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Abstract. We study Erdős–Szekeres-type problems for k-convex point
sets, a recently introduced notion that naturally extends the concept of
convex position. A finite set S of n points is k-convex if there exists
a spanning simple polygonization of S such that the intersection of any
straight line with its interior consists of at most k connected components.
We address several open problems about k-convex point sets. In particu-
lar, we extend the well-known Erdős–Szekeres Theorem by showing that,
for every fixed k ∈ N, every set of n points in the plane in general posi-
tion (with no three collinear points) contains a k-convex subset of size
at least Ω(logk n). We also show that there are arbitrarily large 3-convex
sets of n points in the plane in general position whose largest 1-convex
subset has size O(log n). This gives a solution to a problem posed by
Aichholzer et al. [2].

We prove that there is a constant c > 0 such that, for every n ∈ N,
there is a set S of n points in the plane in general position such that
every 2-convex polygon spanned by at least c · logn points from S con-
tains a point of S in its interior. This matches an earlier upper bound by
Aichholzer et al. [2] up to a multiplicative constant and answers another
of their open problems.
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1 Introduction

A set of points in the plane is in convex position if its points are vertices of a
convex polygon. We say that a planar point set is in general position if it does not
contain a collinear triple of points. A classical result by Erdős and Szekeres [6],
called the Erdős–Szekeres Theorem, states that every set of n points in the
plane in general position contains a set of Ω(log n) points in convex position.
Moreover, this result is asymptotically tight, with the strongest bounds given in
the papers [7,10,15]. The Erdős–Szekeres Theorem, published in 1935, was one
of the starting points of both discrete geometry and Ramsey theory. Since then,
numerous variants of this result have been studied.

For example, in 1978, Erdős [5] asked about the growth rate of the smallest
integers h(m), m ≥ 3, such that every set P of at least h(m) points in the
plane in general position contains an m-hole in P , that is, m points in convex
position with no point of P in the interior of their convex hull. It is easy to show
that h(3) = 3 and h(4) = 5 and Harborth [9] proved h(5) = 10. After this, the
question about the existence of the numbers h(m) was settled in two phases.
First, in 1983, Horton [11] showed that there are arbitrarily large sets of points
with no 7-holes, proving that h(m) does not exist for m ≥ 7. Around 25 years
later, Gerken [8] and Nicolás [13] independently proved that every sufficiently
large set of points in the plane in general position contains a 6-hole. In particular,
h(m) exists if and only if m ≤ 6.

In this paper, we study variants of these classical problems for so-called k-
convex point sets, a notion that was recently introduced by Aichholzer et al. [2]
and that naturally extends the concept of convex position. We also address
further open problems about k-convex point sets posed in [2].

Throughout the paper, we consider only finite sets of points in the plane in
general position. We use ∂S to denote the boundary of a simple polygon S. For
a line segment s, we use s to denote the supporting line of s. A line � crosses ∂S
at a point v if � passes through v from the interior of S to the outside of S. All
logarithms in the paper are base two.

2 Preliminaries

In 2012, Aichholzer et al. [1] introduced the following natural extension of convex
polygons. For a positive integer k, a simple polygon S with vertices in general
position is k-convex if no straight line intersects S in more than k connected
components. This notion has been later transcribed to finite point sets [2]. A
finite set P of points in the plane in general position is k-convex if P is a vertex
set of a k-convex polygon. In other words, P is k-convex if there exists a spanning
simple polygonization of P such that the intersection of any straight line with
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its interior consists of at most k connected components. It can be shown that
a simple polygon S with vertices in general position is k-convex if and only if
every line not containing a vertex of S intersects the boundary of S in at most
2k points (see Lemma 2).

The notion of k-convexity for point sets satisfies several natural properties.
A point set is in convex position if and only if it is 1-convex. Clearly, for each
k ∈ N, every k-convex point set is (k +1)-convex. Aichholzer et al. [2, Lemma 2]
showed that every subset of a k-convex point set is also k-convex. It is known
that every set of n points is k-convex for some k = O(

√
n) and this bound is

tight up to a multiplicative constant in the worst case [2, Theorem 2]. Some
further results about k-convex polygons and k-convex point sets can be found
in [1–3].

