring by k colors so that
no hyperedge is monochromatic.

Example 4. Let 1IN3 = (E2; 1IN3), where

1IN3 = {(1, 0, 0), (0, 1, 0), (1, 0, 0)}.

The CSP over 1IN3 is the positive one-in-three SAT problem or, in other words,
the problem of deciding whether a given 3-uniform hypergraph admits a coloring
by colors 0 and 1 so that exactly one vertex in each hyperedge receives the color
1. This problem is, again, NP-complete [29].

Example 5. Let 3LIN5 = (E5;L0000, L0001, . . . , L4444), where

Labcd = {(x, y, z) ∈ E3
5 : ax + by + cz = d (mod 5)}.

An input, such as

(∃x1∃x2 . . . ) L1234(x3, x4, x2) ∧ L4321(x5, x1, x3) ∧ . . .

can be written as a system of linear equations over the 5-element field Z5, such
as

1x3 + 2x4 + 3x2 = 4, 4x5 + 3x1 + 2x3 = 1, . . . ,

therefore CSP(3LIN5) is essentially the same problem as deciding whether a
system of linear equations over Z5 (with each equation containing 3 variables)
has a solution. This problem is in P.

2.2 1st Step: Polymorphisms

The crucial concept for the algebraic approach to the CSP is a polymorphism,
which is a homomorphism from a cartesian power of a structure to the structure:

Definition 2. Let A = (A;R1, . . . , Rn) be a relational structure. A k-ary (total)
function f : Ak → A is a polymorphism of A if it is compatible with every
relation Ri, that is, for all tuples r1, . . . , rk ∈ Ri, the tuple f(r1, . . . , rk) (where
f is applied component-wise) is in Ri.

By Pol(A) we denote the set of all polymorphisms of A.
1 Here we should rather say a hypergraph whose hyperedges have size at most 3

because of conjuncts of the form 3NAEk(x, x, y) or 3NAEk(x, x, x). Let us ignore
this minor technical imprecision.
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The compatibility condition is often stated as follows: for any (ar(Ri) × k)-
matrix whose column vectors are in Ri, the vector obtained by applying f to its
rows is in Ri as well.

Note that the unary polymorphisms of A are exactly the endomorphisms
of A. One often thinks of endomorphisms (or just automorphisms) as symme-
tries of the structure. In this sense, polymorphisms can be thought of as higher
dimensional symmetries.

For any domain A and any i ≤ k, the k-ary projection to the i-th coordinate,
that is, the function πk

i : Ak → A defined by

πk
i (x1, . . . , xn) = xi,

is a polymorphism of every structure with domain A. These are the trivial poly-
morphisms. The following examples show some nontrivial polymorphisms.

Example 6. Consider the template 2SAT from Example 1. It is easy to verify
that the ternary majority function maj : E3

2 → E2 given by

maj(x, x, y) = maj(x, y, x) = maj(y, x, x) = x for all x, y ∈ E2

is a polymorphism of 2SAT.
In fact, whenever a relation R ⊆ Em

2 is compatible with maj, it can be pp-
defined (that is, defined by a pp-formula) from relations in 2SAT (see e.g. [25]).
Now for any template A = (E2;R1, . . . , Rn) with polymorphism maj, an input
of CSP(A) can be easily rewritten to an equivalent input of CSP(2SAT) and
therefore CSP(A) is in P.

Example 7. Consider the template 3LIN5 from Example 5. Each relation in this
structure is an affine subspace of Z3

5. Every affine subspace is closed under affine
combinations, therefore, for every k and every t1, . . . , tk ∈ E5 such that t1+ · · ·+
tk = 1 (mod 5), the k-ary function ft1,...,tk

: Ek
5 → E5 defined by

ft1,...,tk
(x1, . . . , xk) = t1x1 + . . . , tkxk (mod 5)

is a polymorphism of 3LIN5.
Conversely, every subset of Am closed under affine combinations is an

affine subspace of Z
m
5 . It follows that if every ft1,...,tk

is a polymorphism of
A = (E5;R1, . . . , Rn), then inputs to CSP(A) can be rewritten to systems of
linear equations over Z5 and thus CSP(A) is in P.

The above examples also illustrate that polymorphisms influence the compu-
tational complexity. The first step of the algebraic approach was to realize that
this is by no means a coincidence.

Theorem 1 ([24]). The complexity of CSP(A) depends only on Pol(A).
More precisely, if A and B are finite relational structures and Pol(A) ⊆

Pol(B), then CSP(B) is (log-space) reducible to CSP(A). In particular, if
Pol(A) = Pol(B), then CSP(A) and CSP(B) have the same complexity.
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Proof (sketch). If Pol(A) ⊆ Pol(B), then relations in B can be pp-defined from
relations in A by a classical result in Universal Algebra [10,11,21]. This gives a
reduction from CSP(B) to CSP(A).

Theorem 1 can be used as a tool for proving NP-hardness: when A has only
trivial polymorphism (and has domain of size at least two), any CSP on the
same domain can be reduced to CSP(A) and therefore CSP(A) is NP-complete.
This NP-hardness criterion is not perfect, e.g., CSP(3NAE2) has a nontrivial
endomorphism x �→ 1 − x.

2.3 2nd Step: Strong Maltsev Conditions

Theorem 1 shows that the set of polymorphisms determines the complexity of a
CSP. What information do we really need to know about the polymorphisms to
determine the complexity? It has turned out that it is sufficient to know which
functional equations they solve. In the following definition we use a standard
universal algebraic term for a functional equation, a strong Maltsev condition.

Definition 3. A strong Maltsev condition over a set of function symbols Σ is
a finite set of equations of the form t = s, where t and s are terms built from
variables and symbols in Σ.

Let M be a set of functions on a common domain. A strong Maltsev condition
S is satisfied in M if the function symbols of Σ can be interpreted in M so that
each equation in S is satisfied for every choice of variables.

Example 8. A strong Maltsev condition over Σ = {f, g, h} (where f and g are
binary symbols and h is ternary) is, e.g.,

f(g(f(x, y), y), z) = g(x, h(y, y, z))
f(x, y) = g(g(x, y), x).

This condition is satisfied in the set of all projections (on any domain) since, by
interpreting f and g as π2

1 and h as π3
1 , both equations are satisfied for every

x, y, z in the domain – they are equal to x.

The strong Maltsev condition in the above example is not interesting for us
since it is satisfied in every Pol(A). Such conditions are called trivial:

Definition 4. A strong Maltsev condition is called trivial if it is satisfied in the
set of all projections on a two-element set (equivalently, it is satisfied in Pol(A)
for every A).

Two nontrivial Maltsev condition are shown in the following example.

Example 9. The strong Maltsev condition (over a single ternary symbol m)

m(x, x, y) = x

m(x, y, x) = x

m(y, x, x) = x
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is nontrivial since each of the possible interpretations π3
1 , π3

2 , π3
3 of m falsifies

one of the equations. This condition is satisfied in Pol(2SAT) by interpreting m
as the majority function, see Example 6.

The strong Maltsev condition

p(x, x, y) = y

p(y, x, x) = y

is also nontrivial. It is satisfied in Pol(3LIN5) by interpreting p as x + 4y + z
(mod 5).

In fact, if Pol(A) satisfies one of the strong Maltsev conditions in this exam-
ple, then CSP(A) is in P (see e.g. [6]).

The following theorem is (a restatement of) the second crucial step of the
algebraic approach.

Theorem 2 ([16], see also [9]). The complexity of CSP(A) depends only on
strong Maltsev conditions satisfied by Pol(A).

More precisely, if A and B are finite relational structures and each strong
Maltsev condition satisfied in Pol(A) is satisfied in Pol(B), then CSP(B) is (log-
space) reducible to CSP(A). In particular, if Pol(A) and Pol(B) satisfy the same
strong Maltsev conditions, then CSP(A) and CSP(B) have the same complexity.

Proof (sketch). The proof can be done in a similar way as for Theorem 1. Instead
of pp-definitions one uses more general constructions called pp-interpretations
and, on the algebraic side, the Birkhoff HSP theorem [8].

Theorem 2 gives us an improved tool for proving NP-hardness: if Pol(A)
satisfies only trivial strong Maltsev conditions, then CSP(A) is NP-hard. This
criterion is better, e.g., it can be applied to CSP(3NAE2), but still not perfect,
e.g., it cannot be applied to the CSP over the disjoint union of two copies of K3.

2.4 3rd Step: Minor Conditions

Strong Maltsev conditions that appear naturally in the CSP theory or in Uni-
versal Algebra are often of an especially simple form, they involve no nesting
of function symbols. The third step in the basics of the algebraic theory was to
realize that this is also not a coincidence.

Definition 5. A strong Maltsev condition is called a minor condition if each
side of every equation contains exactly one occurrence of a function symbol.

In other words, each equation in a strong Maltsev condition is of the form
“symbol(variables) = symbol(variables)”.

Example 10. The condition in Example 8 is not a minor condition since, e.g.,
the left-hand side of the first equation involves three occurrences of function
symbols.
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The conditions in Example 9 are not minor conditions either since the right-
hand sides do not contain any function symbol. However, these conditions have
close friends which are minor conditions. For instance, the friend of the second
system is the minor condition

p(x, x, y) = p(y, y, y)
p(y, x, x) = p(y, y, y).

Note that this system is also satisfied in Pol(3LIN5) by the same interpretation
as in Example 9, that is, x + 4y + z (mod 5).

The following theorem is a strengthening of Theorem 2. We give only the
informal part of the statement, the precise formulation is analogous to Theo-
rem 2.

Theorem 3 ([7]). The complexity of CSP(A) (for finite A) depends only on
minor conditions satisfied by Pol(A).

Proof (sketch). The proof again follows the same pattern by further generalizing
pp-interpretations (to so called pp-constructions) and the Birkhoff HSP theorem.

2.5 Classification

Just like Theorems 1 and 2 give hardness criteria for CSPs, we get an improved
sufficient condition for NP-hardness as a corollary of Theorem 3.

Corollary 1. Let A be a finite relational structure which satisfies only trivial
minor conditions. Then CSP(A) is NP-complete.

Bulatov, Jeavons, and Krokhin have conjectured [16] that satisfying only triv-
ial minor conditions is actually the only reason for hardness2. Intensive efforts to
prove this conjecture, called the tractability conjecture or the algebraic dichotomy
conjecture, have recently culminated in two independent proofs by Bulatov and
Zhuk:

Theorem 4 ([17,30]). If a finite relational structure A satisfies a nontrivial
minor condition, then CSP(A) is in P.

Thus we now have a complete classification result: every finite structure either
satisfies a nontrivial minor condition and then its CSP is in P, or it does not and
its CSP is NP-complete. The proofs of Bulatov and Zhuk are very complicated
and it should be stressed out that the basic steps presented in this paper form
only a tiny (but important) part of the theory.

In fact, the third step did not impact on the resolution of the tractability
conjecture for CSP over finite domains at all. However, it turned out to be
significant for some generalizations of the CSP, including the generalization that
we discuss in the next section, the Promise CSP.
2 Their conjecture is equivalent but was, of course, originally stated in a different

language – the significance of minor conditions in CSPs was identified much later.
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3 PCSP

Many fixed-template CSPs, such as finding a 3-coloring of a graph or finding
a satisfying assignment to a 3SAT formula, are hard computational problems.
There are two ways how to relax the requirement on the assignment in order to
get a potentially simpler problem. The first one is to require a specified fraction
of the constraints to be satisfied. For example, given a satisfiable 3SAT input, is
it easier to find an assignment satisfying at least 90% of clauses? A celebrated
result of H̊astad [22], which strengthens the famous PCP Theorem [1,2], proves
that the answer is negative – it is still an NP-complete problem. (Actually, any
fraction greater than 7/8 gives rise to an NP-complete problem while the fraction
7/8 is achievable in polynomial time.)

The second type of relaxation, the one we consider in this paper, is to require
that a specified weaker version of every constraint is satisfied. For example, we
want to find a 100-coloring of a 3-colorable graph, or we want to find a valid
CSP(3NAE2) assignment to a true input of CSP(1IN3). This idea is formalized
in the following definition.

Definition 6. Let A = (A;RA
1 , RA

2 , . . . , RA
n) and B = (B;RB

1 , RB
2 , . . . , RB

n) be
two similar finite relational structures (that is, RA and RB have the same arity
for each i), and assume that there exists a homomorphism A → B. Such a pair
(A,B) is refered to as a PCSP template.

The PCSP over (A,B), denoted PCSP(A,B), is the problem to distinguish,
given a pp-sentence φ over the relational symbols R1, . . . , Rn, between the cases
that φ is true in A (answer “Yes”) and φ is not true in B (answer “No”).

For example, consider A = (A;RA, SA) and B = (B;RB, SB), where all the
relations are binary. An input to PCSP(A,B) is, e.g.,

(∃x1∃x2 . . . ∃x5) R(x1, x3) ∧ S(x5, x2) ∧ R(x3, x3).

The algorithm should answer “Yes” if the sentence is true in A, i.e., the following
sentence is true

(∃x1∃x2 . . . ∃x5) RA(x1, x3) ∧ SA(x5, x2) ∧ RA(x3, x3),

and the algorithm should answer “No” if the sentence is not true in B. In case
that neither of the cases takes place, we do not have any requirements on the
algorithm. Alternatively, we can say that the algorithm is promised that the
input satisfies either “Yes” or “No” and it is required to decide which of these
two cases takes place.

Note that the assumption that A → B is necessary for the problem to make
sense, otherwise, the “Yes” and “No” cases would not be disjoint. Also observe
that CSP(A) is the same problem as PCSP(A,A).

The search version of PCSP(A,B) is perhaps a bit more natural problem:
the goal is to find a B-satisfying assignment given an A-satisfiable input. Unlike
in the CSP, it is not known whether the search version can be harder than the
decision version presented in Definition 6.
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3.1 Examples

The examples below show that PCSPs are richer than CSP, both on the algo-
rithmic and the hardness side.

Example 11. Recall the structure Kk from Example 2 consisting of the inequality
relation on a k-element set. For k ≤ l, the PCSP over (Kk,Kl) is the problem to
distinguish between k-colorable graphs and graphs that are not even l-colorable
(or, in the search version, the problem to find an l-coloring of a k-colorable
graph).

Unlike for the case k = l, the complexity of this problem for 3 ≤ k < l
is a notorious open question. It is conjectured that PCSP(Kk,Kl) is NP-hard
for every k < l, but this conjecture was confirmed only in special cases: for
l ≤ 2k−2 [12] (e.g., 4-coloring a 3-colorable graph) and for a large enough k and
l ≤ 2Ω(k1/3) [23]. The algebraic development discussed in the next subsection
helped in improving the former result to l ≤ 2k − 1 [18] (e.g., 5-coloring a 3-
colorable graph).

Example 12. Recall the structure 3NAEk from Example 3 consisting of the
ternary not-all-equal relation on a k-element set. For k ≤ l, the PCSP over
(3NAEk, 3NAEl) is essentially the problem to distinguish between k-colorable 3-
uniform hypergraphs and 3-uniform hypergraphs that are not even l-colorable.

This problem is NP-hard for every 2 ≤ k ≤ l [19], the proof uses strong tools,
the PCP theorem and Lovász’s theorem on the chromatic number of Kneser’s
graphs [27].

Example 13. Recall from Example 4 that 1IN3 denotes the structure on the
domain E2 with the ternary “one-in-three” relation 1IN3. The PCSP over
(1IN3, 3NAE2) is the problem to distinguish between 3-uniform hypergraphs,
which admit a coloring by colors 0 and 1 so that exactly one vertex in each
hyperedge receives the color 1, and 3-uniform hypergraphs that are not even
2-colorable.

This problem, even its search version, admits elegant polynomial time algo-
rithms [14,15] – one is based on solving linear equations over the integers, another
one on linear programming. For this specific template, the algorithm can be fur-
ther simplified as follows.

We are given a 3-uniform hypergraph, which admits a coloring by colors 0
and 1 so that (x, y, z) ∈ 1IN3 for every hyperedge {x, y, z}, and we want to find
a 2-coloring. We create a system of linear equations over the rationals as follows:
for each hyperedge {x, y, z} we introduce the equation x + y + z = 1. By the
assumption on the input hypergraph, this system is solvable in {0, 1} ⊆ Q (in
fact, {0, 1}-solutions are the same as valid 1IN3-assignments). Solving equations
in {0, 1} is hard, but it is possible to solve the system in Q\{1/3} in polynomial
time by a simple adjustment of Gaussian elimination. Now we assign 1 to a
vertex x if x > 1/3 in our rational solution, and 0 otherwise. It is simple to see
that we get a valid 2-coloring.
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Interestingly, to solve PCSP(1IN3, 3NAE2), the presented algorithm uses a
CSP over an infinite structure, namely (Q \ {1/3};R), where R = {(x, y, z) ∈
(Q \ {1/3})3 : x + y + z = 1}. In fact, the infinity is necessary for this PCSP,
see [4] for a formal statement and a proof.

3.2 4th Step: Minor Conditions!

After the introduction of the PCSP framework, it has quickly turned out that
both the notion of a polymorphism and Theorem 1 have straightforward gener-
alizations.

Definition 7. Let A = (A;RA
1 , . . . ) and B = (B;RB

1 , . . . ) be two similar rela-
tional structures. A k-ary (total) function f : Ak → B is a polymorphism
of (A,B) if it is compatible with every pair (RA

i , RB

i ), that is, for all tuples
r1, . . . , rk ∈ RA

i , the tuple f(r1, . . . , rk) is in RB

i .
By Pol(A,B) we denote the set of all polymorphisms of (A,B).

Example 14. For every k which is not disible by 3, the k-ary “1/3-threshold”
function f : Ek

2 → E2 defined by

f(x1, . . . , xk) =
{

1 if
∑

xi/k > 1/3
0 else

is a polymorphism of the PCSP template (1IN3, 3NAE2) from Example 13. Any
PCSP whose template (over the domains E2 and E2) admits all these polymor-
phisms is in P [14,15].

Theorem 5 ([13]). The complexity of PCSP(A,B) depends only on Pol(A,B).

Proof (sketch). Proof is similar to Theorem 1 using [28] instead of [10,11,21].

Note that, in general, composition of polymorphisms is not even well-defined.
Therefore the second step, considering strong Maltsev conditions satisfied by
polymorphisms, does not make sense for PCSPs. However, minor conditions
make perfect sense and they do capture the complexity of PCSPs, as proved
in [18]. Furthermore, the paper [18] also provides an alternative proof by directly
relating a PCSP to a computational problem concerning minor conditions!

Theorem 6 ([18]). Let (A,B) be a PCSP template and M = Pol(A,B). The
following computational problems are equivalent for every sufficiently large N .

– PCSP(A,B).
– Distinguish, given a minor condition C whose function symbols have arity at

most N , between the cases that C is trivial and C is not satisfied in M.

Proof (sketch). The reduction from PCSP(A,B) to the second problem works as
follows. Given an input to the PCSP we introduce one |A|-ary function symbol
ga for each variable a and one |RA|-ary function symbol fC for each conjunct
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R(. . . ). The way to build a minor condition is quite natural, for example, the
input

(∃a∃b∃c∃d) R(c, a, b) ∧ R(a, d, c) ∧ . . .

to PCSP(1IN3, 3NAE2) is transformed to the minor condition

f1(x1, x0, x0) = gc(x0, x1)
f1(x0, x1, x0) = ga(x0, x1)
f1(x0, x0, x1) = gb(x0, x1)

f2(x1, x0, x0) = ga(x0, x1)
f2(x0, x1, x0) = gd(x0, x1)
f2(x0, x0, x1) = gc(x0, x1)

. . .

It is easy to see that a sentence that is true in A is transformed to a trivial
minor condition. On the other hand, if the minor condition is satisfied in M,
say by the functions denoted f ′

1, f
′
2, g

′
a, . . . , then the mapping a �→ g′

a(0, 1),
b �→ g′

b(0, 1), . . . gives a B-satisfying assignment of the sentence – this can be
deduced from the fact that f ′s and g′ are polymorphisms.

The reduction in the other direction is based on the idea that the question
“Is this minor condition satisfied by polymorphisms of A?” can be interpreted as
an input to CSP(A). The main ingredient is to look at functions as tuples (their
tables); then “f is a polymorphism” translates to a conjunction, and equations
can be simulated by merging variables.

Theorem 6 implies Theorem 3 (and its generalization to PCSPs) since the
computational problem in the second item clearly only depends on minor con-
ditions satisfied in M. The proof sketched above

– is simple and does not (explicitly) use any other results, such as the corre-
spondence between polymorphisms and pp-definitions used in Theorem 1 or
the Birkhoff HSP theorem used in Theorem 2, and

– is based on constructions which have already appeared, in some form, in sev-
eral contexts; in particular, the second item is related to important problems
in approximation, versions of the Label Cover problem (see [5,18]).

The theorem and its proof are simple, nevertheless, very useful. For exam-
ple, the hardness of PCSP(Kk,K2k−1) mentioned in Example 11 was proved
in [18] by showing that every minor condition satisfied in Pol(Kk,K2k−1) is sat-
isfied in Pol(3NAE2, 3NAEl) (for some l) and then using the NP-hardness of
PCSP(3NAE2, 3NAEl) proved in [19] (see Example 12).

4 Conclusion

The PCSP framework is much richer than the CSP framework; on the other
hand, the basics of the algebraic theory generalize from CSP to PCSP, as shown
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in Theorem 6. Strikingly, the computational problems in Theorem 6 are (promise
and restricted versions) of two “similar” problems:

(i) Given a structure A and a first-order sentence φ over the same signature,
decide whether A satisfies φ.

(ii) Given a structure A and a first-order sentence φ in a different signature,
decide whether symbols in φ can be interpreted in A so that A satisfies φ.

Indeed, CSP(A) is the problem (i) with A a fixed relational structure and φ a
pp-sentence (and PCSP is a promise version of this problem), whereas a promise
version of the problem (ii) restricted to a fixed A of purely functional signature
and universally quantified conjunctive first-order sentences φ is the second item
in Theorem 6. Variants of problem (i) appear in many contexts throughout
Computer Science. What about problem (ii)?
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Krokhin, A., Živný, S. (eds.) The Constraint Satisfaction Problem: Complexity
and Approximability, Dagstuhl Follow-Ups, vol. 7, pp. 1–44. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.
4230/DFU.Vol7.15301.1
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Abstract. We recently developed a general bifurcation analysis frame-
work for establishing the periodicity of certain time-varying random
walks. In this work, we look at the special case of lazy uniform-inflow
random walks and show how a much simpler version of the argument can
be used to resolve their analysis. We also revisit a renormalization tech-
nique for network sequences that we introduced earlier and we propose
a few simplifications. This work can be viewed as a gentle introduction
to Markov influence systems.
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1 Introduction

Markov chains have remarkably simple dynamics: they either mix toward a sta-
tionary distribution or oscillate periodically. The periodic regime can be easily
ruled out by introducing self-loops; thus, from a dynamical-systems perspec-
tive, Markov chains are essentially trivial. Not so with time-varying Markov
chains [1,4–12,14]. We recently introduced Markov influence systems (MIS ) to
model random walks in graphs whose transition probabilities and topologies
change over time endogenously [3]. The presence of a feedback loop, through
which the next graph is chosen as a function of the current distribution of the
walk, plays a crucial role. Indeed, the dynamics ranges over the entire spectrum
from fixed-point attraction to chaos. This stands in sharp contrast to not only
classical Markov chains but also time-varying chains whose temporal changes
are driven randomly [1].
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We showed that, if the Markov chains used at each step are irreducible, then
the MIS is almost surely asymptotically periodic [3]. We prove a similar result
in the next section, but for a different family of random walks, called uniform-
inflow. Though the proof borrows much of the architecture of our previous one, it
is much simpler and can be viewed as a gentle introduction to Markov influence
systems.

The main weakness of our bifurcation analysis is to impose topological restric-
tions on the graphs. As a step toward overcoming this limitation, we have devel-
oped a renormalization technique for graph sequences [3]. The motivation was
to extend the standard classification of Markov chain states to the time-varying
case. We revisit this technique in Sect. 3 and propose a number of useful simpli-
fications.

2 Time-Varying Random Walks

Recall the definition of a Markov influence system [3]. Let Sn−1 be the probability
simplex

{
x ∈ R

n | x ≥ 0 , ‖x‖1 = 1
}

and let S denote set of all n-by-n row-
stochastic matrices. An MIS is a discrete-time dynamical system with phase
space S

n−1, which is defined by the map f : x� �→ f(x) := x�S(x), where
x ∈ S

n−1 and S is a piecewise-constant function S
n−1 �→ S over the cells {Ck}

of a hyperplane arrangement H within S
n−1 (Fig. 1); over the discontinuities

h ∩ S
n−1 (h ∈ H), we define f as the identity.1

Fig. 1. The arrangement H consists of three hyperplanes. Each cell Ci in the simplex
S

n−1 is associated with a stochastic matrix defining the map f over it. The figure
shows the first two iterates of x under f . The case |H| = 0 corresponds to an ordinary
random walk.

We focus our attention on lazy uniform-inflow random walks: each matrix
S(x) is associated with a probability distribution (p0(x), . . . , pn(x)) ∈ S

n, such
that S(x)ij = pj(x) + δijp0(x) and δij is the Kronecker delta. The cases p0(x) =

1 The discontinuities can also be chosen to be real-algebraic varieties.
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0, 1 are both trivial, so we may assume that 0 < p0(x) < 1. Thus, any given S(x)
is the transition matrix of a lazy random walk. We state our main result:

Theorem 1. Every orbit of a lazy uniform-inflow Markov influence system is
almost surely asymptotically periodic.

Note that lazy uniform-inflow random walks are not necessarily irreducible,
so the theorem does not follow from [3].2 In the remainder of this section, we
discuss the meaning of the result and then we prove it. The orbit of x ∈ S

n−1 is
the infinite sequence (f t(x))t≥0 and its itinerary is the corresponding sequence
of cells Ci’s visited in the process. The orbit is periodic if f t(x) = fs(x) for any
s = t modulo a fixed integer. It is asymptotically periodic if it gets arbitrarily
close to a periodic orbit over time. The discontinuities in the map f occur at the
intersections of the simplex S

n−1 with the hyperplanes {x ∈ R
n |a�

i x = 1} of H.
The hyperplanes are perturbed into the form a�

i x = 1 + δ, for δ ∈ Ω = [−ω, ω]
and ω > 0. Assuming that H is in general position, ω can always be chosen small
enough so that the perturbed arrangement remains topologically invariant over
all δ ∈ Ω. Theorem 1 follows from the existence of a set of Lebesgue measure
zero (coverable by a Cantor set of Hausdorff dimension less than one) such that,
for any δ ∈ Ω outside of it, there is a finite set of stable periodic orbits (ie,
discrete limit cycles) such that every orbit is asymptotically attracted to one of
them.

It is useful to begin with a few observations about the stochastic matrices
involved in lazy uniform-inflow random walks:

1. The matrix S(x) can be written as

p0(x)I + 1
(
p1(x), . . . , pn(x)

)
(1)

and it has the unique stationary distribution π(x) = 1
1−p0(x)

(
p1(x), . . . ,

pn(x)
)
. The family of such matrices is closed under composition. Indeed,

S(x)S(y) = q0I + 1
(
q1, . . . , qn

)
,

where q0 = p0(x)p0(y) and, for i > 0, qi = pi(x)p0(y) + pi(y).
2. Let M be the (finite) set of all the matrices S(x) that arise in the defini-

tion of f . We just saw that p0(x) is multiplicative. In this case, it is equal
to the coefficient of ergodicity of the matrix [13], which is defined as half
the maximum �1-distance between any two of its rows. By our assumption,
τ := supx p0(x) < 1. Given M1, . . . , Mk ∈ M, if π denotes the stationary
distribution of M1 · · · Mk, then

{
M1 · · · Mk = qI + (1 − q)1π�

diam�∞
(
S

n−1M1 · · · Mk

)
= q ≤ τk.

(2)

2 For example, the lazy random walk specified by the matrix
(

1 0
0.5 0.5

)
is not irreducible.

Also, unlike in [3], we do not require the matrices to be rational.
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Let D be the union of the discontinuities (defined by the intersection of
the perturbed hyperplanes with the simplex), for some fixed δ ∈ Ω. Put Zt =⋃

0≤k≤t f−k(D) and Z =
⋃

t≥0 Zt and note that Zν = Zν−1 implies that Z = Zν .
Indeed, suppose that Zt+1 ⊃ Zt for t ≥ ν; then, f t+1(y) ∈ D but f t(y) 
∈ D for
some y ∈ S

n−1; in other words, fν(x) ∈ D but fν−1(x) 
∈ D for x = f t−ν+1(y),
which contradicts the equality Zν = Zν−1. The key to periodicity is to prove
that ν is finite.3

Lemma 1. There is a constant c > 0 such that, for any ε > 0, there exist an
integer ν ≤ c log(1/ε) and a finite union K of intervals of total length at most ε
such that Zν = Zν−1, for any δ ∈ Ω \ K.

Proof of Theorem 1. The theorem can be shown to follow from Lemma 1 by using
an argument from [3]. We reproduce the proof here for the sake of completeness.
The polyhedral cells defined by the connected components of the complement
of Z = Zν form the continuity pieces of fν+1: by continuity, each one of them
maps, under f , not simply to within a single cell of D but actually to within
a single cell of Z itself.4 This in turn implies the eventual periodicity of the
symbolic dynamics. Once an itinerary becomes periodic at time to with period
σ, the map f t can be expressed locally by matrix powers. Indeed, divide t − to
by σ and let q be the quotient and r the remainder; then, locally, f t = gq ◦f to+r,
where g is specified by the stochastic matrix of a lazy, uniform-inflow random
walk, which implies convergence to a periodic point. In fact, better than that,
we know from (2) that the matrix corresponds to a random walk that mixes to
a unique stationary distribution, so the attracting periodic orbits are stable and
there are only a finite number of them.

To complete the proof, we apply Lemma 1 repeatedly, with ε = 2−l for l =
1, 2, . . . and denote by Kl be the corresponding union of “forbidden” intervals.
Define Kl =

⋃
j≥l Kj and K∞ =

⋂
l>0 Kl; then Leb(Kl) ≤ 21−l and hence

Leb(K∞) = 0. Theorem 1 follows from the fact that any δ ∈ Ω outside of K∞

lies outside of Kl for some l > 0. �

As in [3], we begin the proof of Lemma 1 with a discussion of the symbolic
dynamics of the system. Given Δ ⊆ Ω, let Lt

Δ denote the set of t-long prefixes
of any itinerary for any starting position x ∈ S

n−1 and any δ ∈ Δ. Fix ρ > 0
and define Dρ =

{
[kρ, (k + 1)ρ] ∩ Ω | k ∈ Z

}
.

Lemma 2. There is a constant b > 0 such that, for any real ρ > 0 and any
integer T > 0, there exist tρ ≤ b log(1/ρ) and V ⊆ Dρ of size at most bT

such that, for any Δ ∈ Dρ \V , any integer t ≥ tρ, and any σ ∈ Lt
Δ, we have∣

∣ {
σ′ |σ · σ′ ∈ Lt+T

Δ

} ∣
∣ ≤ b.

3 The constants in this paper may depend on any of the input parameters, such as
the dimension n, the number of hyperplanes, the hyperplane coefficients, and the
matrix elements.

4 Indeed, if that were not the case, then some x in a cell of Z, thus outside of Z, would
be such that f(x) ∈ Z = Zν−1. It would follow that fk(x) ∈ D, for k ≤ ν; hence
x ∈ Zν = Z, a contradiction.
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Proof. Given M1, . . . , Mk ∈ M, let ϕk(x) = x�M1 · · · Mk for x ∈ R
n and k ≤ T ;

and let hδ : a�x = 1 + δ be some hyperplane in R
n. Let hΔ :=

⋃
δ∈Δ hδ and

X = x + ρ[−1, 1]n, for x ∈ S
n−1. We define an exclusion zone U outside of

which the T iterated images of X can meet hΔ at most once. This is a general
position claim much stronger than the one we used in [3] and closer in spirit
to a dimensionality argument for planar contractions from [2] that inspired our
approach.

Claim A. For some constant d > 0 (independent of ρ), there exists U ⊆ Dρ of
size at most dT 2 such that, for any Δ ∈ Dρ\U and x ∈ S

n−1, there are at most
one integer k ≤ T such that ϕk(X) ∩ hΔ 
= ∅.

Proof. The crux of the claim is that it holds for any probability distribution x.
We assume the existence of two integers j < k ≤ T such that ϕi(X)∩hΔ 
= ∅, for
i = j, k and Δ ∈ Dρ. We draw the consequences and then negate them in order to
rule out the assumption: this, in turn, specifies the set U . The assumption implies
the existence of δ and x ∈ S

n−1 such that |(x+u)T M1 · · · Mja− (1 + δ)| ≤ doρ,
with ‖u‖∞ ≤ ρ and constant do > 0. Likewise, we have |(x + u′)T M1 · · · Mka −
(1 + δ)| ≤ doρ, with ‖u′‖∞ ≤ ρ. Writing v = xT M1 · · · Mj , we have |vTa− (1 +
δ)| ≤ d′

o ρ and |vT Mj+1 · · · Mka − (1 + δ)| ≤ d′
o ρ, for constant d′

o dependent on
a. By (1), Mj+1 · · · Mk = q0I + 1(q1, . . . , qn), for some (q0, . . . , qn) ∈ S

n. Since
v ∈ S

n−1, it follows that
∣
∣ q0vTa + (q1, . . . , qn)a − (1 + δ)

∣
∣ ≤ d′

o ρ;

hence |δ + 1 − (q1, . . . , qn)a/(1 − q0))| ≤ 2d′
oρ/(1 − τ). To rule out the previous

condition, we must keep δ outside of O(1/(1 − τ)) intervals of Dρ. The claim
follows from the fact that the number of products Mj+1 · · · Mk is quadratic
in T . �

To complete the proof of Lemma 2, we define V as the union of the sets U
formed by applying Claim A to each one of the hyperplanes hδ of H and every
possible sequence of T matrices in M; hence |V | ≤ bT for constant b > 0. We fix
Δ ∈ Dρ\V and consider the (lifted) phase space S×Δ for the dynamical system
induced by the map f↑ :

(
x�, δ) �→ (x�S(x), δ

)
. A continuity piece Υt for f t

↑ is a
maximal polyhedron within S

n−1 × Δ over which the t-th iterate of f↑ is linear.
Given any sequence M1, . . . , Mk in M, recall from (2)

that diam�∞
(
S

n−1M1 · · · Mk

)
≤ τk. This implies the existence of an integer

tρ ≤ b log(1/ρ) (raising the previous constant b if necessary) such that, for any
t ≥ tρ, f t

↑(Υt) ⊆ (x + ρIn) × Δ, for some x = x(t, Υt) ∈ S
n−1. Consider a nested

sequence Υ1 ⊇ Υ2 ⊇ · · · . Note that Υ1 is a polyhedral cell within S
n−1 × Δ and

fk
↑ (Υk+1) ⊆ fk

↑ (Υk). There is a split at k if Υk+1 ⊂ Υk. Observe that, by Claim
A, given any t ≥ tρ, there are at most a constant number b1 of splits between
t and t + T (at most one per hyperplane of H). It follows that the number of
nested sequences is bounded by the number of leaves in a tree of height T with
at most b1 nodes of degree greater than 1 along any path. Lemma 2 follows from
the fact that no node has more than a constant number of children. �
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Proof of Lemma 1. We use the notation of Lemma 2 and set T to a large enough
constant. Fix ε > 0 and set ρ = 1

2ε/|V |, and ν = tρ + kT , where k = T log(1/ε).
Since tρ ≤ b log(1/ρ), note that ν = O(log 1/ε). Let P = M1 · · · Mν , where
M1, . . . , Mν is the matrix sequence matching an element of Lν

Δ, for Δ ∈ Dρ\V .
By (2), diam�∞

(
S

n−1 P
)

≤ τν , so there is a point xP such that, given any point
y ∈ S

n−1 whose ν-th iterate fν(y) = zT is specified by zT = yT P , we have
‖xP −z‖∞ ≤ τν . Given a discontinuity hδ : a�

i x = 1+δ of the system, the point
z lies on one side of hδ if and only if xP lies on the (relevant) side of some hδ′ ,
for |δ′ − δ| ≤ c1τ

ν , for constant c1 > 0. Thus, adding an interval of length c2τ
ν

to V , for constant c2 large enough (independent of T ), it is the case that, for
any h ∈ H, it holds that, for all y ∈ S

n−1, the ν-th iterates fν(y) specified by
P all lie strictly on the same side of hδ, for any δ ∈ Δ. We repeat this operation
for every string Lν

Δ and each one of the (at most) 1/ρ intervals Δ ∈ Dρ \V .
This increases the length Leb(V ) covered by V from its original ρ|V | = ε/2 to
ρ|V | + c2|Lν

Δ|τν/ρ ≤ ε. This last inequality follows from:

(ρε)−1|Lν
Δ| ≤ (ρε)−1c

tρ

3 bk [ for constant c3 independent of T ]

≤ 2c
tρ

3 bk+T 4k/T [ 1/ρε ≤ 2bT /ε2 ≤ 2bT 4k/T ]

≤ 2cb2k
3 bk+T 4k/T [ tρ ≤ b log(1/ρ) ≤ b2T log(1/ε) ]

≤ T k ≤ τ−ν/(2c2). [ for T large enough ]

Thus, for any δ ∈ Ω outside a set of intervals covering a length at most ε, no
fν(x) lies on a discontinuity. It follows that, for any such δ, we have Zν = Zν−1.

�

This completes the proof of Theorem 1.

3 Revisiting Network Sequence Renormalization

In [3], we proposed a mechanism for expressing an infinite sequence of networks
as a hierarchy of graph clusters. The intention was to generalize to the time-
varying case the standard classification of the states of a Markov chain. We
review the main parts of this “renormalization” technique and propose a num-
ber of simplifications along the way. Our variant maintains the basic division of
the renormalization process into temporal and topological parts, but it simpli-
fies the overall procedure. For example, the new grammar includes only three
productions, as opposed to four.

Throughout this discussion, a digraph is a directed graph with vertices in
[n] := {1, . . . , n} and a self-loop attached to each vertex. Graphs and digraphs
(words we use interchangeably) have no multiple edges. A digraph sequence g =
(gk)k>0 is an ordered (possibly infinite) list of digraphs over the same vertex set
[n]. We define the product gi ×gj as the digraph consisting of all the edges (x, y)
with an edge (x, z) in gi and another one (z, y) in gj for at least one vertex z.
The operation × is associative but not commutative; it corresponds roughly to
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matrix multiplication. The digraph
∏

≤k g = g1 × · · · × gk is called a cumulant
and, for finite g, we write

∏
g = g1 × g2 × · · ·

The cumulant links all the pairs of vertices that can be joined by a tem-
poral walk of a given length. The mixing time of a random walk on a (fixed)
graph depends on the speed at which information diffuses and, in particular,
how quickly the cumulant becomes transitive. In the time-varying case, mixing
is a more complicated proposition, but the emergence of transitive cumulants is
still what guides the parsing process.

An edge (x, y) of a digraph g is leading if there is u such that (u, x) is
an edge of g but (u, y) is not. The non-leading edges form a subgraph of g,
which is denoted by tf (g) and called the transitive front of g. For example,
tf (x → y → z) is the graph over x, y, z with the single edge x → y (and the
three self-loops); on the other hand, the transitive front of a directed cycle over
three or more vertices has no edges besides the self-loops. We denote by cl(g)
the transitive closure of g: it is the graph that includes an edge (x, y) for any
two vertices x, y with a path from x to y. Note that tf (g) � g � cl(g).

• An equivalent definition of the transitive front is that the edges of tf (g) are
precisely the pairs (i, j) such that Ci ⊆ Cj , where Ck denotes the set of
vertices l such that (l, k) is an edge of g. Because each vertex has a self-loop,
the inclusion Ci ⊆ Cj implies that (i, j) is an edge of g. If g is transitive, then
tf (g) = g. The set-inclusion definition of the transitive front shows that it
is indeed transitive: ie, if (x, y) and (y, z) are edges, then so is (x, z). Given
two graphs g, h over the same vertex set, we write g � h if all the edges of
g are in h (with strict inclusion denoted by the symbol ≺). Because of the
self-loops, g, h � g × h.

• A third characterization of tf (g) is as the unique largest graph h over [n]
such that g × h = g: we call this the maximally-dense property of the tran-
sitive front, and it is the motivation behind our use of the concept. Indeed,
the failure of subsequent graphs to grow the cumulant implies a structural
constraint on them. This is the sort of structure that parsing attempts to
tease out.

A graph sequence g = (gk)k>0 can be parsed into a rooted tree whose leaves
are associated with g1, g2, . . . from left to right. The purpose of the parse tree
is to track the creation of new temporal walks over time. This is based on the
observation that, because of the self-loops, the cumulant

∏
≤k g is monotonically

nondecreasing with k (with all references to graph ordering being relative to �).
If the increase were strict at each step, then the parse tree would look like
a fishbone. The cumulant cannot grow forever, obviously, and parsing is what
tells us what to do when it reaches its maximum size. The underlying grammar
consists of three productions: (1a) and (1b) renormalize the graph sequence along
the time axis, while (2) creates the hierarchical clustering of the graphs in the
sequence g.
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1. Temporal renormalization. We express the sequence g in terms of
minimal subsequences with cumulants equal to

∏
g. There is a unique

decomposition
g = g1, gm1 , . . . ,gk, gmk

,gk+1

such that
(i) g1 = g1, . . . , gm1−1; gi = gmi−1+1, . . . , gmi−1 (1 < i ≤ k); and gk+1 =

gmk+1, . . . .
(ii)

(∏
gi

)
× gmi

=
∏

g, for any i ≤ k; and
∏

gi ≺
∏

g, for any i ≤ k + 1.
The two productions below create the temporal parse tree. Unless specified
otherwise, the node corresponding to the sequence g is annotated by the
transitive graph cl(

∏
g), called its sketch.

• Transitivization. Assume that
∏

g is not transitive. We define h =
tf (

∏
g) and note that h ≺

∏
g. It follows from the maximally-dense

property of the transitive front that k = 1. Indeed, k > 1 would imply
that

∏
g =

(∏
g2

)
× gm2 � tf

{(∏
g1

)
× gm1

}
= tf (

∏
g), which would

contradict the non-transitivity of
∏

g. We have g = g1, gm1 ,g2 and the
production

g −→
(
g1

)
gm1

(
(g2) � h

)
. (1a)

In the parse tree, the node for g has three children: the first one serves as
the root of the temporal parse subtree for g1; the second one is the leaf
associated with the graph gm1 ; the third one is a special node annotated
with the label �h, which serves as the parent of the node rooting the parse
subtree for g2. The purpose of annotating a special node with the label
�h is to provide an intermediate approximation of

∏
g2 that is strictly

finer than the transitive closure. These coarse-grained approximations
form the sketches. Note that special nodes have only one child.

• Cumulant completion. Assume that
∏

g is transitive. We have the
production

g −→
(
g1

)
gm1

(
g2

)
gm2 · · ·

(
gk

)
gmk

(
gk+1

)
. (1b)

Note that the index k may be infinite and any of the subsequences gi

might be empty (for example, gk+1 if k = ∞).
2. Topological renormalization. Network renormalization exploits the fact

that the information flowing across the system might get stuck in portions of
the graph for some period of time: when this happens, we cluster the graphs
using topological renormalization. Each nonspecial node v of the temporal
parse tree is annotated by the sketch cl(

∏
g), where g is the graph sequence

formed by the leaves of the subtree rooted at v. In this way, every path
from the root of the temporal parse tree comes with a nested sequence of
sketches h1 � · · · � hl (for both special and nonspecial nodes). Pick two
consecutive ones, hi, hi+1: these are two transitive graphs whose strongly
connected components, therefore, are cliques. Let V1, . . . , Va and W1, . . . , Wb

be the vertex sets of the cliques corresponding to hi and hi+1, respectively.
Since hi+1 is a subgraph of hi, it follows that each Vi is a disjoint union of
the form Wi1 ∪ · · · ∪ Wisi

.
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• Decoupling. We decorate the temporal parse tree with additional trees
connecting the sketches along its paths. These topological parse trees are
formed by all the productions of the type:

Vi −→ Wi1 · · · Wisi
. (3)

A sketch at a node v of the temporal tree can be viewed as an acyclic
digraph over cliques: its purpose is to place limits on the movement of the
probability mass in any temporal random walk corresponding to the leaves
of the subtree rooted at v. In particular, it indicates how decoupling might
arise in the system over certain time intervals specified by the temporal
parse tree.

The maximum depth of the temporal parse tree is O(n2) because each child’s
cumulant loses at least one edge from its parent’s (or grandparent’s) cumulant.
To see why the quadratic bound is tight, consider a bipartite graph V = L ∪
R, where |L| = |R| and each pair from L × R is added one at a time as a
bipartite graph with a single nonloop edge; the leftmost path of the parse tree
is of quadratic length.

Left-to-Right Parsing. The temporal tree can be built on-line by scanning the
graph sequence g with no need to back up. Let g′ denote the sequence formed by
appending the graph g to the end of the finite graph sequence g. If g is empty,
then the tree T (g′) consists of a root with one child labeled g. If g is not empty
and

∏
g ≺

∏
g′, the root of T (g′) has one left child formed by the root of T (g)

as well as a right child (a leaf) labeled g. Assume now that g is not empty and
that

∏
g =

∏
g′. Let v be the lowest internal nonspecial node on the rightmost

path of T (g) such that cv × g = cv, where cu denotes the product of the graphs
associated with the leaves of the subtree rooted at node u of T (g). Let w be
the rightmost child of v; note that v and w always exist (the latter because v is
internal). We explain how to form T (g′) by editing T (g).

1. If cv is transitive and w is a leaf. Referring to (1b), v and w correspond to
g and gmk

, respectively, and (gk+1) is empty. If g = cv, then (gk+1) remains
empty while gmk+1 = g is created: accordingly, we attach a leaf to v as its new
rightmost child and we label it g. On the other hand, if g ≺ cv, then gk+1

becomes the sequence consisting of g, so we attach a new rightmost child z
to v and then a single leaf to z, which we label g, so as to form (gk+1).

2. If cv is transitive and w is not a leaf. Again, referring to (1b), v and w
correspond to g and the root of (gk+1), respectively. If cw × g = cv, then
g = gmk+1 , so we attach a leaf to v as its new rightmost child and we label
it g. On the other hand, if cw × g ≺ cv, then g is appended to the sequence
gk+1. Because cw ≺ cw × g, we create a node z with w as its left child and, as
its right child, a leaf labeled g: we attach z as the new rightmost child of v.

3. If cv is not transitive and w is a leaf. Referring to (1a), v and w correspond to
g and gm1 , respectively, and (g2) is empty. We know that g � �tf (cv) ≺ cv.
Accordingly, we give v a new rightmost child z, which we make into a special
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node and annotate with the label �tf (cv). We attach a leaf to z and label
it g.

4. If cv is not transitive and w is not a leaf. It follows then that w is a special
node; let w′ be its unique child. Referring to (1a), v and w correspond to g
and the root of (g2), respectively. Because cw ≺ cw × g � �tf (cv) ≺ cv, we
create a node z with w′ as its left child and, as its right child, a leaf labeled
g: we attach z as the new unique child of the special node w.

Undirected Graphs. For our purposes, a graph is called undirected if any edge
(x, y) with x 
= y comes with its companion (y, x). Consider a sequence of undi-
rected graphs over [n]. We begin with the observation that the cumulant of a
sequence of undirected graphs might itself be directed; for example, the product
g1×g2 = (x ↔ y z)×(x y ↔ z) has a directed edge from x to z but not from
z to x. We can use undirectedness to strengthen the definition of the transitive
front. Recall that tf (g) is the unique maximal graph h such that g × h = g. Its
purpose is the following: if g is the current cumulant, the transitive front of g
is intended to include any edge that might appear in subsequent graphs in the
sequence without extending any path in g. Since, in the present case, the only
edges considered for extension will be undirected, we might as well require that
h itself (unlike g) should be undirected. In this way, we redefine the transitive
front, now denoted by utf (g), as the unique maximal undirected graph h such
that g × h = g. Its edge set includes all the pairs (i, j) such that Ci = Cj .
Because of self-loops, the condition implies that (i, j) is an undirected edge of
g. This forms an equivalence relation among the vertices, so that utf (g) actu-
ally consists of disconnected, undirected cliques. To see the difference with the
directed case, we take our previous example and note that tf (g1 × g2) has the
edges (x, y), (x, z), (y, z), (z, y) in addition to the self-loops, whereas utf (g1×g2)
has the single undirected edge (y, z) plus self-loops.

As observed in [3], the depth of the parse tree can still be as high as quadratic
in n. Here is a variant of the construction. Given a clique Ck over k vertices
x1, . . . , xk at time t, attach to it, at time t + 1, the undirected edge (x1, y). The
cumulant gains the undirected edge (x1, y) and the directed edges (xi, y) for
i = 2, . . . , k. At time t+2, . . . , t+ k, visit each one of the k − 1 undirected edges
(x1, xi) for i > 1, using single-edge undirected graphs with self-loops. Each such
step will see the addition of a new directed edge (y, xi) to the cumulant, until
it becomes the undirected clique Ck+1. The quadratic lower bound on the tree
depth follows immediately.
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Abstract. It is attempted to elucidate a number of known dynamic
data structures that come close to using the absolutely minimal amount
of space, and their connections and ramifications are explored.
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1 Introduction

The study of space-efficient data structures has a long tradition. Many early such
data structures are static, i.e., they support queries about the object represented,
but do not allow changes to that object. A well-known example are (static) rank-
select structures [4,5,8,18,25], which represent bit vectors and support queries
for sums over given prefixes (rank) and for shortest prefixes with given sums
(select). A data structure D capable of representing an arbitrary object drawn
from a nonempty finite set S, any two elements of which can be distinguished
with queries supported by D, must store its state in at least �log |S|� bits—we
will use “log” throughout to denote the binary logarithm function log2. If S
depends on one or more parameters, D is often said to be succinct if the number
of bits occupied by D is L + o(L), where L = �log |S|�, i.e., “the information-
theoretic lower bound plus lower-order terms”. This text offers a personal view
of a small number of data structures that belong to the rarer species of dynamic
space-efficient data structures, ones that support update operations, and that are
also highly succinct. While no general definition of the latter term is proposed,
here a highly succinct data structure can be taken to be one that occupies
L + (log L)O(1) bits, where L is defined as above.

The data structures surveyed here are all very basic and low-level. We first
describe a data structure, due to Dodis, Pǎtraşcu and Thorup [6], that allows
arrays of nonbinary values (e.g., ternary values drawn from {0, 1, 2}) to be real-
ized on a usual binary computer with constant-time access, yet almost no space
wasted. We then turn to the so-called in-place chain technique [22] and end with
several of its applications, first to the constant-time initialization of arrays [22],
then to the constant-time initialization of more general data structures [20], and
finally to the realization of so-called choice dictionaries [11,12,14,21].

Our model of computation reflects what is available in a programming lan-
guage like C on a present-day computer. The memory is divided into words,
c© Springer Nature Switzerland AG 2019
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each word holds a bit pattern that may be interpreted as a nonnegative inte-
ger or a pointer to another word, and each instruction manipulates a constant
number of words and is assumed to take constant time. Space-efficient algo-
rithms and data structures need to “get at” the single bits in a word, for which
reason we assume the availability not only of instructions for operations like
integer multiplication and division, but also for bitwise Boolean operations and
bit shifts by a variable number of bit positions. Technically, the model of com-
putation is a word RAM [3,10]. We also assume that �log x� can be computed
from x ∈ N = {1, 2, . . .} in constant time, as this operation has the dedicated
instruction bsr (bit scan reverse) in modern CPUs.

2 Collections of Nonbinary Values

Let A be a positive integer and suppose that we want to remember a value a of
which we know only that it belongs to the set [A] = {0, . . . , A−1}. Then we can
store the �log A�-bit binary representation of a, which allows us to inspect a and
to replace it by another value drawn from [A] in constant time. In some sense,
nearly a whole bit may be wasted, for A = 17, e.g., but this is unavoidable—there
is clearly no way to store a in fewer than �log A� bits.

If we want to store not one value a, but n values a1, . . . , an ∈ [A], for some
n ∈ N, we can handle the values independently using the same method, but then
the total number of bits used will be n�log A�. Another possibility is to store (the
binary representation of) the single number α =

∑n−1
i=0 ai+1 · Ai, i.e., the n-digit

A-ary integer with digits a1, . . . , an (in the order from least to most significant).
We have 0 ≤ α < An, so α can be represented in just �log An� = �n log A� bits,
which is optimal and may be almost n bits less than the n�log A� bits needed
by the other method. The flip side is that it becomes harder to get at the digits
“hidden” in α. For i = 1, . . . , n, ai = �α/Ai−1� mod A, and unless we assume
the availability of constant-time exponentiation—which we will not—constant
time for reading and writing individual digits seems achievable only if we store
the powers A0, . . . , An−1, which defeats the original goal of using little space. An
even more serious problem with the approach is that unless n is quite small, it is
not realistic to assume that integers almost as large as An can be manipulated
in constant time. The rest of the section describes a simple and beautiful data
structure, due to Dodis et al. [6], that gets around these problems and achieves
constant time for reading and writing while using little more than �n log A� bits
and keeping all integers polynomial in n + A.

2.1 Data Representation and Space Analysis

We will assume that the elements of the index set V = {1, . . . , n} are organized
in a binary tree T = (V,E), which we take to be an ordered intree. In a first
instance, we generalize the problem by allowing av, for each node v ∈ V , to
come from its own individual domain [Av], where Av ∈ N. Imagine a bottom-up
computation in T in which each node v ∈ V receives positive integers PL

v and PR
v
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from its left and right child, respectively, also inputs Av and produces positive
integers Bv and Pv, of which Pv is sent to the parent of v, if any (see Fig. 1).
If the left and/or right child of v is not present, (e.g., v may be a leaf in T ),
the missing PL

v and/or PR
v is given the default value 1. For x ≥ 1, denote by

��x�� = 2�log x� the smallest power of 2 no smaller than x. The computation at v
takes the following precise form:

Bv := ��PL
v PR

v

√
Av ��;

Pv := �Av/�Bv/(PL
v PR

v )��;
While these formulas may not be very intuitive, it is simple to verify that if

the input values PL
v , PR

v and Av are positive integers, then so are the output
values Bv and Pv. Moreover, if A = maxv∈V Av, then Pv ≤ A and, by easy
induction, Bv ≤ 2A2.5 for all v ∈ V .

Fig. 1. The computation at a single node v (left) and in a complete tree T (right).

Let r be the root of T and write P for Pr. The plan is to represent a1, . . . , an

via integers b1, . . . , bn, p (which are in turn stored in binary) with bv ∈ [Bv] for
v = 1, . . . , n and p ∈ [P ]. In order to investigate whether this is economical
in terms of space, let us define Rv, for each node v ∈ V , as the sum of the
logarithms of the outputs of v minus the sum of the logarithms of the inputs
of v, i.e.,

Rv = log Bv + log Pv − log PL
v − log PR

v − log Av.

Intuitively, Rv is the “information loss” at the node v. We will show on the one
hand that Rv is small for all v ∈ V (under some assumptions) and on the other
hand that

∑
v∈V Rv is essentially the amount by which the space used overshoots

the minimum space possible. The latter argument is more elegant: Because the
“P contributions” to

∑
v∈V Rv form a “tree-shaped telescoping sum” (one node’s

P (added) is another node’s PL or PR (subtracted)),
∑

v∈V

Rv =
∑

v∈V

log Bv + log P −
∑

v∈V

log Av.
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Since Bv is a power of 2 for all v ∈ V , the number of bits used by our represen-
tation is exactly

∑

v∈V

log Bv + �log P � =

⌈
∑

v∈V

log Av +
∑

v∈V

Rv

⌉

. (1)

On the other hand, �∑v∈V log Av� = �log
∏

v∈V Av� is the minimum number of
bits required to store a1, . . . , an. It is clearly of interest to bound Rv for all v ∈ V .
To gain intuition, observe that if we were to compute Pv without rounding as
Av/(Bv/(PL

v PR
v )) = AvPL

v PR
v /Bv, then Rv would be exactly zero. Thus the task

at hand is to bound the effect of rounding in the formula �Av/�Bv/(PL
v PR

v )��.
Fix v ∈ V and assume that Av ≥ 4. It is easy to see that with Qv =

Bv/(PL
v PR

v ),
√

Av ≤ Qv < 2
√

Av. Thus

�Qv� ≥ Qv − 1 = Qv(1 − 1/Qv) ≥ Qv(1 − 1/
√

Av)

and, since 1/(1 − ε) ≤ 1 + 2ε for 0 ≤ ε ≤ 1/2,

Pv =
⌈

Av

�Qv�
⌉

≤ Av/Qv

1 − 1/
√

Av

+ 1 ≤ Av

Qv

(

1 +
2√
Av

+
Qv

Av

)

≤ Av

Qv

(

1 +
4√
Av

)

and

Rv = log Pv + log Qv − log Av ≤ log(1 + 4/
√

Av) ≤ (4 log e)/
√

Av.

Since 4 log e ≤ √
34—a crude numerical bound—it follows that if Av ≥ 34n2 for

all v ∈ V , then
∑

v∈V Rv ≤ 1 and the right-hand side of Eq. (1) is bounded
by �∑v∈V Av� + 1, i.e., our data structure uses at most one bit more than the
absolute minimum. (Dodis et al. [6] argue that in the special case A1 = · · · = An,
even the + 1 can be squeezed out of the space bound.)

2.2 Reading and Writing

We still need to see how to represent a1, . . . , an via b1, . . . , bn, p and, above all,
how to read and write an av stored in this manner. Write N0 = N ∪ {0} and,
for p ∈ N, let fp : N0 → N0 × [p] be the function depicted in the left subfigure
of Fig. 2, i.e., fp(z) = (�z/p�, z mod p) for all z ∈ N0. For all p ∈ N, fp is a
bijection from N0 to N0 × [p], and its inverse f−1

p : N0 × [p] → N0 is illustrated
in the middle subfigure of Fig. 2. The function fp writes its argument as two
digits in a mixed-radix positional system whose least significant base is p, and
f−1

p recomposes the two digits to a single integer. In particular, for all p, q ∈ N,
f−1

p maps [q] × [p] bijectively to [pq].
Let G be the graph obtained from T by replacing each node v ∈ V by the

subgraph Hv shown in the right subfigure of Fig. 2. G can be viewed as a com-
putational DAG with inputs, inner nodes that compute outgoing values from
incoming values, and outputs, and we define the representation (b1, . . . , bn, p) to
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Fig. 2. The functions fp (left) and f−1
p (middle) and the graph Hv for a node v (right).

be the output obtained if the input (a1, . . . , an) is fed into G (with the corre-
spondence between input values and input nodes and output values of the form
bv and output nodes being as indicated in the right subfigure of Fig. 2 and p
being output at the root). Note that missing inputs at nodes with fewer than
two children are now taken to be 0, not 1.

A few things need to be checked: First, for every v ∈ V , the value sent from
Hv to its parent belongs to [Pv], and if the left and right inputs to Hv come from
[PL

v ] and [PR
v ], respectively, then each of the two “f−1 boxes” in Hv, if labeled

with a parameter p, receives a second argument (the y argument) that lies in [p].
All of this is immediate. Second, the value bv computed indeed lies in [Bv]. To
see this, note that the first argument of the “f−1 box” with parameter PL

v PR
v is

strictly smaller than Av/Pv ≤ Bv/(PL
v PR

v ). Now comes the fun part.
The total degree of every vertex in G is bounded by three and the length of

every path in G is bounded by four, as can easily be observed from Fig. 3. Of
course, these properties also hold for the graph

←
G obtained from G by replacing

every edge (u, v) by the reverse (or antiparallel) edge (v, u). Because every inner
node in G realizes an injective function, G’s computation can be reversed. Recall
that we are interested in a1, . . . , an, but actually store b1, . . . , bn, p. To recover
a1, . . . , an from b1, . . . , bn, p, we can simply replace every “f box” by an “f−1

box” with the same parameter, and vice versa, and let the computational DAG←
G do its job. Since

←
G is of bounded degree and bounded maximum path length,

each individual av, where v ∈ V , can be obtained in constant time. After a change
to an input value, av, we simply recompute the output values that depend on av

after using the method just described to recover the other input values on which
these output values also depend. Again, this can happen in constant time.
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Fig. 3. A part of the computational DAG obtained by replacing all nodes by subgraphs.

We have paid careful attention to the space needed to store b1, . . . , bn, p and
showed this space to be within one bit of optimal if Av ≥ 34n2 for all v ∈ V .
Unfortunately, in order to be able to translate between the inputs and outputs
of G as described above, we need additional information that is static in the
sense that it depends only on the tree T and the parameters A1, . . . , An. First,
navigation in T must be possible, i.e., given a node v ∈ V , we must be able to
find the parent and the children of v, if any. Following Dodis et al. [6], we will
assume that T has depth �log n� and the completely rigid structure known from
Heapsort, i.e., the root of T is the node 1, the parent of each v ∈ {2, . . . , n}
is �v/2�, and every left child is even. Then the necessary navigation in T can
happen in constant time.

Second, given a node v ∈ V , we must have access to (Av, Bv, Pv), which we
call the type of v. In order to keep the number of types small, we will assume that
for v ∈ V , the integer Av depends only on the depth of v in T (an alternative
would be the height of v). Because of the special shape of T , the nodes on a
given level in T (i.e., of a given depth) then have at most three different types,
and it is easy (if somewhat tedious) to define a function τ : V → N0 with the
following properties:

– For all u, v ∈ V , if τ(u) = τ(v), then u and v have the same type.
– τ can be evaluated in constant time.
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– For all v ∈ V , if the depth of v is d, then τ(v) ∈ {3h − 2, 3h − 1, 3h}, where
h = �log n� − d.

– For all i ∈ N0, with Vi = {v ∈ V | τ(v) = i}, the number ni = |Vi| can be
computed in constant time, and there is a function φi, evaluable in constant
time, that numbers the nodes in Vi consecutively, starting at 0, in an arbitrary
order.

Third, given a node v ∈ V , we must be able to locate bv. Let τ , ni and φi

(for i ∈ N0) be as above. For i = 0, . . . , 3�log n�, let mi be the (common) value
of log Bv for all v ∈ Vi (arbitrary if Vi = ∅). For each v ∈ Vi, we can store bv in
the mi bit positions starting in bit number

∑i−1
j=0 njmj + φi(v)mi in an array of

∑3�log n�
j=0 njmj =

∑
v∈V log Bv bits.

2.3 Results

The types of the inner nodes on one level in T and the relevant sums si =∑i−1
j=0 njmj can be computed in constant time from the corresponding entities on

the level below, if any. Only the calculation of
√

Av in the defining formula for Bv

may appear problematic, but the analysis can compensate for a constant-factor
error in the calculation, so an easy-to-obtain approximation to

√
Av suffices. (In

contrast, Pv must be calculated very accurately.) For v ∈ V , the depth of v in
T is �log v�, and its height is at most log(n/v). If v is of height h, an access to
av for reading or writing needs to know the types of nodes of height at most
h + 2. One possibility is not to store the types of any nodes permanently, but
to compute the types and the values si needed in a bottom-up computation as
part of the access to av. This yields the following.

Theorem 1. There is a data structure that can be initialized for arbitrary inte-
gers n ≥ 1 and C0, . . . , CL ≥ 34n2 in O(log n) time, where L = �log n�, subse-
quently maintains a sequence (a1, . . . , an), where av ∈ {0, . . . , C�log v� − 1} for
v = 1, . . . , n, occupies at most �∑v∈V log C�log v�� + 1 bits plus the space needed
to store (n,C0, . . . , CL), and supports reading and writing of av in O(log(2n/v))
time, for v = 1, . . . , n.

The initialization time of the data structure D of the theorem is indicated as
O(log n) because this is the time needed to access and stow away the parameters
C0, . . . , CL. If this is not necessary, e.g., because D is to be used only with
C0 = · · · = CL, the initialization time can be lowered to a constant. Note,
however, that this stretches the definition of the space requirements of a data
structure: Besides the space occupied by (n,C0, . . . , CL), D will never use more
than �∑v∈V log C�log v�� + 1 bits, but it can indicate its own size only after
Θ(log n) steps, which may make it difficult to pack D tightly among other data
structures.

Although the average access time of Theorem 1 is a constant, where the
average is taken over all v ∈ {1, . . . , n}, we are more interested in having a
constant worst-case time. In order to achieve this, we can precompute and store
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the types that occur in T in a table indexed via τ , as well as the sums si

for i = 1, . . . , 3�log n�. Since a type can be stored in O(log C) bits, where C =
max{C0, . . . , CL}, the number of bits needed by the table is O(L(log n+log C)) =
O(log n log(n + C)). If A1 = · · · = An = A ≥ 2, we can get rid of the annoying
condition A ≥ 34n2 by returning to a simple idea explored in the beginning of the
section. If A < 34n2, then choose � ∈ N to make A� ≥ 34n2, but A� = nO(1), and
partition the values a1, . . . , an, called digits, into groups of � digits each, except
that the first group has between � and 2� digits. For each group, combine the
digits in the group to a single base-A integer of at most 2� digits and maintain
only these larger and sufficiently large integers in the tree-based data structure.
If the first group is assigned to the root (as is natural), it will still be the case
that the nodes on a given level in the tree have at most three distinct types.

Theorem 2. ([6]). There is a data structure that can be initialized for arbitrary
n,A ∈ N in O(log n) time, subsequently maintains a sequence (a1, . . . , an), where
ai ∈ {0, . . . , A − 1} for i = 1, . . . , n, occupies n log A + O(log n log(n + A)) bits,
and supports constant-time reading and writing of ai, for i = 1, . . . , n.

3 The In-Place Chain Technique

Certain modern programming languages such as Java, VHDL and D stipulate
that memory be initialized (e.g., cleared to zero) before it is allocated to appli-
cation programs [9,17] or have this as the default behavior [2]. The initialization
is carried out for security reasons—one program should not read what another
program has written—and to ease debugging by eliminating one source of erratic
program behavior. On the other hand, such initialization of large memory areas
is rarely supported efficiently in hardware. In cases where it is to be expected
that only a small part of the memory will actually be used, as in the context
of adjacency matrices of sparse graphs, it is therefore of interest to simulate an
initialized block of memory in uninitialized memory (memory that may contain
arbitrary initial values). Here we can consider the block of memory to be an array
of words, where a word is small enough to be manipulated in constant time but
large enough to contain a pointer to another word in the block. Thus the task is
to provide an initializable array, a data structure that supports the functionality
of an array of words—reading and writing individual words in constant time—
but allows all words in the array to be initialized (or reset) to zero in constant
time. This problem has been considered at least since 1974 [1, Exercise 2.12] and
investigated both theoretically and in practice in recent years [7,15,23,24]. The
first really interesting new development, however, came in 2017 when Katoh and
Goto [22] invented the so-called in-place chain technique and used it to develop
an initializable array that leaves little to be desired. This section first describes
their data structure and then gives an overview of later developments triggered
by the advent of the in-place chain technique.
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3.1 Initializable Arrays

Let us say that two (one-dimensional) arrays have the same layout if they have
the same index set and elements of the same type. The folklore organization
of an initializable array A, the one outlined in the hint to [1, Exercise 2.12],
is illustrated in the left subfigure of Fig. 4, which shows the situation after the
assignments A[10] := J; A[6] := F; A[7] := G. The construction is based on the
implicit observation that in order to realize an initializable array A, it suffices
to maintain the set S of indices i for which the cell A[i] has been written to at
least once since the time when A was initialized or was last cleared. To see this,
note that to simulate A[i] := x, it suffices to insert i in S and to store x in V [i],
where V is an array of the same layout as A, whereas A[i] can be obtained as
V [i] if i ∈ S and as zero if not. S is initially empty and must support only the
two operations of insertion and membership test. With two bookkeeping arrays
of the same layout as A, say T and F , the realization of S is easy: The elements
of S are stored in no particular order in T [1], T [2], . . . , T [k], where k = |S| is
also remembered, and for each i ∈ S the position in T of i is recorded in F [i],
so that membership in S can be tested in constant time.

Fig. 4. The folklore initializable array with 1-word cells (left) and with 2-word cells
(right). Slaves and masters are indicated in pale red and in blue, respectively. (Color
figure online)

If i ∈ S and F [i] = j, it is natural to view the cells F [i] and T [j] as pointing
to each other. In this situation we will consider the triple (T [i], F [i], V [i]) as
an entity, called a master, and (T [j], F [j], V [j]) as another entity, called the
corresponding slave. Note that a master stores two words of data, namely in
the arrays F and V , whereas a slave stores just one word, in T . The average
number of words used, over a master and the corresponding slave, is 3/2, which
is more than the number of words in A accommodated by the two in conjunction,
namely 1. A small but crucial step towards obtaining a superior solution is to
perceive A and V as composed of cells of two words each, rather than of single
words, as suggested in the right subfigure of Fig. 4, which assumes that the data
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value F is now a pair (F,F) of two words, etc. If the first writing to a cell in A
writes to only one word, we initialize the other word in the cell explicitly on the
same occasion. Now a master stores three words, while a slave still stores just
one word. The average is two, as is the number of words of A accommodated by
the master and the slave, and we achieve “average for all” by relocating one word
of data from the master to the slave. The word relocated should obviously not
be chosen as the pointer to the slave, but otherwise the master can still access
all its data in constant time.

This data organization opens up the prospect of storing the three arrays T , F
and V together in a single array, which we continue to call V . According to our
deliberations so far, a cell V [i] of V would be either (if i ≤ k) a slave or (if i > k)
unused or a master. However, we must allow for one more possibility: If i ∈ S for
some i ≤ k, V [i] must store data of its own and cannot function as a slave. In this
case we therefore store A[i] directly in the cell V [i] and call V [i] self-contained.
The only danger in this is that half of V [i] might be misinterpreted as a pointer
to a master V [j]. This is problematic only if j > k and V [j] points back to V [i],
but in that case V [j] is unused, and we can break up the spurious master-slave
pair by changing the pointer in V [j] to let it point to V [j] itself, say. The storage
conventions are illustrated in Fig. 5, whose left subfigure represents the same
array A as the left subfigure of Fig. 4. It can be seen that k acts as a “barrier”
that separates slaves and self-contained array cells on its left from masters and
unused cells on its right.

Fig. 5. The highly succinct initializable array of Katoh and Goto [22].

Now reading from A can happen in constant time, but writing to A must
take care to preserve the storage invariants. Suppose that writing to A causes
an index i to enter S and therefore increases k = |S|, from k0 to k0 + 1, say.
If i ≤ k0, V [i] must switch from being a slave to being self-contained, which
leaves its former master without a slave. If i > k0 + 1, V [i] must switch from
being unused to being a master, and again there is a master without a slave. The
operation under consideration also moves the barrier to the right and across the
cell V [k0 + 1], which changes the status of the latter. Assume that i = k0 + 1. If
V [k0+1] is unused before the operation, it becomes the required slave. Otherwise
V [k0+1] changes from being a master to being self-contained, which sets free its
former slave. In all situations, constant time suffices to pair up masters and slaves
anew and to move the words relocated from masters with new slaves to these
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slaves. The case i = k0 + 1 was omitted from consideration, but is particularly
easy and left to the interested reader. The right subfigure of Fig. 5 shows the
state arising from that of the left subfigure after the subsequent assignments
A[4] := D; A[3] := C; A[11] := K.

As described so far, the data structure must store V , which is precisely as
large as the initializable array A that it realizes, and k, which needs one addi-
tional word. While this is likely to be sufficiently succinct in every practical
application, Katoh and Goto [22] describe a way to reduce the extra space from
one word to just a single bit. The idea is to “hide” k in V as well. Recall that
we increased the number ν of words per cell in A and V from 1 to 2 so that
the 2ν words of a master and its corresponding slave could accommodate the ν
words in a cell of A plus two pointers. If we increase ν still further, every cell in
V to the right of the barrier (but not a self-contained cell to its left) can have
2ν − ν − 2 = ν − 2 words that are not used by the data structure. With ν = 3,
we can store k in the unused word in the rightmost cell of V , which is always
available except in the “terminal state” in which the barrier has moved all the
way to the right end of V . In the terminal state V has been fully initialized and
coincides exactly with A, so that k is no longer needed. We still need to record in
a single bit outside of V , however, whether the terminal state has been reached.

The number n of words in A and V is fixed once and for all when the data
structure is initialized, and so far we have implicitly assumed n to be “known”
(otherwise we cannot figure out where to look for k). If access to the data struc-
ture is provided through an outside pointer to its first word, a natural and
common convention, we can get rid of this assumption by redefining k as n−|S|
and swapping the meanings of left and right. This moves k to the first cell of V ,
where it can be found with the external pointer. With ν = 4, we can then also
store n in the first cell. When the terminal state has been reached, however, n
has disappeared and we can no longer catch out-of-range errors in accesses to A.

Theorem 3. ([22]). For every array A, there is an initializable array of the
same layout as A that occupies just one bit more than A.

3.2 General Constant-Time Initialization

Suppose that we have two similar data structures with complementary good
properties: D1 is space-efficient, but needs a fairly substantial initialization time
before it can process its first regular operation (i.e., operation other than the
initialization)—the data structure of Theorem 2 is a case in point. D2, on the
other hand, can be initialized fast but is less space-efficient, or can maybe be used
only for a limited time. We would like to combine the two into a data structure
that can be initialized as fast as D2, up to a constant factor, but has the space-
efficiency of D1. The in-place chain technique shows the way, as observed by
Kammer and Sajenko [20]. This is one of the cases where describing the method
is easier than formulating the precise conditions under which it can be applied,
for which reason only an example will be provided.
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We need to be more specific about D1 and D2. Suppose that they are both
initialized with a parameter ξ drawn from a suitable set Ξ, that this takes t1(ξ)
steps for D1 and t2(ξ) steps for D2 and that, following its initialization with some
ξ ∈ Ξ, D1 occupies at most s1(ξ) bits. Here t1, t2 and s1 are all functions from
Ξ to N. In the case of the data structure of Theorem 2, e.g., it would be natural
to let ξ be the tuple (n,A). Assume that, given ξ ∈ Ξ, O(t2(ξ)) time suffices
to compute a quantity ŝ1(ξ) ∈ N with ŝ1(ξ) ≤ s1(ξ), but t1(ξ)w = o(ŝ1(ξ)),
where w is an upper bound with w = Ω(log ŝ1(ξ)) on the number of bits that
may be occupied by an argument of an operation of D1 and D2. As for the
latter condition, when f and g are arbitrary functions from Ξ to N, we take the
relation f(ξ) = o(g(ξ)) to mean that for some function K : R+ → N, where R+

is the set of positive real numbers, f(ξ) ≤ εg(ξ) + K(ε) for all ξ ∈ Ξ and all
ε > 0.

Concerning D2, we will assume that the following holds for some function
T : Ξ → N with t1(ξ) = o(T (ξ)): Following the initialization of both D1 and
D2 with the same parameter ξ ∈ Ξ, every sequence Z of regular operations that
can be executed by D1 (in particular, is legal for D1) in at most T (ξ) steps can
also be executed by D2 and, moreover, during the execution of Z D2 occupies
at most s2(ξ) bits, where s2(ξ) = o(ŝ1(ξ)), and executes every operation in at
least t but O(t) steps, where t is the number of steps taken by D1 to execute
the operation. If D2 fails, we assume that it does so detectably.

Informally, the gist of the above can be formulated as follows: D2 is strictly
smaller than D1 and can be used for longer than it takes to initialize D1. More-
over, D2 is as fast as D1, up to a constant factor, but not faster than D1. This
already hints at the construction of a data structure D that can be initialized
for an arbitrary parameter ξ ∈ Ξ in O(t2(ξ)) time and subsequently occupies at
most s1(ξ) + 1 bits and can execute every sequence of operations legal for D1,
with each operation taking as much time as in D1, up to a constant factor. Let
us now look at the details.

The first observation is that, spending one additional bit, we can implement
the first ŝ1(ξ) bits of D1 as part of D in an initializable array of the type devel-
oped in Subsect. 3.1, called the stage, and with words of Ω(w) = Ω(log ŝ1(ξ))
bits each (recall that a condition is that a word must be able to hold a pointer
to a cell in the data structure). The salient property of our realization of the
initializable array is that, provided that we choose ν > 2, every cell to the right
of the barrier (except possibly for the rightmost cell, which stores the position
of the barrier) offers ν −2 ≥ 1 words that are not used by the initializable array.
Because the barrier begins at the leftmost end of the stage and moves right by
at most one cell in each access to the initializable array, this gives us Ω(ŝ1(ξ))
freely usable bits for Ω(ŝ1(ξ)/w) steps.

The operation of the combined data structure D is illustrated in Fig. 6. The
horizontal axis corresponds to the layout of the data structure in memory. The
first or leftmost ŝ1(ξ) + 1 bits of D contain the stage and, with it, a part of D1.
The subsequent s1(ξ) − ŝ1(ξ) bits contain the rest of D1, but need not concern
us here. The vertical axis of Fig. 6, from top to bottom, corresponds to the



Highly Succinct Dynamic Data Structures 41

Fig. 6. A space-time diagram of the three phases in the initialization of D.

development over time. The figure is simplified in that it shows D2 as occupying
the last part of the stage. In reality, D2 is stored only in the unused words of the
corresponding cells, and the same is true of the buffer, whose function will be
described shortly. Another simplification in the figure is that D2 and the buffer
can be stored next to each other, as shown, only if (a good approximation of)
the size of D2 can be computed beforehand. In general, D2 and the buffer are
stored in an interleaved fashion, i.e., alternately one word of D2, then one word
of the buffer, etc., and in reverse order, starting at the right end of the stage
and growing towards the left. The data structure D1 is shown as a triangle in
the space-time diagram because the size of the leftmost part of the stage that no
longer offers any unused words (i.e., is to the left of the barrier) grows at most
linearly with time.

The initialization of D with a parameter ξ ∈ Ξ computes ŝ1(ξ) and initializes
D2 with parameter ξ. By assumption, this takes O(t2(ξ)) time. The rest of the
operation of D is divided into three phases. During Phase 1, two processes are
run in an interleaved fashion, i.e., in sucessive rounds, where each round advances
each process by a constant number of steps. The first process uses D2 to execute
the operations issued by a user of the data structure and also saves the type
and the arguments of each operation in a FIFO queue, namely the buffer. The
interleaved execution of the first process is slower than an execution directly
by D2 only by a constant factor, and D2 in turn is slower than D1 by another
constant factor, so altogether the execution time of each operation is within a
constant factor of its execution time on D1, as required. The second process
initializes D1 with parameter ξ. This happens partly in the stage, using the
initializable array, and partly to the right of the stage.

Phase 1 ends when the initialization of D1 has been completed, at which
point Phase 2 begins. In Phase 2 the first process continues as above, but the
second process now iterates over the buffer to execute the sequence of regular
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operations again, this time in D1, in order to bring D1 up to date. The number
of steps devoted to the second process in each round in Phase 2 is chosen as twice
that devoted to the first process. Because D1 is at least as fast as D2, the second
process, which had to wait Θ(t1(ξ)) steps for D1 to become operational, will
eventually catch up with the first process, and this happens after O(t1(ξ)) steps.
Once the first and second processes start executing the same operation, the first
process is terminated, D2 and the buffer are dropped, and Phase 3 begins. In
this final phase D1 reigns supreme and executes operations as though the space
assigned to it had never been used for other data structures.

The scheme works correctly if D2 does not fail—in particular, if it is used
for at most T (ξ) steps—and D1 and the pair consisting of D2 and the buffer
operate in nonintersecting parts of the stage throughout Phases 1 and 2. All
of our assumptions were set up to ensure this. The total duration of Phases 1
and 2 is O(t1(ξ)) = o(ŝ1(ξ)/w) steps, so D2 is dropped after O(t1(ξ)) = o(T (ξ))
steps. D2 occupies s2(ξ) = o(ŝ1(ξ)) bits, and the number of bits needed for the
buffer at all times is O(t1(ξ)w) = o(ŝ1(ξ)). As noted above, we have Ω(ŝ1(ξ))
freely usable bits for Ω(ŝ1(ξ)/w) steps. Therefore, if the conditions formulated
above are violated, we can detect this, t1(ξ) is bounded by a constant, and we
can simply continue with D1 as D.

We can use the scheme described above to reduce the initialization time
of the data structure of Theorem 2 to a constant. Taking D1 to be the data
structure of the theorem, we need an alternative data structure D2 with the same
operations that can be initialized in constant time but may be less compact. A
suitable choice is a depth-2 trie of degree Θ(

√
n) and with the n array cells as

its leaves, allocated lazily within an initializable array and slowed down by a
constant factor to ensure that its operations are no faster than those of D1. At
any given time the nodes in the trie are precisely the ancestors of the leaves that
have been written to, so that the space needed for the first t operations can be
bounded by O(t

√
n log A). Taking ξ to be the pair (n,A), it is now trivial to verify

that all conditions imposed in the description of the scheme are satisfied with
t1(ξ) = O(log n), t2(ξ) = O(1), s1(ξ) = n log A + O(log n log(n + A)) and, e.g.,
ŝ1(ξ) = n�log A�, w = Θ(log n + log A), T (ξ) = n1/4 and s2(ξ) = O(n3/4 log A).
Because D1 is implemented in an initializable array, we can also assume, without
any additional provisions, that the elements of the array are all initialized to 0.

Theorem 4. There is a data structure that can be initialized in constant time
with arbitrary n,A ∈ N and subsequently maintains a sequence (a1, . . . , an) ∈
{0, . . . , A − 1}n, initially (0, . . . , 0), occupies n log A + O(log n log(n + A)) bits,
and supports constant-time reading and writing of ai, for i = 1, . . . , n.

3.3 Choice Dictionaries

In its most basic form, a choice dictionary is a data structure that is initialized
with a positive integer n and subsequently maintains a subset S of {1, . . . , n}
under the operations insertion, deletion, membership test and choice, which
returns an (arbitrary) element of S if S = ∅, and 0 if S = ∅. From a different
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point of view, a choice dictionary is nothing but a bit vector with the additional
operation “locate a 1”. Choice dictionaries have numerous uses in space-efficient
computing [14,16,19]. As observed by this author [11], it is not difficult to extend
the initializable array of Subsect. 3.1 to turn it into a choice dictionary.

First, because the position of a nonzero bit within a nonzero word can be
found with the operation x �→ �log x�, the task at hand reduces to that of
maintaining a sequence of words under inspection and update of individual bits
(or words, for that matter) and a choice operation to locate a nonzero word, if
any. Second, we change the conventions for the initializable array: What used
to be a word written to at least once now will be a nonzero word. A nonzero
word is then easy to find: There is such a word exactly if k > 0, and if so a
nonzero word can be found either (if the cell V [1] is self-contained) in V [1] or
(if V [1] is a slave) in the data of the master corresponding to V [1] (part of
which data is relocated to V [1]). A new complication arises because a nonzero
word may become zero again (whereas a word, once written to, cannot become
uninitialized). If a cell that used to contain a nonzero word becomes all-zero
again, it must change from being self-contained to being a slave (if it is to the
left of the barrier) or from being a master to being “unused” (if it is to the
right of the barrier)—again, an easy special case was left out of consideration.
Simultaneously, the barrier moves left by one cell width, the cell that “jumps”
the barrier must also change its status, and again masters and slaves can be
paired up anew in constant time. Thus there is a choice dictionary that can be
initialized with S = ∅ in constant time, uses n + 1 bits plus the space needed to
store n, and executes every operation in constant time.

The basic choice dictionary considered above has been extended chiefly in
two directions. First, rather than maintaining a sequence of n values drawn
from {0, 1}, it is often necessary to maintain a sequence of n values, called
colors, drawn from {0, . . . , c − 1} for some integer c > 2, with operations to
inspect and change individual colors and to locate an occurrence, if any, of a
given color. In this case one speaks of a c-color choice dictionary. Second, a very
useful additional operation is the robust iteration over a given color class Sj , i.e.,
over the positions in {1, . . . , n} that hold a given color j ∈ {0, . . . , c − 1}. The
set Sj is allowed to change during the iteration, namely through interspersed
color changes, and the iteration is robust if it enumerates all positions that hold
the color j throughout the iteration but never enumerates a position more than
once or when it does not hold the color j.

Going from the basic choice dictionary to a c-color choice dictionary can use
the results of Sect. 2, but supporting choice efficiently in this situation needs
additional ideas, as does the implementation of robust iteration. If we restrict
attention to c-color choice dictionaries for which c is bounded by a constant, the
current state of the art is approximately represented by the following results,
where n denotes the number of colors maintained:

– A c-color choice dictionary that uses n log c + O(n/(log n)t) bits, for arbi-
trary fixed t ∈ N, and executes robust iteration in constant time per element
enumerated and every other operation in constant time [14].
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– A c-color choice dictionary for which c is restricted to be a power of 2 and
that uses n log c + O(log n) bits and executes every operation except robust
iteration in constant time [12,21].

– A c-color choice dictionary that uses n log c+O(nε) bits, for arbitrary fixed ε >
0, and executes every operation except robust iteration in constant time [12].

– A c-color choice dictionary that uses n log c + O((log n)2) bits and executes
every operation except robust iteration in O(log log n) time [12].

– A c-color choice dictionary for c = 3 that uses n log c + O((log n)2) bits and
executes almost robust iteration in a special case in constant amortized time
per element enumerated and every operation other than robust iteration in
constant amortized time [13]. The result generalizes to arbitrary values of c
and to general fully robust iteration.

4 Open Problems

There are a number of ways in which one might hope to improve the results
surveyed here. Theorem 1 allows the range [Av] associated with a node v in
the tree T to depend on the depth of v in T , but it would be nice—for Theo-
rems 1 and 2—if every node could pick its own individual range, as permitted
in the initial part of the analysis. It is also an interesting question whether the
extra space of Theorem 2, beyond the information-theoretic lower bound, can
be brought down from Θ((log n)2) bits to O(log n) bits (for range sizes that are
polynomial in n). Theorem 3 is optimal [15,22], but a concise formulation of the
construction described in Subsect. 3.2 and its limits would be desirable. As for
c-color choice dictionaries, the current picture is complicated and unsatisfactory.
It is to be hoped that a single unified data structure can be found that combines
the advantages of all currently known c-color choice dictionaries.
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7. Fredriksson, K., Kilpeläinen, P.: Practically efficient array initialization. J. Softw.
Pract. Exper. 46(4), 435–467 (2016). https://doi.org/10.1002/spe.2314

https://doi.org/10.1016/0022-0000(79)90045-X
https://doi.org/10.1016/0022-0000(79)90045-X
https://doi.org/10.1145/1806689.1806771
https://doi.org/10.1002/spe.2314


Highly Succinct Dynamic Data Structures 45

8. Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comput.
Sci. 387(3), 348–359 (2007). https://doi.org/10.1016/j.tcs.2007.07.041

9. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Spec-
ification, Java SE 8 Edition. Oracle America (2015)

10. Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M., Meinel, C.,
Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028575

11. Hagerup, T.: An optimal choice dictionary. Computing Research Repository
(CoRR) abs/1711.00808 [cs.DS] (2017)

12. Hagerup, T.: Small uncolored and colored choice dictionaries. Computing Research
Repository (CoRR) abs/1809.07661 [cs.DS] (2018)

13. Hagerup, T.: Fast breadth-first search in still less space. In: Proceedings of the
45th Workshop on Graph-Theoretic Concepts in Computer Science (WG 2019).
LNCS. Springer, Cham (2019, to appear)

14. Hagerup, T., Kammer, F.: Succinct choice dictionaries. Computing Research
Repository (CoRR) abs/1604.06058 (2016)

15. Hagerup, T., Kammer, F.: On-the-fly array initialization in less space. In: Pro-
ceedings of the 28th International Symposium on Algorithms and Computation
(ISAAC 2017). LIPIcs, vol. 92, pp. 44:1–44:12. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017). https://doi.org/10.4230/LIPIcs.ISAAC.2017.44

16. Hagerup, T., Kammer, F., Laudahn, M.: Space-efficient Euler partition and bipar-
tite edge coloring. Theor. Comput. Sci. 754, 16–34 (2019). https://doi.org/10.
1016/j.tcs.2018.01.008

17. IEC/IEEE International Standard; Behavioural languages – Part 1–1: VHDL Lan-
guage Reference Manual. IEC 61691–1-1:2011(E) IEEE Std 1076–2008 (2011).
https://doi.org/10.1109/IEEESTD.2011.5967868

18. Jacobson, G.: Succinct static data structures. Ph.D. thesis, Carnegie Mellon Uni-
versity (1988)

19. Kammer, F., Kratsch, D., Laudahn, M.: Space-efficient biconnected components
and recognition of outerplanar graphs. Algorithmica 81(3), 1180–1204 (2019).
https://doi.org/10.1007/s00453-018-0464-z

20. Kammer, F., Sajenko, A.: Extra space during initialization of succinct data struc-
tures and dynamical initializable arrays. In: Proceedings of the 43rd International
Symposium on Mathematical Foundations of Computer Science (MFCS 2018), pp.
65:1–65:16 (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.65

21. Kammer, F., Sajenko, A.: Simple 2f -color choice dictionaries. In: Proceedings of
the 29th International Symposium on Algorithms and Computation (ISAAC 2018).
LIPIcs, vol. 123, pp. 66:1–66:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.66

22. Katoh, T., Goto, K.: In-place initializable arrays. Computing Research Repository
(CoRR) abs/1709.08900 [cs.DS] (2017)

23. Loong, J.T.P., Nelson, J., Yu, H.: Fillable arrays with constant time opera-
tions and a single bit of redundancy. Computing Research Repository (CoRR)
abs/1709.09574 (2017)

24. Navarro, G.: Spaces, trees, and colors: the algorithmic landscape of document
retrieval on sequences. ACM Comput. Surv. 46(4), 52:1–52:47 (2014). https://
doi.org/10.1145/2535933

25. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), 43:1–43:25 (2007)

https://doi.org/10.1016/j.tcs.2007.07.041
https://doi.org/10.1007/BFb0028575
https://doi.org/10.4230/LIPIcs.ISAAC.2017.44
https://doi.org/10.1016/j.tcs.2018.01.008
https://doi.org/10.1016/j.tcs.2018.01.008
https://doi.org/10.1109/IEEESTD.2011.5967868
https://doi.org/10.1007/s00453-018-0464-z
https://doi.org/10.4230/LIPIcs.MFCS.2018.65
https://doi.org/10.4230/LIPIcs.ISAAC.2018.66
https://doi.org/10.1145/2535933
https://doi.org/10.1145/2535933


Formal Methods



Winning Strategies for Streaming
Rewriting Games

Christian Coester1(B), Thomas Schwentick2(B), and Martin Schuster3

1 University of Oxford, Oxford, UK
christian.coester@cs.ox.ac.uk

2 TU Dortmund, Dortmund, Germany
thomas.schwentick@tu-dortmund.de

3 University of Edinburgh, Edinburgh, UK

Abstract. Context-free games on strings are two-player rewriting games
based on a set of production rules and a regular target language. In each
round, the first player selects a position of the current string; then the
second player replaces the symbol at that position according to one of
the production rules. The first player wins as soon as the current string
belongs to the target language. In this paper the one-pass setting for
context-free games is studied, where the knowledge of the first player is
incomplete: She selects positions in a left-to-right fashion and only sees
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studies conditions under which dominant and undominated strategies
exist for the first player, and when they can be chosen from restricted
types of strategies that can be computed efficiently.
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1 Introduction

Context-free games on strings are rewriting games based on a set of produc-
tion rules and a regular target language. They are played by two players, Juliet
and Romeo, and consist of several rounds. In each round, first Juliet selects a
position of the current string; then Romeo replaces the symbol at that position
according to one of the production rules. Juliet wins as soon as the current string
belongs to the target language. Context-free games were introduced by Muscholl,
Schwentick and Segoufin [14] as an abstraction of Active XML.

Active XML (AXML) is a framework that extends XML by “active nodes”.
In AXML documents, some of the data is given explicitly while other parts are
given by means of embedded calls to web services [11]. These embedded calls
can be invoked to materialise more data. As an example (adapted from [11,14]),
consider a document for the web page of a local newspaper. The document may
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Fig. 1. An AXML document before and after the invocation of service calls

contain some explicit data, such as the name of the city, whereas information
about the weather and local events is given by means of calls to a weather
forecast service and an events service (see Fig. 1a). By invoking these calls, the
data is materialised, i.e. replaced by concrete weather and events data (Fig. 1b).
The data returned by the service call may contain further service calls.

It might not be necessary to invoke all possible service calls. In the example
of Fig. 1, data about the weather might be relevant only if there are outdoor
events and otherwise it does not need to be materialised. The choice which data
needs to be materialised by the sender and the receiver may be influenced by
considerations about performance, capabilities, security and functionalities and
can be specified, for instance, by a DTD [11]. An overview about AXML is given
in [1].

The question whether a document can be rewritten so that it satisfies the
specification then basically translates to the winning problem for context-free
games: given a game and a string1, does Juliet have a winning strategy? In
general, this problem is undecidable, however it becomes decidable if Juliet has to
follow a left-to-right-strategy [14]. With such a strategy, Juliet basically traverses
the string from left to right and decides, for each symbol, whether to play Read
(keep the symbol and go to the next symbol) or Call (let Romeo replace the
symbol).

With applications in mind where the AXML document comes as a data
stream, Abiteboul, Milo and Benjelloun [3] initiated the study of a further strat-
egy restriction, called one-pass strategies: Juliet still has to process the string
from left-to-right, but now she does not even see the remaining part of the string,
beyond the current symbol.

Due to the lack of knowledge of Juliet, one-pass strategies are more difficult
to analyse and have less desirable properties than left-to-right strategies. For
instance, in the sandbox game with one replacement rule a → b and the target
language {ab, bc}, Juliet has a winning strategy that wins on the word ab (Read
the initial a) and one that wins on ac (Call the initial a), but none that wins on
both [3]. This example shows that even for some extremely simple games and
input strings, there is no dominant strategy for Juliet, i.e., a strategy that wins

1 The restriction to strings instead of trees was justified in [11].
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on all words on which she has a winning strategy at all. However, both mentioned
strategies are optimal in the sense that they can not be strictly improved; we
call such strategies undominated.2

Since our focus will be on one-pass strategies, we will often just say strategy
for short. We consider several restricted types of strategies. A strategy is forgetful
if it does not need to remember all decisions it made, but only the (prefix of the)
current string. Abiteboul et al. [3] also introduced regular strategies, a simple
type of one-pass strategies defined by a finite state automaton, and therefore
efficiently computable. Some strategies that are both regular and forgetful are
of a particularly simple form such that they computed by an automaton that is
derived from the minimal automaton for the target language. We call this most
restricted type strongly regular. We refer to Sect. 2 for precise definitions of these
notions.

We study the following questions.

– Under which circumstances does an undominated one-pass strategy exist?
– When can a dominant or undominated strategy even be chosen from one of

the restricted types (regular, forgetful or strongly regular)?

This paper is based on the Master’s thesis of the first author, supervised by
the other two authors [8]. The thesis contains further results, investigating also
the computational complexity of some related problems.

1.1 Our Results

Regarding the existence of undominated strategies, we show that the situation is
much better than for dominant strategies. Although it remains unclear whether
undominated strategies exist for all context-free games, we identify important
classes of games in which they do exist. More precisely, we give a semantical
restriction, the bounded depth property, that guarantees existence of undom-
inated strategies, and a fairly natural syntactical restriction, prefix-freeness3,
that guarantees existence of an undominated strategy which can even be chosen
regular. For two other families of restricted games, non-recursive games (i.e.,
the production rules do not allow recursive generation of a symbol from itself)
and games with finite target language, we show that if they have a dominant
strategy, then even a strongly regular one.

Theorem 1. (a) Every game with the bounded depth property has an undomi-
nated strategy.

(b) Every prefix-free game has a regular undominated strategy.
(c) Every game with a finite target language that has a dominant strategy has a

strongly regular dominant strategy.

2 In [3], dominant and undominated strategies were called optimum and optimal
respectively.

3 As explained later, every game can be transformed into a very similar prefix-free
game.
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(d) Every non-recursive game with a dominant strategy has a strongly regular
dominant strategy.

Games with a finite target language as well as non-recursive games also have
the bounded depth property, so these two classes also have an undominated
strategy by part (a) (cf. [8; Theorem 3.6]).

We complement the implication results of Theorem 1(c) and (d) by negative
results, showing that these implications do not generalise to arbitrary games or
to undominated strategies. More strongly, the following theorem states that even
much weaker implications do not hold in general.

Theorem 2. (a) There exists a game G1 with a regular dominant strategy but
no forgetful dominant strategy.

(b) There exists a game G2 with a forgetful regular dominant strategy but no
strongly regular dominant strategy.

(c) The statements (a) and (b) hold also when “dominant” is replaced by
“undominated”. In this case, G1 and G2 can even be chosen as non-recursive
games with a finite target language.

1.2 Related Work

Further background about AXML is given in [1, 2, 11]. Context-free games were
introduced in [13], which is the conference paper corresponding to [14]. The
article studies the decidability and complexity of deciding whether a winning
unrestricted or left-to-right strategy exists for a word in the general case and
several restricted cases. More recently, Hoĺık et al. gave a new algorithm for
determining the winner of a left-to-right context-free game and determining a
winning strategy [10]. One-pass strategies and (forgetful) regular strategies were
introduced in [3]. The complexity of deciding, for a given context-free game,
whether Juliet has a winning left-to-right strategy for every word for which
she has a winning unrestricted strategy is studied in [5]. Extended settings of
context-free games with nested words (resembling the tree structure of (A)XML
documents) are examined in [15, 12].

The article [14] also showed a tight connection between context-free games
and pushdown games [17, 7, 16]. In [4, 6], variants of these pushdown games in
settings of imperfect information are studied.

1.3 Organization

In Sect. 2 we provide several definitions and some basic lemmas. We prove Theo-
rem 1(a) in Sect. 3. In the two subsequent sections, we sketch the proofs of parts
(b), (c) and (d). We also explain our motivation for prefix-freeness in Sect. 4,
which we consider the most relevant case and with the most interesting proof.
Section 6 contains proofs of Theorem 2(a) and (b). Most proof details of Theo-
rem 1 as well as the proof of Theorem 2(c) can be found in the full version of
our paper [9].



Winning Strategies for Streaming Rewriting Games 53

2 Preliminaries

We denote the set of strings over an alphabet Σ by Σ∗ and the set of non-empty
strings by Σ+. Σk denotes the set of strings of length k and Σ≤k the set of
strings of length at most k.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, s, F ),
where Q is the set of states, Σ the alphabet, δ ⊆ Q × Σ × Q the transition
relation, s ∈ Q the initial state and F ⊆ Q the set of accepting states. A run on
a string w = w1 · · · wn is a sequence q0, . . . , qn of states such that q0 = s and,
for each i ≤ n, (qi−1, wi, qi) ∈ δ. A run is accepting if qn ∈ F . A word w is in
the language L(A) of A if A has an accepting run on w. If A is deterministic,
i.e., for each p and a, there is exactly one state q such that (p, a, q) ∈ δ, then we
consider δ as transition function Q×Σ → Q and also use the extended transition
function δ∗ : Q × Σ∗ → Q, as usual.

Context-Free Games. A context-free game, or a game for short, is a tuple G =
(Σ,R, T ) consisting of a finite alphabet Σ, a minimal4 DFA T = (Q,Σ, δ, s, F ),
and a binary relation R ⊆ Σ × Σ+ such that for each a ∈ Σ, the replacement
language La

def= {v ∈ Σ+ | (a, v) ∈ R} of a is regular. We call L(T ) the target
language of G. By Σf = {a ∈ Σ | ∃v ∈ Σ+ : (a, v) ∈ R} we denote the set of
function symbols, i.e. the symbols occurring as the left hand side of a rule. The
languages La are usually represented by regular expressions Ra for each a ∈ Σf ,
and we specify R often by expressions of the form a → Ra. We note that the
definition of context-free games assures ε �∈ La.

The semantics of context-free games formalises the intuition given in the
introduction. In a configuration, we summarise the information about a current
situation of a play together with some information about the history of the play.
For the latter, let ̂Σf = {â | a ∈ Σf} be a disjoint copy of the set Σf of function
symbols, and let Σ = Σ ∪̇ ̂Σf . A configuration is a tuple (α, u) ∈ Σ

∗ × Σ∗.
If u is non-empty, i.e. u = av for a ∈ Σ and v ∈ Σ∗, then we also denote
this configuration by (α, a, v), consisting of a history string α, a current symbol
a ∈ Σ and a remaining string v ∈ Σ∗. We denote the set of all (syntactically)
possible configurations by K. Intuitively, if the ith symbol of the history string
is b ∈ Σ then this shall denote that Juliet’s ith move was to read the symbol
b, and if it is ̂b ∈ ̂Σf then this shall denote that Juliet’s ith move was to call
b. The remaining string is the string of symbols that have not been revealed to
Juliet yet. By � : Σ

∗ → Σ∗ we denote5 the homomorphism which deletes all
symbols from ̂Σf and is the identity on Σ. We call δ∗(s, �α) the T -state of the
configuration (α, u).

A play is a sequence of configurations, connected by moves. In one move
at a configuration (α, a, v) Juliet can either “read” a or “call” a. In the latter
case, Romeo can replace a by a string from La. More formally, a play of a game

4 The assumption that T is minimal will be convenient at times.
5 We usually omit brackets and write, e.g., �αβ for �(αβ).
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is a finite or infinite sequence Π = (K0,K1,K2, . . . ) of configurations with the
following properties:

(a) The initial configuration is of the form K0 = (ε, w), where w ∈ Σ∗ is called
the input word.

(b) If Kn = (α, a, v), then either Kn+1 = (αa, v) or Kn+1 = (αâ, xv) with
x ∈ La. In the former case we say that Juliet plays a Read move, otherwise
she plays a Call move and Romeo replies by x.

(c) If Kn = (α, ε), then Kn is the last configuration of the sequence. Its history
string α is called the final history string of Π. Its final string is �α.

A play is winning for Juliet (and losing for Romeo) if it is finite and its final
string is in the target language L(T ). A play is losing for Juliet (and winning
for Romeo) if it is finite and its final string is not in L(T ). An infinite play is
neither winning nor losing for any player.

Strategies. As mentioned in the introduction, we are interested in so-called
one-pass strategies for Juliet, where Juliet’s decisions do not depend on any
symbols of the remaining string beyond the current symbol.

A one-pass strategy for Juliet is a map σ : Σ
∗ × Σf → {Call ,Read}, where

the argument corresponds to the first two components of a configuration. A
strategy for Romeo is a map τ : Σ

∗ × Σf → Σ+ where τ(α, a) ∈ La for each
(α, a) ∈ Σ

∗ × Σf .6 We generally denote strategies for Juliet by σ, σ′, σ1, . . . and
Romeo strategies by τ, τ ′, τ1, . . .. We often just use the term strategy to refer to
a one-pass strategy for Juliet.

The play of σ and τ on w, denoted Π(σ, τ, w), is the (unique) play
(K0,K1, . . . ) with input word w satisfying that

– if Kn = (α, a, v) and σ(α, a) = Read , then Kn+1 = (αa, v),
– if Kn = (α, a, v) and σ(α, a) = Call , then Kn+1 = (αâ, τ(α, a)v).

The depth of a finite play is its maximum nesting depth of Call moves. E.g., if
Romeo replaces some symbol a by a string u and Juliet calls a symbol in u, the
nesting depth of this latter Call move is 2.

A strategy σ is terminating if each of its plays is finite. The depth of σ is
the supremum of depths of plays of σ. Note that each strategy with finite depth
is terminating. The converse, however, is not true and it is easy to construct
counter-examples of a game and a strategy σ where each play of σ has finite
depth but depths are arbitrarily large.

