
Solving Group Interval Scheduling
Efficiently

Arindam Biswas1(B), Venkatesh Raman1, and Saket Saurabh1,2

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
{barindam,vraman,saket}@imsc.res.in
2 University of Bergen, Bergen, Norway

Abstract. The Group Interval Scheduling problem models the sce-
nario where there is set [γ] = {1, . . . , γ} of jobs to be processed on a single
machine, and each job i can only be scheduled for processing in exactly
one time interval from a group Gi of allowed intervals. The objective is
to determine if there is a set of S ⊆ [γ] of k (k ∈ N) jobs which can be
scheduled in non-overlapping time intervals.

This work describes a deterministic algorithm for the problem that
runs in time O((5.18)knd), where n = | ⋃i∈[γ] Gi| and d ∈ N is a constant.
For k ≥ d log n, this is significantly faster than the best previously-known
deterministic algorithm, which runs in time O((12.8)kγn). We obtain our
speedup using efficient constructions of representative families, which can
be used to solve the problem by a dynamic programming approach.

Keywords: Group · Job · Interval · Scheduling · Graph ·
Independent · Colourful · Representative · Hash · Fixed · Parameter ·
FPT · Multivariate

1 Introduction

A ubiquitous problem arising in industrial processes is when there are multiple
jobs to be processed on a single machine, and some of the jobs have conflicting
time constraints. In this scenario, the next best thing is for the machine to
process as many jobs as possible without violating any time constraints. This
can be modelled as follows.

Group Interval Scheduling

Instance: A pair (J, k), where J = {G1, . . . , Gγ} such that Gi (i ∈ [γ]) is
a set of disjoint intervals of R, and k ∈ N.
Question: Is there a set of at least k disjoint intervals S ⊆ ⋃

J such that
|S ∩ Gi| ≤ 1 (i ∈ [γ])?

The sets Gi represent time constraints: job i (i ∈ [γ]) can only be processed
during a time interval from the set Gi. In this scheme, picking a set S of disjoint
c© Springer Nature Switzerland AG 2019
C. J. Colbourn et al. (Eds.): IWOCA 2019, LNCS 11638, pp. 97–107, 2019.
https://doi.org/10.1007/978-3-030-25005-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25005-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-25005-8_9

98 A. Biswas et al.

intervals such that |S ∩ Gi| ≤ 1 (i ∈ [γ]) is equivalent to scheduling the set
{i ∈ [γ] | Gi ∈ S} of jobs on the machine such that they occupy distinct time
intervals.

Group Interval Scheduling is known to be NP-hard [6] while being
polynomial-time solvable (via a reduction to 2-SAT; see [3]) when there are
at most 2 intervals per job.

Consider a finite set X and a function f : X → [t]. A subset S ⊆ X is
colourful with respect to f if for any x, y ∈ S, x �= y =⇒ f(x) �= f(y). The
following problem is an equivalent formulation of Job Interval Scheduling

that models constraints among the jobs using a graph and a colouring function
on its vertex set.

Colourful Independent Set

Instance: A triple (G,φ, k), where G is a graph, φ : V → [γ] is a colouring
and k ∈ N.
Question: Is there is an independent set S ⊆ V in G of size k which is
colourful with respect to φ?

Let (J, k) be an instance of Group Interval Scheduling. Define V =⋃
i∈[γ] Gi. Taking V as the vertex set, define G = (V,E), where E =

{uv | u ∩ v �= ∅} and define φ : V → [γ] by φ(v) = i, where i ∈
[γ] such that v ∈ Gi. This gives an equivalent instance (G,φ, k) of
Colourful Independent Set on interval graphs: k jobs from J can be sched-
uled on the machine if and only if G has an independent set of size k that is
colourful with respect to φ.

This alternative formulation of Group Interval Scheduling is used
throughout the remainder of this paper.

Fixed-Parameter Tractability. The results are presented here in the frame-
work of Parameterized Complexity. Consider a computational problem P and
let x be a instance of P . Suppose that there is a number kx ∈ N that describes
a property of x, e.g. the optimal solution value for x. Such a scheme is called a
parameterization of P , and kx is called the parameter of x. Attaching the param-
eter to the problem instance gives us a parameterized problem: {〈x, kx〉 | x ∈ P}.