Erdős–Szekeres-type questions were among the first problems about k-convex
point sets considered in the literature. Aichholzer et al. [2] showed that every
set of n points in general position contains a 2-convex subset of size at least
Ω(log2 n) [2, Theorem 5] and that this bound is tight up to a multiplicative
constant. This result led the authors to pose the following problem.

Problem 1 ([2, Open problem 4]). Let k and n be positive integers. Find the
maximum integer g(k, n) such that every set of n points contains a k-convex set
of size g(k, n).

Using this notation, their result gives g(2, n) = Θ(log2 n) and the Erdős–
Szekeres Theorem gives g(1, n) = Θ(log n). No nontrivial bounds were known
for g(k, n) with k ≥ 3.

In a slightly different direction, it was shown that every 2-convex polygon
with n vertices contains a 1-convex subset of at least �√n/2� vertices and that
this bound is tight [1, Theorem 14]. In [2], the authors considered related variants
of this result and posed the following problem.

Problem 2 ([2, Open problem 3]). Let j, k and n be positive integers. Find the
maximum integer f(k, n) such that every k-convex set of n points contains a 1-
convex subset of size f(k, n). More generally, find the maximum integer f(k, j, n)
such that every k-convex set of size n contains a j-convex subset of size f(k, j, n).

By definition, f(k, n) = f(k, 1, n) for all k and n. With this notation, the
result by Aichholzer et al. [1, Theorem 14] gives f(2, n) = f(2, 1, n) = Θ(

√
n).

We trivially have f(1, n) = f(1, 1, n) = n for every n. Since every set of n points
is (c

√
n)-convex for some constant c > 0 [2, Theorem 2], the Erdős–Szekeres

Theorem gives g(1, n) = f(k, n) = f(k, 1, n) = Θ(log n) for each k ≥ c
√

n.
By the previous results, we also know that, for k ≥ c

√
n, we have g(2, n) =

f(k, 2, n) = Θ(log2 n) and g(j, n) = f(k, j, n) for each j ∈ N.
For a point set P , a 2-convex polygon with vertices from P is empty in P if

it contains no point of P in the interior. Concerning the question of Erdős about
m-holes in point sets, Aichholzer et al. [2, Theorem 3] showed that every set P of
n points in general position contains a 2-convex polygon that is empty in P and
has size at least Ω(log n). Using the tightness of the Erdős–Szekeres Theorem,
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they also proved that there are arbitrarily large point sets P of n points with no
empty 2-convex polygon in P of size at least c · log2 n for some constant c. There
is a gap between these two bounds and thus the authors posed the following
problem.

Problem 3 ([2]). Close the gap between the Ω(log n) and O(log2 n) bounds for
the size of empty 2-convex polygons in point sets of size n.

Let us also remark that it was shown by Aichholzer et al. [3] that every 2-
convex point set of size n contains an m-hole for m = Ω(log n) and that this
bound is tight up to a multiplicative constant in the worst case.

The list of problems about k-convex point sets posed by Aichholzer et al. [2]
contains several other interesting open questions.

3 Our Results

First, we prove the following extension of the Erdős–Szekeres Theorem for k-
convex point sets.

Theorem 1. Let k be a fixed positive integer. Then

g(k, n) = Ω(logk n).

That is, for every n ∈ N, every set of n points in the plane in general position
contains a k-convex subset of size at least Ω(logk n).

Note that Theorem 1 extends the result of Aichholzer et al. [2, Theorem 5]
about the existence of large 2-convex point sets in general sets of n points.
Unfortunately, we do not have matching upper bounds on the function g(k, n).
It follows from the proof of Theorem 13 in [3] that g(k, n) = O(k

√
n) for every

k ≥ 3.
We also address Problem 2. Using a variant of the sets defined by Erdős and

Szekeres, we provide asymptotically tight estimates on the function f(k, n) in
the case k ≥ 3.

Theorem 2. There is a constant c such that, for every positive integer n, there
are 3-convex sets of n points in the plane in general position with no 1-convex
subset of size larger than c · log n.

More precisely, for every t ≥ 3, there is a 3-convex set of 2t−2 points in the
plane in general position with no 1-convex subset of size t.