A strategy σ wins on a string w ∈ Σ∗ if every play of σ on w is winning (for
Juliet). By W (σ) = WG(σ) we denote the set of words on which σ wins in G. In
contrast, σ loses on w if there exists a losing play of σ on w. Note that σ neither
wins nor loses on w if there exists an infinite play of σ on w but no losing play
of σ on w.
6 Even though we think of Romeo as an omniscient adversary, it is not necessary to

provide the remaining string as an argument to τ : The remaining string is uniquely
determined by the input word and his own and Juliet’s previous moves.
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A strategy σ dominates a strategy σ′ if W (σ′) ⊆ W (σ). A strategy σ is
dominant if it dominates every other (one-pass) strategy. It is undominated if
there is no strategy σ′ with W (σ) � W (σ′).

In the proofs of Theorem 1(a) and (b), we will actually show a slightly
stronger form of optimality than “undominated”, which we call weakly domi-
nant. To define it, fix some total order < of the alphabet Σ. We order strings
by shortlex order, i.e. for two strings v, w ∈ Σ∗ we define v <sl w if |v| < |w|
or if |v| = |w| and v precedes w in the lexicographical order. We extend this to
a total order ≤sl on sets of words as follows. Let V,W ⊆ Σ∗ be two sets with
V �= W . Their order is determined by the minimal string w (with respect to
shortlex order ≤sl) that is contained in only one of the two sets. If w ∈ W , then
V <sl W ; otherwise W <sl V . We observe that if V � W then V <sl W . A
strategy σ is weakly dominant if, for every strategy σ′ it holds W (σ′) ≤sl W (σ).
Thus, a weakly dominant strategy can be seen as a best undominated strategy
with respect to ≤sl.

The following lemma is convenient as it will often allow us to assume, without
loss of generality, that a given strategy is terminating.

Lemma 1. Each strategy is dominated by a terminating strategy.

Proof. Given a strategy σ, we construct a terminating strategy σ′ with W (σ) ⊆
W (σ′) as follows.

Consider some α ∈ Σ
∗

and a ∈ Σf . If there exists a play Π of σ that contains
a configuration (α, av) for some v ∈ Σ∗ such that no later configuration of the
form (αα′, v) occurs in Π, then let σ′(α, a) = Read and σ′(αaβ, b) = Read
for each β ∈ Σ

∗
and b ∈ Σf . For all elements of the domain for which σ′ is

not already defined by this, we define σ′ like σ. Clearly, σ′ is terminating and
W (σ) ⊆ W (σ′). 	


Restricted Strategy Types. A strategy σ is regular if the set L of strings αa
with σ(α, a) = Call is regular. In this case, a DFA A for L is called a strategy
automaton for σ = σA. A strategy is forgetful if its decisions are independent of
symbols from ̂Σf in the history string, i.e. if σ(α, a) = σ(β, a) whenever �α = �β.
Clearly, if σ is regular and forgetful, then L′ def= {�αa | σ(α, a) = Call} is regular.
A DFA A for L′ is also called a strategy automaton, and we write σA = σ again.

We are particularly interested in the special case of regular forgetful strate-
gies where Juliet’s decisions depend only on the current T -state and the cur-
rent symbol. More precisely, if T = (Q,Σ, δ, s, F ) is the target automaton and
the strategy automaton is of the form A = (Q ∪ {Call}, Σ, δA, s, {Call}) with
δA(q, a) ∈ {δ(q, a),Call}, for each q and a, then σA is called strongly regular.

Classes of Games. A game G has the bounded depth property if there exists
a sequence (Bk)k∈N0 ⊆ N such that for each one-pass strategy σ for G and each
k ∈ N there exists a one-pass strategy σk that wins on each w ∈ W (σ) ∩ Σ≤k

with plays of depth at most B|w|. Roughly speaking, the bounded depth property
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means the following: When input words are restricted to a finite set, Juliet can
choose a strategy whose depth is bounded on words from her winning set, without
losing strategic power.

A game is prefix-free if each replacement language La is prefix-free, that is,
there are no u, v ∈ La where u is a proper prefix of v.

A game is non-recursive if no symbol can be derived from itself by a sequence
of rules, i.e. there do not exist a0, . . . , an ∈ Σf , n ≥ 1, such that a0 = an and
for each k = 1, . . . , n there exists a word in Lak−1 containing ak.

Convergence of Strategies. A concept used in the proofs of parts (a) and
(d) is the convergence of a sequence of one-pass strategies. A sequence (σk)k∈N

of strategies converges to a strategy σ if for each n ∈ N there exists k0 ∈ N such
that for each k ≥ k0 and (α, a) ∈ Σ

≤n × Σ it holds that σ(α, a) = σk(α, a).

Lemma 2. Let G be a game and (σk)k∈N be a sequence of one-pass strategies
that converges to some one-pass strategy σ. Let L1 ⊆ L2 ⊆ · · · be an infinite
sequence of languages such that, for every k, Lk ⊆ W (σk) and let L

def=
⋃

k∈N

Lk.

Then σ does not lose on any word w ∈ L.

It should be noted, however, that σ might fail to win on some of these words
due to infinite plays.

Proof of Lemma 2. Towards a contradiction, suppose that σ loses on a word
w ∈ L. Then there exists a strategy of Romeo with which he wins the (finite)
play Π = Π(σ, τ, w) = (K0, . . . ,Kn). Let k0 ∈ N be such that for each k ≥ k0

and (α, a) ∈ Σ
≤n × Σ it holds that σ(α, a) = σk(α, a). Let furthermore k1 be

such that w ∈ Lk1 and let k
def= max(k0, k1). Then Π is also a play of σk on w.

But then σk loses on w ∈ Lk1 ⊆ Lk, the desired contradiction. 	


3 Games with the Bounded Depth Property

In this section, we show that each game with the bounded depth property admits
a weakly dominant strategy, implying Theorem 1(a). Since non-recursive games
trivially have the bounded depth property, and also games with a finite target
language (cf. [8; Lemma 3.5]) and prefix-free games (cf. Sect. 4) have the bounded
depth property, it follows that any such game has an undominated strategy. In
fact, all of these games satisfy the stronger version of the bounded depth property
where Bk = B does not depend on k.

For a strategy σ and some i ≥ 0, we denote by σ
∣

∣

i
the restriction of σ to the

first i rounds of the game. Thus σ
∣

∣

i
is a mapping σ

∣

∣

i
: Σ

≤i−1×Σ → {Call ,Read}
and σ

∣

∣

0
is the mapping with empty domain.

Proof of Theorem 1(a). Let G be a context-free game with the bounded depth
property and let (Bk)k∈N0 ⊆ N be its sequence of depth bounds.
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We first define a language L which will serve as the winning set of the weakly
dominant strategy that will be constructed below.

The definition of L is by induction. For each k ≥ 0, we define a set Lk ⊆ Σ≤k

such that Lk ⊆ Lk+1, and finally let L
def=

⋃

k Lk.
Let L0 = {ε} if ε is in the target language of G, and L0 = ∅ otherwise.
For k ≥ 0, we define Lk+1 as the maximal set with respect to ≤sl of the form

W (σ) ∩ Σ≤k+1 for some strategy σ with Lk ⊆ W (σ). It is easy to see that the
following two properties hold by construction.

(1) For each k, there is a strategy σ such that Lk ⊆ W (σ).
(2) There is no strategy σ with L <sl W (σ).

Thanks to property (2), it suffices to construct a strategy σ̂ with L ⊆ W (σ̂).
For each k ≥ 0, let Sk be the set of strategies σ with Lk ⊆ W (σ) for which

each play on a word w ∈ Lk has depth at most B|w|. Because of property (1)
and since G has the bounded depth property, we have Sk �= ∅ for every k ≥ 0.

We will construct mappings ρk : Σ
≤k−1 × Σ → {Call ,Read} such that for

every k ≥ 0,

– ρk+1 extends ρk; more precisely: ρk+1

∣

∣

k
= ρk, and

– for each � ≥ k there exists σk
� ∈ S� with ρk = σk

�

∣

∣

k
.

Let ρ0 be the mapping with empty domain. Fix k such that ρ0, . . . , ρk are defined
and have the stated properties. Since there are only finitely many mappings
Σ

≤k × Σ → {Call ,Read}, one of them has to occur infinitely often within
(

σk
�

∣

∣

k+1

)

�≥k
. Let ρk+1 be such a mapping. For �′ ≥ k+1 we can choose σk+1

�′ = σk
�

for some � ≥ �′ with ρk+1 = σk
�

∣

∣

k+1
. This defines a sequence ρ0, ρ1, . . . with the

properties above. Let σ̂ be the strategy that is uniquely determined by σ̂
∣

∣

k
= ρk,

for every k. Clearly (ρk)k∈N converges7 to σ̂.
Thanks to Lemma 2 it suffices to show that σ̂ terminates on L. Let thus w ∈ L

and τ be a Romeo strategy. We show that the depth of Π def= Π(σ̂, τ, w) is at
most B|w|. Otherwise let k be such that in the kth round Juliet does a Call move
of nesting depth B|w| + 1. However, σ̂

∣

∣

k
= ρk = σk

�

∣

∣

k
, where � = max{k, |w|},

and σk
� ∈ S� has depth at most B|w| on w ∈ L�, a contradiction. Therefore the

depth of Π is at most B|w| and by König’s Lemma Π is thus finite, completing
the proof. 	


4 Prefix-Free Games

Prefix-freeness appears as a realistic constraint for a practical (Active XML)
setting since it can be easily enforced by suffixing each replacement string with
a special end-of-file symbol: Every game G = (Σ,R, T ) can be transformed into
a prefix-free game G′ = (Σ′, R′, T ′) by letting Σ′ = Σ ∪̇ {$} for some new

7 Since the ρk are only partially defined, one might consider the strategies σk that
result from the ρk which take the value Call whenever ρk is undefined.
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symbol $ /∈ Σ that shall denote the end of replacement strings, and further
letting R′

a = Ra$ for each a ∈ Σf to enforce that replacement words end with $,
and adding a loop transition for the symbol $ to each state of T (accomplishing
that the symbol $ is “ignored” by the target language). Another special case of
prefix-free games, which is similar to the one-pass with size setting discussed in
[3], are games where the alphabet Σ contains (besides other symbols) numbers
1, . . . , N for some N ∈ N and all replacement strings are of the form nx where
x ∈ Σ+ and n = |x|. Our result for prefix-free games also easily transfers to
the setting where the input word is revealed to Juliet in a one-pass fashion, but
Romeo’s replacement words are revealed immediately.

We sketch the proof of Theorem 1(b) in the following.
A context-free game on a string w = a1 · · · an can be viewed as a sequence of

n games on the single symbols a1, . . . , an. Intuitively, in prefix-free games Juliet
has the benefit to know when a subgame on some symbol ai has ended and when
the next subgame starts.

This allows us to view strategies of Juliet in a hierarchical way: they consist
of a top-level strategy that chooses, whenever a subgame on some ai starts, a
strategy for this subgame. This choice may take the current history string into
account. We will use this view to proceed in an inductive fashion: we establish
that there are automata for the subgame strategies and then combine these
automata with suitable automata for a “top-level” strategy.

It turns out that the choice of the top-level strategy boils down to an “online
word problem” for NFAs which we introduce and study first.

The Online Word Problem for NFAs. In the online-version of the word
problem for an NFA N , denoted OnlineNFA(N ), the single player gets to
know the symbols of a word one by one, and always needs to decide which
transition N should take before the next symbol is revealed. We only consider
the case that N = (Q,Σ, δ, s, F ) has at least one transition for each symbol from
each state. Formally, a strategy is a map ρ : Σ∗ → Q such that ρ(ε) = s and
(ρ(w), a, ρ(wa)) ∈ δ for each w ∈ Σ∗ and a ∈ Σ.

Given a strategy ρ for OnlineNFA(N ), we denote by WN (ρ) the winning
set of words that are accepted by N if the player follows ρ. A strategy ρ is weakly
dominant if, for every strategy ρ′, it holds WN (ρ′) ≤sl WN (ρ).

We are interested in strategies that can be computed by automata. A particu-
larly simple such strategy for OnlineNFA(N ) can be obtained by transforming
N into a DFA D by removing transitions. The associated strategy ρD is the one
that only uses the transitions of D. We prove that D can be chosen such that
ρD is weakly dominant.

Lemma 3. For each NFA N , there exists a DFA D obtained by removing tran-
sitions from N such that ρD is a weakly dominant strategy for OnlineNFA(N ).

Game Composition and Game Effects. Let in the following, G = (Σ,R, T )
be a prefix-free game with T = (Q,Σ, δ, s, F ). Let furthermore, for every a ∈ Σ,
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Aa = (Qa, Σ, δa, sa, {fa}) be a minimal DFA for the replacement language La

of a. Since La is prefix-free, Aa has a unique accepting state fa.
For a strategy σ (for Juliet or Romeo) and a string α ∈ Σ

∗
, we define the

substrategy σα of σ by σα(β, a) = σ(αβ, a).
In the following, states (q, w, σ) denotes the set of T -states that can be reached

at the end of a play of σ on w if the initial state of T were q. More precisely,
it is the set of states of the form δ∗(q, �α) where α is a final history string of a
play of σ on w.

An effect triple (p, a, S) consists of a state p ∈ Q, a symbol a ∈ Σ and a set
S ⊆ Q. We say that (p, a, S) is an effect triple of σ if states (p, a, σ) ⊆ S. That
is, starting from p and processing a according to σ, one is guaranteed to reach
a state in S. We call (p, a, S) trivial if δ(p, a) ∈ S, i.e. if it is an effect triple of
a strategy that plays Read on a. The single-symbol effect sse(σ) of a strategy
σ is the set of all its effect triples. Finally, we define the effect set E(σ) of a
strategy σ as E(σ) def=

⋃

α∈Σ
∗
sse(σα). That is, E(σ) contains all effect triples that

are induced by substrategies of σ.
For a set E of effect triples, consider the NFA NE = (P(Q), Σ, δE , {s},P(F )),

where δE is defined as follows. For sets S, S′ ⊆ Q and a ∈ Σ, (S, a, S′) ∈ δE if,
for each p ∈ S, there is some S′′ ⊆ S′ such that (p, a, S′′) ∈ E.

Proposition 1. Let G = (Σ,R, T ) be a prefix-free game, E a set of effect
triples, and σ a terminating strategy such that E(σ) ⊆ E. Then there is a strategy
ρ for OnlineNFA(NE) such that WG(σ) = WNE

(ρ).

Proof. It is straightforward to verify that ρ(w) def= states (s, w, σ) yields a
well-defined strategy ρ for OnlineNFA(NE). The proposition follows, since
w ∈ WNE

(ρ) if and only if ρ(w) ⊆ F , and w ∈ WG(σ) if and only if
states (s, w, σ) ⊆ F .

We say that a strategy automaton A = (QA, Σ, δA, sA, FA) is (p, a, S)-
inducing if σA is terminating, a ∈ Σf , and the following conditions hold.

– For each u ∈ La, states (p, u, σA) ⊆ S.
– There are disjoint subsets QA,q ⊆ QA, for q ∈ S, such that for every play of

σ on some u ∈ La with final history string α, it holds δ∗
A(sA, α) ∈ QA,q ⇔

δ∗(p, �α) = q.
Furthermore, there is no proper prefix β of α for which δ∗

A(sA, β) ∈ QA,r, for
any r.

Proposition 2. Let G = (Σ,R, T ) be a prefix-free game and E a set of effect
triples such that for each non-trivial t ∈ E, there exists a t-inducing strategy
automaton At. Then there is a strategy automaton A for G such that, for each
strategy ρ for OnlineNFA(NE), WNE

(ρ) ≤sl WG(σA).

A crucial ingredient is the following proposition, which will allow us to restrict
our attention to strategies of finite depth. An almost identical proof can also be
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used to show that prefix-free games have the bounded depth property, and we
could use this and Theorem 1(a) to deduce immediately that they have weakly
dominant strategies. However, we are aiming for the stronger result that they
have regular weakly dominant strategies.

Proposition 3. In prefix-free games, each effect triple of a terminating strategy
is also an effect triple of a strategy of bounded depth.

Proof Idea. Let E denote the set of effect triples of bounded depth strategies.
Consider an effect triple (p, a, S) /∈ E of a strategy σ̂. If the effect triples of σ̂’s
substrategies on the symbols of a’s replacement word were all in E, then these
substrategies could be replaced so as to obtain a bounded depth strategy σ for
(p, a, S), contradicting (p, a, S) /∈ E. Thus, for each (p, a, S) /∈ E, Romeo can
force a configuration in the play against σ̂ on a where the effect triple of the
substrategy is again not in E. But Romeo can do this repeatedly, so σ̂ is not
terminating. 	


The finite depth allows us to construct t-inducing strategy automata by
induction on the depth of a strategy with effect triple t.

Proposition 4. Let G = (Σ,R, T ) be a prefix-free game and (p, a, S) a non-
trivial effect triple of some terminating strategy σ. Then there exists a (p, a, S)-
inducing strategy automaton.

Now we are ready to prove Theorem 1(b).

Proof of Theorem 1(b). Let G = (Σ,R, T ) be prefix-free. Let E be the set of
effect triples of terminating strategies. By Proposition 4 there is a t-inducing
automaton for each non-trivial t ∈ E. Let σA be the regular strategy as guaran-
teed by Proposition 2. We show that σA is weakly dominant.

To this end, let σ be any terminating strategy for G (cf. Lemma 1). Since
E(σ) ⊆ E, Proposition 1 guarantees a strategy ρ for OnlineNFA(NE) such
that WG(σ) = WNE

(ρ). By Proposition 2, WNE
(ρ) ≤sl WG(σA), and therefore,

altogether WG(σ) ≤sl WG(σA) as required. 	


5 Strongly Regular Dominant Strategies

In this section, we sketch the main ideas of the proof of Theorem 1(c) and (d).
We say that a strategy σ has a (q, a)-conflict, for q ∈ Q and a ∈ Σf , if there

are configurations (α1, a, u1) and (α2, a, u2) in plays on words from W (σ) such
that δ∗(s, �α1) = δ∗(s, �α2) = q and σ(α1, a) �= σ(α2, a). If σ has no conflicts,
then changing it to a strongly regular strategy requires modification only on
configurations that do not occur in plays on words from W (σ).

Proof Idea of Theorem 1(c). We show that a dominant strategy σ with some
conflicts can be transformed into a dominant strategy σ′ with less conflicts. To
do so, we find a configuration (v, a, ∗) with δ∗(s, v) = q that has no (q, a)-conflict
with any later configuration of the same play. The existence of such a strategy
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can be concluded from the fact that T is acyclic, hence the only way for a
configuration to conflict with a later configuration is if all intermediate moves
are Call . A strategy without (q, a)-conflict can be obtained by “copying” the
substrategy starting from (v, a, ∗) to any conflicting configuration. 	

Proof Idea of Theorem 1(d). We inductively construct a sequence (σ1, σ2, . . . )
of dominant strategies that is either finite and ends with a strategy that has no
conflict, or is infinite and converges to such a strategy. In the convergent case,
since each strategy in a non-recursive game is terminating, the limit strategy is
also dominant by Lemma 2. To construct a strategy σk+1, the idea is to modify
σk so as to shift the earliest conflict to a later time in the future. 	


6 Negative Results

Finally, we provide proofs for Theorem 2(a) and (b).

Proof of Theorem 2(a). The game G1 = (Σ,R, T ) with Σ = {a}, the only
replacement rule being a → aa and L(T ) = {ak | k ≥ 2} has the stated property.
The strategy plays Call exactly if it has not seen any symbol â. Since this strategy
wins on every word, it is dominant. However, a forgetful strategy that plays Call
on the first symbol a is bound to play Call forever, and therefore does not win
on any word. On the other hand, a forgetful strategy that plays Read on the
first symbol a does not win on the word a and is therefore not dominant, either.

	

Proof of Theorem 2(b). Let G2 = (Σ,R, T ) with Σ = {a, b, c, d}, rule set R given
by

a → b

c → ac

d → bad

and the target language automaton T = (Q,Σ, δT , q0, F ) depicted in Fig. 2a. We
claim that the regular forgetful strategy σA based on the automaton A shown
in Fig. 2b fulfils W (σA) = Σ∗ and is thus dominant. Indeed, by induction on the
length of w, the following is easy to show: for each input word w, the strategy σA
yields a terminating play with a final string u such that: δT (q0, u) = δA(q0, u),
if u does not end with a, and δT (q0, u) = q0 and δA(q0, u) = q′

0, otherwise.
However, for a strategy automaton B = (Q ∪ {Call}, Σ, δB, q0, {Call}) of a

strongly regular strategy σB, it holds that W (σB) � Σ∗, and thus no such σB is
dominant. For a proof of this claim, we can assume that δB(q0, c) = δB(q1, a) =
δB(q1, d) = Call since otherwise σB would lose on c, ba or bd. If δB(q0, a) = q0,
then the play of σB on ac is infinite. On the other hand, if δB(q0, a) = Call , then
the play of σB on ad is infinite. 	
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q2

a, d

b
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b, c

a, d

a, b, c, d

(a) Target language automa-
ton T

q0

q′
0

q1q3

d

a

b
c

d

b
a, c

b, c

a, d

(b) Strategy automaton A; missing transi-
tions lead into a non-accepting sink state
(not shown).

Fig. 2. Automata used in the proof of Theorem 2(b)

7 Conclusion and Open Questions

It remains unclear whether undominated strategies always exist. Our main pos-
itive result is that prefix-free replacement languages allow for an undominated
strategy that is regular. Indeed, prefix-freeness seems to be a realistic solution
in practice, because it can be achieved easily and with almost no overhead by
suffixing replacement words with an end-of-file symbol. Also non-recursive rules
or a finite target language lead to many positive properties, in particular because
they have the bounded depth property. While finiteness of the target language
may seem like a strong restriction, one particular instance of it is if there is a
single target document that has to be reached [14]. Restrictions that bound the
number of recursive replacements also seem plausible in practise.

It is actually conceivable that each game has the bounded depth property
(even with a constant bounding sequence) and therefore undominated strategies.
Another question is whether every game with an undominated strategy also has
a regular one.
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Abstract. Unification and matching algorithms are essential compo-
nents of logic and functional programming languages and theorem
provers. Nominal extensions have been developed to deal with syntax
involving binding operators: nominal unification takes into account α-
equivalence; however, it does not take into account non-capturing sub-
stitutions, which are not primitive in nominal syntax. We consider an
extension of nominal syntax with non-capturing substitutions and show
that matching is decidable and finitary but unification is undecidable.
We provide a matching algorithm and characterise problems for which
matching is unitary, giving rise to expressive and efficient rewriting
systems.

Keywords: Nominal syntax · Non-capturing substitution ·
Rewriting · Unification

1 Introduction

Nominal syntax is a generalisation of first-order syntax that deals with variable
binding using atom permutations and freshness constraints (see [17,28]). Nom-
inal syntax uses two kinds of variables: atoms a, b, . . ., which can be abstracted
but not substituted ([a]t means that a is abstracted in t), and meta-variables
X,Y, . . ., called simply variables, which may be decorated with atom permuta-
tions. Unification of nominal terms (i.e., modulo α-equivalence) is decidable and
unitary [28]. Efficient algorithms exist that solve nominal unification problems
in polynomial time [5,7,21]. Nominal matching (a form of unification where only
one of the terms can be instantiated) can be solved in linear time [6].

Nominal unification and matching have applications in logic and functional
languages [2,8,25,26] and automated reasoning [10,11,13,16,23,27] among oth-
ers. However, nominal terms do not provide a built-in form of substitution for
atoms that would permit direct definitions of systems such as the λ-calculus.
Instead, atom substitution has to be defined explicitly, by rewrite rules or equa-
tions [14,15], as in the following system, where (explicit) substitutions are sug-
ared to t{a �→ t′} and a # t means that a is not free in t.
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(Beta) app(λ[a]X,X ′) → X{a �→ X ′}
(σvar) a{a �→ X} → X
(σε) a # Y � Y {a �→ X} → Y

(σapp) app(X,X ′){a �→ Y } → app(X{a �→ Y },X ′{a �→ Y })
(σlam) b # Y � (λ[b]X){a �→ Y } → λ[b](X{a �→ Y })

An extension of nominal syntax with a primitive capture-avoiding atom sub-
stitution, which avoids the need to introduce explicit substitution rules, was
presented in [12]; however, its rewriting theory was not developed. Here we show
that unification in this extended syntax is undecidable in general but matching
remains decidable (albeit no longer unitary) and the rewriting relation can be
effectively computed. The undecidability result is obtained by reducing Hilbert’s
tenth problem to extended nominal unification, inspired by Goldfarb’s proof of
undecidability of second-order unification [18]. Our main contributions are an
algorithm that computes complete sets of solutions for solvable matching prob-
lems, and a characterisation of a wide class of problems for which matching
is unitary, inducing a well-behaved rewriting relation. This class includes the
Beta and Eta reduction rules of the λ-calculus (we give details in Sect. 5). These
results open the way for the development of expressive reasoning frameworks
based on nominal syntax.

Related Work. Our syntax for extended nominal terms is inspired by [12], where
a dependent type system for extended terms is presented. Matching was used
in [12] to type-check terms given a set of declarations for function symbols. It
was noted that restrictions were needed to ensure unitary matching, however,
no matching algorithm was provided. Capture-avoiding atom substitution was
previously studied in the context of nominal algebra by Gabbay and Mathi-
jssen [15,16], but its unification theory was not considered.

In [13], a nominal reduction system for the λ-calculus is given, with an explicit
atom-substitution operation defined by a set of rewrite rules. The extended nom-
inal syntax proposed here reduces the verbosity of such systems by internalising
capture-avoiding substitutions.

Efficient nominal unification algorithms were developed by Calvès and
Fernández [4,5] and Levy and Villaret [21]. Both approaches were later unified
by Calvès [3]. Kumar and Norrish [19] also studied efficient forms of nominal uni-
fication. Cheney [9] proved that a more general version of nominal unification,
called equivariant unification, is NP-complete.

We followed Goldfarb’s methodology [18] to prove the undecidability of nom-
inal unification extended with atom substitutions. Goldfarb [18] proved that
second-order unification is undecidable by reducing Hilbert’s tenth problem to a
second-order unification problem. An alternative undecidability proof for second-
order unification by a direct encoding of the Halting problem is given by Levy
and Veanes [20], which could also be adapted to our language.
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2 Background

Fix countably infinite, pairwise disjoint sets of atoms, a, b, c, . . . ∈ A; variables,
X,Y,Z, . . . ∈ X ; and term-formers f, g, . . . ∈ F . A permutation π is a
bijection on a finite subset of A called support of π, Support(π). A swapping
(a b) is a particular case where a maps to b, b maps to a and all other atoms c map
to themselves. We follow the permutative convention [15, Convention 2.3] for
atoms throughout the paper, i.e., atoms a, b, c range permutatively over A so that
they are always distinct unless stated otherwise. Atom substitutions φ, or just
a-substitutions, are mappings with finite domain from atoms to terms, i.e.,
the set of atoms such that φ(a) �= a, written Dom(φ), is finite. Permutations π, a-
substitutions φ, and terms with atom substitutions s, t, or just (extended)
terms, are generated by the following grammar.

Definition 1 (Syntax).

π ::=Id | π(a b) φ ::=Id | [a �→ s]φ s, t ::=a | φˆπ·X | [a]s | fs | (s1, . . . , sn)

The final Id is usually omitted from permutations and a-substitutions. Write π-1

for the inverse of π, e.g., if π = (a b)(b c) then π(c) = a and c = π-1(a). A-
substitutions are simultaneous bindings, abbreviated as [a1 �→ s1; . . . ; an �→ sn]
where atoms ai are pairwise distinct. Write φ−a1,...,an for the a-substitution φ
with domain restricted to Dom(φ) \ {a1, . . . , an}. Img(φ) denotes the set of
terms {φ(a) | a ∈ Dom(φ)}. Term constructors as given in Definition 1 are
called respectively atoms, moderated variables, abstractions, function
applications (where f() is denoted as f) and tuples (n ≥ 0). A moderated
variable φˆπ·X comprises a variable X, and suspended permutation π and a-
substitution φ. As in first-order syntax, variables denote unknown parts of the
term, but here they are decorated with permutations and atom-substitutions,
that will act when the variable is instantiated, as shown below. We abbrevi-
ate Id̂ π·X (resp. φ Îd·X) as π·X (resp. φ·X) and Id̂ Id·X as X if there is no
ambiguity.

Permutations act on terms and a-substitutions; ◦ denotes composition:

π·a � π(a) π·[a]t � [π(a)]π·t π·ft � fπ·t π·(t1, . . . , tn) � (π·t1, . . . , π·tn)

π·(φˆπ′·X) � (π·φ)̂ (π ◦ π′)·X where π·Id � Id, π·([a �→ t]φ) � [π(a) �→ π·t](π·φ)

Write V (t) for the set of variable symbols appearing in a term t and A(t)
for the set of atoms in t; this includes atoms in the domain and image of a-
substitutions and atoms in the support of permutations.

A position p, q is a string of positive integers denoting a path in the abstract
syntax tree of a term. The set of positions of a term s, Pos(s), is defined
inductively as usual [1] with an additional case for a moderated variable:

Pos([a1 �→ t1; · · · ; an �→ tn ]̂ π·X) � {ε} ∪
n⋃

i=1

{i · p | p ∈ Pos(ti)}.
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An arbitrary ordering (e.g., lexicographic) is chosen when defining the position-
ing of the terms in the image of suspended a-substitutions. Since we are dealing
with simultaneous a-substitutions, the choice of ordering does not matter. The
size of a term t, |t|, is the cardinality of Pos(t). Call t|p the subterm of t at
position p. If p ∈ Pos(t), then t[s]p denotes the term obtained from t by replacing
its subterm at position p by the term s and (· · · (s[t1]p1) · · · )[tn]pn

is abbreviated
as s[t1 · · · tn]p1···pn

.

Example 1. Let map, cons and nil be term-formers; map([a]F, cons(H, nil)) is a
term and so is t defined as cons([a �→ H]·F, map([b]F, nil)). A(t) = {a, b}, V (t) =
{F,H}. Pos(t) = {ε, 1, 11, 111, 12, 121, 1211, 12111, 1212} so that, t|111 = H and
t|1212 = nil, for instance. See [12,13,28] for more examples.

Call a # t a freshness constraint. Let Δ,∇, . . . range over finite sets of
primitive constraints of the form a # X; call such sets freshness contexts.
Call s≈α t an α-equivalence constraint. Write ∇ � a#t and ∇ � s≈α t, called
freshness and α-equivalence judgements respectively, when a derivation
exists using the syntax-directed rules from Definition 2 where, for a-substitutions
φ, φ′ and permutations π, π′, Dom(φ) ∪ Dom(φ′) is abbreviated as DomP (φ, φ′)
and Support(π)∪Support(π′) as SupportP (π, π′). We write a, b#t (resp. a#s, t)
instead of a # t, b # t (resp. a # s, a # t), and abbreviate ∅ � s ≈α t as s ≈α t.

Definition 2 (Freshness and α-equivalence judgements).

(#ab)∇ � a # b
(#[a])∇ � a # [a]s

∇ � a # s
(#[b])∇ � a # [b]s

∇ � a # s
(#f)∇ � a # fs

∧

b∈Dom(φ)∪{a}
(∇ � a # φ(b)∨(π-1(b) # X ∈ ∇))

(#X)∇ � a # φˆπ·X

∇ � a # s1 · · · ∇ � a # sn
(#tupl)∇ � a # (s1, . . . , sn)

(≈αa)∇ � a ≈α a

∇ � s ≈α t
(≈α[a])∇ � [a]s ≈α [a]t

∇ � (b a)·s ≈α t ∇ � b # s
(≈α[b])∇ � [a]s ≈α [b]t

∇ � s ≈α t
(≈αf)∇ � fs ≈α ft

∇ � s1 ≈α t1 · · · ∇ � sn ≈α tn
(≈αtupl)∇ � (s1, . . . , sn) ≈α (t1, . . . , tn)

∧

a∈(DomP (φ,φ′)∪SupportP (π,π′))

(∇ � φ(π(a)) ≈α φ′(π′(a)) ∨ (a # X ∈ ∇))

(≈αX)∇ � φˆπ·X ≈α φ′ˆπ′·X
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The most interesting rules are (#X) and (≈αX). The first one specifies that a
is fresh in φˆπ·X if it is fresh in the image by φ of any atom that could occur
in an instance of π·X. The second ensures that the atom actions produce the
same effect for any valid instance of X, in other words, any atom that could be
affected by the atom actions suspended in X is either affected in the same way
on both sides of the equality constraint, or it must be fresh in X. The relation
≈α is indeed an equivalence relation [12].

Example 2. We can derive a#[b �→ Y ]̂ (a c)·X from ∇1 = {a#Y, c#X} or from
∇2 = {b # X, c # X} using rule (#X), and [c �→ (a b)·Y ]·X≈α [b �→ Y ]·(b c)·X
from ∇1 = {b # X, a # Y, b # Y } or ∇2 = {b # X, c # X} using rule (≈αX).
In contrast, using standard (non-extended) nominal syntax, for each derivable
constraint there exists a unique least freshness context entailing it [28].

The action of an a-substitution φ on a term t relies on a freshness context ∇
and therefore is defined over terms-in-context, written ∇ � t, or simply � t if
∇ = ∅. Below we abbreviate (∇ � t)φ as ∇ � tφ.

Definition 3 (A-substitution action).

∇ � aφ � ∇ � φ(a) ∇ � (ft)φ � ∇ � ftφ

∇ � (t1, . . . , tn)φ � ∇ � (t1φ, . . . , tnφ)

∇ � (φ′ˆπ·X)φ � ∇ � (φ′ • φ)̂ π·X where • denotes composition

∇ � ([a]t)φ � ∇ � [b]((a b)·t)φ−b where ∇ � b # t, Img(φ)

A-substitutions work uniformly on α-equivalence classes of terms, that is,
the choice of b in Definition 3 is irrelevant [12]. Capture-avoidance is guaran-
teed by selecting an α-equivalent representative of ∇ � [a]t, i.e., ∇ � [b](a b)·t,
with fresh b. There exists always some b ∈ (A \ (A(t) ∪ A(Img(φ)))) such that
∇ � b # t, Img(φ), assuming primitive constraints b # X in ∇ for each X in
(V (t) ∪ V (Img(φ))), since variables have finite support [24]. We assume ∇ is
large enough (in practice, it can be augmented whenever required). This app-
roach is also taken in [8,12,13] and tacitly assumed in the rest of the paper.

Variable substitutions σ, θ, . . ., or just v-substitutions, are mappings
from variables to terms, with finite domain Dom(σ). They are generated by
the grammar: σ, θ :: = Id | [X �→ s]σ where Id is commonly omitted, and inter-
preted as simultaneous bindings, abbreviated [X1 �→ s1; . . . ;Xn �→ sn] where
variables Xi are pairwise distinct. The application of a v-substitution θ to a
moderated variable φˆπ·X induces the action of φ on the term π·θ(X). The
action of v-substitutions, σ, on terms, t, written tσ, is also parameterised by
freshness contexts but left implicit in Definition 4. Given v-substitution σ and
freshness contexts ∇,Δ, we write Δ � ∇σ to denote Δ � a # σ(X) for each
a # X ∈ ∇.

Definition 4 (V-substitution action).

aσ � a ([a]t)σ � [a]tσ (ft)σ � ftσ (t1, . . . , tn)σ � (t1σ, . . . , tnσ)

(φˆπ·X)σ � (π·σ(X))(φσ) where Idσ � Id and ([a �→ s]φ)σ � [a �→ sσ](φσ)
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Permutations and a-substitutions commute: ∇ � π·(sφ) ≈α (π·s)(π·φ) and
∇ � (π·s)φ ≈α π·(s(π-1·φ)). Also, v-substitutions commute with permutations,
∇ � π·(sσ) ≈α (π·s)σ, and a-substitutions, ∇ � (sσ)φσ ≈α (sφ)σ.

3 Unification, Matching and Rewriting

Definition 5. Let C range over freshness and α-equality constraints. A unifi-
cation problem P is a finite set of such constraints, where α-equivalence con-
straints are written as unification constraints s ?≈? t. A solution to P is a
pair (F, σ) of a non-empty collection F of freshness contexts and a v-substitution
σ such that Δ � Cσ for each Δ ∈ F and C ∈ P.

Write U(P) for the set of all solutions of P. (F, σ) ∈ U(P) is more
general than (F′, σ′) ∈ U(P), written (F, σ) ≤ (F′, σ′), if for each Δ′ ∈ F′

there exists Δ ∈ F and a v-substitution θ such that Δ′ � X(σ • θ) ≈α Xσ′ for all
X and Δ′ � Δθ. If there is no (F′, σ′) ∈ U(P) such that (F′, σ′) < (F, σ) then
(F, σ) is a principal or most general solution.

The unification problem {[a �→ c]·X ?≈?c} has principal solutions ({∅}, [X �→
a]) and ({∅}, [X �→ c]). In fact, the unification theory of extended nominal terms
is infinitary. We give an example after defining complete sets of solutions. Note
that solutions of unification problems use collections of contexts, since there may
be several independent contexts that solve a constraint, as shown in Example 2.

Definition 6. Call W a complete set of solutions for P if W ⊆ U(P);
∀(F, θ) ∈ W , Dom(θ) ⊆ V (P); and ∀(F, σ) ∈ U(P),∃(F′, θ) ∈ W : (F′, θ) ≤
(F, σ). W is a complete set of most general solutions if each element is
principal.

The unification problem {[c �→ f(a, b)]·X ?≈? f(a, [c �→ b]·X)} has an infi-
nite number of principal solutions of the form ({∅}, σn) where σn = [X �→
f(a, f(a, . . . , f(a, c) · · · ))] and n is the number of occurrences of function symbol
f and atom a in σn(X). In particular, σ0 = [X �→ c], σ1 = [X �→ f(a, c)] and
σ2 = [X �→ f(a, f(a, c))].

A matching constraint is a unification constraint s ?≈? t where only vari-
ables in s may be instantiated; occurrences of variables in t are seen as constants.
We sometimes write s ?≈ t to emphasise that we are dealing with matching, and
refer to s as the pattern and t as the matched term. Matching plays an
important role in rewriting: given a set of rewriting rules, the nominal rewriting
relation is generated by solving pattern-matching problems as defined below.

Definition 7. A matching problem P is a set of matching constraints si ?≈ti
such that (

⋃
i V (si)) ∩ (

⋃
i V (ti)) = ∅. We denote

⋃
i V (si) by VLHS(P) and⋃

i V (ti) by VRHS(P). A pattern matching problem consists of a pair of
terms-in-context, written (∇ � l) ?≈ (Δ � t) such that V (∇ � l)∩V (Δ � t) = ∅.

A solution to a pattern matching problem (∇ � l)?≈(Δ � s) is a v-substitution
σ, such that there exists F such that (F, σ) is a solution to {l ?≈ s} ∪ ∇, and
Δ � ∇i for some ∇i ∈ F.
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Definition 8. An extended nominal rewrite rule, or just rewrite rule, is
a tuple, written R = (∇ � l → r), where ∇ is a freshness context, and l, r are
extended nominal terms such that V (∇, r) ⊆ V (l). We write l → r for ∅ � l → r.

Example 3. – par(out(a, b), in(a, [c]P)) → [c �→ b]·P is a rewrite rule , repre-
senting communication in the π calculus.

– a # X � X → lam([a]app(X, a)) is the η-expansion rule of the λ-calculus. The
β and η reduction rules are:

(β) app(lam([a]X), Y) → [a �→ Y]·X
(η) a # X � lam([a]app(X, a)) → X

Using standard nominal rules, four additional rules are needed to define
explicit substitution (see the Introduction and [13]).

– The higher-order function map (see Example 1) is defined by rules:

map([a]F, nil) → nil
map([a]F, cons(H, T)) → cons([a �→ H]·F, map([a]F, T))

To generate the rewrite relation, terms in rewrite rules are considered up to
renaming of variables and atoms (metalevel equivariance [13,24]), denoted tπ.

Definition 9. A rewrite system R induces a rewrite step Δ � s
R−→ t if there

exists (∇ � l → r) ∈ R, p ∈ Pos(s) and a permutation π such that the pattern-
matching problem (∇π � lπ) ?≈ (Δ � s|p) has solution θ, and Δ � s[rπθ]p ≈α t:

Δ � {∇πθ, lπθ ≈α s|p, s[rπθ]p ≈α t}
(→Rew)

Δ � s
R−→ t

The (multi-step) rewrite relation Δ �R s → t is the reflexive, transitive
closure of the one-step rewrite relation.

Example 4. The term-in-context � app(lam([a]lam([b]app(a, b))), b) rewrites to
a normal form in one step with the rule (β) (see Example 3), at position ε with
permutation Id and v-substitution θ = [X �→ lam([b]app(a, b)); Y �→ b] as follows,

� app(lam([a]lam([b]app(a, b))), b) →〈(β),ε,Id,θ〉 lam([c]app(b, c))

Capture of the unabstracted atom b has been avoided by the internal machinery
of the extended nominal framework implementing a-substitution. By relegating
the semantics of capture-avoiding substitution to the metal-level, where they are
managed by our formalism, we have reduced the set of rewrite rules necessary
to provide a nominal representation of the rewrite system at hand. The same
reduction requires several steps using explicit substitution rules [13].
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4 Solving Matching Problems

A sound and complete matching algorithm can be built by converting the set
of derivation rules given in Definition 2 into a simplification system. This algo-
rithm can then be used to implement rewriting, and also to check closedness of
terms and rewrite rules (see [13]). Principal solutions are not unique in general
but matching is unitary for a restricted but practically useful class of problems
(cf. Theorem 2).

In a matching problem P = s1 ?≈ t, . . . , sn ?≈ tn, variables on the right-hand
side of matching constraints are treated as constants. Hence, without loss of
generality, we assume a # X for any X ∈ VRHS(P) and a ∈ A.

Although, initially, the sets of variables in left- and right-hand sides of match-
ing constraints are disjoint, this property is not preserved during the process of
solving matching problems (due to variable instantiations). Thus, given a match-
ing problem P0 to solve, we start by computing the set VRHS(P0) of variables
that should not be instantiated.

The following auxiliary functions Cap and Ψ are used in the matching algo-
rithm to handle constraints where the pattern is a moderated variable: To solve
a constraint of the form φˆπ·X ?≈? t where t �= φ′ˆπ′·X, one checks if some
subterm t|p of t is contained in the image of φ, that is, [π(a) �→ t|p] ∈ φ. In
order to find such position p and subterm t|p, the matching algorithm generates
cap constraints of the form (t[a1 · · · an]p1···pn

)φ ?≈? t, where pi ∈ Pos(t) and
ai ∈ Dom(φ), using the function Cap defined below.

Definition 10 (Cap terms). Let t be a term, A a finite set of atoms.
Cap(t, A) = {t[a1 · · · an]p1···pn

| n ∈ Nat, ai ∈ A, pi ∈ Pos(t), 1 ≤ i ≤ n}.

Thus, Cap(t, A) returns the set of all the terms obtained by replacing sub-
terms of t with atoms from A. Note that Cap(t, A) also includes the term t.

Example 5. Cap(cons([a �→ H]·F, T ), {b, c}) = {b, c, cons b, cons c, cons(b, b),
cons(b, c), cons(c, b), cons(c, c), cons(b, T ), cons(c, T ), cons([a �→ b]·F, b),
cons([a �→ c]·F, b), cons([a �→ b]·F, c), cons([a �→ c]·F, c), cons([a �→ b]·F, T ),
cons([a �→ c]·F, T ), cons([a �→ H]·F, b), ([a �→ H]·F, c), cons([a �→ H]·F, T )}.

The function Ψ is used to handle constraints of the form φˆπ·X ?≈? φ′ˆπ′·X
or a # φˆπ·X, i.e., Ψ deals with the premises of rules (≈αX) and (#X) (see Defi-
nition 2).

Definition 11 (Function Ψ). Let s and t be either two moderated variables
φˆπ·X and φ′ˆπ′·X, or an atom a and a moderated variable φˆπ·X. Let P be a
matching problem, A a finite set of atoms and b an atom in A. Then, Ψ(s, t)A =
Ψ ′(s, t, ∅)A where Ψ ′ computes a set of problems (i.e., a collection of sets of
constraints) as follows: Ψ ′(s, t,P)A �
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

• {P} if A = ∅

• Ψ ′(s, t,P ∪ {s # φ(b)})A\{b} ∪ Ψ ′(s, t,P ∪ {π-1(b) # X})A\{b} if s = a, t = φˆπ·X
• Ψ ′(s, t,P ∪ {φ(π(b)) ?≈? φ′(π′(b))})A\{b} ∪ Ψ ′(s, t,P ∪ {b # X})A\{b}

if s = φˆπ·X, t = φ′ˆπ′·X
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Ψ ′ deals with one atom from the given finite set A in each recursive call
(thus ensuring termination); the order in which elements of A are considered is
irrelevant since Ψ ′(s, t,P)A is a collection of sets. Hence Ψ ′ is indeed a function.

Freshness constraints of form a#a are inconsistent. A matching constraint
s?≈? t is clashing when s, t have different term constructors at the root except if
s is a moderated variable φˆπ·X and X �∈ VRHS(P). For example, if VRHS(P) =
{Y } then a ?≈? (a b)·Y , f a ?≈? g a and [a �→ b]·Y ?≈? [b]a are clashing but [a �→
b]·X ?≈? f(c, b) and [a �→ b]·Y ?≈? [b �→ a]·Y are not. Clashing and inconsistent
constraints are not derivable; failure rules (⊥) will be specified to deal with them.

Definition 12 (Matching steps). Let P0 be a matching problem and X =
VRHS(P0). P,Q denote sets of pairs (P, θ), where P is a unification problem
and θ a v-substitution. Write P X=⇒

?≈ Q (resp. P =⇒# Q), if Q is obtained
from P by application of one matching (resp. freshness) reduction rule below. As
usual, =⇒∗

?≈ (resp. =⇒∗
#) denotes reflexive transitive closure; arrow subindices

are omitted if there is no ambiguity.

(?≈⊥)1 ({s ?≈? t} ∪ P, θ)
X

=⇒
?≈ ∅ if clashing

(?≈≡) ({t ?≈? t} ∪ P, θ)
X

=⇒
?≈ (P, θ)

(?≈f) ({fs ?≈? ft} ∪ P, θ)
X

=⇒
?≈ ({s ?≈? t} ∪ P, θ)

(?≈[a]) ({[a]s ?≈? [a]t} ∪ P, θ)
X

=⇒
?≈ ({s ?≈? t} ∪ P, θ)

(?≈[b]) ({[a]s ?≈? [b]t} ∪ P, θ)
X

=⇒
?≈ ({(b a)·s ?≈? t, b # s} ∪ P, θ)

(?≈tupl) ({(s1, . . . , sn) ?≈? (t1, . . . , tn)} ∪ P, θ)
X

=⇒
?≈ ({s1 ?≈? t1, . . . , sn ?≈? tn} ∪ P, θ)

(?≈X)1 ({φˆπ·X ?≈? φ′ˆπ′·X} ∪ P, θ)
X

=⇒
?≈

⋃

P′∈Ψ(φˆπ·X,φ′ˆπ′·X)A
{(P′ ∪ P, θ)}

where A = (SupportP (π, π′) ∪ DomP (φ, φ′))
(?≈Inst)1 ({φˆπ·X ?≈? t} ∪ P, θ)

X
=⇒

?≈
⋃

s∈Cap(t,Dom(φ))

{({s(φθ′) ?≈? t} ∪ Pθ′, θ • θ′)}
if t �= φ′ˆπ′·Y (Y ∈ X ), (X �∈ X), θ′ = [X �→ π-1·s]

(?≈XY)1 ({φˆπ·X ?≈? φ′ˆπ′·Y } ∪ P, θ)
X

=⇒
?≈

⋃

s∈(Cap(φ′ˆπ′·Y,Dom(φ))∪{π′·Y })
{({s(φθ′) ?≈? φ′ˆπ′·Y } ∪ Pθ′, θ • θ′)}

if (X �∈ X) and θ′ = [X �→ π-1·s]
(#⊥) {a # a} ∪ P =⇒# ⊥
(#ab) {a # b} ∪ P =⇒# P

(#[a]) {a # [a]s} ∪ P =⇒# P
(#[b]) {a # [b]s} ∪ P =⇒# {a # s} ∪ P

(#f) {a # fs} ∪ P =⇒# {a # s} ∪ P

(#tupl) {a # (s1, . . . , sn)} ∪ P =⇒# {a # s1, . . . , a # sn} ∪ P

(#X)1 {a # φˆπ·X} ∪ P =⇒#
⋃

P′∈Ψ(a,φˆπ·X)A
{P′ ∪ P} (where A = Dom(φ) ∪ {a})

if φ �= Id ∧ π �= Id

Rule (?≈≡) has priority; it is an optimisation to reduce trivial matching con-
straints in one step, subsuming rule (≈αa) (Definition 2). The right-hand side of
rule (?≈⊥) is the empty set since this pair cannot produce solutions (but other
pairs in the problem could, so we do not use ⊥). Rules (?≈Inst) and (?≈XY)

1 In this rule, the right-hand side is a set; we assume a flattening step is performed
after each application of the rule (to avoid nested sets).
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are instantiating rules. Note that the matching steps in Definition 12 provide
an algorithmic presentation of Definition 2, where instantiating rules have been
added and the symbol ≈α has been replaced by ?≈? to represent the constraints
to be solved.

Termination of the simplification process follows from the fact that the
instantiating rules decrease the number of variables in the problem. For any
other rule, an interpretation based on the multiset of sizes of the constraints in
the problem can be shown to be strictly decreasing using the multiset exten-
sion of the standard ordering on natural numbers, ≤mul. Confluence under the
imposed strategy then follows by Newman’s Lemma, since there are only trivial
overlaps. Hence normal forms are unique.

Remark 1 (Matching algorithm). The algorithm has two phases.

Input: Assume P0 is the given matching problem, where X = VRHS(P0).

Phase 1 (=⇒
?≈-Normalisation): {(P0, Id)} X ∗=⇒

?≈ 〈P0〉nf
?≈ where 〈P0〉nf

?≈

is the normal form of {(P0, Id)} by application of =⇒
?≈.

Phase 2 (=⇒#-Normalisation): ∀(Pi, θi) ∈ 〈P0〉nf
?≈ , compute {Pi} =⇒∗

#

〈Pi〉nf# where 〈Pi〉nf# is the normal form of the set of freshness constraints Pi

by application of =⇒#.

Output: 〈P0〉out = {(〈Pi〉nf# \ ⊥, θi) | (Pi, θi) ∈ 〈P0〉nf
?≈ , 〈Pi〉nf# �= ⊥}.

Informally, Phase 1 reduces the matching problem until no matching con-
straints are left, resolving into a set of pairs ({Cij}, θi)(i, j ∈ Nat) where each
Cij is a (possibly empty) set of freshness constraints and θi a v-substitution.
Then, Phase 2 reduces each Cij into freshness contexts C ′

ij , discarding along
the way any set Cij containing inconsistent freshness constraints. Finally, the
remaining pairs (C ′

ij , θi) in the set are solutions to the initial matching problem
P0. If no pairs are left, i.e., all sets of freshness constraints have been discarded,
then the matching problem is unsolvable.

Example 6. The matching problem P = ({[a �→ Y ]·X ?≈ [a �→ b]·Z}) has prin-
cipal solutions ({a # Z}, [X �→ Z]), (∅, [X �→ Z;Y �→ b]), (∅, [X �→ [a �→ b]·Z]),
({a # Z}, [X �→ a;Y �→ Z]), (∅, [X �→ a;Y �→ [a �→ b]·Z]) computed by the algo-
rithm as follows. Below, the affected parts of each reduction are highlighted and
outer brackets in singleton collections of freshness contexts are omitted for read-
ability. Here VRHS(P) = {Z}.
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{ ({[a �→ Y ]·X ?≈? [a �→ b]·Z}, Id) }
X ∈{Z}
=⇒ (?≈XY) {({Y ?≈? [a �→ b]·Z}, Id • [X �→ a])}

∪{({[a �→ Y ]·Z ?≈? [a �→ b]·Z}, Id • [X �→ Z])}
∪{ ({[a �→ b]·Z ?≈? [a �→ b]·Z}, Id • [X �→ [a �→ b]·Z]) }
where Cap([a �→ b]·Z, {a}) = {a, Z, [a �→ b]·Z}

=⇒(?≈≡) { ({Y ?≈? [a �→ b]·Z}, [X �→ a]) }∪
{({[a �→ Y ]·Z ?≈? [a �→ b]·Z}, [X �→ Z])}∪{(∅, [X �→ [a �→ b]·Z])}

Y ∈{Z}
=⇒ (?≈XY) { ({[a �→ b]·Z ?≈? [a �→ b]·Z}, [X �→ a] • [Y �→ [a �→ b]·Z]) }

∪{({Z ?≈? [a �→ b]·Z}, [X �→ a] • [Y �→ Z])}∪
{({[a �→ Y ]·Z ?≈? [a �→ b]·Z}, [X �→ Z])}∪{(∅, [X �→ [a �→ b]·Z])}
where Cap([a �→ b]·Z, ∅) = {[a �→ b]·Z}

=⇒(?≈≡) {(∅, [X �→ a] • [Y �→ [a �→ b]·Z])}
∪{ ({Z ?≈? [a �→ b]·Z}, [X �→ a] • [Y �→ Z]) }∪
{({[a �→ Y ]·Z ?≈? [a �→ b]·Z}, [X �→ Z])}∪{(∅, [X �→ [a �→ b]·Z])}

=⇒(?≈X) {(∅, [X �→ a] • [Y �→ [a �→ b]·Z])}
∪{({a # Z}, [X �→ a] • [Y �→ Z])}
∪{ ({a ?≈? b}, [X �→ a] • [Y �→ Z]) }
∪{ ({[a �→ Y ]·Z ?≈? [a �→ b]·Z}, [X �→ Z]) }
∪{(∅, [X �→ [a �→ b]·Z])}
where Ψ(Z, [a �→ b]·Z){a} = {{a ?≈? b}, {a # Z}}

=⇒(?≈⊥) =⇒(?≈X) {(∅, [X �→ a] • [Y �→ [a �→ b]·Z])}
∪{({a # Z}, [X �→ a] • [Y �→ Z])} ∪ {({a # Z}, [X �→ Z])}
∪{ ({Y ?≈? b}, [X �→ Z]) } ∪ {(∅, [X �→ [a �→ b]·Z])}
where Ψ([a �→ Y ]·Z, [a �→ b]·Z){a} = {{a # Z}, {Y ?≈? b}}

Y ∈{Z}
=⇒ (?≈Inst) =⇒(?≈≡) {(∅, [X �→ a] • [Y �→ [a �→ b]·Z])}

∪{({a # Z}, [X �→ a] • [Y �→ Z])} ∪ {({a # Z}, [X �→ Z])}
∪{(∅, [X �→ Z] • [Y �→ b])} ∪ {(∅, [X �→ [a �→ b]·Z])}.

Phase 2 is trivial and thus omitted.

As a consequence of the termination and confluence properties, the relation
=⇒ defines a function from matching problems to their unique normal form.
Write 〈P〉out for the normal form of {(P, Id)}. 〈P〉out may contain solutions
(F, σ), (F′, σ′) with α-equivalent substitutions but different collections of fresh-
ness contexts. For instance, (∅, [X �→ a;Y �→ [a �→ b]·Z]) and ({a # Z}, [X �→
a;Y �→ Z]) in Example 6 could be merged as (∅, [X �→ a;Y �→ [a �→ b]·Z]).

Definition 13 (Merging solutions). Let W be a set of solutions, such that
there are two different elements (F, σ) and (F′, σ′) in W satisfying ∀Δ ∈ F.Δ �
σ ≈α σ′. This pair of solutions can be replaced with a single solution as follows:

([W1]) (F, σ), (F′, σ′) =⇒[W ] (F′ ∪ F, σ′)
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Further, if (F, σ) contains the empty set as one of the freshness contexts in F,
then any other freshness context in F is redundant and can be discarded:

([W2]) (F, σ) =⇒[W ] ({∅}, σ) if F �= {∅}, ∅ ∈ F

Write [W ] for the normal form of W by the rules above. 〈P〉sol denotes the
normal form by ([W1]) and ([W2]) of 〈P〉out , that is: 〈P〉sol = [〈P〉out ].
Example 7 (Merging solutions). By application of rules [W1] and [W2] to the
solution set W from Example 6, solution (∅, [X �→ a;Y �→ [a �→ b]·Z]) replaces
in W the pair (∅, [X �→ a;Y �→ [a �→ b]·Z]), ({a # Z}, [X �→ a;Y �→ Z]). Simi-
larly, (∅, [X �→ [a �→ b]·Z]) replaces the pair (∅, [X �→ [a �→ b]·Z]),
({a # Z}, [X �→ Z]).

Theorem 1 (Soundness and completeness). 〈P〉sol ⊆ U(P) (soundness);
∀(F, σ) ∈ U(P), ∃(Fi, θi) ∈ 〈P〉sol such that (Fi, θi) ≤ (F, σ) (completeness).

5 Unitary Matching for Simple Problems

When using matching to generate, for instance, rewrite steps for a given nominal
rewriting rule, it is useful to have a unique most general matching solution. Below
we characterise a class of matching constraints, which we call simple, for which
matching is unitary. The idea is to require each variable symbol in a pattern to
have at least one occurrence with trivial suspended a-substitution (Id) and not
in a suspension (see below). Constraints whose pattern is a moderated variable
with non-trivial a-substitutions will be postponed.

Moderated variables occurring in suspended a-substitutions will be called
suspended (variable) occurrences, and the others will be called fixed (vari-
able) occurrences. For instance, in the term ([a �→ Z]·X, [a �→ b]·Y ), both
[a �→ Z]·X and [a �→ b]·Y , are fixed, but Z is a suspended occurrence since
it occurs in the image of the a-substitution suspended over X. Write Vf (t) for
the subset of V (t) such that each variable has at least one fixed occurrence with
trivial a-substitutions. The set Vf (t) will play an important role in the charac-
terisation of unitary matching problems.

Definition 14. A term s is simple if V (s) ⊆ Vf (s), that is, for each variable
X ∈ V (s) there is one or more fixed occurrences of the form Idˆπ·X.2

A simple matching constraint is a matching constraint s ?≈ t such that
s is a simple term and V (s) ∩ V (t) = ∅. A simple matching problem is a
problem as specified in Definition 7 where ( . . . , si, . . . )?≈( . . . , ti, . . . ) is simple.3

2 This means that each variable has an occurrence that does not involve a-substitution.
3 We use a constraint ( . . . , si, . . . ) ?≈ ( . . . , ti, . . . ) in order to ensure that all the vari-

ables that can be instantiated have an occurrence that does not involve a-substitution
somewhere in the problem.
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Example 8. The constraints cons([a �→ Y ]·X, map([b]X,Y ))?≈cons(H, nil) and
map([a]X, cons(Y, nil))?≈map([a �→ H]·F, cons(H, nil)) are simple but the con-
straint map([a �→ Y ]·X,X)?≈map([a �→ nil]·F, F ) is not; the latter does not have
a simple pattern term, there is no fixed occurrence of Y .

Given a simple matching problem P, postponed constraints (of the form
φˆπ·X ?≈ t where t �= φ′ˆπ′·X, φ �= Id and X �∈ {X | s ?≈ t ∈ P,X ∈ V (t)}) are
delayed until an instantiation for X is readily available. The definition of simple
constraint (Definition 14) ensures such instantiation exists. The matching rule
(?≈XY) is not included in the simple-matching algorithm and rule (?≈Inst) is
adapted following the standard instantiating rule (see [28, Fig. 3]) as follows.

Definition 15 (Simple-matching algorithm). Let P be a simple matching
problem, X = VRHS(P) and assume X �∈ X. Take the rule set of Definition 12,
discard rule (?≈XY) and replace rule (?≈Inst) with:

(?≈σ) ({π·X ?≈? t} ∪ P, θ) X=⇒
?≈ (P[X �→ π-1·t], θ • [X �→ π-1·t])

The simple-matching algorithm follows the two-phase reduction strategy
described in Remark 1, using the modified rule set where rule (?≈σ) has the highest
priority along with rule (?≈≡), rule (?≈X) has the lowest priority and all other
rules have equal priority. Let 〈P〉nf

?≈ be the normal form of P with respect to
the set of updated rules.

The priority imposed on rule (?≈σ) forces the generation of v-substitutions as
soon as possible, whilst by giving lowest precedence to the rule (?≈X), we ensure
it is simply checking α-equality (as specified by (≈αX)) since no variables are left
to be instantiated. As a result, each distinct solution (F, σ) from the solution set
W shares the same unifier, σ, and by application of the merging rule to W in
the final part of the algorithm, the solution set is reduced to [W ] = {(

⋃
F, σ)}.

We formalise this claim in Theorem 2. Write Match(P, VRHS(P)) for the normal
form of the matching problem P by the simple-matching algorithm (Defini-
tion 15). Then, 〈P〉sol

?≈ is the result of applying function [·] from Definition 13
to Match(P, VRHS(P)). The following theorem is the main result of this section.

Theorem 2 (Normal form of a simple problem). Given a simple matching
problem P, either 〈P〉sol

?≈ = [Match(P, VRHS(P))] = {(F, θ)} and (F, θ) is a
solution for P, or 〈P〉sol

?≈ = ∅ and P has no solution.

Example 9. The rewriting rules in Example 3 have simple terms as patterns and
the rewrite relation generated uses only simple matching: indeed, all the terms
used in left-hand sides of rewrite rules are standard nominal terms (without
atom substitutions), only the matched terms may have a-substitutions.

A-substitutions are used in the right-hand side of rules in Example 3 to
implement function application in a direct way (avoiding the introduction of an
additional set of rewrite rules to define non-capturing atom substitution as in
standard nominal rewriting systems).
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6 Undecidability of Extended Nominal Unification

To prove the undecidability of extended nominal unification, we encode Hilbert’s
tenth problem, proved undecidable in [22]. The main idea is to build unification
problems for which ground unifiers simulate addition or multiplication. Then,
one can represent Diophantine equations. To simplify the encoding, we consider
a restricted language.

Definition 16 (Terms in L). L-terms are generated from a triple (A,X ,FL)
of pairwise disjoint sets, where FL is empty and X ,A are countable sets of
variables and atoms respectively (as described in Sect. 2), using the grammar
given in Definition 1 without abstraction terms.

Our representation of natural numbers is inspired by Goldfarb numbers [18],
which are themselves inspired by Church numerals. In L, the natural number n is
written: nac = (a, (a, . . . (a, c))) with n occurrences of a and a single occurrence
of c, where a, c ∈ A. L-terms of this form, which we call L-Goldfarb numbers,
are exactly those that solve extended nominal unification problems of the form

{(a, [c �→ a]·F ) ?≈? [c �→ (a, a)]·F}. (1)

Example 10 (L-Goldfarb numbers). The number 0 is represented as 0ac, that
is, c; the number 1 is represented as 1ac = (a, c); 3 is represented as 3ac =
(a, (a, (a, c))). The term 2a(1aa) is in L but is not an L-Goldfarb number (it does
not solve Eq. 1). Note also that, 2a(1aa) = (a, (a, (a, a))) = 2 + 1aa.

To simulate addition, we adapt Church’s λ-term add = λn.λm.λx.n(m(x)):
we use a constraint [c �→ Xi]·Xj ?≈? Xk. To simulate multiplication we use
nested a-substitutions. Undecidability of extended nominal unification follows
from Lemmas 1 and 2.

Lemma 1 (Addition). For all m,n, p ≥ 0, there exists a ground unifier θ
for the unification problem {[c �→ Xi]·Xj ?≈? Xk} such that {[Xi �→ nac;Xj �→
mac;Xk �→ pac]} ⊆ θ if and only if p = m + n.

Lemma 2 (Multiplication). Let P× = {s1 ?≈? s2, s3 ?≈? s4} where
s1 = [c1 �→ a; c2 �→ b; c3 �→ (([c �→ a]·Xk, [c �→ b]·Xj), a)]·G,
s2 = ((a, b), [c1 �→ [c �→ a]·Xi; c2 �→ 1ab; c3 �→ a]·G),
s3 = [c1 �→ b; c2 �→ a; c3 �→ (([c �→ b]·Xk, [c �→ a]·Xj), b)]·G,
s4 = ((b, a), [c1 �→ [c �→ b]·Xi; c2 �→ 1aa; c3 �→ b]·G).

For all m,n, p ≥ 0, there is a ground unifier θ for P× such that σ = [Xi �→
mac;Xj �→ nac;Xk �→ pac] and σ ⊂ θ if and only if p = m × n.

Theorem 3. There is an effective reduction of Hilbert’s tenth problem to nomi-
nal unification of L-terms. Therefore unification of extended terms is undecidable.
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7 Conclusion

The matching algorithm provided in this paper induces a notion of rewriting that
avoids the need to introduce extra rules to encode non-capturing substitutions.
In future work, we will analyse the relationship between higher-order match-
ing/unification and the corresponding problems in our language. The study of
the complexity of the algorithms and the development of efficient implementa-
tions using graph representations of terms will also be subject of future research.

Acknowledgements. We thank James Cheney, Elliot Fairweather and Jordi Levy
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Abstract. In this paper we provide two equivalent characterizations of
the notion of finite-state dimension introduced by Dai, Lathrop, Lutz
and Mayordomo [7]. One of them uses Shannon’s entropy of non-aligned
blocks and generalizes old results of Pillai [12] and Niven – Zuckerman
[11]. The second characterizes finite-state dimension in terms of super-
additive functions that satisfy some calibration condition (in particu-
lar, superadditive upper bounds for Kolmogorov complexity). The use
of superadditive bounds allows us to prove a general sufficient condition
for normality that easily implies old results of Champernowne [5], Besi-
covitch [1], Copeland and Erdös [6], and also a recent result of Calude,
Staiger and Stephan [4].

Keywords: Finite-state dimension ·
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1 Introduction

The notion of finite-state dimension of a bit sequence was introduced by Dai et
al. [7] using finite-state gales. Later Bourke et al. [2] characterized the finite-state
dimension in terms of Shannon entropies of aligned bit blocks (a prefix of the
sequence is split into k-bit blocks for some k, and a random variable “uniformly
chosen block” is considered).

In this paper we provide two new characterizations (equivalent definitions)
of this notion. First (Sect. 2) we extend old results of Niven – Zuckerman [11]
and Pillai [12] to the case of arbitrary finite-state dimension. These results were
proven for normal sequences, i.e., sequences of finite-state dimension 1, and new
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tools (including Shearer-type inequality for entropies) are needed for the case
of arbitrary finite-state dimension. Namely, we show (Theorem 1) that one can
equivalently define the finite-state dimension using non-aligned blocks. For that,
for a given n we consider a random variable “uniformly chosen k-bit factor”
of the n-bit prefix of the sequence, take the lim inf of its Shannon entropy as
n → ∞, divide this lim inf by k and then take infimum (or limit) over k. We also
provide examples showing that this equivalence works only in the limit (k → ∞),
not for blocks of fixed size.

The second characterization of finite-state dimension is given in Sect. 3.
It does not use finite-state machines or entropies at all. We consider non-
negative superadditive functions on bit strings, i.e., functions F such that
F (uv) � F (u) + F (v) for all u and v. Additionally we require some calibra-
tion property saying that F cannot be too small on too many inputs. Given
a sequence α = α0α1α2 . . ., we consider lim infn F (α0α1 . . . αn−1)/n. We prove
that the finite-state dimension of α is the infimum of these quantities taken over
all F that satisfy our requirements.

The first example of a normal sequence was given by Champernowne [5].
It was the sequence 0 1 10 11 100 101 110 111 1000 1001 . . . (concatenation of inte-
gers 0, 1, 2, 3, . . . written in binary1). Later a more general class of examples was
suggested by Copeland and Erdös [6]. In Sect. 4, using superadditive functions,
we prove a general sufficient condition for normality (=finite-state dimension
1) for a sequence that is a concatenation of some finite strings x1, x2, x3, etc.
This sufficient condition is formulated in terms of Kolmogorov complexity of xi:
the average Kolmogorov complexity of strings x1, . . . , xk should have the same
asymptotic growth as the average length of these strings (under some techni-
cal conditions; see the exact statement of Theorem 4). In [3] Calude, Salomaa
and Roblot introduced the notion of automatic complexity and asked whether
this notion can be used to characterize normality. This question was answered
negatively in [4]. We give an alternative proof of this result using our sufficient
condition for normality.

The notion of automatic complexity that can be used to characterize normal-
ity and finite-state dimension (and was the starting point for us) was introduced
in [13]. A self-contained exposition, including the results of the current paper
and other results about finite-state dimension, automatic complexity, finite-state
a priori probability and martingales, as well as applications of these notions, will
be included in the arxiv version of [13].

2 Non-aligned Entropies

Consider a sequence α = α0α1α2 . . ., and some positive integer k. We can split
the sequence α into k-bit consecutive non-overlapping blocks (aligned version),
or consider all k-bit substrings of α (non-aligned version, see below the exact
definition). Then we consider limit frequencies of these blocks. In this way we
1 In fact, Champernowne spoke about decimal notation and sequences of digits, but

this does not make a big difference.
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get some distribution on the set {0, 1}k of all k-bit blocks. We want to define
the finite-state dimension of α as the limit of the normalized (i.e., divided by k)
Shannon entropy of this distribution when k goes to infinity.

However, we should be more careful since these limit frequencies may not
exist. Here is the exact definition. For every N take the first N blocks of
length k and choose one of them uniformly at random. In this way we obtain
a random variable taking values in {0, 1}k. Consider the Shannon entropy of
this random variable (for the definition of Shannon entropy of a random vari-
able see, e.g., [14, Chap. 7]). This can be done in an aligned (a) and non-
aligned (na) settings, so we get two quantities: Ha

k,N (α) = H(αkI . . . αkI+k−1),
Hna

k,N (α) = H(αI . . . αI+k−1), where I ∈ {0, . . . , N − 1} (the block number) is
chosen uniformly at random, and H denotes the Shannon entropy of the corre-
sponding random variable.

Then we apply the lim infN as N → ∞ and let Ha
k(α) = lim infN→∞ Ha

k,N (α)
and Hna

k (α) = lim infN→∞ Hna
k,N (α). The following result says that both quan-

tities Ha
k(α) and Hna

k (α), divided by the block length k, converge to the same
value as k → ∞, and this value can also be defined as infk Hk(α)/k (both in
aligned and non-aligned versions).

Theorem 1. For every bit sequence α we have

lim
k

Ha
k(α)
k

= inf
k

Ha
k(α)
k

= lim
k

Hna
k (α)
k

= inf
k

Hna
k (α)
k

.

This common value is called the finite-state dimension of α and denoted by
FSD(α). The original definition of finite-state dimension [7] was different, and
the equivalence between it and the aligned version of the definition given above
was shown in [2]. The equivalence between non-aligned and aligned versions
seems to be new.

To prove this result, it is enough to prove two symmetric lemmas. The first
one guarantees that if Ha

k(α)/k is small (less than some threshold) for some
k, then Hna

K (α)/K is also small (less than the same threshold) for all suffi-
ciently large K; the second says the same with aligned and non-aligned versions
exchanged.

Lemma 1. For every α, every k, every K � k: Hna
K (α)
K � Ha

k(α)
k + O

(
k
K

)
.

Lemma 2. For every α, every k, every K � k: Ha
K(α)
K � Hna

k (α)
k + O

(
k
K

)
.

This two lemmas easily imply Theorem 1 by taking lim supK→∞ and then
infk of both sides of both inequalities. So it remains to prove them.

Proof (of Lemma 1). Fix some sequence α, and consider some integer N . Take
I ∈ {0, 1 . . . , N − 1} uniformly at random and consider a random variable

ξ = αI . . . αI+K−1

whose values are K-bit strings. By definition, the entropy of ξ is Hna
K,N (α). Let us

look at aligned k-bit blocks covered by the block ξ (i.e., the aligned k-bit blocks
inside I . . . I + K − 1). The exact number of these blocks may vary depending
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on I, but there are at least m = �K/k� − 1 of them (if there were only m − 1
complete blocks, plus maybe two incomplete blocks, then the total length would
be at most k(m − 1) + 2k − 2 = km + k − 2, but we have K/k � m + 1, i.e.,
K � km+k). We number the first m blocks from left to right and get m random
variables ξ1, . . . , ξm (defined on the same space {0, . . . , N − 1}). For example,
ξ1 is the leftmost aligned k-bit block of α in the interval I . . . I + K − 1. To
reconstruct the value of ξ when all ξi are known, we need to specify the prefix
and suffix of ξ that are not covered by ξi (including their lengths). This requires
O(k) bits of information, so

Hna
K,N (α) = H(ξ) � H(ξ1) + . . . + H(ξm) + O(k).

We will show that for each s ∈ {1, . . . , m} the distribution of the random variable
ξs is close to the uniform distribution over the first �N/k� aligned k-bit blocks
of α. The standard way to measure how close are two distributions on the same
set A is to measure the statistical distance between them, defined as

δ(P,Q) =
1
2

∑

a∈A

∣
∣P (a) − Q(a)

∣
∣.

We claim that (for each s ∈ {1, 2, . . . ,m}) the statistical distance between the
distribution of ξs and the uniform distribution on the first �N/k� aligned blocks
converges to 0 as N → ∞. First, let us note that for a fixed aligned block
its probability to become s-th aligned block inside a random nonaligned block is
exactly k/N (there are k possible positions for a random non-aligned block when
this happens). The only exception to this rule are aligned blocks that are near
the endpoints, and we have at most O(K/k) of them. When we choose a random
aligned block, the probability to choose some position is exactly 1/�N/k�, so we
get some difference due to rounding. It is easy to see that the impact of both
factors on the statistical distance converges to 0 as N → ∞. Indeed, the number
of the boundary blocks is O(K/k), and the bound does not depend on N , while
the probability of each block (in both distributions) converges to zero.2 Also,
since m = N/k and m′ = �N/k� differ at most by 1, the difference between
1/m and 1/m′ is of order 1/m2, and converges to 0 even if multiplied by m (the
number of blocks is about m).

Now we use the continuity (more precisely, the uniform continuity) of the
entropy function and note that all m = �N/k� − 1 random variables in the right
hand side are close to the uniform distribution on first �N/k� aligned blocks (the
statistical distance converges to 0), so

lim inf
N→∞

Hna
K,N (α) � (�K/k� − 1) lim inf

N→∞
Ha

k,�N/k�(α) + O(k),

and dividing by K we get the statement of Lemma 1. ��
2 More precisely, we should speak not about the probability of a given block, since

the same k-bit block may appear in several positions, but about the probability of
its appearance in a given position. Formally speaking, we use the following obvious
fact: if we apply some function to two random variables, the statistical difference
between them may only decrease. Here the function forgets the position of a block.
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Proof (of Lemma 2). Take I ∈ {0, 1 . . . , N − 1} uniformly at random. We need
an upper bound for Ha

K,N (α), i.e., for H(αKI . . . αKI+K−1). For that we use
Shearer’s inequality (see, e.g., [14, Sect. 7.2 and Chap. 10]). In general, this
inequality can be formulated as follows. Consider a finite family of arbitrary
random variables η0, . . . , ηm−1 indexed by integers in {0, . . . , m − 1}. For every
U ⊂ {0, . . . ,m − 1} consider the tuple ηU of all ηu where u ∈ U . If a family of
subsets U0, . . . , Us−1 ⊂ {0, . . . ,m− 1} covers each element of U at least r times,
then

H(ηU ) � 1
r

(
H(ηU0) + . . . + H(ηUs−1)

)
.

In our case we have K variables η0, . . . ηK−1 that are individual bits of a K-
bit block αKI . . . αKI+K−1 (for random I), i.e., η0 = αKI , η1 = αKI+1, etc.
The set U contains all indices 0, . . . ,K − 1, and the sets Ui contains k indices
i, i + 1, . . . , i + k − 1 (where operations are performed modulo K, so there are
Ui that combine the prefix and suffix of a random K-bit block). Each ηi is
covered k times due to this cyclic arrangement. In other words, the variable ηUi

is a substring of the random string ηU = αKI . . . αKI+K−1 that starts from ith
position and wraps around if there is not enough bits. There are k − 1 tuples
of this “wrap-around” type (block of length k may cross the boundary in k − 1
ways). These tuples are not convenient for our analysis, so we just bound their
entropy by k. In this way we obtain the following upper bound:

Ha
K,N (α) = H(αKI . . . αKI+K−1) �

� 1
k

(
K−k∑

s=0

H(αKI+s . . . αKI+s+k−1) + (k − 1)k

)

.

Adding k − 1 terms (replacing the wrap-around terms by some other entropies),
we increase the right hand side:

Ha
K,N (α) � 1

k

(
K−1∑

s=0

H(αKI+s . . . αKI+s+k−1) + (k − 1)k

)

.

Let us look at the variable αKI+s . . . αKI+s+k−1 in the right hand side for some
fixed s. It has the same distribution as the random non-aligned k-bit block
αJ . . . αJ+k−1 for uniformly chosen J in {0, . . . , NK − 1} conditional on the
event “J mod K = s”:

H(αKI+s . . . αKI+s+k−1) = H(αJ . . . αJ+k−1 |J mod K = s).

The average of these K entropies (for s = 0, . . . ,K−1) is the conditional entropy
H(αJ . . . αJ+k−1 |J mod K) that does not exceed the unconditional entropy. So
we get

Ha
K,N (α) � 1

k

(
K · Hna

k,KN (α) + (k − 1)k
)
.

By taking the lim inf as N → ∞ we obtain

Ha
K(α)
K

= lim inf
N→∞

Ha
K,N (α)

K
� lim inf

N→∞
Hna

k,KN (α)
k

+ O

(
k

K

)
.
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However, the lim inf in the right hand side is taken over multiples of K and we
want it to be over all indices. Formally, it remains to show that

lim inf
N→∞

Hna
k,KN (α)

k
= lim inf

N→∞
Hna

k,N (α)
k

as the latter is by definition equal to Hna
k (α)/k. Indeed, the statistical distance

between distributions on the first KN (non-aligned) blocks and the distribution
on the first KN + r blocks (where r the remainder modulo K) tends to zero
since the first distribution is the second one conditioned on the event whose
probability converges to 1 (i.e., the event “the randomly chosen block is not
among the r last ones” whose probability is KN/(KN + r)). ��

As we have mentioned, this result implies that non-aligned and aligned ver-
sions of normality (uniform distribution on non-aligned and aligned blocks) are
equivalent. However, note the asymptotic nature of this argument: to prove that
the distribution of (say) non-aligned k-bit blocks is uniform, it is not enough to
know that aligned k-bit blocks have uniform distribution; we need to know that
the distribution of K-bit blocks is uniform for arbitrarily large values of K. This
is unavoidable, as the following result shows.

Theorem 2.

(a) For all k there exists an infinite sequence α such that Hna
2 (α) < 2 and

Ha
i (α) = i for all i � k.

(b) For all k there exists an infinite sequence α such that Ha
2 (α) < 2 and

Hna
i (α) = i for all i � k.

Proof. (a) Consider all k-bit strings. It is easy to arrange them in some order
B0, B1, . . . such that the last bit of Bi is the same as the first bit of Bi+1, for all i,
and the last bit of the last block is the same as the first bit of the first block. For
example, consider (for every x ∈ {0, 1}k−2) four k-bit strings 0x0, 0x1, 1x1, 1x0
and concatenate these 2k−2 quadruples in arbitrary order.

Then consider a periodic sequence with period B0B1 . . . B2k−1. Obviously
all aligned k-bit blocks have the same frequency, so Ha

k(α) = k. However, for
non-aligned bit blocks of length 2 we have two cases: this pair can be completely
inside some Bi, or be on the boundary between blocks. The pairs of the first type
are balanced (since we have all possible k-bit blocks), but the boundary pairs
could be only 00 or 11 due to our construction. So the non-aligned frequency of
these two blocks is 1/4+Ω(1/k), and for two other blocks we have 1/4−Ω(1/k),
so Hna

2 (α) < 2.
However, in this construction we do not necessarily have that Ha

i (α) = i for
i < k. But this is easy to fix. Note that Ha

k(α) = k implies Ha
i (α) = i whenever

i is a divisor of k. So we can just use the same construction with blocks of length
k! instead of k.

(b) Now let us consider a sequence constructed in the same way, but blocks
B0, B1, . . . , B2k−1 go in the lexicographical ordering. First let us note that all
k-bit blocks have the same non-aligned frequencies in the periodic sequence with
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period B0B1 . . . B2k−1. (For aligned k-blocks it was obvious, but the non-aligned
case needs some proof.) Indeed, consider some k-bit string U ; we need to show
that it appears exactly k times in the (looped) sequence B0B1 . . . B2k−1. In fact,
it appears exactly once for each position modulo k. For example, it appears once
among the blocks Bi. Why the same it true for some other position s mod k
where the k − s first bits of U appear as a suffix of Bi−1 and the last s bits of U
appear as a prefix of Bi? Note that (k − s)-bit suffixes of B0, B1, B2, . . . form a
cycle modulo 2k−s, so the first k − s bits of U uniquely determine the last k − s
bits of Bi, whereas the first s bits of Bi are just written in the s-bit suffix of U .

This implies that non-aligned frequencies for all k-bit blocks are the same.
Therefore, they are the same also for all smaller values of k. In particular, we
can assume for the rest that k is odd.

Now let us consider aligned blocks of size 2. We will show that aligned fre-
quency of the block 10 in the sequence B0B1 . . . B2k−1 is 1/4 − Ω(1/k). Since
k is odd (see above), when we cut our sequence into blocks of size 2, there are
“border” blocks that cross the boundaries between Bi and Bi+1, and other non-
border blocks. Each second boundary is crossed (between B0 and B1, then B2

and B3, and so on), so the border blocks all have the first bit 0. In particular,
10 never appears on such positions. This creates discrepancy of order 1/k for 10,
and we should check that it is not compensated by non-boundary blocks. In the
blocks Bi with even i we delete that last bit and cut the rest into bit pairs. After
deleting the last bit we have all possible (k − 1)-bit strings, so no discrepancy
arises here. In the blocks Bi with odd i we delete the first bit, and then cut the
rest into bit pairs. In the last pair the last bit is 1 (since i is odd), so once again
we never have 10 here, as required (the other positions are balanced). ��

3 Superadditive Complexity Measures

The finite-state dimension is a scaled-down version of effective Hausdorff dimen-
sion [8]. The effective Hausdorff dimension of a sequence α = α0α1 . . . can be
equivalently defined as the lim inf C(α0 . . . αN−1)/N , where C stands for the
Kolmogorov complexity function [9,10]. We use here plain complexity, but pre-
fix, a priori or monotone complexity (see, e.g., [14, Chap. 6]) will work as well,
since they all differ only by O(log n) for n-bit strings (see, e.g., [14] for more
details about Kolmogorov complexity and effective dimension). It is natural to
look for a similar characterization of finite-state dimension in terms of com-
pressibility. Such a characterization was given in [7, Sect. 7]. However, it did not
use a complexity notion that can replace C in the definition of effective Haus-
dorff dimension, using finite-state compressors instead. A suitable complexity
notion was introduced in [13], and it indeed gives the desired characterization.
We may also use superadditive upper bounds for Kolmogorov complexity. In this
extended abstract we present only a version that does not mention Kolmogorov
complexity or finite-state machines at all.

Consider a non-negative function F defined on strings. Recall that F is super-
additive if F (xy) � F (x)+F (y) for all x and y. We call F calibrated if for every
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n the sum
∑

2−F (x) taken over all strings x of length n does not exceed some
constant (not depending on n).

Theorem 3. Let α = α0α1α2 . . . be an infinite bit sequence. Then

FSD(α) = inf
F

(
lim inf
N→∞

F (α0 . . . αN−1)
N

)
,

where the infimum is taken over all superadditive calibrated F : {0, 1}∗→ [0,+∞).

Proof. We start with an upper bound for the finite-state dimension. Let F be a
superadditive calibrated function. We need to show that

FSD(α) � lim inf
N→∞

F (α0 . . . αN−1)
N

.

Since FSD(α) can be defined as limk Ha
k(α)/k, it is enough to prove that

Ha
k(α)/k � lim inf

N→∞
F (α0 . . . αN−1)

N
+ O(1/k) (∗)

for all k. Fix some k ∈ N. We can split α0 . . . αN−1 into M = �N/k� aligned
k-bit blocks b1, . . . , bM and a tail of length less than k. Since F is superadditive,
its value of α0 . . . αN−1 is at least the sum of its values on blocks b1, . . . , bM (plus
the value on the tail; it is non-negative and we ignore it). So we need a lower
bound for the sum F (b1) + . . . + F (bM ).

How do we get such a bound? We know that the sum of 2−F (b) (taken over all
blocks b of length k) is bounded by some constant c that does not depend on k.
Assume first for simplicity that this constant is 1 and all values of F are integers.
Then there exists a prefix-free code for all k-bit blocks where every block b has
code of length at most F (b). Then the sum F (b1) + . . . + F (bM ), divided by M ,
is an average code length for the distribution with entropy Ha

k,M (α), therefore

F (b1) + . . . + F (bM ) � MHa
k,M (α),

and
F (α0 . . . αN−1) � �N/k�Ha

k,�N/k�(α).

Now, dividing both sides by N and taking the lim inf, we get the desired inequal-
ity (∗) even without O(1/k) term. This term appears when we recall that the
sum of 2−F (b) over all blocks of length k is bounded by a constant (instead of
1) and that the values of F are not necessary integers. To rescue the argument,
we need to add some constant to F and perform rounding that adds a constant
term to the average code length bound. We get

F (b1) + . . . + F (bM ) � M(Ha
k,M (α) − O(1))

and
F (α0 . . . αN−1) � �N/k�(Ha

k,�N/k�(α) − O(1)).

Dividing by N , we get a correction of order O(1/k), as claimed.
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For the other direction, we need to assume that Ha
k(α)/k is small (less than

some threshold) for some k and construct a calibrated superadditive function F
such that lim inf F (α0 . . . αN−1)/N is small (does not exceed the same threshold).
For that, we need some general method to construct superadditive calibrated
functions. This method is a finite-state version of the a priori complexity notion
from algorithmic information theory [14, Sect. 5.3]. Here it is.

Consider a finite set S of vertices (states). Assume that each vertex has two
outgoing edges labeled by (0, p0) and (1, p1), where p0 and p1 are some non-
negative reals such that p0 + p1 = 1. Then we may consider a probabilistic
process: being in state s, the machine emits 0 (with probability p0) or 1 (with
probability p1), and changes state following the corresponding edge. In addition
to such a labeled graph G, fix some state s ∈ S as an initial state. Then we
get a probabilistic algorithm that emits bits, and the corresponding measure
PG,s on the space of bit sequences. Let PG,s(u) be the probability of the event
“starting from s, the process emits a bit sequence with prefix u”. For each k
the sum of PG,s(u) over all strings u of length k is exactly 1, so the function
u �→ − log2 PG,s(u) is calibrated. However, it may not be superadditive. To get
superadditivity, we take the maximum probability over all initial states s.

Lemma 3. Let G be a labeled graph of the described type, and all probabilities on
labels are positive.3Then the function FG(u) = − log maxs∈S PG,s(u) is calibrated
and superadditive.

Proof (of Lemma 3). (Calibration) Since maxs∈S does not exceed
∑

s∈S , we
conclude that the sum of 2−FG(u) over all strings of given length does not exceed
the number of states.

(Superadditivity) We need to prove that

max
s∈S

PG,s(uv) � max
s∈S

PG,s(u) · max
s′∈S

PG,s′(v).

We need an upper bound for PG,s(uv) for each s. Indeed, the probability of
emitting uv starting from s is equal to the product of the probability of emitting
u, starting from s, and the conditional probability of emitting v if u was emitted
before. The first probability is PG,s(u) (and does not exceed the maximal value
taken over all s). The second probability is PG,s′(v), where s′ is the state s′ after
emitting u. Lemma 3 is proven. ��

Now assume that Ha
k(α)/k (for some k) is less than some threshold β. This

means that there exists a sequence of prefixes of α such that the entropies of
corresponding aligned distributions on {0, 1}k converge to some number less
than βk. Compactness arguments show that we may assume that the correspond-
ing distributions on {0, 1}k converge to some distribution Q whose entropy H(Q)
is less that βk. Assume for now that all blocks have positive Q-probabilities. Con-
sider a probabilistic process that generates a concatenation of independent k-bit
strings each having distribution Q. To generate one string according to Q, we

3 This is a technical condition needed to avoid infinities in the logarithms.
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generate its bits sequentially, with corresponding conditional probabilities. So
the state is the sequence of bits that are already generated; the states form a
tree. Finally, generating the last (kth) bit of this string, we return to the initial
state (the root of this tree) and are ready to generate new independent strings
with the same distribution.

If G is the labeled graph constructed in this way, all labels are positive
(recall that we assume that all Q-values are positive). If s is the root, then
PG,s(b0 . . . bm−1) = Q(b0) · . . . · Q(bm−1) for arbitrary k-bit blocks b0, . . . , bm−1.
Now let b0b2 . . . bm−1 be the prefix of α from the subsequence of prefixes where
the corresponding distributions converge to Q. If F (u) is defined as − log PG,s(u),
then F (b0 . . . bm−1) =

∑m−1
i=0 (− log Q(bi)). Recall that the frequencies of all k-bit

blocks among b0, . . . , bm−1 converge to Q. Therefore,

F (b0 . . . bm−1) = (H(Q) + o(1))m < βkm

for sufficiently large m such that the prefix b0 . . . bm−1 belongs to the sub-
sequence. Dividing both sides by the length km, we get lim infN F (α0 . . .
αN−1)/N � β. The only problem is that F (u) may not be superadditive, but we
can replace it by a smaller superadditive calibrated function − log PG(u) (taking
the maximum of probabilities over all states).

This ends the proof for the case when Q is everywhere positive. If not, we
may consider another distribution Q′ that is close to Q but has all positive
probabilities. Then F (b0 . . . bm−1) will be bigger, and the increase is Kullback –
Leibler divergence between Q and Q′. So we just need to make this divergences
less than βk − H(Q).

Theorem 3 is proven. ��

4 Sufficient Condition for Normality

Assume that some non-empty strings x1, x2, . . . are given, and consider the infi-
nite sequence κ = x1x2 . . . obtained by their concatenation. The following the-
orem provides some conditions that guarantee that κ is a normal sequence.

Theorem 4. Let Ln be the average length of the first n strings, i.e., Ln = (|x1|+
. . . + |xn|)/n. Let Cn be the average Kolmogorov complexity of the same strings,
i.e., Cn = (C(x1) + . . . + C(xn))/n. Assume that |xn|/(|x1| + . . . + |xn−1|) → 0
and Ln → ∞ as n → ∞. If Cn/Ln → 1 as n → ∞, then κ = x1x2 . . . is normal.
In general, FSD(κ) � lim inf

n→∞ Cn/Ln.

Recall that normal sequences can be defined as sequences of finite-state
dimension 1.

For example, in the Champernowne sequence the string xn is the binary
representation of n. It is easy to check all three conditions (the latter one uses
that the average Kolmogorov complexity of k-bit strings is k − O(1)).

This theorem and its proof require some notions and results from algorithmic
information theory (all needed information can be found, e.g., in [14]): the notion
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of plain Kolmogorov complexity C(x) in used in its statement, the notion of a
priori complexity (the logarithm of the continuous a priori probability) is used in
the proof. However, this theorem has a corollary that can be formulated without
Kolmogorov complexity. For that we consider a random variable i uniformly
distributed in {1, . . . , n}, random variable xi whose value are binary strings, and
replace Cn by the entropy Hn of this variable. (If all xi are different, this entropy
is log n.) Again, if Hn/Ln → 1, then κ is normal, and FSD(κ) � lim inf Hn/Ln

in the general case. To derive this corollary, we note that the difference between
a priori and prefix complexity is negligible (logarithmic compared to length,
see below the comparison between a priori and plain complexities), and prefix
complexity provides a prefix-free code for the random variable xi (with random
i), so the average length of the code is at least the Shannon entropy of this
variable.

Proof (of Theorem 4). To prove this result, we need to recall the proof of Theo-
rem 3 and note that we can restrict the infF in the right hand side to functions
F that are computable upper bounds for the a priori complexity up to O(1)
precision (see [14, Sect. 5.1] for the definition). Indeed, in the proof we have
constructed a distribution on the Cantor space (product of distribution Q on
k-bit blocks). If Q were computable, then all the transition probabilities in the
graph G we constructed would be computable, and PG,s would be a computable
measure on the Cantor space for each s, therefore its negative logarithm would
be an upper bound for a priori complexity (up to O(1) precision), and the same
is true for the minimum over (finitely many) states s.

However, we may not assume that Q is computable: it is the limit distribution
in a sequence of prefixes and may be arbitrary. Still (see the discussion above)
we may always choose Q′ that is close to Q, is computable (even rational) and
has non-zero probabilities.

Therefore it remains to show that for every F that is a superadditive upper
bound for a priori complexity, the liminf of F (u)/|u|, where u is a prefix of κ,
is at least lim infn Cn/Ln. If u ends on the block boundary, i.e., if u = x1 . . . xn

for some n, then

F (u) = F (x1 . . . xn) � F (x1) + . . . + F (xn) � KA(x1) + . . . + KA(xn) − O(n),

where KA is a priori complexity (we use superadditivity of F and recall that
F is an upper bound for KA up to O(1) additive term). Assume for a while
that we have plain complexity C in this inequality. Then we may continue and
write F (u) � C(x1) + . . . + C(xn) − O(n) = nCn − O(n) and |u| = nLn, so
F (u)/|u| � Cn/Ln − O(1/Ln), and the last term is o(1), since Ln → ∞ as
n → ∞.

Now we should consider u that do not end on the block boundary. We can
delete the last incomplete block and get slightly shorter u′. For this u′ we use
the same bound as before, and due to the superadditivity it works as a bound
for u. However, we have |u| in the denominator, not |u′|. This does not change
the lim inf, since we assume that |xn| = o(|x1|+ . . .+ |xn−1|), so the length of the
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incomplete block is negligible compared to the total length of previous complete
blocks, and the correction factor converges to 1.

Finally, the difference between plain and a priori complexity is O(log m) for
strings of length m. Therefore, we get a bound (for prefixes u = x1 . . . xn)

F (u)
|u| � KA(x1) + . . . + KA(xn) − O(n)

|x1| + . . . + |xn| �

� C(x1) + . . . + C(xn) − O(log |x1| + . . . + log |xn|) − O(n)
|x1| + . . . + |xn| .

Both O-terms do not change the limit; we have already discussed this for O(n)
(recall that n is small compared to the total length, since Ln → ∞), and the
convexity of logarithm (Cauchy inequality) allows us to write

log |x1| + . . . + log |xn|
|x1| + . . . + |xn| � n · log (|x1|/n + . . . + |xn|/n)

|x1| + . . . + |xn| =
log Ln

Ln
→ 0.

Theorem 4 is proven. ��
As we have noted, this sufficient condition implies the normality of the Cham-

pernowne number [5]. It is also easy to see that Copeland – Erdös criterion [6]
can be derived in the same way. In this result some integers are skipped, but in
such a way that the bit length of the ith remaining integer is still (1+o(1)) log i,
and the sufficient condition can be still applied. More work is needed to derive
the result of Besicovitch [1] saying that concatenated binary representations of
perfect squares form a normal number. For this example xm is a binary rep-
resentation of m2, has length about 2 log m and complexity about m, so we
get only the lower bound 1/2 for its finite-state dimension from Theorem 4. To
prove normality, we should split the string xm into two halves of the same length
xm = ymzm. It is easy to see that the most significant half of m2 determines m
almost uniquely, so the complexity of ym is close to the complexity of m. For zm

it is not the case: if m has j trailing zeros in the binary representation, then m2

has 2j trailing zeros and its complexity decreases at least by j − O(1) compared
to the complexity of m. A simple analysis shows that this estimate is exact, and
since the average number of trailing zeros in a random s-bit string is O(1), we
get the required bound.

Now let us give more details. Let zm be the suffix of xm of length �log2 m�+1,
i.e., the length of zm is exactly the length of the binary representation of m, and
let ym ∈ {0, 1}∗ be the corresponding prefix, i.e., xm = ymzm. Note that the
length of ym is log2 m+O(1). Therefore, the average length of y1, z1, . . . , ym, zm

is log2 m+O(1), and it remains to show that the average Kolmogorov complexity
of these strings is log m · (1 − o(1)). We will do this by showing that the average
of conditional complexities C(i|yi), C(i|zi) over i ∈ {1, . . . , m} is O(log log m).
Since we already know that the average of C(i) over i ∈ {1, . . . , m} is log2 m +
O(1), this would give the desired bound. Indeed, this follows from the chain rule:

C(yi) � C(i)−C(i|yi)−O(log log m), C(zi) � C(i)−C(i|zi)−O(log log m).
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For the first part we will show not only that the average of C(i|yi) is at most
O(log log m), but that the same is true for every i. Indeed, assume that you know
yi and the length of the binary representation of i (let us denote this quantity
by k). Then there is at most O(1) different j of length k such that yj = yi.
Indeed, the difference between i2 and j2 is |i2−j2| = Ω(|i−j| ·2k). On the other
hand, by definition we have that i2 = 2kyi +zi, j

2 = 2kyi +zj , which means that
that difference between i2 and j2 is |zi − zj | = O(2k). Therefore, if for the k-bit
number j we have yj = yi, then j differs from i only by some constant. We need
only to specify the length of the binary representation of i, using O(log log m)
bits.

As we mentioned earlier, we need a more complicated argument to show
that the average of C(i|zi) is O(log log m). The reason is that it is true only for
averages: there are some i such that C(i|zi) is of order log m. We have to show
somehow that the number of “bad” i is negligible. To do so we need the following
technical lemma.

Lemma 4. Let t(n) denote the largest natural number d such that n is divisible
by 2d (i.e., t(n) is the number of trailing zeros in the binary representation of
n). Then for every a ∈ N the number of x ∈ {0, 1, . . . , 2k − 1} such that x2 ≡ a2

(mod 2k) is at most O(2t(a)).

Proof. Indeed, assume that a has z trailing zeros and x2 = a2 (mod 2k) for
some x ∈ {0, 1 . . . , 2k − 1}. Then x2 − a2 = (x − a)(x + a) is a multiple of 2k,
therefore x − a is a multiple of 2u and x + a is a multiple of 2v for some u, v
such that u + v = k. Then 2a = (x + a) − (x − a) is a multiple of 2min(u,v), so
min(u, v) � z − 1. Then max(u, v) � k − z − 1, so one of x − a and x + a is a
multiple of 2k−z−1, and each case contributes at most 2z+1 = O(2z) solutions
for the equation x2 = a2 (mod 2k). ��

This lemma implies that C(i|zi) = O(t(i) + log log m). Indeed, assume that
zi and the length of the binary representation of i (denoted by k in the sequel)
are given. Suppose that j is a k-bit number satisfying zj = zi. Then, as i2 =
2k · yi + zi, j

2 = 2k · yj + zi, the difference between i2 and j2 is the multiple of
2k. By Lemma 4 the number of such j is O(2t(a)), i.e., specifying one of them
requires t(a) + O(1) bits.

As the average of t(i) is O(1), this gives the required bound for the average
value of C(i|zi).

Calude, Salomaa and Roblot [3, Sect. 6] define a version of automatic com-
plexity in the following way. A deterministic transducer (finite automaton that
reads an input string and at each step produces some number of output bits)
maps a description string to a string to be described, and the complexity of y
is measured as the minimal sum of the sizes of the transducer and the input
string needed to produce y; the minimum is taken over all pairs (transducer,
input string) producing y. The size of the transducer is measured via some
encoding, so the complexity function depends on the choice of this encoding. “It
will be interesting to check whether finite-state random strings are Borel nor-
mal” [3, p. 5677]. Since normality is defined for infinite sequences, one probably
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should interpret this question in the following way: is it true that normal infi-
nite sequences can be characterized as sequences whose prefixes have finite-state
complexity close to length?

It turns out [4] that this is only a sufficient condition, not a criterion. More
precisely, there is a normal sequence such that finite-state complexity of its first
n bits is o(n). This example is also an easy consequence of Theorem 4. Indeed,
let us denote the complexity defined in [3] by CSR(x). It depends on the choice
of the encoding for transducers, but the following theorem is true for every
encoding, so we assume that some encoding is fixed and omit it in the notation.

Theorem 5 ([4]).

(a) If a sequence α = a0a1 . . . is not normal, then there exists some c < 1 such
that the CSR(a0 . . . an−1) < cn for infinitely many n.

(b) lim inf CSR(b0 . . . bn−1)/n = 0 for some normal sequence β = b0b1 . . .

Proof. The first part of the statement can be proven using Shannon coding in
the same way as in [13]. For the second part we construct an example of a normal
sequence using Champernowne’s idea and Theorem 4. The sequence will have
the form β = (B1)n1(B2)n2 . . . ; here Bi is the concatenation of all strings of
length i (say, in lexicographical ordering, but this does not matter), and ni is a
fast growing sequence of integers.

To choose ni, let us note first that for a periodic sequence (of the form XY ∞)
the CSR-complexity of its prefixes of the form XY k is o(length). Indeed, we may
consider a transducer that first outputs X, then outputs Y for each input bit 1.
So CSR(XY m) = m + O(1), and the compression ratio is about 1/|Y |. To get
o(length), we use Y c for some constant c as a period to improve the compression.

Now consider the complexity/length ratio for the prefixes of β if the sequence
ni grows fast enough. Indeed, assume that n1, n2, . . . , nk are already chosen
and we now choose the value of nk+1. We may use the bound explained in
the previous paragraph and let X = (B1)n1 . . . (Bk)nk and Y = Bk+1. For
sufficiently large nk+1 we get arbitrarily small complexity/length ratio. (Note
that good compression is guaranteed only for some prefixes; when increasing k,
we need to switch to another transducer, and we know nothing about the length
of its encoding.)

It remains to apply Theorem 4 to show that for some fast growing sequence
n1, n2, . . . the sequence β is normal. We apply the criterion by splitting Bk into
pieces of length k (so all strings of length k appear once in this decomposition
of Bk). We already know that the average Kolmogorov complexity of the pieces
in Bk is k −O(1) (and the length of all pieces is k). This is enough to satisfy the
conditions of Theorem 4 if x1 . . . xn ends on the boundary of the block Bk. But
this is not guaranteed; in general we need also to consider the last incomplete
group of blocks that form a prefix of some Bk. The total length of these blocks
is bounded by |Bk|, i.e., by k2k. We need this group to be short compared to
the rest, and this will be guaranteed if nk−1 (the lower bound for the length of
the previous part) is much bigger than k2k. And we assume that nk grow very
fast, so this condition is easy to satisfy. Theorem 5 is proven. ��
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Abstract. A family of tree automata of size n is presented such that the
size of the largest common prefix (lcp) tree of all accepted trees is expo-
nential in n. Moreover, it is shown that this prefix tree is not compressible
via DAGs (directed acyclic graphs) or tree straight-line programs. We
also show that determining whether or not the lcp trees of two given tree
automata are equal is coNP-complete; the result holds even for deter-
ministic bottom-up tree automata accepting finite tree languages. These
results are in sharp contrast to the case of context-free string grammars.

1 Introduction

For a given language L one can define the largest common prefix of L as the
longest string which is a prefix of every word in L. This definition can be extended
to tree languages in a natural way. One motivation to compute the largest com-
mon prefix of a set of strings or trees is the so called earliest normal form,
which has been studied for string transducers [1,8] and tree transducers [3]. The
existence of an earliest normal form has several important consequences. For
instance, the transducer can in a simple further step be made canonical, which
allows deciding equivalence and gives rise to Gold-style learning algorithms [5,9].
Intuitively, an earliest transducer produces its output “as early as possible”. In
order to compute the earliest form of a given transducer, one has to consider all
possible inputs (for a certain set of states), and has to determine if the corre-
sponding outputs have a non-empty common prefix; if so, then the transducer is
not earliest, because this common prefix is independent of the input and hence
should have been produced before. The questions arise how large such common
prefixes can possibly be, and whether or not they can be compressed.

In this paper we address these questions in a general setting where the trees
of which the common prefix is computed are given by a finite tree automaton. We
present a family of tree automata of size Θ(n) such that their largest common
prefixes (lcps) are of size exponential in n and are essentially incompressible via
common tree compression methods such as DAGs (directed acyclic graphs) or
tree straight-line programs [4,6]. Recently it has been shown that for a given
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context-free string grammar, a representation of the largest common prefix can
be computed in polynomial time [7].