Given any parameterized problem Q with parameterization k, if there is an
algorithm that solves it in time O(f(k)nc), where f : N → N is a computable
function and c ∈ N is a constant, then Q is said to be fixed-parameter tractable.

Our Results and Previous Work. We consider two parameterizations of
Colourful Independent Set: k, the size of the solution sought, and γ, the
number of colours used by the colouring φ. The question of fixed-parameter
tractability was studied by Halldórsson and Karlsson [2] and later by van Bevern
et al. [8], which led to the following results.

Solving Group Interval Scheduling Efficiently 99

Proposition 1 (Halldórsson and Karlsson [2], Theorem 4). Instances
(G,φ, k) of Colourful Independent Set on interval graphs can be solved
deterministically in time O(2γn), where γ is the number of colours.

Proposition 2 (van Bevern et al. [8], Theorem 4). Instances (G,φ, k)
of Colourful Independent Set on interval graphs can be solved with error
probability ε in time O

(
|log ε|(5.5)k

n
)
. The algorithm can be derandomized to

solve the problem deterministically in time O
(
(12.8)k

γn
)
, where γ is the number

of colours.

Proposition 1 establishes fixed-parameter tractability with respect to γ while
Proposition 2 shows that there is a (randomized) fixed-parameter algorithm with
respect to k. This work makes the following improvements.

– We show that the running time of the deterministic algorithm of Proposition 2
can actually be improved to

(
ek+O((log k)2) log γ

)
2kn = O

(
(5.44)k(log γ)n

)

using smaller families of perfect hash functions (Theorem 1).
– Using efficiently-constructible representative families, we obtain an algo-

rithm (Theorem 2) for Colourful Independent Set that runs in time
O

(
(5.18)k

nd
)

(d ∈ N, a constant).

2 Preliminaries

In this section, we introduce notation used in the rest of the paper and review
some basic concepts concerning matroids, representative families and perfect
hash families.

2.1 Basics

– N denotes the set of natural numbers and R denotes the set of real numbers.
– For t ∈ {1, 2, . . .}, [t] denotes the set {1, . . . , t} and for a, b ∈ R with a ≤ b,

[a, b] denotes the set {x | x ∈ R, a ≤ x ≤ b}.
– Let X be a set and F be a family of subsets of X. For x ∈ X, define x+F =

{{x} ∪ S | S ∈ F}.
– Let G = (V,E) be a graph and φ : V → [γ] be a colouring of its vertices.

• V(G) denotes the vertex set V and E(G) denotes the edge set E.
• For each i ∈ [γ], define Vi = {v ∈ V | φ(v) = i}. A set of vertices V ′ ⊆ V

is called colourful if |Vi ∩ V ′| ≤ 1 for all i ∈ [γ].
– For a function g : A → B, dom g denotes the set A and rng g denotes the

set B′ = {y ∈ B | ∃x ∈ B : g(x) = y}.

A matroid is a pair (E, I) consisting of ground set E and a family I of subsets
called independent sets that has the following properties.

1. ∅ ∈ I.

100 A. Biswas et al.

2. If X ∈ I and Y ⊆ X, then Y ∈ I.
3. For any two sets X,Y ∈ I with |X| < |Y |, there is an element e ∈ Y \X such

that X ∪ {e} ∈ I.

Because of Property 3 (also known as the exchange property) above, all max-
imal independent sets in a matroid have the same size. This number is called
the rank of the matroid.

Given a matroid M = (E, I) and an integer k ∈ N, it is easy to see that the
pair M′ = (E, I ′) with I ′ = {S ∈ I | |S| ≤ k} is also a matroid. It is called the
k-truncation of M. Since the independent sets S ∈ I ′ all satisfy |S| ≤ k, the
rank of M′ is at most k.