Thus f(k, n) = O(log n) for every integer k with k ≥ 3. It follows from
the Erdős–Szekeres Theorem that this bound is asymptotically tight. That is,
f(k, n) = Θ(log n) for k ≥ 3. Therefore Theorem 2 asymptotically settles the
first part of Problem 2. The statement in the second sentence of Theorem 2
implies the more precise bound f(3, n) ≤ �log (n) + 1�. It also shows that the
corresponding best known bound in the Erdős–Szekeres Theorem can be achieved
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by 3-convex sets. A famous conjecture of Erdős and Szekeres [7] states that this
bound is tight for general sets. If true, the conjecture of Erdős and Szekeres
together with our result would give the precise values f(k, n) = �log (n) + 1� for
any n, k ≥ 3.

In the proof of Theorem 2 we define planar point sets which might be of
independent interest. We call them (combinatorial) Devil’s staircases.

Aichholzer et al. [1, Theorem 14] showed that every 2-convex point set of size
n contains a 1-convex subset of size at least Ω(

√
n). Their result together with

Theorem 2 gives the following estimate on the function f(k, 2, n) for k ≥ 3.

Corollary 1. There is a constant c such that, for every positive integer n, there
are 3-convex sets of n points in the plane in general position with no 2-convex
subset of size larger than c · log2 n.

In particular, f(k, 2, n) = O(log2 n) for every integer k with k ≥ 3. Aichholzer
et al. [2, Theorem 5] also showed that every set of n points contains a 2-convex
subset of size at least Ω(log2 n). Thus the bound from Corollary 1 is tight up to a
multiplicative constant, settling the second part of Problem 2 in the case j = 2.
The second part of Problem 2 remains open for j ≥ 3.

Concerning empty 2-convex polygons in general sets of n points, we show
that so-called Horton sets do not contain large empty 2-convex polygons. More
specifically, we derive the following bound.

Theorem 3. There is a constant c > 0 such that, for every positive integer n,
there are sets of n points in the plane in general position that contain no empty
2-convex polygon on at least c · log n vertices.

The upper bound from Theorem 3 matches the earlier lower bound [2, The-
orem 3] up to a multiplicative constant. In other words, Theorem 3 yields a
solution to Problem 3.

Aichholzer et al. [2] proved that, for all positive integers k and l, the union
of a k-convex point set T and an l-convex point set S is (k + l + 1)-convex.
Moreover, they showed that if a k-convex polygonization of T and an l-convex
polygonization of S intersect, then T ∪ S is (k + l)-convex. Aichholzer et al. [2]
found a set of 10 points that is not 2-convex and is a union of two 1-convex sets,
showing that the first bound is tight for k = l = 1. Besides the case k = l = 1,
no matching bound is known and Aichholzer et al. asked [2, Open problem 2]
whether there are examples for general integers k and l such that the union of a
k-convex point set and an l-convex point set is not (k + l)-convex. We prove the
following almost matching bound.

Proposition 1. For all positive integers k and l, there are point sets Tk and Sl

such that Tk is k-convex, Sl is l-convex, and Tk ∪ Sl is not (k + l − 1)-convex.

It follows from the proof of Proposition 1 that the bound k + l by Aichholzer
et al. [2] on the convexity of a union of a k-convex point set with an l-convex
point set with intersecting polygonizations is tight in the worst case. The proof
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also gives an explicit construction, for every k ∈ N, of a k-convex set that is not
(k − 1)-convex. Such an example seemed to be missing in the literature.

The proofs of the second part of Theorems 2, 3, and Proposition 1 are in the
full version of the paper.

4 Proof of Theorem 1

For a fixed positive integer k, we show that every set of n points in the plane in
general position contains a k-convex subset of size at least Ω(logk n). We first
state two auxiliary statements. The first one, the Erdős–Szekeres Lemma, is a
classical result proved by Erdős and Szekeres [6].

Lemma 1 ([6]). For every n ∈ N, every sequence of (n − 1)2 + 1 real numbers
contains a non-increasing or a non-decreasing subsequence of length at least n.

The main idea of the proof of Theorem 1 is inspired by the approach of
Aichholzer et al., who proved the lower bound Ω(log2 n) for the case k = 2 [2,
Theorem 5]. The key ingredient of the proof is the so-called Positive Fraction
Erdős–Szekeres Theorem proved by Bárány and Valtr [4]. We use a version of
the theorem that was used by Suk [15] and that is based on a bound proved by
Pór and Valtr [14] (Theorem 4 below). Before stating it, we first introduce some
notation.