Whenever above we mention “tree automaton”, we always mean “nondeter-
ministic (top-down or bottom-up) tree automaton”. Let us now consider the
case of deterministic tree automata. It is known that in the deterministic case,
top-down automata are strictly less expressive than bottom-up tree automata; in
fact, they are so weak that they cannot even recognize finite tree languages such
as {f(a, f(a, a)), f(f(a, a), a)} (here, we use the standard term representation
for trees; see Sect. 2). It turns out that the largest common prefix of the trees
recognized by a deterministic top-down tree automaton can be computed by a
simple (top-down) procedure. Moreover, the resulting lcps are compressible via
DAGs, and the procedure can produce in linear time a DAG of the lcp. In con-
trast, for deterministic bottom-up tree automata (which are equally expressive
as nondeterministic tree automata), such a procedure is not possible. Surpris-
ingly, for such automata similar results can be proven as for nondeterministic
automata, e.g., a family of automata of size Θ(n2) can be defined, such that the
size of their lcp is exponential in n. Technically, one ingredient of both families
of automata (nondeterministic and deterministic ones) is the well-known fact
that an automaton needs exponentially many states in order to recognize strings
where the n-th last symbol carries a specific label.

We then address a second important problem for largest common prefixes
given by tree automata, namely to determine whether or not the largest common
prefixes of two given tree automata coincide. Note that when constructing an
earliest canonical (“minimal”) transducer, we need to determine whether two
given states are equivalent; for this to hold, several lcps must be checked for
equality. The following question arises: what is the precise complexity of checking
equality of the lcps of two given tree automata? In this paper, we prove that this
problem is coNP-complete using a reduction from the complement of 3-SAT.

2 Preliminaries

We assume that the reader is familiar with words and finite automata on words.
A language L ⊆ {0, 1}∗ is a right-ideal if L = L{0, 1}∗. A set S ⊆ {0, 1}∗ is
prefix-closed, if uv ∈ S implies that u ∈ S for all u, v ∈ {0, 1}∗. Note that L is a
right-ideal if and only if {0, 1}∗ \ L is prefix-closed.

A DFA (deterministic finite automaton) over a finite alphabet Γ is a 5-tuple
A = (Q,Γ, q0, F, δ), where Q is the finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, and δ : Q × Γ → Q is the transition mapping.
The language L(A) accepted by A is defined in the usual way. For an NFA (non-
deterministic finite automaton) we have a set I ⊆ Q of initial states and the
transition function δ maps from Q × Γ to 2Q (the powerset of Q).

We consider finite binary trees that are unlabeled, rooted, and ordered. The
latter means that there is an order on the children of a node. Moreover, every
node is either a leaf or has exactly two children. We will use two equivalent
formalizations of such trees. We can view them as formal expressions over the
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Fig. 1. Trees t0 = f(f(a, a), a) (left), t1 = f(f(a, a), f(a, a)) (midle) and the minimal
DAG of t1 (right).

set of function symbols {f, a}, where f gets two arguments and a is a constant-
symbol (i.e., gets no arguments). The set of all such expressions is denoted by T2

and is inductively defined by the following conditions: a ∈ T2 and if t1, t2 ∈ T2

then also f(t1, t2) ∈ T2. Trees from T2 are binary trees, where each leaf is labeled
with a and every internal node is labeled with f . Obviously, the labeling bears no
information, and trees from T2 can be identified with unlabeled binary trees. For
instance, the expression f(f(a, a), a) represents the binary tree t0 from Fig. 1.
Alternatively, we can specify a binary tree by a path language. A path language
P is a finite non-empty subset of {0, 1}∗ such that

– P is prefix-closed and
– for every w ∈ {0, 1}∗, w0 ∈ P if and only if w1 ∈ P .

A binary tree t ∈ T2 can be uniquely represented by a path language P (t), and
vice versa. Formally, we define P (t) inductively as follows:

– P (a) = {ε}
– P (f(t1, t2)) = {ε} ∪ {iw | i ∈ {0, 1}, w ∈ P (ti)}.

For instance, for the binary tree t0 from Fig. 1 we have P (t0) = {ε, 0, 1, 00, 01}.
The root of a tree corresponds to the empty word ε, u0 denotes the left child of
u, and u1 denotes the right child of u. The leaves of a tree t correspond to those
words in P (t) that are maximal with respect to the prefix relation. The depth
of t ∈ T2 can be defined as the maximal length of a word in P (t). Note that the
intersection of an arbitrary number of path languages is again a path language.

A nondeterministic top-down tree automaton (NTTA for short) is a 4-tuple
B = (Q, I, F, δ), where Q is a finite set of states, I ⊆ Q with I �= ∅ is the set of
initial states, F ⊆ Q is the set of final states, and δ : Q → 2Q

2
is the transition

function (here and in the following we view elements of Q2 as words of length
two over the alphabet Q). A run of B on a tree t is a mapping ρ : P (t) → Q
such that:

– If v ∈ P (t) is a leaf of t, then ρ(v) ∈ F .
– If v, v0, v1 ∈ P (t) with ρ(v) = p, ρ(v0) = p0 and ρ(v1) = p1 then p0p1 ∈ δ(p).

For q ∈ Q, we let T (B, q) denote the set of all trees t for which there exists a
run ρ of B such that ρ(ε) = q. Finally we define T (B) =

⋃
q∈I T (B, q) as the

tree language accepted by B.
An NTTA B = (Q, I, F, δ) is called productive if T (B, q) �= ∅ for every q ∈ Q.

From a given NTTA B with T (B) �= ∅ one can construct in polynomial time an
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equivalent productive NTTA B′. One first computes in polynomial time the set
P = {p ∈ Q | T (B, p) �= ∅}. Note that F ⊆ P . Then B′ is obtained from B by
removing all states from Q \P . To do this, one also has to replace every set δ(q)
(q ∈ P ) by δ(q) ∩ P 2.

A deterministic top-down tree automaton (DTTA for short) is a 4-tuple B =
(Q, q0, F, δ), where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is
the set of final states, and δ : Q → Q2 is the transition function. We can identify
this 4-tuple with the NTTA (Q, {q0}, F, δ′) where δ′(q) = {δ(q)}. This allows us
the transfer all definitions from NTTAs to DTTAs.

Finally a deterministic bottom-up tree automaton (DBTA for short) is an
NTTA B = (Q, I, F, δ) such that |F | = 1 and for every q1q2 ∈ Q2 there is at
most one q ∈ Q such that q1q2 ∈ δ(q). In other words, the sets δ(q) (q ∈ Q)
are pairwise disjoint. This allows defining a partially defined inverse δ−1 of δ by
δ−1(q1q2) = q if q1q2 ∈ δ(q). For every tree t there is at most one run of B on t
and this run ρ can be constructed bottom-up by first setting ρ(u) = qf for every
leaf u of t, where qf is the unique state in F . Then, for all v, v0, v1 ∈ P (t) such
that ρ(v0) and ρ(v1) have been already defined, one sets ρ(v) = δ−1(ρ(v0)ρ(v1)).

It is well known that for every NTTA there exists an equivalent DBTA accept-
ing the same tree language. On the other hand, there exist NTTAs which do not
have an equivalent DTTA; see [2] for examples.

The minimal DAG for a tree t ∈ T2 is obtained by keeping for every subtree s
of t exactly one isomorphic copy to which all tree edges that point to occurrences
of s are redirected. The size of the minimal DAG of t (measured in number of
nodes) is exactly the number of pairwise non-isomorphic subtrees of t.

Lemma 1. Let t be a tree. The following statements are equivalent:

1. The minimal DAG for the tree t has n nodes.
2. The minimal DFA for the path language P (t) has n + 1 states.

The proof of the lemma is straightforward. Consider for instance the tree t1 =
f(f(a, a), f(a, a)) from Fig. 1. Its minimal DAG is shown in Fig. 1 on the right.
It yields a DFA for P (t1) by taking the root node as the initial state, all othern
nodes as final states and adding a failure state (note that a DFAs has a totally
defined transition mapping according to our definition).

Largest Common Prefix Tree. Consider a non-empty tree language L ⊆
T2. The largest common prefix lcp(L) of L is the unique binary tree t such
that P (t) =

⋂
t∈L P (t). For instance, for L = {f(f(a, a), a), f(a, a)} we obtain

lcp(L) = f(a, a).

Lemma 2. Assume that B is an NTTA with n states and such that T (B) �= ∅.
Then every word w ∈ P (lcp(T (B))) =

⋂
t∈T (B) P (t) has length at most n − 1,

i.e., the depth of lcp(T (B)) is at most n − 1.

Proof. It well-known that B must accept a tree t of depth at most n−1; see e.g.
[2, Corollary 1.2.3]. Hence, |w| ≤ n − 1 for every word w ∈ P (t). This implies
the statement of the lemma. 
�
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It is straightforward extend all the notions from this section to labelled binary
trees. A Σ-labelled binary tree can be defined as a pair (P, λ) where P ⊆ {0, 1}∗

is a path language and λ : P → Σ is the labelling function. Given a set L of
Σ-labelled binary trees, one can define its lcp as the unique tree (P, λ) where P is
the largest (with respect to inclusion) path language such that for all (P ′, λ′) ∈ L
we have: P ⊆ P ′ and λ(u) = λ′(u) for all u ∈ P . All results in this paper also
hold for Σ-labelled binary trees. Since the focus of this paper is on lower bounds,
we decided to restrict our considerations to unlabelled trees.

3 From NTTAs to DFAs

In this and the next section we establish a correspondence between largest com-
mon prefix trees of regular tree languages and finite automata (on words).

Let B = (Q, I, F, δ) be a productive NTTA. We extend δ : Q → 2Q
2

to δ̂ : 2Q

→ 2Q
2

by setting δ̂(Q′) =
⋃

p∈Q′ δ(p) ⊆ Q2 for Q′ ⊆ Q. For a state pair p0p1 ∈
Q2 and i ∈ {0, 1} we define the projection πi(p0p1) = pi. For a set S ⊆ Q2 and
i ∈ {0, 1} we define πi(S) = {πi(pq) | pq ∈ S}.

We fix a fresh state qf /∈ Q and define a DFA Bs (s for string) by

Bs = (2Q \ {∅} � {qf}, {0, 1}, I, 2Q \ {∅}, δs)

(� denotes disjoint union) where for all Q′ ⊆ Q with Q′ �= ∅ and i ∈ {0, 1} we
set

δs(Q′, i) =

{
πi(δ̂(Q′)) if Q′ ∩ F = ∅
qf if Q′ ∩ F �= ∅.

Moreover, δs(qf , 0) = δs(qf , 1) = qf . The state qf is called the failure state
of Bs. Note that if Q′ ∩ F = ∅ for Q′ �= ∅, then the productivity of B implies
that δ̂(Q′) �= ∅. In particular, we have πi(δ̂(Q′)) �= ∅ if Q′ �= ∅, which implies
that δs is well-defined.

Lemma 3. Let B be a productive NTTA. Then

L(Bs) = P (lcp(T (B))) =
⋂

t∈T (B)

P (t).

Proof. Consider a word w = a1a2 · · · an with a1, . . . , an ∈ {0, 1}. Let us first
assume that w ∈ L(Bs) and let t ∈ T (B). We have to show that w ∈ P (t). In
order to get a contradiction, assume that w /∈ P (t). Let v be a longest prefix of
w that belongs to P (t). Since ε ∈ P (t), v is well-defined. Clearly, v is a proper
prefix of w and v is a leaf of t. Thus, we can write v as v = a1a2 · · · ak for k < n.
Fix a run ρ of B on t such that ρ(ε) ∈ I. Let qi = ρ(a1 · · · ai) for 0 ≤ i ≤ k.
Since v is a leaf of t we have qk ∈ F . Since w ∈ L(Bs) there exists a path

I = Q0
a1−→ Q1

a2−→ Q2
a3−→ · · · an−−→ Qn,
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where, for 0 ≤ i ≤ n, Qi ⊆ Q and Qi �= ∅, and for 0 ≤ i ≤ n − 1, Qi ∩ F = ∅
and Qi+1 = πai

(δ̂(Qi)). The latter point implies by induction on i that qi ∈ Qi

for 0 ≤ i ≤ k. Since Qk ∩ F = ∅, we must have qk /∈ F , which is a contradiction.
Now assume that w /∈ L(Bs). Hence, the unique run of Bs on w ends in the

failure state qf . Thus, there must exist a proper prefix v = a1 · · · ak of w such
that k < n and the run of Bs on w has the form

I = Q0
a1−→ Q1

a2−→ · · · ak−→ Qk
ak+1−−−→ qf

ak+2−−−→ · · · an−−→ qf .

where Qi ⊆ Q and Qi �= ∅ for 0 ≤ i ≤ k, Qi ∩ F = ∅ and Qi+1 = πai
(δ̂(Qi)) for

0 ≤ i ≤ k − 1, and Qk ∩ F �= ∅. Let qk ∈ Qk ∩ F .
We have to construct a tree t ∈ T (B) such that w /∈ P (t). For this we choose

states qi ∈ Qi for 0 ≤ i ≤ k. The state qk ∈ Qk∩F has already been chosen in the
last paragraph. Assume that qi+1 ∈ Qi+1 has been defined for some 0 ≤ i ≤ k−1.
To define qi note that qi+1 ∈ πai

(δ̂(Qi)). Hence, there exist states p ∈ Qi and
q′
i+1 ∈ Q such that the following holds: if ai = 0 then qi+1q

′
i+1 ∈ δ(p) and if

ai = 1 then q′
i+1qi+1 ∈ δ(p). We set qi = p. By the productivity of B there exist

trees t′i ∈ T (B, q′
i) for 1 ≤ i ≤ k. Moreover, since qk ∈ Qk ∩ F , the one-node

tree a belongs to T (B, qk). From the trees t′1, . . . , t
′
k, a we can now construct a

tree t ∈ T (B) such that v = a1 · · · ak is a leaf of t (and hence w /∈ P (t)). For
instance, if v = 1k then we take t = f(t′1, f(t′2, f(t′3, · · · f(t′k, a) · · · ))). For the
general case, we define trees t0, t1, . . . , tk inductively as follows:

– tk = a,
– ti = f(ti+1, t

′
i+1) if 0 ≤ i ≤ k − 1 and ai+1 = 0, and

– ti = f(t′i+1, ti+1) if 0 ≤ i ≤ k − 1 and ai+1 = 1.

Finally, let t = t0. Then t has the desired properties. 
�
Note that the size of the above DFA Bs is exponential in the size of B. In the case
where we start with a DTTA, we can easily modify the above construction in
order to construct in linear time a DFA (of linear size). Hence, let us redefine for
a DTTA B = (Q, q0, F, δ) the DFA Bs = (Q � {qf}, {0, 1}, q0, Q, δs) by setting
for all q ∈ Q and i ∈ {0, 1}:

δs(q, i) =

{
πi(δ(q)) if q /∈ F

qf if q ∈ F.

Moreover, δs(qf , 0) = δs(qf , 1) = qf . The proof of the following lemma is similar
as the proof for Lemma 3.

Lemma 4. Let B be a DTTA with T (B) �= ∅. Then

L(Bs) = P (lcp(T (B))) =
⋂

t∈T (B)

P (t).
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4 From NFAs to NTTAs

We now consider NFAs that generate languages L over {0, 1} such that the
complement of L is a finite path language. An NFA A = (Q, {0, 1}, I, F, δ) is
well-behaved, if there are two different states qe, qf ∈ Q such that

1. F = {qf} and qf /∈ I,
2. δ(q, a) �= ∅ for all q ∈ Q and all a ∈ {0, 1},
3. qf /∈ δ(q, a) for all q ∈ Q \ {qe, qf} and all a ∈ {0, 1},
4. δ(qe, 0) = δ(qe, 1) = δ(qf , 0) = δ(qf , 1) = {qf},
5. the NFA obtained from A by removing the state qf is acyclic, and
6. all states are reachable from I.

In a well-behaved NFA A every path of length at least |Q| − 1 that starts in
a state q �= qf must visit qe (this follows from points 2 and 5) . Moreover, the
complement {0, 1}∗ \ L(A) is a path language.

From a well-behaved NFA A = (Q, {0, 1}, I, {qf}, δ) we construct the NTTA
At = (Q \ {qf}, I, {qe}, δt) (t for tree) with

– δt(q) = {q1q2 | q1 ∈ δ(q, 0), q2 ∈ δ(q, 1)} for q ∈ Q \ {qe, qf}, and
– δt(qe) = ∅.

Note that for every well-behaved NFA A, the NTTA At is productive.

Lemma 5. Let A be a well-behaved NFA. Then P (lcp(T (At))) = {0, 1}∗ \L(A).

Proof. Let A = (Q, {0, 1}, I, F, δ). We first assume that w ∈ L(A) and show that
w /∈ P (lcp(T (At))). For this, we have to prove that there exists a tree t ∈ T (At)
such that w /∈ P (t). Since w ∈ L(A) we can write w = uv with v �= ε such that
in A there exists a u-labeled path from q0 ∈ I to qe. Let us write this path as

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−−→ qn = qe,

where u = a1a2 · · · an and a1, . . . , an ∈ {0, 1}. Note that q0, . . . , qn−1 ∈ Q \
{qe, qf}. For 1 ≤ i ≤ n let us choose any state q′

i ∈ δ(qi−1, āi) (where 0̄ = 1 and
1̄ = 0). Such a state q′

i must exist since A is well-behaved. Moreover, choose for
every 1 ≤ i ≤ n a tree ti ∈ T (At, q′

i). Finally let t be the unique tree with

P (t) = {u} ∪
n⋃

i=1

{a1 · · · ai−1āiu
′ | u′ ∈ P (ti)}.

From the construction of At it follows that t ∈ T (At). Moreover, since w = uv
with v �= ε we get w /∈ P (t). This concludes the first part of the proof.

Now assume that w /∈ P (lcp(T (At))). We have to show that w ∈ L(A). Since
w /∈ P (lcp(T (At))), there exists t ∈ T (At) such that w /∈ P (t). We can factorize
w = uv with v �= ε, where u = a1 · · · an is the longest prefix of w with u ∈ P (t).
Hence, u leads in the tree t to a leaf. Since t ∈ T (At), there exists a run ρ of At

on t such that ρ(ε) ∈ I. Let qi = ρ(a1 · · · an) for 0 ≤ i ≤ n. Since u leads to a
leaf of t we must have qn = qe. Then

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−−→ qn = qe

is a u-labeled path in A from q0 ∈ I to qe. Since v �= ε we get w = uv ∈ L(A). 
�
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5 Incompressibility of Largest Common Prefix Trees

5.1 Incompressibility by DAGs

In this section we present our first main result, which shows that there is a family
of tree automata such that the size of the minimal DAG of the corresponding
largest common prefix tree is exponential in the automata size.

For n ≥ 1 we consider the following language Ln:

Ln = {0, 1}2n+3{0, 1}∗ ∪
n−1⋃

i=0

({0, 1}i0{0, 1}n0{0, 1}+)
.

Let us first establish that the complement Vn = {0, 1}∗ \ Ln is a path language.
Since Ln is a right ideal, the complement Vn is prefix closed. Since all words
of length at least 2n + 3 belong to Ln, the language Vn is finite. Finally, w0 ∈
{0, 1}2n+3{0, 1}∗ iff |w0| ≥ 2n+3 iff |w1| ≥ 2n+3 iff w1 ∈ {0, 1}2n+3{0, 1}∗ and
w0 ∈ {0, 1}i0{0, 1}n0{0, 1}+ iff w1 ∈ {0, 1}i0{0, 1}n0{0, 1}+. Hence, w0 ∈ Ln if
and only if w1 ∈ Ln, and the same property must hold for the complement Vn

of Ln. Thus, Vn is a path language.

Lemma 6. The minimal DFA A for Vn has at least 2n states.

Proof. Let A = (Q, {0, 1}, δ, q0, F ). Consider the extension δ : Q × {0, 1}∗ → Q
with δ(q, ε) = q and δ(q, ua) = δ(δ(q, u), a) for u ∈ {0, 1}∗, a ∈ {0, 1}. We claim
that δ(q0, u) �= δ(q0, v) for every u, v ∈ {0, 1}n with u �= v, which implies that
A has at least 2n states (and hence size at least 2n). Assume by contradiction
that δ(q0, u) = δ(q0, v) for some u, v ∈ {0, 1}n with u �= v. We can write u
and v as u = x0y and v = x1z (or vice versa) for some x, y, z ∈ {0, 1}∗. Note
that 0 ≤ |x| ≤ n − 1 and |y| = |z|. We define the words u′ = x0y1n−|y|01 =
u1n−|y|01 and v′ = x1z1n−|z|01 = v1n−|y|01. Since δ(q0, u) = δ(q0, v) we have
δ(q0, u′) = δ(q0, v′). It should be clear that u′ ∈ Ln = {0, 1}∗ \ Vn. Hence,
in order to get a contradiction, it suffices to show v′ �∈ Ln. First, note that
|v′| = 2n − |y| + 2 ≤ 2n + 2. This implies that if v′ ∈ Ln, then it must belong to
{0, 1}i0{0, 1}n0{0, 1}+ for some 0 ≤ i ≤ n − 1. But the word v′ = x1z1n−|z|01
contains no factor from 0{0, 1}n0 (note that x1z has length n and hence cannot
contain such a factor). 
�

Figure 2 shows a well-behaved NFA An with Θ(n) states for the language
Ln. The NTTA Bn := At

n has Θ(n) states as well and satisfies P (lcp(T (Bn))) =
{0, 1}∗ \ L(An) = Vn by Lemma 5. From Lemmas 1 and 6 it follows that the
minimal DAG for lcp(T (At

n)) has at least 2n − 1 nodes. We have shown:

Theorem 1. For every n there is a NTTA Bn with Θ(n) states such that the
minimal DAG for the tree lcp(T (Bn)) has at least 2n − 1 nodes.

The bound 2n−1 in Theorem 1 is optimal up to constant factors in the exponent:
If B is an NTTA with n states then by Lemma 2, lcp(T (B)) has depth at most
n − 1 and hence at most 2n − 1 nodes. A variation of the above construction
yields a slightly weaker lower bound for DBTAs:
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q0 qe qf
0,1

0,1

0,1
0,1

0,1
0

0,1
· · ·

0,1 0

1

0,1
· · ·

0,1 0

1

0,1

0,1

0,1 0,1 · · · 0,1

0,1

n− 1 transitions n transitions

2n transitions

Fig. 2. The well-behaved NFA An recognizing the language Ln

Theorem 2. For every n there is a DBTA B′
n with Θ(n2) states such that the

minimal DAG for the tree lcp(T (B′
n)) has at least 2n − 1 nodes.

Proof. Consider the NFA A′
n = (Q, {0, 1}, I, {qf}, δ) from Fig. 3. It is a well-

behaved NFA that recognizes the language Ln as well. The transition function
δ can be viewed as a mapping δ : Q × {0, 1} → Q (nondeterminism only comes
from the fact that there are several initial states). Moreover, δ has the property
that for all states p, q ∈ Q \ {qf}, if p �= q then δ(p, 0)δ(p, 1) �= δ(q, 0)δ(q, 1).
Together with the fact that qe is the unique final state of the NTTA A′t, this
implies that A′t is a DBTA. 
�

5.2 Incompressibility by Tree Straight-Line Programs

So far we considered the compression of trees by DAGs. Let us now consider
the more general formalism of tree straight-line programs (TSLPs) [4,6].1 As
explained in Sect. 2 we consider binary trees as expressions over the leaf symbol
a and the binary symbol f . A TSLP is a 4-tuple G = (V0, V1, ρ, S) where V0 and
V1 are finite disjoint sets of variables, S ∈ V0 is the start nonterminal, and ρ is
a function that assigns to each variable A a formal expression (the right-hand
side of A) such that one of the following conditions holds:

(a) A ∈ V0 and ρ(A) = a,
(b) A,B,C ∈ V0 and ρ(A) = f(B,C),
(c) A,C ∈ V0, B ∈ V1 and ρ(A) = B(C),
(d) A,B,C ∈ V1 and ρ(A) = B(C),
(e) A ∈ V1, B ∈ V0 and ρ(A) = f(B, x),
(f) A ∈ V1, B ∈ V0 and ρ(A) = f(x,B).

1 We define here monadic TSLPs in normal form [6] which makes no difference with
respect to succinctness; see [6].
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q0,n

q0,0

q0,1

q0,2

q0,3

qe qf

...

0,1 0,1
· · ·

0,1 0 0,1
· · ·

0,1 0 0,1

0,1

1

0

1

0,1

0

1

0,1 0,1 0

1

0,1 0,1 0,1 · · · 0,1 0,1 · · ·
0,1

0,1

1

n− 1 transitions n transitions

n transitions n+ 1 transitions

Fig. 3. The well-behaved NFA A′
n recognizing Ln from the proof of Theorem 2.

We require that the binary relation E(G) = {(B,A) | B occurs in ρ(A)} is
acyclic. We can therefore define a partial order ≤G as the reflexive transitive
closure of E(G). The idea is that with the above rules, every variable A ∈ V0

evaluates to a unique binary tree �A�G , whereas every variable A ∈ V1 evaluates
to a unique binary tree �A�G with a marked leaf. This marked leaf is denoted by
the special symbol x. For instance, f(f(a, x), f(a, a)) would be such a tree. We
let T2,x denote the set of all such trees. For s ∈ T2,x and t ∈ T2,x ∪ T2 we let s[t]
denote the result of replacing in s the unique occurrence of x by t. For instance,
for s = f(f(a, x), f(a, a)) and t = f(a, x) we have s[t] = f(f(a, f(a, x)), f(a, a)).
Here are the formal inductive rules for the evaluation of variables. In all cases
tB := �B�G and tC := �C�G are already defined by induction.

– if A ∈ V0 and ρ(A) = a, then �A�G = a,
– if A,B,C ∈ V0 and ρ(A) = f(B,C), then �A�G = f(tB , tC),
– if A,C ∈ V0, B ∈ V1 and ρ(A) = B(C), then �A�G = tB [tC ],
– if A,B,C ∈ V1 and ρ(A) = B(C), then �A�G = tB [tC ],
– if A ∈ V1, B ∈ V0 and ρ(A) = f(B, x), then �A�G = f(tB , x),
– if A ∈ V1, B ∈ V0 and ρ(A) = f(x,B), then �A�G = f(x, tB).

Finally, we define �G� = �S�G ∈ T2. Readers that are familiar with the notion
of context-free tree grammars will notice that a TSLP is a context-free tree
grammar that produces a unique tree. A DAG corresponds to a TSLP where only
variables of the above types (a) and (b) are present. In contrast to DAGs, TSLPs
can also compress deep narrow trees, such as caterpillar trees, for example.

Lemma 7. Let G = (V0, V1, ρ, S) be a TSLP with t = �G� and let d be the depth
of t. Then the minimal DAG for t has at most |V0| · d nodes.
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Proof. We count the number of pairwise non-isomorphic subtrees of t. Consider
a specific subtree s ∈ T2 of t. By walking down from the start variable S ∈ V0

we can determine the smallest variable A (with respect to ≤G) such that s is a
subtree of �A�G . Let us consider the cases (a)–(f) for the right-hand side ρ(A).

If (a) or (b) holds, then we must have s = �A�G . The cases (e) and (f) cannot
occur (in both cases s would be a subtree of �B�G). Similarly, (d) cannot occur
since s would be a subtree of either �B�G or �C�G . Finally in case (c), since s is
neither a subtree of �B�G nor �C�G , the subtree s must be rooted at one of the
nodes on the path leading from the root of �A�G to the position of the symbol x
in �B�G (excluding the position of x). There are at most d such nodes. It follows
that �G� contains at most |V0| · d different subtrees. 
�
Theorem 3. For every n there is an NTTA Bn with Θ(n) states such that the
smallest TSLP for the tree lcp(T (Bn)) has Ω(2n/n) variables. Moreover, for
every n there is a DBTA B′

n with Θ(n2) states such that the smallest TSLP for
the tree lcp(T (B′

n)) has Ω(2n/n) variables.

Proof. We take the tree automata families from Theorems 1 and 2, respectively.
Assume that G = (V0, V1, ρ, S) is a TSLP for the tree lcp(T (Bn)) from Theo-
rem 1. The minimal DAG for lcp(T (Bn)) has at least 2n − 1 nodes. Recall that
P (lcp(T (Bn))) = Vn = {0, 1}∗ \Ln. Since Ln contains all word of length at least
2n+3, the path language Vn contains only words of length at most 2n+2. Thus,
the depth of the tree lcp(T (Bn)) is at most 2n + 2. With Lemma 7 it follows
that the smallest TSLP for lcp(T (Bn)) has at least (2n − 1)/(2n + 2) variables.
For DBTAs one can argue analogously using Theorem 2. 
�
The upper bound Ω(2n/n) for NTTAs in Theorem 3 cannot be improved much:
As remarked before, if an NTTA B has n states then the tree lcp(T (B)) has at
most 2n nodes. By [4], lcp(T (B)) has a TSLP with O(2n/n) variables.

6 Checking Equality of Largest Common Prefixes

We now deal with the problem of checking whether to tree languages yield the
same lcp (or whether one lcp is contained in the other lcp). For DTTAs this is
possible in polynomial time, whereas the problem becomes coNP-complete for
DBTAs.

Theorem 4. The problem of checking P (lcp(T (B1))) ⊆ P (lcp(T (B2))) for two
given DTTAs B1 and B2 can be solved in polynomial time.

Proof. We compute the DFAs Bs
1 and Bs

2 from Sect. 3. Since B1 and B2 are
DTTAs, these DFAs can be computed in polynomial time. By Lemma 4 we have
P (lcp(T (B1))) ⊆ P (lcp(T (B2))) if and only if L(Bs

1) ⊆ L(Bs
2). The theorem

follows because inclusion of DFAs can be checked in polynomial time. 
�
Theorem 5. The problem of checking P (lcp(T (B1))) ⊆ P (lcp(T (B2))) for two
given NTTAs B1 and B2 belongs to coNP.



106 M. Lohrey and S. Maneth

q0,2

q0

q0,1 q1,1 q2,1 q3,1 q4,1

q1,2 q2,2 q3,2 q4,2

q1 q2 q3 q4 q5 qe qf

0,1 0 0 0

1 0 1 0,1

0,1 0,1 0,1 0,1 0,1 0,1 0,1

0

0

0,1

1 1
1

0 1
0 1

1

Fig. 4. The construction from the proof of Theorem 6 for the 3-SAT formula C =
C1 ∧ C2 with C1 = (¬x1 ∨ x2 ∨ ¬x3) and C2 = (x2 ∨ x3 ∨ x4) (so n = 4 and m = 2).

Proof. We show that there exists a nondeterministic polynomial time machine
that checks whether there exists u ∈ P (lcp(T (B1))) with u /∈ P (lcp(T (B2))).
W.l.o.g. we can assume that B1 and B2 are productive. Let m be the number
of states of B1. By Lemma 2 we know that P (lcp(T (B1))) only contains words
of length at most m − 1. Hence, we can nondeterministically guess a word u
of length at most m − 1 and then verify whether u ∈ P (lcp(T (B1))) and u /∈
P (lcp(T (B2))). For this we use the DFAs Bs

1 and Bs
2 from Lemma 3 and check

whether u ∈ L(Bs
1) and u /∈ L(Bs

2). For this, we do not have to construct the
DFAs Bs

1 and Bs
2 explicitly (they have exponential size); it suffices to run Bs

1

and Bs
2 on the fly on the word u (recall that u has polynomial length). 
�

Theorem 6. The problem of checking lcp(T (B1)) = lcp(T (B2)) for two given
NTTAs B1 and B2 is coNP-complete. The coNP lower bound already holds for
the case that B1 and B2 are DBTAs.

Proof. Since coNP is closed under intersection, we obtain the upper bound from
Theorem 5. Let us now show coNP-hardness for DBTAs by a reduction from
the complement of 3-SAT. Consider a 3-SAT formula C =

∧m
i=1 Ci where every

Ci is a disjunction of three literals (possibly negated variables). Let x1, . . . , xn

be the variables that occur in C. W.l.o.g. we can assume that n ≥ m (we can
add dummy variables if necessary) and that there is no clause Ci and variable
xj such that xj and ¬xj both belong to Ci. Given a bit string w = a1a2 · · · an

with ai ∈ {0, 1} we write w |= Ci (resp., w |= C) if Ci (resp., C) becomes true
when every variable xi gets the truth value ai.

We first construct an (incomplete) acyclic DFA Ai for the language {w0 |
w ∈ {0, 1}n, w �|= Ci}. The states of Ai are q0,i, q1,i, . . . , qn,i, qn+1,i, q0,i is the
initial state, qn+1,i is the final state, and the transitions are defined as follows,
where 1 ≤ j ≤ n:

– qj−1,i
0−→ qj,i if xj belongs to Ci,

– qj−1,i
1−→ qj,i if ¬xj belongs to Ci,
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– qj−1,i
0,1−−→ qj,i if neither xj nor ¬xj belongs to Ci,

– qn,i
0−→ qn+1,i.

By taking the disjoint union of the DFAs Ai, we obtain an NFA A with

L(A) =
n⋃

i=1

L(Ai)

=
n⋃

i=1

{w0 | w ∈ {0, 1}n, w �|= Ci}

= {w0 | w ∈ {0, 1}n, w �|= C}.

Hence, we have L(A) = {0, 1}n0 if and only if C is not satisfiable. Note that the
initial states of A are the states q0,1, . . . , q0,m.

We finally construct a well-behaved NFA A1 from A as follows (an example
is shown in Fig. 4):

– Merge the final states qn+1,i (1 ≤ i ≤ m) into a single non-final state qe.
– Add states q0, q1, . . . , qn+1, qf , where q0 is an initial state (hence, the initial

states of A1 are q0, q0,1, . . . , q0,m) and qf is the unique final state of A1.
– Add the transitions qj

0,1−−→ qj+1 for 0 ≤ j ≤ n, qn+1
0,1−−→ qe

0,1−−→ qf
0,1−−→ qf .

– If some state qj−1,i (1 ≤ i ≤ m, 1 ≤ j ≤ n) has no outgoing a-transition for
a ∈ {0, 1} (this happens if a = 0 and ¬xj belongs to Ci or a = 1 and xj

belongs to Ci) then add the transition qj−1,i
a−→ q0 to A1.

– For every 1 ≤ i ≤ m we add a 1-transition from qn,i to one of the states
q0, . . . , qn+1 in such a way that no two such 1-transitions enter the same
state. Since m ≤ n + 2, this is possible.

The automaton A1 satisfies L(A1) = L(A){0, 1}{0, 1}∗ ∪ {0, 1}n+3{0, 1}∗ and is
is well-behaved. The transition function δ of A1 can be viewed as a mapping δ :
Q×{0, 1} → Q (nondeterminism only comes from the fact that there are several
initial states). Moreover, δ has the property that for all states p, q ∈ Q \ {qf},
if p �= q then δ(p, 0)δ(p, 1) �= δ(q, 0)δ(q, 1). Together with the fact that qe is the
unique final state of the NTTA At

1, this implies that At
1 is a DBTA.

It is straightforward to construct a well-behaved NFA A2 such that L(A2) =
{0, 1}n0{0, 1}{0, 1}∗ ∪ {0, 1}n+3{0, 1}∗ and At

2 is a DBTA (one can make the
above construction with an unsatisfiable 3-SAT formula). We get the following
equivalences:

C is unsatisfiable ⇔ L(A) = {0, 1}n0
⇔ L(A1) = {0, 1}n0{0, 1}{0, 1}∗ ∪ {0, 1}n+3{0, 1}∗

⇔ L(A1) = L(A2)
⇔ {0, 1}∗ \ L(A1) = {0, 1}∗ \ L(A2)
⇔ P (lcp(T (At

1))) = P (lcp(T (At
2)))

⇔ lcp(T (At
1)) = lcp(T (At

2)).

This concludes the proof of the theorem. 
�
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Abstract. The k-dimensional Weisfeiler-Leman algorithm (k-WL) is a
fruitful approach to the Graph Isomorphism problem. 2-WL corresponds
to the original algorithm suggested by Weisfeiler and Leman over 50 years
ago. 1-WL is the classical color refinement routine. Indistinguishability
by k-WL is an equivalence relation on graphs that is of fundamental
importance for isomorphism testing, descriptive complexity theory, and
graph similarity testing which is also of some relevance in artificial intelli-
gence. Focusing on dimensions k = 1, 2, we investigate subgraph patterns
whose counts are k-WL invariant, and whose occurrence is k-WL invari-
ant. We achieve a complete description of all such patterns for dimension
k = 1 and considerably extend the previous results known for k = 2.

Keywords: Isomorphism and similarity of graphs ·
Weisfeiler-Leman algorithm · Subgraph counts

1 Introduction

Color refinement is a classical procedure widely used in isomorphism testing and
other areas. It initially colors each vertex of an input graph by its degree and
refines the vertex coloring in rounds, taking into account the colors appearing in
the neighborhood of each vertex. This simple and efficient procedure successfully
canonizes almost all graphs in linear time [5]. Combined with individualization, it
is the basis of the most successful practical algorithms for the graph isomorphism
problem; see [27] for an overview and historical comments.

The first published work on color refinement dates back at least to 1965
(Morgan [29]). In 1968 Weisfeiler and Leman [37] gave a procedure that assigns
colors to pairs of vertices of the input graph G = (V,E). The initial colors are
edge, nonedge, and loop. The coloring is refined in rounds by assigning a new
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color to each pair (u, v) ∈ V ×V based on the color types of the 2-walks uwv, as w
ranges V . The procedure terminates when the color partition of V ×V stabilizes.
I.e., the color partition does not refine any further. The output coloring is an
isomorphism invariant of the input graph. It yields an edge-colored complete
directed graph with certain highly regular properties. This object, known as a
coherent configuration, has independently been discovered in other contexts in
statistics (Bose [8]) and algebra (Higman [23]).

A natural extension of this idea, due to Babai (see [4,9]), is to iteratively clas-
sify k-tuples of vertices. This is the k-dimensional Weisfeiler-Leman procedure,
abbreviated as k-WL. Thus, 2-WL is the original Weisfeiler-Leman algorithm
[37], and 1-WL is color refinement. The running time of k-WL is nO(k), where
n denotes the number of vertices in an input graph. Cai, Fürer, and Immer-
man [9] have shown infinitely many pairs of nonisomorphic graphs (Gi,Hi) such
that k-WL fails to distinguish between them for any k = o(n). Nevertheless,
the Weisfeiler-Leman procedure, as an essential component in isomorphism test-
ing, can hardly be overestimated. A constant dimension often suffices to solve
the isomorphism problem for important graph classes. A striking result here
(Grohe [21]) is that for any graph class excluding a fixed minor (like bounded
genus or bounded treewidth graphs) isomorphism can be tested using k-WL
for a constant k that only depends on the excluded minor. Moreover, Babai’s
quasipolynomial-time algorithm [4] for general graph isomorphism crucially uses
k-WL for logarithmic k.

We call two graphs G and H k -WL-equivalent and write G ≡k-WL H if they
are indistinguishable by k-WL; formal definitions are given in Sects. 2 (k = 1)
and 3 (k ≥ 2). It follows from the Cai-Fürer-Immerman result [9] that for any k
the ≡k-WL-equivalence is coarser than the isomorphism relation on graphs.

Definition 1. A graph property (that is, an isomorphism-invariant family of
graphs) P is k -WL-invariant if for any pair of graphs G and H:

G ∈ P and G ≡k-WL H implies H ∈ P.

In particular, a graph parameter π is k -WL-invariant if π(G) = π(H) whenever
G ≡k-WL H.

The broad question of interest in this paper is which graph properties (and
graph parameters) are k-WL-invariant for a specified k. The motivation for it
comes from various areas. Understanding the power of k-WL, even for small
values of k, is important for both isomorphism testing and graph similarity
testing. For example, the largest eigenvalues of 1-WL-equivalent graphs are
equal [34]. Moreover, 2-WL-equivalent graphs are cospectral [13,17]. Conse-
quently, by Kirchhoff’s theorem, 2-WL-equivalent graphs have the same number
of spanning trees. Also the 2-WL-invariance of certain metric graph parameters
such as diameter is easy to show. Fürer [18] recently asked which basic com-
binatorial parameters are 2-WL-invariant. While it is readily seen that 2-WL-
equivalence preserves the number of 3-cycles, Fürer pointed out, among other
interesting observations, that also the number of s-cycles is 2-WL-invariant for
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each s ≤ 6. More recently, Dell, Grohe, and Rattan [14] characterized k-WL-
equivalence in terms of homomorphism profiles. Specifically, they show that
G ≡k-WL H if and only if the number of homomorphisms from F to G equals
the number of homomorphisms from F to H for all graphs F of treewidth at
most k.

As a heuristic for graph similarity testing, the Weisfeiler-Leman procedure
has been applied in artificial intelligence; see [35] for an 1-WL-based application
and [30] for a multidimensional version. It is noteworthy that 1-WL turns out
to be exactly as powerful as graph neural networks [31]. Comparing subgraph
frequencies is also widely used for testing graph similarity and detecting structure
of large real-life graphs; see, e.g., [19,20,28,36]. For example, just knowing the
number of triangles is valuable information about a social network; see, e.g., [22].
Important structural information can also be found from the number of paths of
length 2 and from the degree distribution, i.e., the statistics of star subgraphs;
see [32]. This poses a natural question on how much the two approaches—one
based on k-WL-equivalence and the other on subgraph statistics—are related to
each other.

Finally, k-WL-equivalence is of fundamental importance for finite and algo-
rithmic model theory. A graph property P is k-WL-invariant precisely when
P is definable in the (k + 1)-variable infinitary counting logic. If P is not
≡k-WL-invariant for any k then, in fact, P is not definable in fixed-point logic
with counting (FPC); see, e.g., the survey [12]. A systematic study of k-WL-
invariant constraint satisfaction problems was undertaken by Atserias, Bulatov,
and Dawar [3].

Our Results. Let F be a fixed pattern graph and G be any given graph.
We investigate the k-WL-invariance of: (a) the property that G contains F as
a subgraph, and (b) the number of subgraphs of G isomorphic to F . We use
sub(F, ·) to denote the subgraph count function. Thus, sub(F,G) denotes the
number of subgraphs of G isomorphic to F .

Definition 2. Let C(k) denote the class of all pattern graphs F for which the
subgraph count sub(F, ·) is ≡k-WL-invariant. Furthermore, R(k) consists of all
pattern graphs F such that the property of a graph containing F as a subgraph
is ≡k-WL-invariant.

In a sense, the graph classes C(k) and R(k) correspond to algorithmic count-
ing and recognition problems, respectively.

Note that C(k) ⊆ R(k). We use this notation to state some consequences of
prior work. The k-WL-equivalence characterization [14], stated above, can be
used to show that C(k) contains every F such that all homomorphic images of
F have treewidth no more than k. We say that such an F has homomorphism-
hereditary treewidth at most k; see Sect. 3 for details. The striking result of
Anderson et al. [1], showing the expressibility of the matching number in FPC,
implies that there is some k such that R(k) contains all matching graphs sK2,
where sK2 denotes the disjoint union of s edges. On the other hand, there is no
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k such that R(k) contains all cycle graphs Cs. This readily follows from Dawar’s
result [11,12] that graph hamiltonicity is not ≡k-WL-invariant for any k.

Our results are as follows.

Complete Description of C(1) and R(1) (Invariance Under Color Refinement).
We prove that, up to adding isolated vertices, C(1) consists of all star graphs K1,s

and the 2-matching graph 2K2. Hence, C(1) contains exactly the pattern graphs
of homomorphism-hereditary treewidth equal to 1. An interesting consequence
is that, for every F ∈ C(1), the subgraph count sub(F,G) is determined just by
the degree sequence of a graph G. We obtain a complete description of R(1) by
proving that this class consists of the graphs in C(1) and three forests P3 + P2,
P3 + 2P2, and 2P3, where Ps denotes the path graph on s vertices.

Case Study for C(2) and R(2) (Invariance Under the Original Weisfeiler-Leman
Algorithm). An explicit characterization of C(2) and R(2) appears challenging.
Indeed, it is not a priori clear whether testing membership in these graph classes
is possible in polynomial time. While it is unknown whether C(2) consists exactly
of graphs with homomorphism-hereditary treewidth bounded by 2, we prove
that this is indeed the case for some standard graph sequences. These results are
related to questions that have been discussed in the literature.

– Beezer and Farrell [6] proved that the first five coefficients of the matching
polynomial of a strongly regular graph are determined by its parameters.1

I.e., if G and H are strongly regular graphs with the same parameters, then
sub(sK2, G) = sub(sK2,H) for s ≤ 5. We prove that sK2 ∈ C(2) if and
only if s ≤ 5. It follows that the Beezer-Farrell result extends to 2-WL-
equivalent graphs. I.e., if G and H are any two 2-WL-equivalent graphs, then
the first five coefficients of their matching polynomials coincide. Moreover,
this result is tight and cannot be extended to a larger s. Note that strongly
regular graphs with the same parameters are the simplest example of 2-WL-
equivalent graphs.

– Fürer [18] proved that Cs ∈ C(2) for 3 ≤ s ≤ 6 and Cs /∈ C(2) for 8 ≤ s ≤ 16.
We close the gap and show that C7 is the largest cycle graph in C(2). We also
prove that C(2) contains P1, . . . , P7 and no other path graphs.
The result on cycles admits the following generalization. First, we observe that
the girth g(G) of a graph G is a 2-WL-invariant parameter. Then, we prove
that if G ≡2-WL H, then sub(Cs, G) = sub(Cs,H) for each 3 ≤ s ≤ 2 g(G)+1.
Neither the factor of 2, nor the additive term of 1 can here be improved.

Characterization of R(2) appears to be still harder. Fürer [18] has shown that
R(2) does not contain K4 (the complete graph with 4 vertices). Building on that,
we show that R(2) also does not contain any graph F with a unique 4-clique.
In view of this result, it is natural to conjecture that R(2) does not contain any
graph of clique number more than 3.

Due to space restrictions some proofs are only available in the full version of
this article, see [2].
1 The result of [6] is actually stronger and applies even to distance-regular graphs.
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Notation. The girth g(G) is the minimum length of a cycle in G. If G is acyclic,
then g(G) = ∞. We denote the vertex set of G by V (G) and the edge set by
E(G). Furthermore, v(G) = |V (G)| and e(G) = |E(G)|. The set of vertices
adjacent to a vertex u ∈ V (G) forms its neighborhood N(u). The vertex-disjoint
union of graphs G and H is denoted by G+H. Furthermore, we write mG for the
disjoint union of m copies of G. We use the standard notation Kn for complete
graphs, Pn for paths, and Cn for cycles on n vertices. Furthermore, Ks,t denotes
the complete bipartite graph whose vertex classes have s and t vertices. Likewise,
K1,1 = K2 = P2, K1,2 = P3, C3 = K3 etc.

2 Color Refinement Invariance

Given a graph G, the color-refinement algorithm (abbreviated as 1-WL) itera-
tively computes a sequence of colorings Ci of V (G). The initial coloring C0 is
monochromatic, that is C0(u) is the same for all vertices u. Then,

Ci+1(u) =
(
Ci(u),

{{
Ci(a) : a ∈ N(u)

}})
, (1)

where {{. . .}} denotes a multiset (i.e., the multiplicity of each element counts).
If φ is an isomorphism from G to H, then a straightforward inductive argu-

ment shows that Ci(u) = Ci(φ(u)) for each vertex u of G. This readily implies
that, if graphs G and H are isomorphic, then

{{
Ci(u) : u ∈ V (G)

}}
=

{{
Ci(v) : v ∈ V (H)

}}
(2)

for all i ≥ 0. We write G ≡1-WL H exactly when this condition is met.
A direct consequence of the definition is the following.

Lemma 3. If A ≡1-WL B and A′ ≡1-WL B′, then A + A′ ≡1-WL B + B′.

1-WL distinguishes graphs G and H if G �≡1-WL H. In fact, the algorithm
does not need to check (2) for infinitely many i: If Equality (2) is false for some
i then it is false for i = n, where n denotes the number of vertices in each of the
graphs.

Let F be a graph and s be a positive integer. Note that F belongs to C(k) or
R(k) if and only if the graph F + sK1 belongs to this class. Therefore, we will
ignore isolated vertices.

Theorem 4. Up to adding isolated vertices, the two classes C(1) and R(1) are
formed by the following graphs.

1. C(1) consists of the star graphs K1,s for all s ≥ 1 and the 2-matching
graph 2K2.

2. R(1) consists of the graphs in C(1) and the following three forests:

P3 + P2, P3 + 2P2, and 2P3. (3)
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The proof occupies the rest of this section.

Membership in C(1). If two graphs are indistinguishable by color refinement,
they have the same degree sequence. Notice that

sub(K1,s, G) =
∑

v∈V (G)

(
deg v

s

)
,

where deg v denotes the degree of a vertex v. This equality shows that K1,s ∈
C(1). Since any two edges constitute either 2K2 or K1,2, we have

sub(2K2, G) =
(

e(G)
2

)
− sub(K1,2, G). (4)

As e(G) = 1
2

∑
v∈V (G) deg v, it follows that 2K2 ∈ C(1).

The equality (4) has been reported earlier; see, e.g., [16, Lemma 1] and the
comments therein.

Non-membership in C(1). To prove that a graph F is not in C(1), we need to
exhibit 1-WL-equivalent graphs G and H such that sub(F,G) �= sub(F,H). For
each of the 3 forests in (3) we can easily find witnesses G and H that are regular
graphs with the same number of vertices and of the same degree. Specifically,
sub(P3 + P2, C6) = 12, while sub(P3 + P2, 2C3) = 18; sub(2P3, C6) = 3, while
sub(2P3, 2C3) = 9; and sub(P3 + 2P2, C7) = 7, while sub(P3 + 2P2, C4 + C3)
= 6. The non-membership of all other graphs in C(1) follows from their non-
membership in R(1), which will be proved in the corresponding subsection below.

Membership in R(1). We call a graph H amenable if color refinement distin-
guishes H from any other nonisomorphic graph G. For each of the three forests
F in (3), we are able to explicitly describe the class Forb(F ) of F -free graphs.
Based on this description, we can show that, with just a few exceptions, every
F -free graph is amenable.

Lemma 5.

1. Every (P3 + P2)- or 2P3-free graph H is amenable.
2. Every (P3 + 2P2)-free graph H is amenable unless H = 2C3 or H = C6.

Proving that F ∈ R(1) means proving the following:

G ≡1-WL H & H ∈ Forb(F ) =⇒ G ∈ Forb(F ). (5)

This implication is trivial whenever H is an amenable graph because then G ∼=
H. By Part 1 of Lemma 5, we immediately conclude that the graphs P3 + P2

and 2P3 are in R(1). Part 2 ensures (5) for all (P3 + 2P2)-free graphs except
2C3 and C6. However, the implication (5) also holds for each exceptional graph
H ∈ {2C3, C6} for the following simple reason. Since H has 6 vertices, any 1-WL-
indistinguishable graph G must have also 6 vertices and hence cannot contain a
P3 + 2P2 subgraph.
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The proof of Lemma 5 relies on an explicit description of the class of F -
free graphs for each F ∈ {P3 + P2, 2P3, P3 + 2P2}, which requires a detailed
combinatorial analysis; see Appendix of the full version [2].

Non-membership in R(1). We first show that R(1) can contain only forests
of stars.

Lemma 6 (see Bollobás [7, Corollary 2.19] or Wormald [38, Theo-
rem 2.5]). Let d, g ≥ 3 be fixed, and dn be even. Let Gn,d denote a random
d-regular graph on n vertices. Then the probability that Gn,d has girth g converges
to a non-zero limit as n grows large.

Lemma 7. R(1) can contain only acyclic graphs.

Proof. Assume that a graph F has a cycle of length m. We show that it is not
in R(1). Let d = v(F ) − 1. By Lemma 6 there is a d-regular graph X of girth
strictly more than m. Then F does not appear as a subgraph in H = (d + 1)X
but clearly does in G = v(X)Kd+1. It remains to notice that G and H are both
d-regular with the same number of vertices. ��
Lemma 8. R(1) can contain only forests of stars.

Proof. Suppose that F ∈ R(1). By Lemma 7, F is a forest. In order to prove
that every connected component of F is a star, it is sufficient and necessary to
prove that F does not contain P4 as a subgraph. Assume, to the contrary, that
F has P4-subgraphs.

Let T be a connected component of F containing P4. Consider a diametral
path v1v2v3 . . . vd in T , where d ≥ 4. Note that v1 is a leaf. Let T ′ be obtained
from T by identifying the vertices v1 and v4. Thus, T ′ is a unicyclic graph, where
the vertices v2, v3, and v4 = v1 form a cycle C3. Obviously, v(T ′) < v(T ).

Consider now the graph HT = 2T ′. Identify one component of HT with T ′

and fix an isomorphism α from this to the other component of HT . Let GT

be obtained from HT by removing the edges v2v4 and α(v2)α(v4) and adding
instead the new edges v2α(v4) and v4α(v2). Note that, by construction, V (T ′) ⊂
V (HT ) = V (GT ). Note that GT contains a subgraph isomorphic to T . We now
prove that

GT ≡1-WL HT . (6)

Indeed, define a map φ : V (GT ) → V (T ′) by φ(u) = φ(α(u)) = x for each
u ∈ V (T ′) ⊂ V (GT ). Note that φ is a covering map from GT to T ′. That is,
φ is a surjective homomorphism whose restriction to the neighborhood of each
vertex of GT is surjective. A straightforward inductive argument shows that φ
preserves the coloring produced by 1-WL. More precisely, Ci(φ(u)) = Ci(u) for
all i, where Ci is defined by (1). Thus, the multiset

{{
Ci(u) : u ∈ V (GT )

}}
is

obtained from the multiset
{{

Ci(u) : u ∈ V (T ′)
}}

by doubling the multiplicity
of each color. Since HT consists of two disjoint copies of T ′, it readily follows
that GT and HT are indistinguishable by 1-WL, which yields (6).

If a connected component T of F does not contain P4, we set GT = HT = 2T .
The equivalence (6) is true also in this case. Define G =

∑
T GT and H =

∑
T HT
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K1,s +K1,1, s = 3 2K1,3 K1,3 +K1,2 2K1,s +K1,1, s = 3

Fig. 1. G/H-certificates for each basic star forest F .

where the disjoint union is taken over all connected components T of F . Then
G ≡1-WL H by Lemma 3. Since each GT contains a subgraph isomorphic to
T , the graph G contains a subgraph isomorphic to F . On the other hand, H
does not contain any subgraph isomorphic to F . To see this, let F0 be a non-
star component of F with maximum number of vertices. Then H cannot contain
even F0 because every non-star component of H has fewer vertices than F0. This
contradicts the assumption that F ∈ R(1). ��
Lemma 8 reduces our task to showing that star forests not listed in Theorem 4
are not in R(1). I.e., R(1) contains only the star forests listed below:

K1,s (s ≥ 1), 2K1,1, K1,2 + K1,1, 2K1,2, K1,2 + 2K1,1 (7)

Our proof has the following structure. First, we directly argue the non-
membership in R(1) for a few basic star forests. Then we obtain two derivation
rules, based on some closure properties of R(1). Finally, in order to show that
F �∈ R(1) for some star forest F , we apply the derivation rules to F to derive
one of the excluded basic star forests.

Lemma 9 (Basic star forests). None of the star forests K1,s + K1,1 for any
s ≥ 3, K1,3 + K1,2, 2K1,3, and 2K1,s + K1,1 for any s ≥ 1 belongs to R(1).

Proof. For each basic star forest F listed in the lemma, we provide 1-WL-
indistinguishable graphs G and H such that G contains F as a subgraph while
H does not; see also Fig. 1.

K1,s +K1,1, s ≥ 3: H = Ks,s and G is obtained from 2Ks by adding a perfect
matching between the two Ks parts.

2K1,3: G = 2K4 and H is the Wagner graph (or 4-Möbius ladder).
K1,3 + K1,2: G is obtained from 2C4 by adding an edge between the two C4

parts, and H is obtained from C8 by adding an edge between two antipodal
vertices of the 8-cycle in H.

2K1,s +K1,1, s ≥ 1: Both graphs G and H are obtained from 2K1,s+1 by adding
two edges e. Let a and b be two leaves of the fist copy of K1,s+1, and let a′

and b′ be two leaves of the other copy of K1,s+1. Then G additionally contains
two edges aa′ and bb′, whereas H additionally contains two edges ab and a′b′.

��
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Lemma 10 (Derivation rules).

1. If K1,i1 + . . . + K1,is + K1,is+1 ∈ R(1), then K1,i1 + . . . + K1,is ∈ R(1).
2. If K1,i1+1 + . . . + K1,is+1 ∈ R(1), then K1,i1 + . . . + K1,is ∈ R(1).

Proof. 1. Suppose that K1,i1 + . . . + K1,is /∈ R(1). Let G and H be two graphs
witnessing this. That is, G ≡1-WL H and G contains this star forest while
H does not. Then the graphs G + K1,is+1 and H + K1,is+1 , which are 1-WL-
indistinguishable by Lemma 3, witness that K1,i1 + . . .+K1,is +K1,is+1 /∈ R(1).

2. Suppose that K1,i1 + . . . + K1,is /∈ R(1) and this is witnessed by G and
H. Given a graph X, let X ′ be the graph obtained by attaching a new degree-1
vertex x′ to each vertex x of X (thus, v(X ′) = 2v(X)). Then the graphs G′ and
H ′ witness that K1,i1+1 + . . . + K1,is+1 /∈ R(1). Indeed, it is easy to see that X
contains K1,i1 + . . .+K1,is if and only if X ′ contains K1,i1+1 + . . .+K1,is+1 as a
subgraph. The equivalence G′ ≡1-WL H ′ follows from the equivalence G ≡1-WL

H. ��
Now, let F be a star forest not listed in (7). Assume that F ∈ R(1). Lemma 10
provides us with two derivations rules:

– if a star forest X is in R(1), then the result of removing one connected
component from X is also in R(1);

– if a star forest X is in R(1), then the result of cutting off one leaf in each
connected component of X is also in R(1).

Note that, applying these derivation rules, F can be reduced to one of the basic
star forests. By Lemma 9, we get a contradiction, which completes the proof of
Theorem 4.

3 Weisfeiler-Leman Invariance

The original algorithm described by Weisfeiler and Leman in [37], which is nowa-
days more often referred to as the 2-dimensional Weisfeiler-Leman algorithm,
operates on the Cartesian square V 2 of the vertex set of an input graph G. Ini-
tially it assigns each pair (u, v) ∈ V 2 one of three colors, namely edge if u and v
are adjacent, nonedge if u �= v and u and v are non-adjacent, and loop if u = v.
Denote this coloring by C0. The coloring of V 2 is then refined step by step. The
coloring after the i-th refinement step is denoted by Ci and is computed as

Ci(u, v) = Ci−1(u, v) | {{
Ci−1(u,w) | Ci−1(w, v)

}}
w∈V

, (8)

where {{ }} denotes the multiset and | denotes the string concatenation (an appro-
priate encoding is assumed).

The k-dimensional version of the algorithm, k-WL, operates on V k. The ini-
tial coloring of a tuple (u1, . . . , uk) encodes its equality type and the isomorphism
type of the subgraph of G induced by the vertices u1, . . . , uk. The color refine-
ment is performed similarly to (8). We write WLr

k(G, u1, . . . , uk) to denote the
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n sub(Pn, G) sub(Pn, H)
8 275616 274560
9 880128 877440
10 2506752 2512512
11 6239232 6283392
12 13189248 13293696
13 22631040 22754688
14 29376000 29457408
15 25532928 25560576
16 11197440 11115264

Fig. 2. The 4× 4 rook’s graph G and the Shrikhande graph H (some edges are dashed
just to ensure readability). The table shows the counts of Pn, 8 ≤ n ≤ 16, in G and H.

color of the tuple (u1, . . . , uk) produced by the k-dimensional Weisfeiler-Leman
algorithm after performing r refinement steps. The length of WLr

k(G, u1, . . . , uk)
grows exponentially as r increases, which is remedied by renaming the tuple col-
ors after each step and retaining the corresponding color substitution tables.
However, in our analysis of the algorithm we will use WLr

k(G, u1, . . . , uk) in its
literal, iteratively defined meaning.

Let WLr
k(G) =

{{
WLr

k(G, ū) : ū ∈ V k
}}

denote the color palette observed
on the input graph G after r refinement rounds. We say that the k-dimensional
Weisfeiler-Leman algorithm distinguishes graphs G and H if WLr

k(G) �=
WLr

k(H) after some number of rounds r. The standard color stabilization argu-
ment shows that if n-vertex graphs G and H are distinguishable by k-WL, then
they are distinguished within nk refinement rounds. If this does not happen, we
say that G and H are k-WL-equivalent and write G ≡k-WL H.

Obviously, isomorphic graphs are k-WL-equivalent for every k. Recall also
that any two strongly regular graphs with the same parameters are 2-WL-
equivalent. The smallest pair of non-isomorphic strongly regular graphs with the
same parameters consists of the 4 × 4-rook’s graph and the Shrikhande graph
(see Fig. 2). The 2-WL-equivalence of these graphs will be used several times
below.

Theorem 11 (Dell, Grohe, and Rattan [14]). Let hom(F,G) denote the
number of homomorphisms from a graph F to a graph G. For each F of treewidth
k, the homomorphism count hom(F, ·) is ≡k-WL-invariant.

Definition 12. We define the homomorphism-hereditary treewidth of a graph
F , denoted by htw(F ), to be the maximum treewidth tw(F ′) over all homomor-
phic images F ′ of F .

The following result follows directly from Theorem 11 and the fact estab-
lished by Lovász [26, Sect. 5.2.3] that the subgraph count sub(F,G) is express-
ible as a function of the homomorphism counts hom(F ′, G) where F ′ ranges over
homomorphic images of F (see also [10], where algorithmic consequences of this
relationship are explored).
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Corollary 13. C(k) contains all F with htw(F ) ≤ k.

It is easy to see that htw(F ) = 1 if and only if F is a star graph or the
matching graph 2K2 (up to adding isolated vertices). Thus, Theorem 4 implies
that C(1) consists exactly of the pattern graphs F with htw(F ) = 1. We now
characterize the class of graphs F with htw(F ) ≤ 2.

Given a graph G and a partition P of the vertex set V (G), we define the
quotient graph G/P as follows. The vertices of G/P are the elements of P , and
X ∈ P and Y ∈ P are adjacent in G/P if and only if X �= Y and there are
vertices x ∈ X and y ∈ Y adjacent in G.

Lemma 14. htw(F ) > 2 if and only if there is a partition P of V (F ) such that
F/P ∼= K4.

Proof. Let us make two basic observations. First, H is a homomorphic image of
G if and only if there is a partition P of V (G) into independent sets such that
H ∼= G/P . Second, H is a minor of G if and only there is a partition P of V (G)
such that the graph G[X] is connected for every X ∈ P and H is isomorphic to
a subgraph of G/P.

These observations imply the following fact, which is more general than stated
in the lemma. Let Sk be the set of the minimal forbidden minors for the class
of graphs with treewidth at most k. Note that, since the last class of graphs is
minor-closed, Sk exists and is finite by the Robertson–Seymour theorem. Then
htw(F ) > k if and only if V (F ) admits a partition P such that G/P contains a
subgraph isomorphic to a graph in Sk.

The lemma now follows from the well-known fact [15, Chapter 12] that S2 =
{K4}. Note that, if F/P contains K4 as a subgraph, then V (F ) admits a partition
P ′ such that F/P ′ is itself isomorphic to K4 as the superfluous nodes of F/P
can be merged. ��

Whether or not htw(F ) ≤ 2 is a necessary condition for the membership of
F in C(2), is open. We now show the equivalence of F ∈ C(2) and htw(F ) ≤ 2
for several standard graph sequences.

Theorem 15. C(2) contains

1. K2, 2K2, 3K2, 4K2, 5K2 and no other matching graphs;
2. C3, . . . , C7 and no other cycle graphs;
3. P1, . . . , P7 and no other path graphs.

Theorem 15 is related to some questions that have earlier been discussed
in the literature. Beezer and Farrell [6] proved that the first five coefficients
of the matching polynomial of a strongly regular graph are determined by its
parameters. In other terms, if G and H are strongly regular graphs with the same
parameters (in fact, even distance-regular graphs with the same intersection
array), then sub(sK2, G) = sub(sK2,H) for s ≤ 5. Part 1 of Theorem 15 implies
that this is true in a much more general situation, namely when G and H are
arbitrary 2-WL-equivalent graphs. Moreover, this cannot be extended to larger s.
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Fürer [18] classified all Cs for s ≤ 16, except the C7, with respect to member-
ship in C(2). Part 2 of Theorem 15 fills this gap and also shows that the positive
result for C7 is optimal.

Part 2 of Theorem 15 can be generalized as follows. Recall that g(G) denotes
the girth of a graph G.

Theorem 16. Suppose that G ≡2-WL H. Then

1. g(G) = g(H).
2. sub(Cs, G) = sub(Cs,H) for each 3 ≤ s ≤ 2 g(G) + 1.

Proof. 1. The proof uses the logical characterization of the ≡k-WL-equivalence
in [9]. According to this characterization, G ≡k-WL H if and only if G and H
satisfy the same sentences in the first-order (k + 1)-variable logic with counting
quantifiers ∃≥t, where an expression ∃≥txΦ(x) for any integer t means that there
are at least t vertices x with property Φ(x).

Assume that g(G) < g(H) and show that then G �≡2-WL H. It is enough
to show that G and H are distinguishable in 3-variable logic with counting
quantifiers.

Case 1: g(G) is odd. In this case, G and H are distinguishable even in the
standard 3-variable logic (with quantifiers ∃ and ∀ only). As it is well known [24],
two graphs G and H are distinguishable in first-order k-variable logic if and only
if Spoiler has a winning strategy in the k-pebble Ehrenfeucht-Fräıssé game on
G and H. In the 3-pebble game, the players Spoiler and Duplicator have equal
sets of 3 pebbles {a, b, c}. In each round, Spoiler takes a pebble and puts it on
a vertex in G or in H; then Duplicator has to put her copy of this pebble on a
vertex of the other graph. Duplicator’s objective is to ensure that the pebbling
determines a partial isomorphism between G and H after each round; when she
fails, she immediately loses.

Spoiler wins the game as follows. Let C be a cycle of length g(G) in G. In
the first three rounds, Spoiler pebbles a 3-path along C by his pebbles a, b, and
c in this order. Then, keeping the pebble a fixed, Spoiler moves the pebbles b
and c, in turns, around C so that the two pebbled vertices are always adjacent.
In the end, there arises a pebbled acb-path, which is impossible in H.

Case 2: g(G) is even. Let g(G) = 2m. Consider the following statement in
the 3-variable logic with counting quantifiers:

∃x∃y
(
dist(x, y) = m ∧ ∃≥2z(z ∼ y ∧ dist(z, x) = m − 1)

)
,

where dist(x, y) = m is a 3-variable formula expressing the fact that the distance
between vertices x and y is equal to m. This statement is true on G and false
on H.

2. The proof of this part is based on the result by Dell et al. (Theorem 11) and
the Lovász result [26, Sect. 5.2.3] on the expressibility of sub(F,G) through the
homomorphism counts hom(F ′, G) for homomorphic images F ′ of F . By these
results, it suffices to prove that, if s ≤ 2 g(G) + 1 and h is a homorphism from
Cs to G, then the subgraph h(Cs) of G has treewidth at most 2. Assume, to the
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contrary, that h(Cs) has treewidth more than 2 or, equivalently, h(Cs) contains
K4 as a minor (see [15, Chap. 12]). Since K4 has maximum degree 3, h(Cs)
contains K4 even as a topological minor [15, Sect. 1.7]. Let M be a subgraph of
h(Cs) that is a subdivision of K4. Obviously, s ≥ e(h(Cs)) ≥ e(M). Moreover,
s ≥ e(M)+2. Indeed, the homomorphism h determines a walk of length s via all
edges of the graph h(Cs). By cloning the edges traversed more than once, h(Cs)
can be seen as an Eulerian multigraph with s edges. Since M has four vertices
of degree 3, any extension of M to such a multigraph requires adding at least 2
edges. Thus, s ≥ e(M) + 2. Note that M is formed by six paths corresponding
to the edges of K4. Moreover, M has four cycles, each cycle consists of three
paths, and each of the six paths appears in two of the cycles. It follows that
2 e(M) ≥ 4 g(G). Therefore, s ≥ 2 g(G) + 2, yielding a contradiction. ��

It is easy to see that K3 ∈ R(2) (this is also a formal consequence of Part 2
of Theorem 15). Using the pair G,H consisting of the 4×4-rook’s graph and the
Shrikhande graph, Fürer [18] proved that the complete graph K4 is not in R(2).
By padding G and H with new s−4 universal vertices, we see that R(2) contains
Ks if and only if s ≤ 3. Fürer’s result on the non-membership of K4 in R(2)
admits the following generalization, whose proof is given in the full version [2].

Theorem 17. No graph containing a unique 4-clique can be in R(2).

4 Concluding Discussion

An intriguing open problem is whether Corollary 13 yields a complete descrip-
tion of the class C(k). Our Theorem 4 gives an affirmative answer in the one-
dimensional case. Moreover, this theorem gives a complete description of the class
R(1). The class R(2) remains a mystery. For example, it contains either finitely
many matching graphs sK2 or all of them, and we currently do not know which
of these is true. In other words, is the matching number preserved by ≡2-WL-
equivalence? Note that non-isomorphic strongly regular graphs with the same
parameters cannot yield counterexamples to this. The Brouwer-Haemers conjec-
ture states that every connected strongly regular graph is Hamiltonian except
the Petersen graph, and Pyber [33] has shown there are at most finitely many
exceptions to this conjecture. Since the Petersen graph has a perfect matching,
it is quite plausible that every connected strongly regular graph has an (almost)
perfect matching.

By Corollary 13, the subgraph count sub(F,G) is k-WL-invariant for k =
htw(F ). Interestingly, the parameter htw(F ) appears in a result by Curtica-
pean, Dell, and Marx [10] who show that sub(F,G) is computable in time
e(F )O(e(F )) ·v(G)htw(F )+1. An interesting area is to explore connections between
k-WL-invariance and algorithmics, which are hinted by this apparent coinci-
dence.

Which induced subgraphs and their counts are k -WL-invariant for different
k deserves study. We note that the induced subgraph counts have been studied
in the context of finite model theory by Kreutzer and Schweikardt [25].
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Andreas Bärtschi1,2(B) and Stephan Eidenbenz2

1 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, USA
baertschi@lanl.gov

2 National Security Education Center,
Los Alamos National Laboratory, Los Alamos, USA

eidenben@lanl.gov

Abstract. The Dicke state |Dn
k 〉 is an equal-weight superposition of all

n-qubit states with Hamming Weight k (i.e. all strings of length n with
exactly k ones over a binary alphabet). Dicke states are an important
class of entangled quantum states that among other things serve as start-
ing states for combinatorial optimization quantum algorithms.

We present a deterministic quantum algorithm for the preparation of
Dicke states. Implemented as a quantum circuit, our scheme uses O(kn)
gates, has depth O(n) and needs no ancilla qubits. The inductive nature
of our approach allows for linear-depth preparation of arbitrary symmet-
ric pure states and – used in reverse – yields a quasilinear-depth circuit
for efficient compression of quantum information in the form of symmet-
ric pure states, improving on existing work requiring quadratic depth. All
of these properties even hold for Linear Nearest Neighbor architectures.

1 Introduction

Within quantum computing, the seemingly mundane task of (efficient) state
preparation is actually a separate research topic. Recall that a quantum state
over n qubits is a superposition

∑
x∈{0.1}n cx |x〉 of all 2n binary strings x of

length n with complex weights cx – the amplitudes – such that
∑

x∈{0,1}n |cx|2 =
1. The problem of preparing an arbitrary quantum state can be solved with
Θ(2n) quantum gates [28], which can be improved to a polynomial number of
gates for states which have a polynomial number of non-zero amplitudes cx. The
intriguing algorithmic question then becomes for what other classes of quantum
states do polynomial-time state preparation algorithms exist? Very few results
exist on this topic and we are still far from having a comprehensive solution,
however, Dicke states form such a class: the Dicke state |Dn

k 〉 has
(
n
k

)
non-zero

amplitudes, which in general is not polynomial in n.
Among different types of highly entangled states, the family of Dicke

states [8] has garnered widespread attention for tasks in quantum network-
ing [25], quantum game theory [35], quantum metrology [31] and as starting
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states for combinatorial optimization problems via adiabatic evolution [6]. Per-
haps most promisingly – Dicke states can be used in the Quantum Alternat-
ing Operator Ansatz (QAOA) framework [11,14] for combinatorial optimization
problems with hard constraints, as a starting state for the actual QAOA algo-
rithm where they represent a superposition of all feasible solutions (in some
problem variations).

Definition 1. A Dicke state |Dn
k 〉1 is the equal superposition of all n-qubit states

|x〉 with Hamming weight wt(x) = k,

|Dn
k 〉 =

(
n
k

)− 1
2

∑

x∈{0,1}n, wt(x)=k
|x〉.

We have, e.g., |D4
2〉 = (|1100〉+|1010〉+|1001〉+|0110〉+|0101〉+|0011〉)√

6
, a state that

has been studied for its entanglement properties: from |D4
2〉, we can generate

3-qubit W3-states |D3
1〉 and GHZ -class G3-states 1√

2
(|D3

1〉 − |D3
2〉) by a (local)

projective measurement of the same qubit [19], whereas these two states cannot
be transformed into each other by stochastic local manipulations [10]; these types
of basic transformations of states are non-trivial in quantum computing.

Result Overview. Despite successful experimental creation of Dicke states
in physical systems such as trapped ions [15,17,20], atoms [27,30,34], pho-
tons [25,32] and superconducting qubits [33], efficient quantum circuits for the
preparation of arbitrary Dicke states |Dn

k 〉 have received little attention. In this
paper, we present – as our main contribution – a circuit for deterministic prepa-
ration of Dicke states which, given as input the easily prepared classical state
|0〉⊗n−k |1〉⊗k, prepares the Dicke state |Dn

k 〉. Our circuit has depth O(n) – inde-
pendent of k – and needs O(kn) gates in total. Circuit depth is equivalent to run
time and gate count is a measure for overall resource needs. In fact, any differ-
ence between gate count and depth can be attributed to gate-level parallelism.
Finding minimal-depth circuits is particularly crucial for Noisy Intermediate
Scale Quantum (NISQ) devices, which do not allow for full error correction, and
thus experience (unwanted) decoherence the longer a computation lasts. Mini-
mizing overall gate count is crucial as each gate operation introduces noise, thus
impacting result quality.

Leveraging our main result, we note (i) that all our bounds even hold for
Linear Nearest Neighbor architectures, where each qubit is connected only to
its two neighbors, which is a more realistic assumption for most NISQ devices
than the standard all-to-all connectivity, and show (ii) that our circuit can be
extended to prepare arbitrary symmetric pure states using linear circuit depth,
where a state is symmetric if it is invariant under permutation of the qubits, and
(iii) how to use our construction for compression of quantum information, which
is the problem of compressing a symmetric pure n-qubit state into �log(n + 1)�
qubits without information loss.

1 Various symbols are used in the existing literature, e.g., |Dn
k 〉, |D(k)

n 〉, |n
k
〉 or |n; k〉.
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Previous Approaches. Previous work has prepared Dicke states probabilisti-
cally with success probability Ω( 1√

n
) by applying a biased Hadamard transform

to each qubit [6], followed by postselecting the Dicke state through addition of
each of the n qubits into an ancilla register of size log n initialized to the |0〉
state [7] and a projective measurement thereof. A later contribution [5] uses a
more involved preparation strategy – giving numerical evidence of a constant-
factor improved probability – followed by a generalized parity measurement [16],
also pointing out the potential use of amplitude amplification. Deterministic
preparation circuits without the use of ancilla qubits have been known for the
special case of W -states |Dn

1 〉, either by an iterative construction of quadratic
circuit size and depth [9] or by a linear number of large multi-controlled rotation
gates [21]. An inductive approach to construct Dicke states up to error ε [23]
uses Ω(log k + log 1

ε ) ancilla qubits to count the Hamming weight of the qubits
processed so far, to then use this register as a control for rotation gates on the
next qubit, yielding a superlinear circuit size and depth overall. Our approach
improves on all of these results in terms of circuit size and depth; additionally,
it does not require ancilla qubits, is fully deterministic and in some cases more
general.

Relation to Quantum Compression. There exists an interesting relationship
between Dicke states and quantum compression. The latter can be understood
through the quantum Schur-Weyl transform [1], which separates the angular
momentum information of a state from its – for symmetric states trivial – per-
mutation information.

The Schur-Weyl transform has been implemented experimentally for a
separable symmetric 3-qubit state [26], i.e. a state (α |0〉 + β |1〉)⊗3 =
∑3

�=0 α3−�β�
(
3
�

)
1/2 |D3

� 〉. A high-level description of a circuit for general n,
using no ancilla qubits, has also been developed [24]. The major circuit part
in [24] is of size and depth Θ(n2) and maps each Dicke state |Dn

� 〉 to the state
|0〉⊗�−1 |1〉 |0〉⊗n−�. Its inverse circuit can therefore be used to prepare Dicke
states with depth Θ(n2), too. Our approach in reverse, on the other hand, will
yield a quantum compression circuit of size O(n2) and reduced quasilinear depth
Õ(n), where Õ(·) hides polylogarithmic factors due to the compression part
of the circuit (mapping terms of the form |0〉⊗�−1 |1〉 |0〉⊗n−� or |0〉⊗n−� |1〉⊗�,
respectively, into �log(n + 1)� qubits).

Outline. This article is organized as follow: In Sect. 2, we present an itera-
tive construction of a circuit for deterministic preparation of arbitrary Dicke
states. We analyze its gate count and circuit depth, and extend these bound to
Linear Nearest Neighbor architectures in Sect. 3. In Sect. 4, we show how our
construction can be used to create arbitrary symmetric pure states, written as
a superposition of Dicke states, and we present an improved scheme for efficient
compression of quantum information.

Detailed proofs for Linear Nearest Neighbor architectures can be found in
the preprint of this paper [3].
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2 Deterministic Dicke State Preparation

In order to prepare Dicke states, we design a unitary operator Un,k which, given
as input the classical state |0〉⊗n−k |1〉⊗k (which appears itself as a term in the
superposition |Dn

k 〉), generates the entire Dicke state |Dn
k 〉. Additionally, Un,k

also generates Dicke states |Dn
� 〉 for smaller � < k, when given as input a string

|0〉⊗n−� |1〉⊗�:

Definition 2. Denote by Un,k any unitary satisfying for all 0 ≤ � ≤ k :
Un,k |0〉⊗n−� |1〉⊗� = |Dn

� 〉.
Having this property not only for � = k but for all � ≤ k will allow us to build
a unitary Un,k inductively, by making use of the following composition (also
observed, e.g., in [20,22]):

Lemma 1. Dicke states |Dn
� 〉 have the inductive sum form

|Dn
� 〉 =

√
�
n |Dn−1

�−1 〉 ⊗ |1〉 +
√

n−�
n |Dn−1

� 〉 ⊗ |0〉 .

Proof. We rewrite |Dn
� 〉 :=

(
n
�

)− 1
2

∑
x∈{0,1}n,wt(x)=� |x〉 as

|Dn
� 〉 =

√
1

(n
�)

∑

x∈{0,1}n−1

wt(x)=�−1

|x〉 ⊗ |1〉 +
√

1

(n
�)

∑

x∈{0,1}n−1

wt(x)=�

|x〉 ⊗ |0〉

=
√

(n−1
�−1)
(n

�)
|Dn−1

�−1 〉 ⊗ |1〉 +
√

(n−1
� )

(n
�)

|Dn−1
� 〉 ⊗ |0〉

=
√

�
n |Dn−1

�−1 〉 ⊗ |1〉 +
√

n−�
n |Dn−1

� 〉 ⊗ |0〉 . ��
The Dicke states |Dn−1

�−1 〉 and |Dn−1
� 〉 can both be prepared by the same uni-

tary Un−1,k given the classical input states |0〉⊗n−� |1〉⊗�−1 and |0〉⊗n−1−� |1〉⊗�,
respectively. The idea is therefore – in order to inductively design Un,k – to apply
the composition given by Lemma 1 to the input states |0〉⊗n−� |1〉⊗� for all � ≤ k,
before applying the smaller unitary Un−1,k. Hence for � ≤ k, we are looking for
unitary transformations

|0〉⊗n−� |1〉⊗� 	→ |0〉⊗n−k−1 ⊗ (
√

�
n |0〉⊗k+1−� |1〉⊗� +

√
n−�

n |0〉⊗k−� |1〉⊗� |0〉).

Note that this transformation acts trivially on the first n − k − 1 qubits. Intu-
itively, it can be described as taking (the last) k+1 (of n) qubits as an input, split-
ting the input term into a superposition of two parts (with amplitudes depending
on n), and cyclicly shifting the second part by one position to the left. We call
a unitary that simultaneously implements this transformation a Split & Cyclic
Shift unitary SCSn,k:
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Definition 3. Denote by SCSn,k any unitary satisfying for all 1 ≤ � ≤ k, where
k < n:

SCSn,k |0〉⊗k+1 = |0〉⊗k+1
,

SCSn,k |0〉⊗k+1−� |1〉⊗� =
√

�
n |0〉⊗k+1−� |1〉⊗� +

√
n−�

n |0〉⊗k−� |1〉⊗� |0〉 ,

SCSn,k |1〉⊗k+1 = |1〉⊗k+1
.

Before we describe the inductive construction of the unitaries Un,k in terms
of unitaries SCSn,k and Un−1,k, we review SCSn,k (acting on the last k + 1
qubits) and Un−1,k (acting on the first n − 1 qubits) in comparison:

SCSn,k : |0..0〉 	→ |00..000〉
|00..001〉 	→

√
1
n |00..001〉 +

√
n−1

n |00..010〉
|00..011〉 	→

√
2
n |00..011〉 +

√
n−2

n |00..110〉
...

|01..111〉 	→
√

k
n |01..111〉 +

√
n−k

n |11..110〉
|11..111︸ ︷︷ ︸

k+1

〉 	→ |11..111〉

Un−1,k : |0..0〉 	→ |Dn−1
0 〉

|0..000..01〉 	→ |Dn−1
1 〉

|0..000..11〉 	→ |Dn−1
2 〉

...
|0..001..11〉 	→ |Dn−1

k−1 〉
|0..0︸︷︷︸
n−1−k

11..11︸ ︷︷ ︸
k

〉 	→ |Dn−1
k 〉

2.1 Inductive Construction of Un,k

An explicit construction of Split & Cyclic Shift unitaries in terms of standard
gates will be given in Subsect. 2.2. For now, however, we will show how arbitrary
Un,k unitaries can be constructed inductively from unitaries SCSn,k (acting on
the last k+1 qubits) and Un−1,k (acting on the first n−1 qubits). Clearly, we must
have U1,1 = Id. We construct unitaries of the form Uk,k by iteratively applying
SCSk,k−1 immediately before Uk−1,k−1, i.e. Uk,k = (Uk−1,k−1 ⊗ Id) · SCSk,k−1.
Arbitrary unitaries Un,k can be built by preceding Un−1,k with SCSn,k, as shown
in Fig. 1, giving Un,k = (Un−1,k ⊗ Id) · (Id⊗n−k−1 ⊗ SCSn,k).2

Telescoping these recursions we get:

Lemma 2. The inductive construction above leads to unitaries Un,k which are
consistent with Definition 2:

Un,k :=
k∏

�=2

(
SCS �,�−1 ⊗ Id⊗n−�

)
·

n∏

�=k+1

(
Id⊗�−k−1 ⊗ SCS �,k ⊗ Id⊗n−�

)
.

Proof. By induction over n we prove ∀� ≤ k : Un,k |0〉⊗n−� |1〉⊗� = |Dn
� 〉.

For the base U2,2 we have by Definition 3 that SCS 2,1 |00〉 = |00〉 =: |D2
0〉,

SCS 2,1 |01〉 = 1
2 (|01〉 + |10〉) =: |D2

1〉, SCS 2,1 |11〉 = |11〉 =: |D2
2〉 and thus for

2 An inductive approach which “sandwiches” smaller unitaries has previously been
used for W -states |Dn

1 〉, albeit with depth O(n2) [9].
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Fig. 1. Inductive construction of the unitaries Un,k from unitaries SCSn,k and Un−1,k.

� ≤ 2 that U2,2 |0〉⊗2−� |1〉⊗� := SCS 2,1 |0〉⊗2−� |⊗1〉� = |Dn
� 〉. We proceed by

induction,

– first considering the simpler step Un−1,k → Un,k, where k ≤ n − 1,
– then moving on to the step Uk−1,k−1 → Uk,k, which includes the case

Un−1,n−1 → Un,n.

Step Un−1,k → Un,k. We show Un,k |0〉⊗n−� |1〉⊗� = |Dn
� 〉 for all � ≤ k ≤ n − 1

by analyzing the three time-slices depicted in Fig. 1. As input to the circuit we
have a corresponding state |sl1〉 = |0〉⊗n−� |1〉⊗� for some � ∈ 0, . . . , k. Applying
Lemma 1 at the end, we get

|sl2〉 = (Id⊗n−k−1 ⊗ SCSn,k) |0〉⊗n−� |1〉⊗�

= |0〉⊗n−k−1 ⊗
(√

�
n |0〉⊗k+1−� |1〉⊗� +

√
n−�

n |0〉⊗k−� |1〉⊗� |0〉
)

=
√

�
n |0〉⊗(n−1)−(�−1) |1〉⊗�−1 ⊗ |1〉 +

√
n−�

n |0〉⊗(n−1)−� |1〉⊗� ⊗ |0〉 ,

|sl3〉 = (Un−1,k ⊗ Id) |sl2〉
=

√
�
n |Dn−1

�−1 〉 ⊗ |1〉 +
√

n−�
n |Dn−1

� 〉 ⊗ |0〉 = |Dn
� 〉 .

Step Uk−1,k−1 → Uk,k. We show Uk,k |0〉⊗k−� |1〉⊗� = |Dk
� 〉 for all � ≤ k. Replac-

ing k by k − 1 and n by k in the previous analysis, we immediately get that for
� ≤ k−1 the state |sl1〉 = |0〉⊗k−� |1〉⊗� maps to |sl3〉 = |Dk

� 〉. It remains to show
the same for � = k:

|sl3〉 = (Uk−1,k−1 ⊗ Id)SCSk,k−1 |sl1〉 = (Uk−1,k−1 ⊗ Id)SCSk,k−1 |1〉⊗k

= (Uk−1,k−1 ⊗ Id) |1〉⊗k = |Dk−1
k−1〉 ⊗ |1〉 = |1〉⊗k = |Dk

k〉 . ��

2.2 Explicit Construction of SCSn,k

In the following, we describe a clean construction of an arbitrary Split & Cyclic
Shift unitary SCSn,k in terms of 1 two-qubit gate and k−1 three-qubit gates, each
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of which implements exactly one of the k non-trivial mappings for � ∈ 1, . . . , k
given in Definition 3:

|0〉⊗k+1−� |1〉⊗� →
√

�
n |0〉⊗k+1−� |1〉⊗� +

√
n−�

n |0〉⊗k−� |1〉⊗� |0〉 . (1)

Building Blocks. The relevant qubits in this mapping are the last (nth) qubit
as well as the pair of qubits in which there is a change in the binary string from
0’s to 1’s (the (n − �)th and (n − � + 1)th qubits). Using the notation |xy〉a to
say that qubits a and a + 1 are in states x and y, respectively, the two- and
three-qubit gates are defined and constructed by:

The two-qubit gate (i) and the k − 1 three-qubit gates (ii)� for 2 ≤ � ≤ k
are each constructed by a (two-)controlled Y -rotation Ry

(
2 cos−1 √ �

n

)
mapping

|0〉 → √ �
n |0〉 +

√n−�
n |1〉, conjugated with a CNOT on the last qubit n. Here,

we use Ry(2θ) =
(
cos θ − sin θ
sin θ cos θ

)
.

Putting It All Together. Note that the states |0〉⊗k+1 and |1〉⊗k+1 remain
unchanged under each of the k gates (i), (ii)�. Furthermore, for any given
1 ≤ �∗ ≤ k, there is exactly one of the k gates (i), (ii)� affecting the state
|0〉⊗k+1−�∗ |1〉⊗�∗

, namely the one with matching � = �∗. It maps |01〉n−�∗ |1〉n →√ �∗
n |01〉n−�∗ |1〉n +

√n−�∗
n |11〉n−�∗ |0〉n, implementing Eq. (1).

The resulting second term |0〉⊗k−�∗ |1〉⊗�∗ |0〉 remains unaffected by all gates
(ii)� with larger � > �∗. Hence we can build a complete SCSn,k gate starting
with the two-qubit gate (i) followed the k − 1 three-qubit gates (ii)� order by
increasing �. For an illustration of SCS 5,3,SCS 4,3,SCS 3,2 and SCS 2,1 – together
composing U5,3 – see Fig. 2. The example can also be opened and verified in
Quirk [12] following this link.

https://algassert.com/quirk#circuit=%7B%22cols%22%3A%5B%5B1%2C1%2C%22X%22%2C%22X%22%2C%22X%22%5D%2C%5B%22Chance%22%2C%22Chance%22%2C%22Chance%22%2C%22Chance%22%2C%22Chance%22%5D%2C%5B%22Chance5%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22~sqrt15%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C%22~sqrt25%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B1%2C%22~sqrt35%22%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B%22Chance5%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C%22~sqrt14%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C%22~sqrt24%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B%22~sqrt34%22%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B%22Chance5%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C%22~sqrt13%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B%22~sqrt23%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B%22Chance5%22%5D%2C%5B%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22~sqrt12%22%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22Chance5%22%5D%5D%2C%22gates%22%3A%5B%7B%22id%22%3A%22~sqrt12%22%2C%22name%22%3A%22%E2%88%9A1%2F2%22%2C%22matrix%22%3A%22%7B%7B%E2%88%9A%C2%BD%2C-%E2%88%9A%C2%BD%7D%2C%7B%E2%88%9A%C2%BD%2C%E2%88%9A%C2%BD%7D%7D%22%7D%2C%7B%22id%22%3A%22~sqrt13%22%2C%22name%22%3A%22%E2%88%9A1%2F3%22%2C%22matrix%22%3A%22%7B%7B%E2%88%9A%E2%85%93%2C-%E2%88%9A%E2%85%94%7D%2C%7B%E2%88%9A%E2%85%94%2C%E2%88%9A%E2%85%93%7D%7D%22%7D%2C%7B%22id%22%3A%22~sqrt23%22%2C%22name%22%3A%22%E2%88%9A2%2F3%22%2C%22matrix%22%3A%22%7B%7B%E2%88%9A%E2%85%94%2C-%E2%88%9A%E2%85%93%7D%2C%7B%E2%88%9A%E2%85%93%2C%E2%88%9A%E2%85%94%7D%7D%22%7D%2C%7B%22id%22%3A%22~sqrt14%22%2C%22name%22%3A%22%E2%88%9A1%2F4%22%2C%22matrix%22%3A%22%7B%7B%C2%BD%2C-%E2%88%9A%C2%BE%7D%2C%7B%E2%88%9A%C2%BE%2C%C2%BD%7D%7D%22%7D%2C%7B%22id%22%3A%22~sqrt24%22%2C%22name%22%3A%22%E2%88%9A2%2F4%22%2C%22matrix%22%3A%22%7B%7B%E2%88%9A%C2%BD%2C-%E2%88%9A%C2%BD%7D%2C%7B%E2%88%9A%C2%BD%2C%E2%88%9A%C2%BD%7D%7D%22%7D%2C%7B%22id%22%3A%22~sqrt34%22%2C%22name%22%3A%22%E2%88%9A3%2F4%22%2C%22matrix%22%3A%22%7B%7B%E2%88%9A%C2%BE%2C-%C2%BD%7D%2C%7B%C2%BD%2C%E2%88%9A%C2%BE%7D%7D%22%7D%2C%7B%22id%22%3A%22~sqrt15%22%2C%22name%22%3A%22%E2%88%9A1%2F5%22%2C%22matrix%22%3A%22%7B%7B%E2%88%9A%E2%85%95%2C-%E2%88%9A%E2%85%98%7D%2C%7B%E2%88%9A%E2%85%98%2C%E2%88%9A%E2%85%95%7D%7D%22%7D%2C%7B%22id%22%3A%22~sqrt25%22%2C%22name%22%3A%22%E2%88%9A2%2F5%22%2C%22matrix%22%3A%22%7B%7B%E2%88%9A%E2%85%96%2C-%E2%88%9A%E2%85%97%7D%2C%7B%E2%88%9A%E2%85%97%2C%E2%88%9A%E2%85%96%7D%7D%22%7D%2C%7B%22id%22%3A%22~sqrt35%22%2C%22name%22%3A%22%E2%88%9A3%2F5%22%2C%22matrix%22%3A%22%7B%7B%E2%88%9A%E2%85%97%2C-%E2%88%9A%E2%85%96%7D%2C%7B%E2%88%9A%E2%85%96%2C%E2%88%9A%E2%85%97%7D%7D%22%7D%2C%7B%22id%22%3A%22~sqrt45%22%2C%22name%22%3A%22%E2%88%9A4%2F5%22%2C%22matrix%22%3A%22%7B%7B%E2%88%9A%E2%85%98%2C-%E2%88%9A%E2%85%95%7D%2C%7B%E2%88%9A%E2%85%95%2C%E2%88%9A%E2%85%98%7D%7D%22%7D%2C%7B%22id%22%3A%22~SCS21%22%2C%22name%22%3A%22SCS2%2C1%22%2C%22circuit%22%3A%7B%22cols%22%3A%5B%5B%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22~sqrt12%22%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C%22X%22%5D%5D%7D%7D%2C%7B%22id%22%3A%22~SCS32%22%2C%22name%22%3A%22SCS3%2C2%22%2C%22circuit%22%3A%7B%22cols%22%3A%5B%5B1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C%22~sqrt13%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B%22~sqrt23%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C%22X%22%5D%5D%7D%7D%2C%7B%22id%22%3A%22~SCS43%22%2C%22name%22%3A%22SCS4%2C3%22%2C%22circuit%22%3A%7B%22cols%22%3A%5B%5B1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C%22~sqrt14%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C%22~sqrt24%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B%22~sqrt34%22%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%5D%7D%7D%2C%7B%22id%22%3A%22~SCS53%22%2C%22name%22%3A%22SCS5%2C3%22%2C%22circuit%22%3A%7B%22cols%22%3A%5B%5B1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C%22~sqrt15%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C%22~sqrt25%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B%22~sqrt35%22%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%5D%7D%7D%2C%7B%22id%22%3A%22~SCS54%22%2C%22name%22%3A%22SCS5%2C4%22%2C%22circuit%22%3A%7B%22cols%22%3A%5B%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C1%2C%22~sqrt15%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C1%2C%22%E2%80%A2%22%2C%22X%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C1%2C%22~sqrt25%22%2C%22%E2%80%A2%22%2C%22%E2%80%A2%22%5D%2C%5B1%2C1%2C%22%E2%80%A2%22%2C1%2C%22X%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B1%2C%22~sqrt35%22%2C%22%E2%80%A2%22%2C1%2C%22%E2%80%A2%22%5D%2C%5B1%2C%22%E2%80%A2%22%2C1%2C1%2C%22X%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C%22X%22%5D%2C%5B%22~sqrt45%22%2C%22%E2%80%A2%22%2C1%2C1%2C%22%E2%80%A2%22%5D%2C%5B%22%E2%80%A2%22%2C1%2C1%2C1%2C%22X%22%5D%5D%7D%7D%2C%7B%22id%22%3A%22~U53%22%2C%22name%22%3A%22U5%2C3%22%2C%22circuit%22%3A%7B%22cols%22%3A%5B%5B1%2C%22~SCS53%22%5D%2C%5B%22~SCS43%22%5D%2C%5B%22~SCS32%22%5D%2C%5B%22~SCS21%22%5D%5D%7D%7D%5D%7D
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3 Circuit Size and Depth

We now analyze the size and depth of our circuit construction and show how to
adapt the circuit to be used on Linear Nearest Neighbor (LNN) architectures,
where 2-qubit gates can only be implemented between neighboring qubits:

Fig. 2. Preparation of the Dicke state |D5
3〉 with SCS gates implementing a unitary

U5,3.
√ �

n
-gates denote Y -Rotations Ry

(
2 cos−1 √ �

n

)
: |0〉 → √ �

n
|0〉 +

√n−�
n

|1〉.

Theorem 1. Dicke states |Dn
k 〉 can be prepared with a circuit of size

O(min(k, n − k) · n) and depth O(n), even on Linear Nearest Neighbor architec-
tures.

Proof (Arbitrary 2-qubit gates). Note that an alternate way to prepare a Dicke
state |Dn

k 〉 is to prepare the Dicke state |Dn
n−k〉 followed by X-gates on each

qubit, as |Dn
k 〉 = X⊗n |Dn

n−k〉. Thus we prove size O(kn) for Dicke states |Dn
k 〉,

implying size O((n − k)n) for |Dn
k 〉, too.

We first show that the depth of our circuit construction is linear: The struc-
ture of each SCSn,k implementation is a stair of 2-qubit blocks interacting with
its bottom qubit n. These stairs can be “pushed into each other”. In particular,
the 3-qubit gate (ii)k of SCSn,k acts on qubits n − k, n − k + 1 and n. It can
therefore be run in parallel with k∗ := �k+1

3 � − 1 many other 3-qubit gates,
namely gate (ii)k−3 of SCSn−1,k (acting on qubits n − k + 2, n − k + 3, n − 1)
as well as gates (ii)k−6, . . . , (ii)k−3k∗ of SCSn−2,k, . . . ,SCSn−k∗,k, respectively.
Since we can parallelize k∗ ∈ O(k) stairs, the total depth is linear in the depth
of gates (i), (ii)� (constant) and the number of gates (i), (ii)� (O(kn)) divided
by k∗, yielding an overall depth of O(n).

In light of a possible implementation, we prove the circuit size in Theorem 1
by compiling Un,k down to at most 5kn + O(n) CNOT -gates and 4kn + O(n)
arbitrary precision Ry-gates. To build Un,k from SCS unitaries, we need a total
of n − 1 many 2-qubit gates (i) and (n − k) · (k − 1) +

∑k
i=3(i − 2) = kn −

k2

2 + O(n) many 3-qubit gates (ii)�, see Fig. 2. It remains to show that (ii)�-
gates can be implemented with 5 CNOT gates and 4 Ry gates. We provide such
an implementation in Fig. 3: A two-controlled CCRy(2θ) rotation gate can be
implemented with 4 Ry(± θ

2 ) rotation gates and 4 CNOT s, the first one of which
we can cancel by rearranging the preceeding conjugating CNOT gate. ��
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CCRy(2θ)

Ry(− θ
2
) Ry( θ

2
) Ry(− θ

2
) Ry( θ

2
)

× ×

Fig. 3. Implementing a two-control CCRy(2θ) rotation gate from Fig. 2 with four single-
qubit Ry(± θ

2
) gates and four CNOT s, one of which can be cancelled by rearranging

the last CNOT of each SCS step.

In order to have the same asymptotic behaviour in terms of size and depth
on LNN architectures, we need to slightly adapt our circuit. There are two main
ideas for this: The first one is to implement the (ii)�-gates of SCSn,k by “keeping
the bottom qubit n close” to the two qubits n− �, n− �+1. This can be done by
“sifting up” qubit n with SWAP gates for the duration of SCSn,k, then sifting
it down back to its original position. The second idea is to do this in groups
of Θ(k) consecutive SCS unitaries. Each group can be implemented with O(k2)
gates and O(k) depth. Overall, combining the O(n

k ) many groups gives circuit
size O(kn) and depth O(n).

4 Symmetric Pure States and Quantum Compression

Our inductive approach yields (for k = n) a unitary Un,n which – with O(n2)
gates and O(n) depth – can be used to prepare any Dicke state |Dn

� 〉 , 1 ≤ � ≤ n

for the respective input |0〉⊗n−� |1〉⊗�. Therefore, every superposition of these
input states leads to a superposition of Dicke states. In the following, we show
how this can be used to (i) prepare arbitrary symmetric pure n-qubit states
in linear depth O(n), and to (ii) compress symmetric pure n-qubit states into
�log(n + 1)� qubits in quasilinear depth Õ(n) using the reverse unitary U†

n,n.

4.1 Symmetric Pure States

As the n + 1 different Dicke states |Dn
� 〉 form an orthonormal basis of the fully

symmetric subspace of all pure n-qubit states, every symmetric pure state can
be expanded in terms of Dicke states [4], i.e. in the form

∑
� eiφ�α� |Dn

� 〉 with
magnitudes α� ∈ [0, 1], α2

0 + . . . + α2
n = 1 and phases φ� ∈ [0, 2π), φ0 = 0. We

show:

Theorem 2. Every symmetric pure n-qubit state can be prepared with a circuit
of size O(n2) and depth O(n), even on Linear Nearest Neighbor architectures.

Proof. By Theorem 1, given as input the state
∑

� eiφ�α� |0〉⊗n−� |1〉⊗�, the uni-
tary Un,n prepares

∑
� eiφ�α� |Dn

� 〉 on LNN architectures using O(n2) gates and
O(n) depth. We prove that this input state can be constructed in linear depth
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and size. To this end, we define magnitudes β� := α�(1−α2
0− . . .−α�−1)−1/2 and

angles ψ0 := 0, ψ� := φ� −φ�−1. The original values α, φ relate to the parameters
β, ψ as φ� =

∑�
k=0 ψk and α� = β� · ∏�−1

k=0

√
1 − β2

k. As already introduced in
Sect. 3, we use Y -rotation gates Ry(2 cos−1 β) to map |0〉 → β |0〉+

√
1 − β2 |1〉.

Additionally, we use phase shift gates Rψ =
(
1 0
0 eiψ

)
to map |1〉 → eiψ |1〉.

Fig. 4. (left) Arbitrary superposition of Dicke states, using Y -rotations Ry(2 cos−1 β�)

with β� =
√ α2

�

1−α2
0−...−α2

�−1
and phase-shift gates Rψ� with ψ� = φ� − φ�−1, followed

by unitary Un,n. (right) Efficient compression of n identical qubits into �log(n + 1)�
qubits using unitary U†

n,n.

We start with a rotation Ry(2 cos−1 β0) on the n-th qubit. This is followed
by a linear-depth stair of controlled Ry(2 cos−1 β�)-rotations on the (n − �)th
qubit, controlled by the previous qubit n − � + 1 being in state |1〉, as shown in
Fig. 4 (left). At this point, we have the correct magnitudes. Finally, we add the
correct phases using a layer of Rψ�

-phase shifts on respective qubits n − � + 1,
yielding the desired symmetric state:

|0〉⊗n β0−−−−−−→ α0 |0〉⊗n +
√

1 − α2
0 |0〉⊗n−1 |1〉

β1−−−−−−→ α0 |0〉⊗n + α1 |0〉⊗n−1 |1〉 +
√

1 − α2
0 − α2

1 |0〉⊗n−2 |11〉
β2,...,βn−1−−−−−−−→

∑

�
α� |0〉⊗n−� |1〉⊗� ψ1,...,ψn−−−−−→

∑

�
eiφ�α� |0〉⊗n−� |1〉⊗�

. ��

4.2 Quantum Compression

As symmetric pure states live in the (n + 1)-dimensional symmetric subspace of
the full Hilbert space, they can be described with exponentially fewer dimensions
than general multi-qubit states. This is the idea behind the quantum Schur-Weyl
transform [1], which separates the permutation information from the angular
momentum information of a state. Applied to a symmetric pure state, it will
compress the angular momentum information into only �log(n+1)� qubits, while
the rest of the qubits (the trivial permutation information) can be discarded
without loss of information.
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A previous approach to implement this transform for symmetric states gave
a high-level description of a circuit of size and depth Θ(n2) that needs no ancil-
las [24]. The major part is a transformation of Dicke states |Dn

� 〉 to a one-hot
encoding |0〉⊗�−1 |1〉 |0〉⊗n−� of their Hamming weight �. Substituting this part
with our unitary in reverse, U†

n,n, improves the overall circuit depth to quasilin-
ear:3

Theorem 3. Every symmetric pure n-qubit state can be compressed into
�log(n + 1)� qubits with a circuit of size O(n2) and depth Õ(n), even on Linear
Nearest Neighbor architectures.