Let AM be a matrix over some field F whose columns are A1, . . . At. Suppose
that there is a injective function ρ : E → {A1, . . . , At} such that for any S ⊆ E, S
is independent in M if and only if the set of columns ρ(S) is linearly independent.
In this case, the matrix AM is called a representation for M, and M is said to
be representable over the field F .

Definition 1 (Linear Matroid). A matroid M is called a linear matroid if it
has a representation AM over some field F .

2.2 Matroids of Colourful Sets

Let G = (V,E) be a graph, φ : V → [γ] be a colouring of its vertices and
k ∈ N. Define I = {S ⊆ V | S is colourful and |S| ≤ k} and let K = (V, I). In
the following, we show that K is a linear matroid with a representation that can
be computed efficiently.

Consider the partition V = V1 ∪ · · · ∪ Vγ , where Vi (i ∈ [γ]) comprises
vertices of colour i. Define P = (V, I ′) where I ′ comprises all sets S ⊆ V such
that |S ∩ Vi| ≤ 1 (i ∈ [γ]).

Lemma 1. P is a linear matroid. A representation AP (over F2) for P of size
γ × n can be computed in time O(γn).

Proof (Sketch). It is easy to verify that P is a partition matroid. Consider the
γ × n matrix AK defined by

AP =
(
e1

|V1|, . . . , eγ
|Vγ |

)
,

where ei (i ∈ [t]) denotes the column vector with a 1 at the ith coordinate and
0’s everywhere else. AP represents P and because the column vectors can be
computed in time O(γ), the entire matrix can be constructed in time O(γn). ��
Lemma 2. K is the k-truncation of P.

Proof. Let S ∈ I. Because S is colourful, we have |S ∩ Vi| ≤ 1 (i ∈ [γ]), i.e.
S ∈ I ′. Conversely, any S ∈ I ′ with |S| ≤ k is a colourful set, so S ∈ I. Thus,
K is the k-truncation of P. ��

Solving Group Interval Scheduling Efficiently 101

The next proposition provides a method for computing a truncation of a
matroid from its representation. It will be used later to construct a representation
for K.

Proposition 3 (Lokshtanov et al. [5], Theorem 1.1). Let A be an m × n
matrix of rank m over a field F that represents the matroid M. For any natural
number k ≤ m, the k-truncation of M admits a representation Ak over F (X),
the field of fractions of the polynomial ring F [X]. This representation can be
computed in O(mnk) operations over F , and given any set of columns of Ak, it
can be determined whether they are linearly independent in O

(
m2k3

)
operations

over F .

Lemma 3. K is a linear matroid of rank k that admits a representation AK
over F2(X) which can be computed in time O(kγn).

Proof. We show that K is a linear matroid by computing a representation for it.
Note that the ground set of P has n = |V | elements.

Using the procedure of Lemma 1, obtain representation AP for P. This takes
time O(γn) and the representation is a 0-1 matrix of size γ × n. Now use the
procedure of Proposition 3 to obtain the k-truncation AK of P. This can be done
in O(kγn) operations over F2, each of which takes time O(1). Thus, the overall
running time of the algorithm is O(kγn). ��

2.3 Representative Families

Definition 2 (q-Representative Family). Let p, q ∈ N,M = (E, I) be a
matroid, and F ⊆ I be a family of independent sets of size p. A subfamily F ′ ⊆ F
is q-representative of F if the following statement holds. For any X ⊆ E with
|X| ≤ q, if there is a set Y ∈ F such that X ∩ Y = ∅ and X ∪ Y ∈ I, then there
is a set Y ′ ∈ F ′ such that X ∩ Y ′ = ∅ and X ∪ Y ′ ∈ I.
Proposition 4 (Fomin et al. [1], Theorem 1.1). Let M = (E, I) be a linear
matroid of rank p+q = k, and AM be a matrix over some field F that represents
it. For any family R = {S1, . . . , St} of independent sets of size p in M, there is
a family R̂ ⊆ R with at most

(
k
p

)
sets which is q-representative of R. The family

R̂ can be found in O
(
t
(
pω

(
k
p

)
+

(
k
p

)ω−1
))

operations over F , where ω < 2.373
is the matrix multiplication exponent.