A set of points in the plane with distinct x-coordinates is a cup if the points
lie on the graph of a strictly convex function. Similarly, it is a cap if the points lie
on the graph of a strictly concave function. Given a cap or a cup C = {c1, . . . , cl}
with points of C ordered according to the increasing x-coordinates, the support
of C is the collection of open regions T1, . . . , Tl, where each Ti is the region
outside of the convex hull of C bounded by the line segment cici+1 and by the
lines ci−1ci and ci+1ci+2, where c0 = cl, cl+1 = c1, and cl+2 = c2; see part (a) of
Fig. 1. The base of each region Ti is the line segment cici+1 and we call the line
cici+1 the base line of Ti.

Theorem 4 ([4,14,15]). Let l ≥ 3 be an integer and P be a finite set of points
in the plane in general position such that |P | ≥ 232l. Then there is a set C of l
points of P such that C is a cap or a cup and the regions T1, . . . , Tl−1 from the
support of C satisfy |Ti ∩ P | ≥ |P |

232l
for every i ∈ {1, . . . , l − 1}.

Let k be a fixed positive integer and let P be a set of n points in the plane in
general position with n sufficiently large with respect to k. A curve C in the plane
is x-monotone or y-monotone if every vertical or horizontal line, respectively,
intersects C in at most one point. We proceed by induction on k and show
that there is a k-convex subset Q of P of size at least Ω(logk n) such that the
polygonization of Q has the boundary formed by a union of an x-monotone curve
and one edge. We make no serious effort to optimize the constants.

First, Theorem 1 for k = 1 follows from the Erdős–Szekeres Theorem [6], as
stated at the beginning of the introduction, because each set of points in convex
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(a)

(b)

c1

c2

c3

c4
c5

c6

c7

c3

c1

c2

c5

c6

c7

S

Q1
Q2

T1

T2

T3
T4

T5

T6T7

Fig. 1. (a) An illustration of the statement of the Positive Fraction Erdős–Szekeres
Theorem (Theorem 4). (b) A construction of the polygon S for k = 2. In this example,
we have l = 7. The described procedure gives m = 2, i1 = 3, and i2 = 5, because σ3, σ5

are non-decreasing.

position is a union of a cap and a cup that intersect only in two points. This
finishes the base case.

Now, for the induction step, assume k ≥ 2. Without loss of generality we
assume that no two points of P have the same x-coordinate. By Theorem 4
applied with l = 
log n/64�, there is a set C = {c1, . . . , cl} of l points from P
such that C is a cap or a cup and the regions T1, . . . , Tl−1 from the support
of C satisfy |Ti ∩ P | ≥ |P |

232l
≥ √

n. Let ≺ be the ordering of the points from P
according to their increasing x-coordinates. Note that c1 ≺ c2 ≺ c3 ≺ · · · ≺ cl.
By symmetry, we assume that C is a cap.

For every odd i with 3 ≤ i < l − 1, we apply Lemma 1 to the sequence
of distances of points from Ti ∩ P to the base line of Ti, ordered by ≺. For
each such sequence, we obtain a non-increasing or a non-decreasing subsequence
σi of length at least

√|T ∩ Pi| ≥ n1/4. By the pigeonhole principle, there are
m ≥ (l − 3)/4 subsequences σi1 , . . . , σim with odd indices 1 < i1 < · · · < im <
l − 1 such that all these sequences are non-increasing or all non-decreasing. By
symmetry, we may assume that σi1 , . . . , σim are all non-decreasing. In the other
case we would proceed analogously, considering the ordering of ≺−1. For every
j ∈ {1, . . . , m}, let Pj be the set of points from Tij ∩ P that determine the
distances in σij . In particular, the distances of the points of Pj to the base line
of Tij are non-decreasing in ≺ and |Pj | ≥ n1/4.
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By the induction hypothesis applied to each set Pj , there is a (k − 1)-convex
subset Qj of Pj of size at least c logk−1(n1/4) = c