We illustrate our approach with a particular interesting symmetric pure state,
the separable state (α |0〉+β |1〉)⊗n =

∑
αn−�β�

(
n
�

)1/2 |Dn
� 〉, whose compression

has been implemented experimentally for n = 3 [26]. An implementation of our
approach for n = 7 qubits in Quirk [12] can be found following this link.

Proof. Our compression circuit starts with the reverse unitary U†
n,n (using size

O(n2) and depth O(n)). It is followed by a mapping of states |0〉⊗n−� |1〉⊗� to
the one-hot encoding |0〉⊗n−� |1〉 |0〉⊗�−1, which can be implemented with size
and depth O(n) with a simple stair of CNOT -gates with control n − � and
target n−�+1 for increasing �. Finally, the one-hot encoding |0〉⊗n−� |1〉 |0〉⊗�−1

is mapped to the binary encoding |�〉 of � (with padded leading zeroes), as
illustrated in Fig. 4 (right):

∑
αn−�β�

(
n
�

)1/2 |Dn
� 〉 U†

n,n−−−−−−→
∑

αn−�β�
(
n
�

)1/2 |0〉⊗n−� |1〉⊗�

CNOT
stair−−−−−−→ αn |0〉⊗n +

∑

�>0

αn−�β�
(
n
�

)1/2 |0〉⊗n−� |1〉 |0〉⊗�−1

encoding
change−−−−−−→

∑
αn−�β�

(
n
�

)1/2 |�〉 .

It remains to show that mapping each state |0〉⊗n−� |1〉 |0〉⊗�−1 into the bottom
�log(n+1)� qubits encoding |�〉 can be implemented with a circuit of size O(n2)
and depth Õ(n). This is done in the following way, for increasing �: First, con-
trolled on qubit n−� we CNOT into the up to �log(n+1)� target bottom qubits
which represent the number � in binary (for n and n − 1 these are the qubits
themselves, on which we perform no operation). Then, controlled on the binary
representation in the last � qubits (not including padded 0s), we perform a sin-
gle multi-control Toffoli on the (n − �)th qubit as target. An implementation of
m-control Toffoli gates with CNOT and single-qubit gates requires at least 2m
CNOT gates [29], and it is known that a O(m) CNOT and single-qubit gates are
sufficient [2], even if no ancilla qubits are present [13]. This immediately gives
us O(n log n) gates and O(n log n) depth. ��
3 The referenced paper [24] provides no compilation down to standard gates and no

analysis of the depth of the circuit. The latter is found together with a step-by-step
comparison of our approach in the preprint of this paper [3, Appendix].
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For LNN architectures, we use sifting up of processed qubits, see Fig. 4 (right).
This brings the respective next qubits into direct neighborhood of the bottom
�log(n + 1)� qubits. Implementing the CNOT s into the bottom qubits and the
multi-control Toffoli gates into the top qubits can be done with O(n log2 n) gates
and depth overall.

5 Conclusions

We presented a deterministic quantum circuit for the preparation of Dicke states
|Dn

k 〉 with depth O(n) and O(kn) gates in total. We showed that these bounds
hold for Linear Nearest Neighbor architectures, that the circuit can be extended
to prepare arbitrary symmetric pure states, and that we can use it for quantum
compression. For future work, the main open problem is that of characterizing
the set of quantum states that can be prepared in polynomial time, of which
Dicke states are one example.
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Abstract. A channel with multiplicity feedback is a shared channel that
in case of collision (two or more stations transmitting simultaneously)
returns as a feedback the exact number of stations simultaneously trans-
mitting. It is known that in such a model Θ((d log(n/d))/ log d) time
rounds are sufficient and necessary to identify the IDs of d transmitting
stations, from an ensemble of n.

In contrast, the model with collision detection (or ternary feedback)
allows only a limited feedback from the channel: 0 (silence), 1 (success)
or 2+ (collision). In this case it is known that Ω(d log(n/d)) time rounds
are necessary.

Generalizing, we can define a feedback interval [x, y], where 0 ≤ x ≤
y ≤ d, such that the channel returns the exact number of transmit-
ting stations only if this number is within that interval. The collision
detection model corresponds to x = 0 and y = 1, while the multiplicity
feedback is obtained for x = 0 and y = d.

It is natural to ask for which size of the feedback intervals we can still
get the same optimal time complexity Θ((d log(n/d))/(log d)) valid for
the channel with multiplicity feedback. In this paper we show that we
can still use this number of time rounds even when the interval has a sub-
stantially smaller size: namely O(

√
d log d). On the other hand, we also

prove that if we further reduce the size of the interval to O
( √

d
log d

)
, then

no protocol having time complexity Θ((d log(n/d))/(log d)) is possible.

Keywords: Multiple-access channel · Limited feedback ·
Group testing · Threshold group testing · Distributed · Algorithm ·
Lower bound

1 Introduction

A shared channel, also called a multiple access channel, is one of the fundamental
communication models. The formal model used in the present paper, taken as the
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basis for theoretical studies, is defined as follows (cf. the surveys by Gallager [15]
and Chlebus [21]). A set of n stations are connected to the same multi-point
transmission channel. Every station has an ID label that uniquely distinguish
it. A subset of d < n active stations have data packets and can transmit on
the channel in synchronous rounds. There is no central control: stations act
autonomously by means of a distributed algorithm. In this paper we consider
the fundamental problem of identifying the d active stations, i.e. to let all the
active stations to know each other’s ID.

A station successfully transmits its packet, in a given time round, if and only
if it is the only transmitting station in that round. Once a packet is successfully
transmitted on the channel by one station, it can be heard by all other stations.
When m > 1 stations send a packet simultaneously, i.e. in the same time round,
these packets collide and their information content is irretrievably lost. However,
in this case, all stations (also including those not active) can learn from the chan-
nel feedback that a collision occurred. The stations can recognize three possible
outcomes: inactivity (no station sending), success (exactly one station sending)
and collision. This makes it possible to design adaptive algorithms in which at
any time round a station may decide whether to transmit or stay silent based
on the feedback received in previous rounds. Namely, a deterministic adaptive
algorithm, at each step of its execution, specifies some subset Q (often called test
or query) of the n possible stations chosen as a function of the feedback obtained
in previous steps. Any station that has not yet transmitted successfully, checks
the chosen subset and transmits if and only if it belongs to it. In non-adaptive
algorithms all the queries have to be designed in advance, before executing the
algorithm. While adaptive algorithms are in general more powerful, non-adaptive
solutions are often more desirable in that they allow all the queries to be made
at once which is very useful in many practical situations.

Another strictly related important problem in this same setting is the con-
tention resolution, in which the goal is to let the d active stations to transmit
successfully their respective packets [5,7–10].

The identification problem considered in this paper has been studied in many
variants mainly in the context of Combinatorial search. In this area, it is rele-
vant to us the Group testing problem (see [12,13]), introduced in [11], that asks
to identify d defective items in a set N of n elements. At any step, it is pos-
sible to choose a subset Q ⊆ N and perform a test of the kind: “is there any
defective item in Q?”. The similarity with the multiple access channel setting
described above is easy to observe: the d defective items correspond to the d
active stations and any test Q corresponds to a time round in which a subset Q
of stations attempt to transmit simultaneously. It is worth noting that while in
the multiple access channel, as observed above, the outcome (channel feedback)
in each time round is ternary, the outcome of a test in the Group testing prob-
lem is binary: either Q contains at least a defective item or it does not. In this
sense the latter model is weaker. It is well-known that for an adaptive algorithm
Θ(d log(n/d)) tests ([18]) are sufficient and necessary to identify d defectives. In
contrast, any non-adaptive combinatorial group testing algorithm needs as much
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as Ω(min{d2 logd(n), n}) tests [2]. An efficient explicit scheme (i.e. constructible
in polynomial time) requiring Θ(min{d2 log(n), n}) has been proposed in [20].
No better upper bound for non-adaptive solutions is known even for non-explicit
schemes.

Alongside the model with ternary feedback, Tsybakov [22] introduced the col-
lision channel with multiplicity feedback (also known as the quantitative chan-
nel). In this model, the channel feedback makes available the “loudness” of the
collision, from which it is possible to determine the actual number m of sta-
tions simultaneously transmitting. This can be implemented by means of energy
detectors [16]. The problem of identifying active stations in a multiple-access
channel with multiplicity feedback is also a distributed version of the counterfeit
coin types of problems studied in Combinatorial search theory (see [6] for an
account of this equivalence). For this reason many of the following basic results
for the identification problem in multiple-access channel have been obtained in
the context of Combinatorial search theory.

It is known that this problem requires Θ(d logd+1(n/d)) queries in the worst
case both for adaptive and non-adaptive algorithms. The lower bound can be
easily inferred from the following simple argument. For any fixed parameter
d < n and set X, with |X| = d, there are d + 1 possible outcomes to each query
Q, as 0 ≤ |Q ∩ X| ≤ d. Therefore, since there are

(
n
d

)
possible subsets X of

d elements, the information-theoretic lower bound tells us that any algorithm
(even adaptive ones) requires at least

⌈
logd+1

(
n

d

)⌉
= Ω(d logd+1(n/d)) (1)

queries to identify X. On the other hand, Grebinski and Kucherov [17], with a
non-constructive proof, showed that there exists a non-adaptive algorithm using
O(d logd+1(n/d)) queries in the worst case, so matching the lower bound. More
recently Bshouty [1] designed a polynomial time adaptive algorithm using the
same optimal asymptotic bound. A polynomial time non-adaptive algorithm,
using the same optimal number of queries, is still unknown.

Throughout the paper, [n] denotes the set of station’s IDs, i.e. we let [n] =
{1, 2, . . . , n}. The family of all subsets of [n] of size d will be denoted [n]d.

1.1 New Results

As observed in [16], being able to detect the number of stations involved in a
collision, no matter how large this number is, might be impractical as it would
require an unbounded number of energy detectors. The authors of [16] proposed
a model in which a limited set of energy detectors guarantees that the number
of collided packets is detected only if this number is below a certain limit. Most
of the literature on this subject deals with randomized adaptive protocols for
the contention resolution problem.

In this paper we study the harder problem of deterministically and non-
adaptively identifying a subset X of d active stations out of an ensemble of n
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in the more general situation in which the channel returns the exact number
of transmitting stations only if this number is within an interval [x, y], called
the feedback interval, where 0 ≤ x ≤ y ≤ d. The collision detection (ternary
feedback) model corresponds to x = 0 and y = 1, while the multiplicity feedback
is obtained for x = 0 and y = d.

This is also a generalization of the multi-threshold group testing introduced
in [4], where we have s > 0 thresholds: t1, t2, ..., ts and the output of each test is
an integer between 0 and s corresponding to which thresholds get passed by the
number of defectives in the test. The first formalization for single threshold in
the context of Group Testing is due to Damaschke [3]. In this case, the output
of each test responds to the question: are there at least t positive elements in the
query set? The classical version of the problem corresponds to the choice t = 1.

A non-adaptive algorithm with time complexity m, is viewed as a list of
queries Q = Q1, Q2, . . . , Qm, where each query Qi is a subset of the set of IDs
[n] = {1, 2, . . . , n}. At time round i a station transmits if and only if its ID
belongs to Qi. The non-adaptivity emerges from the fact that the sequence of
queries is generated beforehand the protocol’s execution as a function of d and
n only. In particular, the algorithm does not use the feedback: each new query
is generated irrespectively of the feedback received on the previous ones. The
identification process takes place at the end of the algorithm’s execution and
uses the feedback received on each query to uniquely determine the input set.

In this paper we prove that a feedback interval of size O(
√

d log d) is sufficient
to correctly identify any set X of d stations with only O(d log(n/d)

log d ) time rounds
(queries). This time complexity is optimal in view of the information-theoretic
lower bound (1) that holds for the stronger multiplicity feedback model, i.e.
for a feedback interval of maximum size d (nearly quadratically larger than
ours), in which case the channel can correctly detect any number of simultaneous
transmissions.

We also prove that this size of O(
√

d log d) cannot be substantially reduced
without negatively affect the complexity of the algorithm. Namely, we show that
if the feedback interval is reduced to O

( √
d

log d

)
, then any non-adaptive algorithm

for the same problem would require complexity Ω(d log(n/d)).
In this extended abstract we give both upper and lower bound for the par-

ticular case of intervals centered in d/2. The complete results will be given in
the full version of the paper.

2 The Upper Bound

In this section we prove that a feedback interval of size O(
√

d log d) is sufficient
for a non-adaptive algorithm to identify any input set X ∈ [n]d with the optimal
number of queries: O(d log(n/d)

log d ).
Formally, we will show that for a feedback interval [x, y], with x = d/2 −

3
√

d log d and y = d/2 + 3
√

d log d, there exists a sequence of queries Q =
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(Q1, Q2, . . . , Qm), with m = O(d log(n/d)
log d ), such that for any pair of sets X,Y ∈

[n]d, X �= Y , there exists a query Q ∈ Q such that
(i) |Q ∩ X|, |Q ∩ Y | ∈ [x, y];
(ii) |Q ∩ X| �= |Q ∩ Y |.
First, condition (i) guarantees that on query Q, the channel returns exactly

the number of transmitting stations for both input sets X and Y . Then, condition
(ii) guarantees that on query Q, X and Y cause different feedback. Therefore,
for any pair of input sets X and Y there will be a time round on which the two
sets have different feedback. This implies that any input set can be uniquely
identified.

Let Q be a set of queries constructed as follows: any query Q ∈ Q is randomly
and independently formed by letting Pr[x ∈ Q] = 1/2 for every x ∈ [n]. Observe
that for any set X ∈ [n]d and query Q ∈ Q, |Q ∩ X| is a random variable taking
values in the interval [0, d]. The following lemma holds.

Lemma 1. For 1 ≤ � ≤ d, let X,Y ∈ [n]�, with X ∩Y = ∅. For any Q ∈ Q, the
probability that |X ∩ Q| = |Y ∩ Q| is at most min{1/2, 1/

√
�}.

Proof. Fix any Q ∈ Q and 1 ≤ � ≤ d. For any set X ∈ [n]�, the probability
that |Q ∩ X| = r, for any 0 ≤ r ≤ �, can be interpreted as the probability of
having precisely r successes in a series of � Bernoulli trials, where in each trial
we test whether an element x ∈ X belongs to Q. This is defined by the binomial
distribution:

(
�

r

)
pr(1 − p)�−r,

where p is the probability of success, i.e., the probability that any x ∈ X belongs
to Q, and |Q∩X| is the random variable equal to the total number of successes.
Hence, the probability defined in the statement of the lemma writes as

Pr[|Q ∩ X| = |Q ∩ Y |] =
�∑

r=0

Pr[|Q ∩ X| = r] · Pr[|Q ∩ Y | = r]

=
�∑

r=0

(
�

r

)2

p2r(1 − p)2(�−r) =
�∑

r=0

(
�

r

)2 (
1
2

)2�

,

where the last equality follows from the fact that in the random construction of
Q, we set p = 1/2. For � = 1 this sum is 1/2 and, since it is decreasing with
the size of �, it follows that 1/2 is also an upper bound on it. In order to prove
that it is at most min{1/2, 1/

√
�}, it will suffice to show that it is also less than

1/
√

�. In fact, since for � ≥ 4, 1/
√

� ≤ 1/2, the lemma follows.
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We have
(

�

r

)2 (
1
2

)2�

=
(

1
2

)2� (
�

�/2

)2 [
(r + 1) · · · �/2

(�/2 + 1) · · · (� − r)

]2

≤
(

1
2

)2� (
2�

√
�

)2 (
�/2

d − r

)2(�/2−r)

=
1
�

(
1 − �/2 − r

� − r

)2(�/2−r)

≤ 1
�

· e
−2(�/2−r)2

�−r .

Therefore, continuing from (2) we have

Pr[|Q ∩ X| = |Q ∩ Y |] ≤ 1

�

�∑
r=0

e
−2(�/2−r)2

�−r

≤ 2

�

�/2∑
r=0

e
−2(�/2−r)2

�−r =
2

�

√
�/2−1∑
i=0

(i+1)
√

�∑

r=i
√

�+1

e
−2(�/2−r)2

�−r

≤ 2

�

√
�/2−1∑
i=0

(i+1)
√

�∑

r=i
√

�+1

e
−2(�/2−i

√
�)2

�−i
√

�

≤ 2

�

√
�/2−1∑
i=0

√
�e−2(

√
�/2−i) =

2√
�

√
�/2−1∑
i=0

e−2(
√

�/2−i). (2)

Now observe that
√

�/2−1∑

i=0

e−2(
√

�/2−i) =
1

e
√

�
+

1
e
√

�−1
+ · · · +

1
e2

≤ 1
2
. (3)

Finally, by substituting (3) into (2), the proof follows. 
�
Considering that the expected value of the random variable |X∩Q| (Binomial

distribution of parameters d and 1/2) is μ = d/2, we can use the Chernoff bound
to estimate the probability that |Q ∩ X| falls out of the feedback interval. We
will use the following formulas for the Chernoff bound (see Eq. (4.2) and (4.5)

in [19]): for 0 < δ < 1, Pr(|Q ∩ X| ≥ (1 + δ)μ) ≤ e− δ2μ
3 and Pr(|Q ∩ X| ≤

(1 − δ)μ) ≤ e− δ2μ
2 .

Letting μ = d/2 and δ = 6
√

log d
d , we have:

Pr(|Q ∩ X| > d/2 + 3
√

d log d) ≤ e− 36 log d
d

d
2

3

= e−6 log d; (4)

Pr(|Q ∩ X| < d/2 − 3
√

d log d) ≤ e− 36 log d
d

d
2

2

= e−9 log d. (5)
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Let X,Y ∈ [n]d, X �= Y . We say that a query Q ∈ Q separates X and Y if and
only if X and Y get different feedback on query Q, i.e. when |Q ∩ X|, |Q ∩ Y | ∈
[x, y] and |Q ∩ X| �= |Q ∩ Y |. We say that a sequence of queries Q separates X
and Y if and only if there exists a query Q ∈ Q that separates X and Y .

We are now ready to prove our upper bound.

Theorem 1. Let the feedback interval be of size Θ(
√

d log d). For 2 < d ≤ n/2,
there exists a sequence of queries Q of length m = O

(
d log(n/d)

log d

)
that separates

any pair X,Y ∈ [n]d.

Proof. Let Q = (Q1, Q2, . . . , Qm) be a sequence of m queries randomly con-
structed as explained in the beginning of this section, i.e., for every x ∈ [n],
independently, Pr[x ∈ Q] = 1/2.

In order to prove the lemma, we will show that with positive probability
there exists a sequence Q of m = O((d log(n/d))/ log d) queries such that for
any X,Y ∈ [n]d, Q separates X and Y .

For a fixed set X ⊆ [n]q, we define Ě(X;Q) to be the event that |Q ∩ X| is
within the feedback interval, i.e. d/2 − 3

√
d log d ≤ |Q ∩ X| ≤ d/2 + 3

√
d log d.

For a fixed pair X,Y ∈ [n]d, we let Ē(X,Y ;Q) be the event that |X∩Q| = |Y ∩Q|.
Fix a set X ∈ [n]d. We can associate to the sequence of m random queries,

m independent trials where in the ith one we test whether d/2 − 3
√

d log d ≤
|Qi ∩ X| ≤ d/2 + 3

√
d log d, for 1 ≤ i ≤ m. We consider Qi a success if event

Ě(X;Q) holds, a failure otherwise. By (4) and (5) each Qi is a failure with
probability q ≤ e−6 log d + e−9 log d < 1

d .
For a fixed set X ∈ [n]d, the probability of having f failures or more in m

queries is at most (
m

f

)(
1
d

)f

.

Hence, for any constant 0 < ε < 1, the probability that there exists a set X ∈ [n]d
for which there are f = mε failures or more in m queries will be at most

(
n

d

)(
m

f

) (
1
d

)f

< 2d log(ne/d)+f log(me/f)−f log d

= 2d log(ne/d)+mε log(e/ε)−mε log d. (6)

This probability can be made less than 1 for m = O(d log(n/d)
log d ). This means that

for any constant 0 < ε < 1, there exists a constant c > 0 such that for

m ≥ c · d log(n/d)
log d

, (7)

with positive probability, for every set X ∈ [n]d, there are at least m(1 − ε)
queries of Q such that |X ∩ Q| is inside the feedback interval.

Let us now fix any pair of sets X,Y ∈ [n]d. Let X ′ = X \ Y , Y ′ = Y \ X.
Observe that for every query Q: (a) X ′ and Y ′ are disjoint and (b) |X ∩ Q| =
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|Y ∩ Q| if and only if |X ′ ∩ Q| = |Y ′ ∩ Q|. Hence, letting � = |X ′| = |Y ′|, for
every query Q we have:

Ē(X,Y ;Q) = Ē(X ′, Y ′;Q) ≤ min
{

1
2
,

1√
�

}
, (8)

where the inequality follows from Lemma 1 applied on the disjoint sets X ′ and
Y ′. As before, we can define m independent trials corresponding to the m queries
of Q. This time, in the ith trial we test whether |Qi ∩ X ′| = |Qi ∩ Y ′| and we
say that Qi is a success if event Ē(X ′, Y ′;Qi) does not hold, a failure otherwise.
By (8) we know that Qi is a failure with probability q′ ≤ min

{
1/2, 1/

√
�
}

.
For a fixed pair X ′, Y ′ ⊆ [n]� the probability of having g failures or more in

m queries is at most (
m

g

)(
min

{
1
2
,

1√
�

})g

.

For any constant 0 < ε′ < 1, the probability that there exists a pair of sets
X ′, Y ′ ⊆ [n]� for which there are g = mε′ failures or more in m queries will be
at most

d∑

�=1

(
n

�

)2(
m

g

)(
min

{
1
2
,

1√
�

})g

=
4∑

�=1

(
n

�

)2(
m

g

)(
1
2

)g

+
d∑

�=5

(
n

�

)2(
m

g

)(
1√
�

)g

< 4 · 28 log(ne
4 )+g log(me/g)−g + d · 22d log(ne

d )+g log(me/g)− g
2 log d

= 22+8 log(ne
4 )+mε′ log(e/ε′)−mε′

+ 2log d+2d log(ne
d )+mε′ log(e/ε′)− mε′

2 log d.

This probability is less than 1 for m = O(d log(n/d)
log d ). This implies the following.

For any constant 0 < ε′ < 1, there exists a constant c′ > 0 such that for

m ≥ c′ · d log(n/d)
log d

(9)

with positive probability, for every pair of sets X,Y ∈ [n]d there are at least
m(1 − ε′) queries Q ∈ Q such that |Q ∩ X| �= |Q ∩ Y |. In order to be able to
distinguish X and Y , we need not only that |Q ∩ X| �= |Q ∩ Y | but also that
both |X ∩ Q| and |Y ∩ Q| fall within the feedback interval.

Let us fix ε′ < 1 − 2ε and let c and c′ be as in (7) and (9) respectively. Let
c′′ ≥ max{c′, c′′}. If Q has m ≥ c′′·d log(n/d)

log d queries, we have that with positive
probability, for every pair of sets X and Y there are

(a) at least m(1 − ε′) queries Q such that |Q ∩ X| �= |Q ∩ Y |;
(b) at most 2mε queries such that |Q ∩ X| or |Q ∩ Y | do not fall within the

feedback interval.
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Therefore, since ε and ε′ have been chosen to satisfy m(1−ε′) > 2mε, we have
proved that with positive probability for every pair X,Y there exists a query
Q ∈ Q such that Q distinguishes X and Y . This concludes the proof.


�

3 The Lower Bound

In this section, we prove that if the size of the interval is reduced to O
( √

d
log d

)
,

then we need Ω (d log(n/d)) queries to be able to distinguish every pair of sets
X and Y of size d. Formally, we will prove the following theorem.

Theorem 2. Let the feedback interval be
[

d
2 −

√
d

log d , d
2 +

√
d

log d

]
. Any determinis-

tic non-adaptive algorithm identifying any set X ∈ [n]d requires Ω(d log(n/d))
queries in the worst case.

We consider a uniform distribution over [n]d. We first estimate the probability
for a fixed query Q that a random set X ∈ [n]d has intersection with Q within
the feedback interval.

Lemma 2. Let X be a random set uniformly chosen in [n]d. For any fixed query
Q, the probability that |X ∩ Q| falls within the feedback interval is O(1/ log d).

Proof. Let q = |Q|, x = d
2 −

√
d

log d and y = d
2 +

√
d

log d . The probability stated in
the Lemma can be evaluated as follows.

Pr (x ≤ |Q ∩ X| ≤ y) =
y∑

i=x

(
q
i

) · (
n−q
d−i

)

(
n
d

) (10)

≤
y∑

i=x

(
n/2

i

) · (
n/2
d−i

)

(
n
d

) (11)

To prove (11), note that for q > n/2:
(

q

i

)
·
(

n − q

d − i

)

=
(n/2

i

)
·
( n/2

d − i

)
· (n/2 + 1) · . . . · q
(n/2− i + 1) · . . . · (q − i)

· (n − q − d + i + 1) · . . . · (n/2− d + i)

(n − q + 1) · . . . · n/2

≤
(
n/2

i

) · (
n/2
d−i

)

(
n
d

) .

Now we use the following Stirling approximation for n! (see [14], Sect. 2.9):
√

2πnn+1/2e−n+1/(12n+1) < n! <
√

2πnn+1/2e−n+1/(12n).
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Hence,

(n/2

d/2

)2

<
2π(n/2)

2π(d/2) · 2π(n − d)/2
· (n/2)n

(d/2)d(n − d)n−d/2n−d
· e1/(3n)−2/(6d+1)−2/(6n−6d+1)

≤ c · n

πd(n − d)
· nn

dd(n − d)n−d

for some constant c ≥ e. Similarly,

(
n

d

)
≥

√
2πn

2πd · 2π(n − d)
· nn

dd(n − d)n−d
· e1/(12n+1)−1/(12d)−1/(12n−12d)

≥ c′ ·
√

n

2πd(n − d)
· nn

dd(n − d)n−d

for some constant c′ ≤ 1/e. Hence, assuming that d ≤ a · n for some constant
a < 1, we get (

n/2
d/2

) · (
n/2
d/2

)

(
n
d

) ≤ (c/c′)

√
2

π(1 − a)
· 1√

d
.

We also have for any i < d/2:
(

n/2
i

)
=

(
n/2
d/2

)
· (i + 1) · . . . · (d/2)
((n/2) − (d/2) + 1) · . . . · ((n/2) − i)

and (
n/2
d − i

)
=

(
n/2
d/2

)
· ((n/2) − d + i + 1) · . . . · ((n/2) − (d/2))

((d/2) + 1) · . . . · (d − i)

hence
(

n/2
i

)
·
(

n/2
d − i

)
=

(
n/2
d/2

)2

· (i + 1) · . . . · (d/2)
((n/2) − (d/2) + 1) · . . . · ((n/2) − i)

· · ((n/2) − d + i + 1) · . . . · ((n/2) − (d/2))
((d/2) + 1) · . . . · (d − i)

=
(

n/2
d/2

)2

· Πd/2−i
j=1

i + j

(n/2) − (d/2) + j
· (n/2) − d + i + j

(d/2) + j

<

(
n/2
d/2

)2

. (12)

The last inequality holds because for every i ≤ d/2 and every 1 ≤ j ≤ d/2 − i,
the difference between the denominator and the nominator of

i + j

(n/2) − (d/2) + j
· (n/2) − d + i + j

(d/2) + j
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in the product is

(n/2) · ((d/2) − i) + (i + j)(d − i − 2j) − d2/4 ,

which is a decreasing function in j for all j ≥ 0, provided d < 3i, which holds
for sufficiently large d as i ≥ x = d

2 −
√

d
log n . Therefore, this function is at least

the value for j = d/2 − j, which is

(n/2) · ((d/2) − i) + (d/2)i − d2/4 ,

for all the considered values of j. This value is however always positive for
i < d/2, because as a function of i it is decreasing for all positive i, provided
d ≤ n/2, and its value for i = d/2 is 0. It follows that each factor in the product
is smaller than 1, which complete the proof of Eq. (12).

The proof of the counterpart of Eq. (12) for i > d/2 is by symmetry argument,
as (

n/2
i

)
·
(

n/2
d − i

)

for i > d/2 is equal to (
n/2
j

)
·
(

n/2
d − i

)

for j = d − i < d/2, and the latter was proved to be smaller than

(
n/2
d/2

)2

.

Consequently, continuing from (11):

y∑

i=x

(
n/2

i

) · (
n/2
d−i

)

(
n
d

) < (y − x + 1)

(
n/2
d/2

) · (
n/2
d/2

)

(
n
d

) (13)

= (2

√
d

log d
+ 1) · (c/c′)

√
2

π(1 − a)
· 1√

d
= O(1/ log d) . (14)


�
Now, let us consider an arbitrary algorithm represented by any set of m

queries Q1, . . . , Qm. Assume that, the algorithm being correct, the sequence
Q1, . . . , Qm separates each pair X,Y ∈ [n]d. For the sake of analysis, we intro-
duce the notion of a bad query with respect to a set Q, i.e., a query whose
intersection with X has size in the feedback interval.

Definition 1. (Bad query). A query set Q ⊆ [n] is bad with respect to a set
X ∈ [n]d when |Q ∩ X| falls within the feedback interval.
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As a consequence of Lemma 2, there exists a constant c > 0 such that, the
expected number of bad queries for a random set X ∈ [n]d is at most cm/ log d.

Let X be the family of those sets X ∈ [n]d for which the actual number of
bad queries is at most 2cm/ log d. By Markov’s inequality and the fact that our
estimations are done for the uniform distribution over [n]d (having size

(
n
d

)
) the

size of X is at least 1
2

(
n
d

)
.

According to the assumption that Q1, . . . , Qm separate each pair X,Y ∈ [n]d,
there must be at least 1

2

(
n
d

)
different feedbacks to be able to distinguish all

elements of X . On the other hand, the feedback for any set X ∈ X can be
encoded as follows. For each query Qi, one bit encodes whether it is a bad query
with respect to X. Then, if the query is bad, the feedback is encoded in

log

(

2

√
d

log d

)

bits. Therefore, the size of the encoding of the feedback is

O

(
log(d/ log d) · 2cm

log d
+ 2(m − 2cm

log d
)
)

= O(m),

since c > 0 is constant and d < n. This in turn implies that the number of
different feedbacks for elements of X is 2O(m). On the other hand, the size of X
is

Ω

(
1
2

(
n

d

))
= 2Ω(d log(n/d)).

This requires m = Ω(d log(n/d)) and the proof of Theorem2 is completed.

4 Conclusions and Open Problems

We studied the impact of limited number of thresholds on utilization of a shared
communication channel, showing that around

√
d thresholds (up to a logarith-

mic factor) are necessary and enough to achieve similar utilization as with all
thresholds for d active users. Further study could concentrate on shrinking the
polylogarithmic gap between lower and upper bound on the number of thresh-
olds, as well as on general application to combinatorial testing with restricted
measurements.

References

1. Bshouty, N.H.: Optimal algorithms for the coin weighing problem with a spring
scale. In: COLT (2009)

2. Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complex-
ity. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing, STOC 1996, pp. 30–36, ACM. New York (1996)

3. Damaschke, P.: Threshold group testing. Electron. Notes Discrete Math. 21, 265–
271 (2005)



152 G. De Marco et al.
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Abstract. Consider the following conjectures:
– TFNP: the set TFNP of all total polynomial search problems has no

complete problems with respect to polynomial reductions.
– DisjCoNP: there exists no many-one complete disjoint coNP-pair.

We construct an oracle relative to which TFNP holds and DisjCoNP does
not hold. This partially answers a question by Pudlák [12], who lists sev-
eral conjectures and asks for oracles that show corresponding relativized
conjectures to be different. As there exists a relativizable proof for the
implication DisjCoNP ⇒ TFNP [12], relative to our oracle the conjecture
TFNP is strictly stronger than DisjCoNP.

Keywords: Total polynomial search problem · Disjoint coNP-pair ·
Oracle

1 Introduction

Themainmotivation for the present paper is an article byPudlák [12] that is “moti-
vated by the problem of finding finite versions of classical incompleteness theo-
rems”, investigates major conjectures in the field of proof complexity, discusses
their relations, and in particular draws new connections between the conjectures.
Among others Pudlák conjectures the non-existence
– of P-optimal proof systems for any coNP-complete (resp., NP-complete) sets,

denoted by CON (resp., SAT),
– of complete disjoint NP-pairs (resp., coNP-pairs) with respect to polynomial

many-one reductions, denoted by DisjNP (resp., DisjCoNP),
– of complete total polynomial search problems with respect to polynomial

reductions, denoted by TFNP,
– and of polynomial many-one complete problems for UP (resp., NP ∩ coNP),

denoted by UP (resp., NP ∩ coNP).

The main conjectures of these are CON and TFNP. We give some background
on these main conjectures and on the notion of disjoint pairs. The first main
conjecture CON has an interesting connection to some finite version of an incom-
pleteness statement. Consider CONN, the nonuniform version of CON, i.e., the

The original version of this chapter was retracted: The retraction note to this chapter
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conjecture that no coNP-complete set has optimal proof systems. Denote by
ConT (n) the finite consistency of a theory T , i.e., ConT (n) is the statement
that T has no proofs of contradiction of length ≤ n. Kraj́ıcek and Pudlák [7]
raise the conjectures CON and CONN and show that the latter is equivalent to
the statement that there is no finitely axiomatized theory S which proves the
finite consistency ConT (n) for every finitely axiomatized theory T by a proof of
polynomial length in n. In other words, ¬CONN expresses that a weak version
of Hilbert’s program (to prove the consistency of all mathematical theories) is
possible [11]. Correspondingly, ¬CON is equivalent to the existence of a theory
S such that, for any fixed theory T , proofs of ConT (n) in S can be constructed
in polynomial time in n [7].

The conjecture TFNP, together with the class TFNP, was introduced by
Megiddo and Papadimitriou and is known (i) to be implied by the non-existence
of disjoint coNP-pairs and known (ii) to imply that no NP-complete set has
P-optimal proof systems.

The notion of disjoint NP-pairs, i.e., pairs (A,B) with A∩B = ∅ and A,B ∈
NP, was introduced by Even, Selman, and Yacobi [3,4]. Razborov [13] connects
it with the concept of propositional proof systems (pps), i.e., proof systems for
the set of propositional tautologies TAUT, defining for each pps f a disjoint NP-
pair, the so-called canonical pair of f , and showing that the canonical pair of an
optimal pps f is complete. Hence, putting it contrapositively, DisjNP ⇒ CONN.

For a graphical overview over the implications between the above conjectures
we refer to Fig. 1. In contrast to the many implications only very few oracles were
known separating two of the relativized conjectures [12], which is why Pudlák
asks for further oracles showing relativized conjectures to be different.

Khaniki [6] partially answers this question: besides showing two of the con-
jectures to be equivalent he presents two oracles showing that SAT and CON as
well as TFNP and CON are independent in relativized worlds. To be more pre-
cise, relative to the one oracle, there exist P-optimal propositional proof systems
but no many-one complete disjoint coNP-pairs, where the latter implies TFNP
[12] and SAT. Relative to the other oracle, there exist no P-optimal propositional
proof systems and each total polynomial search problem has a polynomial-time
solution, where the latter implies ¬SAT. Hence, this oracle shows that there is
no relativizable proof for the implication CON ⇒ SAT. In another paper [1], the
author extends this by showing that there is even no relativizable proof for the
weaker implication DisjNP ⇒ SAT (recall that DisjNP implies CON in a rela-
tivizable way), which —together with the first oracle by Khaniki— shows that
even DisjNP is independent of DisjCoNP, TFNP, and CON in relativized worlds.

Dose and Glaßer [2] construct an oracle O that also separates some of the
above relativized conjectures. Relative to O there exist no many-one complete
disjoint NP-pairs, UP, the class of problems accepted by NP-machines with at
most one accepting path for any given input, has many-one complete problems,
and NP ∩ coNP has no many-one complete problems. In particular, relative to
O, there do not exist any P-optimal propositional proof systems. Thus, among
others, O shows that the conjectures CON and UP as well as NP∩ coNP and UP
cannot be proven equivalent with relativizable proofs.
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The present paper adds one more oracle to this list proving that there is no
relativizable proof for the implication TFNP ⇒ DisjCoNP, i.e., relative to the
oracle, TFNP has no complete problems with respect to polynomial reductions,
but there exists a many-one complete disjoint coNP-pair. As Pudlák [12] proves
the converse implication to hold relative to all oracles, the statement TFNP is
strictly stronger than DisjCoNP relative to our oracle.

2 Preliminaries

Throughout this paper let Σ be the alphabet {0, 1}. We denote the length of
a word w ∈ Σ∗ by |w|. Let Σ≤n = {w ∈ Σ∗ | |w| ≤ n}. The empty word is
denoted by ε and the i-th letter of a word w for 0 ≤ i < |w| is denoted by
w(i), i.e., w = w(0)w(1) · · · w(|w| − 1). If v is a prefix of w, i.e., |v| ≤ |w| and
v(i) = w(i) for all 0 ≤ i < |v|, then we write v � w. For any finite set Y ⊆ Σ∗,
let �(Y ) df=

∑
w∈Y |w|.

N (resp., N
+) denotes the set of natural numbers (resp., positive natural

numbers). The set of primes is denoted by P = {2, 3, 5, . . .}.
We identify Σ∗ with N via the polynomial-time computable, polynomial-time

invertible bijection w 	→
∑

i<|w|(1 + w(i))2i, which is a variant of the dyadic
encoding. Hence, notations, relations, and operations for Σ∗ are transferred to
N and vice versa. In particular, |n| denotes the length of n ∈ N. We eliminate
the ambiguity of the expressions 0i and 1i by always interpreting them over Σ∗.

Let 〈·〉 :
⋃

i≥0 N
i → N be an injective, polynomial-time computable,

polynomial-time invertible pairing function such that |〈u1, . . . , un〉| = 2(|u1| +
· · · + |un| + n).

Given two sets A and B, A − B denotes the set difference between A and B.
The complement of a set A relative to the universe U is denoted by A = U − A.
The universe will always be apparent from the context.

FP, P, and NP denote standard complexity classes [10]. Define coC = {A ⊆
Σ∗ | A ∈ C} for a class C. If A,B ∈ NP (resp., A,B ∈ coNP) and A ∩ B = ∅,
then we call (A,B) a disjoint NP-pair (resp., a disjoint coNP-pair). The set of all
disjoint NP-pairs (resp., coNP-pairs) is denoted by DisjNP (resp., DisjCoNP).

We also consider all these complexity classes in the presence of an oracle O
and denote the corresponding classes by FPO, PO, NPO, and so on.

Let M be a Turing machine. MD(x) denotes the computation of M on
input x with D as an oracle. For an arbitrary oracle D we let L(MD) =
{x | MD(x) accepts}, where —as usual— we say that a nondeterministic machine
accepts some input x if and only if it accepts x on some path.

For a deterministic polynomial-time Turing transducer F (i.e., a Turing
machine computing a function), depending on the context, FD(x) either denotes
the computation of F on input x with D as an oracle or the output of this compu-
tation.

Definition 1 ([2]). A sequence (Mi) is called standard enumeration of non-
deterministic, polynomial-time oracle Turing machines, if it has the following
properties:

RETRACTED C
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1. All Mi are nondeterministic, polynomial-time oracle Turing machines.
2. For all oracles D and all inputs x the computation MD

i (x) stops within |x|i+i
steps.

3. For every nondeterministic, polynomial-time oracle Turing machine M there
exist infinitely many i ∈ N such that for all oracles D it holds that L(MD) =
L(MD

i ).
4. There exists a nondeterministic, polynomial-time oracle Turing machine M

such that for all oracles D and all inputs x it holds that MD(〈i, x, 0|x|i+i〉)
nondeterministically simulates the computation MD

i (x).

Analogously we define standard enumerations of deterministic, polynomial-time
oracle Turing machines and deterministic, polynomial-time oracle Turing trans-
ducers.

Throughout this paper, we fix some standard enumerations. Let M1,M2, . . .
be a standard enumeration of nondeterministic polynomial-time oracle Turing
machines and note that for every oracle D, the sequence (Mi) represents an
enumeration of the languages in NPD. Let F1, F2, . . . be a standard enumeration
of polynomial-time oracle Turing transducers. Moreover, we let P1, P2, . . . be a
standard enumeration of deterministic polynomial-time oracle Turing machines.

Let Z be an oracle and A,B,C,D ∈ Σ∗ such that A ∩ B = C ∩ D = ∅.
In this paper we always use the following reducibility for disjoint pairs [13].
(A,B)≤pp,Z

m (C,D), i.e., (A,B) is polynomially many-one reducible to (C,D),
if there exists f ∈ FPZ with f(A) ⊆ C and f(B) ⊆ D. We say that (C,D)
is ≤pp,Z

m -hard (≤pp,Z
m -complete) for DisjCoNPZ if (A,B)≤pp,Z

m (C,D) for all
(A,B) ∈ DisjCoNPZ (and (C,D) ∈ DisjCoNPZ).

Let us define total polynomial search problems [8] relative to some oracle D
(for D = ∅ we obtain the unrelativized version and D can be simply omitted for
all notations). Major parts of the following definitions are copied from [12].

Definition 2. A total polynomial search problem relative to D is given by a
pair (p,R), where p is a polynomial and R ∈ PD such that for all x ∈ N there
exists y ∈ N with |y| ≤ p(|x|) and 〈x, y〉 ∈ R. The computation task is: with
access to D, for a given x, find y with |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ R. The class of all
total polynomial search problems relative to D will be denoted by TFNPD.

Definition 3. Let R and S be total polynomial search problems relative to D.
We say that R is polynomially reducible to S relative to D if and only if R can
be solved in polynomial time using two oracles, namely D and one oracle that
gives solutions to S. We call R complete for TFNPD if all S ∈ TFNPD are
polynomially reducible to R relative to D.

We say that R is polynomially many-one reducible to S relative to D if
and only if there are functions f, g ∈ FPD such that for all x and z it holds
S(〈fD(x), z〉) ⇒ R(〈x, 〈gD(x, z)〉〉). We call R many-one complete for TFNPD

if all S ∈ TFNPD are polynomially many-one reducible to R relative to D.

The following proposition is due to Jeřábek. A proof can be found in [12].
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Proposition 1 (Jeřábek). TFNP has complete problems if and only if it has
many-one complete problems.

Corollary 1. Relative to any oracle D, the following assertions are equivalent.

1. TFNPD has complete problems.
2. TFNPD has many-one complete problems.
3. (n 	→ ni + i, L(PD

i )) for some i > 0 is many-one complete for TFNPD.

Proof. 1 and 2 are equivalent as the proof of Proposition 1 in [12] is relativizable.
3 trivially implies 2. We show 2 ⇒ 3. Let (p,R) be many-one complete for
TFNPD. Choose i such that (i) ∀n∈Np(n) ≤ ni + i and (ii) L(PD

i ) = R (such i
exists by Definition 1). Then by the choice of i, the pair T = (n 	→ ni +i, L(PD

i ))
is a total polynomial search problem relative to D and (p,R) can be polynomially
many-one reduced to T via the identity.

Since we focus on the question of whether there exist complete total polyno-
mial search problems, Corollary 1 shows that we only need to consider problems
of the form (n 	→ ni + i, L(PD

i )). We occasionally use L(PD
i ) as an abbreviation

for this pair. Hence, L(PD
i ) denotes a total polynomial search problem if and

only if for each x there exists y with |y| ≤ |x|i + i and 〈x, y〉 ∈ L(PD
i ).

Let us introduce some quite specific notations that are designed for the con-
struction of oracles [2]. The domain and range of a function t are denoted by
dom(t) and ran(t), respectively. The support supp(t) of a real-valued function
t is the subset of the domain that consists of all values that t does not map to
0. We say that a partial function t is injective on its support if t(i, j) = t(i′, j′)
for (i, j), (i′, j′) ∈ supp(t) implies (i, j) = (i′, j′). If a partial function t is not
defined at point x, then t ∪ {x 	→ y} denotes the extension of t that at x has
value y.

If A is a set, then A(x) denotes the characteristic function at point x, i.e.,
A(x) is 1 if x ∈ A, and 0 otherwise. An oracle D ⊆ N is identified with its
characteristic sequence D(0)D(1) · · · , which is an ω-word. In this way, D(i)
denotes both, the characteristic function at point i and the i-th letter of the
characteristic sequence, which are the same. A finite word w describes an oracle
that is partially defined, i.e., only defined for natural numbers x < |w|. We can
use w instead of the set {i | w(i) = 1} and write for example A = w ∪ B, where
A and B are sets. For nondeterministic oracle Turing machines M we use the
following phrases: a computation Mw(x) definitely accepts, if at least one path
of the computation Mw(x) accepts and all queries on this path are < |w|. A
computation Mw(x) definitely rejects, if all paths of this computation reject and
all queries on these paths are < |w|. For deterministic oracle Turing machines
P we say: A computation Pw(x) definitely accepts (resp., definitely rejects), if it
accepts (resp., rejects) and the queries are < |w|.

For a deterministic or nondeterministic Turing machine M we say that the
computation Mw(x) is defined, if it definitely accepts or definitely rejects. For a
transducer F , the computation Fw(x) is defined, if all queries are < |w|.
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3 Oracle Construction

The following theorem guarantees that there is no relativizable proof for the
implication TFNP ⇒ DisjCoNP, which is interesting as the converse implication
has a relativizable proof [12]. Thus, TFNP is strictly stronger than DisjCoNP
relative to the oracle that we construct below.

The basic idea for the encoding of a coNP-complete pair originates from an
article by Glaßer et al. [5].

Theorem 1. There exists an oracle O relative to which the following holds:

– DisjCoNPO has a ≤pp,O
m -complete pair.

– TFNPO has no complete problem.

Proof. Let D be a (possibly partial) oracle and p be some prime. We define:

AD = {〈0m, 0t, x〉 | ∀y,|y|=|〈0m,0t,x〉|y0〈0m, 0t, x〉 ∈ D}
BD = {〈0m, 0t, x〉 | ∀y,|y|=|〈0m,0t,x〉|y1〈0m, 0t, x〉 ∈ D}
RD

p = {〈0n, y〉 | ∃k>0n = pk, |y| = 2n, y ∈ D} ∪ {〈x, y〉 | ∀k>0x �= 0pk}

Note the following:

– (AD, BD) is a disjoint coNP-pair, if and only if for each m, t, x ∈ N there
exist b ∈ {0, 1} and y of length |〈0m, 0t, x〉| with yb〈0m, 0t, x〉 /∈ D.

– (n 	→ 2n,RD
p ) is a total polynomial search problem if and only if for each

k ∈ N
+ it holds D ∩ {y | |y| = 2pk} �= ∅.

Preview of Construction. On the one hand, for all i �= j the construction tries
to achieve that L(Mi) ∩ L(Mj) �= ∅. If this is not possible, then (L(Mi), L(Mj))
inherently is a disjoint coNP-pair. Once we know this, we start to encode this
pair into the pair (A,B). Thus, finally (A,B) will be a ≤pp,O

m -complete disjoint
coNP-pair.

On the other hand, for all i the construction intends to ensure that L(Pi) is
not a total polynomial search problem, i.e., there exists x such that for no y of
length ≤ |x|i+i it holds that Pi(〈x, y〉) accepts. If this is not possible, then L(Pi)
inherently is a total polynomial search problem and in that case, we choose a
prime p and diagonalize against all pairs of FP-functions f and g making sure
that Rp is not polynomially many-one reducible to L(Pi) via f and g.

During the construction we maintain a growing collection of requirements.
These are represented in a partial function belonging to T := {t : N

+ × N
+ →

N ∪ {−p | p ∈ P} | dom(t) is finite and t is injective on its support}. If an oracle
satisfies the properties defined by some t ∈ T , then we will call it t-valid.

For i, j with i �= j and t(i, j) > 0 we define c(i, j, x) = 〈0t(i,j), 0|x|i+j+i+j , x〉.
A partial oracle w is called t-valid for t ∈ T if it satisfies the following properties.

V1 For all i, j ∈ N
+ with i �= j, if t(i, j) = 0, then there exists x such that Mw

i (x)
and Mw

j (x) definitely reject.
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(meaning: (L(Mi), L(Mj)) is not a disjoint coNP-pair.)
V2 Aw ∩ Bw = ∅.
V3 For all i, j ∈ N

+ and x ∈ N with i �= j and |x| ≥ t(i, j) > 0,
1. if Mw

i (x) rejects, then w contains all words y0c(i, j, x) < |w| with |y| =
|c(i, j, x)|.

2. if Mw
j (x) rejects, then w contains all words y1c(i, j, x) < |w| with |y| =

|c(i, j, x)|.
3. if Mw

i (x) accepts, then w does not contain all words y0c(i, j, x) with
|y| = |c(i, j, x)|, i.e., for one such word α, w(α) = 0 or w(α) is undefined).

4. if Mw
j (x) accepts, then w does not contain all words y1c(i, j, x) with

|y| = |c(i, j, x)|, i.e., for one such word α, w(α) = 0 or w(α) is undefined).
(meaning: if t(i, j) > 0, then the pair (L(Mi), L(Mj)) is encoded into the
pair (A,B) from stage t(i, j) on.)

V4 For all i ∈ N
+ with t(i, i) = 0, there exists x such that for all y of length

≤ |x|i + i, the computation Pw
i (〈x, y〉) definitely rejects.

(meaning: L(Pi) is not a total polynomial search problem.)
V5 For all i ∈ N

+ with t(i, i) = −p for some prime p and for each 0pk

for
k ∈ N

+, if w is defined for all words of length 2pk, then there exists y ∈ w
with |y| = 2pk.
(meaning: Rp will finally be a total polynomial search problem.)

The two subsequent claims follow directly from the definition of t-valid and
c(i, j, x). The first claim refers to V3 and implies that once we have made an
encoding for a computation Mw

i (x) or Mw
j (x), the computation cannot change

anymore. We will apply this result several times without mentioning it explicitly.

Claim 1. In V3, the computations Mw
i (x) and Mw

j (x) are defined if w is defined
for all words of length ≤ |c(i, j, x)|.

Claim 2. Let t, t′ ∈ T such that t′ is an extension of t. For oracles w ∈ Σ∗, if
w is t′-valid, then w is t-valid.

Oracle construction: Let T be an enumeration of (N+ × N
+) ∪ {(i, r, r′) |

i, r, r′ ∈ N
+} having the property that (i, i) appears earlier than (i, r, r′) for

all i, r, r′. Each element of T stands for a task. We treat the tasks in the order
specified by T and after treating a task we remove it and possibly other tasks
from T . We start with the nowhere defined function t0 and the t0-valid oracle
w0 = ε. Then we define functions t1, t2, . . . in T such that ti+1 is an extension of
ti and partial oracles w0 �� w1 �� w2 �� . . . such that each wi is ti-valid. Finally,
we choose O =

⋃∞
i=0 wi (note that O is totally defined since in each step we

strictly extend the oracle) and t = limi→∞ ti. We describe step s > 0, which
starts with a ts−1-valid oracle ws−1 and extends it to a ts-valid ws �� ws−1. Each
task is immediately deleted from the task list T after it is treated. We will argue
later that the construction is possible.
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– task (i, j) with i �= j: Let t′ = ts−1 ∪ {(i, j) 	→ 0}. If there exists a t′-valid
v �� ws−1, then let ts = t′ and let ws be the minimal t′-valid v �� ws−1.
Otherwise, let z = |ws−1|, let ts = ts−1 ∪ {(i, j) 	→ |z| + 1}, and choose
ws = ws−1b for b ∈ {0, 1} such that ws is ts-valid.

– task (i, i): Let t′ = ts−1 ∪{(i, i) 	→ 0}. If there exists a t′-valid v �� ws−1, then
let ts = t′, ws = v, and delete all (i, ·, ·) from the task list T . Otherwise, let
z = |ws−1|, let ts = ts−1 ∪ {(i, i) 	→ −p} for some prime p greater than |z|
and all primes p′ with −p′ ∈ ran(ts−1), and choose ws = ws−1b for b ∈ {0, 1}
such that ws is ts-valid.

– task (i, r, r′): It holds ts−1(i, i) = −p for a prime p, since otherwise, this task
would have been deleted in the treatment of task (i, i). Define ts = ts−1 and
choose a ts-valid ws �� ws−1 such that for some n, z ∈ N the following holds:

• Fws
r (0n) and Fws

r′ (〈0n, z〉) are defined.
• |z| ≤ |Fws

r (0n)|i + i and Pws
i (〈Fws

r (0n), z〉) definitely accepts.
• 〈0n, Fws

r′ (〈0n, z〉)〉 /∈ Rv
p for all v � ws.

(meaning: Rp is not polynomially many-one reducible to L(Pi) via
(Fr, Fr′))

For proving this construction to be possible we need the following two claims.

Claim 3. Let s > 0 and w � ws be ts-valid. For all x and all positive and
distinct i, j with ts(i, j) > 0, if Mw

i (x) and Mw
j (x) are defined, then Mw

i (x) or
Mw

j (x) accepts.

Proof. Assume that for some i, j, x both computations definitely reject. Let s′ ≤
s be the unique step, where the task (i, j) is treated. By Claim 2, the oracle
w is ts′−1-valid and as Mw

i (x) and Mw
j (x) definitely reject, it is even t′-valid

for t′ = ts′−1 ∪ {(i, j) 	→ 0}. But then the construction would have defined
ts′(i, j) = 0, a contradiction to ts′(i, i) = ts(i, i) > 0.

Claim 4. Let s ≥ 0 and w � ws be ts-valid. Then for z = |w| it holds:

1. if z = y0c(i, j, x), i, j ∈ N
+, |y| = |c(i, j, x)|, and |x| ≥ t(i, j) > 0:

(a) if Mw
i (x) rejects, then w1 is ts-valid.

(b) if Mw
i (x) accepts and y �= 1|c(i,j,x)|, then w1 is ts-valid.

(c) if Mw
i (x) accepts, y = 1|c(i,j,x)|, and there exists y′ < y with |y′| = |y|

and y′0c(i, j, x) /∈ w, then w1 is ts-valid.
(d) if Mw

i (x) accepts, then w0 is ts-valid.
2. if z = y1c(i, j, x), i, j ∈ N

+, |y| = |c(i, j, x)|, and |x| ≥ t(i, j) > 0:
(a) if Mw

j (x) rejects, then w1 is ts-valid.
(b) if Mw

j (x) accepts and y �= 1|c(i,j,x)|, then w1 is ts-valid.
(c) if Mw

j (x) accepts, y = 1|c(i,j,x)|, and there exists y′ < y with |y′| = |y|
and y′1c(i, j, x) /∈ w, then w1 is ts-valid.

(d) if Mw
j (x) accepts, then w0 is ts-valid.

3. if |z| is odd and not of the form yb〈0m, 0t, x〉 for b ∈ {0, 1} and m, t, x, y ∈ N

with |y| = |〈0m, 0t, x〉|, then w0 and w1 are ts-valid.
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4. if |z| = 2pk for a prime p with −p ∈ ran(t) and k ∈ N
+:

(a) w1 is ts-valid.
(b) if z �= 12pk

, then w0 is ts-valid.
(c) if z = 12pk

and there exists z′ ∈ w of length 2pk, then w0 is ts-valid.
5. if |z| = 2n for some n ∈ N and n �= pk for all primes p with −p ∈ ran(t) and

all k ≥ 1, then w0 and w1 are ts-valid.
6. in all other cases w0 is ts-valid.

Proof. Observe that V1 and V4 are not affected by extending the oracle.

1. In all subcases, V5 is still satisfied as we extend the oracle only for a word
of odd length. Moreover, V2 still holds as wb for b ∈ {0, 1} does not contain
any word of the form ỹ1c(i, j, x) with |ỹ| = c(i, j, x). In the subcases (a) and
(d), the extended oracle still satisfies V3. In case (b), w1 satisfies V3 as w1 is
not defined for 1|c(i,j,x)|0c(i, j, x) yet. In case (c), y′0c(i, j, x) /∈ w1 and thus
V3 is satisfied by w1.

2. In all subcases, V5 is still satisfied as we extend the oracle only for a word
of odd length. In the subcases (a) and (d), V3 is satisfied by the extended
oracle. In (b), V3 is satisfied as w1 is not defined for 1|c(i,j,x)|1c(i, j, x) yet.
In (c) it holds y′1c(i, j, x) /∈ w1 and therefore, w1 satisfies V3. It remains to
argue for V2.
By Claim 1, the computations Mw

i (x) and Mw
j (x) are defined and by Claim3,

at least one of them accepts. As we have already proven that in the present
case all the extended oracles satisfy V3, we obtain that none of these contains
all words of the form ỹbc(i, j, x) for b ∈ {0, 1} and |ỹ| = |c(i, j, x)|. Thus, the
extended oracles satisfy V2.

3. This follows immediately from the definition of t-valid.
4. Here V2 and V3 are not affected as we extend the oracle only for words of

even length. Moreover, in case (a) V5 trivially holds. In (b), V5 holds as w0
is not defined for 12pk

yet. In (c), V5 holds since z′ ∈ w � w0.
5. This follows immediately from the definition of t-valid.
6. Here z = yb〈0m, 0t, x〉 for b ∈ {0, 1} and m, t, x, y ∈ N with |y| = |〈0m, 0t, x〉|,

but 〈0m, 0t, x〉 �= c(i, j, x) for all distinct i, j ∈ N
+ with |x| ≥ t(i, j) > 0,

which implies that w0 satisfies V3. Clearly w0 satisfies V2. As |z| is odd, V5
is satisfied by w0.

We now argue that the construction described above is possible, i.e., in each
step s, the choices of ts and ws with the required properties are possible. Assume
this is not true and let s be minimal such that the construction fails in step s.

Assume step s treats a task (i, j) ∈ N
2. Then ts−1(i, j) is undefined as the

unique treatment of the task (i, j) takes place in step s. Hence, the definition
of ts is possible. If the construction defines ts = t′, then it is clearly possible.
Otherwise, by the choice of ts(i, j), the ts−1-valid oracle ws−1 is even ts-valid.
Then by Claim 4, we can extend ws−1 by one bit and obtain a ts-valid ws �� ws−1.
This contradicts the assumption that the construction fails in step s.

Now assume step s treats a task (i, r, r′). Then ts = ts−1 and ts(i, i) = −p
for some prime p. Choose n = pk such that ws−1 is undefined for all words of
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length ≥ 2n and 2n > 4 · q(n), where q is defined by

α 	→ [αr+r]+
[(

2·(α+(αr+r)i+i+1)
)r′

+r′
]
+

[(
2·(αr+r+(αr+r)i+i+1)

)i+i
]
.

Note that by the choice of q, for each oracle D and for all z of length
≤ |FD

r (0n)|i + i, it holds that q(n) is not less than the sum of the running
times of the three computations FD

r (0n), FD
r′ (〈0n, z〉), and PD

i (〈FD
r (0n), z〉). In

particular, for each oracle D, q(n) is not less than �(Y ), where Y is the set of all
oracle queries of the three mentioned computations.

By Claim 4, there exists an oracle u �� ws−1 that is ts-valid, defined for all
words of length < 2n and undefined for all other words. By Claim2, u is t′-valid
for the function t′ ∈ T undefined for (i, i) and equal to ts on all other inputs.

Now let u′ �� u be the minimal t′-valid oracle defined for all words of length
q(n) (such an oracle exists according to Claim 4). Hence, the computations
Fu′

r (0n), Fu′
r′ (〈0n, z〉), and Pu′

i (〈Fu′
r (0n), z〉) for all z of length ≤ (nr + r)i + i

are defined. Note that u′ does not contain any word of length 2n (cf. Claim 4.5).
We show that there exists a word z of length ≤ |Fu′

r (0n)|i + i such that
Pu′

i (〈Fu′
r (0n), z〉) accepts: for a contradiction, assume that Pu′

i (〈Fu′
r (0n), z〉)

rejects for all z of length ≤ |Fu′
r (0n)|i + i (by the choice of u′ it even defi-

nitely rejects). Let s′ be the minimal step for which ts′(i, i) is defined. Due to
Claim 2 the oracle u′ is ts′−1-valid and by our assumption, it even is t′′-valid for
t′′ = ts′−1 ∪ {(i, i) 	→ 0}. But then the construction would have defined ts′ = t′′,
a contradiction to ts′(i, i) = ts(i, i) = −p �= 0.

Hence, we can fix some word μ of length ≤ |Fu′
r (0n)|i + i such that

Pu′
i (〈Fu′

r (0n), μ〉) definitely accepts. Let U ′ be the set of all oracle questions
asked by the computations Fu′

r (0n), Fu′
r′ (〈0n, μ〉), and Pu′

i (〈Fu′
r (0n), μ〉). Thus,

�(U ′) ≤ q(n). Let U = (U ′ ∪ {Fu′
r′ (〈0n, μ〉)}) ∩ Σ≥2n. Then �(U) ≤ 2q(n). Define

Q0(U) = U and for j ∈ N, define Qj+1(U) as the set
⋃

y0c(i′,j′,x′)∈Qj(U),

i′ �=j′,ts(i
′,j′)>0,

|y|=|c(i′,j′,x′)|

{q | |q| ≥ 2n, the least accepting path of Mu′
i′ (x′) queries q} ∪

⋃

y1c(i′,j′,x′)∈Qj(U),

i′ �=j′,ts(i
′,j′)>0,

|y|=|c(i′,j′,x′)|

{q | |q| ≥ 2n, the least accepting path of Mu′
j′ (x′) queries q}.

Note that some computation Mu′
i′ (x′) might reject or it might not ask any ques-

tion on its least accepting path. Therefore, Qj+1(U) is not necessarily non-empty.
Furthermore, define Q(U) =

⋃∞
j=0 Qj(U).

Claim 5 �(Q(U)) ≤ 2�(U).

Proof. We show that for all j ∈ N it holds �(Qj+1(U)) ≤ 1/2 · �(Qj(U)). Then∑m
j=0

1/2j ≤ 2 for all m ∈ N implies �(Q(U)) ≤ 2 · �(U).
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Consider an element α of Qj(U). Assume α = ybc(i′, j′, x′) for b ∈ {0, 1},
distinct i′, j′ > 0, and x′, y ∈ N with |y| = |c(i′, j′, x′)| (otherwise, α generates
no elements in Qj+1(U)). By symmetry, it suffices to consider the case b = 0. If
Mu′

i′ (x′) rejects, then α generates no elements in Qj+1(U). Assume that Mu′
i′ (x′)

accepts. Then Qj+1(U) consists of all queries of length ≥ 2n that are asked on the

least accepting path of Mu′
i′ (x′). Recall c(i′, j′, x′) = 〈0ts(i

′,j′), 0|x′|i′+j′
+i′+j′

, x′〉.
Mu′

i′ (x′) runs for at most |x′|i′
+i′ steps and it holds |x′|i′

+i′ ≤ |x′|i′+j′
+i′+j′ ≤

|c(i′, j′, x′)| ≤ 1/2 · |α|. Hence, the sum of the lengths of all queries on the least
accepting path of Mu′

i′ (x′) is ≤ |α|/2. Thus,

�(Qj+1(U)) ≤
∑

y0c(i′,j′,x′)∈Qj(U),

i′ �=j′,ts(i
′,j′)>0,

|y|=|c(i′,j′,x′)|

|y0c(i′,j′,x′)|/2 +
∑

y1c(i′,j′,x′)∈Qj(U),

i′ �=j′,ts(i
′,j′)>0,

|y|=|c(i′,j′,x′)|

|y1c(i′,j′,x′)|/2 ≤ 1/2 · �(Qj(U)).

Claim 6. There exists a ts-valid v �� u defined for all words of length q(n) that
satisfies v(q) = u′(q) for all q ∈ Q(U).

Proof. Due to Claim 5 and �(U) ≤ 2q(n), it holds �(Q(U)) ≤ 4q(n). As by the
choice of n it holds 2n > 4q(n) ≥ �(Q(U)) ≥ |Q(U)|, there exists a word z′ ∈ Σ2n

that is not in Q(U). Let v′ be the minimal oracle defined for all words of length
2n and containing z′, i.e., interpreting u and v′ as sets we have v′ = u∪{z′}. As
u is ts-valid, Claim 4.4 yields that v′ is ts-valid. Furthermore, v′(q) = u′(q) for all
q ∈ Q(U) with q < |v′|, since u′ contains no words of length 2n, v′ ∩Σ2n = {z′},
and z′ /∈ Q(U).

For technical reasons we introduce the following notion. We say that an oracle
w respects blocks if the following holds for the greatest word z that w is defined
for (i.e., z = |w| − 1):

– if |z| is even, then z = 1|z|.
– if z = yb〈0m, 0t, x〉 for b ∈ {0, 1} and m, t, x, y ∈ N with |y| = |〈0m, 0t, x〉|,

then y = 1|y| and b = 1.

That means, if w respects blocks, then for each block, w is either defined for all
words of the block or for no word of the block, where a block is either a set of
the form Σ2r for r ∈ N or a set of the form {yb〈0m, 0t, x〉 | |y| = |〈0m, 0t, x〉|, b ∈
{0, 1}} for fixed m, t, x ∈ N. We now start with v′ and successively extend the
current oracle blockwise (resp., bitwise if the next word is not contained in a
block). At this point we refer to the definition of the bijection over which we
identify words and number. This bijection defines an order on the set of words
such that e.g. for fixed words m, t, x, sets of the form {yb〈0m, 0t, x〉 | |y| =
|〈0m, 0t, x〉|, b ∈ {0, 1}} are intervals. Note that u′ respects blocks. It suffices to
prove the following assertion.

For each ts -valid w � v′ with |w| < |u′| that respects blocks and satisfies w(q) =

u′(q) for all q ∈ Q(U) with q < |w|, there exists a ts -valid w′ �� w with |w′| ≤ |u′|
that respects blocks and satisfies w′(q) = u′(q) for all q ∈ Q(U) with q < |w′|. (1)
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In each step, we will extend the current oracle by no more than one block. Hence,
we will finally receive an oracle of length |u′|, i.e., the final oracle is defined for all
words of length q(n). Let w be an oracle according to (1) and z be the least word
that w is not defined for (i.e., z = |w|). Then the following cases are possible.

Case 1: |z| is odd, but not of the form yb〈0m, 0t, x〉 for b ∈ {0, 1} and
m, t, x, y ∈ N with |y| = |〈0m, 0t, x〉|. In this case, by Claim 4.3, both w0 and
w1 are ts-valid. Consequently, if z ∈ u′, then we choose w′ = w1, otherwise,
we choose w′ = w0. Then w′ respects blocks (note that z is not contained in a
block) and satisfies w′(q) = u′(q) for all q ∈ Q(U) with q < |w′|.

Case 2: z = 0|〈0m,0t,x〉|0〈0m, 0t, x〉 for m, t, x ∈ N, but it does not hold:
〈0m, 0t, x〉 = c(i′, j′, x) for distinct and positive i′ and j′ with |x| ≥ ts(i′, j′) >
0. Let Y0 = {y0〈0m, 0t, x〉 | |y| = |〈0m, 0t, x〉|}, Y1 = {y1〈0m, 0t, x〉 | |y| =
|〈0m, 0t, x〉|}, and Y = Y0∪Y1. Recall that u′ is t′-valid. Hence, by V2, (u′∩Y0) �=
Y0 or (u′ ∩Y1) �= Y1. By symmetry, it suffices to consider the case (u′ ∩Y0) �= Y0.
Let w′ �� w be the minimal oracle that is defined for all words in Y and contains
all words in u′ ∩ Q(U) ∩ Y , i.e., when interpreting the oracles as sets it holds
w′ = w ∪ (u′ ∩ Q(U) ∩ Y ). Clearly w′ respects blocks and w′(q) = u′(q) for all
q ∈ Q(U) with q < |w′|. We show that w′ is ts-valid. As (u′ ∩ Y0) �= Y0 and
w′ ∩ Y ⊆ u′, it also holds (w′ ∩ Y0) �= Y0. Hence, 〈0m, 0t, x〉 /∈ Aw′

and thus w′

satisfies V2. V1 and V4 are not affected by extending w to w′. Furthermore, w′

satisfies V5, since we only extended the oracle for words of odd length. Finally,
V3 also holds, since by assumption, it does not hold that 〈0m, 0t, x〉 = c(i′, j′, x)
for distinct and positive i′ and j′ with |x| ≥ ts(i′, j′) > 0.

Case 3: z = 0|c(i′,j′,x)|0c(i′, j′, x) for positive and distinct i′ and j′ and
x ∈ N with |x| ≥ ts(i′, j′) > 0. We define Y0 = {y0c(i′, j′, x) | |y| = |c(i′, j′, x)|},
Y1 = {y1c(i′, j′, x) | |y| = |c(i′, j′, x)|}, and Y = Y0 ∪ Y1. The computations
Mw

i′ (x) and Mw
j′ (x) are defined by Claim1. By Claim 3, one of the computations

accepts. By symmetry, it is sufficient to consider the case that Mw
i′ (x) definitely

accepts. We now consider two subcases.
Case 3a: Mw

j′ (x) definitely rejects. Choose w′ �� w to be the minimal oracle
that is defined for all words in Y and contains all words in u′ ∩Q(U)∩Y and all
words in Y1, i.e., interpreting oracles as sets it holds w′ = w∪Y1∪

(
u′∩Q(U)∩Y

)
.

As |c(i′, j′, x)| ≥ n and thus |Y0| ≥ 2n > 4q(n) ≥ |Q(U)|, there exists a word
in Y0 − w′. Hence, by the statements 1 and 2 of Claim 4, w′ is ts-valid. Clearly
w′ respects blocks. It remains to show that w′(q) = u′(q) for all q ∈ Q(U) with
q < |w′|. For all q < |w| this holds by assumption. By the choice of w′, the
assertion also holds for all q ∈ Y0. If q ∈ Q(U) ∩ Y1, then q ∈ w′, and we have to
show that q ∈ u′. For a contradiction, assume q /∈ u′. Then, as u′ is t′-valid and
|x| ≥ t′(i′, j′) = ts(i′, j′) > 0, Mu′

j′ (x) accepts (cf. V3). By the choice of Q(U), all
queries q′ answered on the least accepting path of Mu′

j′ (x) are in Q(U). Moreover,
it holds |q′| < |c(i′, j′, x)| for all these queries as Mu′

j′ (x) runs for ≤ |x|j′
+ j′

steps. But then for all these queries q′, w is defined for q′ and by assumption,
w(q′) = u′(q′). It follows that Mw

j′ (x) accepts on the same path that Mu′
j′ (x)

accepts on, a contradiction. Hence, q ∈ u′ and therefore, w′ and u′ agree on all
queries in Q(U) that are less than |w′|.
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Case 3b: Mw
j′ (x) definitely accepts. Choose w′ �� w to be the minimal oracle

that is defined for all words in Y and contains all words in u′ ∩ Q(U) ∩ Y , i.e.,
interpreting oracles as sets it holds w′ = w∪(u′∩Q(U)∩Y ). Clearly, w′(q) = u′(q)
for all words q < |w′| and w′ respects blocks.

Moreover, |c(i′, j′, x)| ≥ n, |Y0| = |Y1| ≥ 2n > 4q(n) ≥ |Q(U)|, and thus
there exists a word in Y0 − w′ and a word in Y1 − w′. Hence, by the statements
1 and 2 of Claim 4, the oracle w′ is ts-valid.

Case 4: |z| is even, i.e., |z| = 2r for some r ≥ n. If r �= pk for all primes p with
−p ∈ ran(ts) and all k ≥ 1, then choose w′ �� w to be the minimal oracle that is
defined for all words of length ≤ 2r and contains all words in u′ ∩ Q(U) ∩ Σ2r,
i.e., w′ = w ∪ (u′ ∩ Q(U) ∩ Σ2r) when the oracles are interpreted as sets. Then
w′ respects blocks, w′(q) = u′(q) for all q ∈ Q(U) with q ≤ |w′|, and by Claim
4.5, the oracle w′ is ts-valid.

Now consider the case that r = pk for some prime p with −p ∈ ran(ts)
and some k ≥ 1. As r ≥ n and 2n > 4q(n) ≥ |Q(U)|, there exists a word
y ∈ Σ2r − Q(U). Choose w′ �� w to be the minimal oracle that is defined for all
words in Σ2r and contains y and all words in u′ ∩ Q(U) ∩ Σ2r, i.e., interpreting
oracles as sets it holds w′ = w∪{y}∪(u′ ∩Q(U)∩Σ2r). Then w′ respects blocks,
w′(q) = u′(q) for all q ∈ Q(U) with q < |w′| (since y /∈ Q(U)), and by Claim 4.4,
the oracle w′ is ts-valid.

This shows (1) and consequently finishes the proof of Claim6.
As all queries of length ≥ 2n of the computations Fu′

r (0n), Fu′
r′ (〈0n, μ〉),

and Pu′
i (〈Fu′

r (0n), μ〉) are in Q(U), u′ and v agree on these queries by Claim 6,
and u′ ∩ Σ<2n = v ∩ Σ<2n = u, it holds Fu′

r (0n) = F v
r (0n), Fu′

r′ (〈0n, μ〉) =
F v

r′(〈0n, μ〉), and Pu′
i (〈Fu′

r (0n), μ〉) = P v
i (〈F v

r (0n), μ〉). Because v is defined for
all words of length ≤ q(n), all these computations are defined. In particular,

F v
r (0n) and F v

r′(〈0n, μ〉) are defined, (2)

|μ| ≤ |F v
r (0n)|i + i, and P v

i (〈F v
r (0n), μ〉) definitely accepts. (3)

We show
〈0n, F v

r′(〈0n, μ〉)〉 /∈ Rv′
p for all v′ � v : (4)

Fix v′ � v and write z = F v
r′(〈0n, μ〉) = Fu′

r′ (〈0n, μ〉). If |z| = 2n, then z ∈ Q(U)
and as v is defined for z, it holds v′(z) = v(z) = u′(z) = 0 (cf. Claim 6), since
u′ does not contain any word of length 2n. Hence, 〈0n, z〉 /∈ Rv′

p . Otherwise,
〈0n, z〉 /∈ Rv′

p as Rv′
p only contains words of the form 〈0κ, y〉 for y of length 2κ,

κ ∈ N. This shows (4).
The fact that v is ts-valid by Claim 6 and the assertions (2), (3), and (4)

show that the task (i, r, r′) can be treated as described in the construction, a
contradiction to the assumption that the construction fails in step s. This shows
that the oracle construction described above is possible.

The ≤pp,O
m -completeness of (AO, BO) for DisjCoNPO can be shown by a

straightforward argument. Hence, the subsequent claim finishes the proof of
Theorem 1.
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Claim 7. TFNPO has no complete problem.

Proof. By Corollary 1, it suffices to show that no total polynomial search problem
of the form (n 	→ ni + i, L(PO

i )) is many-one complete. For a contradiction,
assume there exists i such that (n 	→ ni + i, L(PO

i )) is many-one complete for
TFNPO. Hence, t(i, i) = −p for some prime p and by V5, (n 	→ 2n,RO

p ) is a total
polynomial search problem that is polynomially many-one reducible to L(PO

i )
via FO

r and FO
r′ for some r and r′, i.e., for all x and z it holds

PO
i (〈FO

r (x), z〉) accepts ⇒ 〈x, FO
r′ (〈x, z〉)〉 ∈ RO

p . (5)

Let s be the step that treats the task (i, r, r′). Then by construction there exist
n, z ∈ N such that the following holds:

– Fws
r (0n) and Fws

r′ (〈0n, z〉) are defined.
– Pws

i (〈Fws
r (0n), z〉) definitely accepts.

– 〈0n, Fws

r′ (〈0n, z〉)〉 /∈ Rv
p for all v � ws.

As O is an extension of ws, this is a contradiction to (5), which finishes the proof
of Claim 7 and hence the proof of Theorem 1.

4 Conclusion

The following figure illustrates the current state of the art regarding the conjec-
tures presented by Pudlák [12].

Fig. 1. Consider the conjectures as the relativized versions of the original statements.
For the definition of RFN1 we refer to [12]. Note, however, that RFN1 is equivalent to
CON∨SAT [6]. Solid arrows mean implications. A dashed arrow from some conjecture
A to another conjecture B means that there is an oracle X against the implication
A ⇒ B, i.e., relative to X, it holds A ∧ ¬B.
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Abstract. We study a problem where k autonomous mobile agents are
initially located on distinct nodes of a weighted graph (with n nodes and
m edges). Each autonomous mobile agent has a predefined velocity and
is only allowed to move along the edges of the graph. We are interested
in delivering a package, initially positioned in a source node s, to a des-
tination node y. The delivery is achieved by the collective effort of the
autonomous mobile agents, which can carry and exchange the package
among them. The objective is to compute a delivery schedule that min-
imizes the delivery time of the package. In this paper, we propose an
O(kn log(kn) + km) time algorithm for this problem. This improves the
previous state-of-the-art O(k2m + kn2 + APSP) time algorithm for this
problem, where APSP stands for the running-time of an algorithm for
the All-Pairs Shortest Paths problem.

Keywords: Mobile agents · Dijkstra’s algorithm ·
Polynomial-time algorithm · Time-dependent shortest paths

1 Introduction

Enterprises, such as DHL, UPS, Swiss Post, and Amazon, are now delivering
goods and packages to their clients using autonomous drones [1,17]. Those drones
depart from a base (which can be static, such as a warehouse [15], or mobile,
such as a truck or a van [16]) and deliver the package into their clients’ houses
or in the street. However, packages are not delivered to a client that is too far
from the drone’s base due to the energy limitations of such autonomous aerial
vehicles.

In the literature, we find some proposals for delivering packages over a longer
distance. One of them, proposed by Hong, Kuby, and Murray [15], is to install
recharging bases in several spots, which allows a drone to stop, recharge, and
continue its path. However, this strategy may result in a delayed delivery, because
drones may stop several times to recharge during a single delivery.
c© Springer Nature Switzerland AG 2019
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Fig. 1. (a) Package exchange on a node; (b) package exchange on an edge.

A manner to overcome this limitation is to use a swarm of drones. The idea
of this technique is to position drones in recharging bases all over the delivery
area. Therefore, a package can be delivered from one place to another through
the collective effort of such drones, which can exchange packets among them to
achieve a faster delivery. One may note that, when not carrying a package, a
drone is stationed in its recharging base, waiting for the next package arrival.
The problem of computing a package delivery schedule with minimum delivery
time for a single package is called the FastDelivery problem [4].

We can model the input to the FastDelivery problem as a graph G =
(V,E) with |V | = n and |E| = m, with a positive length le associated with
each edge e ∈ E, and a set of k autonomous mobile agents (e. g., autonomous
drones) located initially on distinct nodes p1, p2, . . . , pk of G. Each agent i has
a predefined velocity vi > 0. Mobile agent i can traverse an edge e of the graph
in le/vi time. The package handover between agents can be done on the nodes
of the graph or in any point of the graph’s edges, as exemplified in Fig. 1. The
objective of FastDelivery is to deliver a single package, initially located in a
source node s ∈ V , to a target node y ∈ V while minimizing the delivery time T .

Bärtschi et al. [4] also consider the case where each agent i is additionally
associated with a weight ωi > 0 and consumes energy ωi · le when traversing
edge e. For this model, the total energy consumption E of a solution becomes
relevant as well, and one can consider the objective of minimizing E among all
solutions that have the minimum delivery time T (or vice versa), or of minimizing
a convex combination ε · T + (1 − ε) · E for a given ε ∈ (0, 1).

1.1 Related Work

The problem of delivering packages through a swarm of autonomous drones has
been studied in the literature. The work of Bärtschi et al. [3] considers the
problem of delivering packages while minimizing the total energy consumption
of the drones. In their work, all drones have the same velocity but may have
different weights, and the package’s exchanges between drones are restricted to
take place on the graph’s nodes. They show that this problem is NP-hard when
an arbitrary number of packages need to be delivered, but can be solved in
polynomial time for a single package, with complexity O(k + n3).

When minimizing only the delivery time T , one can solve the problem of
delivering a single package with autonomous mobile agents with different veloc-
ities in polynomial-time: Bärtschi et al. [4] gave an O(k2m + kn2 + APSP) algo-
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rithm for this problem, where APSP stands for the time complexity of the All-
Pairs Shortest Paths problem.

Some work in the literature considered the minimization of both the total
delivery time and the energy consumption. It was shown that the problem of
delivering a single package with autonomous agents of different velocities and
weights is solvable in polynomial-time when lexicographically minimizing the
tuple (E , T ) [5]. On the other hand, it is NP-hard to lexicographically minimize
the tuple (T , E) or a convex combination of both parameters [4].

A closely related problem is the Budgeted Delivery Problem (BDP) [2,8,9],
in which a package needs to be delivered by a set of energy-constrained
autonomous mobile agents. In BDP, the objective is to compute a route to deliver
a single package while respecting the energy constraints of the autonomous
mobile agents. This problem is weakly NP-hard in line graphs [9] and strongly
NP-hard in general graphs [8]. A variant of this problem is the Returning
Budgeted Delivery Problem (RBDP) [2], which has the additional constraint
that the energy-constrained autonomous agents must return to their original
bases after carrying the package. Surprisingly, this new restriction makes RBDP
solvable in polynomial time in trees. However, it is still strongly NP-hard even
for planar graphs.

A variant of the classical search problem (also known as the cow-path prob-
lem) where an agent aims to reach the location of a target as quickly as possible
and the search space contains additional expulsion points has recently been stud-
ied by Gasieniec et al. [13]. Visiting an expulsion point updates the speed of the
agent to the maximum of its current speed and the expulsion speed associated
with that expulsion point. They present online and offline algorithms for one-
and two-dimensional search.

1.2 Our Contribution

This paper deals with the FastDelivery problem. We focus on the first objec-
tive, i.e., computing delivery schedules with the minimum delivery time. We
provide an O(kn log(kn) + km) time algorithm for FastDelivery, which is
more efficient than the previous O(k2m + kn2 + APSP) time algorithm for this
problem [4].

Preliminaries are presented in Sect. 2. We then describe our algorithm to
solve FastDelivery in Sect. 3. The algorithm uses as a subroutine, called once
for each edge of G, an algorithm for a problem that we refer to as FastLineDe-
livery, which is presented in Sect. 4.

2 Preliminaries

As mentioned earlier, in the FastDelivery problem we are given an undirected
graph G = (V,E) with n = |V | nodes and m = |E| edges. Each edge e ∈ E has
a positive length le. We assume that a path can start on a node or in some point
in the interior of an edge. Analogously, it can end on another node or in some
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point in the interior of an edge. The length of a path is equal to the sum of
the lengths of its edges. If a path starts or ends at a point in the interior of an
edge, only the portion of its length that is traversed by the path is counted. For
example, a path that is entirely contained in an edge e = {u, v} of length le = 10
and starts at distance 2 from u and ends at distance 5 from u has length 3.

We are also given k mobile agents, which are initially located at nodes
p1, p2, . . . , pk ∈ V . Each agent i has a positive velocity (or speed) vi, 1 ≤ i ≤ k.
A single package is located initially (at time 0) on a given source node s ∈ V and
needs to be delivered to a given target node y ∈ V . An agent can pick up the
package in one location and drop it off (or hand it to another agent) in another
one. An agent with velocity vi takes time d/vi to carry a package over a path
of length d. The objective of FastDelivery is to determine a schedule for the
agents to deliver the package to node y as quickly as possible, i.e., to minimize
the time when the package reaches y.

We assume that there is at most one agent on each node. This assumption
can be justified by the fact that, if there were several agents on the same node,
we would use only the fastest one among them. Therefore, as already observed
in [4], after a preprocessing step running in time O(k + |V |), we may assume
that k ≤ n.

The following lemma from [4] establishes some useful properties of an optimal
delivery schedule for the mobile agents.

Lemma 1 (Bärtschi et al., 2018). For every instance of FastDelivery,
there is an optimum solution in which (i) the velocities of the involved agents
are strictly increasing, and (ii) no involved agent arrives on its pick-up location
earlier than the package (carried by the preceding agent).

3 Algorithm for the Fast Delivery Problem

Bärtschi et al. [4] present a dynamic programming algorithm that computes an
optimum solution for FastDelivery in time O(k2m+kn2+APSP) ⊆ O(k2n2+
n3), where APSP denotes the time complexity of an algorithm for solving the
all-pairs shortest path problem. In this paper we design an improved algorithm
with running time O(km + nk log(nk)) ⊆ O(n3) by showing that the problem
can be solved by adapting the approach of Dijkstra’s algorithm for edges with
time-dependent transit times [10,11].

For any edge {u, v}, we denote by at(u, v) the earliest time for the package
to arrive at v if the package is at node u at time t and needs to be carried
over the edge {u, v}. We refer to the problem of computing at(u, v), for a given
value of t that represents the earliest time when the package can reach u, as
FastLineDelivery. In Sect. 4, we will show that FastLineDelivery can be
solved in O(k) time after a preprocessing step that spends O(k log k) time per
node. Our preprocessing calls PreprocessReceiver(v) once for each node v ∈
V \ {s} at the start of the algorithm. Then, it calls PreprocessSender(u, t)
once for each node u ∈ V , where t is the earliest time when the package can
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reach u. Both preprocessing steps run in O(k log k) time per node. Once both
preprocessing steps have been carried out, a call to FastLineDelivery(u, v, t)
computes at(u, v) in O(k) time.

Algorithm 1. Algorithm for FastDelivery

Data: graph G = (V, E) with positive edge lengths le and source node s ∈ V ,
target node y ∈ V ; k agents with velocity vi and initial location pi for
1 ≤ i ≤ k

Result: earliest arrival time dist(y) for package at destination
1 begin
2 compute d(pi, v) for 1 ≤ i ≤ k and all v ∈ V ;
3 construct list A(v) of agents in order of increasing arrival times and

velocities for each v ∈ V ;
4 PreprocessReceiver(v) for all v ∈ V \ {s};
5 dist(s) ← ts; /* time when first agent reaches s */

6 dist(v) ← ∞ for all v ∈ V \ {s};
7 final(v) ← false for all v ∈ V ;
8 insert s into priority queue Q with priority dist(s);
9 while Q not empty do

10 u ← node with minimum dist value in Q;
11 delete u from Q;
12 final(u) ← true;
13 if u = y then
14 break;
15 end
16 t ← dist(u); /* time when package reaches u */

17 PreprocessSender(u, t);
18 forall the neighbors v of u with final(v) = false do
19 at(u, v) ← FastLineDelivery(u, v, t);
20 if at(u, v) < dist(v) then
21 dist(v) ← at(u, v);
22 if v ∈ Q then
23 decrease priority of v to dist(v);
24 else
25 insert v into Q with priority dist(v);
26 end

27 end

28 end

29 end
30 return dist(y);

31 end

Algorithm 1 shows the pseudo-code for our solution for FastDelivery. Ini-
tially, we run Dijkstra’s algorithm to solve the single-source shortest paths prob-
lem for each node where an agent is located initially (line 2). This takes time
O(k(n log n + m)) if we use the implementation of Dijkstra’s algorithm with
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Fibonacci heaps as priority queue [12] and yields the distance d(pi, v) (with
respect to edge lengths le) between any node pi where an agent is located and
any node v ∈ V . From this we compute, for every node v, the earliest time when
each mobile agent can arrive at that node: The earliest possible arrival time of
agent i at node v is ai(v) = d(pi, v)/vi. Then, we create a list of the arrival times
of the k agents on each node (line 3). For each node, we sort the list of the k
agents by ascending arrival time in O(k log k) time, or O(nk log k) in total for
all nodes. We then discard from the list of each node all agents that arrive at
the same time or after an agent that is strictly faster. If several agents with the
same velocity arrive at the same time, we keep one of them arbitrarily. Let A(v)
denote the resulting list for node v. Those lists will be used in the solution of
the FastLineDelivery problem described in Sect. 4.

For each node v, we maintain a value dist(v) that represents the current
upper bound on the earliest time when the package can reach v (lines 5 and 6).
The algorithm maintains a priority queue containing nodes that have a finite
dist value, with the dist value as the priority (line 8). In each step, a node u
with minimum dist value is removed from the priority queue (lines 10 and 11),
and the node becomes final (line 12). Nodes that are not final are called non-
final. The dist value of a final node will not change any more and represents
the earliest time when the package can reach the node (line 16). After u has
been removed from the priority queue, we compute for each non-final neighbor
v of u the time at(u, v), where t = dist(u), by solving the FastLineDelivery
problem (line 19). If v is already in Q, we compare at(u, v) with dist(v) and, if
at(u, v) < dist(v), update dist(v) to dist(v) = at(u, v) and adjust the priority
of v in Q accordingly (line 23). On the other hand, if v is not yet in Q, we set
dist(v) = at(u, v) and insert v into Q (line 25).

Let ts be the earliest time when an agent reaches s (or 0, if an agent is
located at s initially). Let i′ be that agent. As the package must stay at s from
time 0 to time ts, we can assume that i′ brings the package to s at time ts.
Therefore, we initially set dist(s) = ts and insert s into the priority queue Q
with priority ts. The algorithm terminates when y becomes final (line 14) and
returns the value dist(y), i.e., the earliest time when the package can reach y.
The schedule that delivers the package to y by time dist(y) can be constructed
in the standard way, by storing for each node v the predecessor node u such
that dist(v) = adist(u)(u, v) and the schedule of the solution to FastLineDe-
livery(u, v, dist(u)).

Theorem 1. Algorithm1 computes an optimal solution to the FastDelivery
problem in O(nk log(nk) + mk) time.

Proof. It is easy to see that at(u, v) ≤ at′(u, v) holds for t′ ≥ t in our setting,
because the agents that transport the package from u to v starting at time t
would also be available to transport the package from u to v at time t′ ≥ t
following the same schedule, shifted by t′ − t time units. Thus, the network
has the FIFO property (or non-overtaking property), and it is known that the
modified Dijkstra algorithm is correct for such networks [11].
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Furthermore, we can observe that concatenating the solutions of Fast-
LineDelivery (which are computed by Algorithm4 in Sect. 4 and which are
correct by Theorem 2 in Sect. 4) over the edges of the shortest path from s to y
determined by Algorithm1 indeed gives a feasible solution to FastDelivery:
Assume that the package reaches u at time t while being carried by agent i and
is then transported from u to v over edge {u, v}, reaching v at time at(u, v).
The only agents involved in transporting the package from u to v in the solution
returned by FastLineDelivery(u, v, t) will have velocity at least vi because
agent i arrives at u before time t, i.e., ai(u) ≤ t, and hence no slower agent
would be used to transport the package from u to v. These agents have not been
involved in transporting the package from s to u by property (i) of Lemma 1,
except for agent i who is indeed available at node u from time t.

The running time of the algorithm consists of the following components:
Computing standard shortest paths with respect to the edge lengths le from
the locations of the agents to all other nodes takes O(k(n log n + m)) time. The
time complexity of the Dijkstra algorithm with time-dependent transit times
for a graph with n nodes and m edges is O(n log n + m). The only extra work
performed by our algorithm consists of O(k log k) pre-processing time for each
node and O(k) time per edge for solving the FastLineDelivery problem, a
total of O(nk log k + mk) time. ��

4 An Algorithm for Fast Line Delivery

In this section we present the solution to FastLineDelivery that was used as
a subroutine in the previous section. We consider the setting of a single edge
e = {u, v} with end nodes u and v. The objective is to deliver the package from
node u to node v over edge e as quickly as possible. In our illustrations, we
use the convention that v is drawn on the left and u is drawn on the right. We
assume that the package reaches u at time t (where t is the earliest possible time
when the package can reach u) while being carried by agent i0.

As discussed in the previous section, let A(v) = (a1, a2, . . . , a�) be the list of
agents arriving at node v in order of increasing velocities and increasing arrival
times. For 1 ≤ i ≤ �, denote by ti the time when ai reaches v, and by vi the
velocity of agent ai. We have ti < ti+1 and vi < vi+1 for 1 ≤ i < �.

Let B(u) = (b1, b2, . . . , br) be the list of agents with increasing velocities and
increasing arrival times arriving at node u, starting with the agent i0 whose
arrival time is set to t. The list B(u) can be computed from A(u) in O(k) time
by discarding all agents slower than i0 and setting the arrival time of i0 to t.
For 1 ≤ i ≤ r, let t′i denote the time when bi reaches w, and let v′

i denote the
velocity of bi. We have t′i < t′i+1 and v′

i < v′
i+1 for 1 ≤ i < r.

As k is the total number of agents, we have � ≤ k and r ≤ k. In the following,
we first introduce a geometric representation of the agents and their potential
movements in transporting the package from u to v (Sect. 3) and then present
the algorithm for FastLineDelivery (Sect. 4.2).
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4.1 Geometric Representation and Preprocessing

Figure 2 shows a geometric representation of how agents a1, . . . , a� move towards
u if they start to move from v to u immediately after they arrive at v. The vertical
axis represents time, and the horizontal axis represents the distance from v (in
the direction towards u or, more generally, any neighbor of v). The movement of
each agent ai can be represented by a line with the line equation y = ti + x/vi

(i.e., the y value is the time when agent ai reaches the point at distance x from
v). After an agent is overtaken by a faster agent, the slower agent is no longer
useful for picking up the package and returning it to v, so we can discard the part
of the line of the slower agent that lies to the right of such an intersection point
with the line of a faster agent. After doing this for all agents (only the fastest
agent a� does not get overtaken and will not have part of its line discarded), we
obtain a representation that we call the relevant arrangement Ψ of the agents
a1, . . . , a�. In the relevant arrangement, each agent ai is represented by a line
segment that starts at (0, ti), lies on the line y = ti + x/vi, and ends at the first
intersection point between the line for ai and the line of a faster agent aj , j > i.
For the fastest agent a�, there is no faster agent, and so the agent is represented
by a half-line. One can view the relevant arrangement as representing the set
of all points where an agent from A(v) travelling towards u could receive the
package from a slower agent travelling towards v.

v towards u

time

v towards u

time

Fig. 2. Geometric representation of agents moving from u towards v (left), and their
relevant arrangement with removed half-lines shown dashed (right)

The relevant arrangement has size O(k) because each intersection point can
be charged to the slower of the two agents that create the intersection. It can
be computed in O(k log k) time using a sweep-line algorithm very similar to the
algorithm by Bentley and Ottmann [6] for line segment intersection. The relevant
arrangement is created by a call to PreprocessReceiver(v) (see Algorithm 2).

For the agents in the list B(u) = (b1, . . . , br) that move from u towards v, we
use a similar representation. However, in this case we only need to determine the
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Algorithm 2. Algorithm PreprocessReceiver(v)
Data: Node v (and list A(v) of agents arriving at v)
Result: Relevant arrangement Ψ

1 Create a line y = ti + x/vi for each agent ai in A(v);
2 Use a sweep-line algorithm (starting at x = 0, moving towards larger x values)

to construct the relevant arrangement Ψ ;

Algorithm 3. Algorithm PreprocessSender(u, t)
Data: Node u (and list A(u) of agents arriving at u), time t when package

arrives at u (carried by agent i0)
Result: Lower envelope L of agents carrying package away from u

1 B(u) ← A(u) with agents slower than i0 removed and arrival time of i0 set to t;
2 Create a line y = t′

i − x/v′
i for each agent bi in B(v);

3 Use a sweep-line algorithm (starting at x = 0, moving towards smaller x values)
to construct the lower envelope L;

lower envelope of the lines representing the agents. See Fig. 3 for an example.
The lower envelope L can be computed in O(k log k) time (e.g., using a sweep-
line algorithm, or via computing the convex hull of the points that are dual to
the lines [7, Sect. 11.4]). The call PreprocessSender(u, t) (see Algorithm 3)
determines the list B(u) from A(u) and t in O(k) time and then computes the
lower envelope of the agents in B(u) in time O(k log k). When we consider a
particular edge e = {u, v}, we place the lower envelope L in such a way that the
position on the x-axis that represents u is at x = le. We say in this case that
the lower envelope is anchored at x = le. Algorithm 3 creates the lower envelope
anchored at x = 0, and the lower envelope anchored at x = le can be obtained
by shifting it right by le.

4.2 Main Algorithm

Assume we have computed the relevant arrangement Ψ of the agents in the list
A(v) = (a1, . . . , a�) and the lower envelope L of the lines representing the agents
in the list B(u) = (b1, b2, . . . , br).

The lower envelope L of the agents in B(u) represents the fastest way for
the package to be transported from u to v if only agents in B(u) contribute to
the transport and these agents move from u towards v as quickly as possible.
At each time point during the transport, the package is at the closest point to
v that it can reach if only agents in B(u) travelling from u to v contribute to
its transport. We say that such a schedule where the package is as close to v
as possible at all times is fastest and foremost (with respect to a given set of
agents).

The agents in A(v) can potentially speed up the delivery of the package
to v by travelling towards u, picking up the package from a slower agent that
is currently carrying it, and then turning around and moving back towards v
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time

towards v

t

u

Fig. 3. Geometric representation of agents moving from u towards v (lower envelope
highlighted)

as quickly as possible. By considering intersections between L and the relevant
arrangement Ψ of A(v), we can find all such potential handover points. More
precisely, we trace L from u (i.e., x = d(u, v)) towards v (i.e., x = 0). Assume
that q is the first point where a handover is possible. If a faster agent j from
A(v) can receive the package from a slower agent i at point q of L, we update L
by computing the lower envelope of L and the half-line representing the agent
j travelling from point q towards v. If the intersection point is with an agent
j from A(v) that is not faster than the agent i that is currently carrying the
package, we ignore the intersection point. We then continue to trace L towards
v and process the next intersection point in the same way. We repeat this step
until we reach v (i.e., x = 0). The final L represents an optimum solution to
the FastLineDelivery problem, and the y-value of L at x = 0 represents the
arrival time of the package at v. See Algorithm 4 for pseudo-code of the resulting
algorithm.

An illustration of step 7 of Algorithm4, which updates L by incorporating
a faster agent from A(v), is shown in Fig. 4. Note that the time for executing
this step is O(g), where g is the number of segments removed from L in the
operation. As a line segment corresponding to an agent can only be removed
once, the total time spent in executing step 7 (over all executions of step 7 while
running Algorithm4) is O(k).

Finally, we need to analyze how much time is spent in finding intersection
points with line segments of the relevant arrangement Ψ while following the
lower envelope L from u to v. See Fig. 5 for an illustration. We store the relevant
arrangement using standard data structures for planar arrangements [14], so that
we can follow the edges of each face in clockwise or counter-clockwise direction
efficiently (i.e., we can go from one edge to the next in constant time) and move
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Algorithm 4. Algorithm FastLineDelivery(u, v, t)
Data: Edge e = {u, v}, earliest arrival time t of package at u, lists A(u)

and A(v)
Result: Earliest time when package reaches v over edge {u, v}
/* Assume PreprocessReceiver(v) and PreprocessSender(u, t) have

already been called. */

1 L ← lower envelope of agents B(u) anchored at x = le;
2 Ψ ← relevant arrangement of A(v);
3 start tracing L from u (i.e., x = le) towards v (i.e., x = 0);
4 while v (i.e., x = 0) is not yet reached do
5 q ← next intersection point of L and Ψ ;

/* assume q is intersection of agent i from L and agent j from Ψ
*/

6 if vj > vi then
7 replace L by the lower envelope of L and the line for agent j moving left

from point q;

8 else
9 ignore q

10 end

11 end
12 return y-value of L at x = 0

from an edge of a face to the instance of the same edge in the adjacent face in
constant time. This representation also allows us to to trace the lower envelope
of Ψ in time O(k).

First, we remove from Ψ all line segments corresponding to agents that are
not faster than i0 (recall that i0 is the agent that brings the package to node u
at time t). Then, in order to find the first intersection point q1 between L and
Ψ , we can trace L and the lower envelope of Ψ from u towards v in parallel until
they meet. One may observe that L cannot be above the lower envelope of Ψ at
u because otherwise an agent faster than i0 reaches u before time t, and that
agent could pick up the package from i0 before time t and deliver it to u before
time t, a contradiction to t being the earliest arrival time for the package at u.
This takes O(k) time. After computing one intersection point qi (and possibly
updated L as shown in Fig. 4), we find the next intersection point by following
the edges on the inside of the next face in counter-clockwise direction until we
hit L again at qi+1. This process is illustrated by the dashed arrow in Fig. 5,
showing how q2 is found starting from q1. Hence, the total time spent in finding
intersection points is bounded by the initial size of L and the number of edges
of all the faces of the relevant arrangement, which is O(k).

Theorem 2. Algorithm4 solves FastLineDelivery(u, v, t) in O(k) time,
assuming that PreprocessReceiver(v) and PreprocessSender(u, t), which
take time O(k log k) each, have already been executed.
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q

q′
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j
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time

utowards v

t

q
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j

i

time

utowards v

t

Fig. 4. Agent i meets a faster agent j at intersection point q (left). The part of L from
q to q′ has been replaced by a line segment representing agent j carrying the package
towards v (right).

v

q1
q2

q3

q4

f L

time

u
t

Fig. 5. Intersection points q1, q2, q3, q4 between the lower envelope L (highlighted in
bold) and the relevant arrangement Ψ . Point q2 is found from q1 by simultaneously
tracing L and the edges of the face f of Ψ in counter-clockwise direction.

Proof. The claimed running time follows from the discussion above. Correctness
follows by observing that the following invariant holds: If the algorithm has
traced L up to position (x0, y0), then the current L represents the fastest and
foremost solution for transporting the package from u to v using only agents in
B(u) and agents from A(v) that can reach the package by time y0. ��

Acknowledgments. Iago A. Carvalho was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.



An Efficient Algorithm for the Fast Delivery Problem 183

References

1. Bamburry, D.: Drones: designed for product delivery. Des. Manag. Rev. 26(1),
40–48 (2015)
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Abstract. We consider extension variants of some edge optimization
problems in graphs containing the classical Edge Cover, Matching,
and Edge Dominating Set problems. Given a graph G = (V,E) and
an edge set U ⊆ E, it is asked whether there exists an inclusion-wise
minimal (resp., maximal) feasible solution E′ which satisfies a given
property, for instance, being an edge dominating set (resp., a matching)
and containing the forced edge set U (resp., avoiding any edges from the
forbidden edge set E\U). We present hardness results for these problems,
for restricted instances such as bipartite or planar graphs. We counter-
balance these negative results with parameterized complexity results.
We also consider the price of extension, a natural optimization problem
variant of extension problems, leading to some approximation results.

Keywords: Extension problems · Edge cover · Matching ·
Edge domination · NP-completeness · Parameterized complexity ·
Approximation

1 Introduction

We consider extension problems related to several classical edge optimization
problems in graphs, namely Edge Cover, Maximum Matching and Edge
Dominating Set. Informally, in an extension version of an edge optimization
problem, one is given a graph G = (V,E) as well as a subset of edges U ⊆ E,
and the goal is to extend U to a minimal (or maximal) solution (if possible).

Such variants of problems are interesting for efficient enumeration algorithms
or branching algorithms (see more examples of applications in [11]).

Related Work. Extension versions have been studied for classical optimization
problems, for example, the minimal extension of 3-Hitting Set [9], minimal
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Dominating Set [2,8] or Vertex Cover [1]. Extensions show up quite natu-
rally in quite a number of situations. For instance, when running a search tree
algorithm, usually parts of the constructed solution are fixed. It is highly desir-
able to be able to prune branches of the search tree as early as possible. Hence,
it would be very nice to tell efficiently if such a solution part can be extended
to a valid (minimal) solution. When trying to enumerate all minimal solutions,
the same type of problem arises and has known applications in so-called flash-
light algorithms [24]. Another type of area where extension problems show up is
linked to Latin squares [13] (and similar combinatorial questions), or also color-
ing extensions in graphs [7]. In a recent paper, we investigated the complexity
of extension versions of Vertex Cover and Independent Set, i.e., classical
vertex graph problems [12], and we give a first systematic study of this type of
problems in [11], providing quite a number of different examples of extension
problems. For extension variants of automata-related problems, see [17].