2.4 Perfect Hash Families

Definition 3 (Perfect Hash Family). Let n, k ∈ N with n ≥ k. A family
of functions Hn,k ⊆ [k][n] is called an (n, k)-perfect hash family if for any set
S ⊆ [n] with |S| ≤ k, there is a function f ∈ H such that f is injective on S.

Proposition 5 (Naor et al. [7], Theorem 3). For any n, k ∈ N with n ≥ k,
there is an (n, k)-perfect hash family Hn,k of cardinality ek+O((log k)2) log n that
can be computed in time ek+O((log k)2)n log n.

102 A. Biswas et al.

3 COLOURFUL INDEPENDENT SET on Interval Graphs

Here, we give two algorithms for Colourful Independent Set on interval
graphs. The first uses small families of perfect hash functions to make an
improvement over the algorithm of Proposition 2. The second algorithm employs
a dynamic programming approach using representative families.

Definition 4 (Compact Representation). Let G be an interval graph and
R = {Lv | v ∈ V(G)} be an interval representation for G. R is called c-compact
(c ∈ N) if the endpoints of every interval in R are in {0, . . . , c}. If G has such a
representation, it is called c-compact.

Proposition 6 (van Bevern et al. [8], Observation 2). Interval graphs of
order n are n-compact.

Proposition 7 (van Bevern et al. [8], Observation 4). Given an adja-
cency list representation for an interval graph G with n vertices and m edges,
a c-compact representation R for G that minimizes c can be computed in time
O(n + m).

We begin by observing that the deterministic algorithm of Proposition 2 can
be improved on by using slightly more efficient constructions of hash families.

3.1 Using Hash Families

By using the hash families of Theorem 5 with the algorithm of van Bevern et
al. [2], we make the following improvement on the derandomization claim of
Proposition 2.

Theorem 1. Instances (G,φ, k) of Colourful Independent Set on interval
graphs can be solved in time

(
ek+O((log k)2) log γ

)
2kn = O

(
(5.44)k(log γ)n

)
.

Lemma 4. Let (G,φ, k) be an instance of Colourful Independent Set on
interval graphs with γ = |rng φ| colours. There is a family of colouring functions
Cφ,k ⊆ [n] → [k] of size ek+O((log k)2) log γ such that (G,φ, k) is a YES instance
if and only if there is a function φ′ ∈ Cφ,k such that (G,φ′, k) is a YES instance.
The family Cφ,k can be constructed in time ek+O((log k)2)γ log γ.

Proof. Let Hγ,k be the perfect hash family obtained from Proposition 5 by
substituting n = γ. This family is of size ek+O((log k)2) log γ and can be com-
puted in time ek+O((log k)2)γ log γ. Define Cφ,k = {ρ ◦ φ | ρ ∈ Hγ,k}. Clearly,
Cφ,k ⊆ [n] → [k]. Note that Cφ,k can be obtained by chaining φ to each function
in Hγ,k, and this takes time O(1) per function. Thus, Cφ,k can be computed in
time ek+O((log k)2)γ log γ.

Suppose that (G,φ, k) is a YES instance and let S be a colourful independent
set in G, i.e. φ is injective on S. Consider R = φ(S). Since Hγ,k is (γ, k)-perfect,

Solving Group Interval Scheduling Efficiently 103

there is a function ρ ∈ Hγ,k such that ρ is injective on R. Because of this,
ρ ◦ φ ∈ Cγ,k is injective on S, i.e. S is a colourful independent set with respect
to φ′ = ρ ◦ φ. Thus, (G,φ′, k) is a YES instance.

Conversely, if there is a function φ′ ∈ Cγ,k such that there is a colourful
independent S with respect to φ′ and |S| ≥ k, then S is also colourful with
respect to φ. ��

The proof of Theorem 1 is now quite straightforward.

Proof (Theorem 1). Let (G,φ, k) be an instance of Colourful Indepen-
dent Set on interval graphs. Using the construction of Lemma 4, we obtain
a family of colourings Cn,k of size ek+O((log k)2) log γ. Consider the following
algorithm.