4 logk−1 n for some constant
c = c(k−1) > 0 such that some (k−1)-convex polygonization of Qj is formed by
a union of an x-monotone curve Oj and one edge. Observe that cij ≺ q ≺ cij+1

for every q ∈ Qj , as 1 < ij < l − 1.
We construct a polygonization of the set Q = C ∪ ⋃m

j=1 Qj by connecting
the first and the last vertex of Oj in ≺ to cij and cij+1, respectively, with a line
segment for each j ∈ {1, . . . , m}. We then add the line segments cici+1 for each
i ∈ {1, . . . , l − 1} \ {i1, . . . , im} and the line segment c1cl; see part (b) of Fig. 1.
Since c1 ≺ · · · ≺ cl and cij ≺ q ≺ cij+1 for all j ∈ {1, . . . , m} and q ∈ Qj , the
resulting closed piecewise linear curve is a boundary of a simple polygon S with
the vertex set Q ⊆ P . Moreover, the boundary of S is formed by a union of an
x-monotone curve and the edge c1cl. Note that

|Q| >

m∑

j=1

|Qj | ≥ m
c

4
logk−1 n ≥ 
log n/64� − 3

4
c

4
logk−1 n = Ω(logk n)

for n sufficiently large with respect to k.
It remains to prove that the polygon S is k-convex. We start with the fol-

lowing simple observation that restricts the set of lines we have to check.

Lemma 2. For every k ∈ N, a simple polygon S with vertices in general position
is k-convex if and only if every line not containing a vertex of S intersects ∂S
in at most 2k points.

Proof. First, if S is k-convex, then each line � intersects S in at most k connected
components. If l contains no vertex of S then each such a component is a line
segment with endpoints in ∂S and with interior contained in the interior of S.
Thus � intersects ∂S in at most 2k points.

On the other hand, if S is not k-convex, then there is a line � that intersects
S in more than k connected components. We say that a component of S ∩ � is
regular if it contains no vertex of S. Suppose for simplicity that � is horizontal.
Since the vertices of S are in general position, at most two components are not
regular. Every regular component intersects ∂S in exactly two points. It follows
that if all components are regular then � intersects ∂S in at least 2k + 2 points.

Suppose now that there is a unique component A containing one or two
vertices of S. Then either moving � a little bit up or moving it a little bit
down turns the component A into one or more regular components and the
other components remain regular. Consequently, the perturbed line � contains
no vertex of S and intersects ∂S in at least 2k + 2 points.

Finally, suppose that there are two non-regular components A and B, each
containing exactly one vertex of S. Then A can be turned into a regular com-
ponent either by slightly perturbing � arbitrarily in such a way that it passes
above the point A ∩ vert(S), where vert(S) denotes the vertex set of S, or by
slightly perturbing it arbitrarily in such a way that it passes below the point
A ∩ vert(S). A similar statement holds for the component B. We claim that a
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suitable slight perturbation of � turns each of the components A and B into a
regular component. Indeed, it is sufficient to move � a little bit up or down or
to rotate it slightly clockwise or counterclockwise around the middle point of
the segment connecting the points A ∩ vert(S) and B ∩ vert(S). Thus there is a
perturbation of � such that the resulting line does not contain a vertex of S and
intersects ∂S in at least 2k + 2 points. This finishes the proof of Lemma 2.

By Lemma 2, it suffices to show that every line � not containing a vertex of
S intersects ∂S in at most 2k points. Since such a line � intersects ∂S in an even
number of points, it actually suffices to show that it intersects ∂S in at most
2k + 1 points. Every edge of ∂S is contained in the closure cl(Ti) of some Ti.
Since � intersects at most two regions cl(Ti), it suffices to prove the following
claim.

Lemma 3. The following two conditions are satisfied.

(i) For every i, |� ∩ ∂S ∩ cl(Ti)| ≤ 2k.
(ii) If � intersects two different regions Tα and Tβ then |� ∩ ∂S ∩ cl(Tα)| ≤ 1 or

|� ∩ ∂S ∩ cl(Tβ)| ≤ 1.

Proof. We first prove part (i) of Lemma 3. If i �∈ {i1, . . . , im} then cl(Ti) contains
at most one edge of ∂S. Thus, we have |� ∩ ∂S ∩ cl(Ti)| ≤ 1 < 2k in this case.
Otherwise i = ij for some j ∈ {1, . . . , m}, and then |�∩∂S ∩ cl(Ti)| ≤ 2k, since �
intersects Oj in at most 2k−2 points and it intersects each of the two remaining
edges of ∂S contained in cl(Ti) at most once. Part (i) of Lemma 3 follows.