Organization of the Paper. After giving some definitions in Sect. 2, we prove that
generalization of these problems remain NP-complete, even in bipartite graphs
of bounded degree and with some constraints on the forced set of edges. Having
a planar embedding does not help much either, as we show in Sect. 4 that these
problems remain hard on subcubic bipartite planar graphs. Motivated by these
negative results, we study the parameterized complexity of these problems in
Sect. 5 and the approximability of a natural optimization version in Sect. 6. Due
to lack of space the proofs of statements marked with (∗) are deferred to the full
version of the paper.

2 Definitions

Graph Definitions. We consider simple undirected graphs only, to which we refer
to as graphs. Let G = (V,E) be a graph and S ⊆ V ; NG(S) = {v ∈ V : ∃u ∈
S, vu ∈ E} denotes the neighborhood of S in G and NG[S] = S ∪NG(S) denotes
the closed neighborhood of S. For singleton sets S = {s}, we simply write NG(s)
or NG[s], even omitting G if clear from context. The cardinality of NG(s) is
called degree of s, denoted dG(s). If 3 upper-bounds the degree of all vertices,
we speak of subcubic graphs. For a subset of edges S, V (S) denotes the vertices
incident to S. A vertex set S induces the graph G[S] with vertex set S and
e ∈ E being an edge in G[S] iff both endpoints of e are in S. If S ⊆ E is an edge
set, then S = E \ S, edge set S induces the graph G[V (S)], while GS = (V, S)
denotes the partial graph induced by S; in particular, GS = (V,E \ S).

A vertex set S is independent if S is a set of pairwise non-adjacent vertices.
An edge set S is called an edge cover if the partial graph GS is spanning and
it is a matching if S is a set of pairwise non-adjacent edges. An edge set S is
minimal (resp., maximal) with respect to a graph property if S satisfies the graph
property and any proper subset S′ ⊂ S of S (resp., any proper superset S′ ⊃ S
of S) does not satisfy the graph property. A graph G = (L ∪ R,E) is called
bipartite if its vertex set decomposes into two independent sets L and R. The
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line graph L(G) = (V ′, E′) of a graph G = (V,E) is a simple graph where each
vertex of L(G) represents an edge of G and two vertices of L(G) are adjacent if
and only if their corresponding edges share a common vertex in G. Hence, it is
exactly the intersection graph of the edges of G. It is well known the class of line
graphs is a subclass of claw-free graphs (i.e., without K1,3 as induced subgraph).

Problem Definitions. Let G = (V,E) be a graph where the minimum degree is at
least r ≥ 1. We assume r is a fixed constant (but all results given here hold even
if r depends on the graph). An r-degree constrained partial subgraph is defined
as an edge subset S ⊆ E such that none of the vertices in V is incident to more
than r edges in S. The problem of finding such a set S of size at least k is termed
r-DCPS. An r-degree edge-cover is defined as a subset of edges such that each
vertex of G is incident to at least r ≥ 1 distinct edges e ∈ S, leading to the
decision problem r-EC, determining if such a set of size at most k exists. For
the particular cases of r = 1, 1-DCPS corresponds to the famous Matching
problem and 1-EC is also known as the Edge Cover problem.

The optimization problem associated to r-DCPS, denoted Max r-DCPS,
consists of finding an edge subset E′ of maximum cardinality that is a solution
to r-DCPS. Max r-DCPS is known to be solvable in polynomial time even for
the edge weighted version (here, we want to maximize the weight of E′) [19].
When additionally the constraint r is not uniform and depends on each vertex
(i.e., at most b(v) = rv edges incident to vertex v), Max r-DCPS is usually
known as Simple b-Matching and remains solvable in polynomial time even
for the edge-weighted version (Theorem 33.4, Chap. 33 of Volume A in [27]).

A well-studied optimization version of a generalization of r-EC, known as
the Min lower-upper-cover problem (MinLUCP), is the following. Given
a graph G = (V,E) and two functions a, b : V → N such that for all v ∈ V ,
0 ≤ a(v) ≤ b(v) ≤ dG(v), find a subset M ⊆ E such that the partial graph
GM = (V,M) induced by M satisfies a(v) ≤ dGM

(v) ≤ b(v) (such a solution will
be called a lower-upper-cover), minimizing its cardinality |M | among all such
solutions (if any). Hence, an r-EC solution corresponds to a lower-upper-cover
with a(v) = r and b(v) = dG(v) for every v ∈ V . MinLUCP is known to be
solvable in polynomial time even for edge-weighted graphs (Theorem 35.2 in
Chap. 35 of Volume A in [27]).

We are considering the following extension problems associated to r-DCPS
and r-EC.

Ext r-DCPS
Input: A graph G = (V,E) and U ⊆ E.
Question: Does there exist an edge set S ⊆ E with S ⊆ U such that the
partial graph GS has maximum degree at most r and is maximal in G?

Ext r-EC
Input: A graph G = (V,E) and U ⊆ E.
Question: Does there exist an edge set S ⊆ E with S ⊇ U such that the
partial graph GS has minimum degree at least r and is minimal in G?
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An r-edge dominating set S ⊆ E of a simple graph G = (V,E) is a set S
of edges such that for any edge e ∈ E of G, at least r edges of S are incident
to e (by definition, an edge dominates itself one time). The Minimum r-Edge
Dominating Set problem (Min r-EDS for short) consists in finding an r-edge
dominating set of minimum size. Notice that there is a feasible solution if and
only if r ≤ minxy∈E(dG(x)+dG(y)−1). Obviously, 1-EDS is the classical Edge
Dominating Set problem (EDS), which is NP-hard in general graphs (problem
[GT2] in [20]). The generalization to r-EDS has been studied in [3,4] (under the
name b-EDS) from an approximation point of view. However, to the best of our
knowledge, r-EDS for every r ≥ 2 was not proved NP-hard so far. As associated
extension problem, we formally study the following problem.

Ext r-EDS
Input: Given a simple graph G = (V,E) and U ⊆ E.
Question: Is there a subset S ⊆ E such that U ⊆ S and S is a minimal
r-edge dominating set?

For an edge extension problem π, extπ(G,U) denotes the set of extremal
extensions of U (i.e., minimal or maximal depending on the context). For a
minimal version, U corresponds to a subset of forced edges (i.e., each min-
imal solution has to contain U) while for a maximal version, E \ U corre-
sponds to a subset of forbidden edges (i.e., each maximal solution has to con-
tain no edges from E \ U). Sometimes, the set extπ(G,U) is empty, which
makes the question of the existence of such extensions interesting. Hence,
for π ∈ {Ext r-DCPS,Ext r-EC,Ext r-EDS}, the extension problems ask if
extπ(G,U) = ∅. We call |U | the standard parameter when considering these
problems as parameterized. We may drop the subscript π if clear from context.

3 Complexity Results

The results given in this section are based on a reduction from 2-balanced
3-SAT, (3, B2)-SAT for short. An instance (C,X ) of (3, B2)-SAT is a set C of
CNF clauses defined over a set X of Boolean variables such that each clause has
exactly 3 literals and each variable appears exactly twice as a negative and twice
as a positive literal in C. The bipartite graph associated to (C,X ) is BP = (C ∪
X,E(BP )), with C = {c1, . . . , cm}, X = {x1, . . . , xn} and E(BP ) = {cjxi : xi

or ¬xi is a literal of cj}. (3, B2)-SAT is NP-hard by [5, Theorem 1].

Theorem 1. (∗) For every fixed r ≥ 1, Ext r-DCPS is NP-complete in bipartite
graphs with maximum degree max{3, r + 1}, even if U is an induced matching
for r ≥ 2 or an induced collection of paths of length at most 2 for r = 1.

Proof. Let r = 1. For the technical details for the case r > 1, we refer to
the long version of this paper. Consider an instance of (3, B2)-sat with clauses
C = {c1, . . . , cm} and variables X = {x1, . . . , xn}. We build a bipartite graph
G = (V,E) of maximum degree 3 as follows:



Extension of Some Edge Graph Problems 189

H(c) for c = x ∨ y ∨ z

xc yc zc

1c 2c 3c

H(x)

1x

1c1x 1c2x

xc1 xc2

2x

2c3x 2c4x

¬xc3 ¬xc4

3x

4x

ex e¬x

Fig. 1. The Gadgets H(c) and H(x). Edges not in U are drawn as thicker lines.

• For each clause c = x ∨ y ∨ z, where x, y, z are literals, introduce a sub-
graph H(c) = (Vc, Ec) with 8 vertices and 9 edges. Vc contains three specified
vertices xc, yc and zc corresponding to literals of the clause c. Moreover,
U c = {xc1c, yc2c, zc3c} is a set of three forbidden edges included in H(c).
The gadget H(c) is illustrated in the left part of Fig. 1.

• For each variable x, introduce 12 new vertices. They induce the subgraph
H(x) = (Vx, Ex) illustrated in Fig. 1. The vertex set Vx contains four special
vertices xc1 , xc2 , ¬xc3 and ¬xc4 , where it is implicitly assumed that variable x
appears as a positive literal in clauses c1, c2 and as a negative literal in clauses
c3, c4. Finally, there are two sets of free edges (non-forbidden edges): Fx =
{ex} ∪ {2c3

x ¬xc3 , 2c4
x ¬xc4} and F¬x = {e¬x} ∪ {1c1

x xc1 , 1c2
x xc2}. Hence, the

forbidden edges Ux in H(x) are given by Ux = Ex \ (Fx ∪ F¬x).
• We interconnect H(x) and H(c), where x is a literal of clause c, by adding

edge xcx
c if x appears as a positive literal and edge xc¬xc if x appears as a

negative literal. We call these edges crossing edges.

We set U = E \ (
(
⋃

c∈C U c) ∪ (
⋃

x∈X Ux)
)
. This construction is computable

within polynomial time and G is a bipartite graph of maximum degree 3. We
claim that there is a truth assignment of I which satisfies all clauses iff there is
a maximal matching S ⊆ U of G.

If T is a truth assignment of I which satisfies all clauses, then we add the
set of edges xcx

c and Fx if T (x) = true; otherwise, we add the edge xc¬xc and
all edges in F¬x. For each clause c, we choose one literal lc which satisfies the
clause; then, we add 2 edges saturating vertices 1c, 2c and 3c and which are not
incident to the edge of U c saturating lc. For instance, assume it is y; then, we
add two edges saturating vertices 1c and 3c and the white vertices in H(c). The
resulting matching S is maximal with S ∩ U = ∅.

Conversely, assume the existence of a maximal matching S with S ⊆ U .
Hence, for each variable x ∈ X exactly one edge between ex and e¬x is in S (in
order to block edge 3x4x). If it is ex ∈ S (resp., e¬x ∈ S), then Fx ⊂ S (resp.,
F¬x ⊂ S). Hence, S does not contain any crossing edges saturating ¬xc (resp.,
xc). Now for each clause c = x ∨ y ∨ z, at least one vertex among xc, yc, zc must
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be adjacent to a crossing edge of S. In conclusion, by setting T (x) = true if at
least one vertex xc1 or xc2 of H(x) is saturated by S and T (x) = false otherwise,
we get a valid assignment T satisfying all clauses. ��

In Theorem 1, we showed that, for every fixed r ≥ 2, Ext r-DCPS is hard
even when the set of forbidden edges E \ U is an induced matching. In the
following, we prove the same result does not hold when r = 1, by reducing this
problem to the problem of finding a maximum matching in a bipartite graph.

Proposition 2. (∗) Ext 1-DCPS is polynomial-time decidable when the forbid-
den edges U = E \ U form an induced matching.

Remark 3. Proposition 2 can be extended to the case where U is a matching and
GU does not contain an alternating path of length at least 5. The complexity of
Ext 1-DCPS when U is a matching remains unsettled.

In [12], several results are proposed for the extension of the independent set
problem (Ext IS for short) in bipartite graphs, planar graphs, chordal graphs,
etc. Here, we deduce a new result for a subclass of claw-free graphs.

Corollary 4. Ext IS is NP-complete restricted to line graphs of bipartite graphs
of maximum degree 3.

Proof. Let G = (V,E) be a bipartite graph of maximum degree 3 and L(G) =
(V ′, E′) its line graph. It is well known that any matching S of G corresponds
to an independent set S′ = L(S) of G′ and vice versa. In particular, S is a
maximal matching of G iff L(S) is a maximal independent set. Hence, (G,U)
is a yes-instance of Ext 1-DCPS iff (L(G), L(U)) is a yes-instance of Ext IS.
Theorem 1 with r = 1 concludes the proof. ��

A reduction from (3, B2)-SAT can also be used to show the following.

Theorem 5. (∗) For every fixed r ≥ 1, Ext r-EC is NP-complete in bipartite
graphs with maximum degree r + 2, even if the forced edge set U is a matching.

4 Planar Graphs

All reductions given in this section are from 4-Bounded Planar 3-Connected
SAT (4P3C3SAT for short), the restriction of exact 3-satisfiability1 to
clauses in C over variables in X , where each variable occurs in at most four clauses
(at least one time but at most two times negated) and the associated bipartite
graph BP (explained in Sect. 3) is planar of maximum degree 4. This restriction
is also NP-complete [23]; in the following, we always assume that the planar graph
comes with an embedding in the plane. This gives us a planar variable-clause-
graph G, corresponding to the original SAT instance I. The additional technical
1 Addressing the problem to decide whether there is a truth assignment setting exactly

one literal in each clause to true.
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case (3)

Fig. 2. Variable gadgets H(xi) of Theorem 6. Cases (1), (2), (3) are corresponding
to H(xi), depending on how xi appears (as a negative or positive literal) in the four
clauses (here, case 3 is rotated). Bold edges denote elements of Uxi . Crossing edges are
marked by dashed lines.

difficulties come with the embeddings that need to be preserved. Suppose that a
variable xi appears in at most four clauses c1, c2, c3, c4 of I such that in the induced
(embedded) subgraph Gi = G[{xi, c1, c2, c3, c4}], c1xi, c2xi, c3xi, c4xi is an anti-
clockwise ordering of edges around xi. By looking at Gi and considering how vari-
able xi appears as a negative or positive literal in the four clauses c1, c2, c3, c4 in
I, the construction should handle the three following cases: (1): xi ∈ c1, c2 and
¬xi ∈ c3, c4; (2): xi ∈ c1, c3 and ¬xi ∈ c2, c4; (3): xi ∈ c1, c2, c3 and ¬xi ∈ c4.
All other cases are included in these cases by rotations and/or interchanging xi

with ¬xi.

Theorem 6. For any r ≥ 1, Ext r-EDS is NP-complete for planar bipartite
graphs of maximum degree r + 2.

Proof. Consider first r = 1, corresponding to Ext EDS. Given an instance I of
4P3C3SAT with clause set C = {c1, . . . , cm} and variable set X = {x1, . . . , xn},
we build a planar bipartite graph H = (VH , EH) with maximum degree 3
together with a set U ⊆ EH of forced edges as an instance of Ext EDS.

For each variable xi we introduce a corresponding gadget H(xi) as
depicted in Fig. 2, the forced edge set Uxi

contains {miri, ripi} for case (1),
{pj

i r
j
i , r

j
i m

j
i : 1 ≤ j ≤ 4} for case (2) and {p1i p

2
i , p

2
i p

3
i , p

5
i p

6
i , p

6
i p

7
i ,m

2
i fi} for

case (3).
For each clause cj ∈ C, we construct a clause gadget
H(cj) as depicted on the right, and a forced edge set
Ucj

, each clause gadget H(cj) contains 8 vertices and 7
edges where |Ucj

| = 2. Edges in U are drawn in bold.
H(c) for clause c = �1 ∨ �2 ∨ �3

1′
c

2′
c

1c

2c

3c4c5c6c
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Moreover, we interconnect with some crossing edges the subgraphs H(xi)
and H(cj) by linking xi (or ¬xi) to cj according to how it appears in the clause.
More precisely, each clause gadget H(cj) is connected to the rest of the graph
via two (resp., one) crossing edges incident to 2′

cj
(resp., 1′

cj
). We also set the

forced edge set U = (
⋃

xi∈X Uxi
) ∪ (

⋃
cj∈C Ucj

). This construction is built in
polynomial time, giving a planar bipartite graph of maximum degree 3.

Note that by minimality, for any edge of U , there exist at least one private
edge to dominate. So, let S be a minimal edge dominating set with S ⊇ U , then
for each clause gadget H(c), at least one of the crossing edges incident to it is
in S. Further, for each variable x, let cx

t (resp., cx
f ) be the set of crossing edges

incident to ti (resp., fi), {t1i , t
2
i } (resp., {f1

i , f2
i }), and {t1i , t

2
i } (resp., fi) for the

case 1, 2 and 3 of H(x) respectively, then by minimality of S, at most one of
(S ∩cx

t ) or (S ∩cx
f ) is non-empty. Therefore, it can be easily checked that I has a

satisfying assignment T iff H has a minimal edge dominating set containing U .
For r ≥ 2, we start with the instance I = (H,U)
given in the above construction for r = 1. Recall
H = (VH , EH) is a bipartite graph with bipartition
VH = L∪R, while U ⊆ EH is a subset of forced edges.
Now, for each vertex v of the left part L, we add the
gadget Br(v) depicted to the right. Denote by H ′ the
resulting bipartite graph and consider I ′ = (H ′, U) as
an instance of Ext r-EDS. Br(v)

v

...

...

...

...

r − 1

r − 1

Let B =
⋃

v∈L Br(v) be the added edges from H to H ′. Note that any r-EDS
S′ of H ′ must contain B. Moreover, S′ is a minimal r-EDS of H ′ iff S′ \ B is a
minimal EDS of H. ��
Remark 7. Reconsidering the previous construction that reduces the case when
r > 1 to the case when r = 1, and using the NP-hardness of EDS in bipartite
graphs [6,31], we deduce NP-hardness of r-EDS for all r ≥ 1.

In [22], several results are proposed for the enumeration of minimal dominating
sets in line-graphs. Here, we strengthen these results by showing that extending
a given vertex set to a minimal dominating set (a problem we call Ext DS) in
line graphs of a planar bipartite subcubic graphs is already a hard problem.

Corollary 8. Ext DS is NP-complete, even when restricted to line graphs of
planar bipartite subcubic graphs.

Proof. Let G = (V,E) be a bipartite graph of maximum degree 3 and L(G) =
(V ′, E′) its line graph. It is well known that any edge dominating set S of G
corresponds to a dominating set S′ = L(S) of G′ and vice versa. In particular,
S is a minimal edge dominating set of G iff L(S) is a minimal dominating set.
Hence, (G,U) is a yes-instance of Ext EDS iff (L(G), L(U)) is a yes-instance
of Ext DS. Theorem 6 with r = 1 concludes the proof. ��

The two next statements appear to be only strengthening Theorems 1 and 5
in the particular case of r = 1, but the details behind can be different indeed.
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Theorem 9. (∗) Ext 1-EC is NP-complete for planar bipartite subcubic graphs.

Theorem 10. (∗) Ext 1-DCPS is NP-complete even for planar bipartite sub-
cubic graphs.

5 Parameterized Perspective

The next result is quite simple and characterizes the yes-instances of Ext r-EC.

Lemma 11. (∗) ext(G,U) = ∅ iff there is an r-EC solution G′ = (V,E′) where
E′ ⊇ U such that SG′ = {v ∈ V (U) : dG′(v) > r} is an independent set of GU .

This structural property can be used to design an FPT-algorithm for Ext
r-EC. More precisely, our proposed algorithm lists all 3|U | many independent
sets of G[U ] included in V (U) from an instance I = (G,U) of Ext r-EC. In
each case, we produce an equivalent instance of MinLUCP that can be solved
in polynomial time which gives the following result.

Theorem 12. (∗) Ext r-EC, with standard parameter, is in FPT.

For Ext r-DCPS, we can also exploit structural properties of yes-instances
and use the polynomial solvability of Simple b-Matching to show the following.

Theorem 13. (∗) Ext r-DCPS, parameterized by the number of forbidden
edges U , is in FPT.

When bounding the degree of the graphs, we can consider an even smaller
parameter and obtain feasibility results.

Proposition 14. (∗) For graphs with maximum degree r + 1, Ext r-DCPS is
polynomial-time decidable when r = 1 and is in FPT with respect to the number
of isolated edges in U for r ≥ 2.

Remark 15. For graphs with maximum degree r +1, Ext r-DCPS with r ≥ 2 is
parameterized equivalent to SAT with respect to the number of isolated edges
in E \ U and variables, respectively.

Theorem 16. For any r ≥ 1, Ext r-EDS (with standard parameter) is W [1]-
hard, even when restricted to bipartite graphs.

Proof. We only consider r = 1. For r ≥ 2, we can use the gadget Br(v) as
in Theorem 6. The hardness result comes from a reduction from Ext VC on
bipartite graphs, the extension version of Vertex Cover; see [12]. Let I =
(G,U) be an instance of Ext VC, where G = (V,E) is a bipartite graph with
partition (V1, V2) of V and U ⊆ V , the question of Vertex Cover is to decide
if G has a minimal vertex cover S with U ⊆ S. We build an instance I ′ = (G′, U ′)
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v1 v2

v3v4

v5 v6 v5 v1 v2 v6

v3v4

x1 y1 z1

x2 y2 z2

Fig. 3. (G,U) as an instance of Ext VC is shown on the left, with V1 = {v2, v4, v5}
and V2 = {v1, v3, v6} and U = {v2}. The constructed instance (G′, U ′) of Ext EDS is
shown on the right. The vertices and edges of U and U ′ are in marked with bold lines.

of Ext EDS as follows. Let us first construct a new graph G′ = (V ′, E′) with
V ′ = V ∪ {xi, yi, zi : i = 1, 2} and

E′ = E ∪
⋃

i=1,2

({xiyi, yizi} ∪ {vxi : v ∈ Vi}
)
.

G′ is bipartite with partition into V ′
1 = V1∪{x2, y1, z2} and V ′

2 = V2∪{x1, y2, z1}.
Set U ′ = {ux1 : u ∈ U ∩V1}∪{ux2 : u ∈ U ∩V2}∪{x1y1, x2y2} so, |U ′| = |U |+2.
This construction is illustrated in Fig. 3. We claim that (G′, U ′) is a yes-instance
of Ext EDS if and only if (G,U) is a yes-instance of Ext VC.

Suppose (G,U) is a yes-instance for Ext VC; so there exists a minimal
vertex cover S for G with U ⊆ S. The set S′ = {vx1 : v ∈ V1 ∩ S} ∪ {vx2 : v ∈
V2 ∩S}∪{x1y1, x2y2} is an edge dominating set of G′ which includes U ′ because
S contains U . Since S is minimal, S′ is minimal, too; observe that private edges
of a vertex v ∈ S ∩V1 (i.e. an edge vu with u /∈ S ∩V1) translate to private edges
of vx1 ∈ S′, analogously for x ∈ S ∩ V2. By construction, yizi is a private edge
for xiyi, i = 1, 2.

Conversely, suppose S′ is a minimal edge dominating set of G′ containing U ′.
Since S′ is minimal, then for each e ∈ S′ there is a private edge set Se ⊆ E′,
Se = ∅, which is dominated only by e. Moreover, we have, for i ∈ {1, 2}:

∀v ∈ Vi ((vxi ∈ S′) ⇐⇒ (∀u ∈ V3−i(vu /∈ S′ ∩ E))

since S′ is minimal and {x1y1, x2y2} ⊆ U ′. We now show how to safely modify S′

such that S′∩E = ∅. If it is not already the case, there is some edge, w.l.o.g., e =
uv ∈ S′ ∩ E with u ∈ V1 and v ∈ V2. In particular from the above observations,
we deduce u /∈ U , v /∈ U and Se ⊆ E. Modify S′ by the following procedure.

• If the private solution set Se \{e} contains some edges incident to u and some
edges incident to v, then e ∈ S′ will be replaced by ux1 and vx2;

• if every edge in the private solution Se is adjacent to u, replace e in S′ by ux1,
otherwise if every edge in the private solution Se is adjacent to v, replace e
in S′ by vx2.
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The case distinction is necessary to guarantee that S′ stays a minimal edge
dominating set after each modification step. We repeat this procedure until S′ ∩
E = ∅. At the end of the process, every vertex v ∈ V covers the same set of edges
as vx1 or vx2 dominates. Hence, by setting S = {v ∈ V : vx1 ∈ S′ or vx2 ∈ S′},
we build a minimal vertex cover of G containing U . ��
Remark 17. Note that the procedure of local modifications given in Theorem 16
does not preserve optimality, but only inclusion-wise minimality.

6 Price of Extension

Considering the possibility that some set U might not be extensible to any
minimal solution, one might ask how far U is from an extensible set. This con-
cept, introduced in [11], is called Price of Extension (PoE). A similar approach
has already been studied in the past called the Price of Connectivity in [10] in
the context of connectivity. This notion has been introduced in [10] for Min VC
which is defined as the maximum ratio between the connected vertex cover num-
ber and the vertex cover number. Here, the goal of studying PoE is to measure
how far efficiently computable extensible subsets of the given presolution U are
to U or to the largest possible extensible subsets of U . To formalize this, we define
optimization problems corresponding to Ext r-EC and Ext r-EDS. Actually,
since we mainly propose negative results, we only focus on r = 1 considering the
problems:

Max Ext EC
Input: A connected graph G = (V,E) and a set of edges U ⊆ E.
Solution: Minimal edge cover S of G.
Output: Maximize |S ∩ U |.

Max Ext EDS
Input: A graph G = (V,E) and a set of edges U ⊆ E.
Solution: Minimal edge dominating set S of G.
Output: Maximize |S ∩ U |.

For Π = Max Ext EC or Π = Max Ext EDS, we denote the value of an
optimal solution by optΠ(G,U). Since for all of them optΠ(G,U) ≤ |U | with
equality iff (G,U) is a yes-instance of the extension variant, we deduce from our
previous results that Max Ext EC and Max Ext EDS are NP-hard. In the
particular case U = E, Max Ext EDS is exactly the problem called Upper
EDS where the goal is to find the largest minimal edge dominating set; Upper
EDS can be also viewed as Upper DS in line graphs. In [25], it is shown that
Upper EDS is NP-hard in bipartite graphs. Very recently, an NP-hardness proof
for planar graphs of bounded degree, an APX-completeness for graphs of max
degree 6 and a tight Ω

(
nε−1/2

)
-inapproximation for general graphs and for any

constant ε ∈ (0, 1
2 ), are given in [18].
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The price of extension PoE is defined exactly as the ratio of approximation,
i.e., apx

opt . We say that Π admits a polynomial ρ-PoE if for every instance (G,U),
we can compute a solution S of G in polynomial time which satisfies PoE(S) ≥ ρ.

v1 v2

v3v4

v1

v1 v1

v1,2 v2
v2

v2v2,3

v3

v3v3

v3,4v4
v4

v4 v1,4
v2,4

Fig. 4. On the left side, an instance of Max IS and on the right side, the corresponding
instance of Max Ext EC. Bold edges of H are the set of forced edges U .

Theorem 18. For any constant ε ∈ (0, 1
2 ) and any ρ ∈ Ω

(
Δε−1

)
and ρ ∈

Ω
(
nε− 1

2

)
, Max Ext EC does not admit a polynomial ρ-PoE for general graphs

of n vertices and maximum degree Δ, unless P = NP.

Proof. The proof is based on a reduction from the maximum independent set
problem (Max IS for short). Given a graph G = (V,E) with n vertices and m
edges where V = {v1, . . . , vn}, as an instance of Max IS, we build a connected
bipartite graph H = (VH , EH) as follows: for each vi ∈ V , add a P3 with edge
set {viv

′
i, v

′
iv

′′
i }, and for each edge e = vivj ∈ E with i < j, add a middle vertex

vi,j and connect vi to vj via vi,j . Consider I = (H,U) as instance of Max EXT
EC, where the forced edge subset is given by U = {viv

′
i : 1 ≤ i ≤ n}. Clearly, H

is a bipartite graph with |VH | = 3n + m vertices, |EH | = 2(m + n) edges and
Δ(H) = Δ(G) + 1. An example of this construction is illustrated in Fig. 4.

We claim that there is a solution of size k for Max Ext EC on (H,U) iff G
has an independent set of size k. Suppose that S is a maximal independent set
of G of size k. For each e ∈ E, let ve ∈ V \S be a vertex which covers e. Clearly,
S′ = {vi,jv

e : e = vivj ∈ E} ∪ {v′
iv

′′
i : vi ∈ V } ∪ {viv

′
i : vi ∈ S} is a minimal edge

cover of H with |S′ ∩ U | = k. Conversely, suppose S′ is a minimal edge cover of
H such that |S′ ∩ U | = k. {v′

iv
′′
i : vi ∈ V } is a part of every edge cover since, v′′

i

for vi ∈ V are leaves of H. Moreover, for each e = vivj ∈ E with i < j, at least
one edge between vivij or vjvi,j belongs to any edge cover of H. Furthermore, if
vivi,j ∈ S, by minimality we deduce that viv

′
i /∈ S′. Hence, for each vivj ∈ E, at

most one of viv
′
i, vjv

′
j can be in S′. Hence, S = {vi : viv

′
i ∈ S′} is an independent

set of G with size k.
Using the strong inapproximability results for Max IS given in [28,32],

observing Δ(H) = Δ(G) + 1 and |VH | ≤ 2|V |2, we obtain the claimed result. ��
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Using result given in [18], an Ω
(
nε−1/2

)
-inapproximation can be immedi-

ately deduced for Max Ext EDS. The next result is obtained by a simple
approximation preserving reduction from Max EXT VC to Max Ext EDS.

Theorem 19. (∗) For any constant ε ∈ (0, 1) and any ρ ∈ Ω
(
nε−1

)
, Max Ext

EDS does not admit a polynomial ρ-PoE for general graphs of n vertices, unless
P = NP.

In contrast to the last hardness result, we give a simple approximation
depending on the maximum degree Δ(G).

Theorem 20. Max Ext EDS is 1
Δ(GU )+1 -approximable for instance (G,U) of

maximum degree Δ.

Proof. Let (G = (V,E), U) be an instance of Max Ext EDS, where the maxi-
mum degree of partial subgraph GU induced by U is bounded by Δ. Compute a
maximum matching M of GU and transform it into a maximal matching M ′ of
G containing M . It is well known that any maximal matching is an edge domi-
nating set. Obviously, (Δ(GU ) + 1)|M | ≥ |U | ≥ optMax Ext EDS(G,U) since GU

is (Δ(GU ) + 1)-edge colorable. ��
Considering Ext 1-DCPS, we need to adapt the notion of the price of exten-

sion because we have to consider subset of forbidden edges (i.e., U); more pre-
cisely, we want to increase |U | as few as possible. Hence, the optimization prob-
lem called Min Ext 1-DCPS is defined as follows:

Min Ext 1-DCPS
Input: A graph G = (V,E) and a set of edges U ⊆ E.
Solution: Maximal matching S of G.
Output: Minimize |U ∪ S|.

Recall that PoE is meant to measure how far efficiently computable extensible
subsets are from the given presolution U or to the largest possible extensible
subsets of U . We say that Min Ext 1-DCPS admits a polynomial ρ-PoE if for
every instance (G,U), we can compute a solution S of G in polynomial time
which satisfies PoE(S) = apx

opt ≤ ρ. In the particular case U = ∅, Min Ext 1-
DCPS is exactly the well known problem Minimum Maximal Matching where
the goal is to find the smallest maximal matching. In [14,15], it is shown that
Minimum Maximal Matching is hard to approximate with a factor better
than 2 and 1.18, assuming Unique Games Conjecture (UGC) and P = NP,
respectively. We complement this bound by showing the following.

Theorem 21. (∗) A 2-approximation for Min Ext 1-DCPS can be computed
in polynomial time.
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7 Conclusions

We have undertaken some study on several complexity aspects of extension vari-
ants of edge graph problems. Our results should be useful in particular to the
(input-sensitive) enumeration algorithms community that has so far not put that
much attention on edge graph problems; we are only aware of [21] in this direc-
tion. Conversely, output-sensitive enumeration algorithms, e.g., for matchings
have been around for more than twenty years [29]. Some thoughts on edge cover
enumeration can be found in [30]. Our research might also inspire to revisit
exact and/or parameterized algorithms on Edge Domination; previous papers
like [16] or [26] did not focus on special graph classes, where we see some poten-
tials for future research.
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Abstract. Continuing the recent trend, in this article we design sev-
eral space-efficient algorithms for two well-known graph search methods.
Both these search methods share the same name breadth-depth search
(henceforth BDS), although they work entirely in different fashion. The
classical implementation for these graph search methods takes O(m+n)
time and O(n lg n) bits of space in the standard word RAM model (with
word size being Θ(lg n) bits), where m and n denotes the number of edges
and vertices of the input graph respectively. Our goal here is to beat the
space bound of the classical implementations, and design o(n lg n) space
algorithms for these search methods by paying little to no penalty in
the running time. Note that our space bounds (i.e., with o(n lg n) bits of
space) do not even allow us to explicitly store the required information to
implement the classical algorithms, yet our algorithms visits and reports
all the vertices of the input graph in correct order.

1 Introduction

Graph searching is an efficient and widely used bookkeeping method for explor-
ing the vertices and edges of a graph. Given a graph G, a typical graph search
method starts with an arbitrary vertex v in G, marks v as visited, and sys-
tematically explores other unvisited vertices of G by iteratively traversing the
edges incident with a previously visited vertex. The ordering in which the next
vertex is chosen from an already visited vertex yields different vertex orderings
of the graph. Two of the most popular and widely used graph search methods
are depth-first search (DFS) and breadth-first search (BFS). BFS tries to explore
an untraversed edge incident with the least recently visited vertex, whereas DFS
tries to explore an untraversed edge with the most recently visited vertex. Both of
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these search methods have been successfully employed as backbones for design-
ing other powerful and efficient graph algorithms. Researchers have also devised
other graph search methods [9], and explored their properties to design efficient
graph algorithms. For example, Tarjan and Yannakakis [17] introduced a graph
search method, called maximum cardinality search (MCS) and used it to design a
linear time algorithm for chordal graph recognition and other related problems.

Our focus here is to study another graph search method, namely breadth-
depth search (BDS) from the point of view of making it space efficient. We note
that, two very different graph search strategies exist in the literature, but sur-
prisingly, under the same name. Historically, Horowitz and Sahni [13], in 1984,
defined BDS and demonstrated its applications to branch-and-bound strategies.
Henceforth we will refer to this version of BDS as BDShs after Horowitz and
Sahni. Greenlaw, in his 1993 paper [12], proved that BDShs is inherently sequen-
tial by showing it is P-complete. Almost a decade later, Jiang [14], in 1993,
defined another graph search method, under same name BDS, while designing
an I/O- and CPU-optimal algorithm for decomposing a directed graph into its
strongly connected components (SCC). In particular, he devised and used BDS
(note that, this is different from BDShs [13] as we will see shortly) to give an
alternate algorithm for SCC recognition. We will refer to this version of BDS as
BDSj after Jiang. Implementing either of these algorithms takes O(m+n) time
and O(n lg n) bits of space in the standard word RAM model, where m and n
denotes the number of edges and vertices of the input graph respectively. Our
goal in this paper is to improve the space bound of the classical implementations
without sacrificing too much in the running time.

1.1 Motivation and Related Work

Recently, designing space efficient algorithms has become enormously important
due to their applications in the presence of fast growth of “big data” and the
escalation of specialized handheld mobile devices and embedded systems that
have a limited supply of memory i.e., devices like Rasberry Pi which has a huge
use case in IoT related applications. Even if these mobile devices and embedded
systems are designed with large supply of memory, it might be useful to restrict
the number of write operations. For example, on flash memory, writing is a costly
operation in terms of speed, and it also reduces the reliability and longevity of
the memory. Keeping all these constraints in mind, it makes sense to consider
algorithms that do not modify the input and use only a limited amount of work
space. One computational model that has been proposed in algorithmic literature
to study space efficient algorithms, is the read-only memory (ROM) model. Here
we focus on space efficient implementations of BDS in such settings.

Starting with the paper of Asano et al. [1] who showed how one can implement
DFS using O(n) bits in ROM, improving on the naive O(n lg n)-bit implementa-
tion, the recent series of papers [2,4,6–8,11] presented such space-efficient algo-
rithms for a variety of other basic and fundamental graph problems: namely BFS,
maximum cardinality search, topological sort, connected components, minimum
spanning tree, shortest path, dynamic DFS, recognition of outerplanar graph and
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chordal graphs among others. We add to this small yet rapidly growing body of
space-efficient algorithm design literature by providing such algorithms for both
the BDS algorithms, BDShs and BDSj . In this process, we also want to draw
attention to the fact that, even though these two search methods have same
name, they work essentially in different manner. To the best of our knowledge,
surprisingly this fact does not seem to be mentioned anywhere in the literature.

We conclude this section by briefly mentioning some very recent works
on designing space efficient algorithms for various other algorithmic problems:
Longest increasing subsequence [15], geometric computation [3] among many
others.

1.2 Model of Computation and Input Representation

Like all the recent research that focused on designing space-efficient graph algo-
rithms (as in [1,2,6–8,15,16]), here also we assume the standard word RAM
model for the working memory with words size w = Θ(lg n) bits where constant
time operations can be supported on Θ(lg n)-bit words, and the input graph G
is given in a read-only memory with a limited read-write working memory, and
write-only output. We count space in terms of the number of bits in workspace
used by the algorithms. Throughout this paper, let G = (V,E) denote a graph
on n = |V | vertices and m = |E| edges where V = {v1, v2, · · · , vn}. We also
assume that G is given in an adjacency array representation, i.e., an array of
length |V | where the i-th entry stores a pointer to an array that stores all the
neighbors of the i-th vertex. For the directed graphs, we assume that the input
representation has both in/out adjacency array for all the vertices.

1.3 Our Main Results and Organization of the Paper

We start off by introducing BDSj and BDShs in Sects. 2 and 3 respectively
as defined in [13] and [14] along with presenting their various space efficient
implementations before concluding in Sect. 4 with some concluding remarks and
future directions. Our main results can be compactly summarized as follows.

Theorem 1. Given a graph G with n vertices and m edges, the BDSj and
BDShs traversals of G can be performed in randomized O(m lg∗ n) time1 using
O(n) bits with high probabality ((1−1/nc), for some fixed constant c), or O(m+n)
time using O(n lg(m/n)) bits, respectively.

1.4 Preliminaries

We use the following theorem repeatedly in our algorithms.

Theorem 2 [10]. Given a universe U of size u, there exists a dynamic dictio-
nary data structure storing a subset S ⊆ U of cardinality at most n using space

1 We use lg to denote logarithm to the base 2.
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n lg(u/n)+nr bits where r ∈ O(lg n) denotes the size of the satellite data attached
with elements of U . This data structure can support membership, retrieval (of
the satellite data), insertion, and deletion of any element along with its satellite
data in O(1) time with probabality (1 − 1/nc), for some fixed constant c.

2 Breadth-Depth Search of Jiang

A BDSj traversal of a graph G walks through the vertices of G and processes
each vertex one by one according to the following rule. Suppose the most recently
traversed edge is (u,w). If w still has an unvisited edge, then select this edge to
traverse. Otherwise choose an unvisited edge incident on the node most recently
visited that still has unvisited edges. At this point (see line 7 of the pseudocode
for BDSj provided below) we also say that the node w is being expanded. Note
that a vertex v might be visited many times via different edges and here we are
only interested in the last visit to the vertex (in contrast to the BFS and DFS
where only the first visit to the vertex is considered) when v is expanded.

To implement this, more specifically to capture the fact of last visit, Jiang
used an adaptive stack (abbreviated as adp-stack in the pseudocode below). A
stack is called adaptive if pushing a node into the stack removes the older version
of the node, if it was present in the stack earlier. We refer to the PUSH operation
in an adaptive stack as ADPPUSH in the pseudocode. One way to implement an
adaptive stack is via using a doubly linked list L i.e., the algorithm stores the
vertices in L along with an array P of n pointers, one for each vertex, pointing
to it’s location in L. Now to push adaptively a vertex vi, we first insert vi into L.
Assuming it already belongs to L, go to P [vi] to update it so that it now points
to the new location in L, and delete the older entry from L. Otherwise, P [vi]
is empty, and is now updated to the newly inserted location of vi. All of these
can be done in O(1) time. Popping a vertex vi is straightforward as we have to
delete the node from L and update P [vi] to NULL. We also maintain in a bitmap
of size n, call it visited, information regarding whether a vertex v is visited or
not. Then using all this auxiliary structure, it is easy to see that BDSj can be
implemented in O(m + n) time using O(n) words or equivalently O(n lg n) bits
of space (becuase of storing the list L and the array P ). This concludes a brief
description of BDSj as well as its implementation. Jiang also showed, using
BDSj , how one can perform topological sort and strongly connected component
decomposition. For detailed description, readers are referred to his paper [14].
Our focus here is to implement BDSj space efficiently.

In what follows, we illustrate a bit more on the inner working details of
BDSj with the help of an example. Following the convention, as in the recent
papers [1,2], here also in BDSj we output the vertices as and when they are
expanded (note that, if reporting in any other order is required, it can be done
so with straighforward modification in our algorithms). Hence the root will be
output at the very first step, followed by its rightmost child and so on. Towards
designing space efficient algorithms for BDSj , we first note its similarities with
DFS traversal method. Taking the graph G of Fig. 1(a) as running example where
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Algorithm 1. BDSj(v)
1: EMPTY(visited); EMPTY(adp-stack);
2: ADPPUSH(v, adp-stack);
3: while ISNOEMPTY(adp-stack) do
4: w := TOP(adp-stack);
5: if w /∈ visited then
6: visited := visited ∪{w}
7: for all u in adj[w] do
8: if u /∈ visited then
9: ADPPUSH(u, adp-stack);

10: end if
11: end for
12: else POP(adp-stack);
13: end if
14: end while

(say) the root is s, and assuming that the adjacency list of every vertex is
lexicographically sorted in the order of their labels, DFS would have put s first
in the stack, followed by pushing a then d and so on. As a result, these three
vertices would come first in the output of DFS and so on. BDSj works in a
slightly different manner. More specifically, BDSj pushes a, b and c into the
stack (with a at the bottom and c at the top), and then expands c (see the
pseudocode for BDSj). The node b will again be discovered while expanding c,
and due to the adaptivity of the stack, the older entry of b which was inserted
into the stack due to the expansion of s, will be removed (with a new entry of b
added to the stack). This phenomenon will be repeated again while expanding
g. Eventually b will be discovered from e and expanded. See the final BDSj

tree in Fig. 1(c). To enable expanding a vertex during the last visit (instead
of the first visit which is the case for BFS and DFS), Jiang used the adaptive
stack. As analyzed previously, the bottleneck factor in the space consumption of
BDSj is the adaptive stack. Our main observation is that we can get rid of the
adaptive stack and still perform BDSj traversal of the graph G correctly. More
specifically, in what follows we describe how to implement BDSj space efficiently
using a standard stack (without the adaptive push operation), along with some
bookkeeping, yet producing the same vertex ordering as Jiang’s BDSj .

2.1 Using O(n) Bits and O(m lgN) Time

Note that, a vertex v could be in one of the three states during the entire
execution of the algorithm, (i) unvisited, (ii) expanded but not all of its children
are expanded yet, and (iii) completed i.e., it is expanded as well as all of its
children, if any. In our space efficient implementation of BDSj , we denote them
by color white, grey and black respectively, and store this information using an
array (say) C of size O(n) bits. Along with this, we also store the last O(n/ lg n)
vertices that are grey in a (normal i.e., not adaptive) stack S. We divide the
stack S into blocks of size O(n/ lg n) vertices where the first block refers to the
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Fig. 1. (a) Graph G. We output the vertices when they are visited (for DFS and BFS)
or expanded (for BDS) for the first time in any graph search method. The adjacency
lists are assumed to be ordered in the sorted order of their labels. (b) DFS tree of G and
the resulting output for this DFS traversal is s, a, b, c, g, f, e, d, i, j. (c) BDSj tree of G
and the resulting output for this BDSj traversal is s, c, g, f, a, e, d, j, i, b. (d) BFS tree
of G and the resulting output for this BFS traversal is s, a, b, c, d, e, f, g, i, j. (e) BDShs

tree of G and the resulting output for this BDShs traversal is s, c, g, f, b, e, d, j, i, a.

first set of O(n/ lg n) vertex labels that are pushed into S, the second block refers
to the second bunch of O(n/ lg n) vertex labels pushed into S during BDSj and
so on. Thus, there are O(lg n) blocks in total, and we always store the last block.
Moreover, for every block we store the first and last element that are pushed in
S in a separate smaller sized stack T . Thus, we need overall O(n) bits.

Now armed with these data structures, we start by marking the root s as grey
and pushing in S. Note that, as and when a vertex v gets expanded, i.e., turns
grey, we can also output v (i.e., report v as the next vertex in BDSj order). At
the next step, instead of inserting all of s’s white neighbors as in Jiang’s BDSj

implementation, we insert only the rightmost white neighbor c into the stack,
and change its color (from white) to grey (see Fig. 1(c)). Observe crucially that
by delaying the insertion of other white neighbors at once, we are essentially
removing the need of adaptivity from the stack as now elements are pushed
only when they are expanded, not multiple times as in BDSj . Thus, we scan c’s
adjacency list from right to left and insert the first white neighbor into the stack,
mark it as grey in the C array, and continue. We call this phase of the algorithm
as forward step i.e., the phase in which we discover new vertices of the graph and
insert them in S. At some point during the execution of the algorithm, when we
arrive at a vertex v such that none of v’s neighbors are white, then we color the
vertex v as black, and we pop it from the stack. If the stack is still non-empty,
then the parent of v (in the BDSj tree) would be at the top of the stack, and we
continue the BDSj from this vertex. On the other hand, if the stack becomes
empty after removing v, we need to reconstruct it to the state such that it holds
the last O(n/ lg n) grey vertices after all the pops done so far. We refer to the
following phase of the algorithm as reconstruction step. For this, we basically
repeat the same algorithm but with one twist which also enables us now to skip
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some of the vertices during this reconstruction phase. In detail, we again start
with an empty stack, insert the root s first and scan its adjacency list from
the rightmost entry to skip all the black vertices and insert into the stack the
rightmost grey vertex. Then the repeat the same for this newly inserted vertex
into the stack until we reconstruct the last O(n/ lg n) grey vertices. As we have
stored the first and last vertices of each of the blocks in T , we know when to stop
this reconstruction procedure. Another equivalent way to achieve the same effect
is to recolor all the grey vertices back to white, while retaining the colors of all the
other (black and white) vertices, and repeat the same algorithm. It is not hard to
see that this procedure correctly reconstructs the latest set of grey vertices in the
stack S. We continue this process until all the vertices become black. Obviously
this procedure takes O(n) bits of space. To bound the running time, note that,
whenever this procedure tries to reconstruct, O(n/ lg n) vertices have changed
their colors to black, and they are not going to be inserted again into the stack.
As this can happen only for O(lg n) rounds, and since in each round we might
spend O(m) time to scan the adjacency list and insert correct vertices into the
stack, overall this procedure takes O(m lg n) time. We conclude this section by
mentioning that a similar kind of idea was used in [1] to provide space efficient
DFS implementation, but we emphasize that ours algorithm is markedly different
than [1] from the point of view of introducing delayed insertion of vertices into
the stack, and thus removing the adaptivity from the stack, both the features not
present in DFS. In what follows, we describe an improved algorithm generalizing
the ideas developed in this section.

2.2 Using O(n) Bits and O(m lg∗ N) Time

In this section we first describe an algorithm that uses O(n lg lg lg n) bits to
performs BDSj in O(m + n) time with high probability, and modify it later
to get an even improved algorithm. To obtain this, we first divide the stack
S into O(lg n/ lg lg lg n) blocks of size n lg lg lg n/ lg n vertices each. We group
(lg n/ lg lg n) blocks into a super-block; thus there are O(lg lg n/ lg lg lg n) super-
blocks, each having O(n lg lg lg n/ lg lg n) vertices. For each vertex v, we store
its (a) color, (b) super-block ID (SID), if it is in S, (and −1 if it is not added
to S yet, i.e., if it is white), and (c) the number of groups of m/n vertices that
have been explored with v as the current vertex. We also keep track of the first
and the last element of each block, as well as super-block, and these takes up
negligible (poly-logarithmic) space. We describe the algorithm below in detail.

The algorithm is similar to the BDSj algorithm of Sect. 2.1 with the fol-
lowing changes. The forward step remains mostly the same except updating the
Items (b) and (c) above after every insertion of a vertex into the stack S. More
specifically, whenever a vertex is inserted into the stack, we store its SID in
an array (Item (b) above), and also update the information regarding Item (c)
above (also stored in a separate array). In addition, we store the nodes in the
topmost two blocks of the top super-block of the stack. We also maintain the
block IDs (BIDs) of all the vertices belonging to the topmost two super-blocks
using the dictionary structure of Theorem 2.
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The reconstruction step changes significantly as we cannot really afford O(m)
time for the reconstruction of each super-block (like in Sect. 2.1); rather we would
ideally like to spend time proportional to the size of the super-block, hence
resulting in an optimal linear time algorithm. In order to achieve this, we do
the following. As we have stored the first element of all the super-blocks, we can
start by pushing that element (say v) into a temporary stack. We obtain the
next vertex by determining (by consulting Item (c) above) the first grey vertex,
say u, that belongs to this super-block (as we can check from its SID) from the
right endpoint of v’s adjacency array, and that is not already inserted in the
current reconstruction procedure (can be checked from the dictionary structure
of Theorem 2). Now we repeat the same in u’s list until we reconstruct the whole
super-block. Note that, simultaneously we are also inserting the BIDs for every
vertex in the structure of Theorem 2. We should mention one point at this time,
the necessity of dynamic dictionary comes from the fact that we need to quickly
find the BID information associated with the vertices in order to decide whether
to insert any particular vertex in the stack or not. For performing this task very
efficiently both time and space wise, having a simple array is not enough and
thus, the requirement of more powerful dynamic dictionary structure. Due to
the space limitations, we may need to discard all other blocks inside a super-
block except the topmost two. Once we reconstruct the required blocks, the
algorithm can proceed normally. Now all that is left is to determine the time
and the space complexity of this procedure. Space requirement of our algorithm
is O(n lg lg lg n) bits which is dominated by the SID, topmost two blocks inside
the top super-block and the dictionary structure.

To bound the number of reconstructions, note that, each time we recon-
struct a super-block, the previous super-block’s O(n lg lg lg n/ lg lg n) vertices
change their color to black and get popped from the stack, hence they will
never be pushed again. Thus, the number of restorations (denoted by q) is
bounded by O(lg lg n/ lg lg lg n). Now if the degree of a vertex v is vd, then
we spend O(min{vd,m/n}) time on v searching for its correct neighbor in our
algorithm due to the information stored in Item (c) above. To bound the run-
ning time of the algorithm, note that over q reconstructions and over all vertices
of degree at most m/nq, we spend O(qn(m/nq)) = O(m) time, and for ver-
tices having degree larger than m/nq, over q such reconstructions, we spend
O(q(n/q)(m/n)) = O(m) time. Observe that, this running time is randomized
linear because of the use of dynamic dictionary2 of Theorem 2. This concludes
the description of the BDSj algorithm taking randomized O(m + n) time and
using O(n lg lg lg n) bits with high probabality (1 − 1/nc) for some constant c.

Before generalizing this algorithm, let us define some notations that are
going to be used in what follows. The function lg(k) n is defined as applying

2 Our algorithm performs atmost O(m + n) insertion/deletion/retrieval during its
entire execution using the dictionary of Theorem 2 which takes O(1) time with a
probability of (1 − 1/nc) (where c ≥ 3) for each insertion/deletion/retrieval. Thus,
the probability that our algorithm takes more than O(m + n) time is (1/nc−2) by
union bound rule.
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the logarithm function on n repeatedly k times i.e., lg lg . . . (k times) . . . lg n.
Similarly lg∗ n (also known as iterated logarithm) is the number of times the
logarithm function is iteratively applied till the result is less than or equal
to 2. It’s easy to see that lg(lg

∗ n) n is always a constant for any n. Like the
previous algorithm, this algorithm also uses the data structures of Item (a),
(b), and (c) along with a hierarchy of levels (instead of just two levels like the
previous algorithm). For some k (which we will fix later), we set the size of
k-th level blocks as O(n/(lg(k) n)2), and we divide the k-th level blocks into
(k + 1)-th level blocks. Thus, the number of k-th level blocks inside a (k + 1)-
th level block is O({(lg(k) n)/(lg(k+1) n)}2), where k = 1 means the smallest
level blocks. We store the dynamic dictionary for k-th level at the (k + 1)-th
level for every k, and the space required for storing the dictionary at level k is
given by O((n/(lg(k+1) n)2)(lg{(lg(k) n)/(lg(k+1) n)}2)) = o(n) bits. Through the
entire execution of the algorithm, we always maintain the topmost two small-
est level blocks along with other data structures. The forward step as well as
the reconstruction step of the algorithm remains exactly the same other than
modifying/storing informations at each level of the data structures suitably.
As the work involved at each such level is simply one of the four operations
from {insertion/deletion/membership/retrieval} (all takes O(1) time with high
probability) at the dynamic dictionaries of the corresponding levels, by similar
analysis as before, the final running time of the algorithm simply becomes m
times the overall number of levels of data structure that we maintain during the
execution of the algorithm, and this can be bounded by O(mk). Also, we can
bound the overall space requirement as O(n lg(k+1) n)+ o(n) bits. Now choosing
k + 1 = lg∗ n, our algorithm takes O(n) bits of space and O(m lg∗ n) running
time, and this concludes the description of the algorithm.

In what follows, we specially focus on designing space efficient algorithms for
BDSj when the input graph is sparse (i.e., m = O(n)). Studying such graphs
is very important not only from theoretical perspective but also from practical
point of view. These graphs appear very frequently in most of the realistic net-
work scenario, like Road networks and the Internet, in real world applications.

2.3 Using O(n lg(m/n)) Bits and O(m + n) Time

In this section, we show how one can obtain linear bits and linear time algorithm
for BDSj for sparse graphs. For this we use the following lemma from [2].

Lemma 1 ([2]). Given the adjacency array representation of a graph G, using
O(m) time, one can construct an auxiliary structure of size O(n lg(m/n)) bits
that can store a “pointer” into an arbitrary position within the adjacency array
of each vertex. Also, updating any of these pointers takes O(1) time.

The idea is to store parent pointers into the adjacency array of each vertex
using the representation of Lemma 1. More specifically, for an undirected graph,
whenever the BDSj expands a vertex u to reach v following the edge (u, v),
u becomes the parent of v in the BDSj tree, and at that time, we scan the
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adjacency array of v to find u and store a pointer to that position (within the
adjacency array of v). For every vertex v in G, we can also store another pointer
marking how far in v’s list BDSj has already processed. This pointer will start
from the very end of every list, gradually moves towards the left, and at the end
of the algorithm, will point to the first vertex of list. We also maintain color
information in a bitmap of size O(n) bits. Given this pointer representation, it
is easy to see how to implement BDSj in O(m + n) time. The main advantage
of this algorithm of ours is, note that, we don’t even need to maintain any
explicit stack to implement this process. We can extend similar idea for doing
BDSj in directed graphs by setting up parent pointers (which are used during
backtracking) in the in-adjacency list of every vertex and use the other pointer
to mark progress in the out-adjacency list. With this, we complete the proof of
Theorem 1 for BDSj .

3 Breadth-Depth Search of Horowitz and Sahni

This version of BDS works as follows. The algorithm starts by pushing the root
(i.e., the starting vertex) into the stack S initially. At every subsequent step, the
algorithm pops the topmost vertex v of S, and pushes all its unvisited neighbors
into S. See Fig. 1(e) for an example. Note crucially that, due to the popping of
the parent while pushing the children in S, during backtracking the next vertex
to be expanded is always at the top of the stack S. This stack S could grow to
contain O(n) vertices, thus the classical implementation of this procedure takes
O(m+n) time and O(n lg n) bits of space. See [13] for a detailed description. In
what follows, we show how to implement this BDShs space efficiently.

3.1 Using O(n) Bits and O(m lg∗ N) Time

To implement BDShs using O(n) bits, we crucially change the way we handle
the stack during the execution of the algorithm. More specifically, we will not
pop immediately the vertex v which is going to be expanded at the very next
step (as done in [13]), rather keep it in the stack S instead for later use. We
refer to this technique as the delayed removal of the vertices. Even though this
is different than the delayed insertion technique (which was crucially used for
BDSj ’s implementation), it is worth emphasizing that by introducing delayed
removal of the vertices, the behaviour/operation of the stack in BDShs becomes
pretty similar to the one in BDSj (as it will be clear from the next paragraph),
thus we can reuse previously developed ideas for BDSj to obtain space efficient
implementation of BDShs. In addition to this change, we use three colors as we
did in the previous BDSj implementation with the exact same meaning attached
to them, and store this information in an array C. Also, we always store the last
block of O(n/ lg n) grey vertices of S.

In detail, we start by marking the root, say s, as visited, coloring it grey
and inserting it into S. This is followed by inserting all of s’s unvisited white
neighbors into S, change them to grey in C. Now s’s rightmost child (say v) is
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at the top of the stack and we insert in S all of v’s white neighbors without
popping v, also simultaneously marking them visited, and coloring v as grey.
This process is repeated until we arrive at the vertex u all of whose neighbors
are visited; at this point we make u to be black and pop it from the stack.
The vertex which is below u in the stack (say p) is either its parent (if u is
the first child of its parent) or its previous sibling. We actually don’t know
which case it is, but it does not matter – we simply continue the search from
p. The case when p is the previous sibling of u is handled the same way by the
original algorithm as well as ours. In the case when p is the parent of u, all
the other children of p are colored black (since u is the first child of p), and
hence our algorithm colors p as black and pops it from S. Reconstructions are
also handled in a similar fashion as in Sect. 2.1. I.e., we recolor the grey vertices
back to white, and start executing the same algorithm from root but we don’t
insert the black vertices again. This ensures that, if a vertex has become black
already, its subtree will not be explored again, and once we restore the latest
block of O(n/ lg n) vertices, we start executing the normal algorithm. Clearly,
we are using O(n) bits of space. Since the reconstruction happens only O(lg n)
times, and each time we spend O(m) time, overall this procedure takes O(m lg n)
time. Generalizing this strategy by creating hierarchy of levels and then using
dynamic dictionary at each levels like we did for BDSj in Sect. 2.2, we can
similarly obtain an implementation of BDShs taking O(n) bits and O(m lg∗ n)
time. This completes the description of the algorithms taking O(n) bits.

3.2 Using O(n lg(m/n)) Bits and O(m + n) Time

We can use Lemma 1 to store parent pointers in the adjacency array of every
vertex, and another pointer to mark the progress of BDShs so far in a similar
way as we did for BDSj in Sect. 2.3. It is easy to see that with these structures,
and additional color array, using O(m + n) time and n lg(m/n) bits, we can
implement BDShs. One can also extend this to the directed graphs as mentioned
in Sect. 2.3. With this, we complete the proof of the Theorem 1 for BDShs.

4 Conclusions

We obtained space-efficient as well as time-efficient implementations for two
graph search methods, both are known under the same name, breadth-depth
search even though they perform entirely differently. The main idea behind our
algorithm is the introduction of the delayed insertion and the delayed removal
techniques for better managing the elements of the stack, and finally we use the
classical blocking idea carefully to obtain the space-time efficient implementa-
tions. We think that these ideas might be of independent interest while designing
similar space-time efficient algorithms for other existing graph search methods in
the literature. We believe this is an important research direction as these search
methods form basis of many important graph/AI algorithms.

We leave with two concrete open problems, is it possible to design a) o(n)
space and polynomial time algorithms, and b) O(n) bits and O(m + n) time
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algorithms (deterministic or randomized) for both the BDS implementations?
Another interesting direction would be to study these graph search methods
in the recently introduced in-place [6] model where changing the input is also
allowed in a restricted manner unlike the ROM model which is what we have
focused in this paper.
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Tomasz Waleń3 , and Wiktor Zuba3(B)

1 Department of Informatics, King’s College London, London, UK
panagiotis.charalampopoulos@kcl.ac.uk

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
3 Institute of Informatics, University of Warsaw, Warsaw, Poland

{kociumaka,jrad,rytter,jks,walen,w.zuba}@mimuw.edu.pl
4 CWI, Amsterdam, The Netherlands

solon.pissis@cwi.nl

Abstract. The k-mismatch problem consists in computing the Ham-
ming distance between a pattern P of length m and every length-m
substring of a text T of length n, if this distance is no more than k. In
many real-world applications, any cyclic shift of P is a relevant pattern,
and thus one is interested in computing the minimal distance of every
length-m substring of T and any cyclic shift of P . This is the circular
pattern matching with k mismatches (k-CPM) problem. A multitude
of papers have been devoted to solving this problem but, to the best
of our knowledge, only average-case upper bounds are known. In this
paper, we present the first non-trivial worst-case upper bounds for the
k-CPM problem. Specifically, we show an O(nk)-time algorithm and an
O(n+ n

m
k5)-time algorithm. The latter algorithm applies in an extended

way a technique that was very recently developed for the k-mismatch
problem [Bringmann et al., SODA 2019].

1 Introduction

Pattern matching is a fundamental problem in computer science [15]. It consists
in finding all substrings of a text T of length n that match a pattern P of length
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m. In many real-world applications, a measure of similarity is usually introduced
allowing for approximate matches between the given pattern and substrings of
the text. The most widely-used similarity measure is the Hamming distance
between the pattern and all length-m substrings of the text.

Computing the Hamming distance between P and all length-m substrings of
T has been investigated for the past 30 years. The first efficient solution requir-
ing O(n

√
m log m) time was independently developed by Abrahamson [1] and

Kosaraju [30] in 1987. The k-mismatch version of the problem asks for finding
only the substrings of T that are close to P , specifically, at Hamming distance
at most k. The first efficient solution to this problem running in O(nk) time
was developed in 1986 by Landau and Vishkin [31]. It took almost 15 years
for a breakthrough result by Amir et al. improving this to O(n

√
k log k) [2].

More recently, there has been a resurgence of interest in the k-mismatch prob-
lem. Clifford et al. gave an O((n/m)(k2 log k) + npolylogn)-time algorithm [13],
which was subsequently improved further by Gawrychowski and Uznański to
O((n/m)(m + k

√
m)polylogn) [21]. In [21], the authors have also provided evi-

dence that any further progress in this problem is rather unlikely.
The k-mismatch problem has also been considered on compressed represen-

tations of the text [10,11,19,37], in the parallel model [18], and in the streaming
model [13,14,35]. Furthermore, it has been considered in non-standard stringol-
ogy models, such as the parameterized model [23] and the order-preserving
model [20].

In many real-world applications, such as in bioinformatics [4,7,22,25] or in
image processing [3,32–34], any cyclic shift (rotation) of P is a relevant pattern,
and thus one is interested in computing the minimal distance of every length-m
substring of T and any cyclic shift of P , if this distance is no more than k. This is
the circular pattern matching with k mismatches (k-CPM) problem. A multitude
of papers [5,6,8,9,17,24] have thus been devoted to solving the k-CPM problem
but, to the best of our knowledge, only average-case upper bounds are known;
i.e. in these works the assumption is that text T is uniformly random. The main
result states that, after preprocessing pattern P , the average-case optimal search
time of O(nk+logm

m ) [12] can be achieved for certain values of the error ratio k/m
(see [9,17] for more details on the preprocessing costs).

In this paper, we draw our motivation from (i) the importance of the k-
CPM problem in real-world applications and (ii) the fact that no (non-trivial)
worst-case upper bounds are known. Trivial here refers to running the fastest-
known algorithm for the k-mismatch problem [21] separately for each of the m
rotations of P . This yields an O(n(m+k

√
m)polylogn)-time algorithm for the k-

CPM problem. This is clearly unsatisfactory: it is a simple exercise to design an
O(nm)-time or an O(nk2)-time algorithm. In an effort to tackle this unpleasant
situation, we present two much more efficient algorithms: a simple O(nk)-time
algorithm and an O(n + n

m k5)-time algorithm. Our second algorithm applies in
an extended way a technique that was developed very recently for k-mismatch
pattern matching in grammar compressed strings by Bringmann et al. [11].
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Our Approach. We first consider a simple version of the problem (called
Anchor-Match) in which we are given a position in T (an anchor) which
belongs to potential k-mismatch circular occurrences of P . A simple O(k) time
algorithm is given (after linear-time preprocessing) to compute all relevant occur-
rences. By considering separately each position in T as an anchor we obtain an
O(nk)-time algorithm. The concept of an anchor is extended to the so called
matching-pairs: when we know a pair of positions, one in P and the other in T ,
that are aligned. Then comes the idea of a sample P ′, which is a fragment of P
of length Θ(m/k) which supposedly exactly matches a corresponding fragment
in T . We choose O(k) samples and work for each of them and for windows of T
of size 2m. As it is typical in many versions of pattern matching, our solution is
split into the periodic and non-periodic cases. If P ′ is non-periodic the sample
occurs only O(k) times in a window and each occurrence gives a matching-pair
(and consequently two possible anchors). Then we perform Anchor-Match for
each such anchor. The hard part is the case when P ′ is periodic. Here we com-
pute all exact occurrences of P ′ and obtain O(k) groups of occurrences, each one
being an arithmetic progression. Now each group is processed using the approach
“few matches or almost periodicity” of Bringmann et al. [11]. In the latter case
periodicity is approximate, allowing up to k mismatches.

2 Preliminaries

Let S = S[0]S[1] · · · S[n−1] be a string of length |S| = n over an integer alphabet
Σ. The elements of Σ are called letters. For two positions i and j on S, we denote
by S[i . . j] = S[i] · · · S[j] the fragment of S that starts at position i and ends at
position j (it equals the empty string ε if j < i). A prefix of S is a fragment that
starts at position 0, i.e. of the form S[0 . . j], and a suffix is a fragment that ends
at position n−1, i.e. of the form S[i . . n−1]. For an integer k, we define the kth
power of S, denoted by Sk, as the string obtained from concatenating k copies
of S. S∞ denotes the string obtained by concatenating infinitely many copies. If
S and S′ are two strings of the same length, then by S =k S′ we denote the fact
that S and S′ have at most k mismatches, that is, that the Hamming distance
between S and S′ does not exceed k.

We say that a string S has period q if S[i] = S[i+q] for all i = 0, . . . , |S|−q−1.
String S is periodic if it has a period q such that 2q ≤ |S|. We denote the smallest
period of S by per(S).

For a string S, by rotx(S) for 0 ≤ x < |S|, we denote the string that is
obtained from S by moving the prefix of S of length x to its suffix. We call the
string rotx(S) (or its representation x) a rotation of S. More formally, we have

rotx(S) = V U , where S = UV and |U | = x.

2.1 Anatomy of Circular Occurrences

In what follows, we denote by m the length of the pattern P and by n the length
of the text T . We say that P has a k-mismatch circular occurrence (in short k-
occurrence) in T at position p if T [p . . p+m−1] =k rotx(P ) for some rotation x.
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In this case, the position x in the pattern is called the split point of the pattern
and p + (m − x) mod m 1 is called the anchor in the text (see Fig. 1).

T

P
split point

anchor

Fig. 1. The anchor and the split point for a k-occurrence of P in T .

In other words, if P = UV and its rotation V U occurs in T , then the first
position of V in P is the split point of this occurrence, and the first position of
U in T is the anchor of this occurrence.

For an integer z, let us denote Wz = [z . . z + m − 1] (window of size m).
For a k-occurrence at position p with rotation x, we introduce a set of pairs of
positions in the fragment of the text and the corresponding positions from the
original (unrotated) pattern:

M(p, x) = {(i, (i − p + x) mod m) : i ∈ Wp}.

The pairs (i, j) ∈ M(p, x) are called matching pairs of an occurrence p with
rotation x. In particular, (p + ((m − x) mod m), 0) ∈ M(p, x). An example is
provided in Fig. 2.

P = a
0
a
1
b
2
b
3
b
4
b
5

split point=2

T = a
0
a
1
c
2
c
3
b
4
b
5
x
6
b
7
a
8
a
9
a
10
b
11

anchor=8

rot2(P ) = b b b b a a
2 3 4 5 0 1

Fig. 2. A 1-occurrence of P = aabbbb in text T = aaccbbxbaaab at position p = 4
with rotation x = 2; M(4, 2) = {(4, 2), (5, 3), (6, 4), (7, 5), (8, 0), (9, 1)}.

2.2 Internal Queries in a Text

Let T be a string of length n called text. The length of the longest common prefix
(suffix) of strings U and V is denoted by lcp(U, V ) (lcs(U, V )). There is a well-
known efficient data structure answering such queries over suffixes (prefixes)
of a given text in O(1) time after O(n)-time preprocessing. It consists of the
suffix array and a data structure for range minimum queries; see [15]. Using
the kangaroo method [18,31], longest common prefix (suffix) queries can handle
mismatches; after an O(n)-time preprocessing of the text, longest common prefix
(suffix) queries with up to k mismatches can be answered in O(k) time.
1 The modulo operation is used to handle the trivial rotation with x = 0.
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An Internal Pattern Matching (IPM) query, for two given fragments F and G
of the text, such that |G| ≤ 2|F |, computes the set of all occurrences of F in G.
If there are more than two occurrences, they form an arithmetic sequence with
difference per(F ). For a text of length n, a data structure for IPM queries can
be constructed in O(n) time and answers queries in O(1) time (see [29] and [26,
Theorem 1.1.4]). It can be used to compute all occurrences of a given fragment
F of length p in T , expressed as a union of O(n/p) pairwise disjoint arithmetic
sequences with difference per(F ), in O(n/p) time.

3 An O(nk)-time Algorithm

We first introduce an auxiliary problem in which one wants to compute all k-
occurrences of P in T with a given anchor a.

Anchor-Match Problem

Input: Text T of length n, pattern P of length m, positive integer k, and
position a.
Output: Find all k-occurrences p of P in T with anchor a.

Lemma 1. After O(n)-time preprocessing, the answer to Anchor-Match
problem, represented as a union of O(k) intervals, can be computed in O(k)
time.

Proof. In the preprocessing we prepare a data structure for lcp and lcs queries
in P#T , for a special symbol # that does not occur in P and T .

The processing of each query is split into k + 1 phases. In the jth phase,
we compute the interval [lj . . rj ] such that for every p ∈ [lj . . rj ] there exists
a k-occurrence p in T that has an anchor at a and the number of mismatches
between T [p . . a − 1] and the suffix of P of equal length is exactly j.

Let us consider the conditions for interval [lj . . rj ] (see also Fig. 3):

C1 [lj . . rj ] ⊆ [a − m + 1 . . a) since occurrences must contain anchor a,
C2 [lj . . rj ] ⊆ [a − 1 − sj . . a − 1 − sj−1), where si is the length of the longest

common suffix of T [0 . . a−1] and P with exactly i mismatches, since we need
exactly j mismatches in T [p . . a − 1],

C3 [lj . . rj ] ⊆ [a − m . . a + pk−j − m), where pk−j is the length of the longest
common prefix of T [a . . n − 1] and P with at most k − j mismatches, since
we cannot exceed k mismatches in total.

Using the kangaroo method [18,31], the values sj , pj for all 0 ≤ j ≤ k can be
computed in O(k) time in total. Then the interval [lj . . rj ] is a simple intersection
of the above conditions, which can be computed in O(1) time. ��
Proposition 2. k-CPM can be solved in O(nk) time and O(n) space.
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T
a

lj rj
C1
a − m+ 1 a − 1

C2

sj

sj−1
C3

pk−j

m

Fig. 3. An illustration of the setting in Lemma 1.

Proof. We invoke the algorithm of Lemma 1 for all a ∈ [0 . . n − 1] and obtain
O(nk) intervals of k-occurrences of P in T . Instead of storing all the intervals,
we count how many intervals start and end at each position of the text. We can
then compute the union of the intervals by processing these counts left to right.

��

4 An O(n + n
m

k5)-time Algorithm

In this section, we assume that m ≤ n ≤ 2m and aim at an O(n + k5)-time
algorithm.

A (deterministic) sample is a short segment P ′ of the pattern P . An occur-
rence in the text without any mismatch is called exact. We introduce a problem
of Sample-Matching that consists in finding all k-occurrences of P in T such
that P ′ matches exactly a fragment of length |P ′| in T .

We split the pattern P into k + 2 fragments of length
⌊

m
k+2

⌋
or

⌈
m

k+2

⌉
each.

One of those fragments will occur exactly in the text (up to k fragments may
occur with a mismatch and at most one fragment will contain the split point).
Let us henceforth fix a sample P ′ as one of these fragments, let p′ be its starting
position in P , and let m′ = |P ′|.

We assume that the split point x in P is to the right of P ′, i.e., that x ≥
p′ + m′. The opposite case—that x < p′—can be handled analogously.

4.1 Matching Non-periodic Samples

Let us assume that P ′ is non-periodic. We introduce a problem in which, intu-
itively, we compute all k-occurrences of P in T which align T [i] with P [j].

Pair-Match Problem

Input: Text T of length n, pattern P of length m, positive integer k, and
two integers i ∈ [0 . . n − 1] and j ∈ [0 . . m − 1].
Output: The set A(i, j) of all positions in T where we have a k-mismatch
occurrence of rotx(P ) for some x such that (i, j) is a matching pair.
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T
i

j

j
P 2 U U

U ′ U ′V ′ V ′

V V

P 2

Fig. 4. The two possible anchors for the matching pair of positions (i, j) are shown as
bullet points. A possible k-occurrence of P in T corresponding to the left (resp. right)
anchor is shown below T (above T , resp.).

Lemma 3. After O(n)-time preprocessing, the Pair-Match problem can be
solved in O(k) time, where the output is represented as a union of O(k) intervals.

Proof. The Pair-Match problem can be essentially reduced to the Anchor-
Match problem, since for a given matching pair of characters in P and T , there
are at most two ways of choosing the anchor depending on the relation between
j and a split point: these are i−j (if i−j ≥ 0) and i+ |P |−j (if i+ |P |−j < |T |);
see Fig. 4. We then have to take the intersection of the answer with [i−m+1 . . i]
to ensure that the k-occurrence contains position i. ��
Lemma 4. After O(n)-time preprocessing, the Sample-Matching problem for
a non-periodic sample can be solved in O(k2) time and outputs a union of O(k2)
intervals of occurrences.

Proof. If P ′ is non-periodic, then it has O(k) occurrences in T , which can be
computed in O(k) time after an O(n)-time preprocessing using IPM queries [26,
29] in P#T . Let j be the starting position of P ′ in P and i be a starting
position of an occurrence of P ′ in T . For each of the O(k) such pairs (i, j), the
computation reduces to the Pair-Match problem for i and j. The statement
follows by Lemma 3. ��

4.2 Simple Geometry of Arithmetic Sequences of Intervals

Before we proceed with showing how to efficiently handle periodic samples, we
present algorithms that will be used in the proofs for handling regular sets of
intervals. For an interval I and integer r, let I ⊕ r = { i+ r : i ∈ I }. We define

Chainq(I, a) = I ∪ (I ⊕ q) ∪ (I ⊕ 2q) ∪ · · · ∪ (I ⊕ aq).

This set is further called an interval chain. Note that it can be represented in
O(1) space (with four integers: a, q, and the endpoints of I).

For a given value of q, let us fit the integers from [1 . . n] into the cells of a
grid of width q so that the first row consists of numbers 1 through q, the second
of numbers q + 1 to 2q, etc. Let us call this grid Gq. A chain Chainq can be
conveniently represented in the grid Gq using the following lemma; it was stated
in [28] and its proof can be found in the full version of that paper [27].
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Lemma 5 ([27,28]). The set Chainq(I, a) is a union of O(1) orthogonal rectan-
gles in Gq. The coordinates of the rectangles can be computed in O(1) time.

Lemma 6 can be used to compute a union of interval chains; its proof is
deferred to the full version of this paper.

Lemma 6. Assume that we are given m interval chains whose elements are
subsets of [0 . . n]. The union of these chains, expressed as a subset of [0 . . n],
can be computed in O(n + m) time.

We will also use the following auxiliary lemma.

Lemma 7. Let X and Z be intervals and q be a positive integer. Then the set
Z ′ := {z ∈ Z : ∃x∈X z ≡ x (mod q)}, represented as a disjoint sum of at most
three interval chains with difference q, can be computed in O(1) time.

Proof. If |X| ≥ q, then Z ′ = Z is an interval and thus an interval chain. If
|X| < q, then Z ′ can be divided into disjoint intervals of length smaller than
or equal to |X|. The intervals from the second until the penultimate one (if any
such exist), have length |X|. Hence, they can be represented as a single chain,
as the first element of each such interval is equal mod q to the first element of
X. The two remaining intervals can be treated as chains as well. ��

4.3 Matching Periodic Samples

Let us assume that P ′ is periodic, i.e., it has a period q with 2q ≤ |P ′|. A
fragment of a string S containing an inclusion-maximal arithmetic sequence of
occurrences of P ′ in a string S with difference q is called here a P ′-run. If P ′

matches a fragment in the text, then the match belongs to a P ′-run. For example,
the underlined substring of S = bbabababaa is a P ′-run for P ′ = abab.

Lemma 8. If a string P ′ is periodic, the number of P ′-runs in the text is O(k)
and they can all be computed in O(k) time after O(n)-time preprocessing.

Proof. We construct the data structure for IPM queries on P#T . This allows
us to compute the set of all occurrences of P ′ in T as a collection of O(k) arith-
metic sequences with difference per(P ′). We then check for every two consecutive
sequences if they can be joined together. This takes O(k) time and results in
O(k) P ′-runs. ��
For two equal-length strings S and S′, we denote the set of their mismatches by

Mis(S, S′) = {i = 0, . . . , |S| − 1 : S[i] = S′[i]}.

Let Q = S[i . . j]. We say that position a in S is a misperiod with respect to
the fragment S[i . . j] if S[a] = S[b] where b is the unique position such that
b ∈ [i . . j] and |Q| | b − a. We define the set LeftMisperk(S, i, j) as the set of k
maximal misperiods that are smaller than i and RightMisperk(S, i, j) as the set
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S Q∗ ∗ ∗

S′

i j

Q∗ ∗
X Q

Fig. 5. Let S, S′, and X be equal-length strings such that X is a factor of Q∞ and
S[i . . j] = S′[i . . j] = X[i . . j] = Q. The asterisks in S denote the positions in Mis(S, X),
or equivalently, the misperiods with respect to S[i . . j]. Similarly for S′. One can observe
that Mis(S, X) ∩ Mis(S′, X) = ∅ and that Mis(S, X) ∪ Mis(S′, X) = Mis(S, S′).

of k minimal misperiods that are greater than j. Each of the sets can have less
than k elements if the corresponding misperiods do not exist. We further define

Misperk(S, i, j) = LeftMisperk(S, i, j) ∪ RightMisperk(S, i, j)

and Misper(S, i, j) =
⋃∞

k=0 Misperk(S, i, j).
The following lemma captures the main combinatorial property behind the

new technique of Bringmann et al. [11]. Its proof is deferred to the full version
of this paper; the intuition is shown in Fig. 5.

Lemma 9. Assume that S =k S′ and that S[i . . j] = S′[i . . j]. Let

I = Misperk+1(S, i, j) and I ′ = Misperk+1(S
′, i, j).

If I∩I ′ = ∅, then Mis(S, S′) = I∪I ′, I = Misper(S, i, j), and I ′ = Misper(S′, i, j).

A string S is k-periodic w.r.t. an occurrence i of Q if |Misper(S, i, i+|Q|−1)| ≤
k. In particular, in the conclusion of the above lemma S and S′ are |I|-periodic
and |I ′|-periodic, respectively, w.r.t. Q = S[i . . j] = S′[i . . j]. This notion forms
the basis of the following auxiliary problem in which we search for k-occurrences
in which the rotation of the pattern and the fragment of the text are k-periodic
for the same period Q.

Let U and V be two strings and J and J ′ be sets containing positions in
U and V , respectively. We say that length-m fragments U [p . . p + m − 1] and
V [x . . x+m−1] are (J, J ′)-disjoint if the sets (Wp ∩J)⊕ (−p) and (Wx ∩J ′)⊕
(−x) are disjoint. For example, if J = {2, 4, 11, 15, 16, 17}, J ′ = {5, 6, 15, 18, 19},
and m = 12, then U [3 . . 14] and V [6 . . 17] are (J, J ′)-disjoint for:

U = ab• a•b abc ab• abc •••
V = abc ab• •bc abc abc •bc ••c
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Periodic-Periodic-Match Problem

Input: A string U which is 2k-periodic w.r.t. to an exact occurrence i of
a length-q string Q and a string V which is 2k-periodic w.r.t. to an exact
occurrence i′ of the same string Q such that m ≤ |U |, |V | ≤ 2m and

J = Misper(U, i, i + q − 1), J ′ = Misper(V, i′, i′ + q − 1).
(The strings U and V are not stored explicitly.)
Output: The set of positions p in U for which there exists a (J, J ′)-disjoint
k-occurrence U [p . . p + m − 1] of V [x . . x + m − 1] for x such that

i − p ≡ i′ − x (mod q).

Intuitively, the condition on the output of the problem corresponds to the fact
that the k-mismatch periodicity is aligned. We defer the solution to this problem
to Lemma 12. Let us now show how it can be used to solve Sample-Matching
for a periodic sample.

Let us define

Pairs-Match(T, I, P, J) =
⋃

i∈I,j∈J
Pair-Match(T, i, P, j).

Let A be a set of positions in a string S and m be a positive integer. We then
denote A mod m = {a mod m : a ∈ A} and by fragA(S) we denote the fragment
S[min A . . max A]. We provide a pseudocode of an algorithm that computes all
k-occurrences of P such that P ′ matches a fragment of a given P ′-run below.

Data: A periodic fragment P ′ of pattern P , a P ′-run R in
text T , q = per(P ′), and k.
Result: A compact representation of k-occurrences of P in T
including all k-occurrences where P ′ in P matches a fragment of R in T .

Let R = T [s . . s + |R| − 1];
J := Misperk+1(T, s, s + q − 1); { O(k) time }
J ′ := Misperk+1(P 2,m + p′,m + p′ + q − 1); { O(k) time }
U := fragJ(T ); V := fragJ ′(P 2);
Y := Periodic-Periodic-Match(U, V ); { O(k2) time }
Y := Y ⊕ min(J);
J ′ := J ′ mod m;
X := Pairs-Match(T, J, P, J ′); { O(k3) time }
return X ∪ Y ;

Algorithm 1. Run-Sample-Matching
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Lemma 10. After O(n)-time preprocessing, algorithm Run-Sample-Matching
works in O(k3) time and returns a compact representation that consists of O(k3)
interval chains.

Proof. See the pseudocode. The sets J and J ′ can be computed in O(k) time:

Claim. If S is a string of length n, then the sets RightMisperk(S, i, j) and
LeftMisperk(S, i, j) can be computed in O(k) time after O(n)-time preprocessing.

Proof. For RightMisperk(S, i, j), we use the kangaroo method [18,31] to compute
the longest common prefix with at most k mismatches of S[j + 1 . . n − 1] and
U∞ for U = S[i . . j]. The value lcp(X∞, Y ) for a substring X and a suffix Y
of a string S, occurring at positions a and b, respectively, can be computed in
constant time as follows. If lcp(S[a . . n−1], S[b . . n−1]) < |X| then we are done.
Otherwise the answer is given by |X| + lcp(S[b . . n − 1], S[b + |X| . . n − 1]). The
computations for LeftMisperk(S, i, j) are symmetric. ��
The O(k3) and O(k2) time complexities of computing X and Y follow from
Lemmas 3 and 12, respectively (after O(n)-time preprocessing). The sets X and
Y consist of O(k3) intervals and O(k2) interval chains. The claim follows. ��
The correctness of the algorithm follows from Lemma 9. A detailed proof of the
following lemma is deferred to the full version of this paper.

Lemma 11. Assume n ≤ 2m. Let P ′ be a periodic sample in P with smallest
period q and R be a P ′-run in T . Let X and Y be defined as in the pseudocode
of Run-Sample-Matching. Then X ∪Y is a set of k-occurrences of P in T which
is a superset of the solution to Sample-Match for P ′ in R.

4.4 Solution to Periodic-Periodic-Match Problem

Lemma 12. We can compute in O(k2) time a set of k-occurrences of P in T
represented as O(k2) interval chains that is a superset of the solution to the
Periodic-Periodic-Match problem.

Proof. We reduce our problem to the following abstract problem (see also Fig. 6).

I
I ′

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W8

W6

Fig. 6. An instance of the Abstract Problem with m = 6, k = 3, q = 3, δ = 2,
I = {4, 5, 9, 15} and I ′ = {2, 5, 7, 8, 13}. 8 ∈ A, since for 6, we have that |W8 ∩ I| +
|W6 ∩ I ′| ≤ 3, 8 ≡ 2 + 6 (mod 3), W8 ⊆ (4, 15) and W6 ⊆ (2, 13).
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Abstract Problem

Input: Positive integers m, k, q, δ and two sets I and I ′ such that 2 ≤
|I|, |I ′| ≤ 2k + 4.
Output: The set A of integers z for which there exists z′ such that:

1. |Wz ∩ I| + |Wz′ ∩ I ′| ≤ k
2. z ≡ δ + z′ (mod q)
3. Wz ⊆ (min I,max I), Wz′ ⊆ (min I ′,max I ′).

Claim. Periodic-Periodic-Match can be reduced in O(k) time to the
Abstract Problem so that if z belongs to the solution to the Abstract
Problem then p = z is a solution to Periodic-Periodic-Match, which poten-
tially may not satisfy the third condition of the problem.

Proof. Let the parameters m, k and q remain unchanged. We set I = J ∪
{−1, |U |}, I ′ = J ′ ∪ {−1, |V |}, and δ = i − i′. ��
Claim. Abstract Problem can be solved in O(k2) time with the output rep-
resented as a collection of O(k2) interval chains.

Proof. Let us denote Z = (min I,max I − m + 1), Z ′ = (min I ′,max I ′ − m + 1).
We partition the set Z into intervals such that for all z in an interval, the set
Wz ∩ I is the same. For this, we use a sliding window approach. We generate
events corresponding to x and x − m + 1 for all x ∈ I and sort them. When
z crosses an event, the set Wz ∩ I changes. Thus we obtain a partition of Z
into intervals Z1, . . . , Zn1 for n1 ≤ 4k. We obtain a similar partition of Z ′ into
intervals Z ′

1, . . . , Z
′
n2

for n2 ≤ 4k.
Let us now fix Zj and Z ′

j′ (see also Fig. 7). First we check if condition 1 is
satisfied for z ∈ Zj and z′ ∈ Z ′

j′ . If so, we compute the set X = {(δ+z′) mod q :
z′ ∈ Z ′

j′}. It is a single circular interval and can be computed in constant time.
The sought result is {z ∈ Zj : z mod q ∈ X}. By Lemma 7, this set can be

represented as a union of three chains and, as such, can be computed in O(1)
time. The conclusion follows. ��
This completes the proof of the lemma. ��
In the solution we do not check if the sets (Wp∩J)⊕(−p) and (Wx∩J ′)⊕(−x)
are disjoint. However, a k′-occurrence is found for some k′ < k otherwise.

4.5 Main Result

The following proposition summarizes the results from the previous subsections.

Proposition 13. If m ≤ n ≤ 2m, k-CPM can be solved in O(n + k5) time.
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I
I ′

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Z3

Z ′
3

Fig. 7. The same instance of the Abstract Problem as in Fig. 6. For Z3 = {6, 7, 8, 9}
and Z′

3 = {6, 7} we get X = {0, 2} and hence the sought result is {6, 8, 9}.

Proof. There are k + 2 ways to choose a sample P ′ in the pattern.
If the sample P ′ is not periodic, we use the algorithm of Lemma 4 for Sample

Matching in O(k2) time (after O(n)-time preprocessing). It returns a repre-
sentation of k-occurrences as a union of O(k2) intervals.

If the sample P ′ is periodic, we need to find all P ′-runs in T . By Lemma 8,
there are O(k) of them and they can all be computed in O(k) time (after
O(n)-time preprocessing). For every such P ′-run R, we apply the Run-Sample-
Matching algorithm. Its correctness follows from Lemma 11. By Lemma 10, it
takes O(k3) time and returns O(k3) interval chains of k-occurrences of P in T
(after O(n)-time preprocessing). Over all P ′-runs, this takes O(k4) time after
the preprocessing.

In total, Sample Matching takes O(k4) time for a given sample (after
preprocessing), O(n+k5) time in total, and returns O(k5) intervals and interval
chains of k-occurrences. Let us note that an interval is a special case of an interval
chain. Hence, in the end, we apply Lemma 6 to compute the union of all chains
of occurrences in O(n + k5) time. ��

We use the standard trick: splitting the text into O(n/m) fragments, each
of length 2m (perhaps apart from the last one), starting at positions equal to
0 mod m. We need to ensure that the data structures for answering lcp, lcs, and
other internal queries over each such fragment of the text can be constructed in
O(m) time in the case when our input alphabet Σ is large. As a preprocessing
step we hash the letters of the pattern using perfect hashing. For each key,
we assign a rank value from {1, . . . , m}. This takes O(m) (expected) time and
space [16]. When reading a fragment F of length (at most) 2m of the text
we look up its letters using the hash table. If a letter is in the hash table we
replace it in F by its rank value; otherwise we replace it by rank m + 1. We
can now construct the data structures in O(m) time and the whole algorithm
is implemented in O(m) space. If Σ = {1, . . . , nO(1)}, the same bounds can be
achieved deterministically using [36]. We combine Propositions 2 and 13 to get
our final result.

Theorem 14. Circular Pattern Matching with k Mismatches can be solved in
O(min(nk, n + n

m k5)) time and O(m) space.

Our algorithms output all positions in the text where some rotation of the
pattern occurs with k mismatches. It is not difficult to extend the algorithms to
output, for each of these positions, a corresponding rotation of the pattern.
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Abstract. The Cayley table representation of a group uses O(n2) words
for a group of order n and answers multiplication queries in time O(1)
in word RAM model. It is interesting to ask if there is a o(n2) space
representation of groups that still has O(1) query-time. We show that

for any δ, 1
log n

≤ δ ≤ 1, there is an O(n1+δ

δ
) space representation for

groups of order n with O( 1
δ
) query-time.

We also show that for Dedekind groups, simple groups and several
group classes defined in terms of semidirect product, there are linear
space representation to answer multiplication queries in logarithmic time.

Farzan and Munro (ISSAC’06) defined a model for group representa-
tion and gave a succinct data structure for abelian groups with constant
query-time. They asked if their result can be extended to categorically
larger group classes. We show we can construct data structures in their
model to represent Hamiltonian groups and extensions of abelian groups
by cyclic groups to answer multiplication queries in constant time.

1 Introduction

Groups are algebraic objects which arise in mathematics and in computer sci-
ence. Group theory has many important applications in physics, chemistry, and
materials science. Group theory has been used elegantly in proving various
important results in computer science, such as Barrington’s theorem [3], results
on the graph isomorphism problem [1,15] etc.

Algorithms for computational group theoretic problems are essential building
blocks for many of the computer algebra systems such as GAP, SageMath, Singu-
lar etc. Some of the fundamental group theoretic algorithms were designed based
on the ideas of Sims and Schreier (see [19]). Various computational group the-
oretic problems such as the group isomorphism problem, set stabilizer problem
for permutation groups are also interesting from a purely complexity theoretic
point of view for their connection with the graph isomorphism problem [8].

Two of the most commonly used ways of representing groups are via genera-
tors in the permutation group setting and via Cayley tables. Several interesting
problems such as the group isomorphism problem, various property testing prob-
lems, the group factoring problem etc., have been studied for groups represented
by their Cayley tables [5,10–12,18,21,22].

While a multiplication query for a group of order n can be answered in con-
stant time in the Cayley table representation, the space required to store the
c© Springer Nature Switzerland AG 2019
L. A. G ↪asieniec et al. (Eds.): FCT 2019, LNCS 11651, pp. 229–242, 2019.
https://doi.org/10.1007/978-3-030-25027-0_16
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table is O(n2 log n) bits or O(n2) words in word-RAM model, which is pro-
hibitively large. It is interesting to know if there are data structures to store a
group using o(n2) words but still supporting constant query-time for multiplica-
tion. We construct a data structure that has constant query-time but uses just
O(n1.05) words to represent the group. In fact, our result is more general and
offers several other interesting space versus query-time trade-offs.

We note that there are succinct representations of groups such as the
generator-relator representation (see [16]), polycyclic representation [20] etc.,
that store groups succinctly. However, answering multiplication queries gener-
ally takes too much time. For example with a polycyclic representation of a cyclic
group it takes linear time to answer a multiplication query.

An easy information theoretic lower bound [9] states that to represent a group
of order n, at least n log n bits (or Ω(n) words in word RAM model) are needed.
We do not know if in general it is possible to use only O(n) words to store a
group while supporting fast query-time. We show that for restricted classes of
groups such as Dedekind groups, simple groups it is possible to construct data
structures that use only O(n) space and answer multiplication query in O(log n)
time.

In the past succinct representation of groups has been studied for restricted
classes of groups [9,13]. Farzan and Munro [9] defined a model of computation
in which a compression algorithm is applied to the group to get a succinct
canonical form for the group. The query processing unit in their model assumes
that the group elements to be multiplied are in given by their labels. They
also assume that the query processing architecture supports an extra operation
called bit-reversal. In their model they show that for abelian groups, the query
processing unit needs to store only constant number of words in order to answer
multiplication queries in constant time. Farzan and Munro ask if their results can
be extended to categorically larger classes of groups. We show that we can design
succinct data structures with same space bounds and query-time for Hamiltonian
groups and Z-groups. Hamiltonian groups are nonabelian groups all of whose
subgroups are normal. Z-groups are groups all of whose Sylow subgroups are
cyclic. There are many interesting nonabelian groups in the class of Z-groups.
We also show that in their model constant query-time can be achieved for larger
classes of groups defined in terms of semidirect products provided the query
processing unit is allowed to use linear space.

2 Preliminary

In this section, we describe some of the group-theoretic definitions and back-
ground used in the paper. For more details see [4–7].

For a group G, the number of elements in G or the order of G is denoted
by |G|. Let x ∈ G be an element of group G, then ordG(x) denotes the order of
the element x in G, which is the smallest power i of x such that xi = e, where
e is the identity element of the group G. For a subset S ⊆ G, 〈S〉 denotes the
subgroup generated by the set S.
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A group homomorphism from (G, ·) to (H,×) is a function ϕ : G −→ H such
that ∀g1, g2 ∈ G,ϕ(g1 · g2) = ϕ(g1) × ϕ(g2). A bijective homomorphism is called
an isomorphism. Let Aut(H) denote automorphism group of H, Aut(H) = {σ |
σ : A −→ A is an isomorphism }. The set of all automorphism from a H to
H under function composition forms a group. Two elements a and b with the
conditions, a = 1, a2 = (ab)2 = b2 generates a nonabelian group of order 8 known
as quaternian group. A group is said be a simple if every non-trivial subgroup
of it is not a normal subgroup. Let G be a finite group and A,B be subgroups
of G. Then G is a direct product of A and B, denoted G = A × B, if 1) A � G
and B � G, 2) |G| = |A||B|, 3) A ∩ B = {e}.

Let A and B be two groups and let ϕ : B −→ Aut(A) be a homomorphism.
The semidirect product of A and B with respect to ϕ, denoted A �ϕ B, is a
group whose underlying set is A × B and the group multiplication is define as
follows: Let (a1, b1), (a2, b2) ∈ A×B. The multiplication of (a1, b1) and (a2, b2) is
defined as (a1(ϕ(b1)(a2)), b1b2). It is routine to check that the resulting structure
is indeed a group. A group G is called the semidirect product of two of its
subgroups A and B if there exists ϕ : B −→ Aut(A) such that G ∼= A �ϕ B.

A group G is said to be abelian if ab = ba,∀a, b ∈ G. The fundamental
theorem for finitely generated abelian groups implies that a finite abelian group
G can be decomposed as a direct product G = G1×G2× . . .×Gt, where each Gi

is a cyclic group of order pj for some prime p and integer j ≥ 1. If ai generates
the cyclic group Gi for i = 1, 2, 3, . . . , t then the elements a1, a2, . . . , at are called
a basis of G.

A group H is Hamiltonian if every subgroup of H is normal. It is a well
known fact that [4] a group is Hamiltonian if and only if

– G is the quaternion group Q8; or,
– G is the direct product of Q8 and B, of Q8 and A, or of Q8 and B and A,

where A is an abelian group of odd order k and B is an elementary abelian
2-group.1 A group is Dedekind if it is either abelian or Hamiltonian.

Let pk is the highest power of a prime p dividing the order of a finite group
G, a subgroup of G of order pk is called a Sylow p-subgroup of G.

Z-groups are groups all of whose Sylow subgroups are cyclic.
Let G be a group with n elements. A sequence (g1, . . . , gk) of k group elements

is said to be cube generating set of G if

G = {gε1
1 gε2

2 · · · gεk

k | εi ∈ {0, 1}} (1)

Let G = 〈S〉. The Cayley graph of the group G on generating set S is the
directed graph X = (V,E) where V = G and E = {(g, gs) | g ∈ G, s ∈ S}.
Additionally, every edge (g, gs) ∀g ∈ G, ∀s ∈ S is labeled with s. We denote
diameter(G,S) as the graph diameter of the Cayley graph of group G on gener-
ating set S.

1 An elementary abelian 2-group is an abelian group in which every nontrivial element
has order 2.
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We use the % symbol as the modulo operator such that a % b denotes the
remainder of a when divided by b.

2.1 Model of Computation

The model of computation we follow is the word RAM model, where random
access can be done in constant time. Each register and memory unit can store
O(log n) bits where n is the input size (in our case n is the order of the given
group). These memory units are called words. The arithmetic, logic and com-
parison operations on O(log n) bits words take constant time. Unless stated
otherwise we assume that the elements of the group are encoded as 1, 2, . . . , n.

The group G and its Cayley table are already known and we are allowed
to preprocess the input in finite time in order to generate the required data
structures for the multiplication operation. The time and space required in the
preprocessing phase is not counted towards the space complexity and query time
of the data structure. The space complexity is measured in terms of the number
of words required for the storage of the data structure. The multiplication query
for a group G takes two elements x and y, and it has to return z = xy.

We note that in this model the inverses of each element can be trivially
stored in O(n) space. Thus, we primarily focus on the problem of answering
multiplication queries using data structures that uses less space.

3 Our Results

In Sects. 4 and 5 we present succinct data structures for various group classes in
standard word RAM model. Our results for various group classes are summarized
in the table below. We start with a representation for general groups and then
move towards more restricted group classes such as Dedekind groups, groups
which are almost abelian and then finally consider simple groups (Table 1).

Table 1. Table of results

Group class Space (in words) Query time

General groups O
(

n1+δ

δ

)
, 1

log n
≤ δ ≤ 1 O (

1
δ

)

Dedekind groups O(n) O(log n)

Semidirect product of two
abelian groups

O(n) O(log n)

Simple groups O(n) O(log n)

Groups whose every proper
subgroup is abelian

O(n) O(n)

In Sect. 6 we study succinct representation of groups in the model defined by
Farzan and Munro [9]. Our results in this model are listed below.
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Theorem 1. There is a representation of Hamiltonian groups such that multi-
plication operation can be performed using O(1) space in O(1) time.

Theorem 2. There is a representation of Z-groups such that multiplication
operation can be performed using O(1) space in O(1) time.

Theorem 3. There is a representation of groups G = A � Cm such that multi-
plication operation can be performed in using O(|A|) space in O(1) time.

4 Succinct Representation of Finite Groups

In this section we construct a succinct representation of finite groups that can
quickly answer multiplication queries. More precisely,

Theorem 4. Let G be a group of order n. Then for any δ such that 1
log n ≤

δ ≤ 1, there is a representation of G that uses O(n1+δ

δ ) space and answers
multiplication queries in time O(1δ ).

Proof. Let {g1g2 . . . gk} be a cube generating set for the group G. A cube gener-
ating set could be found by brute-force. For each g ∈ G and i ∈ [k] we fix εi(g)
such that g =

∏k
i=1 g

εi(g)
i .

Let h ∈ G. To compute the product hg, we first compute x1 = hg
ε1(g)
1 .

Inductively, we compute xi = xi−1g
εi(g)
i . Here xk = hg. Note that g

εi(g)
i is

either gi or identity. In the later case there is actually no multiplication. With
suitable data structures this method has query time O(k). However, to obtain a
general result that gives interesting space versus query-time trade-offs we take
the following route.

First, divide the k-length sequence g
ε1(g)
1 g

ε2(g)
2 · · · gεk(g)

k into l sized blocks as
shown below.

g = g
ε1(g)
1 · · · g

εl(g)
l

←−−−−− l −−−−−→
g

εl+1(g)
l+1 · · · gε2l(g)

2l

←−−−−− l −−−−−→

· · · gr(g)εr(g) · · · gεk(g)
k

←−−−−−− l −−−−−−→

There are 2l possible products in each block and each such product will be
an element of the group G. We will store the result of the multiplication of
every element g ∈ G with each possible l-length combination from each block.
Each element g can be seen as a sequence of m words w1(g), . . . , wm(g), where
m =

⌈
k
l

⌉
and

wi(g) =
i�∏

j=(i−1)�+1

g
εj(g)
j (2)

Let si(g) be the number whose binary representations is ε(i−1)l+1(g) . . . εil(g).
The number si(g) can be viewed as a representation of the word wi(g).
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Data Structures: In order to perform the multiplication, we will use the following
data structures which are constructed during the preprocessing phase.

1. Word Arrays: For each g ∈ G an array Wg of length m. The ith element Wg[i]
in the array is set to si(g).

2. Multiplication Arrays: For each g ∈ G and i ∈ [m] an array A(i)
g of length 2l.

The jth element of A(i)
g is computed as follows. First we compute the binary

representation ε1ε2 . . . εl of j − 1 (possibly padding 0’s in the left to make it
an l-bit binary number). We set A(i)

g [j] = g gε1
(i−1)l+1g

ε2
(i−1)l+2 . . . gεl

il .

Query Time: Given h and g, we want to compute hg. First we obtain the
sequence s1(g), . . . , sm(g) from the word array Wg. By design, this sequence
corresponds to w1(g), . . . , wm(g) and g = w1(g) . . . wm(g). Now access array
A(1)

h [s1(g)] to get the multiplication of the element h with word w1(g) to obtain
x1. Next access A(2)

x1 [s2(g)] to obtain x2 = x1w2(g). Now repeat this process
until we get the final result. The runtime is O(m) as we need to access the word
arrays and the multiplication arrays O(m) times.

Space Complexity: The space use by the word arrays W is O(nm). The space
used by the multiplication arrays A(i)

g , i ∈ [m], g ∈ G is O(2lmn) as each array
has length 2l. The overall space is O(nm + 2lmn) which is O(2lmn).

Erdös and Renyi [7] showed that for any group of G of order n, there are
cube generating sets of length O(log n). If we set l = δ log n, then space used
by our representation will be O(n1+δ

δ ) words and the query time will be O( 1δ ).
Notice that as l ≥ 1, we need δ ≥ 1/log n. �

Corollary 1. There is a representation of groups such that multiplication query
can be answered in O( log n

log log n ) time using O(n(log n)2

log log n ) space.

Proof. Set δ = O( log log n
log n ) in Theorem 4.

Corollary 2. There is a representation of groups such that multiplication query
can be answered in O(log n) time using O(n log n) space.

Proof. Set δ = O( 1
log n ) in Theorem 4.

Corollary 3. There is a representation of groups such that multiplication query
can be answered in O(1) time using O(n1.05) space.

Proof. Set δ = 1
20 in Theorem 4.

5 Succinct Representation for Restricted Group Classes

In many of the results in this paper, group elements are treated as tuples. For
example, if {g1, . . . , gk} is a cube generating set for a group G, (ε1, . . . , εk) is a
representation of the group element gε1

1 · · · gεk

k . For many of the data structures
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we design, we want a way of encoding these tuples which can be stored efficiently.
We also want to retrieve the group element from its encoding efficiently.