For each colouring φ′ ∈ Cn,k, run the procedure of Proposition 1 on the
instance (G,φ′, k). If the procedure returns YES on any of the instances, then
return YES. Otherwise, return NO. The correctness of the algorithm follows from
Lemma 4.

Note that for each φ′ ∈ Cn,k, |rng φ′| = k, so the instance (G,φ′, k)
has k colours. Thus, each invocation of the algorithm of Proposition 1
takes time O

(
2kn

)
. The overall running time of the algorithm is therefore

(ek+O((log k)2) log γ)2kn + ek+O((log k)2)γ log γ =
(
ek+O((log k)2) log γ

)
2kn =

O
(
(5.44)k(log γ)n

)
. ��

3.2 Using Representative Families

In this subsection, we employ a dynamic programming approach using represen-
tative families to obtain the following result.

Theorem 2. Instances (G,φ, k) of Colourful Independent Set on interval
graphs can be solved deterministically in time O

(
(5.18)k

nd
)
, where ω is the

matrix multiplication exponent and d ∈ N is a constant.

Consider an instance (G,φ, k) of Colourful Independent Set. By Propo-
sition 6, G has a c-compact representation with c ≤ n. Let D be such a represen-
tation. Define Lv (v ∈ V) to be the interval corresponding to v in D and let l(v)
denote the length of Lv. We say that v lies in the interval [i, j] (0 ≤ i < j ≤ n)
if Lv ⊆ [i, j]. A set S ⊂ V lies in [i, j] if all its elements lie in [i, j].

Families of Colourful Independent Sets. For i ∈ [c] and j ∈ [k], define
Ri

j to be the family of all colourful independent sets in G of size exactly j in
the interval [0, i]. Consider the matroid K = (V, I) of sets of colourful vertices
defined in Subsect. 2.2. Since the sets in Ri

j are colourful, they are independent
in K. In what follows, we show how to efficiently compute a (k−j)-representative
family for Ri

j with respect to K.
For each (i, j) ∈ ({0} × [k]) ∪ ([c] × {0}), the family Ri

j is empty, and is
trivially represented by R̂i

j = ∅.

104 A. Biswas et al.

Lemma 5. Let i ∈ [c] and j ∈ [k]. For each r < i and s ≤ j, let R̂r
s be a

(k − s)-representative family for Rr
s with respect to K. Define

R̄i
j =R̂i−1

j ∪
(

⋃

Lvends at i

[
v + R̂i−(l(v)+1)

j−1

]
)

, where (1)

[R] = {S ∈ R | S is a colourful independent set in G} .

The family R̄i
j (k − j)-represents Ri

j.

Proof. Let X ⊆ V with |X| ≤ k − j such that there is a set S ∈ Ri
j with

S ∩ X = ∅ and S ∪ X ∈ I, i.e. S is a colourful independent set in G. We have
the following cases. ��
Case 1. S contains a vertex v such that Lv ends at i.

In this case, S′ = S \ {v} is a colourful independent set (in G) appearing in
S

i−(l(v)+1)
j such that S′∩(X ∪ {v}) = ∅ and S′∪(X ∪ {v}) ∈ I. Let X ′ = X∪{v}.

Because R̂i−(l(v)+1)
j−1 is a (k − j + 1)-representative family for Ri−(l(v)+1)

j−1 and

|X ′| ≤ k − j + 1, there is a colourful independent set S̃ ∈ Ri−(l(v)+1)
j−1 such that

S̃ ∩ X ′ = ∅ and S̃ ∪ X ′ ∈ I.
Note that S̃ ∪ {v} ⊆ S̃ ∪ X ′ ∈ I is colourful. Since S̃ ∈ Ri−(l(v)+1)

j−1 only
contains vertices that lie in the interval [0, i − (l(v) + 1)], v has no neighbours
in S̃. Because S∗ = S̃ ∪ {v} is a colourful independent set in G, the [·] operator
in Eq. 1 preserves it. Thus, there is a set S∗ in R̄i

j such that S∗ ∩ X = ∅ and
S∗ ∪ X ∈ I.