To show part (ii) of Lemma 3, assume that, say, 1 ≤ α < β ≤ l. If β = α + 1
then α or β is even and thus |� ∩ ∂S ∩ cl(Tα)| ≤ 1 or |� ∩ ∂S ∩ cl(Tβ)| ≤ 1, as
required. Similarly, we have |� ∩ ∂S ∩ cl(Tβ)| ≤ 1 if β = l and thus we assume
β < l.

Assume now that β ≥ α+2. Then � intersects the bases of Tα and of Tβ . We
claim that |� ∩ ∂S ∩ cl(Tα)| ≤ 1. This is obvious if α �∈ {i1, . . . , im}.

Assume now that α = ij for some j ∈ {1, . . . , m}. Let cij = q1 ≺ q2 ≺
· · · ≺ qs−1 ≺ qs = cij+1 be the points from Qj ∪ {cij , cij+1}. We use x to denote
the intersection point of � and the base of Tij . Let �+ be the open half-plane
determined by � containing qs; see Fig. 2.

Let qt be a point from Qj ∩ �+. The distance of the point qt to the base line
of Tij is at most as large as such a distance for qt+1 by the choice of Qj . Thus
the point qt+1 does not lie in the strip between the base line of Tij and the line
�′ parallel to this line containing qt. Since qt ∈ �+, the line � intersects �′ to the
left of qt. It then follows from ij = α < β < l that the intersection of � with �′

is to the left of x and thus � intersects the vertical line containing qt below qt.
Since qt ≺ qt+1, the point qt+1 is thus separated from � by �′ and the vertical
line that contains qt; see Fig. 2. In particular, qt+1 ∈ �+ and � does not intersect
the edge qtqt+1.

Since the vertices along Oj are ordered according to ≺, it follows that at
most one edge of S in cl(Tij ) intersects � and we have |� ∩ ∂S ∩ cl(Tij )| ≤ 1,
which completes the proof of part (ii) of Lemma 3 and thus also the proof of
Theorem 1.
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�

x
qs

q1

qt+1
qtTij

�+

Fig. 2. An illustration of the proof of the fact |� ∩ ∂S ∩ cl(Tij )| ≤ 1.

5 Proof of the First Part of Theorem 2

In this section, we construct a 3-convex set of n points with the largest 1-convex
subset of size at most O(log n). Together with the Erdős–Szekeres Theorem,
this gives f(k, n) = f(k, 1, n) = Θ(log n) for all positive integers k ≥ 3 and n
and asymptotically settles the first part of Problem 2. Our example, the so-called
Devil’s staircase, has a very simple structure and may be of independent interest
for reasons discussed in the introduction. In full version of the paper, we also give
another example, in which we get a more precise bound described in the second
part of Theorem 2. Our examples are modifications of the construction used by
Erdős and Szekeres [6] to show the asymptotic tightness of the Erdős–Szekeres
Theorem.

A point set D is deep below a point set U if the following two conditions are
satisfied.

(i) Every point of D lies strictly below each line determined by two points of
U , and

(ii) every point of U lies strictly above each line determined by two points of D.

We say that a set S of 2t points in the plane in general position is a (combina-
torial) Devil’s staircase1 if S satisfies one of the following two conditions.

(ES1) Either t = 1 and the set S consists of two points (x1, y1) and (x2, y2) with
x1 < x2 and y1 < y2, or

(ES2) t ≥ 2 and the set S admits a partition S = X ∪ Y , where X and Y are
both Devil’s staircases with 2t−1 points. Moreover, X is deep below Y
and every point of Y has larger x-coordinate than any point of X.

Let {p1, . . . , pn} be the points of a Devil’s staircase Xt of size n = 2t for some
t ∈ N, sorted by increasing x-coordinates. We let p1 = (x1, y1) and pn = (xn, yn)
and we define the set Zt = Xt ∪ {q} with q = (xn, y1).

1 We chose this name, since the set resembles Cantor function, which is also known
under the name Devil’s staircase [16].
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Fig. 3. The polygonizations P1, P2, and P3, and the curve C3.

Now, we show that the set Zt is 3-convex. To do so, we consider the following
polygonization Pt of Zt. Let Ct be an x-monotone piecewise-linear curve formed
by the line segments pipi+1 for each i ∈ {1, . . . , n − 1}. Note that, by Proper-
ties ES1 and ES2, the chain Ct is also y-monotone. The polygonization Pt of Zt

is then the polygon whose boundary consists of Ct and the two line segments
p1q and pnq; see Fig. 3. The polygon Pt is simple, since Ct has both coordinates
increasing if we traverse it from p1 to pn. We now prove that Pt is a 3-convex
polygon.