Forward and Backward Map: Let G be a group, c1, . . . , ck be k integers each
greater than 1 with

∏
i ci = O(n) and F : G −→ [c1] × · · · × [ck] be an injective

map. Suppose F (g) = (α1, . . . , αk). Let bi be the �log ci-bit binary encoding
of αi (possibly some 0’s padded on the left to make it a �log ci-bit string).
The concatenation b = b1 . . . bk of the bi’s encodes (α1, . . . , αk). The encoding
b can be stored in constant number of words as

∑
i�log ci = O(log n). Thus, F

can be stored in an array F , indexed by the group elements using O(n) words
by setting F [g] = b. We call this the forward map. We also store an array B,
called the backward map, of dimension c1 × · · · × ck such that B[α1] · · · [αk] = g
if F (g) = (α1, · · · , αk).2 Finally we also store each ci in separate words, which
could be used to extract (α1, · · · , αk) from F [g] in O(log n) time. Notice, that
while the access to F is constant time, the access time for B is O(k) which is
O(log n).

Theorem 5. There is a representation of abelian groups using O(n) space such
that a multiplication query can be answered in O(log n) time.

Proof. Let G be an abelian group. By structure theorem of finite abelian groups,
G can be decomposed as a direct product 〈g1〉 × . . . × 〈gt〉 of cyclic subgroups
gi’s, where gi ∈ G is a generator for 〈gi〉 of order ci. This gives an injective
mapping F : G −→ [c1] × · · · × [ck] with

∏
i ci = O(n). This allows us to use

the forward and backward maps discussed above. Multiplication of two group
elements g and h with F (g) = (α1, . . . , αk) and F (h) = (β1, . . . , βk) can be done
by just computing (αi + βi)%ci for all i and then consulting the backward map.

�

Theorem 6. There is a data structure for representing Hamiltonian groups
using O(n) space with O(log n) multiplication query time.

Proof. Let G be a Hamiltonian group. We know that G can be decomposed as
G = Q8 × A × B, where Q8 is a quaternion group, B is an elementary abelian
2-group and A is an abelian group of odd order [4]. This decomposition can
be obtained in polynomial time [11]. This decomposition gives us a bijection f
from G to Q8 × A × B. Both the bijection f and its inverse f−1 can be stored
in linear space. To multiply two group elements x and y, we first find f(x)
and f(y) which will of the form (q1, a1, b1) and (q2, a2, b2) respectively where
q1, q2 ∈ Q8, a1, a2 ∈ A and b1, b2 ∈ B. Now to compute xy = (q1q2, a1a2, b1b2),
we can use the result of Theorem 5 to take care of the abelian components
in O(log n) time. As the order of Q8 is O(1), the multiplication in the first
component can be found in O(1) time. To obtain the final result we use the
reverse map f−1. ��

We now proceed to study the nonabelian groups in which every proper sub-
group is abelian. This requirement is similar to that of Dedekind groups where
2 If (α1, · · · , αk) /∈ Image(F ), then the value could be arbitrary.
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every subgroup is required to be normal. These groups were introduced and
studied by Miller and Moreno [17]. They also provided a classification for such
groups.

Theorem 7. There is a representation of groups whose every proper subgroup
is abelian, using O(n) space such that multiplication query can be answered in
O(n) time.

Proof. Let G be a group whose every proper subgroup is abelian. Assume that
group G is nonabelian. First we prove that such groups can be generated by two
elements. Let M be any proper maximal subgroup of G. By definition of the
group class M is abelian. Let z /∈ M . Then by maximality of M , 〈M ∪{z}〉 = G.
Let x ∈ M such that xz �= zx. Such an element exists, as otherwise G will be
abelian. As x and z do not commute they must generate the whole group as any
proper subgroup is abelian. It is easy to see that verifying and therefore finding
if two given elements generates a group can be done in polynomial time.

The succinct data structure for G will be the Cayley graph of G with the
generating set {x, z}. To compute gh, first we compute a representation of h in
terms of x and z. This can be done by traversing a path in the Cayley graph
from the identity element to h (which will be of length at most n) and noting
down the edge labels. Next we traverse the graph starting from g and following
the exact same sequence of edge labels obtained in the first traversal.

The space taken to store the Cayley graph in the form of it’s adjacency list
is O(n) as there are only 2n edges. Answering a multiplication query, which
involves two graph traversals, can be done in O(n) time. �

Let A and B be two group classes. Let GA,B = {G | G = A�ϕ B,A ∈ A, B ∈
B, and ϕ is a homomorphism from B to Aut(A)}.

Theorem 8. Let A,B be two group classes. Suppose we are given data structures
DA and DB for group classes A and B respectively. Let S(DA,m1), S(DB,m2)
denote the space required by the data structures DA,DB to represent groups
of order m1,m2 from A, B respectively. Let Q(DA,m1), Q(DB,m2) denote the
time required by the data structures DA,DB to answer multiplication queries for
groups of order m1,m2 from A,B respectively. Then there is a representation
of groups in GA,B such that multiplication query can be answered in O(log n +
Q(DA, |A|) + Q(DB, |B|)) time and O(n + S(DA, |A|) + S(DB, |B|)) space.

Proof. First we describe the preprocessing phase. Given group G, finding two
groups A,B and a homomorphism ϕ such that G = A�ϕ B can be done in finite
time where ϕ : B −→ Aut(A). Without loss of generality, one can assume that
elements of the group A are numbered from 1 to |A|. For each element b ∈ B,
we store its image ϕ(b) ∈ Aut(A) in the array Tb indexed by elements of group
A. Let T = {Tb | b ∈ B} be the set of |B| arrays.

Now we move on to the querying phase. Let g1 and g2 be the two elements
to be multiplied. Let g1 = (a1, b1) and g2 = (a2, b2) such that a1, a2 ∈ A and
b1, b2 ∈ B which can be obtained using the forward map array. The result of the
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multiplication query g1g2 is (a1(ϕ(b1)(a2)), b1b2). The only non-trivial computa-
tion involved here is computing ϕ(b1)(a2), which can be obtained using array Tb1 .
Let Tb1(a2) = a3, then the result of the multiplication query g1g2 is (a1a3, b1b2)
the components of which can be computed using data structures for A and B
respectively to obtain (a4, b4) where a4 = a1a3 and b4 = b1b2. Finally using the
backward map we can obtain the resultant element.

The data structures we use are – forward map array, |B| many arrays T
(each of size |A|), data structures for B and A and the backward map. Thus the
overall space required is O(n + |B||A| + S(DA, |A|) + S(DB, |B|) + n) which is
O(n + S(DA, |A|) + S(DB, |B|)).

The query time constitutes of the time required to get a representation of g1
and g2 as (a1, b1) and (a2, b2) respectively using the forward array, time required
to compute (a1(ϕ(b1)(a2)), b1b2) using Tb1 , time required to compute a1a3 and
b1b2 and time required to access the backward map array to obtain the resultant
element. Thus the overall time required is O(1 + 1 + Q(DA, |A|) + Q(DB, |B|) +
log n) which is O(log n + Q(DA, |A|) + Q(DB, |B|)). ��

We now present a corollary which directly follows from the above theorem.

Corollary 4. For groups which can be decomposed as a semidirect product of
two abelian subgroups, there is a succinct data structure that uses O(n) space
and answers queries in time O(log n).

The group class mentioned in the above corollary includes extension of
abelian groups by cyclic group and has been studied in the context of the group
isomorphism problem [14].

Simple groups serve as the building blocks for classifying finite groups. We
next present a succinct representation of simple groups.

Theorem 9. There is a representation of simple groups using O(n) space such
that multiplication query can be answered in O(log n) time.

Proof. The case of abelian groups is already discussed in Theorem 5. We assume
that group is nonabelian. Babai, Kantor and Lubotsky [2] proved that there is a
constant c such that every nonabelian finite simple group has a set S of size at
most 14 generators such that the diameter of the Cayley graph of G with respect
to S has diameter at most c log n. Such a generating set can be found by iterating
over all possible subsets of size 14. Let G = 〈S〉 = 〈s1, · · · , s14〉. Each g ∈ G can
be represented by the edge labels in one of fixed shortest paths from the identity
to g in the Cayley graph. By the result of Babai, Kantor and Lubotsky [2] the
length of the path is O(log n). The edge labels are from {1, 2, . . . , 14} indicating
the generators associated with the edge. This representation of each element by
the sequence of edge labels can be stored using a forward map. We also store a
multiplication table M of dimension |G|× [14]. We set M [g][i] = ggi. To multiply
two elements g and h we consult the forward map for the representation of h
and then use M to compute the gh in O(log n) time. �



238 B. Das et al.

6 Representation in the Model of Farzan and Munro

In this section we use the model of computation defined by Farzan and Munro [9]
for the succinct representation of abelian groups. We describe the model briefly
here. For further details about this model, refer to [9]. Farzan and Munro use a
Random Access Model (RAM) where a word is large enough to hold the value
of the order of the input group n. The model also assumes the availability of
bit-reversal as one of the native operations which can be performed in O(1) time.

Given a group G, the compression algorithm is defined as the process that
takes G as an input and outputs a succinct representation (called compressed
form) of G. The labeling of elements of group G (based on the compression) is a
representation of the elements. Let A be an abelian group and t be the number of
cyclic factors in the structural decomposition of A. We denote by LA : A −→ N

t

the labeling of elements as per Farzan and Munro’s labeling [9].
We denote by outside user, the entity responsible for the preprocessing oper-

ations such as compression, labeling etc. We denote by query processing unit,
the entity responsible for performing the actual multiplication. The query pro-
cessing unit is responsible for storing the compressed form of the group G. The
outside user is responsible for supplying to the query processing unit the labels
of the group elements to be multiplied. The query processing unit returns the
label of the result of the multiplication query. The space and time required in
the compression and labeling phase is not counted towards the algorithm’s space
complexity and query time. Thus, in the following sections, we only consider the
space and time consumed by the query processing unit.

Theorem 10 ([9]). There is a representation of finite abelian group of order
n that uses constant number of words and answers multiplication queries in
constant time.

Answering the question posed by [9], we design data structures similar to the
ones used in Theorem 10, for Hamiltonian groups and Z-groups. We also come up
with a representation for groups which can be expressed as a semidirect product
of an abelian group with a cyclic group.

6.1 Hamiltonian Groups

Theorem 1. There is a representation of Hamiltonian groups such that multi-
plication query can be answered in O(1) time using O(1) space.

Proof. Let G be a Hamiltonian group. We know that G can be decomposed as
G = Q8 ×C, where Q8 is a quaternion group and C is abelian (See Sect. 2). The
compressed form of group G is same as the compressed form of the abelian group
C. Every element g ∈ G has a representation of the form (q, d) where q ∈ Q8

and d ∈ C. The elements q ∈ Q8 are assigned labels from the set {1, . . . , 8}.
Since C is abelian, we use LC(d) as the label for element d ∈ C. Since the order
of Q8 is constant, storing its entire Cayley table in some arbitrary but fixed
representation requires O(1) space.
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Given two elements r, s of G such that r = (q1, d1) and s = (q2, d2) where
q1, q2 ∈ Q8 and d1, d2 ∈ C. The result of rs is (q1q2, d1d2). The multiplication
of q1 and q2 can be computed in O(1) time using the stored Cayley table. After
obtaining the labels LC(d1) and LC(d2) of elements d1 and d2 respectively,
we can perform Farzan’s multiplication algorithm to obtain the result of the
multiplication of d1 and d2 in O(1) time. The overall space required is O(1)
words. ��

6.2 Z-groups

We now consider Z-groups which are semidirect product of two cyclic groups.
This group class contains the groups studied by Le Gall [14]. We exploit the fact
that every automorphism of a cyclic group is a cyclic permutation.

Theorem 2. There is a representation of Z-groups using O(1) space such that
multiplication query can be answered in O(1) time.

Proof. Let G = Cm �ϕ Cd be a Z-group where ϕ : Cd −→ Aut(Cm) is a homo-
morphism and Cm = 〈g〉 and Cd = 〈h〉. Without loss of generality, we assume
that the elements of Cm are numbered from the set [m] in the natural cyclic
order starting from g. Let σj := ϕ(hj). Let σj(c) denote the image of the ele-
ment c ∈ Cm under the automorphism σj . In the compression process we first
obtain a decomposition of G as Cm�ϕCd. The compressed form of group G com-
prises of the two integers m and d and the compressed form of ϕ which is σ1(g).
In the labeling phase, we label each element t ∈ G, such that t = (gi, hj) as
(i, (σj(g), j)) where i ∈ [m] and j ∈ [d]. Note that, with this labeling (computed
by the outside user), representing any element from G takes O(1) words.

In the querying phase, given two elements r, s ∈ G such that r = (gi1 , hj1)
and s = (gi2 , hj2) where i1, i2 ∈ [m] and j1, j2 ∈ [d]. The result of rs which is
(gi1ϕ(hj1)(gi2), hj1hj2) = (gi1σj1(g

i2), hj1+j2). To compute σj1(g
i2), first obtain

σj1(g) from the label of r = (gi1 , hj1). Now to compute σj1(g
i2) we need to

perform one integer multiplication operation (σj1(g)× i2)%m. Now the problem
of multiplication reduces component-wise to the cyclic case. The multiplication
query can thus be answered in O(1) time using O(1) space to store the orders
of Cm and Cd. ��

6.3 Semidirect Product Classes

A natural way to construct nonabelian groups is by the extension of abelian
groups. The groups which can be formed by semidirect product extension of
abelian groups by cyclic groups has been studied by Le Gall [14]. We denote G
to be the class of groups which can be written as G = A � Cm, where A is an
abelian group and Cm is a cyclic group. It is easy to see that the group class G is
categorically larger than abelian groups as it contains all abelian groups as well
as some nonabelian groups. Without loss of generality, assume that the elements
of the group A are numbered from 1 to |A|.
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Fact 1. Any permutation can be decomposed as a composition of disjoint
cycles [6].

Lemma 1. Given an abelian group A, a permutation π on the set {1, . . . , |A|}
and an element g ∈ A, there exists a representation of π such that πd(g) for any
element g ∈ A and d ∈ [m] can be computed in O(1) time using O(|A|) words of
space.

Proof. Let π = π1 ◦ π2 ◦ · · · ◦ πl be the decomposition of π into disjoint cycles
πi, i ∈ [l]. Such a decomposition of the input permutation π can be computed in
polynomial time. Let C1, . . . Cl be arrays corresponding to the cycles π1, . . . , πl

respectively. For any cycle πi store the elements of the cycle in Ci in the same
order as they appear in πi, starting with the least element of πi. Construct an
array B indexed by the elements of group A, storing for each g ∈ A, B[g] = (j, r),
where j ∈ [l] and r ∈ {0, . . . , |Cj | − 1} such that Cj [r] = g.

Now, in order to compute πd(g), first we obtain j and r from B such that the
g appears in the cycle πj at the rth index. Then we compute r′ := (r + d) % |Cj |
and finally return Cj [r′]. This requires O(1) time as the involved operations are
one word operations. Note that we require overall O(|A|) space to store the
arrays C1, . . . , Cl as

∑
i |Ci| = |A|, and the space required for B is also O(|A|). �

Theorem 3. There is a representation of groups G ∈ G such that multiplication
query can be answered in O(1) time using O(|A|) space.

Proof. Let G ∈ G be such that G = A �ϕ Cm where ϕ : Cm −→ Aut(A) is a
homomorphism. In the compression process, we first obtain the decomposition
of group G as A �ϕ Cm. The compressed form of group G comprises of the
compressed form of group A, the integer m and the succinct representation of
the homomorphism ϕ (described below).

Let Cm = 〈g〉 and π := ϕ(g). Note that π is a bijection on the set {1, . . . , |A|}.
Using Lemma 1 we can store π in O(|A|) words, such that πd(a) for a ∈ A can
be computed in O(1) time. This forms the succinct representation(compressed
form) of ϕ. Since the data structure used above is a part of the compressed form
of group G, the query processing unit is responsible for storing it. We label each
element h ∈ G such that h = (a, gi) as ((LA(a), a), i) where a ∈ A, c ∈ Cm. This
labeling requires O(1) words of space for each element h ∈ G.

In the querying phase, given two elements r = (a1, c1) and s = (a2, c2) of G
such that a1, a2 ∈ A and c1, c2 ∈ Cm, the result of rs is (a1(ϕ(c1)(a2)), c1c2). Let
c1 = gk1 and c2 = gk2 . Now ϕ(c1)(a2) which is πk1(a2) can be computed using
Lemma 1 in O(1) time. Let a3 := πk1(a2), then rs = (a1a3, c1c2). Since the query
processing unit is storing the labels of all the elements of A, it can obtain the label
for the element a3. After obtaining the labels LA(a1) and LA(a3) of elements a1

and a3 respectively, we can perform Farzan’s multiplication algorithm to obtain
the result of the multiplication of a1 and a3 in O(1) time. Let c3 = gk3 be result
of multiplication of c1 and c2. Then k3 = (k1+k2)%m can be computed in O(1)
time.
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In the query processing unit, we are storing the elements of the group A
along with their labels, which takes O(|A|) words of space. The query processing
unit also needs O(|A|) space to store the data structures from Lemma 1. Thus
the total space required is O(|A|). ��
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Abstract. Covering a graph with cohesive subgraphs is a classical prob-
lem in theoretical computer science. In this paper, we prove new com-
plexity results on the Min 2-Club Cover problem, a variant recently intro-
duced in the literature which asks to cover the vertices of a graph with a
minimum number of 2-clubs (which are induced subgraphs of diameter
at most 2). First, we answer an open question on the decision version
of Min 2-Club Cover that asks if it is possible to cover a graph with at
most two 2-clubs, and we prove that it is W[1]-hard when parameter-
ized by the distance to a 2-club. Then, we consider the complexity of
Min 2-Club Cover on some graph classes. We prove that Min 2-Club Cover
remains NP-hard on subcubic planar graphs, W[2]-hard on bipartite
graphs when parameterized by the number of 2-clubs in a solution and
fixed-parameter tractable on graphs having bounded treewidth.

1 Introduction

Covering a graph with cohesive subgraphs, in particular cliques, is a relevant
problem in theoretical computer science with many practical applications. Two
classical problems in this direction are the Minimum Clique Cover problem [13],
and the Minimum Clique Partition problem [13], which are known to be NP-
hard [16] even in restricted cases [5,6,10,24]. These two problems are based on
the clique model and ask for cliques that cover the input graph. Other defini-
tions of cohesive graphs have been considered in the literature, some of them
called relaxed cliques [18], and rather ask for subgraphs that are “close” to a
clique. For example, while each pair of distinct vertices in a clique are at dis-
tance exactly one, an s-club, where s is an integer greater than or equal to one,
relaxes this constraint and is defined as a subgraph whose vertices are at dis-
tance at most s from each other. A 1-club is a clique, so a natural step towards
generalizing cliques using distances is to study the s = 2 case, especially given
that 2-clubs have relevant practical applications in social network analysis and
bioinformatics [1,3,9,20–22]. Hence, in this paper, we focus on 2-clubs.

Finding 2-clubs and, more generally s-clubs, of maximum size, a problem
known as Maximum s-Club, has been extensively studied in the literature. Maxi-
mum s-Club is NP-hard, for each s � 1 [4]. Furthermore, the decision version of
c© Springer Nature Switzerland AG 2019
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the problem that asks whether there exists an s-club larger than a given size in a
graph of diameter s + 1 is NP-complete, for each s � 1 [3]. Maximum s-Club has
also been studied in the parameterzied complexity framework. The problem is
fixed-parameter tractable when parameterized by the size of an s-club [7,19,25].
Moreover the problem has been studied for structural parameters and in chordal
graphs and weakly chordal graphs [14,15]. The approximation complexity of the
problem has also been considered. Maximum s-Club on an input graph G = (V,E)
is approximable within factor |V |1/2, for every s � 2 [2] and not approximable
within factor |V |1/2−ε, for each ε > 0 and s � 2 [2].

Recently, the relaxation approach of s-clubs has been applied to the Minimum
Clique Partition problem in order to cover a graph with s-clubs instead of cliques.
More precisely, the Min s-Club Cover problem asks for a minimum collection
{C1, . . . , Ch} of subsets of vertices (possibly not disjoint) whose union contains
every vertex, and such that every Ci, 1 � i � h, is an s-club. This problem
has been considered in [8], in particular for s = 2, 3. The decision version of the
problem is NP-complete when it asks whether it is possible to cover a graph
with two 3-clubs, and whether is possible to cover a graph with three 2-clubs [8].
Min 3-Club Cover on an input graph G = (V,E) has been shown to be not
approximable within factor |V |1−ε, for each ε > 0, while Min 2-Club Cover on an
input graph G = (V,E) is approximable within factor O(|V |1/2 log3/2 |V |) and
not approximable within factor |V |1/2−ε [8].

In this paper, we present results on the complexity of Min 2-Club Cover. First,
in Sect. 3 we answer an open question on the decision version of Min 2-Club Cover
that asks if it is possible to cover a graph with at most two 2-clubs, and we
prove that it is not only NP-hard, but W[1]-hard even when parameterized by
the parameter “distance to 2-club”. Notice that in contrast, the problem that
asks if it possible to cover a graph with two cliques is in P [12]. Our hardness
is obtained through an intermediate problem, called the Steiner-2-Club, which
asks whether a given subset of k vertices belongs to some 2-club. We show that
this latter problem is W[1]-hard when paramterized by k. Then, we consider the
complexity of Min 2-Club Cover on some graph classes. In Sect. 4 we prove that
Min 2-Club Cover is NP-hard on subcubic planar graphs. In Sect. 5 we prove that
Min 2-Club Cover on a bipartite graph G = (V,E) is W[2]-hard when parame-
terized by the number of 2-clubs in a solution and not approximable within
factor Ω(log(|V |)). Finally, we prove in Sect. 6 that Min 2-Club Cover is fixed-
parameter tractable on graphs having bounded treewidth. We start in Sect. 2 by
giving some definitions and by defining formally the Min 2-Club Cover problem.
Some of the proofs are omitted due to space constraints.

2 Preliminaries

Given a graph G = (V,E) and a subset W ⊆ V , we denote by G[W ] the subgraph
of G induced by V ′. Given two vertices u, v ∈ V , the distance between u and
v in G, denoted by dG(u, v), is the number of edges on a shortest path from u
to v. The diameter of a graph G = (V,E) is the maximum distance between
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two vertices of V . Given a graph G = (V,E) and a vertex v ∈ V , we denote by
NG(v) the set of neighbors of v, that is NG(v) = {u : {v, u} ∈ E}. We denote
by NG[v] the closed neighborhood of V , that is NG[v] = NG(v) ∪ {v}. Given a
set V ′ ⊆ V , we denote by N(V ′) = {u : {v, u} ∈ E, v ∈ V ′} \ V ′.

Definition 1. Given a graph G = (V,E), a subset V ′ ⊆ V , such that G[V ′] has
diameter at most 2, is a 2-club.

Notice that a 2-club must be connected, and that dG[V ′](u, v) might differ
from dG(u, v). Now we present the definition of the problem we are interested
in, called Minimum 2-Club Cover.

Problem 1. Minimum 2-Club Cover (Min 2-Club Cover)
Input: A graph G = (V,E).
Output: A minimum cardinality collection C = {V1, . . . , Vh} such that, for each
i with 1 � i � h, Vi ⊆ V , Vi is a 2-club, and, for each vertex v ∈ V , there exists
a set Vj , with 1 � j � h, such that v ∈ Vj .

Notice that the 2-clubs in C = {V1, . . . , Vh} do not have to be disjoint.
We denote by 2-Club Cover(h), with 1 � h � |V |, the decision version of
Min 2-Club Cover that asks whether there exists a cover of G consisting of at
most h 2-clubs.

3 W[1]-Hardness of 2-Club Cover(2) for Parameter
Distance to 2-club

In this section, we show that 2-Club Cover(2), i.e. deciding if a graph can be
covered by two 2-clubs, is W[1]-hard for the parameter “distance to 2-club”,
which is the number of vertices to be removed from the input graph G = (V,E)
such that the resulting graph is a 2-club. Note that Max s-Club is FPT for this
parameter [25]. In order to prove this result, we first prove the W[1]-hardness of
an intermediate decision problem, called the Steiner-2-Club (whose W[1]-hardness
may be of independent interest), even in a restricted case. Then we present a
reduction from this restriction of Steiner-2-Club to 2-Club Cover(2).

Problem 2. Steiner-2-Club
Input: A graph Gs = (Vs, Es), and a set Xs ⊆ Vs.
Output: Does there exist a 2-club in Gs that contains every vertex of Xs?

We call Xs the set of terminal vertices. We show that Steiner-2-Club is W[1]-
hard for parameter |Xs|, by a parameter-preserving reduction from Multicolored
Clique.

Problem 3. Multicolored Clique
Input: A graph Gc = (Vc, Ec), where Vc is partitioned into k independent sets
Vc,1, . . . , Vc,k (hereafter called the color classes).
Output: Does there exist a clique V ′

c ⊆ Vc such that |V ′
c | = k?
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Note that V ′
c has one vertex per color class, that is, for each 1 � i � k, |V ′

c ∩
Vc,i| = 1. It is well-known that Multicolored Clique is W[1]-hard for parameter k
[11].

Our proof holds on a restriction of Steiner-2-Club called Restricted Steiner-
2-Club, where the set Xs is an independent set, |Xs| > 4, and each vertex in
Vs \Xs has at most 2 neighbors in Xs. We start by giving an hardness result for
Restricted Steiner-2-Club.

Theorem 2. The Restricted Steiner-2-Club problem is W[1]-hard with respect to
the number of terminal vertices |XS |.

We can now prove the hardness of 2-Club Cover(2).

Theorem 3. The 2-Club Cover(2) problem is W[1]-hard for the parameter dis-
tance to 2-club.

Proof. Let (Gs = (Vs, Es),Xs) be an instance of Restricted Steiner-2-Club, where
k = |Xs| and Vs = {v1, . . . , vn}. It follows from Theorem 2 that Restricted Steiner-
2-Club is W[1]-hard when parameterized by k. Recall that in Restricted Steiner-
2-Club |Xs| = k > 4. Finally, denote V ′

s = Vs \ Xs.
Starting from (Gs = (Vs, Es),Xs), we construct an instance G = (V,E) of

2-Club Cover(2), where V = H �W �Y �Z (here � means disjoint union). First,
we define the sets H, W , Y , Z and the edges of the subgraphs G[H], G[W ],
G[Y ] and G[Z], then the remaining edges of G. The subgraph G[H] = (H,EH),
is defined as follows:

H = {hi : vi ∈ Vs} EH = {{hi, hj} : {vi, vj} ∈ Es}
hence H is a copy of Gs. Moreover, define HX ⊆ H as follows

HX = {hi ∈ H : vi ∈ Xs}
Notice that HX is an independent set in G.

The subgraph G[W ] = (W,EW ) is a complete graph containing a vertex for
each two vertices vi, vj in V ′

s , with 1 � i < j � n − k, defined as follows:

W = {wi,j : vi, vj ∈ V ′
s} EW = {{wi,j , wh,l} : wi,j , wh,l ∈ W}.

The subgraph G[Y ] = (Y,EY ) is also complete and has a vertex for each
vi ∈ V ′

s . It is defined as follows:

Y = {yi : vi ∈ V ′
s} EY = {{yi, yj} : yi, yj ∈ Y }.

The subgraph G[Z] = (Z,EZ) is the same as G[Y ], and is defined as follows:

Z = {zi : vi ∈ V ′
s} EZ = {{zi, zj} : zi, zj ∈ Z}.

Finally, we define the edges in E between two vertices that belong to different
sets in H, W , Y and Z. Informally, every edge between W and Y is present, and
every edge between Y and Z is present (point 1 and 2 below). Each vertex wi,j

of W is connected with vertices hi and hj of H (point 3 below). Similarly, each
vertex of Y is connected with the corresponding vertex of H (point 4 below).
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1. {wi,j , yl} ∈ E, for each wi,j ∈ W and each yl ∈ Y
2. {yi, zj} ∈ E, for each yi ∈ Y and each zj ∈ Z
3. For each {vi, vj} of V ′

s , with i < j, {hi, wi,j} ∈ E and {hj , wi,j} ∈ E, where
hi, hj ∈ H \ HX and wi,j ∈ W

4. For each vi ∈ V ′
s , {hi, yi} ∈ E, with hi ∈ H \ HX and yi ∈ Y .

Notice that, by construction, W ∪ Y and Y ∩ Z are cliques.
We first prove that G = (V,E) has a distance to 2-club of exactly k. First

note that a vertex of HX and vertex of Z are at distance three in G, since they
don’t share any common neighbour in G. It follows that to obtain a 2-club from
G, either all the vertices of HX or all the vertices of Z have to be removed from
G. This implies a distance of at least k from a 2-club, since |HX | = k .

Next we prove in the following claim that V \ HX is a 2-club.
Claim (1). V \ HX is a 2-club of G.
Thus we have shown that V \ HX is a 2-club in G and that G has distance at
most |HX | = k from a 2-club.

In order to complete the prove, we have to show that there exists a solution
of Restricted Steiner-2-Club on instance (Gs,Xs) if and only G can be covered by
two 2-clubs.

First assume that Restricted Steiner-2-Club on instance (Gs,Xs) admits a 2-
club Cs containing Xs. Then, we claim that V \HX and C = {hi ∈ H : vi ∈ Cs}
are a solution of 2-Club Cover(2) on instance G, that is they are two 2-clubs of
G and cover every vertex of V . First notice that, since Xs ⊆ Cs, then HX ⊆ C
and thus V = C ∪ (V \ HX) as desired. It remains to show that C and V \ HX

are 2-clubs of G. By Claim 1, we already know that V \ HX is a 2-club of G.
Moreover, since G[H] is isomorphic to Gs and Cs is a 2-club of Gs, C is also
2-club of G.

Conversely, suppose that G = (V,E) can be covered by two 2-clubs C1 and
C2. First, notice that vertices of HX and vertices of Z are at distance 3 from each
other. It follows that one of these 2-clubs, say C1, satisfies HX ⊆ C1, while the
other, in our case C2, satisfies Z ⊆ C2. We claim that (W ∪Y )∩C1 = ∅. Assume
that there exists a vertex wi,j ∈ W ∩C1, where vi, vj ∈ V ′

s are the vertices of Gs

corresponding to wi,j . Consider a common neighbor r of wi,j and any hl ∈ HX

in C1. By construction, then r ∈ H \HX , since hl has only neighbors in H \HX .
It follows that r = hi or r = hj , as the only vertices of H \ HX adjacent to
wi,j are hi or hj . This holds for each hl ∈ HX , thus HX ⊆ N(hi) ∪ N(hj). By
construction, since G[H] and Gs are isomorphic, then vi, vj ∈ Xs have at most
two neighbors in Vs \Xs and hi, hj ∈ H \HX have at most two neighbors in HX .
Since N(wi,j) ∩ (H \ HX) = {hi, hj}, it follows that HX ⊆ N(h1) ∪ N(h2), thus
|HX | � 4, while |HX | > 4, a contradiction, thus there is no vertex wi,j ∈ C1.

Assume that there exists a vertex yi ∈ Y ∩ C1, where vi ∈ V ′
s is the vertex

of Gs corresponding to yi. By construction, the common neighbor of of each
hj ∈ HX and vertex yi ∈ Y is hi ∈ H \ HX . This implies that HX ⊆ N(hi),
again reaching a contradiction since hi has at most 2 neighbors in HX , while
|HX | > 4. We can conclude that there is no vertex yi ∈ C1.
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We have proved that (W ∪ Y ) ∩ C1 = ∅ and thus C1 ⊆ H. Define a 2-club
Cs ⊆ Vs of Gs as follows: Cs = {vi : hi ∈ C1}. Since C1 is a 2-club of G, and
G[H] is isomorphic to Gs, it follows that Cs is a 2-club of Gs. Moreover, HX ⊆
C1, implying that Xs ⊆ Cs. Thus Cs is a solution of Restricted Steiner-2-Club,
implying that 2-Club Cover(2) is W[1]-hard when parameterized by distance to
a 2-club. �	

4 Hardness of Min 2-Club Cover in Subcubic Planar
Graphs

In this section we prove that Min 2-Club Cover is NP-hard even if the input graph
is connected, has maximum degree 3 (i.e. a subcubic graph) and it is planar. We
present a reduction from the Minimum Clique Partition problem on planar subcu-
bic graphs (we denote this restriction by Min Subcubic Planar Clique Partition).

Problem 4. (Min Subcubic Planar Clique Partition)
Input: A planar subcubic graph G = (VP , EP ).
Output: A partition of VP into a minimum number of cliques of GP .

Min Subcubic Planar Clique Partition is known to be NP-hard [5].
We first prove that subcubic graphs have a specific type of matching 1, which

will be useful for our reduction. A triangle in a graph is a clique of size 3.

Lemma 4. Let GP = (VP , EP ) be a connected subcubic graph that is not iso-
morphic to K4. Then there is a matching FP ⊆ EP in GP that can be computed
in polynomial time, with the following properties:

– every triangle of GP contains exactly one edge of FP ;
– every edge of FP is contained in some triangle of GP .

We are now ready to describe our reduction. Informally, an instance G of
Min 2-Club Cover, is constructed starting from GP = (VP , EP ) by subdividing
every edge of EP \ FP , and, for every vertex obtained by the subdivision of an
edge, by connecting it to a new dangling path of length two.

Next, we define the graph G formally. Given a instance GP = (VP , EP ) of
Min Subcubic Planar Clique Partition, where VP = {u1, . . . , un}, we first compute
a matching FP of GP that satisfies the requirements of Lemma 4. Then, define
G = (V,E), an instance of Min 2-Club Cover, where V = V ′ ∪V1 ∪VB as follows.
First, define V ′ as V ′ = {vi : ui ∈ VP }.

For each edge {ui, uj} ∈ EP \ FP , with 1 � i < j � n, define:

V1 = {vi,j,1 : {ui, uj} ∈ EP \ FP } VB = {vi,j,2, vi,j,3 : {ui, uj} ∈ EP \ FP }

1 Recall that a matching is a set of edges that share no endpoint.
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Next, we define the edge set E of G

E ={{vi, vj} : vi, vj ∈ V ′, {ui, uj} ∈ FP } ∪
{{vi, vi,j,1}, {vj , vi,j,1} : vi, vj ∈ V ′, vi,j,1 ∈ V1, {ui, uj} ∈ EP \ FP } ∪
{{vi,j,t, vi,j,t+1} : vi,j,t, vi,j,t+1 ∈ V, t ∈ {1, 2}}

Notice that G has maximum degree three, since GP has maximum degree
three. Indeed, the vertices in V ′ have the same degree as the corresponding
vertices in GP , those in V1 have degree exactly three and those in VB degree at
most 2. Moreover, since GP is planar, then also G is planar. Indeed, the vertices
of VB cannot belong to a subdivision of a K5 or a K3,3, since they don’t belong
to a cycle of G. Hence, it is sufficient to consider the subgraph G[V ′ ∪ V1]. The
vertices in V1 cannot belong to a K5 or a K3,3, since they have degree two in
G[V ′ ∪ V1]. But then, if G[V ′ ∪ V1] is a subdivision of a K5 or a K3,3, the same
property holds for G, since the vertices of V1 are obtained by subdiving edges of
GP , a contradiction to the planarity of GP .

For the remainder of this section, set q = |EP |− |FP |, that is q is the number
of edges of GP that were subdivided in the construction of G.

Lemma 5. Given a planar cubic graph GP instance of Min Subcubic Pla-
nar Clique Partition, consider the corresponding instance G of Min 2-Club Cover.
If there exists a clique partition C = {CP,1, . . . , CP,k} of GP with k cliques, then
there exists a solution of Min 2-Club Cover on instance G consisting of q + k
2-clubs.

Proof. Recall that GP is a subcubic graph. Note that if C = {CP,1, . . . , CP,k}
is a clique partition of GP , then each CP,i, with 1 � i � k, is either a triangle,
two adjacent vertices or a singleton vertex of GP , since we have assumed that
GP is not a K4. For each CP,i ∈ C, with 1 � i � k, we define a corresponding
2-club Ci in G, If CP,i = {uj}, with 1 � j � n, that is it is a singleton, then
define Ci = {vj}, with vj ∈ V ′. Consider the case that CP,i = {uj , ul}, with
1 � j, l � n, i.e. CP,i is an edge of GP . If {uj , ul} ∈ FP , then Ci = {vj , vl}. If
{uj , ul} ∈ EP \ FP , then Ci = {vj , vl, vi,l,1}.

If CP,i = {uj , ul, uz}, then CP,i is a triangle in GP . By construction of the
matching FP , there exists one edge of G connecting two vertices of vj , vl, vz.
Thus, in G there exists a cycle D of length 5 that contains vj , vl, vz. Then D is
a 2-club of G and we define Ci = D. Since each vertex of GP belongs to a clique
of {CP,1, . . . , CP,k}, the 2-clubs C1 . . . , Ck cover every vertex in V ′. The vertices
of V1 ∪ VB are covered with q 2-clubs as follows. For each vertex of V1, define a
2-club {vi,j,1, vi,j,2, vi,j,3}. It follows that G admits a cover with at most q + k
2-clubs. �	
Lemma 6. Given a graph GP instance of Min Subcubic Planar Clique Partition,
consider the corresponding graph G instance of Min 2-Club Cover. Then, any
2-club covering of G contains strictly more than q 2-clubs. Moreover, if there
exists a solution C = {C1, . . . , Cq+k} of Min 2-Club Cover on instance G, for
some k � 1, there exists a clique partition of GP with at most k cliques.
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From Lemmas 5, 6 and from the NP-hardness of Min Subcubic Pla-
nar Clique Partition [5], we can conclude that Min 2-Club Cover is NP-hard on
planar subcubic graphs.

Theorem 7. Min 2-Club Cover is NP-hard on planar subcubic graphs.

5 Hardness of Min 2-Club Cover on Bipartite Graphs

In this section, we show that Min 2-Club Cover is W[2]-hard when parameterized
by h (the number of 2-clubs in a solution of Min 2-Club Cover) and not approx-
imable within factor Ω(log |V |), by giving a reduction from Minimum Set Cover
to Min 2-Club Cover on bipartite graphs.

Problem 5. Minimum Set Cover (Minimum Set Cover)
Input: A set U = {u1, . . . un} of n elements and a collection S = {S1, . . . , Sm}
of sets, where Si ⊆ U , with 1 � i � m
Output: A minimum cardinality collection S ′ ⊆ S such that for each element
ui ∈ U , with 1 � i � n, there exists a set of S ′ containing ui.

Minimum Set Cover is known to be W[2]-hard when parameterized by the
size of the solution [23].

Given an instance (U,S) of Minimum Set Cover, we define a bipartite graph
G = (V,E), an instance of Min 2-Club Cover, where V = V1 � V2, as follows:

V1 = {vi : ui ∈ U} ∪ {z1} V2 = {wi : Si ∈ S} ∪ {z2}
E = {{vi, wj} : ui ∈ Sj} ∪ {{z1, wj} : 1 � j � m}} ∪ {z1, z2}

The graph G is bipartite, as there is no edge connecting two vertices of V1

or two vertices of V2. Next, we prove the main results on which the reduction is
based.

Lemma 8. Let (U,S) be an instance of Minimum Set Cover and let G = (V,E)
be the corresponding instance of Min 2-Club Cover. Given a solution of Minimum
Set Cover of size z, then we can compute in polynomial time a solution C of
Min 2-Club Cover of size z + 1.

Lemma 9. Let (U,S) be an instance of Minimum Set Cover and let G =
(V,E) be the corresponding instance of Min 2-Club Cover. Given a solution of
Min 2-Club Cover of size h, with h � 2, we can compute in polynomial time a
set cover of (U,S) having size at most h − 1.

From Lemmas 8 and 9, and from the W[2]-hardness of Minimum Set Cover [23]
by h (the size of solution), we can conclude that Min 2-Club Cover is W[2]-hard
on bipartite graphs.

Theorem 10. Min 2-Club Cover is W[2]-hard on bipartite graphs when param-
eterized by the number of 2-clubs in the cover.
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As a consequence of Lemmas 8 and 9, we can prove also a bound on the
approximation of Min 2-Club Cover on bipartite graphs.

Corollary 11. Min 2-Club Cover is not approximable within factor Ω(log(|V |))
on bipartite graphs.

6 An FPT Algorithm for Min 2-Club Cover on Graphs
of Bounded Treewidth

In this section we show that Min 2-Club Cover is fixed parameter tractable when
parameterized by the treewidth δ of the input graph G. First, we present the
definitions of tree decomposition and of nice tree decomposition of a graph [17].
Given a tree decomposition of a graph G having width k, a nice tree decompo-
sition of width k can be computed in linear time.

Given a graph G = (V,E), a tree decomposition of G is a tree T = (B,EB)
(we denote |B| = l), where each vertex Bi ∈ B, 1 � i � l, is a bag (that is
Bi ⊆ V ), with |Bi| � δ + 1, such that:

–
⋃l

i=1 Bi = V
– For every {u, v} ∈ E, there is a bag Bj ∈ B, with 1 � j � l, such that

u, v ∈ Bj

– The bags of T containing a vertex u ∈ V induce a subtree of T .

In a nice tree decomposition, each Bi ∈ B can be an introduce vertex (Bi

has a single child Bj , with Bi = Bj ∪ {u}, where u ∈ V ), a forget vertex (Bi

has a single child Bj , with Bi = Bj \ {u}, where u ∈ V ), or a join vertex (Bi

has exactly two children Bl, Br with Bi = Bl = Br). Moreover, a nice tree
decomposition is rooted, and each leaf-bag is associated with a single vertex of
V . From now on, we will assume that we are given a nice tree decomposition.

We denote by Ti, with 1 � i � l, the subtree of T rooted at Bi, and we
denote by V (Ti) the vertices contained in at least one bag of Ti. Moreover,
Gi = G[V (Ti)]. Given a 2-club X of G such that X ∩ V (Ti) 
= ∅, with 1 � i � l,
X ∩ T (Vi) is a partial 2-club. Notice that all the vertices of a partial 2-club have
distance at most two in G and that two vertices u, v ∈ X ∩ (V (Ti) \ Bi), with
1 � i � l, have distance at most 2 in Gi, since by the thrid property of tree
decomposition N(u) ∪ N(v) ⊆ V (Ti).

Consider a solution S of Min 2-Club Cover on G and a 2-club X of S. Let
Xi = X ∩ V (Ti), 1 � i � l, be a partial 2-club of G, define X[Bi] = X ∩ Bi.
We define two tables associated with X[Bi] and Xi, with 1 � i � l, that will be
useful in the rest of the section:

– A table D(X[Bi]) that, for two vertices u, v ∈ X[Bi], stores their distance in
G[Xi]. More precisely, D(X[Bi])[u, v], with u, v ∈ X[Bi], is defined as follows:

D(X[Bi])[u, v] =

⎧
⎪⎪⎨

⎪⎪⎩

0 if u = v
1 if dG[Xi](u, v) = 1
2 if dG[Xi](u, v) = 2
+∞ else
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– A table H(X[Bi]) that stores the distance (not greater than 2) in G[Xi] of the
vertices in Xi \Bi from each vertex z ∈ X[Bi]. Notice that this distance must
be at most two, since N(Xi \ Bi) ⊆ V (Ti). Table H(X[Bi]) contains rows of
length |X[Bi]| having values in {1, 2}. Given a vertex u ∈ (Xi\Bi), there exists
a row r ∈ {1, 2}|X[Bi]| that belongs to H(X[Bi]) such that dG[Xi](u, v) = r[v],
for each v ∈ X[Bi].

An empty table is a table that does not contain any row or column.
Before giving the algorithm, we show that we can restrict ourselves to a

special kind of solutions. The proof of the next lemma follows from the properties
of nice tree decomposition. Note that when we say D(X[Bi]) = D(Y [Bi]), we
mean D(X[Bi])[u, v] = D(Y [Bi])[u, v] for every u, v ∈ Bi (similarly for H).

Lemma 12. Given a subtree Ti of a nice tree decomposition of G, consider a
set S ′ of distinct partial 2-clubs of Ti such that:

a. All the partial 2-clubs in S ′ contain the same subset B′
i of Bi (i.e. X ∩ Bi =

Y ∩ Bi = B′
i for every X,Y ∈ S ′)

b. For every X,Y ∈ S ′, D(X[Bi]) = D(Y [Bi])
c. For every X,Y ∈ S ′, H(X[Bi]) = H(Y [Bi]).

Then the following hold:

1. Given a 2-club ZX of G such that ZX ∩V (Ti) = X, with X ∈ S ′, ZX \V (Ti) 
=
∅ and X \ B′

i 
= ∅, then Y ∪ (ZX \ X), with Y ∈ S ′, is a 2-club of G.
2. An optimal solution of Min 2-Club Cover on instance G contains at most 2δ+1

2-clubs ZX of G such that ZX ∩ V (Ti) = X, with X ∈ S ′, ZX \ V (Ti) 
= ∅
and X \ B′

i 
= ∅.
Next, given a nice tree decomposition of G, we describe a dynamic program-

ming recurrence to compute a solution of Min 2-Club Cover on G. We denote
by 〈Bi〉t, 1 � i � l, a collection of t subsets of Bi, and we denote by 〈Bi〉t[j]
the j-th subset, with 1 � j � l, of 〈Bi〉t. Similarly, we denote by 〈Di〉t and
〈Hi〉t, 1 � i � l, two collections of t tables for Bi. We denote by 〈U〉t[j], with
U ∈ {Hi,Di} the j-th table, with 1 � j � t, of 〈U〉t. Notice that 〈U〉t[j][a, b]
denotes the entry associated with vertices a, b of table 〈U〉t[j]. Each table 〈Di〉t[j]
consists of |〈Bi〉t[j]| rows and columns, and is over values {0, 1, 2,+∞}. Each
table 〈Hi〉t[j] consists of |〈Bi〉t[j]| columns. Moreover, we can define an upper
bound on the number of rows of 〈Hi〉t[j]. Notice that 〈Hi〉t[j] contains distinct
rows and has values in {1, 2}, thus there can be at most 2|〈Bi〉t[j]| rows in 〈Hi〉t[j].
Informally, the tables 〈Hi〉t[j] and 〈Di〉t[j] are used to guess the tables D(X[Bi])
and H(X[Bi]), for a partial 2-club X.

Define a function C[〈Bi〉t
, 〈Di〉t

, 〈Hi〉t
, h], where 〈Bi〉t is a collection of t not

necessarily disjoint subsets of Bi, 〈Di〉t is a collection of t tables, where table
〈Di〉t[j], with 1 � j � t, is associated with subset 〈Bi〉t[j], 〈Hi〉t is a collection of
t tables where table 〈Hi〉t[j], with 1 � j � t, is associated with subset 〈Bi〉t[j].

Put C[〈Bi〉t
, 〈Di〉t

, 〈Hi〉t
, h] = 1 (else C[〈Bi〉t

, 〈Di〉t
, 〈Hi〉t

, h] = 0) if and
only if there exists a collection S of h partial 2-clubs that covers V (Ti) such that
the following property holds:
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Property 1. For each partial 2-club S of S, either S ⊆ V (Ti) \ Bi or S ∩ Bi =
〈Bi〉t[p], 1 � p � t, and the following hold:

1.
⋃t

p=1 〈Bi〉t[p] = Bi

2. For each S of S such that S ∩ Bi = 〈Bi〉t[p] for some 1 ≤ p ≤ t
(a) D(S[Bi]) = 〈Di〉t[p]
(b) H(S[Bi]) = 〈Hi〉t[p]

Consider a partial 2-club S of S. Notice that by the definition of partial 2-
clubs all the vertices in S \Bi have distance at most 2 in Gi. Moreover, if S does
not contain vertices of Bi, it is indeed a 2-club of Gi.

Next, we describe the recurrence to compute C[〈Bi〉t
, 〈Di〉t

, 〈Hi〉t
, h]. Notice

that, given a subset of Bi and two tables of 〈Di〉t, 〈Hi〉t, there can exist multiple
entries in C, that is 〈Bi〉t[x] = 〈Bi〉t[y], 〈Di〉t[x] = 〈Di〉t[y] and 〈Hi〉t[x] =
〈Hi〉t[y], with 1 � x < y � t. This is due to the fact that two partial 2-clubs
may have been created in some bag of Ti and after the removal of some vertices
they may have the same subset 〈Bi〉t[x] of Bi and the same tables 〈Di〉t[x] and
〈Hi〉t[x]. However, notice that, by Lemma 12, we consider at most 2δ+1 partial
2-clubs having identical values of 〈Bi〉t[x], 〈Di〉t[x] and 〈Hi〉t[x].

In the recurrence, we distinguish three cases depending on the fact that
vertex Bi is an introduce vertex, a forget vertex or a join vertex. We present an
informal description of the recurrence, before giving the details. First, we assume
that each leaf bag contains a single vertex. In an introduce vertex Bi of the nice
tree decomposition, with child Bj , where Bi = Bj ∪{u}, we consider the partial
2-clubs having vertices in Bi, and in particular we may add to the solution we
are computing partial 2-clubs that contain u. The associated tables 〈Di〉t[p] and
〈Hi〉t are computed. In a forget vertex of the nice tree decomposition, with child
Bj , where Bi = Bj \ {u}, we update the partial 2-clubs that contains vertex u.
Given a partial 2-club S that contains u, S ∩Bi is obtained by removing u and if
S ∩Bj is {u}, the partial 2-club is removed, checking that is a 2-club. The tables
〈Di〉t[p] and 〈Hi〉t[p] are updated, checking that u has distance at most two from
the other vertices of S and adding a new row to table 〈Hi〉t[p] that stores the
distance of u from the vertices of S∩Bi. In a join vertex Bi with children Bl and
Br, it is considered the case that a partial 2-club S contains vertices of one or
two subtrees of the nice tree decomposition. In the latter case, for two vertices u
and v of S, table 〈Di〉t[p] contains the minimum of the distances between u and
v in the two subtrees. Moreover, it is checked that the vertices of S that belong
to different subtrees have a common neighbour in S (this vertex by construction
must be in S ∩ Bi).

Introduce Vertex
Let Bi be an introduce vertex and let Bj be the only child of Bi, with Bi = Bj ∪
{u} (notice that u belongs to at least one set of 〈Bi〉t). C[〈Bi〉t

, 〈Di〉t
, 〈Hi〉t

, h]
is the maximum over all possible combinations of z ∈ {0, 1, . . . , t − 1}, 〈Bj〉t−z,
〈Dj〉t−z, 〈Hj〉t−z, of

C[〈Bj〉t−z
, 〈Dj〉t−z

, 〈Hj〉t−z
, h − z]
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where

– 〈Bi〉t[p], with 1 � p � t − z, is either 〈Bi〉t[p] = 〈Bj〉t[p] or 〈Bi〉t[p] =
〈Bj〉t[p] ∪ {u}; 〈Bi〉t[p], with t − z + 1 � p � t is either 〈Bi〉t[p] = {u} or
〈Bi〉t[p] = 〈Bj〉t−z[y] ∪ {u}, with 1 � y � t − z.

– If 〈Bi〉t[p] = 〈Bj〉t[p], with 1 � p � t − z, then 〈Di〉t[p] = 〈Dj〉t[p] and
〈Hi〉t[p] = 〈Hj〉t[p]

– If 〈Bi〉t[p] = 〈Bj〉t−z[y] ∪ {u}, with 1 � p � t and 1 � y � t − z, and 〈Hi〉t[p]
and 〈Hj〉t−z[y] are empty tables, then 〈Di〉t[p], with t − z + 1 � p � t, is a
table containing the distances of the vertices of 〈Bi〉t[p] in G[〈Bi〉t[p]]

– If 〈Bi〉t[p] = 〈Bj〉t−z[y] ∪ {u}, with 1 � p � t and 1 � y � t − z, 〈Hi〉t[p] and
〈Hj〉t−z[y] are not empty tables, then

• table 〈Di〉t[p] is computed from 〈Dj〉t−z[y] by adding a new column and
a new row (associated with u) and updating the values as follows:

∗ For each v ∈ 〈Bj〉t−z[y], 〈Di〉t[p][u, v] = dG[〈Bi〉t[p]](u, v), if
dG[〈Bi〉t[p]](u, v) � 2, else 〈Di〉t[p][u, v] = ∞ (recall that u has no
neighbor in V (Ti) \ Bi, so 〈Di〉t[p] is set correctly for the new entries
that include u).

∗ Consider v, w ∈ 〈Bj〉t[p], with 〈Dj〉t−z[y][v, w] = ∞; if {u, v},
{u,w} ∈ E, then 〈Di〉t[p][v, w] = 2, else 〈Di〉t[p][v, w] =
〈Dj〉t−z[y][v, w]

• 〈Hi〉t[p] is computed by adding a column associated with u to 〈Hj〉t−z[y],
where 〈Hi〉t[p] is identical to 〈Hj〉t−z[y], except for the new column. The
values of the new column are defined as follows:

∗ For each row r of 〈Hi〉t[p], there must exist a vertex v ∈ 〈Bi〉t[p]
such that {v, u} ∈ E and 〈Hj〉t−z[y][r, v] = 1; then 〈Hi〉t[p][r, u] =
2. Notice if such a vertex v does not exist, there is a vertex w ∈
X ∩ V (Tj), where X is the partial 2-club such 〈Bi〉t[p] ⊆ X, that
has distance greater than two from u, since u and w do not have a
common neighbour in G[X].

Forget Vertex
Let Bi be a forget vertex and let Bj be the only child of Bi, with Bi = Bj \ {u}.
C[〈Bi〉t

, 〈Di〉t
, 〈Hi〉t

, h] is the maximum over all possible combinations of z ∈
{0, 1, . . . , h − 1}, 〈Bj〉t+z, 〈Dj〉t+z, 〈Hj〉t+z, of:

C[〈Bj〉t+z
, 〈Dj〉t+z

, 〈Hi〉t+z
, h]

where

– 〈Bi〉t[p] = 〈Bj〉t+z[p] \ {u}, with 1 � p � t

– 〈Bj〉t+z[p] = {u}, with t + 1 � p � t + z

Tables 〈Di〉t[p] and 〈Hi〉t[p], with 1 � p � t, are computed as follows:
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– If 〈Bi〉t[p] = 〈Bj〉t+z[p], 1 � p � t, then 〈Di〉t[p] is identical to 〈Dj〉t+z[p] and
〈Hi〉t[p] is identical to 〈Hj〉t+z[p]

– If 〈Bi〉t[p] = 〈Bj〉t+z[p] \ {u}, 1 � p � t, then:
• 〈Di〉t[p] is computed by removing the row and the column of 〈Dj〉t+z[p]

associated with u. Notice that we must have 〈Dj〉t+z[p][u, v] 
= ∞, for
each v ∈ 〈Bi〉t[p] (hence v ∈ 〈Bj〉t+z[p] \ {u}), since each vertex adjacent
to u in G belongs to V (Tj); notice that no vertex of V (T ) \ V (Tj) is
adjacent to both u and v.

• 〈Hi〉t[p] is computed starting from 〈Hj〉t+z[p] as follows:
∗ The column associated with u is removed from 〈Hj〉t+z[p].
∗ A row r of length |〈Bi〉t[p]| is added, where r[v] = c, with 1 � c � 2, if

〈Dj〉t[p][u, v] = c (notice that we have checked that 〈Dj〉t+z[p][u, v] =
c � 2, for each v).

A Join Vertex
Let Bi be a join vertex and let Bl, Br the left and right child, respectively, of
Bi. Recall that Bi = Bl = Br. C[〈Bi〉t

, 〈Di〉t
, 〈Hi〉t

, h] is the maximum over all
possible combinations of hr, hl, with 1 � hl, hr � h, and s, q, with 1 � s � hl

and 1 � q � hr, 〈Bl〉s, 〈Dl〉s, 〈Hl〉s, and 〈Br〉q, 〈Dr〉q, 〈Hr〉q of:

C[〈Bl〉s
, 〈Dl〉s

, 〈Hl〉s
, hl] ∧ C[〈Br〉q

, 〈Dr〉q
, 〈Hr〉q

, hr]

where

– h = hl + hr − z, for 0 � z � min{hl, hr}
– 〈Bi〉t[p] = 〈Bl〉s[p] = 〈Br〉q[p], with 1 � p � z (if z = 0 this case does not

hold; we assume without loss of generality that if z � 1 〈Bl〉s[p] and 〈Br〉q[p],
with 1 � p � z, are part of the same partial 2-club)

– 〈Bi〉t[p] = 〈Bl〉s[p], with z + 1 � p � hl

– 〈Bi〉t[hl + p] = 〈Br〉q[z + p], with 1 � p � hr − z

Now, we describe how tables in 〈Di〉t and 〈Hi〉t are constructed. Table
〈Di〉t[p], with 1 � p � hl + hr − z, is computed as follows:

– For p with z + 1 � p � hl, 〈Di〉t[p] is identical to 〈Dl〉s[p]
– For p with 1 � p � hr − z, 〈Di〉t[hl + p] is identical to 〈Dr〉q[z + p]
– For each u, v ∈ 〈Bi〉t[p], with 1 � p � z, it holds

〈Di〉t[p][u, v] = min(〈Dl〉s[p][u, v], 〈Dr〉q[p][u, v])

Table 〈Hi〉t[p]), with 1 � p � hl + hr − z is computed as follows:

– table 〈Hi〉t[p], with z + 1 � p � hl is identical to 〈Hl〉s[p]
– table 〈Hi〉t[hl + p], with 1 � p � hr − z, is identical to 〈Hr〉q[z + p]
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– table 〈Hi〉t[p], with 1 � p � hl − z, is the union of rows of 〈Hl〉s[p] and
rows 〈Hr〉q[p]. Moreover, for each row a in 〈Hl〉s[p] and b in 〈Hr〉q[p], there
must exist a column u associated with u ∈ Bi, such that 〈Hl〉s[p][a, u] =
〈Hr〉q[p][b, u] = 1 (if this does not hold, then there exist two vertices v and w
of the partial 2-club X, with 〈Bi〉t[p] ⊆ X, such that v belongs to X ∩V (Tl),
w belongs to X ∩ V (Tr) and w, v do not have a common neighbour in G[X ∩
V (Ti)]).

In the base case, that is when Bi is a leaf of the tree decomposition and
Bi = {u}, we put C[〈Bi〉1, 〈Di〉1, 〈Hi〉1, 1] = 1, else C[〈Bi〉t

, 〈Di〉t
, 〈Hi〉t

, 1] = 0,
because Bi = {u} and . Each table in 〈Di〉1 contains exactly one row and one
column associated with u (the only entry of this table has value 0), each table
of 〈Hi〉t is an empty table.

Next, we prove the correctness of the recurrence.

Lemma 13. Consider a nice tree decomposition (T,B) of a graph G = (V,E)
instance of Min 2-Club Cover, and let Bi be a vertex of T , with 1 � i � l. Then

C[〈Bi〉t
, 〈Di〉t

, 〈Hi〉t
, h] = 1

for some collection 〈Bi〉t of subsets of Bi, some collections of tables 〈Di〉t, 〈Hi〉t,
and two integers t, h � 1 if and only if there exists a covering S of the vertices
in Ti consisting of h partial 2-clubs such that Property 1 holds for S.

Consider the root BR of the nice tree decomposition. Then there exists a
solution of Min 2-Club Cover over instance G consisting of h 2-clubs if and only
if C[〈BR〉t

, 〈DR〉t
, 〈HR〉t

, h] = 1, where each table in 〈DR〉t has values in {0, 1, 2}.
We can conclude with the following result.

Theorem 14. A solution of Min 2-Club Cover on a graph G having treewidth
bounded by δ can be computed in time O∗(23(δ+1)2+9δ+9).
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Abstract. A graph is H-free if it contains no induced subgraph iso-
morphic to H. We prove new complexity results for the two classical
cycle transversal problems Feedback Vertex Set and Odd Cycle
Transversal by showing that they can be solved in polynomial time
for (sP1+P3)-free graphs for every integer s ≥ 1. We show the same result
for the variants Connected Feedback Vertex Set and Connected
Odd Cycle Transversal. For the latter two problems we also prove
that they are polynomial-time solvable for cographs; this was known
already for Feedback Vertex Set and Odd Cycle Transversal.

1 Introduction

We consider three well-known graph transversals. To define the notion of a graph
transversal, let H be a family of graphs, G = (V,E) be a graph and S ⊆ V be
a subset of vertices of G. The graph G − S is obtained from G by removing all
vertices of S. We say that S is an H-transversal of G if G− S is H-free, that is,
G − S contains no induced subgraph isomorphic to some graph of H. In other
words, S intersects every induced copy of every graph of H in G.

Due to their generality, graph transversals play a central role in Theoretical
Computer Science. In this paper we focus on three classical transversal problems.
Let Cr and Pr denote the cycle and path on r vertices, respectively, and let
G = (V,E) be a graph with a subset S ⊆ V . Then S is a vertex cover, feedback
vertex set, or odd cycle transversal if S is an H-transversal for, respectively,
H = {P2} (that is, G − S is edgeless), H = {C3, C4, . . .} (that is, G − S is a
forest), or H = {C3, C5, . . .} (that is, G − S is bipartite).

Usually the goal is to find a transversal of minimum size in some given
graph. The corresponding decision problems for the three transversals given
above are the classical Vertex Cover, Feedback Vertex Set and Odd
Cycle Transversal problems, which are to decide if a given graph has a
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vertex cover, feedback vertex set or odd cycle transversal, respectively, of size
at most k for some given positive integer k. Each of these three problems are
well-studied and are well-known to be NP-complete.

We may add further constraints to a transversal. In particular, we may require
a transversal of a graph G to be connected, that is, to induce a connected sub-
graph of G. The corresponding decision problems for the three above transversals
are then called Connected Vertex Cover, Connected Feedback Ver-
tex Set and Connected Odd Cycle Transversal, respectively. Garey and
Johnson [13] proved that Connected Vertex Cover is NP-complete even
for planar graphs of maximum degree 4 (see, for example, [11,29,33] for NP-
completeness results for other graph classes). Grigoriev and Sitters [15] proved
that Connected Feedback Vertex Set is NP-complete for planar graphs
with maximum degree 9. Chiarelli et al. [8] proved that Connected Odd
Cycle Transversal is NP-complete for graphs of arbitrarily large girth and
for line graphs.

As all three decision problems and their connected variants are NP-complete,
we may want to restrict the input to some special graph class in order to achieve
tractability. Note that this approach is in line with the aforementioned results
in the literature, where NP-completeness was proven for special graph classes,
and also with, for instance, polynomial-time results for Connected Vertex
Cover by Escoffier, Gourvès and Monnot [10] (for chordal graphs) and Ueno,
Kajitani and Gotoh [32] (for graphs of maximum degree at most 3 and trees).

Just as in most of these papers, we consider hereditary graph classes, that is,
graph classes closed under vertex deletion. Hereditary graph classes form a rich
framework that captures many well-studied graph classes. It is not difficult to see
that every hereditary graph class G can be characterized by a (possibly infinite)
set FG of forbidden induced subgraphs. If |FG | = 1, say F = {H}, then G is
said to be monogenic, and every graph G ∈ G is said to be H-free. Considering
monogenic graph classes can be seen as a natural first step for increasing our
knowledge on the complexity of an NP-complete problem in a systematic way.

The general strategy for obtaining complexity results for problems restricted
to H-free graphs is to first try to prove that the restriction of each problem to
H-free graphs is NP-complete whenever H contains a cycle or a claw. If this is
the case, then we are left to consider the situation where H does not contain a
cycle, implying that H is a forest, and does not contain a claw either, implying
that H is a linear forest, that is, the disjoint union of one or more paths.

Indeed, when H contains a cycle or a claw, the problems Connected Ver-
tex Cover [24], Feedback Vertex Set (respectively, via a folklore trick,
see [3,22], and due to hardness for the subclass of line graphs of planar cubic
bipartite graphs [24]), Connected Feedback Vertex Set [8], Odd Cycle
Transversal [8] and Connected Odd Cycle Transversal [8] are all NP-
complete for H-free graphs. Hence, for these five problems, we are then left to
consider only the case where H is a linear forest. We note that the situation
for Vertex Cover is different. It follows from Poljak’s construction [28] that
Vertex Cover is NP-complete for graphs of arbitrarily large girth, and thus
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for H-free graphs if H contains a cycle. However, Vertex Cover is polynomial-
time solvable for claw-free graphs [21,31].

In this paper we focus on proving new complexity results for Feedback Ver-
tex Set, Connected Feedback Vertex Set, Odd Cycle Transversal
and Connected Odd Cycle Transversal for H-free graphs. From the above
we may assume that H is a linear forest. Below we first discuss the known poly-
nomial cases. As we will use algorithms for Vertex Cover and Connected
Vertex Cover as subroutines for our new algorithms, we include these two
problems in our discussion.

For each s ≥ 1, Vertex Cover (by combining the results of [1,30])
and Connected Vertex Cover [8] are polynomial-time solvable for sP2-
free graphs.1 Moreover, Vertex Cover is also polynomial-time solvable for
(sP1 + P6)-free graphs, for every s ≥ 0 [16], whereas Connected Vertex
Cover is so for (sP1 +P5)-free graphs [19]. Their complexity for Pr-free graphs
is unknown for r ≥ 7 and r ≥ 6, respectively.

The Feedback Vertex Set and Odd Cycle Transversal problems are
polynomial-time solvable for permutation graphs [4], and thus for P4-free graphs.
Recently, Okrasa and Rz ↪ażewski [25] proved that Odd Cycle Transversal
is NP-complete for P13-free graphs. A small modification of their construction
yields the same result for Connected Odd Cycle Transversal. The com-
plexity of Feedback Vertex Set and Connected Feedback Vertex Set
is unknown, when restricted to Pr-free graphs for r ≥ 5. For every s ≥ 1, both
problems and their connected variants are polynomial-time solvable for sP2-free
graphs [8], using the price of connectivity for feedback vertex set [2,18].2

1.1 Our Results

We prove in Sect. 3 that Connected Feedback Vertex Set and Connected
Odd Cycle Transversal are polynomial-time solvable for P4-free graphs, just
as Feedback Vertex Set and Odd Cycle Transversal are [4]. We then
prove, in Sect. 4, that, for every s ≥ 1, these four problems are all polynomial-
time solvable for (sP1 + P3)-free graphs.

To prove our results, we rely on two proof ingredients. The first one is that
we use known algorithms for Vertex Cover and Connected Vertex Cover
restricted to H-free graphs as subroutines in our new algorithms. The second
one is that we consider the connected variant of the transversal problems in a
more general form. For Connected Vertex Cover this variant is defined as
follows:

1 The graph G + H is the disjoint union of graphs G and H and sG is the disjoint
union of s copies of G; see Sect. 2.

2 The price of connectivity concept was introduced by Cardinal and Levy [7] for vertex
cover; see also, for example, [6,9].
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Connected Vertex Cover Extension
Instance: a graph G = (V,E), a subset W ⊆ V and a positive integer k.
Question: does G have a connected vertex cover SW with W ⊆ SW and

|SW | ≤ k?

Note that Connected Vertex Cover Extension becomes the original prob-
lem if W = ∅. In the same way we define the problems Connected Feed-
back Vertex Set Extension and Connected Odd Cycle Transversal
Extension. In fact we will prove all our results for connected feedback ver-
tex sets and connected odd cycle transversals for the extension versions. This is
partially out of necessity – the extension versions sometimes serve as auxiliary
problems for some of our inductive arguments and may do so for future results
as well – but it does also lead to slightly stronger results.

Remark 1. Note that one could also define extension versions for any origi-
nal transversal problem. However, such extension versions will be polynomially
equivalent. In particular we could solve any of them on input (G,W, k) by con-
sidering the original problem on input (G − W,k − |W |) and adding W to the
solution. However, due to the connectivity condition, we cannot use this app-
roach for the connected variants and need to follow a more careful approach.

Remark 2. It is known that Vertex Cover is polynomial-time solvable for
(P1+H)-free graphs whenever it is so for H-free graphs. This follows from a well-
known observation. see, e.g., [23]: one can solve the complementary problem of
finding a maximum independent set in a (P1+H)-free graph by solving this prob-
lem on each H-free graph obtained by removing a vertex and all its neighbours.
However, this trick does not work for Connected Vertex Cover. Moreover,
it does not work for Feedback Vertex Set and Odd Cycle Transversal
and their connected variants either.

2 Preliminaries

Let G = (V,E) be a graph. For a set S ⊆ V , the graph G[S] denotes the subgraph
of G induced by S. We say that S is connected if G[S] is connected. We write G−S
for the graph G[V \S]. A subset D ⊆ V is a dominating set of G if every vertex
of V \D is adjacent to at least one vertex of D. An edge uv of a graph G = (V,E)
is dominating if {u, v} is a dominating set. The complement of G is the graph
G = (V, {uv | uv �∈ E and u �= v}). The neighbourhood of a vertex u ∈ V is the
set N(u) = {v | uv ∈ E} and for U ⊆ V , we let N(U) =

⋃
u∈U N(u) \ U . We

denote the degree of a vertex u ∈ V by deg(u) = |N(u)|.
Let G = (V,E) be a graph and let S ⊆ V . Then S is a clique if all vertices

of S are pairwise adjacent and an independent set if all vertices of S are pairwise
non-adjacent. A graph is complete if its vertex set is a clique. We let Kr denote
the complete graph on k vertices. Let T ⊆ V with S∩T = ∅. Then S is complete
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to T if there is an edge between every vertex of S and every vertex of T , and S
is anti-complete to T if there are no edges between S and T . In the first case we
also say that S is complete to G[T ] and in the second case anticomplete to G[T ].

A graph is bipartite if its vertex set can be partitioned into at most two
independent sets. A bipartite graph is complete if its vertex set can be partitioned
into two independent sets X and Y such that there is an edge between every
vertex of X and every vertex of Y . Note that every edge of a complete bipartite
graph is dominating.

Let G1 and G2 be two vertex-disjoint graphs. The union operation creates
the disjoint union G1 + G2 of G1 and G2, that is, the graph with vertex set
V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). We denote the disjoint union of r
copies of G1 by rG1. The join operation adds an edge between every vertex of
G1 and every vertex of G2. A graph G is a cograph if G can be generated from
K1 by a sequence of join and union operations. A graph is a cograph if and only
if it is P4-free (see, for example, [5]).

The following lemma is well-known.

Lemma 1. Every connected P4-free graph on at least two vertices has a spanning
complete bipartite subgraph which can be found in polynomial time.

Let G = (V,E) be a graph. The contraction of an edge uv ∈ E deletes the
vertices u and v and replaces them by a new vertex made adjacent to precisely
those vertices that were adjacent to u or v in G (without introducing self-loops
or multiple edges). Recall that a linear forest is the disjoint union of one or more
paths. The following lemma is a straightforward observation.

Lemma 2. Let H be a linear forest and let G be a connected H-free graph.
Then the graph obtained from G after contracting an edge is also connected and
H-free.

Recall that Grzesik et al. [16] proved that Vertex Cover is polynomial-time
solvable for P6-free graphs. Using the folklore trick mentioned in Remark 2 (see
also, for example, [19,23]) their result can be formulated as follows.

Theorem 1 [16]. For every s ≥ 0, Vertex Cover can be solved in polynomial
time for (sP1 + P6)-free graphs.

We recall also that Connected Vertex Cover is polynomial-time solvable
for (sP1 +P5)-free graphs [19]. We will need the extension version of this result.
Its proof, which we omit, is based on a straightforward adaption of the proof for
Connected Vertex Cover on (sP1 + P5)-free graphs [19].

Theorem 2 [19]. For every s ≥ 0, Connected Vertex Cover Extension
can be solved in polynomial time for (sP1 + P5)-free graphs.
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3 The Case H = P4

Recall that Brandstädt and Kratsch [4] proved that Feedback Vertex Set and
Odd Cycle Transversal can be solved in polynomial time for permutation
graphs, which form a superclass of the class of P4-free graphs. Hence, we obtain
the following proposition.

Proposition 1 [4]. Feedback Vertex Set and Odd Cycle Transversal
can be solved in polynomial time for P4-free graphs.

In this section, we prove that the (extensions versions of the) connected
variants of Feedback Vertex Set and Odd Cycle Transversal are
polynomial-time solvable on P4-free graphs as well. We use Proposition 1 for
the proofs.

Theorem 3. Connected Feedback Vertex Set Extension can be solved
in polynomial time for P4-free graphs.

Proof. Let G = (V,E) be a P4-free graph and W ⊆ V . We may assume without
loss of generality that G is connected. We search for a smallest connected feed-
back vertex set SW of G that contains W . By Lemma 1, we find in polynomial
time a spanning complete bipartite subgraph G′ = (X,Y,E′), so every edge in
G′ is dominating. The set SW that we are looking for can be distributed over
X and Y in various ways. So we first compute, in Case 1, a smallest feedback
vertex set of G that contains both vertices of X and Y . Then, in Case 2, we
compute a smallest feedback vertex set of G that is a subset of X, and then a
smallest one that is a subset of Y . Afterwards, we take the smallest sets over all
sets computed as our final output; note that some sets may not exist. However,
as S = V is a feedback vertex set of G, at least one set will be computed.

Case 1. SW ∩ X �= ∅ and SW ∩ Y �= ∅. In this case, G[SW ] will contain an
edge uv of G′ and hence SW will be connected. Otherwise, in order to ensure
connectivity and to satisfy the condition of the case, we “guess” an edge uv with
u ∈ X∩SW and v ∈ Y ∩SW , respectively. As we need to consider all possibilities
of choosing this edge, this extra step adds an O(n2)-time factor to the running
time. We are now left to find a smallest feedback vertex set S′ in G−(W∪{u, v}).
This takes polynomial time due to Proposition 1. We remember S′ ∪W ∪{u, v}.

Case 2. SW ⊆ X or SW ⊆ Y . We first consider the possibility that SW ⊆ X.
Then we must have that W ⊆ X; otherwise this possibility will not happen. We
start by examining the situation where SW = X. This can only happen if G[Y ]
is a forest, in which case we remember |SW | = X.

We now examine the situation where SW � X. Then Y must be independent,
as otherwise G − SW contains a triangle. So, if Y is not independent, then we
discard this option. Assume that Y is an independent set. If |Y | = 1, then
G[X]−SW is an independent set, as otherwise G−SW contains a triangle. Hence,
we must compute a smallest connected vertex cover of G[X] that contains W .
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We can do this in polynomial time due to Theorem2. We remember the output.
If |Y | ≥ 2, then |X \ SW | = 1, as otherwise G[Y ∪ (X \ SW )] contains a cycle.
Hence, we check in polynomial time if there exists a vertex x ∈ X \W , such that
X \ {x} is connected. If so we remember the size |X| − 1.

We now repeat the same procedure to examine the possibility that SW ⊆ Y .
In the end we then take the output of minimum size.
Finally, as mentioned, we compare the size of the set computed in Case 1 with
the size of the one computed in Case 2, and we return the smallest set as a
smallest connected feedback vertex set of G that contains W . 
�

The second result of this section can be proven in exactly the same way as
Theorem 3.

Theorem 4. Connected Odd Cycle Transversal Extension can be
solved in polynomial time for P4-free graphs.

Proof. We do the same as in the proof of Theorem 3. The differences are the
following. In Case 1, we need to compute a smallest odd cycle transversal S′ in
G− (W ∪ {u, v}) (which can be done using Proposition 1 as well). In Case 2 we
again start by examining the situation where SW = X. This can only happen
if G[Y ] is bipartite, in which case we remember |SW | = X. We then consider
the situation where SW � X in the same as in the proof of Theorem3 except
that we no longer distinguish between |Y | = 1 and |Y | ≥ 2, that is, we follow
the approach used in the proof of Theorem3 for the case where |Y | = 1 for all
values of |Y |. 
�

4 The Case H = sP1 + P3

We will prove that Feedback Vertex Set and Odd Cycle Transversal
and their connected variants can be solved in polynomial time for (sP1+P3)-free
graphs. In order to do this we need a structural result first.

Lemma 3. For every s ≥ 0, let G be a bipartite (sP1 + P3)-free graph. If the
smallest connected component of G contains at least c vertices where

c =

{
3 if s ≤ 1
2s − 1 if s ≥ 2

then G has only one component.

Proof. Assume that G has two connected components C1 and C2 that each
contain at least c vertices. As C1 is bipartite and contains at least 2s−1 vertices,
it contains a set of s independent vertices that induce sP1. As c ≥ 3, there is
a vertex v in C2 of degree at least 2, and, as C2 is bipartite, the neighbours of
v are independent so v and two of its neighbours induce a P3. Thus G is not
(sP1 + P3)-free. This contradiction completes the proof. 
�
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We now state our four results. For the connected variants we can show the
extension versions. We only include the proof of Theorem8, which is the most
involved and shows all our techniques, and omit the other proofs.

Theorem 5. For every s ≥ 0, Feedback Vertex Set can be solved in poly-
nomial time for (sP1 + P3)-free graphs.

Theorem 6. For every s ≥ 0, Connected Feedback Vertex Set Exten-
sion can be solved in polynomial time for (sP1 + P3)-free graphs.

Theorem 7. For every s ≥ 0, Odd Cycle Transversal can be solved in
polynomial time for (sP1 + P3)-free graphs.

Theorem 8. For every s ≥ 0, Connected Odd Cycle Transversal
Extension can be solved in polynomial time for (sP1 + P3)-free graphs.

Proof. Let G = (V,E) be an (sP1 + P3)-free graph on n vertices and W ⊆ V .
If G is bipartite and W is connected, then W is the unique minimum connected
odd cycle transversal that contains W . If G is bipartite and W is not connected,
then in polynomial time we find the smallest set U ⊃ W such that G[U ] is
connected by adding vertices of shortest paths connecting the different compo-
nents of G[W ] (assuming that all vertices of W belong to the same component
as G; otherwise we return a no-answer). If G is disconnected, then each of its
connected components except for one must be bipartite; otherwise we return a
no-answer. From now on, assume that G is non-bipartite and connected. This
means that V is a connected odd cycle transversal of G. We can determine in
polynomial time whether V is the minimum size connected odd cycle transversal
that contains W by checking, for each vertex u ∈ V , whether or not V \ {u} is
a connected odd cycle transversal of G that contains W . Thus from we assume
that V is not a minimum connected odd cycle transversal of G that contains W .

If s = 0, then we can use Theorem 4. So we assume that s ≥ 1 and that we
can solve Connected Feedback Vertex Set Extension in polynomial time
for ((s− 1)P1 + P3)-free graphs. We show that we can find, in polynomial time,
a smallest connected odd cycle transversal SW of G that contains W . In fact,
we shall solve the equivalent problem of finding, in polynomial time, a bipartite
subgraph BW of G such that BW ∩W = ∅, G−BW is connected and, subject to
these conditions, BW is of maximum size. To do this, we consider two cases. Let
c = 3 if s = 1 and c = 2s − 1 otherwise (the constant c comes from Lemma 3,
which we will apply in Case 2). Our two cases derive from assuming, or not, that
at least one connected component of BW has size at most c−1. In each case, we
attempt to find, subject to our assumption, a bipartite subgraph B of G such
that B ∩W = ∅ and G−B is connected, and, if such a set B exists, we find the
solution of maximum size. We will see that, taken together, we cover all possible
cases so the largest B found has size |BW |. In particular, we note that BW is
not empty by our assumption that SW �= V .

Case 1. At least one connected component L of BW has size at most c − 1.
In this case we take every possible choice for L under consideration, discarding
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all sets that do not induce a bipartite graph, or whose removal disconnects the
graph, or that intersect W (as none of these sets can be a candidate set for L).
As |V (L)| ≤ c − 1, there are at most O(nc−1) choices. For each choice of L we
do as follows.

Let U be the set of neighbours of the vertices of L that belong to G−L. Note
that U must belong to SW if we guessed it correctly, and so we may contract any
edge inside G[U ] to modify U into an independent set. This takes polynomial
time and, by Lemma 2, the resulting graph, which we denote by G again, is still
(sP1 + P3)-free. Moreover, G − L is still connected.

As L contains at least one vertex and G is (sP1 + P3)-free, G − (L ∪ U) is
((s − 1)P1 + P3)-free. Let S be a connected odd cycle transversal that contains
U . As U is an independent set, each of its vertices has at least one neighbour in
S \ U . Thus there are sets in S \ U that dominate U . Let R be a smallest such
set.

We consider each possible choice. If |U | = 1, then |R| ≤ 1. Suppose |U | ≥ 2.
As U is an independent set on at least two vertices, SW must contain three
vertices of G − L that form an induced path, which we denote by P . As G is
(sP1 +P3)-free and U is independent, V (P ) must dominate all but at most s−1
vertices of U . Let U ′ be the subset of vertices of U that are not dominated by
V (P ). So |U ′| ≤ s− 1. Consider a set that contains V (P ) and, for each vertex u
in U ′, a neighbour of u in SW . This set dominates U so is at least the size of R.
Thus |R| ≤ |P | + |U ′| ≤ 3 + s − 1 = s + 2.

Hence there at most O(ns+2) possible choices for R. We consider each possible
choice, and for each we compute the size of a smallest odd cycle transversal SR

in G− (L∪U) that contains R∪ (W \U). (Recall that W ∩V (L) = ∅, so W \U
belongs to G − (L ∪ U).) As G − (L ∪ U) is ((s − 1)P1 + P3)-free, we can find
SR in polynomial time using our algorithm for ((s − 1)P1 + P3)-free graphs.
Then SR ∪ U is a smallest connected odd cycle transversal of G that contains
U ∪ R ∪ W .

Now, over all choices for R, we keep the smallest SR ∪ U , which we denote
by SL. Then SL is a smallest connected odd cycle transversal of G that contains
W such that G − S has L as a connected component.

Finally, from all sets SL, we keep the smallest set found, which we denote
by S1. Then S1 is a smallest connected odd cycle transversal S of G that con-
tains W such that G − S has a connected component of size at most c − 1. We
find S1 in polynomial time, as the number of choices for R and L is polynomially
bounded and each choice can be processed in polynomial time. Let B1 = G−S.

Case 2. Every connected component of BW has size at least c.
In this case we will compute the largest induced bipartite graph B of G such that
B ∩W = ∅ and S = V (G) \ V (B) is connected, and, moreover, every connected
component of B has size at least c. Then by Lemma 3, the subgraph B we are
looking for is connected.

Dealing with the case where one partition class is small.
First we suppose that B has a bipartition (X,Y ) such that |X| ≤ s− 1. To find
the best solution in this case, we consider each of the O(ns−1) sets X of at most
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s − 1 vertices of G. For every such X, we check whether X is an independent
set (in constant time) and whether X is disjoint from W . If both conditions are
satisfied, we wish to find Y , the largest possible independent set that is in G−X
and disjoint from W such that G− (X ∪ Y ) is connected. By Theorem 2 we can
do this in polynomial time by computing a minimum connected vertex cover
SX of G − X that contains W . Then we can let G − (X ∪ SX) be Y . Note that
X∪Y might not be connected, so we may have duplicated some polynomial-time
work. We pick the best solution B, and set B2 = B (we will update B2 in the
remainder of Case 2 and afterwards compare its size with the size of B1).

Dealing with the case where both bipartition classes are large.
Now we suppose that B is connected, contains at least c ≥ 3 vertices and has a
bipartition in which each partition class contains at least s vertices. In particular
B contains an induced P3. We consider each of the O(n2s) pairs of disjoint sets
X ′ and Y ′ each containing s of the vertices of G. We check whether X ′ and
Y ′ are both independent sets and are disjoint from W and whether G[X ′ ∪ Y ′]
has an induced P3. If these conditions are not satisfied, we discard the case.
Otherwise, our aim will be to try to construct from X ′ and Y ′, a bipartite graph
B = (X,Y ) such that X ′ ⊆ X, Y ′ ⊆ Y , (X∪Y )∩W = ∅ and G−B is connected
and, subject to these conditions, B is of maximum size. We now define (see also
Fig. 1) a partition of V \ (X ′ ∪ Y ′) = U ∪ VX ∪ VY ∪ Z where

U = (N(X ′) ∩ N(Y ′)) ∪ W,

VX = N(X ′) \ (Y ′ ∪ N(Y ′) ∪ W ),
VY = N(Y ′) \ (X ′ ∪ N(X ′) ∪ W ),

Z = V \ (X ′ ∪ Y ′ ∪ N(X ′) ∪ N(Y ′) ∪ W ).

U

X

Y

VY

VX

Z

W

N(X ) ∩ N(Y )

Fig. 1. The decomposition of G in Case 2, where a straight edge between two sets
indicates that at least one edge must exist, a dotted edge indicates that no edges
between the two sets exist, and the absence of an edge indicates that edges between
the two sets could exist. The circles in VX and VY represent disjoint unions of complete
graphs.
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No vertex u ∈ U can be a member of B, as either u has at least one neighbour
in X ′ and at least one neighbour in Y ′, or u belongs to W . We also know that
G[VX ] is P3-free, as otherwise Y ′ ∪ VX would induce an sP1 + P3. By the same
argument, G[VY ] is also P3-free. This means that both G[VX ] and G[VY ] are
the disjoint union of a set of complete graphs. Moreover, Z does not contain an
independent set of size greater than s−1 as otherwise, since G[X ′ ∪Y ′] contains
an induced P3, we find that X ′ ∪Y ′ ∪Z contains a subset of vertices that induce
an sP1 + P3.

Step 1. Reduce Z to the Empty Set
We are going to reduce Z to the empty set via some branching. We consider
all the possible ways the vertices of Z might be included in B. As Z does not
contain an independent set of size greater than s − 1, every partition class of B
contains at most s − 1 vertices of Z. Hence, we consider each of the O(n2s−2)
pairs of disjoint sets ZX and ZY of size at most s−1 in Z. We check whether ZX

and ZY are independent sets. If they both are, we define X ′ to be X ′ ∪ZX and
Y ′ to be Y ′ ∪ ZY . We redefine U by adding to it the vertices of Z \ (ZX ∪ ZY );
note that U still contains W . Moreover, vertices of VX with a neighbour in ZY

cannot belong to Y ′ (recall that they cannot be in X ′ either). Similarly, the set
of vertices of VX with a neighbour in ZX cannot be members of X ′ or Y ′ either.
Thus we redefine U again by adding all these vertices to it, and VX and VY by
removing the vertices we placed in U .

We now have a partition X ′∪Y ′∪U∪VX ∪VY where G[X ′, Y ′] is bipartite, U
contains vertices that have neighbours in both X ′ and Y ′ or vertices that belong
to W , the vertices of VX have neighbours in X ′ but not in Y ′, and the vertices
of VY have neighbours in Y ′ but not in X ′. Moreover, G[VX ] and G[VY ] are still
the disjoint union of a set of complete graphs.

Step 2. Reduce U to a Singleton Set
We are going to reduce U to a singleton set via some branching. Recall that no
vertex of U will be placed in the final partition classes X and Y of the bipartite
graph B we are searching for. We contract every edge between two vertices in
G[U ]. In the new graph, which we denote by G again, U is an independent set.
By Lemma 2, G is still (sP1 + P3)-free and connected.

As U belongs to the connected complement of the bipartite graph B = (X,Y )
we are searching for, the vertices of U need to be made connected to each other
via paths in G−(X ′∪Y ′). Following the same arguments as in Case 1, there must
exist a set R of size at most s+2 in G− (X ′ ∪Y ′) that dominates U (if not then
we can discard the case). We guess R by considering all O(ns+2) possibilities. If
needed we consider all possibilities of making R∪U connected via adding shortest
paths connecting vertices of R. As every connected (sP1 + P3)-free graph has
diameter at most 2s + 2, we need to guess a total of (|R| − 1)2s ≤ 2s2 + 2s
additional vertices, so must consider O(n2s2+2s) possibilities. In each branch we
contract all edges in G[R ∪ U ] into a single vertex, which we denote by u. By
Lemma 2 the resulting graph, which we denote by G again, is (sP1 + P3)-free
and connected.



On Cycle Transversals and Their Connected Variants 269

We redefine VX and VY by removing the vertices that were added to U .
Then G[VX ] and G[VY ] are still the disjoint unions of complete graphs, which
we denote by, respectively, K1

X , . . . ,Kq
X (if VX �= ∅) and K1

Y , . . . ,Kr
Y (if VY �= ∅).

Step 3. Adding Vertices from VX to Y ′ and from VY to X ′

To complete the construction of B, we need only describe how to add (in polyno-
mial time) as many vertices in total from VX to Y ′ and from VY to X ′ in such a
way that the new sets X and Y remain independent sets and the graph induced
by V \ (X ∪ Y ) is connected. In particular V \ (X ∪ Y ) contains the vertex u, to
which all vertices of W have been contracted to. Note that from each Kh

X and
each Ki

Y we can add at most one vertex to X ′ ∪ Y ′, as otherwise we create a
triangle in B. However, we must be careful, as by adding a vertex from VX ∪VY

to X ′ ∪ Y ′, we may lose connectivity of the graph G − (X ∪ Y ); recall that X
and Y are the sets we are trying to construct. Recall that S = V (G)\ (X ∪Y ) is
the corresponding connected odd cycle transversal that we are trying to create.
We analyse the possible structure of S by distinguishing two cases.

Case (i). The graph G[S] contains no edges between VX ∩ S and VY ∩ S.
Recall that X and Y can contain at most one vertex from each Kh

X and Ki
Y .

Hence, u must be adjacent to at least one vertex of every Kh
X of size at least 2 and

at least one vertex of every Ki
Y of size at least 2. If not, then we can discard our

current choice, as it will not lead to a set S that is connected. If u is complete to
a set V (Kh

X), for h ∈ {1, . . . , q}, we pick an arbitrary vertex of V (Kh
X), and else

a non-neighbour of u, and add it to Y ′. We do the same thing when considering
V (Ki

Y ), for i ∈ {1, ..., r}, and add a vertex to X ′. We also put the vertices of all
singleton connected components of G[VX ] and G[VY ] in Y ′ and X ′, respectively.
If the resulting set X ′ ∪ Y ′ is larger than B2, then we let B2 = X ′ ∪ Y ′.

Case (ii). The graph G[S] has an edge xy where x ∈ VX ∩ S and y ∈ VY ∩ S.
We consider all O(n2) possibilities for choosing the edge xy. Let xy be such a
choice. By definition, x has a neighbour vx ∈ X and y has a neighbour vy ∈ Y .
As no vertex of VY has a neighbour in X, the vertices y, x, vx induce a P3. As G
is (sP1 +P3)-free, x must then be complete to all but at most s− 1 graphs Ki

Y .
Similarly, y must be complete to all but at most s− 1 graphs Kh

X . A graph Kh
X

or Ki
Y is bad if it is not complete to y or x, respectively, and good otherwise.

We first consider the bad complete graphs. Note that x, y could be in a bad
complete graph. For each bad complete graph, we “guess” at most one vertex
distinct from x and y that we will move to X ′ or Y ′ (so we update X ′ and Y ′).
This leads to O(n2s−2) possible cases and we consider each of them as follows.

We first check if the remaining vertices from the bad complete graphs, the
vertex u and the vertices x, y all belong to the same connected component of
G − (X ′ ∪ Y ′). This must hold in order for all these vertices to end up in the
connected graph G−(X∪Y ) we are looking for (if the branch under consideration
is correct, then all vertices of G−(X∪Y ) belong to G−(X ′∪Y ′)). So, if this does
not hold, then we discard the case. Otherwise we try to connect the remaining
vertices of the bad components, u, x, and y by considering all possibilities for
choosing a smallest connected set in G − (X ′ ∪ Y ′) that contains all of them.
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Before doing this, we first contract any edges between vertices that belong to
the union of the bad complete graphs and the set {u, x, y}. As xy is an edge, this
leads to an independent set of size at most 2(s − 1) + 1 + 1 = 2s. By Lemma 2
the resulting graph is (sP1+P3)-free again, so the connected component that we
are looking for has diameter at most 2s+2. This means that we need to “guess”
at most (2s− 1)(2s+ 1) = 4s2 − 1 vertices. Hence, the total number of possible
choices is O(n4s2−1). We consider each choice. For each choice, it remains to
pick for every good complete graph an arbitrary vertex (if it exists) that was not
involved in the guessing and put it in X ′ or Y ′ in an appropriate way. We may
pick these vertices arbitrarily, as we can only pick one vertex from each complete
graph and all remaining vertices of the good complete graphs are adjacent to
one of x, y, ensuring connectivity. If the resulting set X ′ ∪ Y ′ is larger than B2,
then we let B2 = X ′ ∪ Y ′. This completes the description of Case 2.
Note that from all the bipartite graphs B = (X,Y ) we kept track of in Case 2,
we stored a largest one B2. We compare B2 with B1, picking the largest as BW .
Then SW = V (G) − BW is a smallest connected odd cycle transversal of G
that contains W . The correctness of our algorithm follows from its description.
Moreover, as the number of branches is polynomial and each branch is processed
in polynomial time, the running time of our algorithm is polynomial. 
�

5 Conclusions

We proved polynomial results for Feedback Vertex Set and Odd Cycle
Transversal and their connected variants for H-free graphs, where H = P4 or
H = sP1 + P3. Natural cases for future work are the cases where H = sP1 + P4

for s ≥ 1 and H = Pr for r ≥ 5. Note that Lemma 3 does not hold for (sP1+P4)-
free graphs: the disjoint union of any number of arbitrarily large stars is even
P4-free. We also lose the crucial property of a connected (sP1 +P3)-free graph G
that any independent set U is dominated by a set R ⊆ V (G)\U with |R| ≤ s+2.
Recall that Vertex Cover and Connected Vertex Cover are polynomial-
time solvable even for (sP1 +P6)-free graphs [16] and (sP1 +P5)-free graphs [19]
for every s ≥ 0. Recall that Odd Cycle Transversal and Connected Odd
Cycle Transversal are known to be NP-complete for P13-free graphs [25].
However, no integer r is known, for which any of the other four problems is
NP-complete for Pr-free graphs.

Independent Transversals. A similar complexity study is also undertaken for
the independent variants of the problems Feedback Vertex Set and Odd
Cycle Transversal.3 In particular, Independent Feedback Vertex Set
and Independent Odd Cycle Transversal are polynomial-time solvable for
P5-free graphs [3], but their complexity status is unknown for P6-free graphs. No
integer r is known either such that Independent Feedback Vertex Set and
Independent Odd Cycle Transversal are NP-complete for Pr-free graphs.

3 Independent Vertex Cover is 2-Colouring, which is polynomially solvable.
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Hence, to make any further progress, we must understand the structure of Pr-
free graphs better. This topic has been well-studied in recent years, see also for
example [14,17]. However, more research and new approaches are needed.

Two Other Generalizations. A well-known way of generalizing Feedback
Vertex Set and Odd Cycle Transversal is to pre-specify a set T of termi-
nal vertices in a graph G = (V,E) and to ask for a corresponding transversal of
size at most k that intersects all cycles or odd cycles, respectively, that contain
at least one terminal vertex from T . These problems are called Subset Feed-
back Vertex Set and Subset Odd Cycle Transversal (choose T = V to
get the original problem back).

Both Subset Feedback Vertex Set and Subset Odd Cycle
Transversal are NP-complete for H-free graphs if H contains a cycle or claw,
due to the aforementioned NP-completeness for the original problems. More-
over, Subset Feedback Vertex Set is polynomial-time solvable for sP1-free
graphs [27] and for permutation graphs [26], and thus for P4-free graphs, but NP-
complete for split graphs [12], or equivalently, (C4, C5, 2P2)-free graphs, and thus
for P5-free graphs.4 It would be interesting to obtain full complexity dichotomies
for Subset Feedback Vertex Set and Subset Odd Cycle Transversal
for H-free graphs. For the former problem it remains to solve the cases where
H = Pr + sP1 for every pair (r, s) with r = 2, s ≥ 2 or 3 ≤ r ≤ 4, s ≥ 1.
The latter problem seems to be mainly studied from a parameterized point of
view [20].
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Hernán González-Aguilar1, David Orden2(B), Pablo Pérez-Lantero3,
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Alcala de Henares, Spain
david.orden@uah.es
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P such that the boundary of the rectilinear convex hull of S has the
maximum number of points from P and its interior contains no element
of P , (3) a subset S of P such that the rectilinear convex hull of S has
maximum area and its interior contains no element of P , and (4) when
each point of P is assigned a weight, positive or negative, a subset S of
P that maximizes the total weight of the points in the rectilinear convex
hull of S.

Keywords: Erdős-Szekeres problems · Convex subsets ·
Optimization · Orthoconvexity · Rectilinear convex hull

1 Introduction

Let P be a point set in general position in the plane. A subset S of P with k
elements is called a convex k-gon if the elements of S are the vertices of a convex
polygon, and it is called a convex k-hole of P if the interior of the convex hull of S
contains no element of P . The study of convex k-gons and convex k-holes of point
sets started in a seminal paper by Erdős and Szekeres [9] in 1935. Since then,
numerous papers about both the combinatorial and the algorithmic aspects of
convex k-gons and convex k-holes have been published. The reader can consult
the two survey papers about so-called Erdős-Szekeres type problems [7,11].

There are recent papers studying the existence and number of convex k-gons
and convex k-holes for finite point sets in the plane [1–3]. Papers dealing with
the algorithmic complexity of finding largest convex k-gons and convex k-holes
are, respectively, Chvátal and Kincsek [8] and Avis and Rappaport [5], which
solve these problems in O(n3) time.

Erdős-Szekeres type problems have also been studied for colored point sets.
Let P be a point set such that each of its elements is assigned a color, say red or
blue. Bautista-Santiago et al. [6] studied the problem of finding a monochromatic
subset S of P of maximum cardinality such that all of the elements of P contained
in the convex hull of S have the same color. As a generalization, they also studied
the problem in which each element of P has assigned a (positive or negative)
weight. In this case, the goal is to find a subset S of P that maximizes the
total weight of the points of P contained in the convex hull of S. Each of these
problems was solved in O(n3) time and O(n2) space. Further, their algorithm
can easily be adapted to find a subset S of P such that the convex hull of S is
empty and of maximum area in O(n3) time and O(n2) space.

In this paper, we study Erdős-Szekeres type problems under a variation of
convexity known as rectilinear convexity, or orthoconvexity : Let P = {p1, . . . , pn}
be a set of n points in the plane in general position. A quadrant of the plane is
the intersection of two open half-planes whose supporting lines are parallel to
the x- and y-axes, respectively. We say that a quadrant Q is P -free if it does not
contain any point of P . The rectilinear convex hull of P , denoted as RCH(P ),
initially defined by Ottmann et al. [12], is defined as:
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RCH(P ) = R
2 −

⋃

Q is P -free

Q.

The rectilinear convex hull of a point set might be a simply connected set,
yielding an intuitive and appealing structure (see Fig. 1a). However, in other
cases the rectilinear convex hull can have several connected components (see
Fig. 1b), some of which might be single points which we call pinched points. The
size of RCH(P ) is the number of elements of P on the boundary of RCH(P ).
The sizes of the rectilinear convex hulls in Figs. 1a and b are, respectively, thir-
teen and twelve.

a

b

c

d

1− staircase

2− staircase

3− staircase4− staircase

(a)

a = d

b

c

u

(b)

Fig. 1. (a) A point set with a connected rectilinear convex hull. (b) A point set whose
rectilinear convex hull is disconnected, two of its components are pinched points.

Alegŕıa-Galicia et al. [4] gave an optimal Θ(n log n)-time and O(n)-space
algorithm to compute the orientation of the coordinate axes such that the rec-
tilinear convex hull of a set P of n points in the plane has minimum area. The
reader can refer to the literature for other results related to rectilinear con-
vexity [4,10,14]. In this paper, we present efficient algorithms for the following
geometric optimization problems:
MaxRCH: Given a set P of n points in the plane, find a subset S ⊆ P such that
the size of RCH(S) is maximized.
MaxEmptyRCH: Given a set P of n points in the plane, find a subset S ⊆ P such
that the interior of RCH(S) contains no point of P and the size of RCH(S) is
maximized.
MaxAreaRCH: Given a set P of n points in the plane, find a subset S ⊆ P such
that the interior of RCH(S) contains no point of P and the area of RCH(S) is
maximized.
MaxWeightRCH: Given a set P of n points in the plane, such that each p ∈ P is
assigned a (positive or negative) weight w(p), find a subset S ⊆ P that maximizes∑

p∈P∩RCH(S) w(p).
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In Sect. 3, we give an O(n3)-time O(n2)-space algorithm to solve the MaxRCH
problem. Then, in Sect. 4 we show how to adapt this algorithm to solve the other
three problems, each in O(n3) time and O(n2) space. The complexities of our
algorithms are the same as the complexities of the best-known algorithms to
solve these problems with the usual definition of convexity.

2 Some Notation and Definitions

For the sake of simplicity, we assume that all point sets P considered in this
paper are in general position, which means that no two points of P share the
same x- or y-coordinate. Using a O(n log n)-time preprocessing step, we can
also assume when necessary that the points of a point set P are ordered by x-
coordinate or y-coordinate. Given a point set P in the plane, we will use a, b, c,
and d to denote the leftmost, bottommost, rightmost, and topmost points of P ,
respectively, unless otherwise stated. Note that a, b, c, and d are not necessarily
different. In Fig. 1b, we have a = d.

p = v1

q = vk

v2

vk−1

(a)

p

Q1(p)Q2(p)

Q3(p) Q4(p)

(b)

M1(P )

(c)

Fig. 2. (a) A 1-staircase. (b) The definition of the sets Qi(p). (c) A 7-point set P and
its M1(P ). The vertices of the boundary of M1(P ) in P are the 1-extremal points of
P . The thick polygonal line is the 1-staircase associated with P .

Given a point p of the plane, let px and py denote the x- and y-coordinates
of p, respectively. For p, q ∈ R

2, p �= q, we write p ≺ q to denote that px < qx
and py < qy, and p ≺′ q to denote that px < qx and py > qy. Let p, q ∈ R

2, and
consider a set S = {v1, . . . , vk} of k points such that v1 = p, vk = q, and vi ≺′

vi+1 for i = 1, 2, . . . , k−1. A 1-staircase joining p to q is an orthogonal polygonal
chain, such that two consecutive elements of S are joined by an elbow consisting
of a horizontal segment followed by a vertical segment. For an illustration, see
Fig. 2a. A 3-staircase joining p to q is defined in a similar way, but using elbows
whose first segment is vertical. Analogously, we define 2- and 4-staircases, except
that we require vi ≺ vi+1. The first segment is vertical in the 2-staircase and
horizontal in the 4-staircase. Points of S are called the vertices of the staircase.

Any point p in the plane defines four open axis-aligned quadrants Qi(p),
i = 1, 2, 3, 4, as follows (see Fig. 2b): Q1(p) = {q ∈ R

2 | p ≺ q}, Q2(p) = {q ∈
R

2 | q ≺′ p}, Q3(p) = {q ∈ R
2 | q ≺ p}, and Q4(p) = {q ∈ R

2 | p ≺′ q}. Given
a point set P in the plane, for i = 1, 2, 3, 4, let
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Mi(P ) =
⋃

p∈P

Qi(p),

where Qi(p) denotes the closure of Qi(p). The elements of P that belong to
the boundary of Mi(P ), are called the (rectilinear) i-extremal points of P (see
Fig. 2c). Note that the i-extremal points of P are the vertices of a i-staircase
connecting all of them. This i-staircase, that we call the i-staircase associated
with P , is the part of the boundary of Mi(P ) that connects all the i-extremal
points of P (see Fig. 2c). For every J ⊆ {1, 2, 3, 4}, we say that p ∈ P is J-
extremal if p is j-extremal for every j ∈ J . The rectilinear convex hull of P is
the set1

RCH(P ) =
⋂

i=1,2,3,4

Mi(P ),

see Fig. 1. The boundary of RCH(P ) is (a part of) the union of the 1-, 2-, 3- and
4-staircases associated with P . Observe that the endpoints of these four staircases
are a, b, c and d, a is {1, 4}-extremal, b is {1, 2}-extremal, c is {2, 3}-extremal, and
d is {3, 4}-extremal. In Fig. 1b, as a = d, then a is {1, 3, 4}-extremal and the 4-
staircase associated with P consists of only point a.

Observe that RCH(P ) is disconnected when either the intersection of the
complements R

2 \ M1(P ) and R
2 \ M3(P ) is not empty, as shown in Fig. 1b, or

the intersection of the complements R
2 \ M2(P ) and R

2 \ M4(P ) is not empty.
In other words, when either the 1- and 3-staircases associated with P cross or
the 2- and 4-staircases associated with P cross.

Definition 1. A pinched point u of RCH(P ) occurs when u is either {1, 3}-
extremal, as shown in Fig. 1b, or {2, 4}-extremal.