Case 2. S contains no vertex v such that Lv ends at i.

Observe that S lies entirely in the interval [0, i− 1], so it appears in Ri−1
j . Since

R̂i−1
j is a (k − j)-representative family for Ri−1

j , there is a set S̃ ∈ R̂i−1
j such

that S̃ ∩ X = ∅ and S̃ ∪ X ∈ I.
The procedure ComputeTable constructs a table S[0 . . c][0 . . k] using the pre-

defined procedure ComputeRepresentativesFLPS that computes representative
families according to Proposition 4.

Lemma 6. The procedure ComputeTable computes S[0 . . c][0 . . k] such that each
entry S[i][j] is (k − j)-representative of Ri

j. The table is computed in time
O

(
cχkω2ωkn

)
, where χ is the time required to perform field operations over

F2(X).

Proof. In Line 1, the initialization step ensures that for each (i, j) ∈ ({0} × [k])∪
([c] × {0}), Ri

j is (k− j)-represented by S[i][j]. The family constructed in Line 8
is R̄i

j , which has t = |S[i − 1][j]| +
∑

Lv ends at i|S[i − (l(v) + 1)][j − 1]| sets.
Each entry S[i′][j′] referenced in this step was computed in a previous iter-

ation, and (by Proposition 4) Line 9 ensures that |S[i′][j′]| ≤ (
k
j′
)
. Thus, we

Solving Group Interval Scheduling Efficiently 105

Procedure ComputeTable: compute a table of representative families
Input: G, D, AK, c, k, where G is a graph, D is a c-compact representation and

k ∈ N

Output: S[0 . . c][0 . . k], where each entry S[i][j] (k − j)-represents Ri
j

1 initialize S[0 . . c][0 . . k] with ∅;
2 for i ∈ [1 . . c] do
3 for j ∈ [1 . . k] do
4 S[i][j] ← S[i − 1][j];
5 for v ∈ V(G) such that Lv ends at i do
6 Tv ← v + S[i − (l(v) + 1)][j − 1];
7 Tv ← {A ∈ Tv | A is a colourful independent set};
8 S[i][j] ← S[i][j] ∪ Tv;

9 S[i][j] ← ComputeRepresentativesFLPS(AK, S[i][j], k − j);

10 return S[0 . . c][0 . . k];

have t ≤ (
k
j

)
+ n

(
k

j−1

)
. Note that (again because of Proposition 4) S[i][j] is

(k − j)-representative of R̄i
j , so it also (k − j)-represents Ri

j .

The computation can be carried out using O
(
t
(
jω

(
k
j

)
+

(
k
j

)ω−1
))

opera-

tions over F2(X). This takes time O
(
t
(
jω

(
k
j

)
+

(
k
j

)ω−1
)
χ
)
, where χ is the time

required to perform field operations over F2(X). The expression further simplifies
to O

((
k
j

)ω
(jω + 1)χn

)
= O

((
k
j

)ω
jωχn

)
.

The construction of S[i][j] in Lines 4–8 takes time O(nt) = O
((

k
j

)ω
jωn

)
,

since it only involves copying and adding (single) elements to O(t) sets. Thus,
the running time of the double loops is

O

⎛

⎝χn

c∑

i=1

k∑

j=1

(
k

j

)ω

jω

⎞

⎠ = O

⎛

⎝χkωn

c∑

i=1

k∑

j=1

(
k

j

)ω
⎞

⎠.

By straightforward arguments, it can be shown that this expression is
O

(
cχkω2ωkn

)
. The other steps of the procedure take time O(n), so the over-

all running time is O
(
cχkω2ωkn

)
. ��

We are now ready to prove Theorem 2.