Lemma 4. Any line � intersects Ct at most five times. Furthermore, if � is non-
vertical and passes above the rightmost point of Ct, then it intersects Ct at most
four times.

Proof. We proceed by induction on t. The case t ≤ 2 is trivial, thus we assume
t ≥ 3. Since Xt is a Devil’s staircase, there is a partition Xt = Xt−1 ∪X ′

t−1 such
that Xt−1 and X ′

t−1 are Devil’s staircases of size 2t−1, Xt−1 lies deep below X ′
t−1,

and Xt−1 is to the left of X ′
t−1. Let Ct−1 and C ′

t−1 be the x- and y-monotone
piecewise-linear curves formed by Xt−1 and X ′

t−1, respectively.
Let � be a line. Since the points of Xt are in general position, we can, due to

Lemma 2, assume that � does not contain a vertex of Xt in the rest of the proof.
First, observe that Property ES2 implies that every line that intersects at least
two edges of Ct−1 lies below X ′

t−1. Similarly, Property ES2 implies that every
line intersecting at least two edges of X ′

t−1 is above Xt−1. Thus we can assume
that � does not intersect both Ct−1 and C ′

t−1. Otherwise � intersects both curves
at most once and, since Ct contains only a single edge et besides Ct−1 and C ′

t−1,
the line � intersects Ct at most three times.

Since we assume that � does not intersect Ct−1 or C ′
t−1, we may also assume

that it intersects the other of these two sets at least twice. This will imply
restrictions on �.

We assume first that � intersects Ct−1 at least twice and show that the
statement of the lemma is then satisfied. In this case � passes below the rightmost
point of Ct, and we only have to show that it intersects Ct at most five times.
This is indeed the case because if � passes below the rightmost point of Ct−1 then
it does not intersect et and the statement follows from the inductive hypothesis.
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If � passes above the rightmost point of Ct−1 then it intersects Ct−1 at most
four times by the inductive hypothesis and consequently it intersects the curve
Ct = Ct−1 ∪ C ′

t−1 ∪ et at most five times.
Suppose now that � intersects C ′

t−1 at least twice. If � passes above the right-
most point of C ′

t−1 then it intersects C ′
t−1 at most four times by the inductive

hypothesis. Since � passes above all points of Ct−1, it intersects C ′
t−1∪et an even

number of times, thus at most four times. If � passes below the rightmost point
of C ′

t−1 then it intersects C ′
t−1 at most five times by the inductive hypothesis.

Since � passes above all points of Ct−1, it intersects C ′
t−1 ∪ et an odd number of

times, thus at most five times. This finishes the proof.

Consider a line � containing no point of Zt. Since � intersects ∂Pt an even
number of times, the first part of Lemma 4 implies that � intersect ∂Pt at most
six times. Lemma 2 then implies that Zt is a 3-convex point set.

We now show that the largest 1-convex subset of Zt contains at most O(t) =
O(log n) points. We use an argument analogous to the one used by Erdős and
Szekeres [6] (see also Matoušek [12, Sect. 3.1]). Every 1-convex set C of points
with distinct x-coordinates is a union of a cup and a cap meeting exactly in the
leftmost and the rightmost points of C. To prove the desired bound it is sufficient
to show that a Devil’s staircase Xt of size n = 2t contains no cup or cap having
more than t + 1 = log (n) + 1 points. A cup in X1 contains at most two points.
Due to the construction of Devil’s staircase, every cup in Xt = Xt−1 ∪ X ′

t−1 is
either fully contained in one of the smaller Devil’s staircases Xt−1 or X ′

t−1 or it
contains at most one point of X ′

t−1. It follows by induction on t that a cup in
Xt contains at most t + 1 points. Analogously, every cap in Xt contains at most
t + 1 points. Thus, every 1-convex subset of Xt contains at most 2t = O(log n)
points.

Since any subset of a 3-convex point set is 3-convex [2, Lemma 2] and remov-
ing points from Zt does not increase the size of the largest 1-convex subset, we
obtain the first part of Theorem 2.
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On Erdős–Szekeres-Type Problems for k-convex Point Sets 47
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