Definition 2. The size of RCH(P ) is the number of points of P which are
i-extremal for at least one i ∈ {1, 2, 3, 4}.

From the definition of the staircases for P , the following observation is
straightforward.

Observation 1. Assume that the concatenation of the four i-staircases associ-
ated with P is traversed counter-clockwise. For two consecutive i-extremal points
p and p′, Qi+2(o) contains no element of P , where i + 2 is taken modulo 4 and
o = (p′

x, py) for i = 1, 3 or o = (px, p′
y) for i = 2, 4.

Given two points u �= v in the plane, let B(u, v) denote the smallest open
axis-aligned rectangle containing u and v, and let P (u, v) = P ∩ B(u, v). Note
that u and v are two opposed corners of B(u, v). If u = v, then we define B(u, u)
as point u.

Definition 3. We say that RCH(P ) is vertically separable if rectangles B(a, d)
and B(b, c) are separated by a vertical line. The two examples shown in Fig. 1
are vertically separable.
1 The notation RH(P ) is also used for the rectilinear convex hull [4].
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Given a point set S, and a horizontal line �, let S′ be the image of S under
a reflection around �. The following lemma is key for our algorithms:

Lemma 1. For all S ⊆ P , |S| ≥ 2, either RCH(S) or RCH(S′) is vertically
separable.

Proof. Note that dx < bx is necessary and sufficient for vertical separability of
B(a, d) and B(b, c), that is, RCH(S) is vertically separable. Suppose then that
bx < dx, and let � be a horizontal line. It is straightforward to see that, if we
reflect the point set S around �, then S becomes S′ and we have that RCH(S′)
is vertically separable.

We will assume in each of the problems MaxRCH, MaxEmptyRCH,
MaxAreaRCH, and MaxWeightRCH that the optimal subset S ⊆ P is such that
RCH(S) is vertically separable. To finish this section, we give one more defini-
tion. For every p, q ∈ P such that p ≺ q, let Rp\q, Rq\p, and Rp,q be the subsets
of P in the regions Q4(p)\Q4(q), Q4(q)\Q4(p), and Q4(p)∩Q4(q), respectively
(see Fig. 3, left). Observe that if r ∈ Rp\q then r ≺ q, if r ∈ Rq\p then p ≺ r,
and if r ∈ Rp,q then r �≺ q and p �≺ r. For every p, q ∈ P such that q ≺′ p,
we define R′

p\q, R′
q\p and R′

p,q as the subsets of P in the regions Q4(q) ∩ Q3(p),
Q4(q) ∩ Q1(p) and Q4(p), respectively.

3 Rectilinear Convex Hull of Maximum Size

In this section, we solve the MaxRCH problem. Given P , our goal is to combine
four staircases in order to obtain a subset S of P whose rectilinear convex hull
is of maximum size. All of this has to be done carefully, since the occurrence of
pinched points may lead to overcounting.

Our algorithm to solve the MaxRCH problem proceeds in three steps: In the
first step, we compute the 2-staircases of maximum size for every p, q ∈ P such
that p ≺ q. In the second step, we compute what we call a triple 1-staircase
and a triple 3-staircase of maximum sizes (yet to be defined). In the third and
last step, we show how to combine a triple 1-staircase and a triple 3-staircase
to solve the MaxRCH problem. In this step, we will make sure that the solution
thus obtained is vertically separable. Our algorithm will run in O(n3) time and
O(n2) space. We describe now in detail the steps of our algorithm.

The First Step: For every p, q ∈ P such that p ≺ q or p = q, let Cp,q be a
2-staircase with endpoints p and q of maximum size, see Fig. 3, right. Let Cp,q

be the number of elements of P in Cp,q. Note that Cp,q equals the maximum
number of 2-extremal points over all S ∪ {p, q} with S ⊆ P (p, q). We can easily
calculate Cp,q, for all p, q ∈ P with p ≺ q or p = q, in O(n3) time and O(n2)
space, using dynamic programming with the following recurrence:

Cp,q =
{

1 if p = q
max{1 + Cr,q} over all r ∈ P (p, q) ∪ {q} if p �= q.

(1)
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p

q

Rp\q

Rq\p

Rp,q

q

R′
q\p

p
R′

p,qR′
p\q

p

q

Cp,q

Fig. 3. Left: sets Rp\q, Rq\p, Rp,q, R
′
p\q, R

′
q\p and R′

p,q. Right: example of Cp,q.

Using the elements Cp,q, it is a routine matter to determine Cp,q, for any p ≺ q.2

Definition 4. Given a point set S ⊆ P , we define the triple 1-staircase (resp.,
triple 3-staircase) associated with S as the concatenation of the 1-, 2- and 3-
staircases (resp., the 3-, 4- and 1-staircases) associated with S.

The Second Step: In this step, our goal is to obtain a triple 1-staircase and
a triple 3- staircase of maximum cardinality, starting and ending at some pairs
of points of P . Triple staircases allow us to conveniently manage pinched points
and disconnections of the rectilinear convex hull. Notice that the boundary of
M1(S) ∩ M2(S) ∩ M3(S) (except for its two infinite rays) always belongs to the
triple 1-staircase associated with S.

Consider p, q ∈ P such that p ≺ q or p = q. Let Z(p, q) = Q4(u), where
u = (px, qy), and let z(p, q) = Z(p, q) ∩ P . Let Tp,q be the triple 1-staircase of
maximum cardinality among all subsets S∪{p, q} with S ⊆ z(p, q). If S′ ⊆ z(p, q)
is the set associated with Tp,q, observe that M1(S′ ∪ {p, q}) ∩ M2(S′ ∪ {p, q}) ∩
M3(S′ ∪ {p, q}) may contain points in P (p, q), it may be disconnected, and it
may have pinched points (see Fig. 4). Note that p and q are always the endpoints
of Tp,q. Let Xp,q denote the set of extreme vertices of Tp,q (that is, the set of 1-,
2- and 3-extremal points of S′ ∪ {p, q}), and let Tp,q be the cardinality of Xp,q.

We calculate all of the Tp,q’s by dynamic programming using Eqs. (2) and (3).
We store all of the Tp,q’s in a table T . If αp,q = 1 when p = q, and αp,q = 2
when p �= q, then:

Tp,q = max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Cp,q (A)

1 + Tr,q over all r ∈ Rp\q (B)

1 + Tp,r over all r ∈ Rq\p (C)

αp,q + Tr,r over all r ∈ Rp,q (D)

αp,q + Up,r over all r ∈ Rp,q (E)

(2)

where for every pair p, r ∈ P such that p ≺′ r

Up,r = max{Tr,s} over all s ∈ R′
p\r. (3)

2 We note that using not so trivial methods, we can calculate all of the Cp,q’s in
O(n2 log n) time. However, this yields no improvement on the overall time complexity
of our algorithms.
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p

q

p

q

p

q

p = q

p

q

p

q

Cp,q

u u u

u u

Fig. 4. Examples of triple 1-staircases Tp,q.

Values Up,r are stored in a table U . The next lemma shows the correctness of
this recurrence.

Lemma 2. The recurrence (2) correctly calculates Tp,q, the size of Xp,q, in
O(n3) time and O(n2) space.

Proof. Let Tp,q be an optimal triple 1-staircase for a pair of points p, q ∈ P
such that p ≺ q and let S′ ⊆ z(p, q) be the point set associated with Tp,q. In
the counter-clockwise traversal of the triple 1-staircase, let p− and q− be the
elements of P that follow and precede p and q, respectively. Hence, Tp,q can be
obtained as an extension of Tp,q− , Tp−,q, or Tp−,q− .

If p−, q− ∈ B(p, q), then necessarily Tp,q is a 2-staircase (the 1 and 3-
staircases of Tp,q consist of only points p and q, respectively), so Tp,q = Cp,q

and case (A) is used to set Tp,q. Thus, we assume in the rest of the proof that
at least one of p− and q− is not in B(p, q). See Fig. 5 for the cases.

p

q

r

p

q

r

r
p

q

r

p

q

s

(B) (C) (D) (E)

Tr,q
Tp,r

Tr,r
Tr,s

Up,r

Fig. 5. Cases in the recursive computation of Tp,q.

If p− ∈ Rp\q, then we have p− ≺ q and p− is not 3-extremal in Tp−,q. We
use case (B) to find a point r that plays the role of p− to compute the value of
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Tp,q. If q− ∈ Rq\p, then we have p ≺ q− and q− is a point that is not 1-extremal
in Tp,q− . We use case (C) to find a point r that plays the role of q− to compute
the value of Tp,q.

Suppose now that p− is in Rp,q (a similar reasoning applies if q− is in Rp,q).
In this case, q− cannot be in B(p, q) and if q− ∈ Rq\p then we use case (C). If
q− ∈ Rp,q, there are two cases to analyze: p− = q− and p− �= q−. If p− = q−,
then we can use case (D) to find a point r that plays the role of p− to compute
the value of Tp,q. When p− �= q−, we prove that p− ≺ q−, and then case (E) can
be used to find a pair of points r and s playing the roles of p− and q−, both in
Rp,q, with maximum value Tr,s. By Observation 1, as p and p− are consecutive
1-extremal points, then Q3(o) contains no element in S′, where o = (p−

x , py). In
particular, since q− is in Rp,q, this implies that q− cannot be in either Q2(p−) or
Q3(p−). Moreover, as q and q− are consecutive 3-extremal points, then Q1(o′)
contains no element in S′ again by Observation 1, where o′ = (qx, q−

y ). As a
consequence, q− cannot be in Q4(p−), so we conclude that q− ∈ Q1(p−).

To compute tables T and U , we scan the elements of P from right to left.
Each time an element p ∈ P is encountered, we scan all of the q ∈ P such that
px < qx, again from right to left. When p ≺ q we compute Tp,q, and when p ≺′ q
we compute Up,q. Each entry of T and U is determined in O(n) time. Thus, U
and T can be computed in overall O(n3) time and O(n2) space. Cases (A) to
(D) are in O(n). We charge the work done in case (E) to constructing table
U , which can be done in O(n) time per entry. Thus the entire complexity is in
O(n3) time and O(n2) space.

In a totally analogous way, we can calculate triple 3-staircases of maximum
size. For p ≺ q or p = q, let T ′

p,q be the size of the triple 3-staircase T ′
p,q of

maximum cardinality among all subsets S′ ∪ {p, q}, where S′ is now a subset
of points of P in Q2(v) with v = (qx, py). After rotating the coordinates by π,
observe that the triple 3-staircase T ′

p,q is the triple 1-staircase Tq,p. Thus, by
symmetry with the Tp,q’s, all the T ′

p,q’s can also be calculated in O(n3) time and
O(n2) space.

The Third Step: In this step, we show how to combine a triple 1-staircase and
a triple 3-staircase to solve the MaxRCH problem. Recall that the solution must
be vertically separable. Next we give the definition of a 4-separator and then we
show that it is equivalent to vertical separability.

Definition 5. Let S ⊆ P be any subset with |S| ≥ 2. Given four (not necessarily
distinct) extremal points p, q, r, s ∈ S, we say that the tuple (p, q, r, s) is a 4-
separator of RCH(S) if the following five conditions are satisfied: (1) p ≺ q or
p = q; (2) q ≺′ r; (3) r ≺ s or r = s; (4) p and r are consecutive points in the
1-staircase of S; and (5) s and q are consecutive points in the 3-staircase of S
(see Fig. 6).

The next lemma shows the equivalence between vertical separability and the
existence of 4-separators.
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T ′
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p r = s

b

cTs,s
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p,q
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c
Tr,s

T ′
p,p = {p}

Fig. 6. Examples of 4-separators (p, q, r, s).

Lemma 3. RCH(S) is vertically separable if and only if RCH(S) has a 4-
separator.

Proof. Let us first assume that RCH(S) is vertically separable, that is, B(a, d)
and B(b, c) are separated by a vertical line. Recall that a, b, c, and d are the
leftmost, bottommost, rightmost, and topmost points of S, respectively. Then,
we can argue the following: If a ≺ d, then S has at least one 1-extremal point to
each side of the vertical line through d. Otherwise, if a = d, then S has at least
one 1-extremal point to the right side. Thus, covering both cases, let p and r be
the two consecutive 1-extremal points of S such that px ≤ dx < rx. Now, given
that dx < rx, we have that: If r is also 3-extremal, thus a pinched point, then
S has at least one 3-extremal point to the left side of the vertical line through
r. Otherwise, if r is not 3-extremal, then S has at least one 3-extremal point
to each side of this line. Thus, we can define s and q as the two consecutive
3-extremal points of S such that qx < rx ≤ sx. It is straightforward to see now
that (p, q, r, s) is a 4-separator of RCH(S). Note that, when p = a = d, then
necessarily q = p = a = d.

Assume now that (p, q, r, s) is a 4-separator of RCH(S). We then have that:
d ≺′ q or d = q, and r ≺′ b or r = b. These conditions, together with q ≺′ r,
directly imply that B(a, d) and B(b, c) are separated by a vertical line, thus
RCH(S) is vertically separable.
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Using 4-separators, we show how to find an optimal solution that is vertically
separable. Among all subsets S of P such that RCH(S) is vertically separable,
let S0 be a subset of P such that RCH(S0) has maximum size. Let (p, q, r, s) be
a 4-separator of RCH(S0). The key observation is that the vertices of T ′

p,q ∪Tr,s

are the set of extremal points of S0. Note that T ′
p,q ∩ Tr,s = ∅ and |RCH(S0)|,

the size of RCH(S0), is T ′
p,q + Tr,s.

Thus, we proceed as follows: For given p, s ∈ P such that px < sx, let Sp,s be
the rectilinear convex hull of maximum size, among all subsets S ⊆ P containing
p and s such that there exist two points q, r ∈ S with (p, q, r, s) being a 4-
separator of RCH(S). Let Sp,s be the size of Sp,s. Note that Sp,s = T ′

p,q+Tr,s for
some 4-separator (p, q, r, s). Then, the following equations allow us to calculate
|RCH(S0)| in O(n3) time and O(n2) space, as Theorem 2 proves:

|RCH(S0)| = max{Sp,s} over all p, s ∈ P such that px < sx (4)

where for each pair of points p, s ∈ P with px < sx

Sp,s = max{T ′
p,q+Tr,s} over all q, r ∈ P such that (p, q, r, s)isa4 -separator 5 .

(5)

Theorem 2. The MaxRCH problem can be solved in O(n3) time and O(n2)
space.

Proof. According to Eqs. (4) and (5), we only need to show how to compute Sp,s

in linear time, for given p and s. Let Qp be the set of all points q ∈ P such that
q ≺′ s, and p ≺ q or p = q. Let Qs be the set of all points r ∈ P such that
p ≺′ r, and r ≺ s or r = s. Note that Qp ∩ Qs = ∅ and that p and s belong to
Qp and Qs, respectively, only when py > sy. Let Lp,s be the list of the elements
of Qp ∪ Qs sorted by x-coordinate. Observe that if (p, q, r, s) is a 4-separator of
RCH(Sp,s), then r ∈ Qs, q ∈ Qp, and q is the point q∗ ∈ Qp from the beginning
of Lp,s to r such that T ′

p,q∗ + Tr,s = max{T ′
p,q′ + Tr,s} over all q′ ∈ Qp from the

beginning of Lp,s to r.
We calculate Sp,s by processing the elements of Lp,s in order. For an element

t in Lp,s, let q∗
t be the point in Qp maximizing T ′

p,q′ over all q′ ∈ Qp from the
beginning of Lp,s to t (including t). When processing a point t, observe that
if t ∈ Qp, then q∗

t is either t or q∗
t−1. Otherwise, if t ∈ Qs, then q∗

t = q∗
t−1.

Moreover, if t ∈ Qs, then we set q = q∗
t and r = t, and consider (p, q, r, s) as a

feasible 4-separator of Sp,s. After processing the last element of Lp,s, among all
the (linear number) feasible separators, we return the solution Sp,s induced by
the feasible separator that maximizes T ′

p,q + Tr,s. Thus, Sp,s can be calculated
in O(n) time, once tables T and T ′ have been constructed.

4 Maximum Size/Area Empty Rectilinear Convex Hulls
and Maximum Weight Rectilinear Convex Hull

In this section, we show how to adapt the algorithm of Sect. 3 to solve the
MaxEmptyRCH, the MaxAreaRCH and the MaxWeightRCH problems. The first
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observation is that, as the optimal solution for any of these problems is the
rectilinear convex hull of a subset S of P , then Lemmas 1 and 3 hold. This
implies that we can assume that B(a, d) and B(b, c) are separated by a vertical
line, so a 4-separator exists for the optimal solution in any of the problems.
As a consequence, the algorithms to solve these three problems follow the same
scheme as the algorithm described in the previous section, and we only need to
show how to adapt in each problem the calculation of the 2-staircases, the triple
1- and 3-staircases and the rectilinear convex hulls Sp,s to fulfill the requirements
on emptiness, area or weight.

We start by solving the MaxEmptyRCH problem, we continue with the
MaxAreaRCH problem and we finish with the MaxWeightRCH problem.

4.1 Maximum Size Empty Rectilinear Convex Hull

To solve the MaxEmptyRCH problem in O(n3) time and O(n2) space, we modify
the steps of our previous algorithm. These modifications ensure that the “interi-
ors” of the triple 1- and 3-staircases and the rectilinear convex hulls are empty.
Recall that in this problem we are looking for a subset S ⊆ P such that RCH(S)
has maximum size and there is no element of P in the interior of RCH(S).

The First Step: For a pair of points p, q ∈ P such that p ≺ q or p = q, we say
that the 2-staircase associated with a subset S of P (p, q) is empty if no point of
P is in the interior of B(p, q) ∩ M2(S ∪ {p, q}), see Fig. 7, left.

p Cp,q

q

r

u

a

d

p

r

s

b

cTr,s

q

T ′
p,q

q

v

u

Fig. 7. Left: example of Cp,q when the 2-staircases must be empty. Right: third step of
the algorithm when the interior must be empty of elements of P .

Let Cp,q be the empty 2-staircase of maximum cardinality over all subsets
S ∪ {p, q} with S ⊆ P (p, q), and let Cp,q be the size of Cp,q. Observe that if u is
the point (px, qy) and r ∈ P is the vertex of the 2-staircase that follows p, then
P (r, u) = ∅. Thus, values Cp,q can be computed using the following recurrence:
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Cp,q =

{
1 if p = q
max{1 + Cr,q} over all r ∈ P (p, q) ∪ {q} such that P (r, u) = ∅ if p �= q.

(6)
As q and u are on the same horizontal line, P (q, u) is not defined. In this case,
we assume that P (q, u) is the empty set. Using standard range counting tech-
niques [13], we can preprocess the grid G generated by the vertical and horizontal
lines through the elements of P in O(n2) time and space, so that for every pair
of vertices u, v of G we can query the number of points in P (u, v) in O(1) time.
Thus, we can decide whether P (u, v) = ∅ in O(1) time. Therefore, values Cp,q

can be calculated in O(n3) time and O(n2) space.

The Second Step: For every p, q ∈ P such that p ≺ q or p = q, we say that
the triple 1-staircase T corresponding to a subset S of z(p, q) is empty if the
(disconnected) region OT = Z(p, q) ∩ M1(S ∪ {p, q}) ∩ M2(S ∪ {p, q}) ∩ M3(S ∪
{p, q}) associated with T contains no element of P . Please, refer to Fig. 4, where
the shaded areas correspond to OT . Let Tp,q be the empty triple 1-staircase
of maximum size among all subsets S ∪ {p, q}, with S ⊆ z(p, q). Let E(p, q, r)
denote the interior of B(p, q) ∩ Q2(r) if p �= q, and the empty set if p = q. In
Fig. 5 examples of open rectangles E(p, q, r) are shown as shaded rectangles .
We show how to compute Tp,q, the cardinality of the set of extreme vertices of
Tp,q, using the following equations that are similar to Eqs. (2) and (3):

Tp,q = max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Cp,q (A)

1 + Tr,q over all r ∈ Rp\q : P ∩ E(p, q, r) = ∅ (B)

1 + Tp,r over all r ∈ Rq\p : P ∩ E(p, q, r) = ∅ (C)

αp,q + Tr,r over all r ∈ Rp,q : P ∩ E(p, q, r) = ∅ (D)

αp,q + Up,r over all r ∈ Rp,q : P ∩ E(p, q, r) = ∅ (E)

(7)

where for every pair p, r ∈ P such that p ≺′ r

Up,r = max{Tr,s} over all s ∈ R′
p\r. (8)

In case (A), Op,q is empty as Cp,q is an empty 2-staircase. Equation (7) is
obtained from Eq.(2) by further constraining r in the cases from (B) to (E) to
satisfy P ∩ E(p, q, r) = ∅. This guarantees that the interior of Op,q is empty of
elements of P for all p, q. Verifying that P ∩ E(p, q, r) = ∅ can be decided in
O(1) time by using a range counting query. The proof of correctness of Eqs. (7)
and (8) follows the same steps as in Lemma 2. Hence, computing the new table
T can be done in O(n3) time and O(n2) space. By symmetry, values in T ′

p,q, the
sizes of the empty triple 3-staircases T ′

p,q, can also be calculated in O(n3) time
and O(n2) space.

The Third Step: For given p, s ∈ P such that px < sx, let Sp,s be the empty
rectilinear convex hull of maximum size, among all subsets S ⊆ P containing
p and s such that RCH(S) is empty and there exist two points q, r ∈ S with
(p, q, r, s) being a 4-separator of RCH(S). Let Sp,s denote the size of Sp,s. To
compute Sp,s we have to distinguish whether p ≺′ s or p ≺ s. If p ≺′ s (see
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Fig. 6, top-right, or any in the bottom), then Sp,s = max{T ′
p,q + Tr,s} over all 4-

separators (p, q, r, s). Otherwise, if p ≺ s (see Fig. 7, right), then we must ensure
that each 4-separator (p, q, r, s) satisfies P (u, v) = ∅, where u = (rx, sy) and
v = (qx, py).

If S0 is a subset of P such that RCH(S0) is empty, vertically separable and
of maximum size, the new equations to compute |RCH(S0)| are:

|RCH(S0)| = max{Sp,s} over all p, s ∈ P with px < sx (9)

where for each pair of points p, s ∈ P such that px < sx

Sp,s =
{

max{T ′
p,q + Tr,s} : (p, q, r, s) is a 4 -separator p ≺′ s

max{T ′
p,q + Tr,s} : (p, q, r, s) is a 4 -separator , P (u, v) = ∅ p ≺ s.

(10)

Theorem 3. The MaxEmptyRCH problem can be solved in O(n3) time and
O(n2) space.

Proof. Again, we only need to show that given points p and s Sp,s can be com-
puted in linear time. When p ≺′ s, we argue as in the proof of Theorem2. How-
ever, when p ≺ s, we need to only consider 4-separators such that P (u, v) = ∅.
Let Qp,s = {t ∈ P : p ≺ t ≺ s}, which satisfies Qp,s ∩ Qp = ∅ and Qp,s ∩ Qs = ∅.
Recall that Qp ∩ Qs = ∅ and that, when p ≺ s, Qp = {q ∈ P : p ≺ q, q ≺′ s} and
Qs = {r ∈ P : r ≺ s, p ≺′ r}. Let Lp,s be the list of the points of Qp ∪ Qs ∪ Qp,s

sorted by x-coordinate. Assuming that we have already sorted P by x-coordinate
Lp,s is obtained in O(n) time.

As before, we calculate Sp,s by processing the elements of Lp,s in order. For
an element t in Lp,s, let q∗

t be the point in Qp maximizing T ′
p,q′ over all q′ ∈ Qp

from the beginning of Lp,s to t (including t) subject to there being no elements
of Qp,s in Lp,s from q′ to t. When processing a point t ∈ Qp,s, we set q∗

t = nil
denoting that q∗

t is undefined. Observe that, when processing a point t ∈ Qp,
if q∗

t−1 = nil then q∗
t = t, and if q∗

t−1 �= nil then q∗
t is either t or q∗

t−1. When
processing a point t ∈ Qs, then q∗

t = q∗
t−1, and if q∗

t−1 �= nil, then we set q = q∗
t

and r = t, and consider (p, q, r, s) as a feasible 4-separator of Sp,s. Note that for
this 4-separator we have P (u, v) = ∅. After processing all elements in Lp,s, Sp,s

is determined by a feasible 4-separator that maximizes T ′
p,q + Tr,s.

4.2 Maximum Area Empty Rectilinear Convex Hull

In the MaxAreaRCH problem, we determine an empty rectilinear convex hull of
maximum area. To solve this problem, we proceed as in the previous subsection.
The only difference is that we sum areas in all of our recurrences, instead of
counting points. Given a bounded set Z ⊂ R

2, we denote the area of Z as
Area(Z).

Now, Cp,q, Tp,q, T ′
p,q and Sp,q are as described in Sect. 4.1, with the difference

that they maximize area instead of maximizing size. The areas are defined as
follows. If S = {p, v2, . . . , vk−1, q} is the set of vertices of an empty 2-staircase,
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we define the area of this staircase as Area(B(p, q)∩M2(S)). For an empty triple
1-staircase or an empty triple 3-staircase T , its area is the area of its associated
region OT . The area of a rectilinear convex hull is the area of its interior.

The first step: For a pair of points p, q ∈ P such that p ≺ q or q = p, we
compute Cp,q, the area of Cp,q, using the following recurrence, which is a variant
of Eq. (6) maximizing area:

Cp,q =
{

0 if p = q
maxr∈P (p,q)∪{q}{Area(B(r, u)) + Cr,q} : P (r, u) = ∅ if p �= q.

(11)

where u = (px, qy). As B(q, u) is not defined, we set Area(B(q, u)) = 0.

The second step: For every p, q ∈ P such that p ≺ q or p = q, let Tp,q be the
area of Tp,q. All Tp,q’s can be calculated in O(n3) time and O(n2) space using
the following equations, which are variants of Eqs. (7) and (8) maximizing area
(recall that if p = q, then E(p, q, r) = ∅, so its area is 0):

Tp,q = max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Cp,q (A)

Area(E(p, q, r)) + Tr,q over all r ∈ Rp\q : P ∩ E(p, q, r) = ∅ (B)

Area(E(p, q, r)) + Tp,r over all r ∈ Rq\p : P ∩ E(p, q, r) = ∅ (C)

Area(E(p, q, r)) + Tr,r over all r ∈ Rp,q : P ∩ E(p, q, r) = ∅ (D)

Area(E(p, q, r)) + Up,r over all r ∈ Rp,q : P ∩ E(p, q, r) = ∅ (E)

(12)

where for every pair p, r ∈ P such that p ≺′ r

Up,r = max{Tr,s} over all s ∈ R′
p\r. (13)

The areas T ′
p,q for the empty triple 3-staircases T ′

p,q can be calculated in a
similar way.

The Third Step: Let Sp,s be the area of Sp,s. Recall that, for given p, s ∈ P
such that px < sx, Sp,s is the empty rectilinear convex hull of maximum area,
among all subsets S ⊆ P containing p and s such that RCH(S) is empty and
there exist two points q, r ∈ S with (p, q, r, s) a 4-separator of RCH(S). Observe
that if p ≺′ s, then Sp,s = T ′

p,q + Tr,s for some 4-separator (p, q, r, s). Otherwise,
if p ≺ s then Sp,s = Area(B(u, v)) + T ′

p,q + Tr,s for some 4-separator (p, q, r, s),
subject to P (u, v) = ∅, where u = u(r) = (rx, sy) and v = v(q) = (qx, py) (see
Fig. 7, right).

Given that Area(B(u, v)) depends on both r and q, using the inclu-
sion/exclusion principle, we can then calculate Sp,s as Sp,s = T ′

p,q +
Area(B(v, s)) + Tr,s + Area(B(p, u)) − Area(B(p, s)). Since p and s are fixed,
note that U(p, q, s) = T ′

p,q +Area(B(v(q), s)) depends only on q and V (p, r, s) =
Tr,s + Area(B(p, u(r))) − Area(B(p, s)) depends only on r. Each of these two
values can be computed in O(1) time, once T and T ′ have been computed in
the second step. If S0 is a subset of P such that RCH(S0) is empty, vertically
separable and of maximum area, the new equations to compute RCH(S0) are:

|RCH(S0)| = max{Sp,s} over all p, s ∈ P with px < sx, (14)



Maximum Rectilinear Convex Subsets 289

where for each pair of points p, s ∈ P such that px < sx

Sp,s =

{
max{4 -separators (p,q,r,s)}{T ′

p,q + Tr,s} p ≺′ s
max{4 -separators (p,q,r,s)}{U(p, q, s) + V (p, r, s))} : P (u(r), v(q)) = ∅ p ≺ s.

(15)

Theorem 4. The MaxAreaRCH problem can be solved in O(n3) time and O(n2)
space.

Proof. The proof follows the proof of Theorem3. The only difference is that,
when processing an element t in Lp,s, q∗

t is the point in Qp maximizing
T ′
p,q′ + Area(B(v(q′), s)), instead of maximizing T ′

p,q′ . After processing all ele-
ments in Lp,s, Sp,s is determined by a feasible 4-separator that maximizes
T ′
p,q + Area(B(v, s)) + Tr,s + Area(B(p, u)) − Area(B(p, s)).

4.3 Maximum Weight Rectilinear Convex Hull

In the MaxWeightRCH problem, each input point p of P is comes with a (positive
or negative) weight w(p). We determine a subset S ⊆ P such that RCH(S)
has maximum weight, that is, such that

∑
p∈P∩RCH(S) w(p) is maximized. The

algorithm to solve this problem combines the ideas of the previous algorithms
and follows the same steps, however, now we add weights. We define Weight(Z) =∑

p∈P∩Z w(p) as the weight of a region Z ⊂ R
2. Using the same range counting

techniques [13] as in Sect. 3, we can preprocess the grid G generated by the
vertical and horizontal lines through the elements of P in O(n2) time and space,
so that for every pair of vertices u, v of G we can query Weight(B(u, v)) =∑

p∈P (u,v) w(p) in O(1) time.
Now, Cp,q, Tp,q, T ′

p,q and Sp,q are as described in Sect. 3, except that weight
is maximized. The weights are defined as follows. If S = {p, v2, . . . , vk−1, q}
is the set of vertices of a 2-staircase, its weight is defined as w(p) + w(q) +
Weight(B(p, q)∩M2(S)). Note that the weights of all points in S are included in
this formulae. For a triple 1-staircase or a triple 3-staircase T , its weight is the
addition of the weights of the points of P that appear on the boundary or in the
interior of OT , the region associated with T . Finally, the weight of a rectilinear
convex hull is the addition of the points of P on its boundary or interior.

The First Step: If Cp,q is the weight of Cp,q, for a pair of points p, q ∈ P such
that p ≺ q or q = p, all Cp,q’s can be computed in O(n3) time and O(n2) space
using the following recurrence:

Cp,q =
{

w(p) if p = q
w(p) + maxr∈P (p,q)∪{q} {Weight(B(r, u)) + Cr,q} if p �= q.

(16)

where u = (px, qy). We set Weight(B(q, u)) = 0 as B(q, u) is not defined.

The Second Step: If Tp,q is the weight of Tp,q, for every p, q ∈ P such that
p ≺ q or p = q, then all Tp,q’s (and, by symmetry, all T ′

p,q’s) can be calculated in
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O(n3) time and O(n2) space using the following equations, where αp,q = w(p) if
p = q, and αp,q = w(p) + w(q) if p �= q:

Tp,q = max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Cp,q (A)

w(p) + Weight(E(p, q, r)) + Tr,q over all r ∈ Rp\q (B)

w(q) + Weight(E(p, q, r)) + Tp,r over all r ∈ Rq\p (C)

αp,q + Weight(E(p, q, r)) + Tr,r over all r ∈ Rp,q (D)

αp,q + Weight(E(p, q, r)) + Up,r over all r ∈ Rp,q (E)

(17)

where for every pair p, r ∈ P such that p ≺′ r

Up,r = max{Tr,s} over all s ∈ R′
p\r. (18)

The Third Step: For given p, s ∈ P such that px < sx, let Sp,s be the weight
of Sp,s. Using similar reasoning as in the previous subsection, one can show that,
if S0 is a subset of P such that RCH(S0) is vertically separable of maximum
weight, the following equations calculate |RCH(S0)|:

|RCH(S0)| = max{Sp,s} over all p, s ∈ P such that px < sx (19)

where for each pair of points p, s ∈ P such that px < sx

Sp,s =
{

max{4 -separators (p,q,r,s)}{T ′
p,q + Tr,s} p ≺′ s

max{4 -separators (p,q,r,s)}{U(p, q, s) + V (p, r, s))} p ≺ s.
(20)

Now U(p, q, s) = T ′
p,q + Weight(B(v(q), s)) and V (p, r, s) = Tr,s + Weight

(B(p, u(r))) −Weight(B(p, s)), with u = u(r) = (rx, sy) and v = v(q) = (qx, py).
The proof of the next theorem is a straightforward adaptation of the previous
arguments.

Theorem 5. The MaxWeightRCH problem can be solved in O(n3) time and
O(n2) space.
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Abstract. In this paper we consider the digraph width measures
directed feedback vertex set number, cycle rank, DAG-depth, DAG-width
and Kelly-width. While the minimization problem for these width mea-
sures is generally NP-hard, we prove that it is computable in linear
time for all these parameters, except for Kelly-width, when restricted
to directed co-graphs. As an important combinatorial tool, we show how
these measures can be computed for the disjoint union, series composi-
tion, and order composition of two directed graphs, which further leads
to some similarities and a good comparison between the width measures.
This generalizes and expands our former results for computing directed
path-width and directed tree-width of directed co-graphs.

Keywords: DFVS-number · Cycle rank · DAG-depth · DAG-width ·
Kelly-width · Directed co-graphs

1 Introduction

Undirected width parameters are well-known and frequently used in computa-
tions. Many NP-hard graph problems admit polynomial-time solutions when
restricted to graphs of bounded width, like for example bounded tree-width
or bounded path-width. Computing both parameters is hard even for bipartite
graphs and complements of bipartite graphs [2], while for co-graphs it has been
shown [7] that the path-width equals the tree-width and how to compute this
value in linear time.

During the last years, width parameters for directed graphs have received
a lot of attention [18]. Among these are directed tree-width and directed path-
width. In our paper [21] we proved that for directed co-graphs both parameters
are equal and computable in linear time. But directed tree-width and directed
path-width are not the only attempts to generalize undirected tree-width and
path-width for directed graphs. Furthermore, there are the parameters directed
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feedback vertex set number, cycle rank, DAG-depth, DAG-width and Kelly-
width, which have also been considered in [17]. In this paper, we extend our
results from [21] and give linear time solutions to compute these width param-
eters for the disjoint union, series composition and, except for Kelly-width, as
well for the order composition of two directed graphs. This leads to a construc-
tive linear-time-algorithm to get the width and the according decompositions
of directed co-graphs. For most of the parameters, we could even expand this
algorithm to extended directed co-graphs, which are an extension of the directed
co-graphs defined in [12] by an additional operation considered in [24].

Our algorithms lead to some tightened bounds for directed path-width,
directed tree-width, directed feedback vertex set number, cycle rank, DAG-
depth, DAG-width and Kelly-width of extended directed co-graphs and for some
of the parameters, they even lead to equalities.

2 Preliminaries

We use the notations of Bang-Jensen and Gutin [3] for graphs and digraphs.
When talking about digraphs, we always mean directed graphs with neither
multi-edges nor loops. A digraph is a tournament if for all vertices u �= v, there
is exactly one of the edges (u, v) and (v, u). It is completely bidirectional if both
of these edges are in the edge set.

Orientations. An orientation of an undirected graph G is a digraph, where all
edges {u, v} of G are replaced by either (u, v) or (v, u). For a biorientation,
every edge {u, v} is replaced by either (u, v) or (v, u) or both. For a complete
biorientation, every edge {u, v} is replaced by (u, v) and (v, u). The complete
biorientation of an undirected graph G is denoted by

←→
G .

Special Directed Graphs. We recall some special directed graphs. Let

←→
Kn = ({v1, . . . , vn}, {(vi, vj) | 1 ≤ i �= j ≤ n})

be a bidirectional complete digraph on n vertices. For n ≥ 2 we denote by

−→
Pn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn)})

a directed path on n vertices and for n ≥ 2 we denote by

−→
Cn = ({v1, . . . , vn}, {(v1, v2), . . . , (vn−1, vn), (vn, v1)})

a directed cycle on n vertices. A directed acyclic digraph (DAG for short) is a
digraph without any

−→
Cn, n ≥ 2 as subdigraph. By

−→
Tn we denote the transitive

tournament on n vertices.
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2.1 Recursively Defined Digraphs

Co-graphs have been introduced in the 1970s by a number of authors under
different notations. We recall the definition of directed co-graphs from [12]. The
following operations have already been considered by Bechet in [4].

– The disjoint union of G1, . . . , Gk, denoted by G1 ⊕ . . . ⊕ Gk, is the digraph
with vertex set V1 ∪ . . . ∪ Vk and arc set E1 ∪ . . . ∪ Ek.

– The series composition of G1, . . . , Gk, denoted by G1 ⊗ . . . ⊗ Gk, is defined
by their disjoint union plus all possible arcs between vertices of Gi and Gj

for all 1 ≤ i, j ≤ k, i �= j.
– The order composition of G1, . . . , Gk, denoted by G1 
 . . .
Gk, is defined by

their disjoint union plus all possible arcs from vertices of Gi to vertices of Gj

for all 1 ≤ i < j ≤ k.

The class of directed co-graphs can be defined recursively. The one-vertex-
digraph is a directed co-graph and every disjoint union, series composition and
order composition of directed co-graphs is a directed co-graph.

The following transformation has been considered by Johnson et al. in [24]
and generalizes the operations disjoint union and order composition.

– The directed union of G1, . . . , Gk, denoted by G1 � . . . � Gk, is a subdigraph
of the order composition G1 
 . . . 
 Gk and contains the disjoint union G1 ⊕
. . . ⊕ Gk as a subdigraph.

Including this operation to the definition of directed co-graphs, we obtain
the class of extended directed co-graphs.

For every (extended) directed co-graph, we can define a tree structure,
denoted as di-co-tree. The leaves of the di-co-tree represent the vertices of the
digraph and the inner nodes of the di-co-tree correspond to the operations
applied on the subexpressions defined by the subtrees. For every directed co-
graph one can construct a di-co-tree in linear time, see [12].

3 Digraph Width Measures

In Table 1 we summarize some examples for the value of digraph width measures
of special digraphs. Further examples can be found in [17, Table 1].

Table 1. The value of digraph width measures of special digraphs.

G d-tw(G) d-pw(G) dfn(G) cr(G) ddp(G) dagw(G) kw(G)
−→
Pn 0 0 0 0 �log(n)� +1 1 0−→
Cn 1 1 1 1 �log(n − 1)� +2 2 1−→
Tn 0 0 0 0 n 1 0←→
Pn 1 1 �n

2
� �log(n)� �log(n)� +1 2 1←→

Kn n − 1 n − 1 n − 1 n − 1 n n n − 1
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3.1 Directed Tree-Width

We will use the directed tree-width introduced by Johnson et al. [24].1

An out-tree is a tree with a distinguished root such that all arcs are directed
away from the root. For two vertices u, v of an out-tree T , the notation u ≤ v
means that there is a directed path on ≥ 0 arcs from u to v and u < v means
that there is a directed path on ≥ 1 arcs from u to v.

Let G = (V,E) be some digraph and Z ⊆ V . A vertex set S ⊆ V − Z is
Z-normal if there is no directed path in G − Z with first and last vertices in S
that uses a vertex of G − (Z ∪ S).

Definition 1 (Directed tree-width, [24]). A (arboreal) tree-decomposition
of a digraph G = (VG, EG) is a triple (T,X ,W). Here T = (VT , ET ) is an out-
tree, X = {Xe | e ∈ ET } and W = {Wr | r ∈ VT } are sets of subsets of VG,
such that the following two conditions hold true.

(dtw-1) W = {Wr | r ∈ VT } is a partition of VG into non-empty subsets.2

(dtw-2) For every (u, v) ∈ ET the set
⋃{Wr | r ∈ VT , v ≤ r} is X(u,v)-normal.

The width of a (arboreal) tree-decomposition (T,X ,W) is

max
r∈VT

|Wr ∪
⋃

e∼r

Xe| − 1.

Here, e ∼ r means that r is one of the two vertices of arc e. The directed tree-
width of G, d-tw(G) for short, is the smallest integer k such that there is a
(arboreal) tree-decomposition (T,X ,W) for G of width k.

Determining whether the directed tree-width of some given digraph is at most
some given value w is NP-complete. On the other hand, determining whether
the directed tree-width of some given digraph is at most some given value w is
polynomial for directed co-graphs [21].

The results of [24] lead to an XP-algorithm3 for directed tree-width w.r.t. the
standard parameter which implies that for each constant w, it is decidable in
polynomial time whether a given digraph has directed tree-width at most w.

Lemma 1 ([20,21]). Let G = (VG, EG) and H = (VH , EH) be two vertex-
disjoint digraphs, then the following properties hold.

1 There are also further directed tree-width definitions such as allowing empty sets
Wr in [23], using sets Wr of size one only for the leaves of T in [29] and using
strong components within (dtw-2) in [13, Chap. 6]. Further in works of Courcelle
et al. [9–11] the directed tree-width of a digraph G is defined by the tree-width
of the underlying undirected graph. One reason for this could be the algorithmic
advantages of the undirected tree-width.

2 A remarkable difference to the undirected tree-width from [30] is that the sets Wr

have to be disjoint and non-empty.
3 XP is the class of all parameterized problems that can be solved in a certain time,

see [14] for a definition.
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1. d-tw(G ⊕ H) = max{d-tw(G), d-tw(H)}
2. d-tw(G 
 H) = max{d-tw(G), d-tw(H)}
3. d-tw(G � H) = max{d-tw(G), d-tw(H)}
4. d-tw(G ⊗ H) = min{d-tw(G) + |VH |, d-tw(H) + |VG|}

3.2 Directed Path-Width

The notation of directed path-width was introduced by Reed, Seymour, and
Thomas around 1995 and relates to directed tree-width introduced by Johnson,
Robertson, Seymour, and Thomas in [24].

Definition 2 (Directed path-width). A directed path-decomposition of
some digraph G = (V,E) is a sequence (X1, . . . , Xr) of subsets of V , called
bags, such that the following three conditions hold true.

(dpw-1) X1 ∪ . . . ∪ Xr = V .
(dpw-2) For each (u, v) ∈ E there is a pair i ≤ j such that u ∈ Xi and v ∈ Xj.
(dpw-3) If u ∈ Xi and u ∈ Xj for some u ∈ V and two indices i, j with i ≤ j,

then u ∈ X� for all indices � with i ≤ � ≤ j.

The width of a directed path-decomposition X = (X1, . . . , Xr) is

max
1≤i≤r

|Xi| − 1.

The directed path-width of G, d-pw(G) for short, is the smallest integer w such
that there is a directed path-decomposition of G of width w.

Determining whether the directed path-width of some given digraph with
maximum semi-degree Δ0(G) = max{Δ−(D),Δ+(D)} ≤ 3 is at most some
given value w is NP-complete by a reduction from undirected path-width for
planar graphs with maximum vertex degree 3 [26].

Lemma 2 ([20,21]). Let G = (VG, EG) and H = (VH , EH) be two vertex-
disjoint digraphs, then the following properties hold.

1. d-pw(G ⊕ H) = max{d-pw(G), d-pw(H)}
1. d-pw(G 
 H) = max{d-pw(G), d-pw(H)}
1. d-pw(G � H) = max{d-pw(G), d-pw(H)}
1. d-pw(G ⊗ H) = min{d-pw(G) + |VH |, d-pw(H) + |VG|}

3.3 Directed Feedback Vertex Set (DFVS) Number

Definition 3 (DFVS-number). The directed feedback vertex set number of
a digraph G = (V,E), denoted by dfn(G), is the minimum cardinality of a set
S ⊂ V such that G − S is a DAG.

Theorem 1 (�4). Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.
4 The proofs of the results marked with a � are omitted due to space restrictions.
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1. dfn(G ⊕ H) = dfn(G) + dfn(H)
2. dfn(G 
 H) = dfn(G) + dfn(H)
3. dfn(G � H) = dfn(G) + dfn(H)
4. dfn(G ⊗ H) = min{dfn(G) + |VH |, dfn(H) + |VG|}

3.4 Cycle Rank

Cycle rank was introduced in [15] and also appeared in [8] and [25].

Definition 4 (Cycle rank). The cycle rank of a digraph G = (V,E), denoted
by cr(G), is defined as follows.

– If G is acyclic, cr(G) = 0.
– If G is strongly connected, then cr(G) = 1 + minv∈V cr(G − {v}).
– Otherwise the cycle rank of G is the maximum cycle rank of any strongly

connected component of G.

Results on the cycle rank can be found in [19]. In this papers Gruber proved
the hardness of computing cycle rank, even for sparse digraphs of maximum
outdegree at most 2.

Proposition 1 ([19]). For every digraph G, we have d-pw(G) ≤ cr(G).

The cycle rank can be much larger than the directed path-width, which can
be shown by a complete biorientation of a path graph

←→
Pn which has directed

path-width 1 but arbitrary large cycle rank �log(n)�, see [25].

Proposition 2 ([17]). For every digraph G, we have cr(G) ≤ dfn(G).

The DFVS-number can be much larger than the cycle rank, which can be
shown by the disjoint union of n

3 directed cycles
−→
C3 which has cycle rank 1 but

arbitrary large DFVS-number n
3 .

Theorem 2 (�). Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.

1. cr(G ⊕ H) = max{cr(G), cr(H)}
2. cr(G 
 H) = max{cr(G), cr(H)}
3. cr(G � H) = max{cr(G), cr(H)}
4. cr(G ⊗ H) = min{cr(G) + |VH |, cr(H) + |VG|}

3.5 DAG-depth

The DAG-depth of a digraph was introduced in [16] motivated by tree-depth for
undirected graphs, given in [27].

For a digraph G = (V,E) and v ∈ V , let Gv denote the subdigraph of G
induced by the vertices which are reachable from v. The maximal elements in
the partially ordered set {Gv | v ∈ V } w.r.t. the graph inclusion order are the
reachable fragments of G and will be denoted by R(G).5

5 In the undirected case, reachable fragments coincide with connected components.
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Definition 5 (DAG-depth). Let G = (V,E) be a digraph. The DAG-depth of
G, denoted by ddp(G), is defined as follows.

– If |V | = 1, then ddp(G) = 1.
– If G has a single reachable fragment, then ddp(G) = 1+min{ddp(G−v) | v ∈

V }.
– Otherwise, ddp(G) equals the maximum over the DAG-depth of the reachable

fragments of G.

Proposition 3 ([17]). For every complete bioriented directed G, we have
ddp(G) = cr(G) + 1.

Theorem 3. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.

1. ddp(G ⊕ H) = max{ddp(G), ddp(H)}
2. ddp(G 
 H) = ddp(G) + ddp(H)
3. ddp(G � H) ≤ ddp(G) + ddp(H)
4. ddp(G ⊗ H) = min{ddp(G) + |VH |, ddp(H) + |VG|}
Proof. 1. Since there is no edge in G⊕H between a vertex from VG and a vertex

from VH , every reachable fragment is a subset of VG or a subset of VH .
2. First, we observe that the set of reachable fragments for G
H can be obtained

by R(G 
 H) = {f ∪ VH | f ∈ R(G)}.
ddp(G 
 H) ≤ ddp(G) + ddp(H)
First, we remove the vertices of G from G 
 H in the same order as from G
when verifying the depth of ddp(G) using Definition 5. Afterwards, we remove
the vertices of H from G 
 H in the same order as from H when verifying
the depth of ddp(H) using Definition 5. The observation above allows to use
this ordering.
ddp(G 
 H) ≥ ddp(G) + ddp(H)
First suppose that it is optimal to begin removing vertices from VG of G
H.
Then it is no drawback to remove all vertices from VG of G 
 H first and all
vertices from VH afterwards, since every vertex of VH is reachable from every
vertex of VG. Since none of the vertices of VG is reachable from a vertex of VH

the vertices of VH do not effect the number of fragments, reachable from VG.
Next, suppose that it is optimal to begin removing vertices from VH of G
H.
Then it is no drawback to remove all vertices from VH of G 
 H first and
all vertices from VG afterwards, since none of the vertices of VG is reachable
from a vertex of VH and thus the vertices of VG do not effect the number of
fragments, reachable from VH .

3. ddp(G � H) ≤ ddp(G) + ddp(H) holds, since the equality of 2. does not
hold true in this case, since for a small number of edges ddp(G � H) is much
smaller than ddp(G) + ddp(H). Note that a lower bound is ddp(G � H) ≥
max{ddp(G),ddp(H)}, since G � H is equal to the disjoint union if no edges
emerge.
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4. ddp(G ⊗ H) ≤ min{ddp(G) + |VH |,ddp(H) + |VG|}
Since G ⊗ H has only one reachable fragment as long as it contains vertices
from VG and vertices from VH , we can apply the second case of Definition 5
to verify an upper bound of ddp(G) + |VH | by removing the vertices of H
one by one from G ⊗ H and to verify an upper bound of ddp(H) + |VG| by
removing the vertices of G one by one from G ⊗ H.
ddp(G ⊗ H) ≥ min{ddp(G) + |VH |,ddp(H) + |VG|}
Since in G ⊗ H every vertex of VG has an edge to and from every vertex of
VH , G ⊗ H has only one reachable fragment as long as it contains vertices
from VG and VH . Thus, we have to apply the second case of Definition 5 as
long we have vertices from VG and vertices from VH . This either leads to a
subdigraph induced by VG−V ′

G for some V ′
G ⊂ VG or to a subdigraph induced

by VH − V ′
H for some V ′

H ⊂ VH . Thus, we have

ddp(G ⊗ H) ≥ min{|VH | + |V ′
G| + ddp(G − V ′

G),
|VG| + |V ′

H | + ddp(H − V ′
H)}

≥ min{|VH | + ddp(G), |VG| + ddp(H)}.

This completes the proof. ��
Note that ddp(G � H) cannot be computed from ddp(G) and ddp(H) by

a simple formula, since the disjoint union and the order operation behave
differently.

3.6 DAG-width

The DAG-width is a graph parameter which describes how close a digraph is to
a directed acyclic graph (DAG). It has been defined in [5,6,28].

Let G = (VG, EG) be a acyclic digraph. The partial order �G on G is the
reflexive, transitive closure of EG. A source or root of a set X ⊆ VG is a �G-
minimal element of X, that is, r ∈ X is a root of X, if there is no y ∈ X,
such that y �G r and y �= x. Analogously, a sink or leaf of a set X ⊆ VG is a
�G-maximal element.

Let V ′ ⊆ VG, then a set W ⊆ VG guards V ′ if for all (u, v) ∈ EG it holds
that if u ∈ V ′ then v ∈ V ′ ∪ W .

Definition 6 (DAG-width). A DAG-decomposition of some digraph G =
(VG, EG) is a pair (D,X ) where D = (VD, ED) is a DAG and X = {Xu |
Xu ⊆ VG, u ∈ VD} is a family of subsets of VG such that:

(dagw-1)
⋃

u∈VD
Xu = VG.

(dagw-2) For all vertices u, v, w ∈ VD with u �D v �D w, it holds that Xu ∩
Xw ⊆ Xv.

(dagw-3) For all edges (u, v) ∈ ED it holds that Xu ∩ Xv guards X�v
\ Xu,

where X�v
= ∪v�DwXw. For any source u, X�u

is guarded by ∅.



300 F. Gurski et al.

The width of a DAG-decomposition (D,X ) is the number

max
u∈VD

|Xu|.

The DAG-width of a digraph G, dagw(G) for short, is the smallest width of all
possible DAG-decompositions for G.

We use the restriction to nice DAG-decompositions from [6, Theorem 24].

Proposition 4 ([6]). For every graph G, we have dagw(
←→
G ) = tw(G) + 1.

Proposition 4 implies that the NP-hardness of tree-width carries over to DAG-
width.

There are even digraphs on n vertices whose optimal DAG-decompositions
have super-polynomial many bags w.r.t n [1]. Furthermore, it has been shown
that deciding whether the DAG-width of a given digraph is at most a given value
is PSPACE-complete [1].

Proposition 5 ([17]). For every digraph G, we have dagw(G) ≤ d-pw(G) + 1.

Proposition 6 ([6]). For every digraph G, we have d-tw(G) ≤ 3 · dagw(G) + 1.

Lemma 3 (�). Let G = (V,E) be a digraph of DAG-width at most k, such that
V1 ∪ V2 = V , V1 ∩ V2 = ∅, and {(u, v), (v, u) | u ∈ V1, v ∈ V2} ⊆ E. Then there
is a DAG-decomposition (D,X ), D = (VD, ED), of width at most k for G such
that for every v ∈ VD holds V1 ⊆ Xv or for every v ∈ VD holds V2 ⊆ Xv.

Obviously, this lemma also holds for a nice DAG-decomposition.

Theorem 4. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.

1. dagw(G ⊕ H) = max{dagw(G), dagw(H)}
2. dagw(G 
 H) = max{dagw(G), dagw(H)}
3. dagw(G � H) = max{dagw(G), dagw(H)}
4. dagw(G ⊗ H) = min{dagw(G) + |VH |, dagw(H) + |VG|}
Proof. Let G and H be two vertex-disjoint digraphs and let further (DG,XG)
and (DH ,XH) be their nice DAG-decompositions with minimum DAG-width.
Let rH be the root of DH and let lG be a leaf of DG.

1. For J = G⊕H, we first define a legit DAG-decomposition (DJ ,XJ ) for J and
show that it is of minimum width afterwards. Let DJ be the disjoint union
of DG and DH with an additional arc (lG, rH). Further, XJ = XG ∪ XH .
(DJ ,XJ ) is a valid DAG-decomposition because it satisfies the conditions as
follows. It holds that (dagw-1) is satisfied by (DG,XG) and (DH ,XH) it is
also satisfied by (DJ ,XJ) because all vertices of J are included. As we do not
add any vertices to the X-sets and G and H are vertex-disjoint, (dagw-2) is
satisfied for (DJ ,XJ ). Further, (dagw-3) is satisfied for all arcs in DG and
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DH . In DJ there is only one additional arc, (lG, rH). Since it holds that for
rH , X�rH

is guarded by ∅ and we do not add any outgoing vertices to H
and XlG ∩XrH

= ∅, (dagw-3) is satisfied for (DJ ,XJ ). Thus, the DAG-width
of the decomposition is limited by the larger width of G and H, such that
dagw(G ⊕ H) ≤ max{dagw(G),dagw(H)}.
The lower bound holds as G and H are both induced subdigraphs of J and a
graph cannot have lower DAG-width than its induced subdigraphs. Hence
dagw(J) ≥ max{dagw(G),dagw(H)} applies, which leads to dagw(J) =
max{dagw(G),dagw(H)}.

2. Holds by the same arguments as given in (1.).
3. Holds by the same arguments as given in (1.).
4. For J = G⊗H, set DJ = DG and XJ = {Xu∪VH | Xu ∈ XG}. Then (DJ ,XJ)

is a DAG-decomposition for J : Obviously, (dagw-1) is satisfied. (dagw-2) and
(dagw-3) are satisfied since they are satisfied for XG and we add VH to every
vertex set in XG. Further, it holds that the width of (DJ ,XJ) is dagw(G) +
|VH |. In the same way, we get a DAG-decomposition of width dagw(H)+|VG|,
so we have dagw(G ⊗ H) ≤ min{dagw(G) + |VH |,dagw(H) + |VG|}.
For the lower bound, we use Lemma 3. Assume that dagw(G ⊗ H) <
min{dagw(G) + |VH |,dagw(H) + |VG|}. Let (DJ ,XJ ) be a minimal DAG-
decomposition of J of size k < min{dagw(G) + |VH |,dagw(H) + |VG|}. By
Lemma 3 we have VH ⊆ Xv for all Xv ∈ XJ or VG ⊆ Xv for all Xv ∈ XJ .
Without loss of generality assume VH ⊆ Xv for all Xv ∈ XJ (because
VG ⊆ Xv for all Xv ∈ XJ , respectively). Then (D′

G,X ′
G) with D′

G = DJ ,
X ′

G = {Xu \ VH | Xu ∈ XJ} is a DAG-decomposition of size k − |VH | of G:
– (dagw-1) is satisfied since

⋃
u∈VD′

G

Xu =
⋃

u∈VDJ
(Xu \ VH) =

(⋃
u∈VDJ

Xu

)
\ VH

= VJ \ VH

= (VG ∪ VH) \ VH

= VG.

– (dagw-2) is satisfied since for all u, v, w ∈ VD′
G

with u �D′
G

v �D′
G

w

and XJ
u ,XJ

v and XJ
w the corresponding sets in (DJ ,XJ ) it holds that

Xu ∩ Xw =
(
XJ

u \ VH

) ∩ (
XJ

w \ VH

)
=

(
XJ

u ∩ XJ
w

) \ VH ⊆ XJ
v \ VH = Xv

as u �DJ
v �DJ

w.
– (dagw-3) is satisfied since for all edges (u, v) ∈ ED′

G
, we have (u, v) ∈ EDJ

and as Xu ∩Xv =
(
XJ

u ∩ XJ
v

)\VH which guards X�D′
G

v \Xu = X�DJ
v \

XJ
u . For the root, the condition is trivially satisfied.

But it holds that k − |VH | < min{dagw(G)+ |VH |,dagw(H)+ |VG|}− |VH | ≤
dagw(G)+|VH |−|VH | = dagw(G). This is a contradiction, as it is not possible
to create a DAG-decomposition of size smaller than dagw(G).
It follows that dagw(G ⊗ H) ≥ min{dagw(G) + |VH |,dagw(H) + |VG|} and
thus that dagw(G ⊗ H) = min{dagw(G) + |VH |,dagw(H) + |VG|}.

This completes the proof. ��
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3.7 Kelly-Width

The Kelly-width is also led from directed acyclic graphs, which leads to the idea
that it is very similar to the DAG-width. It has been defined in [22].

Definition 7. (Kelly-width). A Kelly decomposition of a digraph G =
(VG, EG) is a triple (W,X ,D) where D is a directed acyclic graph, X = {Xu |
Xu ⊆ VG, u ∈ VD} and W = {Wu | Wu ⊆ VG, u ∈ VD} are families of subsets of
VG such that:

1. W is a partition for VG.
2. For all vertices v ∈ VG, Xv guards W�v

.
3. For all vertices v ∈ VG, there is a linear order u1, . . . , us on the children of v

such that for every ui it holds that Xui
⊆ Wi∪Xi∪

⋃
j<i W�uj

. Similarly,there
is a linear order r1, r2, . . . on the roots of D such that for each root ri it holds
that Wri

⊆ ⋃
j<i W�rj

.

The width of a Kelly decomposition (W,X ,D) is the number

max
u∈VD

|Xu| + |Wu|.

The Kelly-width of a digraph G, denoted with kw(G), is the smallest width
of all possible Kelly decompositions for G.

Definition 8. (Directed elimination ordering). Let G = (V,E) be a
digraph. A directed elimination ordering � on G is a linear ordering on V .
For �= (v0, v1, . . . , vn−1) we define

– G�
0 = G

– G�
i+1 = (V �

i+1, E
�
i+1) with V �

i+1 = V �
i \ {vi} and

E�
i+1 = {(u, v) | (u, v) ∈ E�

i and u, v �= vi or (u, vi), (vi, v) ∈ E�
i , u �= v}

G�
i is the directed elimination graph at step i according to �.
The width of � is the maximum out-degree of vi in G�

i over all i.

Lemma 4 ([22]). Let G be a digraph. The following are equivalent:

1. G has Kelly-width at most k + 1
2. G has a directed elimination ordering of width ≤ k

Proposition 7 ([22]). For every digraph G, we have d-tw(G) ≤ 6 · kw(G) − 2.

Proposition 8 ([17]). For every digraph G, we have kw(G) ≤ d-pw(G) + 1.

Theorem 5. Let G = (VG, EG) and H = (VH , EH) be two vertex-disjoint
digraphs, then the following properties hold.

1. kw(G ⊕ H) = max{kw(G), kw(H)}
2. kw(G 
 H) = max{kw(G), kw(H)}
3. kw(G � H) = max{kw(G), kw(H)}
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4. kw(G ⊗ H) ≤ min{kw(G) + |VH |, kw(H) + |VG|}
Proof. We use the fact that by Lemma 4, a digraph has Kelly-width k +1 if and
only if it has a directed elimination ordering of width k. Let G = (VG, EG) and
H = (VH , EH) be two vertex-disjoint digraphs with kw(G) = kG and kw(H) =
kH . Then, there exists a directed elimination ordering �G of G of width kG − 1
and a directed elimination ordering �H of H of width kH − 1.

1. For J = G⊕H, we obtain a linear ordering �J of J by adding first all vertices
from �H and from �G to �J afterwards. As no edges from H to G are inserted
to J , this is a directed elimination ordering of width max{kH −1, kG −1}. As
G and H are both induced subdigraphs of J , there cannot exist a directed
elimination ordering of smaller width. By Lemma4 it follows that kw(J) =
max{kH , kG}, such that kw(G ⊕ H) = max{kw(G), kw(H)}.

2. Holds by the same arguments as in (1.).
3. Holds by the same arguments as in (1.).
4. For J = G⊗H, we obtain a linear ordering �J of J by adding first all vertices

from �H and afterwards from �G to �J (first �G, then �H respectively).
As there are exactly VG (VH) more outgoing edges for every vertex in VH

(VG), this is a directed elimination ordering of J of width kH − 1 + |VG|
(kG − 1 + |VH |, respectively).

This completes the proof. ��
Remark 1 (�). The value min{kw(G)+|VH |, kw(H)+|VG|} is not a lower bound
for kw(G ⊗ H), even not if G and H are directed co-graphs.

3.8 Comparison

Theorem 6. For every extended directed co-graph G, we have

kw(G) ≤ d-pw(G) = d-tw(G) = cr(G) = dagw(G) − 1 ≤ ddp(G) − 1 ≤ dfn(G).

For DFVS-Number, DAG-depth and Kelly-width equality is not possible
by the following examples. For the disjoint union of two

←→
Kn, it holds that

d-pw(2
←→
Kn) = n − 1 < 2n − 2 = dfn(2

←→
Kn). For transitive tournaments

−→
Tn, it

holds that d-pw(
−→
Tn) = 0 < n = ddp(

−→
Tn). Further, let K ′

n be the 2n vertex graph
which is obtained by a complete graph Kn on n vertices and adding a pendant
vertex for every of the n vertices of Kn, then for the complete biorientation

←→
K ′

n

it holds that kw(
←→
K ′

n ⊗ ←→
K ′

n) = 2n − 1 < 3n − 1 = d-pw(
←→
K ′

n ⊗ ←→
K ′

n).
But by Theorem 5 Kelly-width is always smaller or equal to path-width and

its equal parameters and by Theorem3 DAG-depth is always greater or equal to
path-width and its equal parameters.

Theorem 7. For every extended directed co-graph G = (V,E) which is given by
a binary di-co-tree the directed path-width, directed tree-width, directed feedback
vertex set number, cycle rank, and DAG-width can be computed in time O(|V |).
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4 Conclusion and Outlook

In this paper, we are able to give linear time algorithms for the directed feed-
back set number, cycle rank and DAG-width of extended directed co-graphs
and a linear-time algorithm for the DAG-depth of directed co-graphs. Further,
we provided a comparison of all considered parameters for extended directed
co-graphs and obtained equality for directed path-width, directed tree-width,
cycle rank and DAG width. Further, we showed for bounds for the class of
directed co-graphs for the directed vertex set number, DAG-depth and Kelly-
width. This widely extends our results for directed path-width and directed
tree-width from [21].

A further issue could be to find a linear or polynomial time algorithm to
compute Kelly-width on directed co-graphs. Furthermore, it would be interesting
for which superclasses of directed co-graphs it is still possible to find polynomial
algorithms to get the considered parameters and for which superclasses these
problems become NP-hard.
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Abstract. We study the problem of scheduling n jobs on m identical,
fault-prone machines f of which are prone to crashes by an adversary,
where communication takes place via a multiple access channel with-
out collision detection. Performance is measured by the total number of
available machine steps during the whole execution (work). Our goal is
to study the impact of preemption (i.e., interrupting the execution of a
job and resuming it later by the same or different machine) and failures
on the work performance of job processing. We identify features that
determine the difficulty of the problem, and in particular, show that the
complexity is asymptotically smaller when preemption is allowed.

1 Introduction

We examine the problem of performing n jobs by m machines reliably on a
multiple access shared channel (MAC). This problem, originated by Chlebus et
al. [6], has already been studied for unit length jobs, whereas this paper extends
it by considering jobs with arbitrary lengths and studying the impact of features,
such as preemption and the severity of failures, on the work performance.

The notion of preemption may be understood as the possibility of not per-
forming a particular job in one attempt. This means that a single job may be
interrupted partway through performing it and then resumed later by the same
machine or even by another machine. Intuitively, the model without preemption
is more general, yet both have subtleties that distinguish them noticeably.
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Communication takes place on a shared channel, also known as multiple
access channel, without collision detection. A message is transmitted success-
fully only when one machine transmits, and when more than one message is
transmitted then it is no different from background noise (i.e., no transmission
on the channel). Therefore, we say that a job completion is confirmed only when
the corresponding machine transmits such message successfully (before any fail-
ure it may suffer).

We consider the impact of an adaptive f-bounded adversary on the perfor-
mance of algorithms for the problem. This kind of adversary may decide to crash
up to f machines at any time of the execution. We use work as the effectiveness
measure, i.e., the total number of machine steps available for computations. It is
related (after dividing by m) to the average time performance of machines. Work
may also correspond to energy consumption - an operational machine generates
(consumes) a unit of work (energy) in every time step.

Previous and Related Results. Our work can be seen as an extension of the
Do-All problem defined in a seminal work by Dwork, Halpern and Waarts [9].
This line of research was followed up by several other papers [3–5,8,10] which
considered the message-passing model with point-to-point communication. In
all these papers the authors assumed that performing a single job contributes a
unit to work complexity. Paper [8] introduced a model, wherein the performance
measure for Do-All solutions is extended to the available machine steps (i.e.,
including idle rounds). Authors in [8] developed an algorithm solving the problem
with work O(n+(f +1)m) and message complexity O((f +1)m). We adopt this
kind of work measurement in our paper.

The authors of [4] developed a deterministic algorithm with effort (i.e. sum
of work and messages sent during the execution) O(n + ma), for a specific con-
stant 1 < a < 2, against the unbounded adversary which may crash all but
one machine. They presented the first algorithm for this type of adversary with
both work and communication o(n + m2), where communication is understood
as the total number of point-to-point messages sent during the execution. They
also gave an algorithm achieving both work and communication O(n+m log2 m)
against a strongly-adaptive linearly-bounded adversary.

In [12] there is an algorithm based on a gossiping protocol, solving the prob-
lem with work O(n+m1+ε), for any fixed constant ε. In [16] Do-All is studied for
an asynchronous message-passing model, where executions are restricted in a way
that the delay of each message is at most d. The authors proved Ω(n+md logd m)
bound on the expected work. They also developed several algorithms - among
them a deterministic one with work O((n + md) log m). Further developments
and comprehensive related literature can be found in the book by Georgiou and
Shvartsman [13].

The line of research closest to ours is the Do-All problem of unit length jobs
on a multiple access channel with no collision detection, which was first studied
in [6], where the authors have shown a lower bound of Ω(n + m

√
n) on work

when there are no crashes, and Ω(n+m
√

n+m min{f, n}) in presence of crashes
caused by an adaptive f -bounded adversary. They also proposed an algorithm,
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called Two-Lists, with optimal performance Θ(n + m
√

n + m min{f, n}). A
recent paper [15] discusses different models of adversaries on a multiple access
channel in the context of performing unit length jobs.

Extending the study of unit length jobs to arbitrary length jobs has taken
place in a different context, c.f., [17], where one can find recent results and refer-
ences to such extensions in the context of fault-tolerant centralized scheduling.
There has been a long history of studying the preemptive vs non-preemptive
model, e.g., [7,18,19], to which our work also contributes.

The problem we study finds application in other areas, e.g. in window schedul-
ing. It is common in applications (like broadcast systems [1,14]) that requests
need to be served periodically in the form of windows. Our problem could be
applied to help selecting a window length based on controlling work (aka the
number of available machine steps).

Our Results. In this paper, we consider fault-tolerant scheduling of n arbitrary
length jobs on m identical machines reliably over a multiple access channel. Our
contributions are threefold, on: deterministic preemptive setting and determinis-
tic non-preemptive setting. In the setting with job preemption, we prove a lower
bound on work Ω(L+m

√
L+m min{f, L}+mα), where L is the sum of lengths

of all jobs and α is the maximum length of a job, which holds for both deter-
ministic and randomized algorithms against an adaptive f-bounded adversary.
We design a corresponding deterministic distributed algorithm, called ScaTri,
achieving work O(L + m

√
L + m min{f, L} + mα), which matches the lower

bound asymptotically with respect to an overhead.
In the model without job preemption, we show a slightly higher lower bound

on work Ω
(
L + L

n m
√

n + m min{f, n} + mα
)
, implying a separation between

the two settings: with and without preemption. Similarly as in the previous set-
ting, it holds for both deterministic and randomized algorithms against an adap-
tive f-bounded adversary, thus showing that randomization does not help against
an adaptive adversary regardless of the (non-)preemption setting. We develop
a corresponding deterministic distributed algorithm, called DefTri, achieving
work O(L + αm

√
n + αmmin{f, n}). Results are discussed and compared in

detail in Sect. 5.

2 Technical Preliminaries

In this section we formally describe the model for the considered problem and
also provide a high-level specification of a black-box procedure TaPeBB that
we use in our algorithms. Additionally we present definitions of performing jobs
and technicalities regarding preemption.

Machines. In our model we assume having m identical machines, with unique
identifiers from the set {1, . . . , m}. The distributed system of these machines
is synchronized with a global clock, and time is divided into synchronous time
slots, called rounds. All machines start simultaneously at a certain moment.
Furthermore every machine may halt voluntarily. Note that a halted machine
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does not restart. Every operational machine generates a unit of work per round
(even when it is idle), that has to be included while computing the complexity
of an algorithm. In this paper by M we denote the number of operational, i.e.,
not crashed, machines. M may change during the execution.

Communication Model. The communication channel for machines is the,
widely considered in literature, multiple access channel [2,11], also called a shared
channel, where a broadcasted message reaches every operational machine. We do
not allow simultaneous transmissions of several messages, what means that we
consider a channel without collision detection. Hence when more than one mes-
sage is transmitted at a certain round, then machines hear a signal indifferent
from background noise. A job is said to be confirmed if a machine, completing
the job, successfully communicates this fact via the channel.

Adversarial Model. Machines may fail by crashing, which happens because of
an adversary activity. One of the factors describing the adversary is its power f ,
ie., the total number of failures that it may enforce. We assume that 0 ≤ f ≤ m−
1, thus at least one machine remains operational until an algorithm terminates.
Machines that were crashed neither restart nor contribute to work.

We consider two adversarial models. An adaptive f-bounded adversary can
observe the execution and make decisions about up to f crashes arbitrarily, at
any moment of the execution. A non-adaptive f-bounded adversary, in addition
to choosing the faulty subset of f machines, has to declare prior the execution in
which rounds crashes will occur, i.e., for every machine declared as faulty, there
must be a corresponding round number in which the fault will take place.

It is worth noticing that in the context of deterministic algorithms such an
adversary is consistent with the adaptive adversary that may decide online which
machines will be crashed at any time, as the algorithm may be simulated by the
adversary in advance, before its execution, providing knowledge about the best
decisions to be taken. Finally, an (m − 1)-bounded adversary is also called an
unbounded adversary.

Complexity Measure. The complexity measure to be used in our analysis is,
as mentioned before, work, also called the total number of available machine
steps. It is the number of machine steps available for computations. This means
that each operational machine that did not halt contributes a unit of work in
each round, even if it stays idle.

Precisely, assume that an execution starts when all the machines begin simul-
taneously in some fixed round r0. Let rv be the round when machine v halts
(or is crashed). Then its work contribution is equal to rv − r0. Consequently
the algorithm complexity is the sum of such expressions over all machines i.e.:∑

1≤v≤m(rv − r0).

Jobs and Reliability. We assume that the list of jobs is known to all machines
and we expect that machines perform all n jobs as a result of executing an
algorithm. We assume that jobs have arbitrary lengths, are independent (may be
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performed in any order) and idempotent (may be performed many times, even
concurrently by different machines).

Furthermore a reliable algorithm satisfies the following conditions in any
execution: all jobs are eventually performed, if at least one machine remains
non-faulty and each machine eventually halts, unless it has crashed.

We assume that jobs have some minimal (atomic or unit) length. Conse-
quently, we can also assume that each job’s length is a multiple of the minimal
length. As the model that we consider is synchronous, this minimal length may be
justified by the round duration required for local computations for each machine.
By �a we denote the length of job a. We also use L to denote the sum of lengths
of all jobs, i.e., L =

∑
i �i. Finally, by α we denote the length of the longest job.

Preemptive vs Non-preemptive Model. By the means of preemption we
define the possibility of performing jobs in several pieces. Precisely, consider
job a, of length �a (for simplicity we assume that �a is even) and machine v is
scheduled to perform job a at some time of the algorithm execution. Assume
that v performs �a/2 units of job a and then reports such progress. When pre-
emption is available the remaining �a/2 units of job a may be performed by some
machine w where w �= v.

Length �a of job a means that job a requires �a rounds to be fully performed.
Such view allows to think that job a is a chain of �a tasks. Hence we conclude
that all jobs form a set of chains of unit length tasks.

We further denote by ak task k of job a. However, when we refer to a single
job, disregarding its tasks, we refer to it simply as job a.
We define two types of jobs regarding how intermediate progress is handled:

Oblivious Job—it is sufficient to have knowledge that previous tasks were
done, in order to perform remaining tasks from the same job. In other words,
any information from in between progress does not have to be announced.

Non-oblivious Job—any intermediate progress needs to be reported through
the channel when interrupting the job to resume it later, and possibly pass the
job to another machine.

In the preemptive oblivious model a job may be abandoned by machine v
on some task k without confirming progress up to this point on the channel and
then continued from the same task k by any machine w.

As an example of the preemptive oblivious model, consider a scenario that
there is a job that a shared array of length x needs to be erased. If a machine
stopped performing this job at some point, another one may reclaim that job
without the necessity of repeating previous steps by simply reading to which
point it has been erased.

For the preemptive non-oblivious model, consider that a machine executes
Dijkstra’s algorithm for finding the shortest path. If it becomes interrupted,
then another machine cannot reclaim this job otherwise than by performing the
job from the beginning, unless intermediate computations have been shared.
In other words preemption is available with respect to maintaining information
about tasks.
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On the contrary to the preemptive model, we also consider the model without
preemption i.e. where each job can be performed by a machine only in one piece
- when a machine is crashed while performing such job, the whole progress is
lost, even if it was reported on the channel before the crash took place.

The Task-Performing Black Box (TaPeBB). The algorithms we design in
this paper employ a black-box procedure for arbitrary length jobs that is able to
reliably perform a subset of input (in the form of jobs consisting of chains of con-
secutive tasks) or report that something went wrong. In what follows, we specify
this procedure, called the Task-Performing Black Box (TaPeBB for short), and
argue that it can be implemented and employed to our considerations.

We can use the procedure in both deterministic and randomized solutions.
Precisely, all our algorithms use TaPeBB, despite the fact that they perform
differently in the sense of work complexity.

Most important ideas of our results lie within how to preprocess the input
rather than how to actually perform the jobs, thus employing such a black-box
could improve the clarity of presentation.

General Properties of TaPeBB. A synchronous system is characterized by
time being divided into synchronous slots, that we already called rounds. In what
follows, each round is a possibility for machines to transmit.

The nature of arbitrary length jobs leads, however, to a concept that the
time between consecutive broadcasts needs to be adjusted. Specifically, for sets
containing long jobs in the non-preemptive configuration of the problem, it may
be better to broadcast the fact of performing the job fully, rather than semi-
broadcasting multiple times. Only the final transmission brings valuable infor-
mation about progress in performing jobs and any intermediate transmissions
congest the channel, indicating only that the broadcasting machine is still oper-
ational.

Therefore, we assume that TaPeBB has a feature of changing the duration
between consecutive broadcasts. We will call the actual time step between con-
secutive broadcasts a phase. Denote the length of a phase by φ. Unless stated
otherwise, we assume that φ = 1, i.e., the duration of a phase and a round is
consistent, thus machines may transmit in any round.

Input: TaPeBB(v, d, JOBS, MACHINES, φ)

– v represents the id of a machine executing TaPeBB.
– TaPeBB takes a list of machines MACHINES and a list of jobs JOBS as the

input, yet from the task perspective, i.e., jobs are provided as a chain of tasks.
All necessary information about tasks is available through list JOBS, including
their id’s, and how, as well as, in what order they build jobs. It may happen
that a job is not done fully and only some initial segment of tasks forming
that job is performed. Because list JOBS maintains information about tasks,
such a situation can be successfully handled.

– Additionally, the procedure takes an integer value d. It specifies the number of
machines that will be used in the procedure for performing provided job input.
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The procedure works in such a way that each working machine is responsible
for performing a number of jobs. For clarity we assume that TaPeBB always
uses the initial d machines from the list of machines. Using a certain number
of machines in the procedure allows us to set an upper bound on the amount
of work accrued during a single execution.

– We call a single execution an epoch and the parameter d is called the length
of an epoch (i.e., the number of phases that form an epoch).

– φ is the length of a phase i.e. the duration between consecutive broadcasts.

Output: what jobs/tasks have been done and which machines have crashed.
– Having explained what is the length of an epoch in TaPeBB we now describe

the capability of performing tasks in a single epoch, which is understood as
the maximal number of jobs that may be confirmed in an epoch, when it is
executed fully without any adversarial distractions. Firstly, let us note, that
TaPeBB allows to confirm j tasks in some round j. This comes from the
fact that if a machine worked for j rounds and was able to perform one task
per round, then it can confirm at most j tasks when it comes to broadcasting
in round j. Therefore, the capability of performing tasks in an epoch is at
most

∑d
j=1 j which is the sum of an arithmetic series with common difference

equal 1 over all rounds of an epoch.
– As a result of running a single epoch we have an output information about

which tasks were actually done and whether there were any machines iden-
tified as crashed, when machines were communicating progress (a crash is
consistent with a machine being silent when scheduled to broadcast).

A candidate algorithm to serve as TaPeBB is the Two-Lists algorithm
from [6] and we refer readers to the details therein. Nevertheless, we assume that
it may be substituted with an arbitrary algorithm fulfilling the requirements that
we stated above.

3 Preemptive Model

In this section we consider the scheduling problem in the model with preemption,
which is, intuitively, an easier model to tackle. We show a lower bound for
oblivious jobs (Sect. 3.1) and then present the algorithm for non-oblivious jobs
(Sect. 3.2).

3.1 Lower Bound

We first recall the minimal work complexity introduced in [6].

Lemma 1 ([6], Lemma 2). A reliable, distributed algorithm, possibly random-
ized, performs work Ω(n + m

√
n) in an execution in which no failures occur.
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Recall that L denotes the total length of jobs and α denotes the length of the
longest job. As jobs are built with unit length tasks, we can look at this result
from the task perspective. Precisely, as L can be considered to represent the
number of tasks needed to be performed by the system, then the lower bound
for our model translates in a straightforward way. Furthermore, in our model
there is a certain bottleneck dictated by the longest job. Reason being is that
there may be an execution with one long job, in comparison to others being
short. Thus the longest job determines the magnitude of work in the complexity
formula.

We conclude with the following theorem, setting the lower bound for the
considered problem.

Theorem 1. The adaptive f-bounded adversary, for 0 ≤ f < m, can force
any reliable, possibly randomized and centralized algorithm and a set of obliv-
ious jobs of arbitrary lengths with preemption, to perform work Ω(L + m

√
L +

m min{f, L} + mα).

3.2 Algorithm ScaTri

In this section we present our algorithm Scaling-Triangle MAC Scheduling
(ScaTri for short). In ScaTri machines have access to all the jobs and the
corresponding tasks that build those jobs. This means that they know their id’s
and lengths.

We assume that each machine maintains three lists: MACHINES, TASKS and
JOBS. The first list is a list of operational machines and is updated according
to the information broadcasted through the communication channel. If there is
information that some machine was recognized as crashed, then this machine
is removed from the list. In the context of the TaPeBB procedure, recall that
this is realized as the output information. TaPeBB returns the list of crashed
machines so that operational machines may update their lists.

List TASKS represents all the tasks that are initially computed from the list
of jobs. Every task has its unique identifier, which allows to discover to which
job it belongs and its position in that job. This allows to preserve consistency
and coherency: task k cannot be performed before task k − 1. If some tasks are
performed then this fact is also updated on the list.

List JOBS represents the set of jobs—it is a convenient way to know what are
the consecutive parts of input for the TaPeBB procedure. Jobs are assigned to
each machine at the beginning of an epoch (TaPeBB execution). We assume
that machines have instant access to jobs lengths. Information on list JOBS may
be updated directly from information maintained on list TASKS. To ease the
discussion, by |XYZ| we denote the length of list XYZ and by M = |MACHINES|
the actual number of operational machines.

The capability of performing tasks in a TaPeBB epoch is at most
∑d

j=1 j
(cf. Sect. 2) which is the sum of an arithmetic series with common difference
equal 1 over all rounds of an epoch. If we take a geometric approach and draw
lines or boxes of increasing lengths one next to the other, then drawing this
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(a) (b) (c)

Fig. 1. A very general idea about how ScaTri works. The vertical stripes represent
jobs and the dotted-line triangle is the capability of the algorithm to perform jobs in a
single epoch (or parts of them i.e. some consecutive tasks). Consequently, if there are
enough jobs to pack into an epoch, then it is executed (a). Otherwise (b), the length
of the epoch is reduced (c). This helps preventing excessive idle work.

sequence would form a triangle. Hence, providing a subset of jobs as the input
is consistent with packing them into such a triangle, cf., Fig. 1.

In TaPeBB executed with φ = 1 broadcasts take place in each round. This
means that in round 1 machine 1 is scheduled to broadcast, in round 2 machine
2 and, in general, in round j machine j is scheduled to broadcast. Consequently,
j tasks can be confirmed as performed in round j, unless machine j is crashed
and hence silence is heard in round j. Therefore, the capability of performing
tasks by TaPeBB is referred to as the triangle.

We assume d describes the current length of an epoch. Initially it is set to
m, but it may be reduced while the algorithm is running, cf. Fig. 1(b) and (c).
In what follows, let us assume that the length of the epoch d is set to m/2i for

some i. We need to fill in a triangle of size
∑ m

2i

j=1 j. Initially we need to provide
m/2i jobs, that will form the base of the triangle. Jobs are provided as the input
in such a way that the shortest ones are preferred for machines with lower id’s. If
there are several jobs with same lengths, then those with lower id’s are preferred,
cf. Fig. 2. After having the base filled, it is necessary to look whether there are
any gaps in the triangle, see Fig. 2(b). If so, another layer of jobs is placed on top
of the base layer, and the procedure is repeated, see Fig. 2(c) and (d). Otherwise,
we are done and ready to execute TaPeBB.

This approach allows to “trim” longer jobs preferably—these will have more
tasks completed after executing TaPeBB than shorter ones, because they are
scheduled to be done by machines with higher id’s, which are broadcasting in
further rounds. As machines with higher id’s are broadcasting in further rounds,
then they can confirm more tasks with a single broadcast.

One can observe that performing a transmission is an opportunity to confirm
on the channel that the tasks that were assigned to a machine are done. Addi-
tionally this confirms that a certain machine is still operational. In what follows
these two types of aggregated pieces of information: which jobs were done, and
which machines were crashed, are eventually provided as the output of TaPeBB.

When d = m/2i for some i = 1, . . . , log m it may happen that there are
not enough tasks (jobs) to fill in a maximal triangle. If this happens we will, in
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(a) (b) (c) (d)

Fig. 2. An illustration of job input. (a) Initially there is a certain capability of TaPeBB
(triangle size) for performing jobs. (b) The initial layer is filled with jobs (white blocks),
yet there are still some gaps. (c) An additional layer (gray blocks) is placed to fill in
the triangle entirely. (d) In fact those additional jobs will only be done partially.

some cases, reduce the job-schedule triangle (and simultaneously the length of
the epoch) to m/2i+1 and try to fill in a smaller triangle, cf., Fig. 1(b) and (c).

Finally, we use TaPeBB(v, d, JOBS, MACHINES, φ) to denote which machine
executes the procedure, the size of the schedule and the length of the epoch, the
list of jobs from which the input will be provided, the list of operational machines,
and the phase duration. We emphasize that we described the process of assigning
jobs to machines from the algorithm perspective, i.e., we illustrated that the
system needs to provide input to TaPeBB. Nevertheless, for the sake of clarity
we assume that TaPeBB collects the appropriate input by itself according to
the rules described above, after having lists JOBS and MACHINES provided as the
input. Figs. 1 and 2 illustrate the idea standing behind ScaTri.

Algorithm 1. ScaTri; code for machine v

1 - initialize MACHINES to a sorted list of all m names of machines;
2 - initialize JOBS to a sorted list of all n names of jobs;
3 - initialize TASKS to a sorted list of all tasks according to the information from

JOBS;
4 - initialize variable d representing the length of an epoch;
5 - initialize variable φ := 1 representing the length of a phase;
6 - initialize i := 0;
7 repeat
8 d := m/2i;
9 if |TASKS| ≥ d(d + 1)/2 then

10 execute TaPeBB(v, d, JOBS, MACHINES, φ);
11 update JOBS, MACHINES, TASKS according to the output information from

TaPeBB;

12 end
13 else
14 i := i + 1;
15 end

16 until |JOBS| = 0;
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The following theorem summarizes work performance of ScaTri:

Theorem 2. ScaTri performs work O(L+m
√

L+m min{f, L}+mα) against
the adaptive adversary and a set of non-oblivious, arbitrary length jobs with
preemption.

As mentioned in the beginning of Sect. 3, the lower bound here is proved
for oblivious jobs in the preemptive model, while the algorithm works reliably
for non-oblivious jobs in the same model, because TaPeBB procedure provides
any intermediate job performing progress as the output information and all
the information is updated sequentially after each epoch. This implies that the
distinction between oblivious and non-oblivious jobs in the preemptive model
and against an adaptive adversary does not matter, thus we finish this section
with the following corollary:

Corollary 1. ScaTri is optimal in asymptotic work efficiency for jobs with
arbitrary lengths with preemption for both oblivious and non-oblivious jobs.

4 Non-preemptive Model

In this section we consider the complementary problem of performing jobs when
preemption is not available. We begin with the lower bound and then proceed
to the algorithm description.

4.1 Lower Bound

In the non-preemptive model each job can only be performed by a machine in
one piece. This reflects an all-or-nothing policy, i.e., a machine cannot make any
intermediate progress while performing a job. If it starts working on a job then
either it must be done entirely or it is abandoned without any tasks performed.

In what follows any intermediate broadcasts while performing a job are not
helpful for the system. The only meaningful transmissions are those which allow
to confirm certain jobs being done.

Theorem 3. A reliable, distributed algorithm, possibly randomized, performs
work Ω

(
L + L

n m
√

n + m min{f, n} + mα
)

in an execution with at most f fail-
ures against an adaptive adversary.

4.2 Algorithm DefTri

The key reason to consider the notion of a phase (i.e. time between consecutive
broadcasts), introduced in the model section, is that it allows to assume broad-
casts are done after jobs are done entirely. The only question is how to set the
phase parameter appropriately.
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(a) (b) (c) (d)

Fig. 3. Most important features of DefTri. Similarly to ScaTri we apply the method
of reducing idle work by reducing the input size (epoch length) for the task performing
procedure ((a), (b), (c)). Additionally we change the duration on phases (time between
consecutive broadcasts) in order to be able to fill in jobs entirely - in the model without
preemption jobs cannot be done partially (d).

We analyze our algorithm from the average length of the current set of jobs
perspective. To justify this setting let us consider two scenarios. For the first one,
when the phase parameter is set to 1, which is consistent with transmissions tak-
ing place each round we already mentioned above that most of the transmissions
have no effect on progressing with performing jobs. However, setting the phase
parameter to the length of the longest job α can generate excessive idle work.

In what follows, setting the phase parameter to the average length of the
current set of jobs allows us to estimate the number of jobs that can be performed
in a certain period. What is more it proves that this setting always allows to
schedule a significant number of jobs to be done, while preventing from excessive
idle work. Hence we begin with a simple fact showing that the number of jobs
with length twice the average does not exceed half of the total number of jobs.

Fact 1. Let n be the number of jobs, L be the sum of all the lengths of jobs and let
L
n represent the average length of a job. Then we have that

∣
∣{a : �a > 2L

n

}∣
∣ ≤ n

2 .

Algorithm Deforming-Triangle MAC Scheduling (DefTri for short) is sim-
ilar to ScaTri introduced in the previous section and on the top of its design
there is the TaPeBB procedure for performing jobs. Roughly speaking, the
algorithm, repetitively, tries to choose jobs that could be packed into a specific
triangle (parameters of which are controlled by the algorithm) and feed them to
TaPeBB. Furthermore, once again the main goal of the algorithm is to avoid
redundant or idle work. Hence, the main feature is to examine whether there is
an appropriate number of jobs to fill in an epoch of TaPeBB. However, as we
are dealing with the non-preemptive model, jobs cannot be done in pieces.

Hence, apart from checking the number of jobs (and possibly reducing the size
of an epoch) the algorithm also changes the phase parameter, i.e., the duration
between consecutive broadcasts—this is somehow convenient in order to know
how the input jobs should be fed into TaPeBB. It settles a “framework” (epoch)
with “pumped rounds” that should be filled in appropriately.
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Algorithm 2. DefTri; pseudocode for machine v

1 - initialize MACHINES to a sorted list of all m names of machines;
2 - initialize JOBS to a sorted list of all n names of jobs;
3 - initialize TASKS to a sorted list of all tasks;
4 - initialize variable d representing the length of an epoch;
5 - initialize variable φ representing the length of a phase;
6 - initialize i := 0;
7 repeat
8 d := m/2i;
9 if |JOBS| ≥ d(d + 1)/2 then

10 φ := |TASKS|/|JOBS| // set φ to current average length of a job

11 execute TaPeBB(v, d, JOBS, MACHINES, φ);
12 update JOBS, MACHINES, TASKS according to TaPeBB output;

13 end
14 else
15 i := i + 1;
16 end

17 until |JOBS| = 0;

Using Fact 1 assures that if the size of an epoch is reduced accordingly to the
number of jobs and the phase parameter is set accordingly to the actual average
length of the current set of jobs (i.e., |TASKS|/JOBS| in the code of Algorithm 2),
then we are able to provide the input for TaPeBB appropriately and expect
that at least

∑ m

2i

j=1 j jobs will be performed for some size parameter i as a result
of executing TaPeBB, yet without taking crashes into account.

Figure 3 illustrates the idea of DefTri.

Theorem 4. DefTri performs work O(L+αm
√

n+αmmin{f, n}) against the
adaptive f-bounded adversary.

5 Comparison of Results for the Two Models

In this section we compare the upper bound for preemptive scheduling from The-
orem 2 with the lower bound in the model without preemption from Theorem3.
This comparison shows the range of dependencies between the model parame-
ters for which both models are separated, i.e., the upper bound in the model
with preemption is asymptotically smaller than the lower bound in the model
without preemption. We settle the scope on the, intuitively greater, bound for
the model without preemption and examine how the ranges of the parameters
influence the magnitude of the formulas. Let us recall both formulas:

Preemptive, upper bound: O(L + m
√

L + m min{f, L} + mα);
Non-preemptive, lower bound: Ω(L + L

n m
√

n + min{f, n} + mα).
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If L is the factor that dominates the bound in the non-preemptive model, then
by simple comparison to other factors we have that L also dominates the bound
in the preemptive model. In what follows both formulas are asymptotically equal
when the total number of tasks is appropriately large.

When L
n m

√
n dominates the non-preemptive formula, then by a simple obser-

vation we have that 1 ≤
√

L
n , because the number of jobs is greater than the num-

ber of tasks, and applying a square root does not affect the inequality. Multiply-
ing both sides of the inequality by m

√
L gives m

√
L ≤ L

n m
√

n. Thus, if L
n m

√
n

dominates the bound in the non-preemptive formula then the non-preemptive
formula is asymptotically greater than the preemptive one.

On the other hand when L dominates the bound then they are asymptotically
equal, as both formulas linearize for such magnitude. These results confirm that
in the channel without collision detection the non-preemptive model is more
demanding for most settings of parameters.

6 Conclusions

We addressed the problem of performing jobs of arbitrary lengths on a multiple-
access channel without collision detection. Specifically, we analysed two scenar-
ios. In the preemptive model, we showed a lower bound for the considered prob-
lem that is Ω(L + m

√
L + m min{f, L} + mα) and designed an algorithm that

meets the proved bound, hence settled the problem. We also answered the ques-
tion of how to deal with jobs without preemption, for which we showed a lower
bound Ω(L+ L

n m
√

n+m min{f, n}+mα) and developed a solution, basing on the
one for preemptive jobs which work complexity is O(L+αm

√
n+αmmin{f, n}).

Considering open directions for research considered in this paper, it is nat-
ural to address the question of channels with collision detection. Furthermore
it is worth considering whether randomization could help improving the results,
as it took place in similar papers considering the Do-All problem on a shared
channel [15]. We conjecture that the use of randomization against non-adaptive
adversaries leads to a solution with expected work O(L+m

√
L+mα), and thus

could prove that randomization helps against the non-adaptive adversary.
Finally, the primary goal of this work was to translate scheduling from classic

models to the model of a shared channel, in which it was not considered in depth;
therefore, a natural open direction is to extend the model further with other
features considered in scheduling literature.
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Abstract. We consider a class of pattern graphs on q ≥ 4 vertices
that have q − 2 distinguished vertices with equal neighborhood in the
remaining two vertices. Two pattern graphs in this class are siblings if
they differ by some edges connecting the distinguished vertices.

In particular, we show that if induced copies of siblings to a pattern
graph in such a class are rare in the host graph then one can detect the
pattern graph relatively efficiently. For example, we infer that if there are
Nd induced copies of a diamond (i.e., a graph on four vertices missing
a single edge to be complete) in the host graph, then an induced copy
of the complete graph on four vertices, K4, as well as an induced copy
of the cycle on four vertices, C4, can be deterministically detected in
O(n2.75 + Nd) time. Note that the fastest known algorithm for K4 and
the fastest known deterministic algorithm for C4 run in O(n3.257) time.
We also show that if there is a family of siblings whose induced copies
in the host graph are rare then there are good chances to determine the
numbers of occurrences of induced copies for all pattern graphs on q
vertices relatively efficiently.

1 Introduction

The problems of detecting and counting subgraphs or induced subgraphs of a
host graph that are isomorphic to a pattern graph are basic in graph algorithms.
They are generally termed as subgraph isomorphism and induced subgraph iso-
morphism problems, respectively. Several well-known NP-hard problems can be
regarded as their special cases.

More recent examples of applications of different variants of subgraph iso-
morphism include bio-molecular networks [1], social networks [17], automatic
design of processor systems [19], and network security [18]. In the aforemen-
tioned applications, the pattern graphs are typically of fixed size which allows
for polynomial-time solutions.

For a pattern graph on k vertices and a host graph on n vertices, the fastest
known general algorithms for subgraph isomorphism and induced subgraph
c© Springer Nature Switzerland AG 2019
L. A. G ↪asieniec et al. (Eds.): FCT 2019, LNCS 11651, pp. 322–334, 2019.
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isomorphism run in time O(nω(�k/3�,�(k−1)/3�,�k/3�)) [5,10,15], where ω(p, q, r)
denotes the exponent of fast matrix multiplication for rectangular matrices of
size np × nq and nq × nr, respectively [13]. For convenience, we shall denote the
latter upper time bound by C(n.k), and ω(1, 1, 1) by just ω. It is known that
ω ≤ 2.373 [14,21] and for example ω(1, 2, 1) ≤ 3.257 [13].

Kloks et al. [10] formulated equations in terms of the number of induced
copies of 4-vertex pattern graphs in the input graph that allowed them to con-
clude that if the number is known for at least one of the pattern graphs then
the remaining numbers can be computed in O(nω). Kowaluk et al. generalized
the equations to include pattern graphs on more than four vertices in [11]. Using
the equations, Vassilevska Williams et al. designed a randomized method for
detecting an induced subgraph isomorphic to a pattern graph on four vertices
different from K4 and the four isolated vertices (4K1) [20], subsuming the similar
randomized approach from [6]. Their method runs in the same asymptotic time
as that based on matrix multiplication for detecting triangles (i.e., K3) from
[9], i.e., in O(nω) time. The authors of [20] obtained a deterministic version of
their algorithm also running in the triangle asymptotic time for the diamond,
which is K4 with one removed edge, denoted by K4 − e. Recently, Bläser et
al. in [2] and Dalirrooyfard et al. in [4] presented several improved upper time
bounds for detection of induced copies of mostly small pattern graphs, in partic-
ular induced paths and cycles [2]. Both teams even exhibited infinite families of
pattern graphs for which they could subsume the universal C(n, k) bound. The
main idea in [2] is to reduce the detection problem through graph polynomials to
that of multilinear term detection. Dalirrooyfard et al. presented also interesting
relative hardness results on induced subgraph detection in [4].

There are few known earlier examples of pattern graphs on four vertices,
different from the diamond, for which isomorphic induced subgraphs can be
deterministically detected in an n vertex host graph substantially faster than
by the general method in C(n, k) time. The examples include: (1) P4, a path
on four vertices, which can be detected in O(n + m) time [3], where m is the
number of edges in the host graph; (2) a paw, which is a triangle connected
to the fourth vertex by an edge, denoted by K3 + e., and can be detected in
O(nω) time [16]; and (3) a claw (a star with three leaves), which can be also
detected in O(nω) time [5]. Analogous upper bounds hold for the pattern graphs
that are dual to any of the aforementioned pattern graphs. There are twelve
pairwise non-isomorphic pattern graphs on four vertices. Only for the cycle on
four vertices, C4, and its complement, and K4 and its complement, there are
no known deterministic algorithms for the induced subgraph isomorphism that
are asymptotically faster than the general method yielding the O(nω(1,2,1))-time
bound. For a relative lower bound for C4 see [7].

Challenge 1. Design a deterministic algorithm for detecting an induced copy
of C4 that is substantially asymptotically faster than the algorithm yielded by the
general method running in C(n, 4) = O(nω(1,2,1))-time, i.e., O(n3.257)-time.

The recent trade-off in [12] provides only a partial solution to this challenge. It
shows that if the input graph does not contain a clique on k +1 vertices then C4
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can be deterministically detected in time Õ(nωkμ + n2k2), where Õ(f) stands
for O(f(log f)c) for some constant c, and μ ≈ 0.46530.

The problem of beating the O(nω(1,2,1))-time bound for the detection of K4

(or, an induced independent set on four vertices, equivalently) seems even more
challenging, even if the usage of random bits is allowed. More generally, improv-
ing on the upper bound for the detection of Kl, for some fixed l ≥ 3, yielded by
the general method would be a breakthrough. It could yield faster algorithms
for the detection of induced and non-necessarily induced copies of many other
pattern graphs on at least l vertices.

Challenge 2. For a fixed l > 3, design a deterministic or randomized algorithm
for detecting a copy of Kl that is substantially asymptotically faster than the
C(n, l)-time algorithm yielded by the general method.

This is a very demanding challenge, it does not seem that it could be positively
resolved by combining known approaches. The aforementioned trade-off from
[12] implies that if the input graph does not contain an independent set on k +1
vertices then K4 can be deterministically detected in time Õ(nωkμ+n2k2), where
μ ≈ 0.46530.

In this paper, similarly as in [12], we provide partial results on induced sub-
graph isomorphism for small pattern graphs relevant to the aforementioned chal-
lenges. We consider quite different restrictions from those in [12]. They are con-
cerned with the number of induced copies of pattern graphs very similar to the
fixed pattern graph H, in the input graph. Surprisingly, if the aforementioned
copies are rare, an induced copy of H (e.g., K4 or C4) can be detected (if any)
relatively efficiently and even in some cases the numbers of induced copies for
all pattern on the same number of vertices as H can be determined efficiently.

1.1 Our Contributions

We consider a class of pattern graphs on q ≥ 4 vertices that have q − 2 dis-
tinguished vertices with equal neighborhood in the remaining two vertices. Two
pattern graphs in this class are siblings if they differ solely by some edges con-
necting the distinguished vertices.

We show that if induced copies of siblings to a pattern graph in the class are
rare in the host graph then one can detect the pattern graph relatively efficiently.
In particular for q = 4, we show for a pair of siblings H1, H2 that an induced copy
of H2 in an n-vertex graph G can be deterministically detected in O(n2.75 +N1)
time, where N1 is the number of induced subgraphs of G isomorphic to H1.
We also show that if there is a family of siblings whose induced copies in the
host graph G are rare then there are good chances to determine the numbers
of occurrences of induced copies for all pattern graphs on q vertices relatively
efficiently. In particular, we show for q = 4 that if N is the minimum of the
sum of the numbers of induced copies of a pair of siblings taken over all pairs
of siblings on four vertices, then we can compute for all pattern graphs H on
four vertices the number of induced subgraphs isomorphic to H in O(n2.725+N)
time.
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2 Preliminaries

We shall consider only simple undirected graphs. Hence, in particular, the graph
dual to a graph will be also simple.

A subgraph of the graph G = (V,E) is a graph H = (VH , EH) such that
VH ⊆ V and EH ⊆ E.

An induced subgraph of the graph G = (V,E) is a graph H = (VH , EH) such
that VH ⊆ V and EH = E ∩ (VH × VH).

The neighborhood of a vertex v in a graph G is the set of all vertices in G
adjacent to v.

Definition 1. For q ≥ 4, we distinguish the class Ls(q) of pattern graphs H on
q vertices v1, v2, ..., vq such that v1, ..., vq−2 have the same neighbors among the
remaining two vertices vq−1, vq. A pair of graphs in Ls(q) are called siblings if
they differ only on the sets of their edges between v1, ..., vq−2. The maximal set of
mutual siblings in Ls(q) is called a sibling family in Ls(q). If vq−1, vq. are adja-
cent (not adjacent) in H then H is in the subclass L+

s (q) (L−
s (q), respectively)

of Ls(q).

Note that the subclasses L+
s (q) and L−

s (q) of Ls(q) have a non-empty inter-
section.

In case of Ls(4), a sibling family is just a pair of siblings. The following sibling
pairs occur in Ls(4): (K4,K4\e), (K4\e, C4), (K3+e,K3+K1), (3−star, P3+K1),
(2K2,K2 + 2K1), (K2 + 2K1, 4K1) (Fig. 1).

s
+L  (4)

s
−L  (4)

Fig. 1. The six pairs of siblings in Ls(4) are marked by rectangles.

The adjacency matrix A of a graph G = (V,E) is the 0−1 n×n matrix such
that n = |V | and for 1 ≤ i, j ≤ n, A[i, j] = 1 if and only if {i, j} ∈ E.

A witness for an entry B[i, j] of the Boolean matrix product B of two Boolean
matrices A1 and A2 is any index k such that A1[i, k] and A2[k, j] are equal to 1
[8].

Recall that for natural numbers p, q, r, ω(p, q, r) denotes the exponent of
fast matrix multiplication for rectangular matrices of size np × nq and nq × nr,
respectively. For convenience, ω stands for ω(1, 1, 1).

Fact 1. The fast matrix multiplication algorithm runs in O(nω) time, where ω
is not greater than 2.3728639 [14] (cf. [21]).
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In the following fact from [8], the upper bounds have been updated by incor-
porating the more recent upper bounds on fast rectangular matrix multiplication
from [13].

Fact 2. The deterministic k-witness algorithm from [8] takes as input an inte-
ger k and two n × n Boolean matrices, and returns a list of q witnesses for
each positive entry of the Boolean matrix product of those matrices, where q is
the minimum of k and the total number of witnesses for this entry. It runs in
n2.5719k0.3176 time for k < n0.394 and O(n2.5k0.5) time for k ≥ n0.394 [8].