Proof (Theorem 2). Using SolveIntervalCIS, we solve (G,φ, k). Its correctness
follows directly from Lemmas 5 and 6. A c-compact representation D for G
can be computed using the procedure of Proposition 7 in time O

(
n2

)
. Then

using the procedure of Lemma 3, a representation AK for K can be computed
in time O(kγn) (Lemma 3). Finally, ComputeTable(G,D, AK, c, k) takes time
O

(
cχkω2ωkn

)
(Lemma 5). All other operations take time O

(
n2

)
.

Since the entries of AK are computed in O(kγn) field operations over F2, they
at most na bits in size for some constant a ∈ N. A fact we use without proof is

106 A. Biswas et al.

that these entries can be interpreted as elements of a field Fq for some q ∼ 2na

while still maintaining the condition that AK represents K. Field operations over
Fq take time O

(
nb

)
for some constant b ∈ N, i.e. χ = O

(
nb

)
.

Thus, ComputeTable(G,R, AK, c, k) takes time O
(
cχkω2ωkn

)
= O(ckω

2ωknb+1). The matrix multiplication algorithm of Gall [4] has ω ≤ 2.3728639,
and because of Proposition 6, c ≤ n. Therefore, the overall running time of
SolveIntervalCIS is O

(
(5.18)k

nd
)

for some constant d ∈ N. ��

Algorithm SolveIntervalCIS. determine if G has a colourful indepen-
dent set of size k under φ

Input: G,φ, k, where G is a graph, φ : V(G) → [γ] is a colouring and
k ∈ N

Output: YES if G has a colourful independent set of size k under φ and
NO otherwise

1 D ← ComputeCompactRepresentation(G);
2 let c ∈ N such that D is c-compact;
3 compute a representation AK for the matroid of colourful sets of size at

most k;
4 S ← ComputeTable(G,D, AK, c, k);
5 if S[c][k] is non-empty then
6 return YES ;

7 else
8 return NO ;

4 Conclusion

We have designed improved algorithms for Colourful Independent Set via
two distinct approaches:

– using improved constructions of hash families, and
– using representative families.

The algorithm of Theorem 1 is an improvement over earlier algorithms with
regard to the parameter k, i.e. the number of jobs to be scheduled, as well as
n, the total number of jobs. On the other hand, SolveIntervalCIS (Theorem 2),
which runs in time O

(
(5.18)k

nd
)

and outperforms previous algorithms in the
case k ≥ d log n.

Using a variant of Proposition 3 (see [5], Theorem 3.15), we were able to
obtain the bound d ≤ 4. An interesting question is to see if the dependence on n
in the running time of SolveIntervalCIS could be made quadratic or even linear.

Solving Group Interval Scheduling Efficiently 107

References

1. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of
representative families with applications in parameterized and exact algorithms. J.
ACM 63(4), 29:1–29:60 (2016)

2. Halldórsson, M.M., Karlsson, R.K.: Strip graphs: recognition and scheduling. In:
Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 137–146. Springer, Heidelberg
(2006). https://doi.org/10.1007/11917496 13

3. Keil, J.M.: On the complexity of scheduling tasks with discrete starting times. Oper.
Res. Lett. 12(5), 293–295 (1992)

4. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, pp.
296–303. ACM Press, Kobe (2014)

5. Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S.: Deterministic truncation of
linear matroids. ACM Trans. Algorithms 14(2), 14:1–14:20 (2018)

6. Nakajima, K., Hakimi, S.L.: Complexity results for scheduling tasks with discrete
starting times. J. Algorithms 3(4), 344–361 (1982)

7. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, pp. 182–191. IEEE Computer Society Press, Milwaukee, October 1995

8. van Bevern, R., Mnich, M., Niedermeier, R., Weller, M.: Interval scheduling and
colorful independent sets. J. Sched. 18(5), 449–469 (2015)

https://doi.org/10.1007/11917496_13

	Solving Group Interval Scheduling Efficiently
	1 Introduction
	2 Preliminaries
	2.1 Basics
	2.2 Matroids of Colourful Sets
	2.3 Representative Families
	2.4 Perfect Hash Families

	3 COLOURFUL INDEPENDENT SET on Interval Graphs
	3.1 Using Hash Families
	3.2 Using Representative Families

	4 Conclusion
	References