For convenience, CW (n, k) will stand for the running time of the k-witness
deterministic algorithm from Fact 2 for two input Boolean matrices of size n×n.

Fact 3. [10] If the number of induced subgraphs isomorphic to a pattern graph
on four vertices in an n-vertex graph is known then the corresponding numbers
for all other pattern graphs on four vertices can be computed in O(nω) time.

The authors of [11] presented linear equations in terms of the numbers of
induced copies of different pattern graphs on k vertices in an n-vertex graph G,
generalizing those for 4-vertex pattern graphs from [10]. They also considered
a system of equations formed by a subset of the aforementioned equations for
pattern graphs satisfying additional conditions. For the definition of the system
of equations termed SEq(G, k, l) see Appendix. In the matrix formed by the
left sides of the equations in SEq(G, k, l), each row corresponds to a pattern
graph H on k vertices, among which k − l are independent. The columns in the
matrix correspond to consecutive pattern graphs on k vertices. (We shall apply
the equations for k = q and l = q −2.) Each row of the matrix contains non-zero
coefficients corresponding to pattern graphs H ′ whose edge set is between those
of H and Kk. It follows that the equations in SEq(G, k, l) are independent. They
can be formed in time O(nω(�(k−l)/2�,1,�(k−l)/2�) [11]. See Appendix for details.

The following generalization of Fact 3 to include pattern graphs on q ≥ 4
vertices is implicit in [11] and its proof requires adopting quite a lot of notation
from there. Because it is not relevant for the main results in this paper we refer
the reader for the proof including the aforementioned equations to Appendix.
See also Theorem 4.1 in [11] and Theorem 7.5 in [2] for similar results with
different kinds of restrictions.

Lemma 1. Consider an n-vertex graph G. Let H be a pattern graph on q ≥ 4
vertices such that the number of induced subgraphs isomorphic to H in G is
known but it cannot be computed from a linear combination of the equations in
SEq(G, q, q − 2). Then the corresponding numbers for all other pattern graphs
on q vertices can be found in O(nω(�(q−2)/2�,1,�(q−2)/2�)) time.

Remark 1. For a pattern graph H on q ≥ 4 vertices and an n-vertex graph
G, the number of induced copies of H in G cannot be obtained from a linear
combination of the equations in SEq(G, q, q−2) iff the equations are independent
after the removal of the unknown xH,G corresponding to H.
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Proof. Suppose that the first condition does not imply the second one. Thus,
there is a non-trivial combination of the equations after the removal of xH,G

which yields zero. Applying the combination to the left sides of the original
equations, by their independence, we can obtain the variable xH,G after rescaling,
i.e., derive the number of induced copies of H from the original equations, a
contradiction.

Conversely, suppose that the second condition does not imply the first Then,
there is a combination of the left sides of the original equations which yields
xH,G. This combination applied to the left sides of the equations resulting from
the removal of xH,G yields 0, a contradiction. �	

3 Main Results

The following lemma is folklore. It demonstrates that if induced copies of a
pattern graph in an n vertex host graph are sufficiently frequent then an induced
copy of the pattern graph can be detected in the host graph by sampling in sub-
C(n, q) time.

Lemma 2. Let H be a pattern graph on q vertices. If an n-vertex graph G
contains nψ induced subgraphs isomorphic to H then one can decide if G contains
a copy of H in O(C(n1−q−1ψ lnq−1

n, q) + n2) ln n) time with probability at least
1 − n−1, where C(n, q) stands for the time taken by the standard algorithm to
detect an induced subgraph in an n-vertex graph that is isomorphic to a given
pattern graph on q vertices.

Proof. Let G = (V,E). Suppose first that the number of induced subgraphs of
G isomorphic to H in G is known. Pick uniformly at random a subset S of
(ln n)1/qn1−q−1ψ vertices of G. For a given induced subgraph O of G isomorphic
to H, the probability that all q vertices in O are in S is at least ln nn−ψ. Thus,
the probability that none of the at least nψ induced subgraphs of G isomorphic
to H is an induced subgraph of the subgraph G[S] of G induced by S is at most
(1 − ln nn−ψ)nψ

which is of order n−1. Hence, it is sufficient to run a standard
algorithm for the detection of an induced subgraph of G[S] isomorphic to H on
G[S]. If the number of induced subgraphs of G isomorphic to H in G is not
known, we just apply a reversed exponential search starting from

(
n
q

)
. �	

Our main theorem is as follows.

Theorem 1. Let G be an n-vertex graph, and let q be an integer not less than 4.
Consider a pattern graph H in Ls(q). Let N̄ be the sum of the numbers of induced
copies of siblings to H in G. There is a deterministic algorithm for detecting an
induced subgraph of G isomorphic to H that runs in O(CW (n, 
n 1

q−2 �)+N̄) time.
There is also a deterministic algorithm for computing for all siblings in a sibling
family the numbers of their induced copies in G that runs in O(CW (n, 
n 1

q−2 �)+
N∗) time, where N∗ is the sum of the numbers of induced copies of the siblings
in the family in G.
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Proof. Let v1, ..., vq be vertices of H satisfying Definition 1. Suppose first that
vq−1 is adjacent to vq. Consider the following algorithm for the detection of an
induced copy of H.

1. If v1 is adjacent to vq−1 then set A1 to the adjacency matrix of G otherwise
set A1 to the adjacency matrix of the graph dual to G. Similarly, if v1 is
adjacent to vq then set A2 to the adjacency matrix of G otherwise set A2 to
the adjacency matrix of the graph dual to G.

2. Compute the arithmetic product of A1 with A2 treated as an arithmetic 0−1
matrices.

3. Set k to 
n 1
q−2 � and run the algorithm for k-witness problem for the Boolean

product B of A1 with A2.
4. For each edge e of G whose corresponding entry in B has at least q − 2

witnesses, iterate the following block.
(a) If the entry has more than k witnesses then compute all its witnesseses

in O(n) time.
(b) For each (q −2)-tuple of witnesses of the entry check if the vertices of the

edge e and the (q − 2)-tuple jointly induce a subgraph of G isomorphic
to H. If so then answer YES reporting that the subgraph induced by the
edge and the (q − 2)-tuple of witnesses is isomorphic to H, and stop.

5. Answer NO

The correctness of the algorithm is obvious (see Fig. 2). If vq−1 and vq are
not adjacent in H then the for-loop in Step 4 is run for pairs of not adjacent
vertices of G instead of edges of G.

The following time analysis holds in any of the aforementioned variants of
the algorithm. Step 1 takes O(n2) time. Step 2 requires O(nω) time while Step
3 takes CW (n, k) time. Observe that if Step 4(a) is performed then more than(

k
q−2

)
(q − 2)-tuples are tested in the following Step 4(b). Step 4(a) is performed

next time only if each of the aforementioned tests results in a discovery of an
induced copy of a sibling to H. Therefore, Step 4(a) can be performed at most
N̄/

(
k

q−2

)
+1 times so it takes O(n(N̄/

(
k

q−2

)
+1)) total time. In Step 4(b) at most

N̄ +1 tuples can be tested in total. Hence, Step 4(b) requires at most O(N̄ +n2)
total time. Note that since q is fixed,

(
k

q−2

)
= Θ(kq−2) holds. Consequently,

(
k

q−2

)
= Θ(n) holds by k = 
n 1

q−2 �. This completes the proof of the first part.
To prove the second part we assume similarly that v1, ..., vq are vertices of

any member in the sibling family satisfying Definition 1. We also assume first
that vq−1 is adjacent to vq. It is sufficient to remove Step 5 and to modify Step
4(b) in the algorithm in the proof of the first part to the following one:

For each (q − 2)-tuple of witnesses of the entry determine the pattern graph
Q in the sibling family that is isomorphic to the subgraph of G induced by
the vertices of the edge e and the (q − 2)-tuple, and increase the counter for Q
(initially set to 0) by one.

Finally, when Step 4 is completed the numbers in the counters have to be
divided by precomputed constants in order to obtain the true values of the
number of induced copies of respective siblings in the family. These constants
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depend on the automorphisms of respective siblings, and are equal to the number
of times each induced subgraph isomorphic to a sibling in the family respectively,
is counted in the algorithm.

As previously, if vq−1 and vq are not adjacent then the for loop in Step 4 is
run for pairs of not adjacent vertices of G instead of edges of G.

The time analysis is analogous to that in the proof of the first part with the
exception that N̄ has to be replaced by N∗ now. � 
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Fig. 2. An illustration of the crucial Step 4 in Algorithm 1.

Corollary 1. Let N ′ be the number of induced subgraphs of an n-vertex graph
G that are isomorphic to siblings of Kq in Ls(q). We can decide if G contains a
copy of Kq in O(CW (n, �n 1

q−2 �) + N ′) time.

Lemma 3. Let G be an n-vertex graph, let q be an integer not less than 4, and
let H1, ...,Hr be a complete sibling family in Ls(q). Suppose that for i = 1, ..., r
there are Ni induced subgraphs of G isomorphic to Hi in G. A Θ-approximation
of

∑r
i=1 Ni can be computed in O(nω) time.

Proof. Let G = (V,E). We may assume without loss of generality that the vertex
set of H1, ...,Hr consists of vertices v1, ..., vq, where v1, ..., vq−2 have the same
neighborhoods in {vq−1, vq} in H1, ...,Hr. Suppose first that vq−1 and vq are
adjacent in H1, ...,Hr, i.e., H1, ...,Hr are in L+

s (q). Define the matrices A1 and
A2 as in the proof of Theorem1. Treat them as 0 − 1 arithmetic matrices and
compute their arithmetic product C. Then, we obtain the following equation:

Θ(
r∑

i=1

Ni) =
∑

{i,j}∈E&C[i,j]>q−3

(
C[i, j]
q − 2

)

since the right-hand side is equal to
∑r

i=1 αiNi, where for i = 1, ..., r, αi are the
constants depending on the automorphisms of Hi equal to the number of times
each induced subgraph isomorphic to Hi is counted on the right-hand side. If
vq−1 and vq are not adjacent in H1, ....,Hr, i.e., H1, ...,Hr are in L−

s (q), then we
obtain an analogous equation by just replacing {i, j} ∈ E with {i, j} /∈ E in the
summation. It remains to observe that the computation of C takes O(nω) time.

� 
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Corollary 2. Let Nf be the minimum number of induced subgraphs in G iso-
morphic to a pattern graph in a sibling family over all families of mutual siblings
in Ls(q) that contain a pattern graph H such that the number of induced copies
of H in G cannot be obtained from a linear combination of the equations in
SEq(G, q, q − 2) (see Appendix). If Nf is well defined then we can compute for
all pattern graphs H on q vertices the number of induced subgraph isomorphic to
H in G in time O(nω(�(q−2)/2�,1,�(q−2)/2�) + CW (n, 
n 1

q−2 �) + Nf ).

Proof. First, we check each sibling family in Ls(q) for a containment of a sibling
for which the number of induced copies in G cannot be obtained from a linear
combination of the equations in SEq(G, q, q − 2). It follows from Remark 1 that
to sieve out appropriate siblings families in Ls(q), it is sufficient to perform the
following algebraic test for each sibling in each sibling family Ls(q): Remove
from the matrix of the left sides of the equations the column corresponding to
the sibling and check the resulting matrix has a non-zero determinant. Since q
is fixed, we have O(1) linear equations whose coefficients on the left side are
nonnegative integers of size O(1) [11]. Hence, the aforementioned determinant
can be computed in O(1) time. Since q = O(1), the cardinality of Ls(q) is also
O(1). Consequently, the total time taken by the checking is O(1) provided the
equations are given. The latter can be formed in O(nω(�(q−2)/2�,1,�(q−2)/2�) time
[11].

If there is at least one sibling family in Ls(q) satisfying the aforementioned
requirement then we proceed as follows. First, we compute the approximations
of the sums of the numbers of induced copies for all such sibling families in Ls(q)
by using Lemma 3 in order to select such a sibling family with the lowest value of
the approximation. Then, we apply the method of Theorem1 just to this family.

�	

3.1 Siblings on Four Vertices

A complete sibling family in Ls(4) is just a pair of siblings. Fact 2 yields the upper
bound O(n2.75) on CW (n,

√
n). Hence, we obtain the following corollaries from

the results of the preceding section and the aforementioned fact. In particular,
Theorem 1 yields the following corollary.

Corollary 3. Let G be an n-vertex graph. Consider two sibling graphs H1 and
H2 in Ls(4). Suppose that for i = 1, 2 there are Ni induced subgraphs of G
isomorphic to Hi. For i = 1, 2, there is a deterministic algorithm for detecting
an induced subgraph of G isomorphic to Hi that runs in O(n2.75 + N3−i) time.
There is also a deterministic algorithm for computing N1 and N2 that runs in
O(n2.75 + N1 + N2) time.

Lemma 2 and Corollaries 3 yield the following “comfort” corollary showing that
for at least one in a pair of siblings one can subsume a known upper bound on
detection or counting.

Corollary 4. Let H1, H2 be a pair of siblings in Ls(4), and let G be a graph
on n vertices. Then at least one of the following statements holds:
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1. One can determine the number of induced copies of H1 in G as well as that
of H2 in G deterministically in O(n2.75)-time.

2. Induced copies of each of the siblings occur in G and one can find their rep-
resentatives in O(n2 ln n) randomized time with high probability by sampling.

3. Induced copies of at least one of the siblings occur in G and one can find
their representatives in O(n2.75) deterministic time and O(n2) randomized
time with high probability by sampling.

Proof. If there are O(n2.75) induced copies of each of the siblings in G
then the first statement holds by the second part of Corollary 3. If there
are Ω(n2.75) induced copies of each of the siblings in G then the sec-
ond statement holds by Lemma 2 and O(C(n1−2.75/4 ln4−1

n, 4) + n2) ln n) ≤
O((n3.257(1−2.75/4) ln3.25/4 n + n2) ln n) ≤ O(n2 ln n). Finally, if one of the sib-
lings Hi has Ω(n2.75) induced copies in G while the other has only O(n2.75)
induced copies in G then one can find deterministically an induced copy of Hi

in G in O(n2.75) time by the first part of Corollary 3 and one can find such a
copy in O(n2) randomized time with high probability by sampling according to
Lemma 2. �	

Corollary 3 also yields the following corollary.

Corollary 5. Let Nd be the number of induced subgraphs of an n-vertex graph
G that are isomorphic to K4 \ e. We can decide if G contains a copy of K4 as
well as if G contains an induced copy of C4 in O(n2.75 + Nd) time.

To obtain the last corollary we specialize the proof of Corollary 2 using Fact 3
instead of Lemma 1.

Corollary 6. Let N be the minimum number of induced subgraphs in G isomor-
phic to a pattern graph in a pair of siblings over all pairs of siblings in Ls(4).
We can compute for all pattern graphs H on four vertices the number of induced
subgraph isomorphic to H in O(n2.75 + N) time.

4 Final Remark

By the “comfort” corollary (Corollary 4), the only case that we cannot get a
speed-up for detecting a sibling H1 ∈ Ls(4) in the host graph G occurs if the
induced copies of H1 in G are relatively rare and on the contrary the induced
copies of its sibling H2 in G are frequent. But then, we can detect at least H2

faster by sampling.
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Appendix: Proof of Lemma 1

Notation

A set of single representatives of all isomorphism classes for graphs on k vertices
is denoted by Hk while its subset consisting of graphs having an independent
set on at least k − l ≥ 1 vertices is denoted by Hk(l).

Let H be a graph on k vertices and let Hsub be an induced subgraph of H
on l vertices such that the k − l vertices in H \ Hsub form an independent set.
Consider the family of all supergraphs H ′ of H (including H) in Hk such that
H ′ has the same vertex set as H, Hsub is also an induced subgraph of H ′, and
the set of edges between Hsub and H ′ \ Hsub is the same as that between Hsub

and H \ Hsub. This family is denoted by Hk(Hsub,H), and its intersection with
Hk is denoted by SHk(Hsub,H).

For a graph H ∈ Hk and a host graph G on at least k vertices, the number of
sets of k vertices in G that induce a subgraph of G isomorphic to H is denoted
by NI(H,G).

For H ∈ Hk(l), the set Eq(H, l) consists of the following equations in one-
to-one correspondence with induced subgraphs Hsub of H on l vertices

∑

H′∈SHk(Hsub,H)

B(Hsub,H
′)xH′,G =

∑

H′∈SHk(Hsub,H)

B(Hsub,H
′)NI(H ′, G),

where H\Hsub is an independent set in H, and B(Hsub,H
′) are easily computable

coefficients. For our purposes, we need to define the coefficients only when H ∈
Hk(k−2), H\Hsub consists of two independent vertices and H ′ ∈ SHk(Hsub,H).
Then, the coefficient B(Hsub,H

′) is just the number of automorphisms of H ′

divided by the number of automorphisms of H ′ that are identity on Hsub by
Lemma 3.6 in [11]. By Lemma 3.5 in [11], for H ∈ Hk(l), the right-hand side
of an equation in Eq(H, l) can be evaluated in time O(nl(k − l) + Tl(n)), where
Tl(n) stands for the time required to solve the so called l-neighborhood problem.
By Theorem 6.1 in [11], Tl(n) = O(nω(�(k−l)/2�,1,�(k−l)/2�).

By SEq(G, k, l), we shall denote the system of equations obtained by picking,
for each H in Hk(l), an arbitrary equation from Eq(H, l). By Lemma 3.7 in [11],
the resulting system of |Hk(l)| equations is linearly independent.

4.1 Proof

Consider Theorem 4.1 in [11] with fixed k = q, l = q − 2, and
O(nω(�(q−2)/2�,1,�(q−2)/2�) substituted for Tq−2(n) according to Theorem 6.1 in
[11]. Then, the theorem states that if for all H ∈ Hq−2 \ Hq−2(q − 2) the
values NI(H,G) are known then for all H ′ ∈ Hq−2, the numbers NI(H ′, G)
and N(H ′, G) can be determined in time O(nω(�(q−2)/2�,1,�(q−2)/2�). Since
Hq \ Hq(q − 2) = {Kq}, it follows directly from Theorem 4.1 in [11] that if
the number of (induced) subgraphs isomorphic to Kq in the host graph is known
then for all the pattern graphs on q vertices the corresponding numbers can
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be computed in the time specified in the lemma statement. The argumentation
given in the proof of Theorem 4.1 in [11] works equally well when the number
of induced copies of an arbitrary pattern graph H on q vertices is known.

Namely, following the proof of Theorem 4.1 in [11] with k = q and l = q−2, we
form SEq(G, q, q−2). Since we assume that q is fixed, the coefficients B(Hsub,H

′)
on the left-sides of the equations in SEq(G, q, q − 2) can be computed in O(1)
time. By Lemma 3.5 and Theorem 6.1 in [11], the right-sides of the equations
can be computed in time O(nω(�(q−2)/2�,1,�(q−2)/2�). Let us the graphs in Hk

so that the number of edges is non-decreasing and the graphs in Hk(l) form a
prefix of the sorted sequence. Let B be the |Hk(l)| × |Hk| matrix corresponding
to the left-hand sides of the equations in SEq(G, q, q − 2), with the rows of
B corresponding to H ∈ Hk(q − 2) and the columns of B corresponding to
H ′ ∈ Hq sorted in the aforementioned way. Consider the leftmost maximal square
submatrix M of the matrix B. Since M has zeros below the diagonal starting
from the leftmost top-left corner, we infer that the resulting |Hq(q−2)| equations
with |Hq| unknowns are also linearly independent. Hence, when we substitute
the known number of induced copies of H for the variable xH,G corresponding
to H in the equations, we obtain a system S of |Hq(q − 2)| equations with
|Hq| − 1 unknowns. Since Hq \ Hq(q − 2) = {Kq}, the number of unknowns is
equal to the number of equations. It follows from Remark 1 that the system S
of equations resulting from the substitution is independent. Also, none of the
resulting equations can disappear after the substitution. Hence, we can solve
them in O(|Hq(q − 2)|3) = O(1) time. �	
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Abstract. An order-k univariate B-spline is a parametric curve defined
over a set S of at least k + 2 real parameters, called knots. Such a B-
spline can be obtained as a linear combination of basic B-splines, each of
them being defined over a subset of k + 2 consecutive knots of S, called
a configuration of S.

In the bivariate setting, knots are pairs of reals and basic B-splines are
defined over configurations of k + 3 knots. Among these configurations,
the Delaunay configurations introduced by Neamtu in 2001 gave rise to
the first bivariate B-splines that retain the fundamental properties of
univariate B-splines. An order-k Delaunay configuration is characterized
by a circle that passes through three knots and contains k knots in its
interior.

In order to construct a wider variety of bivariate B-splines satisfying
the same fundamental properties, Liu and Snoeyink proposed, in 2007,
an algorithm to generate configurations. Even if experimental results
indicate that their algorithm generates indeed valid configurations, they
only succeeded in proving it up to k = 3. Until now, no proof has been
given for greater k.

In this paper we first show that, if we replace the circles in Neamtu’s
definition by maximal families of convex pseudo-circles, then we obtain
configurations that satisfy the same fundamental properties as Delau-
nay configurations. We then prove that these configurations are precisely
the ones generated by the algorithm of Liu and Snoeyink, establishing
thereby the validity of their algorithm for all k.

Keywords: B-spline · Simplex spline · Convex pseudo-circles

1 Introduction

B-splines have been introduced by Schoenberg as extensions of the Bernstein
polynomials that appear in Bézier curves. Both Bézier curves and B-splines have
been extensively used in the context of curve modeling.

Given a set S of reals, called knots in spline theory, and an integer k ≥ 0,
an order-k (univariate) B-spline over S is a linear combination of order-k basic
B-splines, each of them being defined over a subset of k +2 consecutive knots of
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t0 t1 t2 t3 t4 t5 t6

Fig. 1. Order-2 basic B-splines defined over subsets of 4 consecutive knots of the set
S = {t0, . . . , t6}.

S (see Fig. 1). The set of these basic B-splines spans an order-k B-spline space
defined over S.

In order to define multivariate B-splines over a set S of knots in IRd, notably
if one wants to represent d-variate surfaces, one needs to extend both the defini-
tion of basic B-spline and the notion of “subset of consecutive knots of S”, also
called configurations of S. Different such generalizations have been proposed but
Neamtu observed in 2001 that none preserves all fundamental properties of uni-
variate B-splines [16]. One of these properties, called the polynomial reproduction
property, states that the univariate B-spline space contains all degree-k polyno-
mials. A spline space that does not satisfy this property cannot have optimal
approximation properties [6,9]. Therefore, Neamtu proposed a new extension of
univariate B-splines that satisfies this fundamental property [17]. First, basic
B-splines are generalized using the simplex splines introduced by de Boor [5],
where an order-k simplex spline is defined over a subset of k + d + 1 knots. Sec-
ond, the configurations of k + d + 1 knots of S that are selected, are those for
which there exists a sphere passing through d+1 of the knots, the other k knots
being inside the sphere, and the remaining knots of S being outside the sphere.
Applications using these configurations can be found for example in [7,12].

In this paper, we propose a more general method to select configurations in
the case d = 2, in that we replace circles by maximal families of convex pseudo-
circles. Recall that a family of convex pseudo-circles is a set of convex Jordan
curves that pairwise intersect at most twice. We show that any set of configu-
rations defined by such a family, and which is maximal for inclusion, generates
the basis of a bivariate spline space that satisfies the polynomial reproduction
property.

In 2007, Liu and Snoeyink already pointed out that the generalization of
Neamtu, while elegant, is restrictive in the types of splines that can be gen-
erated [14]. They proposed an algorithmic method to generate more general
configurations in the case d = 2. They proved that their algorithm effectively
constructs valid configurations up to k = 3. Even if experimental results indicate
that the algorithm always works, this has never been proven in the general case
(see in [11] a proof for some particular cases). Nevertheless, the configurations
constructed by their algorithm appear to be efficient to represent surfaces with
sharp features [13,20].
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In this paper we prove that the configurations constructed by the algorithm
of Liu and Snoeyink are precisely the ones defined here with maximal families
of convex pseudo-circles. This proves that the algorithm always works.

2 B-Splines and Configurations

2.1 Notations

For a subset E of the plane IR2, conv(E) denotes its convex hull, ∂E its boundary,
E its closure, and relint(E) its relative interior, i.e., its interior in the subspace
of IR2 spanned by E.

If a and b are two distinct points in the plane, (ab) is the oriented straight
line from a to b, [a, b] is the closed segment connecting a and b, and ]a, b[ is the
open segment. For any oriented straight line �, �+ and �− denote the open half
planes respectively on the left and on the right of �.

For a Jordan curve γ, disk(γ) denotes the bounded open component of IR2\γ.
Unless otherwise stated, we consider S to be a finite set of n > 2 points in

the plane, no three of them being collinear.

2.2 Basic B-Splines and Simplex Splines

Given a non-negative integer k and a sequence t0 < t1 < t2 . . . < tk+1 of k + 2
reals, called knots, the order-k B-spline over t0, . . . , tk+1 can be defined for any
x ∈ IR using the following variant of the Cox-de Boor recurrence formula. When
k = 0, let

B(x|t0, t1) =

{
1

t1−t0
if t0 ≤ x < t1

0 otherwise.

When k > 0, let λx = x−t0
tk+1−t0

and 1−λx = tk+1−x
tk+1−t0

be the barycentric coordinates
of x with respect to t0 and tk+1, and let

B(x|t0, . . . , tk+1) = λxB(x|t0, . . . , tk) + (1 − λx)B(x|t1, . . . , tk+1). (1)

This definition extends to higher dimension using the recurrence formula of
Micchelli [15]. Let k be a non-negative integer and let T be a set of k+3 knots in
the plane IR2, not all collinear. For any point x ∈ IR2, let {λt,x : t ∈ T} be a set
of reals such that

∑
t∈T λt,xt = x and

∑
t∈T λt,x = 1, i.e., the λt,x are barycentric

coordinates of x with respect to the knots t ∈ T . Denoting by area(conv(T )) the
area of the convex hull of T , the order-k bivariate simplex spline over T satisfies
the following relations at every point x ∈ IR2:

M(x|T ) =

{
1

area(conv(T )) if x ∈ conv(T )

0 otherwise
when |T | = 3

M(x|T ) =
∑
t∈T

λt,xM(x|T \ {t}) when |T | > 3.
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Since this definition leaves some freedom in the choice of the reals λt,x when
|T | > 3, we can select any subset Q of three non-collinear knots in T and set
λt,x to zero for all knots t in P = T \ Q. The non-zero λt,x are then the unique
barycentric coordinates of x with respect to Q satisfying

∑
q∈Q λq,xq = x and∑

q∈Q λq,x = 1. Hence, for |T | > 3,

M(x|T ) = M(x|P ∪ Q) =
∑
q∈Q

λq,xM(x|P ∪ (Q \ {q})). (2)

2.3 Valid Configurations

Given a set S of more than k+3 points in the plane, an order-k bivariate B-spline
over S is a linear combination of simplex splines defined over subsets of k + 3
points of S. Thus, we need a method to select subsets T of k + 3 points of S,
such that the simplex splines defined over these subsets span a bivariate spline
space over S. From (2), this comes actually to select pairs (P,Q) of subsets of
S such that P ∩ Q = ∅, |Q| = 3, and |P | = k. Such a pair (P,Q) is called an
order-k configuration of S or, for short, a k-configuration of S. Furthermore, if
the circle γ circumscribed to Q is such that γ ∩ S = Q and disk(γ) ∩ S = P ,
(P,Q) is also called a Delaunay k-configuration of S.

A family of k-configurations of S is said to be valid, if the spline space that
it spans satisfies the polynomial reproduction property, i.e., the spline space
contains all degree-k polynomials. In [17], Neamtu proved that the family of
Delaunay k-configurations is valid. To avoid technical details, he proved this
result in the case where the set S is infinite and locally finite, i.e., when conv(S) =
IR2 and the intersection of S with any ball of IR2 is finite. Furthermore, S was
supposed to be in general position to ensure that no three points in S are collinear
and no four points are cocircular. In order to show that every polynomial can be
written as a linear combination of simplex splines whose knot-sets are Delaunay
configurations, Neamtu used the polar form of the polynomial. Given a degree
k polynomial function f of a variable x ∈ IR2, the polar form of f is the unique
function F of k variables x1, . . . , xk ∈ IR2 that satisfies the following properties:

– F is symmetric, i.e., if σ is a permutation of (x1, . . . , xk), F (x1, . . . , xk) =
F (σ(x1, . . . , xk)),

– F is multi-affine, i.e., ∀i ∈ {1, . . . , k}, F is linear in xi when x1, . . . , xi−1,
xi+1, . . . , xk are fixed,

– F (x1, . . . , xk) = f(x) when x1 = x2 = . . . = xk = x.

For example, the polar form of f(x) = ax2 + bx + c is F (x1, x2) = ax1x2 +
bx1
2 + bx2

2 + c. Theorem 1 states Neamtu’s result.

Theorem 1. Let Δk be the family of Delaunay k-configurations of a set S of
points in IR2 that is infinite, locally finite, and in general position. For every
degree k polynomial f with polar form F ,

f(x) =
∑

(P,Q)∈Δk

F (P ) area(conv(Q))M(x|P ∪ Q), x ∈ IR2.
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In [14], Liu and Snoeyink observed that the proof of this theorem uses only
two properties of Delaunay configurations.

The first one, is that the family Δ0 of Delaunay 0-configurations induces a
triangulation of S, in the sense that the triangles {conv(Q) : (∅, Q) ∈ Δ0} form
a triangulation of S. In fact, it is the well known Delaunay triangulation of S.

The second property used, is the edge matching property. The edges of a
configuration (P,Q) are all the pairs (P,Q \ {r}) and (P ∪ {r}, Q \ {r}) with
r ∈ Q. The edge matching property states that:

– Every edge (P, {s, t}) of a Delaunay i-configuration, i ∈ {0, . . . , k}, is the
common edge of precisely two Delaunay configurations. These configurations
are of the form (P \{r}, {r, s, t}) and (P \{r′}, {r′, s, t}), with r, r′ two distinct
points of S \{s, t}. Each configuration is either of order |P | or of order |P |−1,
depending on whether r, r′ belong to P or not.

– The two configurations are of distinct orders if and only if r and r′ are on the
same side of (st).

Since the next section will be based on enumeration results stated in [8] for
finite point sets, we first need to check how the above results apply when S is
finite. First, the property that Delaunay 0-configurations induce a triangulation
of S obviously holds when S is finite. Secondly, the edge matching property
holds for Delaunay configuration edges that are not too close to the boundary
of conv(S). More precisely, one can check that the edges that do not satisfy the
property are those of the form (P, {s, t}) with P and S \P on both sides of (st).
When |P | ∈ {0, . . . , k}, these are the edges (P, {s, t}) such that |(st)− ∩ S| ≤ k
(or, symmetrically, |(st)+∩S| ≤ k, since {s, t} is not ordered). When these edges
are the only edges of a family of configurations where the general edge matching
property is not satisfied, we say that the considered family of configurations
verifies the finite edge matching property.

If a family of configurations satisfies the finite edge matching property, it
is not hard to prove that the relation given by Theorem1 still holds, provided
that the domain of definition of f is restricted to the depth-k region of S. The
depth-k region of S is the intersection of all half-planes (st)+, s, t ∈ S, such that
|(st)− ∩ S| ≤ k. Properties of such regions can be found, for example, in [1].
Hence, we can restate the result of Liu and Snoeyink in the finite case.

Theorem 2. Let S be a finite set of points in the plane, no three of them
being collinear. Let {Δ0, . . . ,Δk} be a set of families of configurations of S of
order 0, . . . , k that satisfies the finite edge matching property and is such that Δ0

induces a triangulation of S. For every degree k polynomial f with polar form F
and for every point x in the depth-k region of S, we have

f(x) =
∑

(P,Q)∈Δk

F (P ) area(conv(Q))M(x|P ∪ Q).

We will say that a family of k-configurations of S is valid (in the finite setting)
when the spline space that it spans verifies the polynomial reproduction property
over the subset of the plane restricted to the depth-k region of S.
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From Theorem 2, a family Δk of k-configurations of S is valid if there exist
families of configurations Δ0, . . . ,Δk−1 of order 0, . . . , k−1 such that Δ0 induces
a triangulation of S and the set {Δ0, . . . ,Δk} satisfies the finite edge matching
property.

3 Convex Pseudo-circle Configurations

Let us come back to the recurrence relations (1) and (2), which respectively
define univariate basic B-splines and bivariate simplex splines. In (1), the knots
t0, . . . , tk+1 are supposed to be consecutive in the whole sequence of knots, i.e.,
they form an interval that contains no other knot. Furthermore, t0 and tk+1 are
the endpoints of this interval. Thus, relation (2) becomes a natural generalization
of (1) if we chose for T = P ∪Q a subset of points of S whose convex hull contains
no other point of S, and such that the points of Q are extreme points of T .

Let us introduce the following more general definitions.

Definition 1. (i) A subset T of S is called a convex subset of S if conv(T )∩S =
T .

(ii) An ordered pair (P,Q) of subsets of S is called a convex pair of S, if P and
Q are disjoint, conv(P ∪ Q) ∩ S = P ∪ Q, and Q is a subset of the extreme
points of P ∪ Q.

(iii) When |Q| = 3 and |P | = k, the convex pair (P,Q) is also called a convex
k-configuration of S.

As defined in the previous section, Delaunay configurations are particular
convex configurations (P,Q), in which the circle γ circumscribed to Q satisfies
disk(γ) ∩ S = P . Furthermore, the family of Delaunay k-configurations is valid.
Our aim now is to find other sub-families of convex configurations that are valid.

Notice first that, for any convex pair (P,Q), there exists a convex Jordan
curve γ such that γ ∩ S = Q and disk(γ) ∩ S = P . The curve γ is called a
separating curve of (P,Q) in S. Conversely, every pair (P,Q) of subsets of S for
which there exists such a convex Jordan curve, is a convex pair of S.

Convex subsets are particular cases of convex pairs: T is a convex subset if
and only if (T, ∅) is a convex pair. Furthermore, a convex subset T is strictly
separable from S \ T by a convex Jordan curve.

Definition 2. (i) Two convex subsets T and T ′ of S are said to be compatible
if conv(T \ T ′) ∩ conv(T ′ \ T ) = ∅.

(ii) Two distinct convex pairs (P,Q) and (P ′, Q′) of S are said to be compatible
if relint(conv((P ∪ Q) \ P ′)) ∩ relint(conv((P ′ ∪ Q′) \ P )) = ∅.

The only common points of (P ∪Q)\P ′ and of (P ′∪Q′)\P being the points of
Q∩Q′, the relative interiors in (ii) can be removed when Q∩Q′ = ∅. This notably
implies that (T, ∅) is compatible with (T ′, ∅) if and only if T is compatible with
T ′. More generally, we will say that a convex subset T is compatible with a
convex pair (P,Q) if the convex pair (T, ∅) is compatible with (P,Q).
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Because circles intersect in at most two points, it is easy to see that Delau-
nay configurations are compatible. Conversely, Proposition 1 below shows that
compatibility between convex configurations can be stated in terms of convex
pseudo-circle separation. Recall that a family C of convex Jordan curves is said
to form a family of convex pseudo-circles, if any two curves in C either intersect
properly at exactly two points, meet at exactly one point, or do not meet at all.
Proposition 1 extends to convex pairs a result given in [8] for convex subsets (see
also Fig. 2).

Proposition 1. The elements of a family G of convex pairs of S are pairwise
compatible if and only if there exists a family C of convex pseudo-circles such
that every element in G admits a separating curve in C.

Fig. 2. (a) If two convex pairs (P, Q) and (P ′, Q′) admit two separating curves γ and
γ′ that properly intersect in two points, then the subsets (P ∪Q)\P ′ and (P ′ ∪Q′)\P
are on both sides of (or on) the straight line l containing γ ∩ γ′. The points of these
subsets that are on l are the points of Q ∩ Q′. The set P ∩ P ′ is in the open area
disk(γ) ∩ disk(γ′). (b) The relative interiors are necessary in Definition 2 (ii) to ensure
that the pairs (∅, {a, b, c}) and (∅, {a, b}) are considered to be compatible.

The “only if part” of Proposition 1 is not trivial. It states that one only
needs to consider the elements in G two by two, and to find two separating
convex pseudo-circles for these two elements, to conclude that there exists one
family C of convex pseudo-circles that are separating curves for all elements in
G.

Propositions 2 and 3 below come also from [8], and state inclusion relations
between convex pairs.

Definition 3. Let (P,Q) be a convex pair of S.

(i) Every subset T of S such that P ⊆ T ⊆ P ∪ Q is called a subset of (P,Q).
(ii) Every pair (P ′, Q′) such that P ′ ∩ Q′ = ∅ and P ⊆ P ′ ⊆ P ′ ∪ Q′ ⊆ P ∪ Q

is called a sub-pair of (P,Q).

Clearly, T is a subset of (P,Q) if and only if (T, ∅) is a sub-pair of (P,Q).

Proposition 2. (i) If (P,Q) is a convex pair of S then every sub-pair (P ′, Q′)
of (P,Q) is also a convex pair of S.
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(ii) Furthermore, if |Q| ≤ 3 every sub-pair (P ′, Q′) of (P,Q) distinct from
(P,Q) is compatible with (P,Q) and with every convex pair that is com-
patible with (P,Q).

(iii) Two distinct convex pairs (P,Q) and (P ′, Q′) are compatible if and only if
the subsets of (P,Q) are compatible with the subsets of (P ′, Q′).

Proposition 3. Given a family F of compatible convex subsets of S, for every
convex pair (P, {s, t}) of S compatible with F such that (st)− ∩ S 
= P , there
exists a point r ∈ (P ∩ (st)+) ∪ ((S \ P ) ∩ (st)−) such that (P \ {r}, {r, s, t}) is
a convex pair of S compatible with F .

This result is closely related to the finite edge matching property. Indeed,
if Δk is a family of compatible convex k-configurations of S that is maximal
for inclusion then, from Proposition 2, the subsets of the elements in Δk are
compatible with each others. Thus, we can construct a maximal family F of
compatible convex subsets of S that contains these subsets. We can also construct
the families Δ0, . . . ,Δk−1 of all convex configurations of S of order 0, . . . , k − 1
that are compatible with F . Using Propositions 2 (ii) and 3, we can then prove
that {Δ0, . . . ,Δk} satisfies the finite edge matching property.

Furthermore, Δ0 induces a triangulation of S (see Fig. 3). Indeed, from Def-
inition 1, every element of Δ0 is a pair of the form (∅, {q, s, t}) and the triangle
qst meets no point of S \ {q, s, t}). From Proposition 2 (iii), if (∅, {q′, s′, t′}) is
another pair in Δ0, it is compatible with (∅, {q, s, t}), i.e., from Definition 2, the
triangles qst and q′s′t′ have disjoint interiors. Consider now an edge of such a
triangle, for example the edge [s, t] of rst. Without loss of generality, we can
suppose that q ∈ (st)+. From Proposition 2 (ii), (∅, {s, t}) is a convex pair of S
compatible with F . From Proposition 3, if (st)− ∩ S 
= ∅, there exists r ∈ (st)−

such that (∅, {r, s, t}) is a convex 0-configuration of S compatible with F . This
means that, if [s, t] is not an edge of conv(S), it is a common edge of two triangles
induced by Δ0. By induction, the set of these triangles triangulates S.

1

5

6

7

4

3

2

Fig. 3. The convex 3-subsets {1, 7, 2}, {1, 6, 7}, {1, 5, 6}, {2, 7, 3}, {3, 7, 4}, {4, 7, 6},
and {4, 6, 5} of the point set S = {1, . . . , 7} are pairwise compatible. If they all belong
to a same maximal family F of compatible convex subsets of S, then the family Δ0 of
convex 0-configurations of S compatible with F induces the represented triangulation,
no matter which other convex subsets are in F . Notice that by a result of [8], F contains
precisely

(
7
0

)
+

(
7
1

)
+

(
7
2

)
+

(
7
3

)
= 64 elements.
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The following theorem is an immediate consequence of the above results and
of Theorem 2.

Theorem 3. Every family Δk of compatible convex k-configurations of S that
is maximal for inclusion is valid.

4 Generation of Valid Configurations

Consider a family Δk of (arbitrary) k-configurations of S, and a (k + 1)-subset
T of S for which there exists a pair (P, {r, s, t}) in Δk with P ∪ {r} = T . The
subset T is called a vertex of (P, {r, s, t}), and is also called a vertex of Δk. The
segment [s, t] oriented such that r ∈ (st)+ is called the link of T in the pair
(P, {r, s, t}). The link of T in Δk is the set of links of T in all pairs of Δk from
which T is a vertex.

Take, for example, a family Δ0 of 0-configurations of S that induces a tri-
angulation T of S. Every vertex t of Δ0 is a vertex of T . The link of t in Δ0 is
the polyline that links together, in counterclockwise order, the neighbors of t in
T . The polyline is open when t is a vertex of ∂conv(S), and is closed otherwise.
In Fig. 3, the link of 7 is the oriented closed polyline (1, 6, 4, 3, 2) and the link of
1 is the oriented open polyline (5, 6, 7, 2). Figure 4 gives examples of links in a
family of 1-configurations of the same point set.

1

5 6

7

4

3

2

Fig. 4. One can check that the nine convex 1-configurations ({1}, {7, 5, 6}),
({2}, {1, 7, 3}), ({3}, {2, 7, 4}), ({4}, {7, 6, 3}), ({6}, {4, 7, 5}), ({6}, {1, 5, 7}),
({7}, {4, 3, 2}), ({7}, {4, 2, 1}), and ({7}, {4, 1, 6}) form a family Δ1 of compati-
ble convex 1-configurations of S = {1, . . . , 7}. The dotted polygon is the link of {4, 7}
in Δ1 and the full polyline oriented from 5 to 2 is the link of {1, 7} in Δ1.

Algorithm 1 below, due to Liu and Snoeyink [14], uses links to generate a
family of (k + 1)-configurations, starting from a family of k-configurations. The
algorithm is described in the case of infinite and locally finite point sets. Accord-
ing to its authors, the algorithm is well-defined when every link L, not reduced
to a segment, forms a simple polygon. Furthermore, they proved that, if Δk

is a valid family of k-configurations whose links satisfy this property, then the
generated set Δk+1 is also a valid family of (k + 1)-configurations.

In order to apply Algorithm1 to families of convex configurations of finite
point sets, we need to characterize links in such families. For that, we first recall
the definitions of a k-set polygon and of a centroid triangle.
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Algorithm 1. To apply to a family Δk of k-configurations
initialize Δk+1 to an empty set
for every vertex T of Δk do

let L be the link of T in Δk

if L is not reduced to a segment (or to overlapping segments) then
compute a constrained triangulation of L
for every triangle conv(Q) of this triangulation do

add the pair (T, Q) to Δk+1

return Δk+1

Definition 4. (i) A subset T of k points of S is called a k-set of S if T can be
strictly separated from S \ T by a straight line.

(ii) The k-set polygon of S, denoted by Qk(S), is the convex hull of the centroids
of all k-point subsets of S.

Notice that Q1(S) is simply the convex hull of S and that the 1-sets of S
are the vertices of this convex hull. The following characterization of the vertices
and edges of Qk(S) for all k is due to Andrzejak, Fukuda, and Welzl [2,3].

Proposition 4. (i) If T is a k-set of S, then the centroid g(T ) of T is a vertex
of Qk(S). The centroid of any other k-point subset of S belongs to the interior
of Qk(S).

(ii) Let T and T ′ be two k-sets of S. The centroid g(T ) is the predecessor of the
centroid g(T ′) in counterclockwise order on ∂Qk(S) if and only if there exist
s, t ∈ S such that, setting P = (st)− ∩S, one has |P | = k − 1, T = P ∪{s},
and T ′ = P ∪ {t}.

Definition 5. (i) For every convex configuration (P, {r, s, t}), the triangle whose
vertices are the centroids g(P ∪{r}), g(P ∪{s}), g(P ∪{t}) is called the type-
1 centroid triangle associated with (P, {r, s, t}). The triangle whose vertices
are the centroids g(P ∪ {r, s}), g(P ∪ {s, t}), g(P ∪ {r, t}) is called the type-2
centroid triangle associated with (P, {r, s, t}).

(ii) For every convex pair (P, {s, t}) of S, the line segment [g(P∪{s}), g(P∪{t})]
is called the centroid segment associated with (P, {s, t}).

Centroid triangles have already been used in the literature with different
kinds of configurations, as well in the plane [4,14,18], as in space [3,10,19]. In
case of convex configurations, they satisfy the properties stated in Theorem4,
which were already proved in [8]. These properties generalize the fact that any
maximal family of 0-configurations induces a triangulation of S.

Theorem 4. Let F be a maximal family of compatible convex subsets of S and,
for every i ∈ {0, . . . , n − 3}, let Δi be the family of convex i-configurations of S
compatible with F . Set Δ−1 = Δn−2 = ∅ and let k ∈ {0, . . . , n − 2}.
(i) The type-1 centroid triangles associated with the configurations in Δk and

the type-2 centroid triangles associated with the configurations in Δk−1 have
pairwise disjoint interiors and form a triangulation Tk+1 of the (k + 1)-set
polygon of S (see Fig. 5).
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(ii) The centroids of the elements in F of size k +1 are pairwise distinct points
and are the vertices of Tk+1.

(iii) The open centroid segments associated with the convex pairs (P, {s, t}) of S
compatible with F and such that |P | = k, are pairwise disjoint and are the
edges of Tk+1.

The triangulation Tk+1 defined by this theorem is called the order-(k + 1)
centroid triangulation of S associated with F .

1

({1,6,7},{2,5})

({2,3,4},{6,7})

({4,6,7},{2,3,5})

({2,7},{3,4,6})g({2,5,6,7})

g({1,5,6,7})
5

6

7

4

3

2

Fig. 5. A triangulation T4 of the 4-set polygon of the set S = {1, . . . , 7}. The type-1
centroid triangles (in white) are associated with convex 3-configurations of S and the
type-2 centroid triangles (in grey) are associated with convex 2-configurations of S.
The type-2 centroid triangles form convex clusters called domains.

By definition, a (k + 1)-point subset T of S is a vertex of a convex k-
configuration (P, {r, s, t}) of S if, within a permutation of r, s, t, T is equal to
P ∪ {r}, i.e., g(T ) is a vertex of the type-1 centroid triangle associated with
(P, {r, s, t}). Furthermore, the link [s, t] of T in (P, {r, s, t}) is the image of the
edge [g(P ∪ {s}), g(P ∪ {t})] of this triangle by the homothety of center g(P )
and ratio k + 1.

Let now Δk be a maximal family of compatible convex k-configurations of
S, and let us characterize the links of the vertices of Δk. As in Sect. 3, we can
construct a maximal family F of compatible convex subsets of S that contains
all subsets of the configurations of Δk. Let Tk+1 be the order-(k + 1) centroid
triangulation of S associated with F . From above, determining the link of a
vertex T of Δk comes down to considering the set of type-1 centroid triangles
that have g(T ) as a vertex in the triangulation Tk+1, and to taking a homothetic
image of the edge opposite to g(T ) in each triangle (see Fig. 6). To prove that the
link of T forms a polyline, it suffices to prove that, for any two consecutive type-1
centroid triangles around g(T ), the two links determined by these triangles share
a common endpoint. Now, when two type-1 centroid triangles are consecutive
around g(T ), either they share a common edge, or they are separated from one
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g({1,7})

g({4,7})

1

5

6

7

4

3

2

Fig. 6. An order-1 centroid triangulation T1 (thin dashed lines) and an order-2 centroid
triangulation T2 (thin full lines) associated with a maximal family F of compatible
convex subsets of S = {1, . . . , 7}. The four sick dashed segments are the edges opposite
to the vertex g({4, 7}) in the type-1 centroid triangles (white) around g({4, 7}) in T2.
They are homothetic images of the edges of the link of {4, 7} in the family Δ1 of convex
1-configurations compatible with F (see Fig. 4). In the same way, the three sick full
segments are the homothetic images of the edges of the link of {1, 7} in Δ1.

another by a sequence of type-2 centroid triangles with vertex g(T ). Let us give
some properties of such clusters of type-2 centroid triangles.

Definition 6. Given a (k + 2)-subset T of S, consider the set composed of the
type-2 centroid triangles in Tk+1 and of the centroid segments in Tk+1 that are
all associated with convex pairs of S of the form (P,Q) with P ∪ Q = T . If this
set is nonempty, it is called the domain of T in Tk+1.

From the definition of centroid triangles and edges (Definition 5), it is clear
that the edges of a type-2 centroid triangle of Tk+1 belong to the same domain
as the triangle. This implies that two type-2 centroid triangles of Tk+1 that
share a common edge belong also to the same domain. Hence, it is also the case
for every cluster of type-2 centroid triangles around any vertex of Tk+1. The
following stronger property of domains has been given in [8].

Proposition 5. Every domain in Tk+1 is either reduced to a line segment or
forms a triangulation of the vertices of a convex polygon.

Using this property, we can now characterize the links in maximal families
of convex configurations of a finite point set.

Theorem 5. Let Δk be a maximal family of compatible convex k-configurations
of S. Let T be a vertex of Δk and let L be the link of T .

(i) If T is not a (k + 1)-set of S, either L is reduced to two overlapping line
segments with opposite orientations, or L is a simple closed oriented poly-
line.
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(ii) If T is a (k + 1)-set of S, L is a simple open oriented polyline.

All that remains to be done to apply Algorithm1 to convex configurations
is to extend the notion of constrained triangulation to links that are not closed.
Given a simple oriented polyline L, closed or not, we call constrained triangu-
lation of L any triangulation of the vertices of L that admits every edge of L
as an edge, and that is restricted either to disk(L) when L is closed, or to the
subset of conv(L) on the left side of L when L is open.

If L is open, any constrained triangulation of L is the union of constrained
triangulations of simple closed polylines. The following lemma characterizes the
triangles of such triangulations, in the case where L is a link in a family of convex
configurations.

Lemma 1. Let T be a nonempty subset of S. Let L be a simple closed polyline
with at least three vertices, such that every vertex of L is in S \T and, for every
edge [u, v] of L, (T, {u, v}) is a convex pair of S. Let r, s, t be three distinct
vertices of L such that conv({r, s, t}) ⊂ disk(L).

(i) The pair (T, {r, s, t}) is a convex pair of S.
(ii) If (P,Q) is a convex pair of S such that T 
⊆ P and if (P,Q) is compatible

with every convex pair (T, {u, v}) of S such that [u, v] is an edge of L, then
(P,Q) is also compatible with (T, {r, s, t}).

Lemma 1 (i) shows that, when Algorithm 1 is applied to a family Δk of convex
k-configurations, then the pairs (T,Q) constructed while triangulating the link
of a vertex T of Δk, are convex configurations. Furthermore, from Definition 2,
these configurations are pairwise compatible. Lemma 1 (ii) shows that these con-
figurations are also compatible with the configurations of Δk. It also shows that,
if T ′ is a vertex of Δk distinct from T , then the constructed pairs (T ′, Q) are
compatible with (T,Q). Furthermore, it can be shown that the type-1 centroid
triangles associated with Δk and the type-2 centroid triangles associated with
Δk+1 form a triangulation of the (k + 2)-set polygon of S. This implies that
Δk+1 is maximal and leads to the following theorem.

Theorem 6. If Algorithm1 is applied to a maximal family Δk of compatible
convex k-configurations, then it generates a maximal family Δk+1 of compatible
convex (k + 1)-configurations.

Liu and Snoeyink conjectured that, if their algorithm is first applied to any
family Δ0 of 0-configurations that induces a triangulation of S, and if the algo-
rithm is then iteratively applied to the family of configurations generated by the
algorithm itself, then all constructed configurations are valid. With the above
results, we are now able to prove this conjecture.

Consider first any (classical) triangulation T of S. From Definition 1, for
every triangle rst of T , (∅, {r, s, t}) is a convex 0-configuration of S. Let Δ0 be
the family of 0-configurations determined that way by T . By Definition 5, rst is
the type-1 centroid triangle associated with (∅, {r, s, t}). If rst and r′s′t′ are two
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distinct triangles of T , they have disjoint interiors and therefore, from Defini-
tion 2, the 0-configurations (∅, {r, s, t}) and (∅, {r′, s′, t′}) in Δ0 are compatible.
Since the type-1 centroid triangles associated with the configurations of Δ0 form
a triangulation of conv(S), it follows from Theorem4 (i), that Δ0 is necessarily
a maximal family of compatible convex 0-configurations.

Thus, from Theorem 6, if Algorithm 1 is first applied to Δ0, and is then
iteratively applied to the families Δk generated by the algorithm itself, Algo-
rithm1 constructs maximal families of compatible convex configurations. From
Theorem 3, this proves that the configurations constructed by the algorithm are
valid.

5 Conclusion

In this paper, we have shown that the algorithm of Liu and Snoeyink constructs
maximal families of compatible convex k-configurations. Conversely, it can be
proven that every maximal family of compatible convex k-configurations can
be constructed by the algorithm. Thus, the algorithm can also be used to con-
struct all centroid triangulations of a planar point set. These triangulations are
interesting for themselves, and may serve as a useful tool in different contexts.
They have already been used to count the number of subsets in a finite planar
point set, that can be separated from the other points by a family of convex
pseudo-circles [8]. It appears in this enumeration that, for a given point set S
and a given k, all order-k centroid triangulations of S have the same number of
type-1 centroid triangles. This implies that all maximal families of compatible
convex k-configurations of S have the same number of elements. In particular,
this number equals the number of Delaunay k-configurations. This shows that, if
we replace Delaunay configurations by compatible convex configurations in the
B-spline definition, we do not increase the size of the spline space basis.

If we want to extend the results of this paper in d-dimensional space, we
can reuse the definition of convex configurations given by Definition 1 by just
replacing |Q| = 3 by |Q| = d+1. The definition of compatibility between convex
configurations given by Definitions 2 can be used as such in every dimension.
The definition of centroid triangles associated with convex configurations can
also be easily extended. The real difficulty resides in the extension of the edge
matching property and of the fact that the generalized centroid triangles cover
the k-set polytope of S. For Delaunay configurations these results have already
been proven respectively in [17] and in [19].
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Abstract. A vertex set U ⊆ V of an undirected graph G = (V,E) is
a resolving set for G if for every two distinct vertices u, v ∈ V there
is a vertex w ∈ U such that the distance between u and w and the
distance between v and w are different. A resolving set U is fault-tolerant
if for every vertex u ∈ U set U \ {u} is still a resolving set. The (fault-
tolerant) metric dimension of G is the size of a smallest (fault-tolerant)
resolving set for G. The weighted (fault-tolerant) metric dimension for a
given cost function c : V −→ R+ is the minimum weight of all (fault-
tolerant) resolving sets. Deciding whether a given graph G has (fault-
tolerant) metric dimension at most k for some integer k is known to
be NP-complete. The weighted fault-tolerant metric dimension problem
has not been studied extensively so far. In this paper we show that the
weighted fault-tolerant metric dimension problem can be solved in linear
time on cographs.

Keywords: Graph algorithm · Complexity · Metric dimension ·
Fault-tolerant metric dimension · Resolving set · Cograph

1 Introduction

An undirected graph G = (V,E) has metric dimension at most k if there is a
vertex set U ⊆ V such that |U | ≤ k and ∀u, v ∈ V , u �= v, there is a vertex w ∈ U
such that dG(w, u) �= dG(w, v), where dG(u, v) is the distance (the length of a
shortest path in an unweighted graph) between u and v. We call U a resolving
set. Graph G has fault-tolerant metric dimension at most k if for a resolving set
U with |U | ≤ k it holds that for every u ∈ U set U \ {u} is a resolving set for
G. The metric dimension of G is the smallest integer k such that G has metric
dimension at most k and the fault-tolerant metric dimension of G is the smallest
integer k such that G has fault-tolerant metric dimension at most k. The metric
dimension was independently introduced by Harary, Melter [13] and Slater [29].

If for three vertices u, v ∈ V , w ∈ U , we have dG(w, u) �= dG(w, v), then we
say that u and v are resolved by vertex w. The metric dimension of G is the size
of a minimum resolving set and the fault-tolerant metric dimension is the size
of a minimum fault-tolerant resolving set. In certain applications, the vertices of
c© Springer Nature Switzerland AG 2019
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a (fault-tolerant) resolving set are also called resolving vertices, landmark nodes
or anchor nodes. This is a common naming particularly in the theory of sensor
networks.

Determining the metric dimension of a graph is a problem that has an impact
on multiple research fields such as chemistry [3], robotics [22], combinatorial
optimization [27] and sensor networks [18]. Deciding whether a given graph G
has metric dimension at most k for a given integer k is known to be NP-complete
for general graphs [12], planar graphs [6], even for those with maximum degree 6
and Gabriel unit disk graphs [18]. Epstein et al. showed the NP-completeness for
split graphs, bipartite graphs, co-bipartite graphs and line graphs of bipartite
graphs [7] and Foucaud et al. for permutation and interval graphs [10,11].

There are several algorithms for computing the metric dimension in polyno-
mial time for special classes of graphs, as for example for trees [3,22], wheels
[17], grid graphs [23], k-regular bipartite graphs [26], amalgamation of cycles
[20], outerplanar graphs [6], cactus block graphs [19], chain graphs [9], graphs
with a bounded number of resolving vertices in every EBC [31]. The approx-
imability of the metric dimension has been studied for bounded degree, dense,
and general graphs in [15]. Upper and lower bounds on the metric dimension are
considered in [2,4] for further classes of graphs.

There are many variants of the metric dimension problem. The weighted
version was introduced by Epstein et al. in [7], where they gave a polynomial-
time algorithms on paths, trees and cographs. Oellermann et al. investigated
the strong metric dimension in [24] and Estrada-Moreno et al. the k-metric
dimension in [8], which is the same concept as the fault-tolerant metric dimension
for the case k = 2.

The parameterized complexity was investigated by Hartung and Nichterlein.
They showed that for the standard parameter the problem is W [2]-complete on
general graphs, even for those with maximum degree at most three [14]. Foucaud
et al. showed that for interval graphs the problem is FPT for the standard
parameter [10,11]. Afterwards Belmonte et al. extended this result to the class
of graphs with bounded treelength, which is a superclass of interval graphs and
also includes chordal, permutation and AT-free graphs [1].

The fault-tolerant metric dimension has not been studied as intensive as
the metric dimension so far. Hernando et al. introduced this concept in [16]
and characterized the fault-tolerant resolving sets in a tree and showed that
for general graphs the fault-tolerant metric dimension is bounded by a function
of the metric dimension. Chaudhry et al. investigated in [5] the fault-tolerant
metric and partition dimension of a graph and characterized the graphs with
fault-tolerant metric dimension n. Raza et al. studied in [25] the fault-tolerant
metric dimension of convex polytopes.

In this paper we show that the weighted fault-tolerant metric dimension
problem can be solved in linear time on cographs and give an algorithm that
computes a minimum weight fault-tolerant resolving set.
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2 Definitions and Basic Terminology

We consider graphs G = (V,E), where V is the set of vertices and E is the
set of edges. We distinguish between undirected graphs with edge sets E ⊆
{{u, v} | u, v ∈ V, u �= v} and directed graphs with edge sets E ⊆ V × V.
Graph G′ = (V ′, E′) is a subgraph of G = (V,E), if V ′ ⊆ V and E′ ⊆ E. It
is an induced subgraph of G, denoted by G|V ′ , if E′ = E ∩ {{u, v} | u, v ∈ V ′}
or E′ = E ∩ (V ′ × V ′), respectively. Vertex u ∈ V is called a neighbour of
vertex v ∈ V , if {u, v} ∈ E in an undirected graph or (u, v) ∈ E ((v, u) ∈ E) in a
directed graph. With N(u) = {v | {u, v} ∈ E} we denote the open neighbourhood
of a vertex u in an undirected graph and with N [u] = N(u)∪{u} we denote the
closed neighbourhood of a vertex u.

A sequence of k+1 vertices (u1, . . . , uk+1), k ≥ 0, ui ∈ V for i = 1, . . . , k+1,
is an undirected path of length k, if {ui, ui+1} ∈ E for i = 1, . . . , k. The vertices u1

and uk+1 are the end vertices of undirected path p. The sequence (u1, . . . , uk+1)
is a directed path of length k, if (ui, ui+1) ∈ E for i = 1, . . . , k. Vertex u1 is the
start vertex and vertex uk+1 is the end vertex of the directed path p. A path p
is a simple path if all vertices are mutually distinct.

An undirected graph G is connected if there is a path between every pair
of vertices. An undirected graph G is disconnected if it is not connected. A
connected component of an undirected graph G is a connected induced subgraph
G′ = (V ′, E′) of G such that there is no connected induced subgraph G′′ =
(V ′′, E′′) of G with V ′ ⊆ V ′′ and |V ′| < |V ′′|. A vertex u ∈ V is a separation
vertex of an undirected graph G if G|V \{u} (the subgraph of G induced by
V \ {u}) has more connected components than G. Two paths p1 = (u1, . . . , uk)
and p2 = (v1, . . . , vl) are vertex-disjoint if {u2, . . . , uk−1} ∩ {v2 . . . , vl−1} = ∅. A
graph G = (V,E) with at least three vertices is biconnected, if for every vertex
pair u, v ∈ V , u �= v, there are at least two vertex-disjoint paths between u and v.
A biconnected component G′ = (V ′, E′) of G is an induced biconnected subgraph
of G such that there is no biconnected induced subgraph G′′ = (V ′′, E′′) of G
with V ′ ⊆ V ′′ and |V ′| < |V ′′|. The distance dG(u, v) between two vertices u, v in
a connected undirected graph G is the smallest integer k such that there is a path
of length k between u and v. The distance dG(u, v) between two vertices u, v such
that there is no path between u and v in G is ∞. The complement of an undirected
graph G = (V,E) is the graph Ḡ = (V, {{u, v} | u, v ∈ V, {u, v} /∈ E}).

Definition 1 (Cograph). An undirected Graph G is a cograph, if

– G = ({u}, ∅) or
– G = (V1 ∪ V2, E1 ∪ E2) for two cographs G1 = (V1, E1) and G2 = (V2, E2) or
– G = H for a cograph H.

A cograph contains no induced P4, therefore the diameter of a connected
cograph G is at most 2. That is, the distance between two arbitrary vertices u, v
in G is either 0 or 1 or 2. The concept of cographs was introduced independently
by Jung [21], Seinsche [28] and Sumner [30].
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Definition 2 (Resolving set, metric dimension). Let G = (V,E) be an
undirected graph and let c : V −→ R+ be a function that assigns to every vertex
a non-negative weight. A vertex set R ⊆ V is a resolving set for G if for every
vertex pair u, v ∈ V, u �= v, there is a vertex w ∈ R such that dG(u,w) �=
dG(v, w). A resolving set R ⊆ V has weight k ∈ N, if

∑
v∈R c(v) = k. The set R

is a minimum resolving set for G, if there is no resolving set R′ ⊆ V for G with
|R′| < |R|. The set R is a minimum weight resolving set for G, if there is no
resolving set R′ ⊆ V for G with

∑
v∈R′ c(v) <

∑
v∈R c(v). An undirected graph

G = (V,E) has metric dimension k ∈ N, if k is the smallest positive integer such
that there is a resolving set for G of size k. An undirected graph G = (V,E) has
weighted metric dimension k ∈ N if k is the smallest positive integer such that
there is a resolving set for G of weight k.

Definition 3 (Fault-tolerant resolving set, fault-tolerant metric dimen-
sion). Let G = (V,E) be an undirected graph and let c : V −→ R+ be a function
that assigns to every vertex a non-negative weight. A vertex set R ⊆ V is a
fault-tolerant resolving set for G if for an arbitrary vertex r ∈ R set R \ {r}
is a resolving set. A fault-tolerant resolving set R ⊆ V has weight k ∈ N, if∑

v∈R c(v) = k. The set R is a minimum fault-tolerant resolving set for G, if
there is no fault-tolerant resolving set R′ ⊆ V for G with |R′| < |R|. The set R is
a minimum weight fault-tolerant resolving set for G, if there is no fault-tolerant
resolving set R′ ⊆ V for G with

∑
v∈R′ c(v) <

∑
v∈R c(v). An undirected graph

G = (V,E) has fault-tolerant metric dimension k ∈ N, if k is the smallest pos-
itive integer such that there is a fault-tolerant resolving set for G of size k. An
undirected graph G = (V,E) has weighted fault-tolerant metric dimension k ∈ N,
if k is the smallest positive integer such that there is a fault-tolerant resolving
set for G of weight k.

Equivalent to this definition one can say that a vertex set is a fault-tolerant
resolving set if for every vertex pair there are two resolving vertices. Obviously
every fault-tolerant resolving set is also a resolving set.

The concept of fault-tolerance can be extended easily on an arbitrary number
of vertices, what is called the k-metric dimension in [8], k ∈ N. The k-metric
dimension is the size of a smallest k-resolving set. A k-resolving set resolves
every pair of vertices at least k times. For k = 1 a k-resolving set is a resolving
set and for k = 2 a k-resolving set is a fault-tolerant resolving set. One should
note that for all k > 2 there are graphs that does not have a k-resolving set (for
example graphs with twin vertices), whereas for k ≤ 2 the entire vertex set is a
k-resolving set.

Definition 4. Let G = (V,E) be an undirected graph and u, v ∈ V , u �= v. For
two vertices u, v ∈ V we call N(u)N(v) = (N(u) ∪ N(v)) \ (N(u) ∩ N(v)) the
symmetric difference of u and v. For a set R ⊆ V , we define the function

hR : V × V −→ N, hR(u, v) = |(N(u)N(v) ∪ {u, v}) ∩ R|
hR(u, v) is the number of vertices in R that are u or v or a neighbour of u,

but not of v or a neighbour of v, but not of u.
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Definition 5 (neighbourhood-resolving). Let G = (V,E) be an undirected
graph and u, v ∈ V , u �= v, and R ⊆ V . Set R is called neighbourhood-resolving
for G, if for every pair u, v ∈ V , u �= v, we have hR(u, v) ≥ 1.

A set R is neighbourhood-resolving for G, if for every two vertices u, v /∈ R
there is a vertex w ∈ R that is neighbour of exactly one of the vertices u and v.
If u ∈ R or v ∈ R the value hR(u, v) is always at least 1. Obviously, every set
that is neighbourhood-resolving for G is also a resolving set for G.

Definition 6 (2-neighbourhood-resolving). Let G = (V,E) be an undi-
rected graph and u, v ∈ V , u �= v, and R ⊆ V . Set R is called 2-neighbourhood-
resolving for G if for every pair u, v ∈ V , u �= v, we have hR(u, v) ≥ 2.

A set R is 2-neighbourhood-resolving for G if

– for two vertices u, v ∈ V \ R there are at least two vertices in R that are
neighbour of exactly one of the vertices u and v and

– for two vertices u, v such that u ∈ R and v /∈ R there is at least one vertex
in R that is neighbour of exactly one of the vertices u and v.

For u, v ∈ R the value hR(u, v) is always at least two. Obviously, every set
that is 2-neighbourhood-resolving for G is also a fault-tolerant resolving set for
G.

Lemma 1. Let G = (V,E) be a connected cograph and R ⊆ V . Vertex set R is
a fault-tolerant resolving set for G if and only if R is 2-neighbourhood-resolving
for G.

Proof. “⇒”: Assume that R is a fault-tolerant resolving set for G. We have to
show that R is 2-neighbourhood-resolving for G, so let u, v ∈ V and r1, r2 ∈ R
be the vertices that resolve u and v.

1. If u, v ∈ R, then obviously hR(u, v) ≥ 2.
2. If u ∈ R and v /∈ R, then either dG(u, r1) �= 0 or dG(u, r2) �= 0. Without loss

of generality let dG(u, r1) �= 0. Vertex v /∈ R, so dG(v, r1) �= 0. Since vertex
r1 resolves u, v and G is a connected cograph (and therefore the diameter is
at most 2), r1 has to be adjacent to exactly one of the vertices u, v. Thus,
r1 ∈ uv ∩ R and u ∈ {u, v} ∩ R and therefore hR(u, v) ≥ 2.

3. If u, v /∈ R, then the distance between u and any vertex in R and the distance
between v and any vertex in R is not 0. Since r1 and r2 resolve u and v both
are adjacent to exactly one of the vertices u and v. Thus, r1, r2 ∈ N(u)N(v)
and therefore hR(u, v) ≥ 2.

“⇐”: Assume that R is 2-neighbourhood-resolving for G. We have to show
that R is a fault-tolerant resolving set for G. We do this by giving two resolving
vertices for every vertex pair u, v ∈ V .
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1. If u, v ∈ R, there are obviously two vertices in R, which resolve u and v.
2. If u ∈ R and v ∈ V \R, then u resolves u, v. Since hR(u, v) ≥ 2 and |{u, v} ∩

R| = 1, we have |N(u)N(v) ∩R| ≥ 1. Thus, there is a vertex r ∈ R, that is
adjacent to exactly one of the vertices u, v, so r resolves u, v.

3. If u, v ∈ V \ R, then |{u, v} ∩ R| = 0. Since hR(u, v) ≥ 2, it follows
|N(u)N(v) ∩ R| ≥ 2. Thus, there are two vertices r1, r2 ∈ R, that are
both adjacent to exactly one of the vertices u, v and so r1, r2 resolve u, v. ��
Note that this equivalence does not apply to disconnected cographs, see Fig. 1.

x

x

x

x

x

x

x

x

G1

u v

G2

G=G1 ∪ G2

Fig. 1. The figure shows the disconnected cograph G = G′ ∪G′′, built by the union of
the two connected cographs G′ and G′′. Let R = R′ ∪ R′′ with R′ = {r′

1, . . . , r
′
4} and

R′′ = {r′′
1 , . . . , r

′′
4 }. R′ is 2-neighbourhood-resolving and a fault-tolerant resolving set

for G′ and R′′ is 2-neighbourhood-resolving and a fault-tolerant resolving set for G′′.
R is a fault-tolerant resolving set, but not 2NR for G, since hR(u′, u′′) = 0. R is not
a fault-tolerant resolving set for Ḡ, since u′ and u′′ are neighbour of every resolving
vertex in R in graph Ḡ and therefore cannot be resolved.

Thus, we state that 2-neighbourhood-resolving implies fault-tolerance in
a cograph, fault-tolerance implies 2-neighbourhood-resolving in a connected
cograph, but not in a disconnected cograph.

Lemma 2. Let G = (V,E) be a cograph and R ⊆ V . If R is 2-neighbourhood-
resolving for G, then R is also 2-neighbourhood-resolving for Ḡ.

Proof. Let R ⊆ V be 2-neighbourhood-resolving for G, i.e. for u, v ∈ V we have
hR(u, v) = |(N(u)N(v)∪{u, v})∩R| ≥ 2. We distinguish between the following
cases:

1. u, v ∈ (N(u)N(v)∪{u, v})∩R: Obviously, u, v ∈ (N(u)N(v)∪{u, v})∩R
in graph Ḡ and so hR(u, v) ≥ 2 in Ḡ.
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2. u ∈ (N(u)N(v) ∪ {u, v}) ∩ R and v /∈ (N(u)N(v) ∪ {u, v}) ∩ R: Since
hR(u, v) ≥ 2 there has to be a vertex w ∈ N(u)N(v) ∩ R, what implies
that w is neighbour of either u or v. Without loss of generality let w be a
neighbour of u. In graph Ḡ vertex w is not a neighbour of u, but a neighbour
of v. So, we still have two vertices u,w ∈ (N(u)N(v) ∪ {u, v}) ∩R in graph
Ḡ.

3. u, v /∈ (N(u)N(v) ∪ {u, v}) ∩ R: Since hR(u, v) ≥ 2 there has to be two
vertices w1, w2 ∈ N(u)N(v) ∩ R, what implies that both are neighbour of
exactly one of the vertices u, v. Therefore, in graph Ḡ they are also neighbour
of exactly one of the vertices u, v. So, we still have two vertices w1, w2 ∈
(N(u)N(v) ∪ {u, v}) ∩ R in graph Ḡ. ��
Since 2-neighbourhood-resolving is equivalent to fault-tolerance in connected

cographs, we get the following observation:

Observation 1. Let G = (V,E) be a connected cograph and R ⊆ V . If R is a
fault-tolerant resolving set for G, then R is also a fault-tolerant resolving set for
the disconnected cograph Ḡ.

Note that a fault-tolerant resolving set R for a disconnected cograph G is
not necessarily a fault-tolerant resolving set for Ḡ, see Fig. 1.

Lemma 3. Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be two connected cographs
with at least two vertices and G = (V,E) with V = V ′ ∪ V ′′ and E = E′ ∪ E′′

be the disjoint union of G′ and G′′. Let R′ be a fault-tolerant resolving set for
G′ and R′′ be a fault-tolerant resolving set for G′′. Then R = R′ ∪ R′′ is a
fault-tolerant resolving set for G.

Proof. We show that every pair u, v ∈ V is resolved by two vertices in R. If
u, v ∈ V1 or u, v ∈ V2 the pair is obviously resolved twice by vertices in R1 ⊆ R
or R2 ⊆ R. If u ∈ V1 and v ∈ V2 the pair is resolved by any two resolving vertices
r1, r2 ∈ R, since either u or v will have distance ∞ to r1 and r2. ��

Note that R is not necessarily 2-neighbourhood-resolving for G (see Fig. 1).

Definition 7. Let G = (V,E) be a cograph and R ⊆ V a fault-tolerant resolving
set for G. A vertex v ∈ V is called a k-vertex with respect to R, k ∈ N, if
|N [v] ∩ R| = k.

A vertex v ∈ V is a k-vertex, if it has k vertices in its closed neighbourhood
that are in R.

Lemma 4. Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be two connected cographs
and G = (V,E) with V = V ′ ∪ V ′′ and E = E′ ∪ E′′ be the disjoint union of G′

and G′′. Let R′ be 2-neighbourhood-resolving for G′ and R′′ be 2-neighbourhood-
resolving for G′′. Vertex set R = R′ ∪ R′′ is 2-neighbourhood-resolving for G if
and only if
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1. there is at most one 0-vertex v ∈ V with respect to R, i.e. there is no 0-vertex
v ∈ V ′ with respect to R′ or there is no 0-vertex v ∈ V ′′ with respect to R′′

and
2. there is no 0-vertex v ∈ V ′ with respect to R′, if there is a 1-vertex in V ′′

with respect to R′′ and
3. there is no 1-vertex in V ′ with respect to R′, if there is a 0-vertex in V ′′ with

respect to R′′.

Proof. “⇒”: Assume that R is 2-neighbourhood-resolving for G.

1. We show that there is at most one 0-vertex in V with respect to R. Assume
there are two 0-vertices u, v ∈ V with respect to R, i.e. |N [u] ∩ R| = 0 and
|N [v] ∩R| = 0. Then we have hR(u, v) = 0, what contradicts the assumption
that R is 2-neighbourhood-resolving.

2. We show that there is no 0-vertex in V ′ with respect to R′ if there is a 1-
vertex in V ′′ with respect to R′′. Assume that there is a 0-vertex in u ∈ V ′

with respect to R′ and a 1-vertex in v ∈ V ′′ with respect to R′′. Then we have
hR(u, v) = 1, what contradicts the assumption that R is 2-neighbourhood-
resolving.

3. analogous to 2.

“⇐”: Assume that the conditions 1., 2. and 3. hold. We show that R is
2-neighbourhood-resolving for G, i.e. for u, v ∈ V we have hR(u, v) ≥ 2. For
u, v ∈ V ′ we have hR′(u, v) ≥ 2 and therefore also hR(u, v) ≥ 2. The same
holds for u, v ∈ V ′′. Now let u ∈ V ′ and v ∈ V ′′. hR(u, v) < 2 if and only if
|N [u] ∩ R| + |N [v] ∩ R| < 2, i.e. if

1. |N [u] ∩ R| = 0 and |N [v] ∩ R| = 0 or
2. |N [u] ∩ R| = 0 and |N [v] ∩ R| = 1 or
3. |N [u] ∩ R| = 1 and |N [v] ∩ R| = 0

Conditions 1. - 3. guarantee that none of these three cases appear. ��
Theorem 2. Let G = (V,E) be a cograph. The weighted fault-tolerant metric
dimension of G can be computed in linear time.

Proof. We describe a linear time algorithm for computing the weighted fault-
tolerant metric dimension of a connected cograph. For disconnected cographs we
apply the algorithm for every connected component with at least two vertices.
If there are isolated vertices, then each of them has to be in every weighted
fault-tolerant resolving set, except for the case that there is exactly one isolated
vertex. To get the weighted fault-tolerant metric dimension of the disconnected
input graph, we build the sum of the weights of all isolated vertices if there are at
least two, and the weighted fault-tolerant metric dimension for each connected
component with at least two vertices.

To compute the weighted fault-tolerant metric dimension of a connected
cograph G = (V,E) it suffices to compute a set that is 2-neighbourhood-
resolving for G and has minimal costs, since fault-tolerant resolving and 2-
neighbourhood-resolving sets are equivalent in connected cographs (Lemma1).
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To compute a 2-neighbourhood-resolving set of minimum weight we use dynamic
programming along the cotree T = (VT , ET ). The cotree T of G is a tree
that describes the union and complementation of cographs. The inner nodes
are either complementation-nodes or union-nodes. Every complementation-node
has exactly one child and every union-node has exactly two children. The leaves
of T are the vertices of G.

For every inner node of T we compute bottom up different types of minimum
weight 2-neighbourhood-resolving sets for the corresponding subgraph of G. First
we compute the 2-neighbourhood-resolving sets for the fathers of the leaves.
For every other inner node v ∈ VT we compute the 2-neighbourhood-resolving
sets from the 2-neighbourhood-resolving sets of all children of v. Finally, the
minimum weight of all 2-neighbourhood-resolving sets at root r of T will be
the minimum weight fault-tolerant metric dimension of G. From Lemma 2 we
know that, if a set is 2-neighbourhood-resolving for a cograph G′ then it is
also 2-neighbourhood-resolving for Ḡ′. The union of two fault-tolerant resolving
sets is also a fault-tolerant resolving set (Lemma 3), but the union of two 2-
neighbourhood-resolving sets is not necessarily a 2-neighbourhood-resolving set.
We have to guarantee that the union of two 2-neighbourhood-resolving sets is
also 2-neighbourhood-resolving, according to Lemma4. For this, we have to keep
track of the existence of 0- and 1-vertices in the 2-neighbourhood-resolving sets
that we compute. Since a 0- or 1-vertex with respect to a set R becomes an |R|
or (|R| − 1)-vertex when complementing, we also have to keep track of |R|- and
(|R| − 1)-vertices.

For a cograph G = (V,E) we define 16 types of minimum weight 2-
neighbourhood-resolving sets Ra,b,c,d, a, b, c, d ∈ {0, 1}.

For

– a = 1 we compute a minimum weight 2-neighbourhood-resolving set R for G
such that there is a 0-vertex in G with respect to R and for a = 0 we compute
a minimum weight 2-neighbourhood-resolving set for G such that there is no
0-vertex in G with respect to R.

– b = 1 we compute a minimum weight 2-neighbourhood-resolving set R for G
such that there is a 1-vertex in G with respect to R and for b = 0 we compute
a minimum weight 2-neighbourhood-resolving set for G such that there is no
1-vertex in G with respect to R.

– c = 1 we compute a minimum weight 2-neighbourhood-resolving set R for G
such that there is a (|R| − 1)-vertex in G with respect to R and for c = 0 we
compute a minimum weight 2-neighbourhood-resolving set for G such that
there is no (|R| − 1)-vertex in G with respect to R.

– d = 1 we compute a minimum weight 2-neighbourhood-resolving set R for
G such that there is a |R|-vertex in G with respect to R and for d = 0 we
compute a minimum weight 2-neighbourhood-resolving set for G such that
there is no |R|-vertex in G with respect to R.

Let ra,b,c,d be the weight of the corresponding minimum weight 2-
neighbourhood-resolving sets Ra,b,c,d, i.e. the sum of the weights of all vertices in
Ra,b,c,d. If there is no such 2-neighbourhood-resolving set for a certain a, b, c, d,
we set ra,b,c,d = ∞ and Ra,b,c,d = undefined.
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Now we will analyze the 16 2-neighbourhood-resolving sets in more detail
and describe, how they can be computed efficiently bottom up along the cotree.
First one should note that r1,1,c,d = ∞, ∀c, d, and R1,1,c,d = undefined, since it
is not possible to have a 0- and 1-vertex with respect to R in a 2-neighbourhood-
resolving set (their symmetric difference would contain less than two resolving
vertices), so it suffices to focus on the remaining 12 sets.

When complementing a graph G, the role of a 0-vertex and |R|-vertex with
respect to R and the role of a 1-vertex and a (|R| − 1)-vertex with respect to R
changes, that is Ra,b,c,d for G is Rd,c,b,a for Ḡ. When unifying two cographs G1

and G2 we distinguish between the following three cases:

1. G1 and G2 both consist of a single vertex
2. G1 consists of a single vertex and G2 of at least two vertices
3. G1 and G2 both consist of at least 2 vertices

We will describe now how to compute Ra,b,c,d for the three cases.

1. Let G1 = ({v1}, ∅) and G2 = ({v2}, ∅). Then there is exactly one valid 2-
neighbourhood-resolving set for G = G1 ∪ G2, namely R = {v1, v2}. In G we
have no 0-vertex, two 1- and two (|R| − 1)-vertices and no |R|-vertex with
respect to R. Therefore, R0,1,1,0 = {v1, v2}, r0,1,1,0 = c(v1) + c(v2) and all
other sets are infeasible, that is ra,b,c,d = ∞ and Ra,b,c,d = undefined for
a �= 0 ∨ b �= 1 ∨ c �= 1 ∨ d �= 0 (see Table 1).

Table 1. The table shows how ra,b,c,d is computed for G = G1 ∪ G2.

G1 = ({v1}, ∅) ∪ G2 = ({v2}, ∅)

r0,0,0,0 ∞
r0,0,0,1 ∞
r0,0,1,0 ∞
r0,0,1,1 ∞
r0,1,0,0 ∞
r0,1,0,1 ∞
r0,1,1,0 c(v1) + c(v2)

r0,1,1,1 ∞
r1,0,0,0 ∞
r1,0,0,1 ∞
r1,0,1,0 ∞
r1,0,1,1 ∞
r1,1,0,0 ∞
r1,1,0,1 ∞
r1,1,1,0 ∞
r1,1,1,1 ∞
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2. Let G1 = ({v1}, ∅) and G2 = (V2, E2) with |V2| ≥ 2. For some a, b, c, d ∈
{0, 1} let R′′

a,b,c,d be the minimum weight 2-neighbourhood-resolving sets
for G2 and r′′

a,b,c,d be their weights. Let G = G1 ∪ G2. r0,0,c,d = ∞
and R0,0,c,d = undefined, because vertex v1 is either a 0-vertex (if it is
not in the 2-neighbourhood-resolving set) or a 1-vertex (if it is in the 2-
neighbourhood-resolving set) with respect to R0,0,c,d, ∀c, d. r0,1,c,1 = ∞ and
R0,1,c,1 = undefined, because it is crucial to put v1 in the 2-neighbourhood-
resolving set, if there should be no 0-vertex in G with respect to R0,1,c,1,
∀c. If v1 is in the 2-neighbourhood-resolving set, it is not possible to have
a vertex that is neighbour of all resolving vertices, because v1 has no neigh-
bours. For R0,1,0,0 and R0,1,1,0 we have to put v1 in the 2-neighbourhood-
resolving set, so that there is no 0-vertex with respect to R0,1,0,0 or
R0,1,1,0, what makes v1 become a 1-vertex in G with respect to R0,1,0,0

or R0,1,1,0. We get r0,1,0,0 = c(v1) + min{r′′
0,0,0,0, r

′′
0,0,1,0, r

′′
0,1,0,0, r

′′
0,1,1,0}

and thus R0,1,0,0 = {v1} ∪ Rm, whereas Rm is the set with the small-
est weight out of {R′′

0,0,0,0, R
′′
0,0,1,0, R

′′
0,1,0,0, R

′′
0,1,1,0}. For R0,1,1,0 there has

to be an |R0,1,1,0|-vertex in G2 with respect to R0,1,1,0, so we get
r0,1,1,0 = c(v1) + min{r′′

0,0,0,1, r
′′
0,0,1,1, r

′′
0,1,0,1, r

′′
0,1,1,1} and thus R0,1,1,0 =

{v1} ∪ Rm, whereas Rm is the set with the smallest weight out of
{R′′

0,0,0,1, R
′′
0,0,1,1, R

′′
0,1,0,1, R

′′
0,1,1,1}. For R1,0,c,d it is not possible to put v1 in

the 2-neighbourhood-resolving set, because it would become a 1-vertex with
respect to R1,0,c,d, ∀c, d. Therefore, we get r1,0,0,0 = r′′

0,0,0,0 and thus R1,0,0,0 =
R′′

0,0,0,0, r1,0,0,1 = r′′
0,0,0,1 and thus R1,0,0,1 = R′′

0,0,0,1, r1,0,1,0 = r′′
0,0,1,0 and

thus R1,0,1,0 = R′′
0,0,1,0, r1,0,1,1 = r′′

0,0,1,1 and thus R1,0,1,1 = R′′
0,0,1,1 (see

Table 2).
3. Let G1 = (V1, E1) and G2 = (V2, E2) with |V1| ≥ 2 and |V2| ≥

2 and G = G1 ∪ G2. For some a, b, c, d ∈ {0, 1} let R′
a,b,c,d be the

minimum weight 2-neighbourhood-resolving sets for G1 and R′′
a,b,c,d be

the minimum weight 2-neighbourhood-resolving sets for G2 and r′
a,b,c,d

and r′′
a,b,c,d be their weights. ra,b,c,1 = ∞ and ra,b,1,d = ∞ and thus

Ra,b,c,1 = undefined and Ra,b,1,d = undefined, ∀a, b, c, d, because G1

and G2 contain at least two resolving vertices in every 2-neighbourhood-
resolving set. Therefore, it is not possible to have a vertex that is neigh-
bour of all or of all except one of them. The three remaining sets are
R0,0,0,0, R0,1,0,0, R1,0,0,0. We get r0,0,0,0 = min{r′

0,0,c,d|c, d ∈ {0, 1}} +
min{r′′

0,0,c,d|c, d ∈ {0, 1}} and thus R0,0,0,0 = R′
m ∪ R′′

m, whereas R′
m is

the set with the smallest weight out of {R′
0,0,c,d|c, d ∈ {0, 1}} and R′′

m

is the set with the smallest weight out of {R′′
0,0,c,d|c, d ∈ {0, 1}}. We

get r0,1,0,0 = min{r′
0,0,c,d + r′′

0,1,c′,d′ , r′
0,1,c,d + r′′

0,0,c′,d′ , r′
0,1,c,d + r′′

0,1,c′,d′ |c, d,
c′, d′ ∈ {0, 1}} and thus R0,1,0,0 = min{R′

m0
∪ R′′

m1
, R′

m1
∪ R′′

m0
, R′

m1
∪

R′′
m1

}, whereas R′
m0

is the set with the smallest weight out of
{R′

0,0,c,d|c, d ∈ {0, 1}}, R′
m1

is the set with the smallest weight out of
{R′

0,1,c,d|c, d ∈ {0, 1}}, R′′
m0

is the set with the smallest weight out of
{R′′

0,0,c,d|c, d ∈ {0, 1}} and R′′
m1

is the set with the smallest weight out of
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Table 2. The table shows how ra,b,c,d is computed for G = G1 ∪ G2.

G1 = ({v1}, ∅) ∪ G2 = (V2, E2)

r0,0,0,0 ∞
r0,0,0,1 ∞
r0,0,1,0 ∞
r0,0,1,1 ∞

r0,1,0,0 c(v1) + min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r′′
0,0,0,0,

r′′
0,0,1,0,

r′′
0,1,0,0,

r′′
0,1,1,0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

r0,1,0,1 ∞

r0,1,1,0 c(v1) + min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r′′
0,0,0,1,

r′′
0,0,1,1,

r′′
0,1,0,1,

r′′
0,1,1,1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

r0,1,1,1 ∞
r1,0,0,0 r′′

0,0,0,0

r1,0,0,1 r′′
0,0,0,1

r1,0,1,0 r′′
0,0,1,0

r1,0,1,1 r′′
0,0,1,1

r1,1,0,0 ∞
r1,1,0,1 ∞
r1,1,1,0 ∞
r1,1,1,1 ∞

{R′′
0,1,c,d|c, d ∈ {0, 1}}. We get r1,0,0,0 = min{r′

1,0,c,d + r′′
0,0,c′,d′ , r′

0,0,c,d +
r′′
1,0,c′,d′ |c, d, c′, d′ ∈ {0, 1}} and thus R1,0,0,0 = min{R′

m1
∪R′′

m0
, R′

m0
∪R′′

m1
},

whereas R′
m0

is the set with the smallest weight out of {R′
0,0,c,d|c, d ∈

{0, 1}}, R′
m1

is the set with the smallest weight out of {R′
1,0,c,d|c, d ∈

{0, 1}}, R′′
m0

is the set with the smallest weight out of {R′′
0,0,c,d|c,

d ∈ {0, 1}} and R′′
m1

is the set with the smallest weight out of {R′′
1,0,c,d|c, d ∈

{0, 1}} (see Table 3).

For every node of the cotree T the computation of the 12 minimum weight
2-neighbourhood-resolving sets for the corresponding subgraph of G can be done
in a constant number of steps. Since T has O(n) nodes, the overall runtime of
our algorithm is linear to the size of the cotree. ��
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Table 3. The table shows how ra,b,c,d is computed for G = G1 ∪ G2.

G1 = ({v1}, ∅) ∪ G2 = ({v2}, ∅)

r0,0,0,0 min{r′
0,0,c,d | c, d ∈ {0, 1}} + min{r′′

0,0,c,d | c, d ∈ {0, 1}}
r0,0,0,1 ∞
r0,0,1,0 ∞
r0,0,1,1 ∞

r0,1,0,0 min

⎧
⎪⎨

⎪⎩

r′
0,0,c,d + r′′

0,1,c′,d′ ,

r′
0,1,c,d + r′′

0,0,c′,d′ ,

r′
0,1,c,d + r′′

0,1,c′,d′

∣
∣
∣
∣
∣
∣
∣

c, d, c′, d′ ∈ {0, 1}

⎫
⎪⎬

⎪⎭

r0,1,0,1 ∞
r0,1,1,0 c(v1) + c(v2)

r0,1,1,1 ∞

r1,0,0,0 min

{
r′
1,0,c,d + r′′

0,0,c′,d′ ,

r′
0,0,c,d + r′′

1,0,c′,d′

∣
∣
∣
∣
∣
c, d, c′, d′ ∈ {0, 1}

}

r1,0,0,1 ∞
r1,0,1,0 ∞
r1,0,1,1 ∞
r1,1,0,0 ∞
r1,1,0,1 ∞
r1,1,1,0 ∞
r1,1,1,1 ∞

3 Conclusion

We showed that the weighted fault-tolerant metric dimension problem can be
solved in linear time on cographs. Our algorithm computes the costs of a fault-
tolerant resolving set with minimum weight as well as the set itself.

The complexity of computing the (weighted) fault-tolerant metric dimension
is still unknown for many special graph classes like wheels and sun graphs. This
is something that we will investigate in further work.
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27. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29(2),
383–393 (2004)

28. Seinsche, D.: On a property of the class of n-colorable graphs. J. Comb. Theor.
Ser. B 16(2), 191–193 (1974)

29. Slater, P.: Leaves of trees. Congr. Numerantium 14, 549–559 (1975)
30. Sumner, D.P.: Dacey graphs. J. Aus. Math. Soc. 18(4), 492–502 (1974)
31. Vietz, D., Hoffmann, S., Wanke, E.: Computing the metric dimension by decompos-

ing graphs into extended biconnected components. In: Das, G.K., Mandal, P.S.,
Mukhopadhyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp.
175–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10564-8 14

http://arxiv.org/abs/1101.3624
http://arxiv.org/abs/1101.3624
https://doi.org/10.1007/978-3-030-10564-8_14


Retraction Note to: Complete Disjoint
CoNP-Pairs but No Complete Total Polynomial

Search Problems Relative to an Oracle

Titus Dose

Retraction Note to:
Chapter “Complete Disjoint CoNP-Pairs but No Complete
Total Polynomial Search Problems Relative to an Oracle”
in: L. A. Gąsieniec et al. (Eds.): Fundamentals
of Computation Theory, LNCS 11651,
https://doi.org/10.1007/978-3-030-25027-0_11

The author has retracted this chapter [1] because of a gap in the proof of the main
theorem caused by an incorrect application of Claim 4. The author agrees to this
retraction.
[1] Dose, T.: Complete disjoint CoNP-pairs but no complete total polynomial search
problems relative to an Oracle. In: Gąsieniec, L., Jansson, J., Levcopoulos, C. (eds.)
FCT 2019. LNCS, vol. 11651. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-25027-0_11.

The retracted version of this chapter can be found at
https://doi.org/10.1007/978-3-030-25027-0_11

© Springer Nature Switzerland AG 2020
L. A. Gąsieniec et al. (Eds.): FCT 2019, LNCS 11651, p. C1, 2020.
https://doi.org/10.1007/978-3-030-25027-0_25

https://doi.org/10.1007/978-3-030-25027-0_11
https://doi.org/10.1007/978-3-030-25027-0_11
https://doi.org/10.1007/978-3-030-25027-0_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25027-0_25&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25027-0_25&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25027-0_25&amp;domain=pdf
https://doi.org/10.1007/978-3-030-25027-0_11
https://doi.org/10.1007/978-3-030-25027-0_25


Author Index

Arvind, Vikraman 111

Barto, Libor 3
Bärtschi, Andreas 126

Carvalho, Iago A. 171
Casel, Katrin 185
Chakraborty, Sankardeep 201
Charalampopoulos, Panagiotis 213
Chazelle, Bernard 18
Coester, Christian 49

Das, Bireswar 229
De Marco, Gianluca 140
Domínguez, Jesús 64
Dondi, Riccardo 243
Dose, Titus 153

Eidenbenz, Stephan 126
Erlebach, Thomas 171

Feghali, Carl 258
Fernández, Maribel 64
Fernau, Henning 185
Fuhlbrück, Frank 111

González-Aguilar, Hernán 274
Gurski, Frank 292

Hagerup, Torben 29

Johnson, Matthew 258
Jurdziński, Tomasz 140

Khosravian Ghadikolaei, Mehdi 185
Klonowski, Marek 306
Köbler, Johannes 111
Kociumaka, Tomasz 213
Komander, Dominique 292
Kowalski, Dariusz R. 140, 306
Kowaluk, Mirosław 322
Kozachinskiy, Alexander 80

Lafond, Manuel 243
Lingas, Andrzej 322
Lohrey, Markus 95

Maneth, Sebastian 95
Mirek, Jarosław 306
Monnot, Jérôme 185
Mukherjee, Anish 201

Orden, David 274

Paesani, Giacomo 258
Papadopoulos, Kleitos 171
Paulusma, Daniël 258
Pérez-Lantero, Pablo 274
Pissis, Solon P. 213

Radoszewski, Jakub 213
Rappaport, David 274
Rehs, Carolin 292
Rytter, Wojciech 213

Satti, Srinivasa Rao 201
Schmitt, Dominique 335
Schuster, Martin 49
Schwentick, Thomas 49
Seara, Carlos 274
Sharma, Shivdutt 229
Shen, Alexander 80
Sikora, Florian 185
Straszyński, Juliusz 213

Tejel, Javier 274

Urrutia, Jorge 274

Vaidyanathan, P. R. 229
Verbitsky, Oleg 111
Vietz, Duygu 350

Waleń, Tomasz 213
Wanke, Egon 350
Wong, Prudence W. H. 306

Zuba, Wiktor 213


	Preface
	Organization
	Algorithms for Some Classes of Infinite-State MDPs and Stochastic Games (Abstract of Invited Talk)
	Contents
	Invited Papers
	Algebraic Theory of Promise Constraint Satisfaction Problems, First Steps
	1 Introduction
	2 CSP
	2.1 Examples
	2.2 1st Step: Polymorphisms
	2.3 2nd Step: Strong Maltsev Conditions
	2.4 3rd Step: Minor Conditions
	2.5 Classification

	3 PCSP
	3.1 Examples
	3.2 4th Step: Minor Conditions!

	4 Conclusion
	References

	Some Observations on Dynamic Random Walks and Network Renormalization
	1 Introduction
	2 Time-Varying Random Walks
	3 Revisiting Network Sequence Renormalization
	References

	Highly Succinct Dynamic Data Structures
	1 Introduction
	2 Collections of Nonbinary Values
	2.1 Data Representation and Space Analysis
	2.2 Reading and Writing
	2.3 Results

	3 The In-Place Chain Technique
	3.1 Initializable Arrays
	3.2 General Constant-Time Initialization
	3.3 Choice Dictionaries

	4 Open Problems
	References

	Formal Methods
	Winning Strategies for Streaming Rewriting Games
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Games with the Bounded Depth Property
	4 Prefix-Free Games
	5 Strongly Regular Dominant Strategies
	6 Negative Results
	7 Conclusion and Open Questions
	References

	Nominal Syntax with Atom Substitutions: Matching, Unification, Rewriting
	1 Introduction
	2 Background
	3 Unification, Matching and Rewriting
	4 Solving Matching Problems
	5 Unitary Matching for Simple Problems
	6 Undecidability of Extended Nominal Unification
	7 Conclusion
	References

	Two Characterizations of Finite-State Dimension
	1 Introduction
	2 Non-aligned Entropies
	3 Superadditive Complexity Measures
	4 Sufficient Condition for Normality
	References

	Largest Common Prefix of a Regular Tree Language
	1 Introduction
	2 Preliminaries
	3 From NTTAs to DFAs
	4 From NFAs to NTTAs
	5 Incompressibility of Largest Common Prefix Trees
	5.1 Incompressibility by DAGs
	5.2 Incompressibility by Tree Straight-Line Programs

	6 Checking Equality of Largest Common Prefixes
	References

	Complexity
	On Weisfeiler-Leman Invariance: Subgraph Counts and Related Graph Properties
	1 Introduction
	2 Color Refinement Invariance
	3 Weisfeiler-Leman Invariance
	4 Concluding Discussion
	References

	Deterministic Preparation of Dicke States
	1 Introduction
	2 Deterministic Dicke State Preparation
	2.1 Inductive Construction of Un,k
	2.2 Explicit Construction of SCSn,k

	3 Circuit Size and Depth
	4 Symmetric Pure States and Quantum Compression
	4.1 Symmetric Pure States
	4.2 Quantum Compression

	5 Conclusions
	References

	Optimal Channel Utilization with Limited Feedback
	1 Introduction
	1.1 New Results

	2 The Upper Bound
	3 The Lower Bound
	4 Conclusions and Open Problems
	References

	RETRACTED CHAPTER: Complete Disjoint CoNP-Pairs but No Complete Total Polynomial Search Problems Relative to an Oracle
	1 Introduction
	2 Preliminaries
	3 Oracle Construction
	4 Conclusion
	References

	Algorithms
	An Efficient Algorithm for the Fast Delivery Problem
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 Algorithm for the Fast Delivery Problem
	4 An Algorithm for Fast Line Delivery
	4.1 Geometric Representation and Preprocessing
	4.2 Main Algorithm

	References

	Extension of Some Edge Graph Problems: Standard and Parameterized Complexity
	1 Introduction
	2 Definitions
	3 Complexity Results
	4 Planar Graphs
	5 Parameterized Perspective
	6 Price of Extension
	7 Conclusions
	References

	Space Efficient Algorithms for Breadth-Depth Search
	1 Introduction
	1.1 Motivation and Related Work
	1.2 Model of Computation and Input Representation
	1.3 Our Main Results and Organization of the Paper
	1.4 Preliminaries

	2 Breadth-Depth Search of Jiang
	2.1 Using O(n) Bits and O(m lgN) Time
	2.2 Using O(n) Bits and O(m lg* N) Time
	2.3 Using O(n lg(m/n)) Bits and O(m+n) Time

	3 Breadth-Depth Search of Horowitz and Sahni
	3.1 Using O(n) Bits and O(m lg* N) Time
	3.2 Using O(n lg(m/n)) Bits and O(m+n) Time

	4 Conclusions
	References

	Circular Pattern Matching with k Mismatches
	1 Introduction
	2 Preliminaries
	2.1 Anatomy of Circular Occurrences
	2.2 Internal Queries in a Text

	3 An O(nk)-time Algorithm
	4 An O(n+nmk5)-time Algorithm
	4.1 Matching Non-periodic Samples
	4.2 Simple Geometry of Arithmetic Sequences of Intervals
	4.3 Matching Periodic Samples
	4.4 Solution to Periodic-Periodic-Match Problem
	4.5 Main Result

	References

	Succinct Representations of Finite Groups
	1 Introduction
	2 Preliminary
	2.1 Model of Computation

	3 Our Results
	4 Succinct Representation of Finite Groups
	5 Succinct Representation for Restricted Group Classes
	6 Representation in the Model of Farzan and Munro
	6.1 Hamiltonian Groups
	6.2 Z-groups
	6.3 Semidirect Product Classes

	References

	On the Tractability of Covering a Graph with 2-Clubs
	1 Introduction
	2 Preliminaries
	3 W[1]-Hardness of 2 Club Cover(2) for Parameter Distance to 2-club
	4 Hardness of Min 2 Club Cover in Subcubic Planar Graphs
	5 Hardness of Min 2 Club Cover on Bipartite Graphs
	6 An FPT Algorithm for Min 2 Club Cover on Graphs of Bounded Treewidth
	References

	On Cycle Transversals and Their Connected Variants in the Absence of a Small Linear Forest
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 The Case H=P4
	4 The Case H=sP1+P3
	5 Conclusions
	References

	Maximum Rectilinear Convex Subsets
	1 Introduction
	2 Some Notation and Definitions
	3 Rectilinear Convex Hull of Maximum Size
	4 Maximum Size/Area Empty Rectilinear Convex Hulls and Maximum Weight Rectilinear Convex Hull
	4.1 Maximum Size Empty Rectilinear Convex Hull
	4.2 Maximum Area Empty Rectilinear Convex Hull
	4.3 Maximum Weight Rectilinear Convex Hull

	References

	Computing Digraph Width Measures on Directed Co-graphs
	1 Introduction
	2 Preliminaries
	2.1 Recursively Defined Digraphs

	3 Digraph Width Measures
	3.1 Directed Tree-Width
	3.2 Directed Path-Width
	3.3 Directed Feedback Vertex Set (DFVS) Number
	3.4 Cycle Rank
	3.5 DAG-depth
	3.6 DAG-width
	3.7 Kelly-Width
	3.8 Comparison

	4 Conclusion and Outlook
	References

	Fault-Tolerant Parallel Scheduling of Arbitrary Length Jobs on a Shared Channel
	1 Introduction
	2 Technical Preliminaries
	3 Preemptive Model
	3.1 Lower Bound
	3.2 Algorithm ScaTri

	4 Non-preemptive Model
	4.1 Lower Bound
	4.2 Algorithm DefTri

	5 Comparison of Results for the Two Models
	6 Conclusions
	References

	Rare Siblings Speed-Up Deterministic Detection and Counting of Small Pattern Graphs
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Main Results
	3.1 Siblings on Four Vertices

	4 Final Remark
	4.1  Proof

	References

	Bivariate B-Splines from Convex Pseudo-circle Configurations
	1 Introduction
	2 B-Splines and Configurations
	2.1 Notations
	2.2 Basic B-Splines and Simplex Splines
	2.3 Valid Configurations

	3 Convex Pseudo-circle Configurations
	4 Generation of Valid Configurations
	5 Conclusion
	References

	The Fault-Tolerant Metric Dimension of Cographs
	1 Introduction
	2 Definitions and Basic Terminology
	3 Conclusion
	References

	Retraction Note to: Complete Disjoint CoNP-Pairs but No Complete Total Polynomial Search Problems Relative to an Oracle
	Retraction Note to: Chapter “Complete Disjoint CoNP-Pairs but No Complete Total Polynomial Search Problems Relative to an Oracle” in: L. A. Gąsieniec et al. (Eds.): Fundamentals of Computation Theory, LNCS 11651, https://doi.org/10.1007/978-3-030-25027-0_11 

	Author Index



